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Abstract: It has recently been shown in Re-Identification (Re-ID) work that full-body images of people
reveal their somatotype, even after change in apparel. A significant advantage of this biometric trait is
that it can easily be captured, even at a distance, as a full-body image of a person, taken by a standard 2D
camera. In this work, full-body image-based somatotype is investigated as a novel soft biometric feature
for person recognition at a distance and on-the-move. The two common scenarios of i) identification
and ii) verification are both studied and evaluated. To this end, two different deep networks have
been recruited, one for the identification and one for the verification scenario. Experiments have been
conducted on popular, publicly available datasets and the results indicate that somatotype can indeed be
a valuable biometric trait for identity recognition at a distance and on-the-move (and hence also suitable
for non-collaborative individuals) due to the ease of obtaining the required images. This soft biometric
trait can be especially useful under a wider biometric fusion scheme.

Keywords: somatotype trait; somatotype as biometric; biometrics; full body image; deep learning;
inception V3 network; siamese network; fusion scheme.

1. Introduction

Biometric recognition at a distance under high security requirements (e.g. border control posts)
remains a challenging task and becomes even more so nowadays that "on the move" scenarios are
becoming a trend 1. Biometric recognition accuracy largely depends on a set of (complementary with
respect to the failure cases) biometric traits under a fusion scheme [1]. It is therefore crucial to expand
the set of available biometric traits, especially with traits that can be easily captured by standard sensors,
at a distance and on-the-move. One such trait is the somatotype [2]. The somatotype focuses on the
measurement of structural aspects of the human body and recent Re-Identification (Re-ID) works show
that it can be captured from still full-body images [3].

This paper proposes the use of the human somatotype as a new soft biometric trait [4] based on
full-body still images. Current works of the state-of-the-art exploit the somatotype feature for resolving the
Re-ID problem which is different to the biometric approach; the Re-ID procedure uses a gallery which is
not predefined, meaning that no enrollment has taken place. In this sense, the Re-ID cannot be considered

1 https://www.schengenvisainfo.com/news/frontex-testing-biometrics-on-the-move-border-check-technology-at-lisbon-
airport/
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as a biometric problem [5]. Nonetheless, it is possible to compare against Re-ID methods by assuming a
fixed gallery and using common biometric evaluation measures; this is the approach taken here and we
show that the proposed methods outperform the state-of-the-art in terms of verification, while remaining
quite comparable in the identification case.

The somatotype is studied under two common biometric recognition scenarios: i) identification,
and ii) verification. For the identification case, we implement an appropriately modified variation of
the Inception V3 network, while for the verification case, a Siamese network variation is proposed. The
resultant deep networks have been trained and assessed on four popular publicly available benchmark
datasets: (i) CUHK03 [6], (ii) RAiD [7], (iii) Market− 1501 [8] and (iv) RGBD− ID [9,10]. In addition, a
much larger dataset has been created by unifying the aforementioned ones and has been used for testing
purposes. Finally, an additional synthetic dataset (SOMAset [3]) which is appropriate for testing under
different camera angles and cloth variations, is recruited.

1.1. Contributions

The main contributions of the present work are:

1. The proposal of the full-body image-based somatotype as a biometric trait suitable for
non-collaborative person recognition at a distance and on-the-move, as well as suitable experiments
to verify this.

2. The implementation of two fine-tuned pre-trained deep learning networks (Inception V3 network
and Siamese network) for person recognition based on somatotype, trained on publicly available
benchmark somatotype datasets.

3. The provision of a somatotype recognition benchmark for this and similar techniques. This
benchmark includes a unified somatotype dataset, and the definition of the validation and training
sets.

4. Detailed evaluation of the proposed schemes, even for challenging scenarios including camera angle
and cloth variations. These evaluations show that the proposed biometric recognition methods based
on the somatotype generally outperform that state-of-the-art (which consists of Re-ID methods).

The rest of the paper is organized as follows: After reviewing relevant previous work (Section 2),
we describe the implemented methods (Section 3). In Section 4, the experimentation process is presented
and corresponding results are illustrated. Section 5 records important observations extracted from the
experimental procedure. Section 6 highlights interesting future challenges while Section 7 concludes the
paper.

2. Related Work

Re-identification work (Re-ID), based on full-body still images, implicitly uses the somatotype feature,
especially when training is involved. On the other hand, to the extend of our knowledge, somatotype
has been hardly used as a biometric trait for person recognition. Thus, the related work presented in this
section, is focused on full-body image-based Re-ID techniques, the closest relative and it shall be used to
be compared against our work.

Most Re-ID techniques are based on deep learning with Convolutional Neural Networks (CNNs),
using the full body images as input and the recognised identity as output, being the most popular ([11],
[12], [13]). A number of more complex CNN variations, especially focused on the Re-ID problem, were
also introduced; In [14], a duplicate Ca f f eNet is used. The work in [15], implements a more complex
convolutional scheme OSnet, in terms of number of convolutions and kernel sizes, than typical CNNs.
Finally, in [16], an extra layer (Eigenlayer) is added to the typical CNN architecture for improving the
feature representation. In the aforementioned works, there is usually a pre-processing step which resizes
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the initial images to the appropriate size expected by the corresponding network. There are also some
cases, where data augmentation takes place in order to increase the training samples.

The main drawback with CNNs is that, although they can be well trained and can learn global
features, they may lose important local features. Combining learning from global and local features is
critical in order to overcome issues related to pose changes, occlusions and non-rigid deformations of the
human body. To this end, several models have been proposed such as the Batch DropBlock Network (BDB)
[17], the part-based gradation regularization model (PGR) [18], the Multi-Scale ContextAware Network
(MSCAN) [19], the Multi Task Deep learning network (MTDnet) [20], the Attribute-Aware Attention
Model (A3M) [21], the AlignedReID method [22], the pyramidal framework [23], the Integration CNN
(ICNN) [24] and the joint attention person Re-ID (JA− ReID) architecture [25].

Furthermore, there are some more methodologies which follow different directions towards solving
the Re-ID problem. In [26], the so-called Part-based Convolutional Baseline (PCB) scheme for learning
part-level features of the images, instead of global ones, is presented. In [27] a re-ranking process is
implemented on the initially retrieved images for leveraging the final result. The methodology in [28]
proposes a scheme which resolves the so-called Small Sample Size problem (SSS) [29] (i.e., the training data
sample size is much smaller than the feature sample size) which is a common issue that typical distance
metric learning techniques have to address. [30] proposes a spatio-temporal person Re-ID (st− ReID)
framework that takes into account not only the visual semantic information but the spatio-temporal
information as well using consecutive images. A new feature (Local Maximal Occurrence) and a metric
learning method (Cross-view Quadratic Discriminant Analysis) is proposed in [31]. In [3], a synthetic
dataset (SOMAset) has been used to train an Inception V3-based network (SOMAnet) in order to model
additional discriminative information than just the outfit. [32] studies small-sized randomly initialized
models. [33] proposes the adaptation of a limited supervised multi-camera Re-ID setup, thus improving
the hardware of the entire process. The method of [34] proposes the Auto − ReID framework which
enables the automated finding of an efficient and effective CNN architecture for Re-ID. [35] implements a
model which involves a generative module for encoding a person’s appearance and structure based on
full-body images, and a discriminative module that shares the appearance encoder with the generative
module. Finally, the work of [36] collects and evaluates training lessons from the literature to improve
performance.

Finally, it should be highlighted that there are very interesting state-of-the-art works which either
perform Re-ID based on different modalities than full-body still images derived by other sensors than
conventional cameras ([37], [38], [39]), or combine the somatotype trait with other biometric modalities
(i.e., face) in order to perform improved biometric recognition [40]. Nonetheless, the scope of this paper is
focusing on full-body still images derived by standard 2D cameras.

3. Methods

After discussing the somatotype as a biometric trait, we present its use in both identification and
verification scenarios along with proposed deep learning based schemes.

3.1. Somatotype as a Biometric Trait

Somatotype focuses on the measurement of structural aspects of the human body, and includes
three main somatotype categories [41]: (i) Ectomorph: long and lean body figures, with little body fat
and muscle; (ii) Mesomorph: athletic, solid and strong body figures; (iii) Endomorph: body figures with
lots of body fat. Although the human somatotype has (implicitly) achieved remarkable results in the
Re-ID field (by using full-body images of humans), as presented in Section 2, it has never before been
used in recognition scenarios, to the best of our knowledge. The Re-ID procedure uses a not pre-defined
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gallery (no enrollment takes place), thus it cannot be considered as a biometric problem [5]. It was not
until the work of Barbosa [3] that somatotype was explicitly recognized as a useful trait for the Re-ID
problem. In [3], synthetic data with varying somatotypes were used, to show that this trait is capable of
re-identifying human beings even after a change in apparel, based on learning somatotypes. It thus makes
sense, as a continuation of the aforementioned work, to explore the full-body image-based somatotype
trait in non-collaborative person recognition at a distance and on-the-move, potentially opening up a new
biometric field.

Since the somatotype is based on a simple whole body image, it can be captured using off-the-shelf
cameras, from a distance and on the move. Such cameras are already in place in areas where security
is controlled (e.g. airports, ports, malls). Somatotype is also available in databases of law-enforcement
agencies which typically include a full-body image of subjects.

3.2. Identification Scenario

This scenario studies the usability of the somatotype trait for person identification. A gallery dataset
of identities, containing one or more somatotype instances for each identity is assumed. This gallery
dataset would normally be the result of an enrollment process and is used for training. Unknown query
somatotype instances are then presented and the trained system is expected to map these queries onto
identities of the gallery.

3.2.1. Inception V3 Network Architecture for Identification

The Inception V3 network [42], which has proven extremely successful in classification problems
2, has been implemented for the identification scenario. This is an improved version of a series of deep
networks starting with Inception V1 network, widely known as GoogleNet [43]. GoogleNet recruits
convolution filters with multiple sizes which operate on the same level. This is done in order to learn
salient parts of the input that can be of various sizes. Inception V2 [42] factorizes a 5x5 convolution
into two 3x3 convolution operations to improve computational speed and reduce the representational
bottleneck.

Finally, Inception V3 has adopted some upgrades regarding the convolution filter size, the auxiliary
classifiers and the prevention of over-fitting. Furthermore, this version of Inception is capable of encoding
more attributes related to the identity of a person (i.e., height, obesity and gender) in addition to outfit and
body physique [3]. This is the main reason that the aforementioned deep network was chosen. Figure 1
illustrates the Inception V3 network architecture as implemented in this work. There are three different
types of modules in the Inception V3 network: i) Inception A, ii) Inception B and iii) Inception C module.
All modules are appropriately designed for generating discriminatory features and for reducing the
number of trainable parameters. Each module is composed of several convolutional, batch normalization,
ReLU and pooling layers. Modules A and C use small convolutional layers which are responsible for the
reduction of the trainable parameters of the network. On the other hand, module B uses mostly large
convolutional layers for feature extraction. As illustrated in Figure 1 three Inception A modules, four
Inception B modules and 2 Inception C modules are stacked sequentially (indicated by notation "X3", "X4"
and "X2" in the Figure respectively).

2 See ReCeption method in classification part of Task 2a of ILSVRC 2015 rankings: http://image-net.org/challenges/LSVRC/2015/
results

http://image-net.org/challenges/LSVRC/2015/results
http://image-net.org/challenges/LSVRC/2015/results
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3.2.2. Identification Procedure

For each training sample x, the Inception V3 network computes the probability of it belonging to each
class k ∈ 1 . . . K as indicated in Equation 1. Cross entropy is defined as the loss function of the network
(see Equation 2).

p(k|x) = exp(zk)

∑K
i=1 exp(zi)

(1)

l = −
K

∑
k=1

log(p(k)) · q(k) (2)

where zi, p(k) and q(k) correspond to the output of the network, the predicted class distribution and
the ground-truth class distribution respectively.

Transfer learning has been implemented on the pre-trained Inception V3 network. To this end, the
final two layers of the pre-trained network have been adapted to each dataset used in the experimentation
process. The training set of each dataset is considered as the identities gallery database. The number of
outputs (i.e., classes) of the final network equals the number of different identities in the gallery. Each query
results in a confidence score in every output of the network and the query is mapped to the class with the
highest confidence score. Should the highest confidence score does not exceed a specified threshold ε, then
the identity of the query is considered to be unknown (i.e., no such identity in the gallery).

3.2.3. Verification Through Identification

The aforementioned scheme can be adopted for verification. In this case, a post-processing operation
is implemented. The identity of an individual is verified if the output of the system for the class of the
claimed identity has a confidence score higher than a predefined threshold ε.
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Figure 1. Inception V3 network architecture as implemented in the current work.

3.3. Verification Scenario

This scenario studies the usability of the somatotype trait for identity verification. A gallery biometric
instance (representing the claimed identity) and a query instance (representing the claimant) are compared
by a pre-trained system, producing a similarity score. A confidence threshold ε on this score decides
whether the claimed identity is verified.
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3.3.1. Siamese Network Architecture for Verification

For the verification scenario a Siamese network [44] is adopted. Due to the nature of these networks,
they are ideal for verification tasks of reduced dimensionality [45]. Siamese networks have mainly been
used for face verification, with DeepFace [46] and FaceNet [47] being the most popular implementations.
Within the context of the current work, their implementation is extended to somatotype-based verification.

Siamese networks are fed with two somatotype biometric instances and produce a similarity score as
output in the interval [0, 1]. A similarity score close to 0 indicates that the identity of the two inputs is
different, while close to 1 that it is the same. The response time is extremely fast. As mentioned already,
in the case of identity verification, the first biometric instance will be taken from a gallery dataset which
is constructed during an enrollment process. The second biometric instance will typically be captured
by a biometric sensor (2D camera) on-the-fly while an individual walks through a security area, having
declared a claimed identity. A one-to-one comparison takes place; a similarity score over a predefined
confidence threshold ε confirms the person’s identity.

It should be highlighted that, re-training of the Siamese network for a new gallery dataset is not
required (e.g. when more identities are added to the gallery). This is because the One-Shot-Learning [48]
procedure is used and happens for two reasons:

1. Unlike the Inception V3 network, whose output is a k-dimensional vector (where k is the number
of identities) and this dimension can be modified as the number of identities changes, the Siamese
network outputs a scalar similarity score in the interval [0, 1] for any input pair. This means that the
output dimensionality remains constant at all times.

2. The Siamese network is actually trained to learn the similarity function instead of the biometric
data itself. This means that once the network is trained on a specific type of data, it knows how to
compute the similarity between new biometric instance pairs.

Unlike the typical deep learning networks, Siamese networks are trained to learn how to compare
two images rather than the training images themselves. Thus, they only need a small training sample to be
trained upon. In theory, this could even work with a training set containing only one instance per identity.

Each of the two biometric input instances of the Siamese network are fed into two separate but
identical CNNs. Then, the output of the CNNs is merged using the L1 distance (see Equation 3, where
l denotes the output dimension of the CNNs). The estimated L1 distance value is passed through a
sigmoid function which produces the similarity score as the network’s output. Each CNN begins with
three consecutive pairs of convolutional and max pooling layers. The first convolution layer uses 64 filters
of dimension 10 x 10. The second convolution layer uses 128 filters of dimension 7 x 7. Finally, the third
convolution layer uses 128 filters of dimension 4 x 4. All three layers use ReLU as their activation function.
The third max pooling layer is succeeded by another convolutional layer using 256 filters of dimension 4 x
4 and ReLU activation function. A flattening layer follows before the final dense layer with the sigmoid
activation function. Figure 2 illustrates the Siamese network architecture as implemented in this work.
Figure 3 illustrates the architecture of each CNN utilized within the Siamese network.

L1 = −
l

∑
i=1
|CNN(out)i

1 − CNN(out)i
2| (3)

3.3.2. Identification Through Verification

The aforementioned scheme can be also utilised for identification purposes. In this case, the query
will be compared against every single instance of the gallery set. To this end, each biometric pair that is
formed by the query and each instance of the gallery set will be consumed by the Siamese network as
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input. If the highest similarity score achieved exceeds a specified confidence threshold ε and the gallery
part of the input pair that achieves the higher score is of the same identity as the query part, then the
identity of the query is verified by the system.

Figure 2. Siamese network architecture as implemented in the current work.

Figure 3. Convolutional Neural Network (CNN) architecture as utilised within the Siamese network of the
current work.

4. Experiments

Experimentation was conducted on four popular, publicly available datasets, one additional unified
dataset and one dataset appropriate for testing variations in camera angle and apparel. The current
section illustrates the datasets and the corresponding performance results and gives a comparison of the
proposed framework against the state-of-the-art methodologies for each scenario. The methodologies that
we compared against came from the Re-ID field. Despite the fact that Re-ID and recognition are not the
same tasks [49], we chose to compare against such techniques since, to the extent of our knowledge, there
were no previous image-based somatotype recognition techniques to compare against and Re-ID was the
closest relative. This is also indicated in [50]. Furthermore, the same evaluation metrics could be recruited.

4.1. Datasets

A brief description of the datasets that were used for experimentation follows. CUHK03: CUHK03
is the first relevant dataset large enough for deep learning [6]. It contained 13,164 images of varying
dimensions and consists of 1,467 identities. The images were taken from five cameras with different
acquisition settings. The dataset version where pedestrians in the raw images were manually cropped
was selected in order to keep the process simple. Testing (100 identities) and training (1367 identities)
partitions were also provided and used for assessment.
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RAiD: RAiD [7] is another related dataset where a limited number of identities (41) was captured and
contained 6920 images in total. The dimension of each image was 128x64. The images were collected using
a four camera setting (two indoors and two outdoors). The subjects were randomly divided into two sets,
training (21 identities) and testing (20 identities).

Market-1501: Market− 1501 is the largest relevant real-image dataset [8]. It contained 1501 identities
and over 32,668 images. The resolution of the images was 128x64. Five high-resolution and one
low-resolution camera were recruited for acquisition. The training set consisted of 750 identities while the
testing set consisted of 751 identities.

RGBD-ID: RGBD − ID [9,10] dataset was captured using RGB − D cameras. Although it only
included 11 identities, RGBD− ID contains many instances for each identity as well as images of the same
identities wearing different clothes, which made this dataset very challenging. The total number of images
was 22,845 and the image dimension was 640x480. Testing and training images were also provided.

Figures 4-7 illustrate some example images from the four datasets.

Figure 4. CHUK03 dataset exemplary samples.

Figure 5. RAiD dataset exemplary samples.
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Figure 6. Market− 1501 dataset exemplary samples.

Figure 7. RGBD− ID dataset exemplary samples.

Unified dataset: We created the Uni f ied dataset that combined all the aforementioned publicly available
datasets with the aim of maximizing the number of identities, which had a great influence on training
and testing, as well as diversifying across different acquisition devices and protocols. In addition, all
unique characteristics of each dataset were kept and combined, thus, creating a more challenging dataset.
This dataset contained six randomly selected image instances for each identity of the initial datasets.
This number was selected two reasons: i) on the one hand, it excluded just a small number of available
identities (identities with less than six recorded instances are skipped but there are only just a few such
identities), and ii) it was a realistic number of images that could be recorded during an enrollment
procedure (enrollment in real-world conditions should not be a time-consuming process for the enrolled
individual [51]). In total, there were 2939 identities and 17,634 images. The dimension of the images
was resized to 299x299 which was the standard dimension of the Inception V3 network input. This was
done by applying bilinear interpolation (i.e., the output pixel value was a weighted average of pixels in
the nearest 2x2 neighborhood). Out of the six instances per identity, five were randomly selected as the
training set. The remaining instance belonged to the testing set. Furthermore, there was the case where
an identity was considered to be unknown. In that case, all six instances of the identity belonged to the
testing set. Due to the terms of use of the four initial datasets, the Uni f ied dataset could not be directly
re-distributed. Nonetheless, we provided the filenames or indices of the selected images, so that one could
easily reproduce the dataset.

SOMAset dataset: Finally, the SOMAset dataset [3] 3 was used in order for the proposed scheme
to be tested specifically under different clothing and pose variation scenarios. SOMAset is a synthetic
somatotype dataset which includeds 50 identities (25 males and 25 females). It also accounted for different
ethnicities. Each identity wore eleven sets of clothes and assumed 250 different poses, over an outdoor
background scene, with varying illumination conditions. This made SOMAset ideal for testing the
clothing and pose variation effect on the proposed deep learning scheme. Each image in the dataset had
dimensions of 200x400 pixels. Figure 8 illustrates example images of SOMAset. Table 1 sums up all the

3 https://www.kaggle.com/vicolab/somaset

https://www.kaggle.com/vicolab/somaset
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recruited datasets along with their main characteristics. It is important to highlight that, although all
datasets contained multiple poses for each subject included, only SOMAset provided a standard pattern
to facilitate the elaboration, using programming procedures, of both the pose and clothing variation
in the defined experimentation protocol. That is why the aforementioned dataset was chosen for the
corresponding experiments.

Figure 8. SOMAset dataset example images.

DATASET NUMBER OF NUMBER OF IMAGE TRAINING/TESTING POSE CLOTH
IDENTITIES IMAGES DIMENSIONS PARTITION AVAILABLE FACILITATION VARIATION

CUHK03 [6] 1,467 13,164 Varying Yes No No
RAiD [7] 41 6,920 128x64 Yes No No

Market− 1501 [8] 1,501 32,668 128x64 Yes No No
RGBD− ID [9,10] 11 22,845 640x480 Yes No Yes

Uni f ied 2,939 17,634 299x299 Yes No Yes
SOMAset [3] 50 100,000 200x400 No Yes Yes

Table 1. Sum up of the datasets used and their main characteristics.

4.2. Results

4.2.1. Identification Scenario

The identification module of the Inception V3 network, as described in Section 3, is strictly used
experimenting on the identification scenario. The identification experiments were conducted using
MATLAB toolboxes on a Windows 10 PC with an Intel i9 CPU at 2.30 GHz, 32.00 GB RAM and a NVIDIA
Quadro T2000 GPU of 4 GB memory.

Table 2 illustrates the accuracy at rank-1, 5 and 10 of the proposed scheme. Fortunately, it is possible
to compare the proposed identification methodology against state-of-art Re-ID methods since rank-n rate
is a common way of evaluating Re-ID methods; they are essentially considered as retrieval problems. The
Cumulative Match Characteristic (CMC) curves of the proposed somatotype identification system for
all datasets are illustrated in Figure 9 and confirm the results presented in Table 2. Note that, the best
curve was achieved for the RAiD dataset (green color). The curve which corresponds to the RGBD− ID
dataset (magenta color) almost overlaps with the one of the Uni f ied dataset (yellow color). Nonetheless,
the CMC curve of the Uni f ied dataset was a bit lower which made it the most challenging case to handle.
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Table 3 compares the accuracy (at most popular ranks of the state-of-the-art, i.e., rank-1, 5 and 10) of the
proposed scheme against recent top-ranked state-of-the-art methods for each dataset. ’N/A’ stands for
not available value. Some methodologies achieved better results on one dataset (i.e., Market− 1501) but
worse on another (i.e., CUHK03) compared to the proposed method. It is worth highlighting that all our
results were achieved in a single query setting without using any re-ranking algorithms.

DATASET RANK-1 RANK-5 RANK-10
CUHK03 92.50% 98.31% 99.65%

RAiD 99.86% 100.0% 100.0%
Market− 1501 82.11% 97.73% 99.58%
RGBD− ID 54.62% 59.46% 65.68%

Uni f ied 54.28% 59.16% 65.42%

Table 2. Accuracy at different ranks, per dataset, as achieved by the Inception V3 network.

Figure 9. Cumulative Match Characteristic (CMC) curves per dataset as achieved by the Inception V3
network.

Clothing and Pose Variation Effects:

Variations in attire and pose are probably some of the most challenging in recognizing somatotype.
To this end, experiments have been conducted on the SOMAset dataset, which includes such variations,
in order to see how the proposed scheme deals with very challenging data.

Effect of Clothing Variation: All 250 poses for each identity wearing a specific outfit were chosen
as the training set. As testing set, a subset (10%) of the poses for each identity wearing an outfit different
to the one corresponding to the same identity in the training dataset, were chosen. Thus, all queries are
identities with different outfit to the one used in the training of the system on the same identity. This was
significantly harder than the scenario employed in the other state-of-the-art methods using the RGBD− ID
dataset where only a subset of the query identities wore different clothes to the ones in training set. The
Rank-1 score dived to 15.70%, highlighting the fact that distinguishing identity based on somatotype under
different clothes is a major challenge. This is the main reason for the performance decrease of the proposed
scheme in the RGBD− ID and the Uni f ied datasets. Table 4 illustrates the rank scores of this experiment.
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Effect of Pose Variation: In the pose variation case, the experiments were split into three sub-cases:
i) frontal pose, ii) back pose and iii) side pose. For each sub-case, all images of a specific pose (frontal, back
or side) for each identity wearing a specific outfit were chosen as training set. As testing set, a subset (10%)
of the remaining poses for each identity wearing the same outfit as in the training dataset, were chosen.
Thus, all queries are identities with the same outfit but in a different camera angle that the one used for the
training of the system on the respective identity. This was significantly harder than the scenarios of mixed
poses employed in the other state-of-the-art methods. Table 5 illustrates the accuracy at different ranks.
It appeared that the system was better trained with the side pose images. This is in agreement with the
results illustrated in [52]. Thus, pose variations can be addressed especially when appropriate training
samples are used.
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CUHK03 DATASET
METHODOLOGY RANK-1 RATE RANK-5 RATE RANK-10 RATE

[22] 97.80% 99.60% 99.80%
Inception V3 92.50% 98.31% 99.65%

[11] 87.50% 97.70% 98.90%
[3] 83.60% 97.50% 99.20%

[12] 82.10% 96.20% 98.20%
[16] 81.80% 95.20% 97.20%
[17] 79.40% N/A N/A
[23] 78.90% N/A N/A
[34] 77.90% N/A N/A
[18] 74.90% 92.90% 96.70%
[20] 74.68% 95.99% 97.47%
[19] 74.21% 94.33% 97.54%
[15] 72.30% N/A N/A
[26] 63.70% 80.60% 86.90%
[53] 62.70% 79.90% 86.20%
[28] 62.55% 90.05% 94.80%
[24] 61.36% N/A N/A
[25] 58.00% N/A N/A
[31] 52.20% N/A N/A
[27] 38.10% N/A N/A
[8] 24.30% N/A N/A

RAiD DATASET
METHODOLOGY RANK-1 RATE RANK-5 RATE RANK-10 RATE

Inception V3 99.86% 100.0% 100.0%
[3] 95.00% 100.0% 100.0%

[33] 59.84% N/A N/A
Market− 1501 DATASET

METHODOLOGY RANK-1 RATE RANK-5 RATE RANK-10 RATE
[30] 98.10% 99.30% 99.60%
[32] 96.20% N/A N/A
[23] 95.70% 98.40% 99.00%
[36] 95.40% N/A N/A
[34] 95.40% N/A N/A
[17] 95.30% N/A N/A
[35] 94.80% N/A N/A
[15] 94.80% N/A N/A
[22] 94.40% N/A N/A
[26] 93.80% 97.50% 98.50%
[53] 92.80% 97.30% 98.10%
[24] 92.13% N/A N/A
[25] 90.40% N/A N/A
[11] 88.90% 95.60% N/A
[13] 87.04% 95.10% 96.42%
[21] 86.54% 95.16% 97.03%
[18] 83.31% N/A N/A
[16] 82.30% 92.30% 95.20%

Inception V3 82.11% 97.73% 99.60%
[19] 80.31% N/A N/A
[14] 79.51% N/A N/A
[3] 77.49% 91.81% 94.69%

[27] 77.11% N/A N/A
[54] 72.54% N/A N/A
[28] 61.02% N/A N/A
[8] 47.25% N/A N/A

RGBD− ID DATASET
METHODOLOGY RANK-1 RATE RANK-5 RATE RANK-10 RATE

[10] 98.40% N/A N/A
[38] 91.60% N/A N/A
[9] 85.20% N/A N/A

Inception V3 54.62% 59.46% 65.68%
[55] 30.10% N/A N/A

Uni f ied DATASET
METHODOLOGY RANK-1 RATE RANK-5 RATE RANK-10 RATE

Inception V3 54.28% 59.16% 65.42%

Table 3. Accuracy of the Inception V3 network at different ranks (Ranks-1, 5, 10), against state-of-the-art
Re-Identification (Re-ID) methods, per dataset, for the identification scenario.
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RANK-1 RANK-5 RANK-10
15.70% 45.43% 66.84%

Table 4. SOMAset accuracy at different ranks under cloth variation as achieved by the Inception V3
network.

TRAINING POSE RANK-1 RANK-5 RANK-10
Frontal 61.00% 88.15% 93.28%

Back 60.00% 89.33% 96.02%
Side 77.00% 100.0% 100.0%

Table 5. SOMAset accuracy at different ranks under pose variation as achieved by the Inception V3
network.

The corresponding CMC curves of the aforementioned clothing and pose variation effect
experimentation are illustrated in Figure 10. The curves visually confirm the results of Tables 4 and
5. The best curve was achieved when training the network with the side pose (green color) images. The
curves corresponding to training with the back (red color) and front (blue color) images followed, while
the most difficult effect to be handled was the clothing variation with the corresponding (yellow color)
curve being at the bottom.

4.2.2. Verification Scenario

The verification module of the Siamese network, as described in Section 3, was strictly used
experimenting on the identity verification scenario. The verification experiments were conducted using
Python on a Windows 10 PC with an Intel i9 CPU at 2.30 GHz, 32.00 GB RAM and a NVIDIA Quadro
T2000 GPU of 4 GB memory.

Table 6 illustrates the verification accuracy achieved on the evaluation datasets. Note, that this was not
the same as identification rank-n scores. Figure 11 illustrates the Receiver Operating Characteristic (ROC)
curves for the proposed somatotype verification system for all datasets. The ROC curve is commonly used
for evaluating verification experiments. The curves confirmed the results of Table 6. The best curve was
achieved for the RGBD− ID dataset (magenta color) with the curves of RAiD (green color), Market− 1501
(blue color), CUHK03 (red color) and Uni f ied (yellow color) dataset following. The curves corresponding
to RAiD and Market− 1501 datasets almost overlapped with the one of the RAiD being slightly better.
The Uni f ied was, as expected, the most challenging dataset. Table 7 presents the mean Average Precision
(mAP) of the proposed verification method compared to recent top-ranked state-of-the-art Re-ID methods,
for each dataset. The mAP was used in the evaluation of both identification and verification experiments;
a comparison of the two proposed learning methods (Siamese vs Inception V3) is thus illustrated in Table
8 via their mAP values per dataset.
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Figure 10. SOMAset dataset CMC curves for different poses and clothing variation as achieved by the
Inception V3 network.

DATASET VERIFICATION ACCURACY
CUHK03 93.50%

RAiD 99.32%
Market− 1501 99.10%
RGBD− ID 99.95%

Uni f ied 92.27%

Table 6. Verification accuracy per dataset as achieved by the Siamese network.

Figure 11. Receiver Operating Characteristic (ROC) curves per dataset as achieved by the Siamese network.
Note that the green and blue color lines almost overlap.

Clothing and Pose Variation Effects:

The verification scenario methodology was also tested under clothing and pose variations.
Experiments were conducted on the SOMAset dataset. The experimental protocol was the same as
in the identification scenario. In contrast to the identification methodology (Inception V3 network), it
seemed that the Siamese network was less sensitive to cloth variations but slightly more sensitive to
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camera pose variations. The verification accuracy is presented in Table 9. The ROC curves are illustrated
in Figure 12. Once again, side pose (green color) achieved better results than when front (blue color) and
back poses (red color) were used in training. The clothing variation case (magenta color) seemed to be
more stable in the Siamese rather than in the Inception V3 network.
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CUHK03 DATASET
METHODOLOGY mAP

Siamese 89.72%
[3] 86.79%

[16] 84.80%
[18] 78.80%
[23] 76.90%
[17] 76.70%
[34] 73.00%
[15] 67.80%
[53] 57.60%
[26] 57.50%
[25] 56.50%
[24] 55.78%
[27] 40.30%
[8] 22.70%

RAiD DATASET
METHODOLOGY mAP

Siamese 99.18%
[3] 95.00%

Market− 1501 DATASET
METHODOLOGY mAP

Siamese 97.87%
[36] 94.20%
[34] 94.20%
[22] 90.70%
[32] 89.70%
[23] 88.20%
[30] 87.60%
[17] 86.70%
[35] 86.00%
[15] 84.90%
[26] 81.60%
[24] 79.01%
[53] 78.70%
[11] 76.70%
[25] 76.01%
[21] 68.97%
[13] 66.89%
[27] 63.63%
[16] 62.10%
[14] 59.87%
[18] 59.69%
[19] 57.53%
[3] 53.50%

[54] 40.54%
[28] 35.68%
[8] 19.47%

RGBD− ID DATASET
METHODOLOGY mAP

Siamese 99.95%
[10] 99.50%
[9] 98.23%

[55] 88.70%
Uni f ied DATASET

METHODOLOGY mAP
Siamese 86.30%

Table 7. mAP results of the Siamese network compared to state-of-the-art, per dataset, for the verification
scenario.
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CUHK03 DATASET
METHODOLOGY mAP
Siamese Network 89.72%

Inception V3 Network 90.00%
RAiD DATASET

METHODOLOGY mAP
Siamese Network 99.18%

Inception V3 Network 96.53%
Market− 1501 DATASET

METHODOLOGY mAP
Siamese Network 97.87%

Inception V3 Network 81.39%
RGBD− ID DATASET

METHODOLOGY mAP
Siamese Network 99.95%

Inception V3 Network 53.37%
Uni f ied DATASET

METHODOLOGY mAP
Siamese Network 86.30%

Inception V3 Network 50.94%

Table 8. Proposed Siamese versus Inception V3 network results per somatotype dataset.

EXPERIMENT VERIFICATION ACCURACY
Clothing variation 49.02%

Back pose 46.62%
Front Pose 46.80%
Side Pose 50.12%

Table 9. SOMAset verification accuracy under clothing and pose variations as achieved by the Siamese
network.

Figure 12. SOMAset dataset ROC curves for different pose and clothing variations as achieved by the
Siamese network.
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4.3. Implementation Details

The only undertaken pre-processing step for both identification and verification scenario is that the
initial images were resized in order to feed the input of the corresponding network. For the identification
experiments, the learning rate of the training process was set to 0.0003, the size of the mini batch to 10 and
the training epochs to 12 for the four publicly available datasets and to 30 for the unified dataset. For the
verification scenario, the learning rate of the training process was set to 0.00006, the size of the mini batch
to 32 and the training epochs to 30 for the unified somatotype dataset. The values of the aforementioned
hyper-parameters were chosen experimentally. After training, the testing process took place without an
intervening validation phase.

As the confidence threshold ε for both scenarios, the value 0.7 was chosen. It should be mentioned
here that, the threshold was parameterised in the proposed scheme. Thus, any desired threshold could
be chosen. During this research, many different thresholds were tested and the 0.7 threshold value was
experimentally proved to achieve the best results.

4.4. Timings

The time needed on a per-query basis for both scenarios was very low. More precisely, for identifying
a query, the time required by the Inception V3 network was approximately 0.05 seconds, while for verifying
an identity the required time by the Siamese network was approximately 0.03 seconds.

If the Inception V3 network was implemented for verification, the per-query time was not much
different to that for the identification case, as the same process took place followed by an identity
confirmation post-processing which was of O(1) time complexity. On the contrary, if the Siamese network
was implemented for identification, the per-query time drastically increased. That is because it should be
multiplied by the number of instances of each identity in the training set of the corresponding dataset. If
we consider that there are m instances for each identity and n identities in total, then the per-query time
required will be multiplied by a factor of O(n × m). Thus the bigger the dataset the more the time needed
for the system to respond. In our case, this time varies from approximately 3 minutes for the RAiD dataset
to approximately 10 minutes for the Market− 1501 dataset.

5. Discussion

Identification and verification are biometric recognition problems with different evaluation metrics. In
the case of identification, CMC curves and Rank-n accuracy (n = 1, 5, 10) are often used. Respectively, in the
case of verification, ROC curves, mAP and Veri f icationRate are commonly used. The nearest comparable
state-of-the-art methods that have implicitly or explicitly (only [3]) used the somatotype feature have
focused on Re-ID, which is an identification problem. Thus, although the proposed identification method
could be directly compared against these state-of-the-art Re-ID methods, this was not the case for the
proposed verification method. To overcome this problem, mAP values were used, as mAP is common to
both problems. The only drawback is that mAP is not made available as often as other measures in related
publications.

The experimental results for the identification scenario were very promising for the majority of the
cases. However, in more challenging datasets which include a change of attire (RGBD− ID and Uni f ied),
identification accuracy drops significantly. Thus, while this method may be suitable for constrained
cases where individuals are not expected to change attire (e.g. intra-day), it does not appear suitable for
identification across longer time periods, where a change of attire is expected. Another problem is that it
necessitates time-consuming retraining for every addition to the gallery dataset, making it unsuitable for
dynamic galleries of identities. Still, given the ease of capturing the somatotype (still images) it can be an
extremely useful and cheap component under a biometric fusion scheme. At the recognition phase, no
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collaboration is required, since somatotype is based on simple still images of a person’s body; the person
may or may not have enrolled.

The results of the verification scenario indicate that the proposed method achieves very high
verification rates for all datasets. Furthermore, the scheme surpasses state-of-the-art performance,
including the Inception V3 network approach, for every single dataset used for experimentation. The
increased verification rates in both RGBD− ID and Uni f ied datasets indicate that, unlike the Inception V3
network, this scheme is much less sensitive to cloth variations. On the other hand, this scheme is slightly
more sensitive to pose variations. That can be explained by the fact that the Siamese networks are trained
on a comparison metric rather than the images themselves. Thus, if it is trained only in comparing over
a specific pose, then comparing over a different pose will be an unknown for the system. An important
advantage of the Siamese network is that it needs no re-training when utilised with different datasets as it
follows the One-Shot-Learning approach. One can thus assume a dynamic gallery dataset without the
time cost of re-training. Due to the nature of the Siamese networks, even the initial training set doesn’t
have to be as extensive as for typical deep networks. However, when aimed at the identification scenario,
the Siamese network is more time-consuming than the Inception V3 network, as its performance is linear
in the size of the gallery rather than constant.

The effect of clothing is a major issue that has been highlighted in this paper. Ideally, a person
recognition system should be invariant to clothing, as clothing is not a characteristic of a person’s identity.
However, since the input modality is images, such a recognition system cannot be completely invariant to
clothing or for that reason other image artifacts. Just as a facial recognition system cannot be completely
invariant to occlusions. However, here comes the advantage of being able to train on a relatively large
dataset with exact ground truth; the machine learning system learns the underlying somatotype because it
is presented with the same somatotype wearing different clothes as well as different somatotypes wearing
the same clothes. Still, there is the question of what the network actually learned. It was thus deemed
useful to investigate whether the network, after training, is better at distinguishing somatotypes or clothes.
Note that the latter would seem like an easier task, as it is based on the outer appearance that is obvious in
full body images. The mean value and standard deviation of the similarity score for the same subjects
wearing different clothes as well as different subjects wearing the same clothes are shown in Table 10
for a balanced set of five different cloth variations and five different somatotype variations. The number
of total cloth variations that are common for males and females is five, and that is why this number is
chosen. Of course, this number is smaller than the number of somatotype variations in the original dataset.
This led to the use of 6250 somatotype images, which is less than the 10% of the full dataset. The mean
values corresponding to subjects of the same somatotype are slightly higher than the ones corresponding
to subjects wearing the same clothes, while the standard deviations corresponding to subjects of the same
somatotype are negligible, in contrast to the ones corresponding to subjects wearing same clothes.

SIMILARITY SCORES
COMPARISON NETWORK MEAN VALUE STANDARD DEVIATION

Same somatotype/Different Clothes Inception V3 0.9897912 3.7876 x 10−6

Same somatotype/Different Clothes Inception V3 0.9087757 1.0225 x 10−2

Same somatotype/Different Clothes Inception V3 0.9999905 1.0120 x 10−7

Same somatotype/Different Clothes Inception V3 0.9889345 1.5363 x 10−3

Table 10. Mean values and standard deviations of the similarity scores, produced by the Inception V3
and the Siamese networks among subjects belonging to the same somatotype and subjects wearing same
clothes.
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An exhaustive study regarding the influence of the different movements of the structural aspects of
the human body on the derived accuracy is not applicable for the time being. Due to the plethora of such
movements this would require many resources and would be very time-consuming. Moreover, the very
nature of the datasets themselves make the aforementioned study unrealistic. The datasets contain only
still images which cannot capture the entire movement spectrum of the structural aspects of the human
body. In that sense, the assessment of the proposed deep networks under three different pose variations
can be thought of as an assessment under a small subset of different movements of the structural aspects
of the human body. As mentioned in Section 6, the recruitment of videos (image sequences) instead of the
still images, adding extended temporal information as well, can offer a better basis for such a study, but
the problems of resource allocation and time complexity will remain, possibly restricting the study just to
a bigger movement subset than the one analysed here.

Summing up the discussion, Table 11 illustrates the advantages and disadvantages of the two
proposed schemes.

SCHEME ADVANTAGES DISADVANTAGES
Inception V3 Network - High identification ranks for most cases - Cloth variation sensitive

- Fast identification - Re-training required for use with different datasets
Siamese Network - High verification accuracy - Slow identification

- Fast verification
- Re-training is not required

- Less sensitive to cloth variation
- Small training set required

Table 11. Advantages and disadvantages of the two proposed schemes.

6. Future Challenges

One promising way of extracting more accurate somatotype features and thus potentially improving
accuracy when there exist variations in attire, is the use of video sequences instead of still images. Thus,
the entire movement spectrum of the structural aspects of the human body could be encoded by the deep
networks. Preliminary works in this direction could be used as a basis ([56], [57]). Moreover, synthetic
somatotype datasets (e.g. SyRI [58], SOMAset [3] and PersonX [59]) are extremely useful in training,
especially for creating controlled subject variations in e.g. attire and pose. In the future we expect such
datasets to be of increasing importance in transfer learning scenarios, combined with emerging more
sophisticated deep networks such as Inception V4 [60] and ResNet [61].

7. Conclusion

The human somatotype, as can be captured from simple full-body images, is an extremely
attractive biometric trait as it can be used on-the-move and at a distance, thus being suitable even
for non-collaborative subjects. In addition it requires no specialised capture equipment. This paper studied
the possibility of using the somatotype as a biometric recognition trait and proposed two respective
learning networks for both identification and verification scenarios. Evaluation has been conducted on
well-established publicly available datasets for Re-ID, as well as on a new unified dataset that was created
by merging the aforementioned ones and contains the largest number of identities.

The proposed Inception V3 network is suitable for non-collaborative and on-the-move identification
and/or verification using a pre-constructed, static, gallery dataset of identities. However, application of the
scheme on a dataset of identities that can be dynamically modified is problematic, because the Inception V3
network should undergo a time-consuming re-training process for every change in the gallery. Moreover,
this scheme is sensitive to cloth variations. On the other hand, the proposed Siamese network scheme is
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suitable for non-collaborative identity verification on-the-move. It can also be utilised for the identification
process at the cost of a linear time penalty. The implementation of One-Shot-Learning ensures that system
training is performed only once and offline, making it suitable for a dynamically varying gallery.

Under constrained conditions, where individuals are not expected to change attire across captures
and where recognition failures are not catastrophic (e.g. access to non-critical events), the somatotype
feature appears extremely attractive due to the ease and low-cost associated with its capture. However,
under conditions of large time ranges, where individuals are expected to change attire across captures, the
somatotype trait may not be adequate as a stand-alone biometric, particularly if high recognition accuracy
is required. Still, under such more general conditions, the somatotype is useful under a biometric fusion
scheme, where it can boost a biometric system’s performance at a very low cost.

Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 833704.
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