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Abstract: Ring resonator-based biosensors have found widespread application as the transducing
principle in “lab-on-a-chip” platforms due to their sensitivity, small size and support for multiplexed
sensing. Their sensitivity is, however, not inherently selective towards biomarkers, and surface
functionalization of the sensors is key in transforming the sensitivity to be specific for a particular
biomarker. There is currently no consensus on process parameters for optimized functionalization of
these sensors. Moreover, the procedures are typically optimized on flat silicon oxide substrates as
test systems prior to applying the procedure to the actual sensor. Here we present what is, to our
knowledge, the first comparison of optimization of silanization on flat silicon oxide substrates to
results of protein capture on sensors where all parameters of two conjugation protocols are tested on
both platforms. The conjugation protocols differed in the chosen silanization solvents and protein
immobilization strategy. The data show that selection of acetic acid as the solvent in the silanization
step generally yields a higher protein binding capacity for C-reactive protein (CRP) onto anti-CRP
functionalized ring resonator sensors than using ethanol as the solvent. Furthermore, using the BS3
linker resulted in more consistent protein binding capacity across the silanization parameters tested.
Overall, the data indicate that selection of parameters in the silanization and immobilization protocols
harbor potential for improved biosensor binding capacity and should therefore be included as an
essential part of the biosensor development process.
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1. Introduction

The basis for diagnosis and monitoring of progression of disease is through quantitative
determination of biologically relevant material such as various macromolecules or signaling molecules,
possible pathogens, e.g., viruses and bacteria, or cells. Traditionally, these molecular parameters
have been quantified in centralized laboratories applying processes that depend both on relevant
infrastructure as well as personnel. Recently, there has been an increasing interest in the development
of biosensors that translate the presence of such analytes reliably into relevant parameters with shorter
acquisition time, lower sample volume requirements and in a way that is possible to deploy in
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point-of-care settings [1]. Such fast and compact biosensors are often referred to as “lab-on-a-chip”
technology. In addition to medical diagnostic applications, these toolboxes can be tailormade as
important research tools for identification and evaluation of candidate drugs in the pharmaceutical
industry [2,3], for fundamental research issues, or for monitoring of safety and environmental
purposes [4–6]. Various transducing principles are applied in lab on a chip biosensors, such as
electrochemical [7] (e.g., amperometric [8], conductometric [9]), based on optical principles [10,11]
(photonic resonators, photonic crystals, fluorescence-based), plasmonic [12,13] (surface plasmon
resonance, localized surface plasmons), mechanical [14], acoustic [15], nanopore [16–18], and others.
Although highly sensitive, these transducing principles are not inherently selective towards any
distinct biomarker. The use of highly selective recognition molecules such as antibodies, fragments
of antibodies, affibodies, aptamers or others is therefore required to ensure that the measured sensor
signal is a result of a highly specific binding event. Thus, immobilization of recognition molecules on
the sensor surface is key in exploitation of the sensitivity of the transducing principles by ensuring
selectivity in the signal generation. Biofunctionalization of a sensor is not a trivial task, and there are
many aspects needing attention: the chemical functionalization strategies available for the actual sensor
material, the type of capture molecule wanted, the time and cost of the functionalization, the robustness
of the functionalization and so on. Stable and reproducible immobilization without functional damage
of the recognition molecules typically requires covalent binding to the sensor. For such covalent
immobilization, one must first overcome the inherent limitation in the lack of biologically reactive
binding sites on inorganic sensor substrates. This is accomplished by functionalizing the sensor
substrates with polymer films that introduces molecular groups to the surface that can subsequently
be used as anchors for further functionalization. On gold-coated sensor surfaces, this is typically done
with thiol-ended self-assembled monolayers (SAMs), while silanization is often the method of choice
for glass- or silicon-based sensors [19]. These SAMs and silane films typically introduces amino-,
thiol- carboxyl- or epoxy- groups to the substrate that can subsequently be used to covalently immobilize
capture probes either through a direct covalent bond induced through carbodiimide chemistry [20] or
via the use of a linker such as bis(sulfosuccinimidyl)suberate (BS3) [21,22] or glutaraldehyde [23,24].

Here, we report on direct comparisons of multiple controlled immobilization protocols for
antibodies onto a sensor based on photonic ring resonators as the transducing principle. The selection
of this readout platform is based on the increased interest in applying such photonic elements in
biosensors, due to their small size and high sensitivity combined with possibilities for multiplexing
and mass production using methods already established by the semiconductor industry. In a typical
ring resonator-based sensor, light is coupled into a straight waveguide and a ring resonator. The light
in the waveguide is transferred and resonates in the ring resonator if the resonance condition given by

mλ = 2πrneff (1)

is fulfilled. Here, m is an integer, λ is the wavelength of light and neff is the effective refractive index
experienced by the light resonant in the ring. The actual value of neff depends on the resonator materials
and geometry, in addition to the conditions in the ring’s immediate surroundings as experienced by the
evanescent field. As the ring resonator material and geometry remain constant during an experiment,
photonic ring resonators are very sensitive to changes in refractive index near the ring surface, and small
refractive index changes can be detected as a shift in the resonating wavelength. By the immobilization
of recognition molecules on the sensor substrate, the subsequent binding of target molecules to the
capture probes results in changes in the refractive index probed by the evanescent field. This changes
the resonance conditions and gives a shift in the resonant wavelength that is both highly specific and
target concentration dependent [25,26].

Silicon oxides are commonly exploited materials for fabrication of ring resonators [26]. The typical
choice of surface functionalization of silicon oxide-based sensors is silanization, although other options
such as zwitterionic polymers [27] are available. During silanization, reactive hydroxyl groups on
the substrate surface reacts with methoxy or ethoxy residues on the silane molecule, forming a
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covalent bond. The other end of the silane molecule consists of a carbon linker chain and a reactive
residue subsequently used for further functionalization. A plethora of organosilanes are commercially
available, and the selection of silane typically depends on the length of the linker chain and the desired
reactive residue for further functionalization. Although different linker lengths are available, these are
mostly significantly shorter than the penetration depth of the evanescent field of the ring resonator.
Amino-terminated silanes are widely employed due their versatility in supporting conjugation with
various abundant moieties, e.g., -COOH. Due to its low cost and robustness, the introduction of amino
groups through silanization with (3-Aminopropyl)triethoxysilane (APTES) is a common choice [20].

Silanization protocols can be described as consisting of four main steps: cleaning and activation
of the substrate to maximize the number of reactive hydroxyl groups on the substrate, silanization
performed in either vapor or liquid phase, and rinsing for the removal of unbound silanes, before
a final (and sometimes optional) curing step. There are many attempts to optimize protocols
reported in the literature. These tend to either compare similar silanes, e.g., amino-terminated silanes,
or compare different silanization protocols for the same silane, e.g., APTES. In this context, it is
worth mentioning that the details in each step, such as time, temperature, choice of silanization
method, choice of solvent and silane concentration varies significantly in the literature. One example
here is the reported improved hydrolytically stable films over a larger range of pH values achieved
by replacing APTES with 11 aminoundecyltriethoxysilane (AUTES) [28]. Another example is the
reported increased density of amino groups on the silane film achieved by replacing APTES with
(3-aminopropyl)diethoxymethylsilane (APRDMS) [29], and associated identification of the silane
molecular structure to control the hydrophobicity of the silane film [30]. These results were, however,
achieved by quite dissimilar silanization protocols. Two of these results were obtained through vapor
deposition of the silanes, one at room temperature for 4 hours at a pressure of 1.6 Torr [28], the other at
150 ◦C for five min at a pressure of 2–3 Torr [30]. The third was performed by liquid deposition of 1%
silane in a anhydrous toluene [29]. The experimental details of these studies exemplify that optimized
protocols can be achieved in different ways, and that comparing silanization results are therefore not
necessarily straight forward. This is of interest, as what constitutes successful immobilization has not
been properly defined. Although some traits, such as stable, durable and repeatable immobilization,
retention of antibody activity, and avoidance of nonspecific binding, are often mentioned in the
literature, the search for an optimized surface functionalization protocol for silanization of silicon
oxide has not givena definitive answer.

Furthermore, optimization is also commonly performed on flat silicon oxide substrates, and not on a
functioning sensor. Properties of the silane film itself are selected as the optimization criterion, although
some groups also report on immobilization of proteins [31] or nanoparticles [28] onto these films as
part of the optimization process. The most common techniques used for silane film characterization are
ellipsometry [28,32–36] for film thickness measurements, atomic force microscopy (AFM) [28,31–39]
for topological imaging and average surface roughness, water contact angle (WCA) [28,32–35,37]
measurements for surface hydrophobicity, and X-ray photoelectron spectroscopy (XPS) [34,38,39] or
Fourier-transform infrared spectroscopy (FTIR) [33,34,39] for chemical characterization of the silane
film. In addition, spectroscopic methods for determining the surface density of amino groups or
immobilized proteins have been reported [29,31]. Fluorescent signals from immobilized biomolecules
can be used for characterization of the immobilization procedure as well [33,40].

The functionalization protocols used for functional ring resonator-based sensors reported in the
literature also reflect variation in silanization protocols. Park et al. reported in 2013 on a label-free DNA
aptamer sensor for the detection of human immunoglobin E [23] and human thrombin, with detection
limits of 33 pM and 1.4 nM, respectively. Here, the ring resonator sensors are functionalized through
liquid silanization with a 2% APTES solution in 95% ethanol for 2 h, with subsequent immobilization
of aptamers using glutaraldehyde as a linker. Sabaté del Rio et al. report on DNA functionalization
of ring resonators through copper-catalyzed chemistry on rings silanized with a 2% mixture of
11-aziduondecyltriethoxysilane in toluene and an overnight incubation [41]. These sensors where
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subsequently used for real-time and label-free monitoring of solid-phase recombinase polymerase
amplification, with a limit of detection of 7.8 × 10−13 M. Both Valera et al. [21] and Graybill et al. [22]
report on silanization with a 5% APTES solution in acetone for 5 min before using the BS3 linker
to immobilize antibodies and aminated ssDNA capture probes respectively. Graybill reports on
multiplexed detection of expressed microRNAs, while Valera reported on biosensing of monocyte
chemotactic protein 1.

The Genalyte Maverick system is a commercialized and extensively characterized microring
resonator system. The Bailey lab has consistently pioneered the development of this microring
platform, particularly in understanding surface interactions, and using those interactions towards
translational purposes. Initial work included characterization of the microring evanescent field
through multilayer deposition [42], fine tuning parameters for the platform for functionalizing capture
agents [43], and defining reproducible binding motifs for understanding association and dissociation
events of functionalized surfaces [44]. Based on these early studies, this platform has been used to
establish a variety of applications, including translational multiplexed assays [45], chromatographic
detection systems [46], and small molecule analyses [47]. In both fundamental and applicative work,
this platform has shown to be a highly sensitive system to elucidate the characteristics of biosensors
needed for robust detection schemes.

The variations in optimized protocols based on experiments and characterization of silanization
and protein immobilization on flat silicon oxide substrates and in protocols used on working ring
resonator-based sensor platforms begs the question: is optimizing silanization on flat substrates worth
the time and cost of performing these experiments in terms of optimized performance of the finished
sensor? To our knowledge, there has been no previous report on any direct comparison between
silanization characterization on wafer substrates and the binding capacity achieved on the finished
ring resonator sensor set up. Here, we present the results of the characterization of aminosilanization
with APTES of silicon wafer samples, followed by subsequent immobilization of anti-CRP antibodies,
either by carbodiimide chemistry or the use of a BS3 linker. The different steps in the functionalization
protocol are characterized by AFM imaging and XPS to obtain morphological and surface chemistry
parameters. These different protocol parameters are also tested on the Genalyte Maverick system, and
the binding capacity for CRP on these differently functionalized sensors are determined. The focus
has been on elucidating correspondence between readout parameters from the wafer substrates
characterization and the measured protein binding capacity of the sensor that can be used to streamline
the optimization process for new chemistries on photonic ring resonator sensors.

2. Materials and Methods

The experiments were designed to compare the results of functionalized flat silicon oxide wafer
pieces characterized using AFM with results from a multiplexed ring resonator sensor chip using
an established sensor system (Maverick, Genalyte). The sensor chip was functionalized using the
same functionalization parameters as the silicon wafer pieces. This was done in order to assess the
usefulness of characterization of flat wafer “dummy” substrates as part of the process of optimizing the
functionalization protocol of a biosensor. The functionalization protocols were therefore conducted as
similarly as possible, but the chemical functionalization protocols for the ring resonator chips and the
flat wafer substrates are described separately below due to the flow regime employed in the Genalyte
set-up. The two main points of comparison are AFM roughness analysis for silanized wafer specimens
compared to online monitoring of silanization on the Maverick platform and AFM roughness analysis
of immobilized anti-CRP on wafer pieces compared to online monitoring of CRP capture on sensor
chips functionalized with anti-CRP following the same parameters as the wafer pieces.

2.1. Chemical Functionalization and Characterization of Crystaline Silicon Substrates

Flat 0.8 × 0.8 cm square silicon test substrates were cut from a 4-inch crystalline silicon wafer
using a scriber (DX-III, Dynatex, Santa Rosa, CA, USA).
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2.1.1. Silanization

The wafer pieces were plasma cleaned (Diener Electronics, 50% power, 50% O2-gas,
2 min) to remove contaminants, and subsequently silanized by immersion in a solution of
(3-Aminopropyl)triethoxysilane (APTES, Sigma) diluted in either 96% ethanol (VWR) or 1 mM
acetic acid (Sigma) in deionized water. The different combinations of APTES concentration and
incubation times employed are shown in Table 1. After silanization, the samples were rinsed in
deionized water before drying with nitrogen gas. The resulting silanized substrates were inspected
using AFM imaging.

Table 1. Overview of silanization parameters used in this study.

Solvent APTES Concentrations and Incubation Time

96% EtOH 1%, 10 min 2%, 20 min 4%, 60 min
1 mM acetic acid 1%, 10 min 2%, 20 min 4%, 60 min

2.1.2. Antibody Immobilization

To assess the effect of silanization parameters on antibody immobilization, anti-CRP antibodies
were immobilized onto wafer pieces silanized using various parameters (Table 1). Antibody
immobilization onto silanized substrates was achieved either by carbodiimine chemistry or by
use of a bis(sulfosuccinimidyl)suberate (BS3) linker, giving a total of 12 combinations of parameters for
antibody immobilization, all of which were inspected using AFM imaging.

For the carbodiimide chemistry, N-Hydroxysuccinimide (NHS, sigma Aldrich) was
dissolved in phosphate buffered saline (PBS, Sigma) to a concentration of 3 mg/mL.
N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC, sigma Aldrich) was diluted
in MES-bufffer (Sigma, pH 5.5) to a concentration of 1.25 mg/mL. The CRP monoclonal antibody
(Thermo Fisher) was diluted in MES-buffer to a final concentration of 0.1 mg/mL. Immediately before
immobilization, the EDC and NHS solutions were added to the antibody solution and the final
concentration of EDC and NHS was 12.5 µg/mL and 30 µg/mL, respectively. A 20 µL droplet of this
EDC- and NHS-containing antibody solution was subsequently incubated on each wafer piece for
60 min. After incubation, the wafer pieces were rinsed in PBS and water before drying with N2 gas.

For the BS3 linker (Thermo Fisher), 20 µL of 2.85 mg/mL freshly dissolved BS3 linker in 2 mM
acetic acid was deposited on the substrate and incubated for 3 min after silanization. Subsequently,
a droplet of 0.1 mg/mL CRP monoclonal antibody in PBS was incubated on the BS3-activated substrate
for 60 min before rinsing in PBS and deionized water and drying with N2 gas.

2.1.3. AFM

Substrates were imaged in AC mode (tapping mode) in air on a Cypher AFM (Asylum Research)
using a PPP-NCH-W tip (Nanosensors). Surface topographs in tapping mode were captured using
a drive frequency of 0.98xresonance, amplitude of 1 V for topographs up to 5 × 5 micrometers with
512 × 512 data points. Surface roughness parameters, Ra, of the resulting topographs were obtained
using AR15 software package. For silanized substrates, the surface roughness parameters presented
for each silanization parameter are the average of four samples, each imaged at four different locations.
For substrates with immobilized antibodies, the surface roughness parameters are the average of four
imaged areas on one sample substrate for each silanization condition.

2.1.4. XPS

X-ray photoemission measurements were carried out using Mg Kα (hν = 1253.6 eV) X-ray
source. Photoelectrons were collected at normal emission using a PHOIBOS 150 energy analyzer.
XPS measurements were performed on three flat test samples, that were silanized with APTES using
1 mM acetic acid as the solvent and the silanization parameters presented in Table 1.
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2.2. Chemical Functionalization of Sensor Chips and Online Measurements

2.2.1. Online Silanization

Ring resonator waveguide chips were acquired from Genalyte. The Genalyte Maverick M1 system
has been described extensively in the previous literature [21,43]. Briefly, we use an automated flow
system across a single resonator chip cartridge system, consisting of a mylar gasket for fluid retention
and a Teflon top where tubing can be implemented. Reagents flow across the chip at a defined flow
rate and have also been discussed in previous literature [21]. Determination of silanization efficiency
onto the ring resonator chips was performed through online flow experiments, and the sensor chips
were not functionalized prior to these experiments. All steps used consistent flow rates of 30 µL/min.
The assay steps were: (1) an initial rinse in silanization solvent for 5 min, (2) ranges of APTES content
in silanization solution for 20 min, (3) a final rinse in silanization solvent. Silanization solutions were
either 96% ethanol or 1 mM acetic acid, and the APTES content was either 1%, 2% or 4%. The results are
reported as net average shifts, by subtracting the ring resonator shift in the pre-silanization condition
from the signal after post-silanization rinse step.

2.2.2. Functional Primary Binding Assays

To determine the effect of silanization parameters and immobilization chemistry, chips
were functionalized with silane before anti-CRP was bound to the surface offline using either
EDC/NHC-chemistry or BS3 linkers, as described previously [48]. Briefly, chips were silanized using
either 96% ethanol or 1 mM acetic acid as the solvent, with 1%–4% APTES for 10 to 60 min (parameters
as listed in Table 1). When using EDC as the linker, chips were spotted with a solution containing
anti-CRP prepared at 0.25 mg/mL in 1xPBS solution and 5% glycerol. EDC and NHS were added to
the spotting solution immediately before spotting at the same concentrations as described for the flat
wafer substrates. For the BS3 linker, silanized substrates were incubated with BS3 (2.85 mg/mL in
2 mM acetic acid, 3 min) before being spotted with aqueous anti-CRP (0.25 mg/mL, 1xPBS, with 5%
glycerol). All chips were incubated with anti-CRP for an hour before blocking with StartingBlock
solution (Thermo Fisher).

To investigate how the different silanization parameters in combination with the two different
antibody immobilization protocols affected the ring resonator sensor sensitivity to CRP capture,
primary binding assays for CRP were conducted on the functionalized chips at a constant flow rate of
30 µL/min. The assay steps were: (1) 1× PBS, 0.5% BSA rinse for 5 min, (2) 2.5 µg/mL CRP in PBS-BSA
for 10 min, (3) PBS-BSA rinse for 5 min. Comparison of final shifts were extracted in a similar way to
the online silanization shifts.

3. Results and Discussion

3.1. Silanization of Flat Silicon Test Surfaces

Silicon wafers were silanized by APTES at concentrations from 1% to 4% dissolved in aqueous
1 mM acetic acid or 96% ethanol for durations as summarized in Table 1. Selected AFM topographs of
the obtained silanized silicon wafer substrates are shown in Figure 1 alongside the obtained surface
roughness of the silanized surfaces. The AFM topographs of the silanized silicon wafers using dilute
aqueous acetic acid as the solvent for the APTES show surfaces with only small height variations.
These topographs show a small fraction of the surface containing nanosized domains with height about
1 nm from the mean. These domains are suggested to originate as a result of the silanization process, as
APTES is known to both self-polymerize and to bond to oxidized substrates in several different ways,
including multilayer formation (Figure S1, adapted from [20]). For the 1% APTES, 10 min silanization,
there are very few nanosized domains in the 2.5 µm × 2.5 µm area of the topograph (Figure 1a).
Increasing the APTES concentration to the 2% and duration of incubation to 20 min, increases the
abundance of these domains to the order of 6–8 µm−2 (Figure 1b), and to 20–40 µm−2 for silanization at
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4% for 60 min (Figure 1c). The roughness parameters estimated from the AFM topographs of the silicon
wafers silanized using aqueous 1 mM acetic acid were observed to (0.10 ± 0.01) nm, (0.10 ± 0.01) nm
and (0.11 ± 0.01) nm for the CAPTES = 1%, 10 min, CAPTES = 2%, 20 min, and CAPTES = 4%, 60 min,
respectively (Figure 1d).
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Figure 1. (a–c,e–f) A set of six AFM topographs of silicon oxide substrates silanized with APTES.
The substrates are silanized using either 96% ethanol or 1 mM acetic acid as the solvent and the APTES
concentration is varied from 1% to 4%, as indicated in the figure. The height scalebar for all topographs
is shown in Figure 1a. Lateral scalebars are 1 µm. (d,h) The average surface roughness of silanized
substrates prepared similar to the topographs in (a–c) and (e–f). The average is calculated based on
four separate areas imaged on each of four samples prepared for each combination of solvent and
APTES concentration parameters.

These estimates are not significantly different from (0.09 ± 0.01) nm observed for the plasma
cleaned silicon wafer (Figure S2). To ensure that the samples were successfully silanized using this
procedure, application of XPS on similarly functionalized samples was performed. The results provided
clear evidence of silane film on the surface. Three silanized samples were analyzed using XPS, one for
each of the silanization parameters for the solvent acetic acid presented in Table 1. There is an increase
in intensity in the SiO2 peak at ~104.8 eV with increased silanization. In the oxygen signal, the same
increase in intensity can be seen. This increased oxygen and silicon signal reflect an increase in silane
on the substrates with increasing silane concentration and incubation time (Figure 2a,b). The relative
ratio between the bulk Si peak at ~100.5 eV and the SiO2 peak at ~104.8 eV (Figure 2c) also shows an
increase in the relative amount of Si-O bonds, indicating a larger amount of silane on the substrate.
This is in agreement with reports on XPS measurements of silanization of crystalline silicon in the
literature [49].

Thus, the silanization process using dilute acetic acid as the solvent yields overall a layer with
roughness of 0.1 nm that is constant when increasing the concentration and duration of the silanization
step. Additionally, in view of the observed tendency of some nanodomains, this indicate that the acetic
acid solvent does not promote extensive APTES self-polymerization, and that a uniform layer can be
formed using a certain range of silanization parameters. Although some nanodomains are observed
in the AFM height topographs, it should also be noted that the height of these are in the order of a
nm, e.g., within the same order of magnitude as the size of an APTES molecule, indicating that the
nanodomains are not extensive self-polymerized APTES structures.
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Figure 2. XP spectra results for crystalline silicon silanized with APTES using acetic acid as the
silanization solvent. (a) Si 2p spectra. (b) O 1s spectra. (a,b) The results are displayed with the curve
fitting results for the 1% APTES, 10 min silanization sample, which consisted of three separate peaks
that combines to the overall fitted curve (Fit 1%—10 min). Similar curve fits were performed for the
two additional silanization conditions, but the fitted curves to the data are not included in the graph.
(c) Bar plot showing the relative intensities of the SiO2 peak at ~104.8 eV to the bulk silicon peak at
~100.5 eV. Results are calculated based on the fitted curves.

The appearance of the silanized silicon wafers using APTES in 96% ethanol differ from that using
acetic acid solvent by showing increasing roughness with increasing incubation time and APTES
concentration, whereas using a 1 mM solution of acetic acid results in substrates where the average
surface roughness is relatively constant across the parameters investigated. The AFM topographs of
the silanized silicon wafers using APTES in 96% ethanol shows an increasing fraction of the surface
containing nanosized domains that also increases in size, with increasing CAPTES and incubation time.
For the 1% APTES, 10 min silanization, there are very few nanosized domains in the 2.5 µm × 2.5 µm
area of the topograph (Figure 1e), e.g., like that observed using acetic acid as the solvent. Increasing
the APTES concentration to 2% and duration of incubation to 20 min, increases the abundance of these
domains to the order of 30–50 µm−2 (Figure 1f), and to >100 µm−2 for silanization at 4% for 60 min
(Figure 1g). The roughness parameters estimated from the AFM topographs of the silicon wafers
silanized using 96% ethanol were observed to (0.08 ± 0.02) nm, (0.13 ± 0.08) nm and (0.55 ± 0.31) nm for
the (CAPTES = 1%, t = 10 min), (CAPTES = 2%, t = 20 min), and (CAPTES = 4%, t = 60 min), respectively
(Figure 1h). These estimates show that the combined lowest APTES concentration and duration of the
incubation step yields a surface with roughness equal to the plasma cleaned wafer. Increasing CAPTES

and duration of the incubation step yields surfaces with increasing roughness. Increasing extent of
APTES self-polymerization is a possible mechanism leading to these structures.

3.2. Online Silanization of Ring Resonator Chips

The silanization processes using the two different solvents for the APTES were also performed
on ring resonator sensor chips on the Genalyte system (Figure 3). In comparing the data, one should
be aware that the silanization process as monitored by the ring resonator sensor chip differs from
the process used to obtain the data above since the silanization solution is flowing over the chips at
constant flow rate while the signal is recorded. The procedure consisted of a solvent rinse, followed by
exposing the ring resonators to the silanization solution for 20 min, followed by a second solvent rinse,
all at the same volumetric flow rates. The shift in the resonance data show different signatures when
using 1mM acetic acid as the solvent as compared to 96% ethanol. For the 1 mM acetic acid solvent,
the change in resonance frequency is initially quick, followed by a less rapid increase. The change
in resonant wavelength, ∆λ, from the flushing of the solution to the solvent in the second rinse is
almost instantaneous, and its magnitude is reflecting the impact on the contribution to the refractive
index in the solvent from the APTES on ∆λ. The net resonance shift ∆λnet in the final rinse compared
to the initial rinse, is (252 ± 8) pm for the 1% APTES, 10 min treatment, changing to (206 ± 11) pm
and (218 ± 15) pm for the increasing CAPTES and durations, e.g., in the order of 210–250 pm without
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any clear overall trend for all the three CAPTES. The ∆λ shift from the solution to the final rinse is
proportional to the CAPTES.Sensors 2020, 20, 3163 9 of 17 
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Figure 3. (a–c) On-chip monitoring of silanization of a ring resonator chip. The rings are exposed
to the solvent for 5 min, before a solution of APTES and the solvent is flowed over the sensor for
20 min. The flow is returned to the solvent for 5 min before ending the experiment. The * denotes the
time of APTES introduction to the channel while ** is the time point of return to the solvent without
APTES. The graphs each represents the average of at least 47 ring resonators. (d) The average net shift,
∆λnet (arrows in the figure) of the resonant wavelength as a result of the silanization. The net shift is
calculated as the difference between resonating wavelength before and after the silanization step.

The 96% ethanol solvent differs from that observed for 1 mM acetic acid solvent by showing
profiles for the changes in ∆λ with smaller initial change at the same APTES concentration, followed
by a more strongly time-dependent increase. Like the case for silanization using acetic acid as the
solvent, the change ∆λ from the APTES and 96% ethanol solution to the final rinse is observed to
be proportional to CAPTES. The net resonance shift ∆λnet in the final rinse compared to the initial
rinse, increases from (287 ± 16) pm for the 1% APTES, to (382 ± 11) pm for the 2% and further to
(531 ± 20) pm for the 4% APTES. However, since the silanization appear to continue to develop during
the whole 20 min duration of the APTES solution flushing, these values are reflecting a snapshot in the
developing silanized surface. Self-polymerization of the APTES silane proceeding quite readily in
ethanol is a possible reason for this.

The results presented above, including the ring resonator readout, display consistent trends
reported in the literature related to CAPTES and incubation times. These results relate to differences in
optimized silanization protocol parameters, even when screening a rather narrow set of parameters,
i.e., liquid silanization with APTES with toluene as the solvent. It has been reported that a 2% APTES
solution with immersion for 30 min at room temperature under nitrogen atmosphere gives a (local)
maximum density of amino groups and subsequently the highest number of immobilized proteins
on these substrates [31]. Similarly, a different group reports that when using the same parameters,
the immersion time should be 1 hour for optimal protein immobilization [33]. Stable silane films with
maximum protein adsorption have also been reported on substrates silanized with 50 mM APTES
(ca. 1.2%) with a 12-hour immersion time at 90 ◦C [37]. When looking for the maximum density
of amino groups and minimized silane film roughness (on the order of the underlying substrate),
Howarter et al. reports that when testing 1%, 10% and 33% APTES solution, all films are essentially
smooth and thin after 1 h [36]. They also observed that for the 1% APTES solution, increasing the
silanization time above 1 h resulted in less smooth films. Another interesting observation is that the
substrate cleaning and activation protocols can affect the final silane film [34]. This article also reports
that rinsing the silanized substrates in 1 mM acetic acid results in thin uniform thin films across a range
of parameters, even if the films do not appear thin and smooth before the acetic acid rinse [34].
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3.3. Characterization of Antibody Immobilization on Wafer Substrates

Samples of silicon wafers silanized by APTES using either 1 mM acetic acid or 96% ethanol
under the various conditions described above were functionalized with anti-CRP antibody using
either carbodiimide chemistry or BS3 linker, and the resulting surfaces were characterized by AFM.
The overall impression from the AFM topographs (Figures 4 and 5) are that the surface roughness
is dependent on both silanization solvent used and the subsequent choice of linker to immobilize
the antibodies.
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Figure 4. (a–c,e–f) AFM height topographs of anti-CRP antibodies immobilized on silicon substrates
silanized using APTES dissolved in 1 mM acetic acid. (a–c) Height topographs of anti-CRP immobilized
by carbodiimide chemistry (EDC) to substrates silanized using APTES concentrations and durations
of (a) 1% APTES, 10 min, (b) 2% APTES, 20 min, and (c) 4% APTES, 60 min. (d) The average surface
roughness obtained from 5 µm × 5 µm AFM topographs (n = 4, for each condition) of anti-CRP
immobilized on silanized silicon. (e–f) Selected AFM height topographs of anti-CRP immobilized
using the BS3 linker to silicon substrates silanized using APTES concentrations and durations of (e) 1%
APTES, 10 min, (f) 2% APTES, 20 min, and (g) 4% APTES, 60 min. (h) The average surface roughness
obtained from 5µm × 5 µm AFM topographs (n = 4, for each condition) of anti-CRP immobilized using
BS3 on silanized silicon substrates). The height scalebar for all topographs are shown in Figure 4a.
The lateral scalebars on the AFM topographs are 1 µm.

For the APTES silanized surfaces using acetic acid solvent and the three silanization conditions,
the data reveal the following features after the subsequent anti-CRP immobilization (Figure 4). In the
case of using water soluble carbodiimide chemistry in the coupling reaction (Figure 4a–c), the AFM
topographs reveal a small fraction of the area covered by small domains with a height in the order
of 2–3 nm from the adjacent areas. Neither the fraction nor the size of these domains appear to be
correlated with the increasing CAPTES or duration of the silanization step in the process step prior
to the conjugation. In addition, there appears to be a longer spatial wavelength variation in the
background of the AFM topographs. The obtained average surface roughness of the anti-CRP surfaces
shows a small increase from (0.86 ± 0.06) nm to (0.98 ± 0.03) and further to (1.1 ± 0.3) nm for the
silanization parameters (CAPTES = 1%, t = 10 min), (CAPTES = 2%, t = 20 min) and (CAPTES = 4%,
t = 60 min), respectively (Figure 4d). The AFM topographs of the anti-CRP immobilized using the
BS3 linker in the conjugation step (Figure 4e–g) reveal, similar to the EDC supported immobilization,
a small fraction of the surface displaying nanosized domains with heights in the range 2–4 nm.
The heights of these domains are larger than observed for the silanized surfaces, and thus emerge in
the immobilization step. These heights are also comparable to the smallest dimension of an antibody,
14.5 nm × 8.5 nm × 4 nm [50], indicating that extensive aggregation of the antibodies are not induced
in the immobilization process. The obtained average surface roughness of the anti-CRP surfaces
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shows a small increase from (0.31 ± 0.03) nm to (0.35 ± 0.06) nm and further to (0.39 ± 0.04) nm for
the silanization parameters (CAPTES = 1%, t = 10 min), (CAPTES = 2%, t = 20 min) and CAPTES = 4%,
t = 60 min), respectively (Figure 4h). These are all less than for the immobilization using EDC.
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Figure 5. (a–c,e–f) AFM height topographs of anti-CRP antibodies immobilized on silicon substrates
silanized using APTES dissolved in 96% ethanol. (a–c) Height topographs of anti-CRP immobilized
by carbodiimide chemistry (EDC) to substrates silanized using APTES concentrations and durations
of (a) 1% APTES, 10 min, (b) 2% APTES, 20 min, and (c) 4% APTES, 60 min. (d) The average surface
roughness obtained from 5 µm × 5 µm AFM topographs (n = 4, for each condition) of anti-CRP
immobilized on silanized silicon. (e–f) Selected AFM height topographs of anti-CRP immobilized using
the BS3 linker to silicon substrates silanized using APTES concentrations and durations of (e) 1% APTES,
10 min, (f) 2% APTES, 20 min, and (g) 4% APTES, 60 min. (h) The average surface roughness obtained
from 5 µm × 5 µm AFM topographs (n = 4, for each condition) of anti-CRP immobilized using BS3 on
silanized silicon substrates. The height scalebar for all topographs are shown in Figure 4a. The lateral
scalebars on the AFM topographs are 1 µm.

Similar analyses of the anti-CRP immobilized to the APTES silanized surfaces using ethanol
as the solvent yield AFM topographs with distinguishable nanodomains with heights up to 5 nm
that increases with the increasing CAPTES, and silanization duration for both the EDC and BS3-based
coupling strategies (Figure 5). The occurrence of these domains is observed to be more pronounced
and increases more strongly with increasing concentration and silanization reaction time in the case of
EDC mediated coupling than for the BS3 (Figure 5d,h). The obtained average surface roughness of
the anti-CRP surfaces shows the largest increase in case of the EDC coupling to the silanized surfaces
using 96% ethanol as the solvent, starting from (0.51 ± 0.09) nm to (0.83 ± 0.09) nm and further to
(2.0 ± 0.2) nm for the silanization parameters (CAPTES = 1%, t = 10 min), (CAPTES = 2%, t = 20 min) and
(CAPTES = 4%, t = 60 min), respectively (Figure 5d). When using BS3 coupling, the obtained average
surface roughness of the anti-CRP functionalized surfaces shows a small increase from (0.44 ± 0.05) nm
to (0.58 ± 0.07) nm and further to (0.60 ± 0.08) nm for the silanization parameters being (CAPTES = 1%,
t = 10 min), (CAPTES = 2%, t = 20 min) and (CAPTES = 4%, t = 60 min), respectively (Figure 5h), which are
all less than for the immobilization using EDC.

The surface roughness of the surfaces following immobilization with anti-CRP are all larger than
for the underlying silanized silicon wafer, except for the silanization using 96% ethanol as the solvent
with CAPTES = 4%, t = 60 min used as substrate for immobilizing anti-CRP employing BS3 as the
linker. Although this may indicate that the surface roughness of the anti-CRP is largely determined
in the immobilization process, the differences in roughness appear also to be related to the initial
silanized layer. Using the BS3 linker, the surfaces of the immobilized antibodies to the silanized silicon
substrates all have roughness in the range 0.34 to 0.6 nm, and only modestly increasing with the
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increased CAPTES, and silanization time. The trend of changes in roughness with increased silanization
time and concentration for silanized substrates appear thus to be mirrored in the roughness of the
subsequently immobilized antibodies for all combinations except for the combination of ethanol as the
silanization solvent and BS3 as the immobilization linker (Figure 5g).

3.4. On-Chip Capture of CRP

For the on-chip measurements, both solvents and all silanization parameters where tested and
combined with the two antibody immobilization strategies. The changes in the resonance frequency of
these differently prepared chips were monitored when exposed to a continuously flowing solution, with
the baseline being established for aqueous PBS-BSA buffer for 5 min, followed by aqueous 2.5 µg/mL
CRP in PBS-BSA for 10 min, followed by a PBS-BSA buffer solution again (rinse). The relative shifts
were determined throughout the experiments (Figures 6 and 7). In contrast with the similar strategy
employed for the silanization process (Figure 3), the rinsing step did not induce a reduction in the
relative shift. This indicates that binding of CRP monitored in the presence of excess BSA is stable,
and do not represent non-specific binding.
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Figure 6. (a–c,e–f) Online measurements of CRP capture on ring resonator sensor chips silanized with
APTES using 1 mM acetic acid as the silanization solvent. The assay steps consisted of a PBS-BSA rinse
for 5 min before a 2.5 ug/mL CRP in BSA-PBS for 10 min and a final PBS-BSA rinse for 5 min. Single- and
double-stars marks start and end of CRP in BSA-PBS step respectively. For these experiments, at least
12 rings were used for technical replicates. (a–c) CRP capture onto chips where the anti-CRP capture
molecule has been immobilized using by carbodiimide chemistry onto chips silanized using APTES
concentrations and durations of (a) 1% APTES, 10 min, (b) 2% APTES, 20 min, and (c) 4% APTES,
60 min. (d) The average net shift in resonance wavelength due to CRP capture onto the ring resonator
chips with anti-CRP immobilized with by carbodiimide chemistry. (e–g) CRP capture onto chips where
the anti-CRP capture molecule has been immobilized by the BS3 linker onto chips silanized using
APTES concentrations and durations of (e) 1% APTES, 10 min, (f) 2% APTES, 20 min, and (g) 4% APTES,
60 min. (h) The average net shift in resonating wavelength due to CRP capture onto the ring resonator
chips with anti-CRP immobilized with the BS3 linker.

The results show the relative shift increasing from approximately 60 pm to 80 pm for the three
combinations of silanization parameters tested for acetic acid as the silanization solvent and EDC as the
coupling agent (Figure 6a–d). Within this particular immobilization protocol (e.g., using acetic acid as
the solvent in the silanization step, and coupling of the anti-CRP employing EDC), there appears to be
a correlation between the surface roughness of the surface with anti-CRP and the resonance shift when
CRP is binding. This correlation can arise from an increased capacity to bind CRP per unit area the
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rougher the surface, the latter also indicating a larger anti-CRP effective density. The results of relative
net shifts due to CRP-capture are the largest when compared to the set of investigated parameters in
the immobilization protocol here. Changing the coupling agent to BS3 causes a reduction of the relative
wavelength shift to approximately 40–60 pm, but the measured relative shift keeps comparable across
the silanization parameters. This appears to fit well with the results of the silanization parameters,
as the surface roughness of both the silanized substrates and antibodies immobilized on these substrates
also are consistent across the silanization parameters.Sensors 2020, 20, 3163 13 of 17 
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Figure 7. (a–c,e–f) Online measurements of CRP capture on ring resonator sensor chips silanized with
APTES using 96% ethanol as the silanization solvent. The assay steps consisted of a PBS-BSA rinse for
5 min before a 2.5 ug/mL CRP in BSA-PBS for 10 min and a final PBS-BSA rinse for 5 min. Single- and
double-stars mark the start and end of CRP in BSA-PBS step, respectively. For these experiments,
at least 12 rings were used for technical replicates. (a–c) CRP capture onto chips where the anti-CRP
capture molecule has been immobilized by carbodiimide chemistry onto chips silanized using APTES
concentrations and durations of (a) 1% APTES, 10 min, (b) 2% APTES, 20 min, and (c) 4% APTES,
60 min. (d) The average net shift in resonance wavelength due to CRP capture onto the ring resonator
chips with anti-CRP immobilized by carbodiimide chemistry. (e–g) CRP capture onto chips where the
anti-CRP capture molecule has been immobilized by using the BS3 linker onto chips silanized using
APTES concentrations and durations of (e) 1% APTES, 10 min, (f) 2% APTES, 20 min, and (g) 4% APTES,
60 min. (h) The average net shift in resonating wavelength due to CRP capture onto the ring resonator
chips with anti-CRP immobilized with the BS3 linker.

For the chips silanized using ethanol as a solvent and EDC as the coupling agent (Figure 7a–d),
the 10 min and 20 min duration of the silanization and subsequent immobilization of anti-CRP yielded
chips that display far less shift when exposed to CRP. Changing the duration to 60 min and 4% APTES
and subsequent EDC catalyzed immobilization, yielded chips displaying a net shift of about 50 pm
when exposed due to CRP. This is about 60% of the binding capacity of the chip prepared using acetic
acid as the solvent and identical silane concentration and duration. In other words, when using ethanol
as the silanization solvent in combination with EDC, it is only the roughest surfaces that results in a
substantial protein capture on chip. For the BS3 coupling agent used for the silanized surfaces using
ethanol as the solvent, we observe an apparent non-monotonic change in the relative wavelength shift
with increasing duration and concentration of the silane (Figure 7e–h). For the CAPTES = 1% applied for
10 min, the parameter ∆λnet for the CRP capture was observed to 37 pm. The ring-resonator readout
increased to ∆λnet = 60 pm for CAPTES = 2% applied for 20 min, which was subsequently reduced to
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∆λnet = 48 pm for CAPTES = 4% applied for 60 min. Although there is some experimental uncertainty,
the overall trend of this non-monotonic readout appears significant.

4. Conclusions

The choice of silanization parameters (solvent, concentration and incubation time) and linker
chemistry for antibody immobilization has been shown to impact both the surface roughness of silane
and immobilized CPR antibodies on flat silicon test substrates, as well as affecting the binding capacity
of CRP on a ring resonator-based setup. The impact of the choice of linker was larger in terms of
absolute values on both the average surface roughness of immobilized antibodies on flat substrates and
on the magnitude of the relative wavelength shift due to CRP capture than the choice of silanization
parameters. Employing EDC coupling chemistry yielded the largest binding capacity for the CRP
capture in terms of absolute value of net shift in the ring resonator. Please note that this coupling
chemistry also resulted in the smallest binding capacity measured in this study. Meanwhile, BS3 gave
CRP capture values that were much less influenced by the silanization parameters tested, indicating a
higher potential for reproducible assay results. This consistency across the silanization parameters
tested also indicates that the BS3 linker is more robust and is more likely than the EDC chemistry to
produce robust arrays.

Some mirroring trends could be observed between roughness parameters of the silanized substrates,
the roughness of immobilized antibodies and the CRP capture onto similarly functionalized ring
resonator sensor chips. These trends indicate that in general, an increase in silane surface roughness due
to increased CAPTES and incubation time gives rise to an increase in surface roughness in immobilized
antibodies that also, in some instances, can be observed as an increase in captured CRP on a ring
resonator-based sensor. These trends were more prominent when using acetic acid as the silanization
solvent than ethanol. Although these trends are mirrored across different experiments, they do not
give rise to an absolute value of either silane surface roughness or anti-CRP surface roughness being a
boundary condition for significant CRP capture on a similarly functionalized ring resonator sensor.

Even though the AFM measurements on flat test substrates have been shown to be a reasonable
platform to indicate which combination of parameters gives effective CRP capture on a ring resonator
sensor, it is not a time-efficient strategy. The time spent for capturing AFM topographs of the flat test
substrates with anti-CRP is comparable to the time spent immobilizing anti-CRP on ring resonator
chips and subsequently monitoring the CRP capture on these chips. However, where the AFM results
only indicate what might be an optimal immobilization strategy, the CRP capture experiments give
an exact readout on which combination of parameters gives the highest sensor sensitivity. It is,
therefore, our recommendation that for established sensor set ups, any optimization or change in
surface chemistry should be tested directly on the sensor set up. If, however, the optimization is a
part of the establishment of a new sensing platform where direct sensing is not yet possible, the use of
AFM-based strategies offer some possibility of narrowing down which functionalization parameters
that could be used on the sensor once the setup is complete. It is still vital to test this narrow set
of parameters on the finished sensor, as capture of the desired biomarker onto the sensor is the one
parameter that will distinguish a successful sensor from a failed experiment.

Supplementary Materials: The following are available online http://www.mdpi.com/1424-8220/20/11/3163/s1,
Figure S1: Schematic illustration of possible APTES configurations after silanization, Figure S2: Surface roughness
of plasma cleaned silicon oxide wafer.
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