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Abstract: Human-related issues are currently the most significant factor in maritime causalities,
especially in demanding operations that require coordination between two or more vessels and/or
other maritime structures. Some of these human-related issues include incorrect, incomplete,
or nonexistent following of procedures; lack of situational awareness; and physical or mental fatigue.
Among these, mental fatigue is especially dangerous, due to its capacity to reduce reaction time,
interfere in the decision-making process, and affect situational awareness. Mental fatigue is also
especially hard to identify and quantify. Self-assessment of mental fatigue may not be reliable and
few studies have assessed mental fatigue in maritime operations, especially in real time. In this work
we propose an integrated sensor fusion system for mental fatigue assessment using physiological
sensors and convolutional neural networks. We show, by using a simulated navigation experiment,
how data from different sensors can be fused into a robust mental fatigue assessment tool, capable of
achieving up to 100% detection accuracy for single-subject classification. Additionally, the use of
different sensors seems to favor the representation of the transition between mental fatigue states.

Keywords: physiological sensors; mental fatigue; maritime operations; deep learning

1. Introduction

In recent years, maritime operations have become more demanding every day.
Maritime operations now include tasks such as anchor-handling operations at depths of several
thousand meters, precise installation of sub-sea modules weighing hundreds of tons, and platform
support in icy and cold environments in northern regions. The level of complexity of these operations
increases even further when they require coordination among the professionals operating vessels,
cranes, winches, and/or remotely operated vehicles. These factors also increase the damage that
accidents can cause.

Recent studies pointed out that human and organizational factors are the most significant causes of
maritime accidents [1], and the maritime sector generally considers human related factors to be the main
factors contributing to accidents [2]. Among the possible causes of human error, the most common ones
are related to situational awareness challenges. Endsley classically defines situational awareness as “the
perception of the elements in the environment within a volume of space and time, the comprehension
of their meaning, and the projection of their status in the near future” [3]. Sneddon et al. studied the
relationships between situational awareness and fatigue, sleep disruption, and stress, and how these
factors affect maritime operators’ unsafe behaviors, accidents, and near-misses [4]. The research showed
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that, “Higher levels of stress and fatigue are linked to lower levels of situational awareness, which in turn
are indicative of increased participation in unsafe work behaviors, and higher accident risk”. Stress [5] and
sleep quality [6] are known factors influencing the performance of human operators. They are also direct
causes of fatigue in maritime operators, which in turn is one of the main causes of maritime accidents [7].

The International Maritime Organization defines fatigue as a “reduction in physical and mental
capability as the result of physical, mental or emotional exertion which may impair nearly all physical
abilities including strength, speed, reaction time, coordination, decision making and balance” [7].
Among common fatigue effects, the literature points to the tendency to accept greater risks while having
reduced cognitive capacity to deal with them [8]; to the variability in motivation and work efficiency;
and to lapses of vigilance [9]. “Diminished capacity” generally is a core part of the physiological
definition of fatigue [10].

The fatigue experienced by maritime operators can have several causes. Researchers once believed
that operators alone were responsible for their own fatigue, due to poor lifestyles and personal habits,
and that strong will and coffee were enough to overcome fatigue [10]. However, research shows that harsh
working conditions characterized by permanent noise, vibration, heat, and bad weather; long periods
away from home and family; the difficulty separating leisure and work while on board; and cultural
differences in the working environment when people of different cultural backgrounds work together in
a stressful environment are all causes of fatigue over which operators have little control [11].

The most influential document regarding fatigue issues in the maritime environment is the
“Guidance on Fatigue Mitigation and Management” [7]. It provides information about “the nature
of fatigue, its causes, preventive measures and countermeasures” as it relates to vessel safety. While it
shines light on the role of fatigue in maritime accidents, the International Maritime Organization guidance
does not tackle fatigue assessment in a way that operators or their supervisor can use. It names loss
of appetite, sluggish feelings, needless worry, reduced motivation, and attention span as among the
signs of fatigue. It acknowledges that people usually have difficulty recognizing fatigue in themselves,
not least because fatigue impairs judgment and problem solving capacities. Yet the document provides
no alternative to self-diagnosis of fatigue, in spite of the fact that signals of fatigue can be very subjective
and hard to spot.

The approaches for assessing fatigue can be divided in two main categories: subjective and
objective approaches [12]. The subjective evaluations include methods such the NASA Task Load
Index [13], the Karolinska Sleepiness Scale [14], and diaries and surveys [15]. Although these
subjective approaches can achieve good results in assessing fatigue state, their self-reported nature and
methodological issues about how participants provide data can also make them biased. Regarding
the objective assessment of fatigue, there are three main ways that fatigue symptoms can manifest:
physiologically, emotionally, and mentally [7]. Physiological symptoms include all body-related signals
of fatigue, such as difficulty with hand-eye coordination skills, headaches, rapid breathing, irregular
heartbeats, and heart palpitations. Emotional symptoms include all the emotion-related signals of
fatigue, such as needless worry, abrupt mood changes, reduced work motivation, and anti-social
behavior. Mental symptoms include all the reasoning and thinking-related signals of fatigue, such as
reduced attention span, difficulty concentrating and thinking, and slow response to normal, abnormal,
and emergency situations.

Among the previously described symptoms of fatigue, the most reliable ones to monitor are
the operator’s physiological signals, including respiration, electrooculogram (EOG), electromyogram
(EMG), electrocardiogram (ECG), and electroencephalogram (EEG) [16]. Nilsson et al. [17] presented
a list of physical symptoms of fatigue, which can be used together with physiological studies to
decide the most suitable kind of monitoring equipment for this application. An integrated multiple
sensor facility can be used for monitoring different body parts of the operator, from where fatigue
can easily manifest. For example, wearable or environmental fixed sensors can be used for detecting
breath intake, measuring heart rate, tracking eye movement, and so on. Although individual sensors
can provide some understanding of the operators’ working state, they can be insufficient to reliably
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evaluate operational risks. Additionally, the use of individual sensors can be problematic, since there
may be limitations in spatial and temporal coverage, imprecision, and uncertainty [18]. The use of
sensor fusion techniques is one of the most suitable ways to handle data from disparate sensors [19]
and can be used for developing a cross-modal cognition algorithm which will increase the quality and
the usefulness of the sensors’ data, generating more accurate and complete model descriptions.

A small number of studies have investigated the effects of fatigue in vessel simulators [20,21] or on
real vessels [22,23]. Even fewer studies have developed methods to assess fatigue while operations are
taking place, in spite of the fact that real-time data is the only way to prevent accidents. Most methods
of fatigue assessment work a posteriori, through the use of questionnaires. Given the limitations of
currently available fatigue assessment methods for preventing maritime accidents, a novel approach
needs to be developed. In this work we propose the use of a physiological sensor framework and an
artificial neural network to perform mental fatigue assessment during maritime operations. We propose
an approach for developing a mental fatigue scale, which can be used as a prognostic tool to reduce
accident risks. The underlying algorithm requires little computational effort and can be applied in real
time. The proposed approach was preliminarily tested by using as a case study a simulated navigation
task carried out in a vessel simulator. The experimental results showed the superior power of EEG for
mental fatigue detection over other physiological sensors, but also suggests that combining different
sensors can be beneficial for capturing the transitions between mental fatigue states.

2. Materials and Methods

2.1. Sensor Framework

In this paper we are especially interested in using physiological sensors to measure mental fatigue
(MF), due to their capacity to reduce reaction time, interfere in the decision-making process, and affect
situational awareness. We propose a sensor framework which can be used to assess the MF state of
human operators during demanding maritime operations, including crane operation, remote piloting,
dynamic positioning operation, navigation, etc. The proposed concept is shown in Figure 1 and its
workflow can be subdivided in two main phases:

• Phase 1—data acquisition. During this phase a set of sensors is used to collect physiological
data from the operator. The data are collected from disparate sensors and centralized by a micro-
controller. During this phase the data are also preprocessed to remove noise and unwanted
artifacts that can disturb the fusion and classification processes.

• Phase 2—mental fatigue assessment. During this phase a sensor fusion algorithm is applied to
the preprocessed data. This algorithm is responsible for fusing the disparate data channels and
outputting an MF indicator. This MF indicator is registered and can be used to evaluate the risk
level in the operation.
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Figure 1. Proposed concept for fatigue assessment.
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Below we briefly describe the most relevant building blocks of this framework.

2.2. Sensors Setup

Our proposed sensor setup is composed of five sensors: ECG, EMG, body temperature sensor,
EEG, and eye tracker. The usage of the sensors is depicted in Figure 2a.
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Figure 2. Sensor setup. (a) Selected sensors and how to wear them. (b) MySignals Arduino shield and
protective case. (c) Data acquisition application implemented in Java.

2.2.1. ECG

The ECG is one of the most commonly used sensors in medicine due to its low degree of
invasiveness. It also enables accurate diagnosis of diverse cardiac pathologies, such as myocardial
ischemia, infarction, and palpitations. Additionally, it provides relevant information about fatigue,
since a person’s heart rate varies significantly while in different states of tiredness [24]. We use a
MySignals three leads ECG system [25].

2.2.2. EMG

EMGs detect skeletal muscle activity by measuring the difference of potential between two
electrodes placed on the muscle, which characterizes the muscular contraction. EMGs are used to
diagnose neuromuscular diseases and in applications related to prosthetic control, grasp recognition,
and human–computer interaction [26]. We use the EMG to track how muscle contraction intensity
varies during the performed operation, which can decrease as a consequence of an increase in an
individual fatigue state. Like our ECG, our EMG system has three leads and is made by MySignals.

2.2.3. Body Temperature Sensor

Body temperature sensors have been in use for centuries and remain one of the most accessible
physiological sensors available. The body temperature has a close relation to circadian rhythms and
can fluctuate as the body activity level changes throughout a period of time. That can be an indication
of changes in an individual fatigue state [27]. The body temperature sensor is applied to the operator’s
thorax, under the armpit. The sensor is made by MySignals.

2.2.4. EEG

The EEG measures brain electrical activity by tracking voltage fluctuations resulting from ionic
current within neurons [28]. EEG is probably the most used physiological measurement of MF due to
the clear relation between the power spectrum characteristics in different frequency bands and MF
levels [29]. We use the Emotiv EPOC+, an EEG headset with 14 channels made by Emotiv [30].
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2.2.5. Eye Tracker

The eye tracker adds a wide range of possible analyses regarding MF and drowsiness. Data regarding
eye movement, blinking rate, interval between opening and closing the eyes, and attention span can be
used to assess states of MF, drowsiness, or situational awareness [31]. We use an eye tracker Tobii Pro
Glasses 2 [32].

2.2.6. Data Centralization

In order to collect and store data from these sensors in a centralized way, an Arduino is used as
a micro-controller. The Arduino works as the interface between the sensors and the data handling
application running in a laptop. An Arduino shield provided by MySignals acts as an input interface
for the ECG, EMG, and body temperature sensor. Since the sensors require wires connecting the user
to the shield, we also designed a lightweight and compact protective case for containing the Arduino
and the MySignals shield (Figure 2b). This case can be easily carried in a belt or vest. The Arduino can
be connected to the laptop using a USB cable via a serial port for bigger bandwidth or via Wi-Fi for
better mobility.

The EEG headset from Emotiv and the eye tracker glasses from Tobii have their own specific Wi-Fi
communication protocols and can be connected to the laptop directly, without the need to interface
directly with the Arduino. The data from sensors is handled by a Java application running in a laptop
(Figure 2c).

2.3. Data Collection and Preprocessing

When dealing with disparate sensors, different kinds of data can be obtained. It is important
to bring these data to a common domain to facilitate the data fusion process. In our MF assessment
approach, we handle the data from all sensors in the time domain, as time-series. Bellow we describe
which kind of data can be obtained from each sensor and how we bring them to the time domain to
perform the data fusion.

The eye tracker provides valuable insights on focus and attention levels of the operator. It records
and analyzes information about the eyes and their field of view. It is possible to use information
such as pupil diameter and movement and blinking rate to assess concentration and tiredness.
Relying on the recorded field of view and the definition of areas of interest (such as control panels,
outside environment, and displays), it is possible to define gaze and screening patterns to evaluate
focus and situational awareness. In our analysis we are not going to employ gaze-related variables,
since they provide little insight into MF levels.

When analyzing EEG data, one very common approach is to decompose the signal from each
electrode in the main frequency bands of clinical interest for MF detection; namely, delta (0.3–4 Hz),
theta (4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz) sub bands [33]. This decomposition can be done
in the time-frequency domain using discrete wavelet transform, which allows spectral analysis while
maintaining time correlation.

The three remaining sensors (ECG, EMG, and temperature) can be analyzed directly as time-series.
Changes in the signal patterns of each of these individual sensors may not be enough to characterize with
a high level of certainty the progression of an individual’s MF state. The corroboration of information
from these disparate sensors, though, can increase the level of confidence in the MF state detection.

2.4. Sensor Fusion

The use of individual sensors can be problematic, given their propensity for deprivation,
limited spatial and temporal coverage, imprecision, and uncertainty [18]. When sensor fusion
techniques are applied to sensory data from different sources, we expect the desired output to be more
robust and reliable [34].
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Sensor fusion applications can be characterized by several components. The fusion levels can
be classified as low or raw data fusion, intermediate or feature level fusion, and high or decision
fusion [18]. At the raw data level, data from different sensors can be analyzed in a centralized manner.
In order to overcome the discrepancy constraints in terms of mathematical complexity of sensor data,
fusion on the feature level can extract features to reduce the communication bandwidth requirements.
Estimation and filtering techniques can be used here. Fusion at the decision level increases the
reliability of decision making. In this case, a decentralized approach is more appropriate.

Regarding the way sensors interact with each other, sensor fusion applications can be classified as
cooperative, competitive, and complementary, and these categories are not mutually exclusive [35].
Sensor fusion application can also be classified regarding the system architecture. A wide range
of architectures can be identified on the literature, from the most classical ones, such as JDL fusion
architecture [36] to most recent ones, such as multiple functional neural fuzzy networks and deep
convolutional neural network (CNN) [37].

In our study, we used different physiological sensors in a cooperative way and performed the
data fusion in a centralized manner. We opted to use low-level (or raw data) fusion in the multivariate
time-series data obtained from the physiological sensors. The low-level fusion allows the neural
network responsible for the MF assessment to select relevant features to describe the different MF
states by itself. Figure 3 shows our sensor fusion structure.
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Low-level
Fusion

M
F 

Le
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l

CNN

ECG Preprocessing

EMG Preprocessing

Temp Preprocessing

EEG Preprocessing

Eye tracker Preprocessing

Assessment
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Figure 3. Proposed sensor fusion structure.

The multivariate time-series data obtained from the physiological sensors were sampled at 128 Hz
and segmented in 6 s segments with 2 s of overlap between consecutive segments. The segments from
different sensors were grouped as an input matrix for the sensor fusion algorithm, as shown in Figure 4.

Sliding window
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Time-series from sensors Raw data fusion

... ...
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s

Figure 4. Raw data fusion scheme. The data from different sensors’ channels is segmented using
a sliding window and concatenated as a 2D input for the CNN.

2.5. Mental Fatigue Assessment

Recently, a number of papers have been published regarding the use of physiological sensors
and deep learning for assessing MF, drowsiness, and mental workload [38–41]. Although some
of these previous works present solid results, they usually also present a complex neural network
structure, containing up to several million parameters, and computationally expensive algorithms.
In this work we are more interested in investigating the MF assessment framework as a whole and
its possible application in the maritime industry. By envisioning real-time applications, we also
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wanted to ensure a simple assessment algorithm, which could be trained and applied with minimal
computational effort. Considering these aspects, we opted to use a conventional CNN for our MF
assessment algorithm. This choice seemed natural, since the fused signal from different sensors can be
interpreted as a 2-dimensional array, which is the kind of input the CNN was originally developed to
handle. Additionally, the ability to filter the raw signals and extract key features while reducing the
dimensions of data makes the CNN a good method to fuse the time-series data from our framework.

Besides one input and one output layer, CNNs have multiple hidden layers responsible for feature
extraction and dimension reduction. The hidden layers can be of two types: convolutional layers or
pooling layers. Convolutional layers are the ones responsible for the feature extraction task. They do so
by convolving learnable kernels across the width and height of the input data to produce an activation
map of that filter. The discrete 2-dimensional convolution is defined as

S(i, j) = (I · K)(i, j) = ∑
m

∑
n

I(m, n)K(i − m, j − n) (1)

where I is the input data, K is a kernel, i and j are the discretized time indexes, and m and n are the
number of elements in each dimension of the input data. After convolution, the obtained linear filters
are processed by a non-linear activation function, before the pooling operation. Common choices for
this activation function are sigmoid and ReLU. Pooling layers are responsible for the dimension
reduction task. They do so by combining the input of a cluster of nodes in a single output.
Common choices for the pooling operation are maximum and average pooling. A CNN can have any
number of convolutional and pooling layers.

After the convolutional and pooling layers, a fully connected layer is used to converge the
obtained feature maps in a flat input to an output layer. The output layer uses as softmax function to
classify the input sensor data in one of the desired classes. The unit softmax function is defined as

So f tmax(xi) =
exp(xi)

K
∑
j

exp(xj)

, f or i = 1, ..., K (2)

Based on our previous work [42], the chosen CNN structure consists of five convolutional layers,
having 256, 128, 64, 32, and 32 filters with kernel sizes of 3, 5, 7, 9, and 9, respectively. After each
convolutional layer, the ReLU activation function is applied followed by an average pooling layer with
kernel size 2. The network ends with a fully connected layer followed by the output layer (Figure 5).

In order to allow our CNN to assess the MF state of operators, we need first to teach it how to
recognize MF based on physiological signals. This process is called training, and it relies on assigning
labels to the input data by relating the physiological data from sensor to different MF levels. We opted
for using the Karolisnka Sleepiness Scale (KSS) [14] questionnaire to support the establishment of an
MF scale. The KSS scale measures nine degrees of sleepiness, ranging from level 1 (very alert) to 9
(very sleepy, great effort to stay awake, fighting sleep). The KSS has being extensively used in fatigue
and sleepiness-related studies. It has also been validated against physiological measures, including
EEG and EOG [43].

We propose in this work the use of the KSS questionnaire to derive an MF scale for each participant.
The MF scale is composed by two boundary MF levels and a variable number of transition states.
The lowest KSS score obtained from one participant is used to define the first boundary level for that
participant, the low MF condition. The highest KSS score is used to define the second boundary level,
the high MF condition. The number of transition states depends on the number of KSS levels between
the low and high MF levels. Figure 6 exemplifies how the data labeling is performed based on the KSS
scores assigned by one participant. The data with unknown labels are not used for training the CNN,
only to assess its generalization capabilities.
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mental fatigue (MF) scale for CNN training.

2.6. Experimental Setup

In order to evaluate the proposed framework, we performed a small-scale experiment. The experiment
used a mixed method approach, where a scenario-based experiment was combined with a questionnaire.

The scenario-based experiment consisted of a simulated operation, designed to fatigue the
participants. The simulated operation was carried out in vessel simulators used for training purposes.
The simulator facilities are an accurate reproduction of a real vessel bridge, including all the commonly
present controls, panels, and displays. Figure 7 shows the described simulator setup. The simulated
task was monitored using the sensor framework described in Section 2.1. The simulated task consisted of
navigating a vessel in a narrow canal area with heavy maritime traffic. The navigation was conducted at
high speed (22 knots), and the pilots were supposed to overtake other vessels while properly navigating
through the canal. Due to these requirements, the navigation demanded a lot of attention and care from
the pilots. We designed the scenario to last between 60 and 90 min. The length of each run varied based
on the approach each individual participant took to the task. We are aware that this task by itself is
not representative of a complete shift of a pilot on board a vessel, which could last between 8 and 12 h.
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Our goal with the designed experiment was to reproduce a small portion of a pilot’s duties by using as
case study a specific navigation task and show that the sensor framework could be used to detect the MF
development even in a situation where extreme tiredness is not the case.

Figure 7. Experimental setup on vessel simulator, at the Norsk Maritimt Kompetansesenter.

During the experiments, we monitored eleven volunteers, all male, aged 20 to 34 (23.91 ± 3.89) years
old. Among the volunteers, we had both trained and in-training pilots. The minimum requirements
for the participants were knowledge about navigation rules, and how to pilot a vessel with the bridge
layout present in the simulators. The experimental procedure was presented to the participants before
the experiment and their informed consent was obtained. Ensuring the same baseline for all participants
is challenging due to how differently MF develops and manifests in each person. In order to ensure
a good baseline condition in the beginning of the experiments across all test subjects, participants also
received orientation about sleep and the consumption of stimulants and alcohol prior to the experiment.
Our experiment followed the principles and guidelines of the Declaration of Helsinki and participants’
data were handled following the recommendations of the Norwegian Centre for Research Data [44].
Part of the experiments were performed in the new vessel simulator facilities located at the Norsk
Maritimt Kompetansesenter, in Ålesund, Norway. Another batch of experiments was performed in the
simulator facilities at the Numerical Offshore Tank, in São Paulo, Brazil.

The KSS questionnaire was used by the participants to self-assess their tiredness state. During the
process of collecting data to train the neural network, the operators assigned their tiredness state
according to the KSS questionnaire before starting and after finishing the operation. This process
was used to label the data, allowing the neural network to recognize which set of features in the
physiological signals are related to each MF level. This labeling process is described in Section 2.5.

3. Results

The CNN training was done using a nested 20-fold cross validation approach. In each fold, 60% of
the data were used as the training set, 20% as the validation set, and 20% as the test set. This approach
is less biased if compared to one where the maximum accuracy obtained is taken as a representation
of the network classification and generalization capabilities. In each fold, the training procedure was
carried out for at least 15 epochs. The validation accuracy was the metric for adjusting the dynamic
learning rate and termination criteria for the training. If after five epochs of training no improvement on
the validation accuracy was obtained, the learning rate would be reduced by 20% and after 15 epochs
without improvement the training process would be terminated. After termination, the network
configuration with the best validation performance was used to evaluate the network test accuracy.
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In our experiment we monitored eleven test subjects and performed only single-subject analysis.
For most subjects, we recorded data from ECG, temperature, EMG, and EEG sensors. For four subject
we also recorded eye tracker data. These data were used as input for training the CNN to distinguish
between low and high MF states. The data were labeled based on the answers for the KSS questionnaire
at the beginning and end of the experiments. The results from the KSS questionnaire for all participants
are presented in Figure 8. The figure shows in which range each participant assigned their own MF
state during the experiments. This visual representation of the KSS range is used later on the paper in
Section 4, when we present discussions about the generalization capability of the proposed CNN.

KSS 1 KSS 2 KSS 3 KSS 4 KSS 5 KSS 6 KSS 7 KSS 8 KSS 9

Subj.   1

Subj.   2

Subj.   3

Subj.   4

Subj.   5

Subj.   6

Subj.   7

Subj.   8

Subj.   9

Subj. 10

Subj. 11

KSS range

Figure 8. Reported KSS range of each test subject. For each subject, the lower limit shows the reported
KSS level at the beginning of the experiment and the upper limit shows the reported KSS level at the
end of the experiment.

Some of the test subjects only reported a change of one unit in the KSS questionnaire response.
Although this indicates a small progression in the MF level during the experiment, there data are still
relevant in order to evaluate whether the proposed sensor framework is capable of differentiating MF
states that are close to each other in the scale. This is especially relevant for ensuring that the system is
capable of detecting the progressive transitions between different MF levels, as we are going to discuss
in Section 4.

For each experiment we consider four different sensor configurations for the MF classification.
Case 1 considers ECG, EMG, and temperature sensors. Case 2 uses as input only eye tracker data;
namely, data from a three degrees of freedom accelerometer, data from a three degrees of freedom
gyroscope, and right and left pupil diameter data. Case 3 comprises EEG data; specifically, the channels
AF3, F3, O1, O2, F4, and AF4. Case 4 includes all available sensors for the CNN training. For Subjects
1 and 2, the EEG data were compromised and could not be used in the analysis. For Subjects 5–11,
eye tracker data were not recorded due to the eye tracker sensor being unavailable at the time of the
experiments. This situation is not ideal, but we still wanted to present some preliminary discussion
about the use of the eye tracker sensor for this kind of MF analysis. Taking that into consideration,
the cross comparison between cases which includes Case 2 should be considered with reservations.
The test accuracies obtained by the trained CNN for each test subject and each case are presented in
Table 1.

Analyzing the results for Subject 1, we can notice that Case 1 performed poorly in distinguishing
between the low and high MF states, reaching 63% test accuracy. This indicates that the ECG, EMG,
and temperature sensors by themselves were not sufficient for a good classification of MF state. Case 2
presents a better classification performance (82% test accuracy), which was relevant for achieving an
also better classification performance on Case 4 (82% test accuracy). From the results of Subject 2, we can
see that Case 1 presents a very good classification performance with 94% test accuracy, while Case 2
presents a good but worse performance, at 80% test accuracy. Once again we can see how the higher
accuracy for one of the first two cases can help provide good classification performance in Case 4.
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This shows the corroborative power of sensor fusion, where one set of sensors can aid evaluation,
even when another set provides incomplete or imprecise information.

Table 1. MF classification results using a CNN with different sensor configurations. The different case
configurations are as follows: Case 1—EMG, temperature, ECG; Case 2—eye tracker; Case 3—EEG;
Case 4—all available sensors.

Case 1 Case 2 Case 3 Case 4

Test acc Test acc Test acc Test acc
(avg ± std) (avg ± std) (avg ± std) (avg ± std)

Subj. 1 0.63 ± 0.13 0.82 ± 0.03 - 0.82 ± 0.04
Subj. 2 0.94 ± 0.02 0.80 ± 0.05 - 0.93 ± 0.04
Subj. 3 0.93 ± 0.03 0.77 ± 0.04 0.99 ± 0.01 0.95 ± 0.02
Subj. 4 0.81 ± 0.05 0.88 ± 0.04 0.99 ± 0.01 0.90 ± 0.05
Subj. 5 0.94 ± 0.03 - 0.95 ± 0.03 0.96 ± 0.02
Subj. 6 0.99 ± 0.01 - 0.98 ± 0.02 0.99 ± 0.01
Subj. 7 0.97 ± 0.02 - 1.00 ± 0.01 0.97 ± 0.02
Subj. 8 0.84 ± 0.07 - 0.99 ± 0.02 0.85 ± 0.08
Subj. 9 0.66 ± 0.13 - 0.91 ± 0.04 0.87 ± 0.04
Subj. 10 0.94 ± 0.03 - 0.98 ± 0.02 0.96 ± 0.02
Subj. 11 0.81 ± 0.18 - 1.00 ± 0.00 0.81 ± 0.17

Analyzing the results from Subjects 3 and 4, we observe similar results in both experiments.
Cases 1 and 2 provide good classification accuracies, with Case 1 providing better accuracy than
Case 2 for Subject 3 and with Case 2 providing better accuracy than Case 1 for Subject 4. For both
Subjects 3 and 4, Case 3 has an almost perfect MF classification performance, reaching 99% test accuracy.
When analyzing Case 4 for Subject 3 and Subject 4, we can see that the use of all available data actually
worsened the classification performance. This demonstrates a competitive behavior of the sensor
fusion system, where the use of discordant sensor information can degrade the performance of the
assessment algorithm.

Looking at results from Subjects 5–11, we can see that Case 3 generally presented better
classification accuracy than Case 1. It is also noticeable that in general, for each subject, Case 4
presents lower classification accuracy than the best classification accuracy between Cases 1 and 3,
but it never performed worse than the worst case between Cases 1 and 3. In these cases, the fusion of
different sensors data ensures that the worst performing case will be supported by the best performing
one, providing a middle ground between the two extremes. This is especially relevant when we are
not sure which case will present the best classification performance.

4. Discussion

4.1. Impact of Sensor Combination on CNN Generalization

The use of more diverse sources of information can lead to an increase in the generalization
capability of the CNN by reducing its overfit to the training data. The generalization capability of
a neural network refers to how well it performs when dealing with data to which it has never been
presented before. In our case studies, we use the first and the last 20% of the data for the training
process. The remaining 60% is used to evaluate the CNN generalization.

In our proposed method, a good generalization capability is not only linked to correctly assessing
the non-fatigue and fatigue states. We are also interested in the transition between these two states.
During the training procedure, we only used two different labels to train the CNN. In order to capture
the transition phase, which is in essence additional labels, we apply a small trick. The trained CNN
only performs consistently on the kind of data it was trained in. When presented data from an
unknown class, the classification performance is inconsistent. This inconsistency can be transformed
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in the transition class by averaging the assessment results using a sliding window that covers the last
30 s of assessment. This process, used to produce the MF scale, is described in Algorithm 1.

Algorithm 1 Mental fatigue assessment.

1: procedure MENTAL FATIGUE SCALE
2: Continuously read and preprocess data from physiological sensors
3: loop every 4s:
4: Segment time-series with sliding window (length = 6 s/overlap = 2 s)
5: Fuse time-series segments into 2D input
6: Feed 2D input to CNN and get classification output
7: Obtain MF level by averaging CNN output with averaging window

(length = 5 steps)
8: Plot MF level

In order to evaluate the generalization capabilities of the different sensor configurations we are
going to discuss in more detail the assessment results of selected subjects. Figure 9 shows the different
MF assessments for Subject 1. There is good agreement among the different cases, which shows that the
generalization capabilities of the trained CNN is quite similar for all cases. We don’t expect to see an
exact match between the different assessments, but we are interested in capturing the MF progression
and the transition between the non-fatigue and fatigue states. In this case, there is essentially no
difference between the assessment capabilities of the different sensor configurations.
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Figure 9. MF assessment for different cases for Subject 1. The horizontal axis is presented in seconds.
The vertical green dashed line marks the superior limit of the data used for training the non-fatigue
condition. The vertical red dashed line marks the inferior limit of the data used for training the fatigue
condition. Different cases present good agreement among themselves.

Figure 10 presents the different MF assessments for Subject 3. There is good agreement between
Cases 1 and 2, but Case 3 presents a different transition phase. This difference happens due to the fact
that the MF labels obtained from the KSS questionnaires can be imprecise. The EEG data carries a lot
of relevant features for MF assessment, and training the CNN using this data makes the model learn a
somewhat stiffer representation of the MF development, since even the imprecise labels can be learned
as correct ones. In this case, transition features were learned as non-fatigue ones. As a consequence,
the transition from non-fatigue to fatigue is modeled in a more abrupt way. This fast transition is not
a good representation of the MF state progress, since the MF development process is a continuous
phenomena, with gradual progress over time. When including other sensors data together with EEG
data, Case 4 presents a smoother transition when compared to Case 3. As a result, the high fidelity to
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the training data obtained when using EEG data can be balanced by a better generalization capability
when combining the EEG with other sensors.
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Figure 10. MF assessment for different cases for Subject 3. The horizontal axis is presented in seconds.
The vertical green dashed line marks the superior limit of the data used for training the non-fatigue
condition. The vertical red dashed line marks the inferior limit of the data used for training the fatigue
condition. Case 3 produced a sharp transition between the fatigue and non-fatigue states. The addition
of other sensors data helps with producing a smoother transition phase.

When considering which sensor configuration is the best, we need to consider the trade-off
between framework complexity and assessment precision. Regarding framework complexity, the use
of several physiological sensors can disturb the proper execution of the task being monitored. If this
is the case, using only the best performing sensor (Case 3) would be the best option. Regarding
assessment precision, there are two aspects to consider. First, the precision for distinguishing between
the non-fatigue and fatigue states. In this case, the EEG sensor (Case 3) offers superior performance.
Second, the characterization of the transition state. In this case, since the use of extra sensor data
together with EEG data improves the representation of the transition between the non-fatigue and
fatigue states, Case 4 would be the best configuration for performing the MF assessment task. It is
important to remember that, for this case, we would not be interested on the absolute value in the MF
scale in a specific instant for one subject. Instead, we are interested in the trend the overall assessment
indicates. After all these considerations we conclude that the use of only the EEG sensor (Case 3) is,
overall, the best option, since it combines high classification accuracy with a simplistic sensor setup.
Figure 11 presents the MF assessment for Case 3, for all available subjects.

4.2. Looking Inside the CNN

One of the main issues related to the application of neural networks to decision making is the
difficulty in understanding the reasoning behind the neural networks decisions. Due to its complex
internal structure full of activation units and connections, deep neural network are commonly referred
to as “black boxes”, since it is not trivial to visualize what kind of features from the input data the
neural network is learning to recognize. In this work we are interested in understanding how our
CNN model makes use of the physiological sensor data to perform the MF assessment task.

In order to understand which kind of feature is learned by each kernel of the network, we can
apply a visualization approach based on deconvolution, proposed by [45]. This approach consists on
projecting the activation of an specific kernel from an specific layer back to the input space. This is done
by reversing the pooling and convolution operations performed by the CNN in each layer. The project
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activation can be then interpreted in the same domain as the original input. For the mathematical
details of the implementation of this visualization approach, please refer to the original reference.
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Figure 11. MF assessment for Case 3, for all available subjects. The horizontal axis is presented in
seconds. The vertical green dashed line marks the superior limit of the data used for training the
non-fatigue condition. The vertical red dashed line marks the inferior limit of the data used for training
the fatigue condition. The EEG sensor presented the best classification performance, but transitions
between different MF levels can be abrupt.

As a case study, we are going to look at the CNN used to classify the MF state based on the
EEG data for Subject 11. We can investigate which features the kernels with the biggest activation
in each layer of the CNN model are important. Figure 12 shows a typical input data for the low MF
case. The input data are composed by six EEG channels, sampled at 128 Hz and length of 6 s each.
Figure 12 also shows the projection of the highest activations on each layer back to the input domain.
We can see that for the first layers, the CNN learn features related to the amplitude of oscillation of
each channel. As we look into deeper layers, the features cease to be related to amplitude start to be
related to frequency. As an example, in the fifth layer, there is no signal of the input amplitude in the
activations, but we notice that there is an oscillation between 12 and 16 Hz, which correspond to part
of the Alpha and Beta frequency band of the EEG signal. We can also see that, for this specific subject,
the CNN considers the channels F4 and O1 more relevant for distinguishing between the different MF
states, since they appear with higher activation values when projected to the input domain.

Figure 13 shows a typical input data for the high MF case. Similarly to what we observed from
the low MF case, the first CNN layers present amplitude related features. Once again, the amplitude
features fade away in the deeper layers, which are dominated by the frequency related features. As for
the low MF case, the CNN considers the channels F4 and O1 more relevant for distinguishing between
the different MF states. When comparing Figures 12 and 13, it is noticeable that the intermediate
layers present very similar activations. But when comparing the fifth layers, we can notice a significant
difference in the activation of channel O1, which is 20% smaller for the high MF case. So, we can
conclude that, for this specific participant, changes in the EEG channel O1 are the most relevant aspect
for distinguishing between the different MF states. Due to the physiological difference between people,
this result can’t be directly extrapolated to all other subjects, since variations on the activation of
different channels can occur.
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Figure 12. Projection of biggest activation of each CNN layer in the input domain for Subject 11 and
KSS = 2.
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Figure 13. Projection of biggest activation of each CNN layer in the input domain for Subject 11 and
KSS = 4.

4.3. Limitations

As acknowledged throughout the paper, the presented study has some limitations. First, although
we focused on MF detection in the maritime domain, we only performed experiments in a simulator
environment. Although this limits the realism of the studied scenario, it also give us the security
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to experiment with different framework configurations without any associated risk. Second, we
have problems related to the completeness of data available for the study. That problem is the most
evident for the eye tracker data, since the sensor was only available for collecting data for four
experiments. This weakens the cross-comparison between the different cases. Third, the limited
number of participants and the reduced number of MF states reported by them are a relevant limitation
to this study, since it limits our capacity to develop a broader and more precise MF scale. We aim
to perform a larger scale test with longer session to increase the range of MF states reported by the
operators. Additionally, self-assessment of MF can be performed during the operation. The addition of
such intermediate MF states would help to create a more continuous classification algorithm. Fourth,
the use of self-assessment of MF can lead to biased data labeling, and makes it difficult to establish a
strong baseline across different test subjects. More objective methods such as the direct calculation of
features from the physiological data can be combined with the self-assessment questionnaires to better
support the data labeling process.

5. Conclusions

Assessing MF in real time during demanding maritime operations is an important and relevant
human-factor challenge in the maritime domain. Maritime accidents affect all the main stakeholders
involved in such operations, most importantly the people working on board, but the environment and
the maritime industry as a whole too. The lack of a trustworthy method with which to assess MF in
maritime operators in order to avoid accidents due to human error motivated this research. In order
to tackle this issue, we proposed the use of a physiological sensors framework for assessing MF in
demanding maritime operations. The MF assessment is performed by a CNN and the data labeling is
achieved with the use of the KSS questionnaire.

The framework was implemented and tested in a vessel simulator. This experiment was performed
as a proof of concept where we wanted to explore different sensor configurations and demonstrate
the framework’s feasibility and applicability as an MF assessment tool. During our experiments we
managed to observe that, although all tested sensor configurations are capable of detecting different MF
levels, some configurations are preferable, depending on the main focus of the assessment framework.
If intrusiveness is a concern, a configuration with fewer sensors is preferable. In this case, the EEG
or eye tracker are the best options. For a high classification precision based on the labeled data, the
EEG presented the highest test accuracy. For capturing smoother transitions between different MF
levels, the configuration using all sensors performed better on assessing the transition states. In the
end we are left with several feasible sensor configurations, and a sensor framework which performs as
intended and can be tailored to adapt to specific MF assessment needs.

Once trained, the CNN algorithm can be applied in real time, with little computational effort.
The algorithm can capture not only the non-fatigue and fatigue states, but also the gradual MF build
up process. A natural next step for this research is the investigation of real-world scenarios in order
to assess the trade-off between the framework’s intrusiveness and the benefit it brings to the safety
of maritime operations. For performing this analysis, the system needs to be expanded, and a risk
assessment methodology based on the operators’ MF levels need to be developed.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN convolutional neural network
ECG electrocardiogram
EEG electroencephalogram
EMG electromyogram
EOG electrooculogram
KSS Karolisnka Sleepiness Scale
MF mental fatigue
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