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Preface

This thesis is submitted in partial fulfillment of the requirements for the degree of
Philosophiae Doctor (Ph.D.) at the Norwegian University of Science and Technol-
ogy (NTNU). The thesis contains work carried out from August 2016 to May 2020.
It was funded by the Norwegian University of Science and Technology (NTNU)
under the Norwegian Research Council project Reducing Risk in Aquaculture
(254913). Professor Ingrid Schjølberg was the principal supervisor, and Profes-
sor Ingrid Bower Utne was the co-supervisor.

The target audience for this thesis is personnel working on the study and develop-
ment of underwater navigation systems for unmanned underwater vehicles (UUVs),
both in industry and academia. The findings of the research herein may help to
improve the future development of autonomous underwater vehicles performing
operations such as inspection, maintenance, and repair tasks in aquaculture.

At present, all operations in aquaculture that are performed by UUVs need contin-
uous control and supervision on site. Increasing our knowledge about how to use
today’s available technology to make these operations less reliant on humans is cru-
cial to achieving a safe, efficient, and sustainable aquaculture industry. This thesis
addresses challenges and solutions for UUVs with greater personnel independence
and is, therefore, a step toward autonomous operations in aquaculture.
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Abstract

The aquaculture industry needs automation to meet the world’s increasing demand
for fish protein. However, it is considered to be one of the most dangerous occupa-
tions in Norway due to the required amount of manual labor with heavy equipment
in demanding weather conditions. One of the operations in need of improvement is
the inspection of submerged equipment, which, nowadays, is performed by divers
and remotely underwater vehicles (ROVs). The former is a high-risk operation for
personnel, and the latter demands heavy lifting during launch and recovery, which
is also considered a high-risk task.

Autonomous vehicles could perform these tasks to reduce risk; however, many chal-
lenges need to be solved before this becomes a reality, one of which is navigation
in an aquaculture environment. This thesis addresses this challenge, presents tank
and field experiments to validate some suggested methods, and compares the sug-
gestions against existing methods. The thesis examines four novel algorithms in
terms of two topics. The topics are localization and mapping using exteroceptive
sensors, which measures the environment from a vehicle’s egocentric perspective,
and localization using environmental sensors, which measures position from an ex-
ternal point of reference. The external point of reference means that the sensors
have a known location in the environment. From an egocentric perspective, there is
a group of methods called simultaneous localization and mapping (SLAM). SLAM
is a mature field; however, there are still challenges related to the use of sonar
as an exteroceptive sensor. The high number of outliers and the nonlinear noise
distributions pose a challenge to current methods.

The first method presented is primarily a sonar likelihood model that addresses
outlier measurement issues. The likelihood model is integrated into a scan-matching
method and in a Rao-Blackwellized particle filter SLAM method, and then com-
pared with other SLAM methods. The results show that the suggested method has
a better runtime and localization accuracy than the other methods.

The second issue addressed is the mapping of an aquaculture environment, or more
specifically, the mapping of a dynamic fish cage using exteroceptive sensors such
as sonar. Conventional methods involve memory consumption that scales cubically
with volume. The suggested approach, named polar map, scales quadratically with
the size of the environment. It not only makes the method far more memory-
efficient in large environments, but gives a lower runtime complexity than conven-
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tional mapping representations when used in SLAM solutions. The verification of
the map representation used tank experiments, where an unmanned underwater
vehicle (UUV) performed SLAM using the suggested representation. This thesis
also compares the use of two other map representations, namely the 3D occupancy
grid map and the octomap, with the polar map.

The third issue addressed is the use of an environmental sensor to create a map
representation of an anchor line. Hydrophones obtain the positions of acoustic tags
placed on the line, which generate the map. This work presents field experiments,
and the results show that the performance of the equipment had satisfactory ac-
curacy for generating an initial map of an environment.

The fourth challenge addressed is the use of a hydroacoustic positioning system
in the wave zone. Having a positioning system close to the surface simplifies the
mounting and maintenance of equipment; however, wave-induced motion generates
an oscillatory error in the position estimates of a UUV. The suggested solution is
to use an extended Kalman filter that uses a wave filter to remove the wave motion
in the final localization estimates of the UUV.

Thus, to summarize, the thesis presents four suggested methods for increasing
automation in underwater inspections using a UUV in an aquaculture environment.
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Åsmund and Eldbjørg.

Stian Skaalvik Sandøy
Trondheim, Norway

vii





Contents

Contents ix

List of Figures xi

List of Tables xiii

Nomenclature xv

I Main Report 1

1 Introduction 3
1.1 Aquaculture in Norway . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Unmanned Underwater Vehicles in Aquaculture . . . . . . . . . . . 4
1.3 Framework of Unmanned Underwater Vehicles . . . . . . . . . . . 5

1.3.1 Software Modules . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Probabilistic Underwater Localization and Mapping . . . . 8
1.3.3 Navigation Sensors . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Overview of Articles and Contributions . . . . . . . . . . . . . . . 18
1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Relevant Methods in Localization and Mapping 23
2.1 Underwater Localization with Environmental Acoustics . . . . . . 23

2.1.1 Circular and Hyperbolic Localization . . . . . . . . . . . . . 23
2.1.2 Delusion of Precision . . . . . . . . . . . . . . . . . . . . . . 25
2.1.3 Probabilistic Nonlinear Estimators . . . . . . . . . . . . . . 25

2.2 Localization and Mapping with Exteroceptive Acoustics . . . . . . 28
2.2.1 Motion Model Using Doppler Velocity Log and Gyro . . . . 28
2.2.2 Sensor Model Using an Imaging Sonar . . . . . . . . . . . . 29
2.2.3 Occupancy Grid Mapping . . . . . . . . . . . . . . . . . . . 30
2.2.4 Scan Matching . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.5 Outlier Robustness . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.6 SLAM Using RBPF with Occupancy Grid Maps . . . . . . 35

3 Research Methods 39

ix



Contents

3.1 Underwater Localization and Mapping with Exteroceptive Acoustics 39
3.2 Underwater Localization with Environmental Acoustics . . . . . . 40

4 Summary of Research Results 43
4.1 Underwater Simultaneous Localization and Mapping . . . . . . . . 43
4.2 Polar Map: A New Map Representation for Localization and Mapping

in Fish Cage Structures . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Underwater Mapping Using Multiple Acoustic Tags . . . . . . . . . 50
4.4 Positioning Error Correction for Ocean Wave Induces Long Baseline

Navigation System . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Conclusions and Further Work 55
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

References 59

II Collection of Articles 69

Article J1 71

Article J2 95

Article J3 107

Article C1 125

Article C2 135

Article C3 145

Article C4 157

III Published Theses at Department of Marine Technology -
NTNU 167

Theses 169

x



List of Figures

1.1 A Norwegian fish farm. Courtesy [10] . . . . . . . . . . . . . . . . . . . 3
1.2 ROV in aquaculture inspection operation. Courtesy of [82]. . . . . . . 4
1.3 Fish cage deformations with varying current. Courtesy [51] . . . . . . 6
1.4 Overview of an autonomy framework for a UUV . . . . . . . . . . . . 6
1.5 ECEF, NED and Body frame . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Acoustic sensors from a side view, where the blue colored areas indicate

the trace of the acoustic pulse for each sensor. . . . . . . . . . . . . . . 13
1.7 Echo intensity measurement . . . . . . . . . . . . . . . . . . . . . . . . 15
1.8 UUV localization and mapping in a fish cage. . . . . . . . . . . . . . . 17
1.9 Linking each article to the scope of the thesis . . . . . . . . . . . . . . 18

2.1 Geometrical solution of circular and hyperbolic localization. . . . . . . 24
2.2 Geometrical examples of delusion of precision. . . . . . . . . . . . . . . 25
2.3 Target and proposal distribution in a PF . . . . . . . . . . . . . . . . 28
2.4 Reference systems and notation of the vehicle from the top view. . . . 28
2.5 Range extraction from echo intensity measurements . . . . . . . . . . 30
2.6 Grid mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7 Octree representation. Courtesy of [40]. . . . . . . . . . . . . . . . . . 31
2.8 The 2.5D bathymetry map . . . . . . . . . . . . . . . . . . . . . . . . 32
2.9 Scan matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.10 Examples of loss functions . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.11 RBPF importance weighting with occupancy grid maps . . . . . . . . 36
2.12 RBPF resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.13 Map estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 The hovering AUV Tri-Dog 1 developed at the University of Tokyo, and
the setup of the tank experiment. . . . . . . . . . . . . . . . . . . . . . 40

3.2 On the left: The ROV used for recording the Abandoned Marina Dataset.
On the right: an overview of the abandoned marina, courtesy of [80] and
Google Maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Experimental setup in the marine cybernetics lab . . . . . . . . . . . . 41
3.4 Acoustic tag experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Sensor suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 SLAM in tank using MSIS . . . . . . . . . . . . . . . . . . . . . . . . . 45

xi



List of Figures

4.3 Results using the open Abandoned Marina dataset as a test case for the
suggested method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Illustration of a typical fish cage . . . . . . . . . . . . . . . . . . . . . 47
4.5 Section-wise discretization of a solid cylinder by angle, θ, and depth, z.

The range r is the variable that describes the edge of the cylinder for
each section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Top view of the discretized structure (left) and the uncertainty model of
a single section (right) in the 2.5D polar map representation . . . . . . 48

4.7 2.5D Polar map representation of a fish cage . . . . . . . . . . . . . . 48
4.8 PF-based SLAM in tank using polar map . . . . . . . . . . . . . . . . 49
4.9 Time-series for RMSE of tag ID 32 with the EKF and PF for Case

Studies 1 (top subplot) and 2 (bottom subplot). The blue line is the
RMSE for the PF, the red line for the EKF. . . . . . . . . . . . . . . . 51

4.10 Visualization of the interpolated anchor line from Article J1 . . . . . . 52
4.11 Estimated states with EKF in x direction . . . . . . . . . . . . . . . . 53

xii



List of Tables

1.1 Navigation sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Sonar two-way working ranges. Courtesy of [16]. . . . . . . . . . . . . 15
1.3 Overview of articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 RMSE for uncompensated versus compensated . . . . . . . . . . . . . 53

xiii





Nomenclature

List of abbreviations

2.5D Two point five dimensional

2D Two dimensional

3D Three dimensional

ADCP Acoustic Doppler current profiler

AUV Autonomous underwater vehicle

CTD Conductive-temperature-depth

DOF Degree of freedom

DVL Doppler velocity log

EKF Extended Kalman filter

FOG Fiber optic gyro

GNSS Global navigation satellite system

ICP Itterative closest point

IMR Inspection, maintenance and repair

LBL Long baseline

Lidar Light detection and ranging

MEMS Micro-electro-mechanical system

NED North-East-Down

PF Particle filter

pIC probabilistic iterative correspondence

RBPF Rao-Blackwellized particle filter

RMSD Root mean square deviation

RMSE Root mean square error

ROV Remotely operated vehicle

xv



Nomenclature

SBL Short baseline

SLAM Simultanious localization and mapping

Sonar Sound navigation and ranging

TDOA Time difference of arrival

TOF Time of flight

USBL Ultra short baseline

UUV Unmanned underwater vehicle

List of symbols

ξ x-y-ψ transformation vector

u Surge, sway and yaw velocities [ms ,
m
s ,

rad
s ]

x 2D pose [m,m, rad]

∆θk Difference in bearing [rad]

∆rk Difference in range[m]

∆t Small time step
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Chapter 1

Introduction

1.1 Aquaculture in Norway

Aquaculture is one of the fastest-growing food-production industries in the
world [72]. In Norway, it has experienced large growth during the last forty

years, and in 2017 it produced approximately 1.3 million tons of fish every year,
with a value of about 65 billion NOK. Along with the fishery industry (20 Billion
NOK), aquaculture is the second-largest export industry in Norway [72]. As of De-
cember 2018, production (mainly of salmon and trout) has been underway in 1015
aquaculture fish farms [20], where one fish farm may consist of multiple fish cages,
as seen in Figure 1.1.

The standard size of a fish cage is about 30 m in diameter and 40 m deep. To
increase production volumes requires installations of a more substantial scale and

Figure 1.1: A Norwegian fish farm. Courtesy [10]
.
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1. Introduction

Figure 1.2: ROV in aquaculture inspection operation. Courtesy of [82].

adoption of more exposed sites, due to the lack of available sheltered locations [10].
Increased production calls for better autonomous underwater operations solutions
in inspection, maintenance, and repair (IMR) tasks [83]. Inspection and mainte-
nance activities are vital for cost-efficient and safe aquaculture operations, but
sea-based fish farming is a dangerous occupation. The combination of the harsh
environmental conditions, high manual workload for the operators, utilization of
heavy equipment, as well as high work efficiency pressure contribute to the occu-
pational risks [39].

Furthermore, there are risks to the environment, such as the escape of fish, which
is influenced by interactions between the equipment, the hard physical working en-
vironment, and the operator’s workload, work pressure, training, skills, experience,
co-operation, communication, and safety management. Fish escape incidents harm
the environment because they are a threat to biodiversity and wild fish [90].

Moreover, they cause economic losses and attract considerable negative attention
from the public, with corresponding losses to the fish farm reputation. Fish cages
are prone to damage, such as holes in the fishnets made by predators and boat
collisions, and abrasion and general handling [44]. On average, 372,000 salmon and
trout have escaped annually since 2001 [21]. Equipment wear is why sea-based aqua-
culture fish farms require periodic maintenance [71] performed by human divers or
remotely-operated vehicles (ROVs) [93]. Figure 1.2 shows an ROV that is ready to
be deployed for fish cage inspection.

1.2 Unmanned Underwater Vehicles in Aquaculture

Diving is hazardous and costly, and the improved utilization of unmanned under-
water vehicles (UUVs) for visual inspection in aquaculture can reduce the risk of
personal injury and fatality. A UUV is defined as follows:
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1.3. Framework of Unmanned Underwater Vehicles

Definition: Unmanned underwater vehicle

An underwater vehicle that does not have a human on board and is
controlled either remotely or by an autonomous system.

Nowadays, ROVs perform some inspection operations; however, this can be dan-
gerous and costly due to the need for a supply vessel with a crane and multiple
human operators. ROVs have an umbilical due to the lack of high communication
bandwidth in underwater environments. Tethers are a hazard in the management
of the vehicle in confined areas and during high tidal currents, which encourages
the use of cable-free UUVs with a higher degree of autonomy. In addition to envi-
ronmental factors, some other arguments include the decreased need for the online
transfer of data, as the UUV can gather information autonomously and then trans-
fer it after inspection to the operators, and the possibility of having resident UUVs
inspecting aquaculture structures in the future [13, 60].

Resident UUVs may increase the sustainability of underwater activities, as well
as reduce costs and personal risk and enhance efficiency, as a reduced need for
equipment transportation could lead to a reduction in greenhouse gas emissions. To
enable this type of system, all significant parameters that could affect the operation
must be taken into account, so that the UUV can make the best decisions possible;
however, due to the challenges of operating in an underwater environment, the
parameters are not easily determined. Environmental problems in the inspection
of fish cages using UUVs include ocean currents and waves, which deform the
fish cage [52, 77], as seen in Figure 1.3 and induce slowly varying forces on the
vehicle. Challenges for underwater navigation sensors in aquaculture are high water
turbidity and high attenuation of electromagnetic waves, which limit the use of
camera, radar, and lidar systems due to limited range, although in ideal conditions,
some electromagnetic-based systems can be used [17, 78]. The high attenuation of
electromagnetic waves is why acoustic sensors are a better alternative, despite
having a lower resolution. Furthermore, challenges related to computer processing
in online operations include memory and computational power constraints. Even
though the processors radically increase in speed every second year [66], there is
still a need for efficient algorithms, not only to reduce the cost but also to make
autonomous operations possible.

1.3 Framework of Unmanned Underwater Vehicles

Figure 1.4 shows a UUV framework divided into three main components. The oper-
ators monitor or manually control the vehicle depending on the level of autonomy
[95, 94], the hardware components sense and interact with the environment, and
the software interprets sensor information and sends commands to the actuators.
“V2O” is an abbreviation for vehicle-to-operator communication through either an
umbilical or an acoustical modem. High data transfer operations require an umbil-
ical during online camera monitoring, as the acoustic modems have a limited data
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1. Introduction

Figure 1.3: Fish cage deformations with varying current. Courtesy [51]
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Figure 1.4: Overview of an autonomy framework for a UUV

transfer and a time delay, which reduces the controlling ability of the operator.
UUVs with a higher level of autonomy can reduce the required data transfer and
thereby avoid the use of a tether.

Figure 1.4 shows the scope of this thesis with a red dashed line. The thesis ad-
dresses the spatial mapping of an aquaculture environment and UUV localization.
Localization and mapping are fundamental problems to be solved for the develop-
ment of planning, guidance, and decision-making algorithms that can perform the
proper actions for an autonomous inspection of fish cages.

1.3.1 Software Modules

Figure 1.4 shows the software modules in an autonomous online system. “Online”
means that computational processing is performed during operation, and therefore
there are constraints on memory and processing requirements, which need to be
taken into account when the algorithms are designed. There are three submodules
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1.3. Framework of Unmanned Underwater Vehicles

in the software structure:

� perception,

� planning, and

� guidance and control.

From an inspection operation point of view, robot perception is the ability to sense
and understand the environment through sensors; this also includes the filtering or
smoothing of sensor signals.

Definition: Robot Perception

is a robot’s spatial-temporal and semantical representation of an environ-
ment, and its own location within the environment, as obtained through
sensors.

This thesis divides perception into two topics, as seen in the figure. Mapping refers
to the process of representing a map relative to a reference, such that the robot
obtains a spatial, temporal, and semantical understanding; however, herein, it will
be limited to the spatial representation. Localization is the process of estimating
the robot’s position and orientation relative to the spatial environment; this also
includes inertial navigation. Section 1.3.2 will present this topic in more detail, as
it is one of the main issues of this thesis. All preceding modules depend on the
perception module in some manner.

Planning refers to the vehicle’s ability to reach higher-order goals; this can, for
example, be to inspect a fish cage and cover a whole area.

Definition: Planning

is the process of bringing a UUV from a start to a goal location, using
optimization or heuristics based on the robot’s perception.

Here, planning includes both offline and online planning. Offline planning is prior-
mission computations using known environmental characteristics, which does not
constrain the algorithms to low computational complexity or limited memory. On-
line planning deals with planning during operations such as for collision avoidance
or unexpected events that call for the replanning of the mission. Planning may
include three main modules [76]: Firstly, mission planning governs the overall goal
of the task, for example, stipulating a global path to follow. One method uses cost
evaluation algorithms such as Dijkstra’s algorithm [19] or A* [35] to generate a
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1. Introduction

global path using the available information. Secondly, behavioral planning is the
decision-making module that monitors all processes, for example, through a finite
state machine, which manages time-to-collision or failures. Motion planning or path
planning, which is a well-studied domain, [15, 28, 53, 54, 91] generates paths that
withhold certain constraints such that the path is flyable for the vehicle. Flyable
means that the vehicle can follow the path. Motion constraints can be, for example,
based on the kinetic properties of the vehicle. Planning consists again of various
methods, which depend on the available perception representation. [84] is a refer-
ence containing motion planning algorithms for further interest.

The guidance and control modules interpret the received input into actuator com-
mands such that the robot follows the path or trajectory. Guidance controls the
generation of references [28], and the actuators receive commands from the output
of the controller computation. Both depend on control theory [14, 48].

Definition: Guidance

is the process of interpreting a path or trajectory into reference com-
mands such that the vehicle can follow the desired trajectory

Definition: Control

is the process of interpreting reference commands into actuator com-
mands such that the robot reaches a goal position in the desired manner.

1.3.2 Probabilistic Underwater Localization and Mapping

Robotic localization and mapping is a broad field of research that is of interest in
most applications where there is robotic motion, from terrestrial satellite naviga-
tion in space to a simple robotic manipulator moving in a constrained environment.
The underwater robotics field is highly interdisciplinary, and includes sensor sys-
tems [32], statistics and probability theory [91], control system theory [14, 48],
numerical optimization [70], algorithm design [18], marine craft [28], and more.

This thesis focuses on fully actuated underwater vehicles, meaning they have roll
and pitch stability. The neglect of roll and pitch allows the system to be modeled
with four degrees of freedoms (DOFs) by x-, y-, and z-directions, and by a yaw
angle. Figure 1.5 shows the reference frames used to describe the environment and
the motion of the vehicle. The vehicle motion is herein relative to a fixed north-east-
down (NED) frame near the site of the inspection. In the NED frame, the x-axis
points towards true north, the z-axis points down, and y-axis points eastward.
The origin of the earth center fixed frame (ECEF) is in the center of mass of the
earth, the z-axis points towards true north, the x-axis points toward zero degrees
longitude and latitude, and the y-axis completes the right-hand rule. The reason
for choosing a fixed NED frame close to the region of inspection is that the size of
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1.3. Framework of Unmanned Underwater Vehicles

one fishnet is on the order of meters, and therefore an assumption of a flat earth
is reasonable. For further background on the transformation between the reference
frames the reader is referred to [27, 28, 32].

x (North)

z (Down)

y (East)

u (surge)

v (sway)

w (heave)
ψ,r (yaw, angular rate)

p

ECEF

Z

X

Y
Body

NED

BodyBody

Figure 1.5: ECEF, NED and Body frame

This thesis addresses localization and mapping with a main emphasis on proba-
bilistic methods [91]. Probability comes from the Latin word probabilitatem, which
means ”something likely to be true.” Therefore, the probabilistic method describes
multiple likely solutions to a problem. In probability theory, probability distri-
butions represent the solutions, often approximated by the well-known Gaussian
normal distribution. Depending on the sensor setup and knowledge of the environ-
ment before the operation, there are three different approaches to localization and
mapping:

� Mapping with known position,

� localization with a known map, and

� simultaneous localization and mapping (SLAM).

Mapping with a known position means that the location of the vehicle is known,
and therefore exteroceptive sensors can be used to map the environment. In aqua-
culture, the position can be found through aided navigation, meaning with the
use of environmental sensors such as short base line (SBL) or ultra short baseline
(USBL) positioning systems [82], along with proprioceptive sensors.

Localization with a known map is particularly tricky in aquaculture inspection
without the continuous monitoring of the fish cage, which involves mounting land-
marks or tags along with the use of environmental sensors, meaning the environ-
ment is modified. Another possibility may be to model the dynamics of the fish
cage from the waves, currents, and solidity of the net, and predict the position
[52]; however, uncertainties will occur which may be too large for the successful
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localization of the UUV. A third possibility is to use known terrain information
[64, 69] below the fish cage; however, this approach requires a texture-rich seafloor
in order to determine a position.

The third type of perception is SLAM, for which there are numerous approaches
[26, 55, 59, 61, 80, 85, 91]. Nevertheless, to the author’s knowledge, none has ad-
dressed this problem in the context of fish cage inspection. As the name SLAM
suggests, the problem consists of both finding a map and localizing the vehicle
within that map. It originated in the 1990s [56] and has since been heavily re-
searched in all robotic domains [12]. SLAM is one of the fundamental problems
to be solved in order to attain a truly autonomous system. There are three main
techniques for SLAM implementation: based on the extended Kalman filter (EKF)
[61], the graph [59], and the particle filter (PF) [85]. The main focus in this thesis
is the PF, and the main reason for choosing PF-based SLAM is its applicability
to occupancy grid maps, which can map unstructured environments such as a fish
cages, and the computational tractability for online application demonstrated by
[30]. Computational tractability is still a challenge with graph-based SLAM [31];
however, applications are emerging in vehicles with high processing speed [42, 59].

The localization and mapping approaches require the fusion of proprioceptive and
exteroceptive sensors. Localization using exteroceptive sensors requires that the
environment have sufficient texture or detectable landmarks. Also, temporal per-
ception is relevant in the occurrence of a violation of the static assumption. The
static assumption states that the actual position of an observed object in space
does not change relative position with a given time frame. This assumption is of
importance for SLAM because if violated, the vehicle’s observations of the same
object cannot provide the location unless the temporal perception of the object is
accounted for. Therefore, when using the fish cage as a texture for localization, it
is an essential assumption either that the fish cage deformations are negligible over
the inspection period, or the map accounts for the temporal changes.

1.3.3 Navigation Sensors

A sensor detects a physical phenomenon and represents it as signals that can be
interpreted by a computer. Examples of physical phenomenon in underwater en-
vironments are acoustic waves, pressure, optics, magnetics, and mechanical forces.
Figure 1.4 shows that navigation sensors are used in the perception of an environ-
ment and are fundamental for a UUV to be able to perform planning, guidance,
and control. The next section presents current navigation sensor technology, and
in particular, acoustic sensors.

Navigation Sensors Overview

There are many ways to classify the underwater navigation sensors [74] of a UUV.
The sensors are categorized into four groups:
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Table 1.1: Navigation sensors

Sensor Name Type Technology Active/
passive

Doppler velocity log Proprioceptive Acoustic Active
Inertial measuring unit Proprioceptive Optical/Mechanical Passive
Thrust feedback Proprioceptive Optical/Mechanical Passive
Compass/Gyro Compass Exteroceptive Electromagnetic/Optical Passive
Pressure sensor Exteroceptive Mechanical Passive
Sonar Exteroceptive Acoustic Active
Lidar Exteroceptive Optical Active
Camera Exteroceptive Optical Passive
LBL/SBL/USBL Environmental Acoustic Active
GNSS Environmental Electromagnetic Active
CTD Auxiliary Electromagnetic/Mechanical Passive
Turbidity meter Auxiliary Optical Passive

� proprioceptive,

� environmental,

� exteroceptive, and

� auxiliary.

In addition to these four groups, each sensor can be classified as active or passive.
An active sensor generates, for example, an acoustic or electromagnetic wave and
measures the echo or backscatter, e.g., sound navigation and ranging (sonar). A
passive sensor does not emit any pulse, but measures the environment’s natural
phenomena, e.g., camera, which measures the natural scattering of light. Table 1.1
list the relevant sensors and their classification. There is also a technology column
that notes the nature of the sensor.

A proprioceptive sensor measures the internal motion of the vehicle, meaning its
acceleration or velocity, and is used for inertial navigation.

Definition: Proprioceptive sensor

senses the robot’s internal motion and orientation. Position estimates
have unbounded error.

Proprioceptive sensors obtain a position by integration; however, uncertainties ac-
cumulate due to the integration of noise, and the uncertainty of the position in-
creases over time. Another term for this is unbounded error. Examples of proprio-
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ceptive sensors are the Doppler velocity log (DVL) (e.g. [86]), an inertial measuring
unit (IMU), and thrust feedback. A DVL measures velocity through the Doppler
shift between multiple acoustic pulses emitted at a fixed frequency and the pulses’
echo. The echo comes from the backscatter from either the seafloor or from the wa-
ter column [37]. Note that a fishnet also creates a backscatter if the pulse emitted
has a sufficiently high frequency [82].

An IMU is an integrated sensor consisting of multiple accelerometers and gyro-
scopes. The accelerometer measures the forces along an axis, and a gyro measures
the angular velocities around an axis. There are multiple accelerometer and gyro
technologies with different noise levels and financial costs. One type, used in the
experiments for this thesis, is the fiber optic gyro (FOG). FOG uses the property
that light behaves as a wave by splitting a light beam into two and sending each
through opposing circular coils around an axis. Because light behaves as a wave,
a frequency difference will occur between the spliced beams when there is rotation
[32]. This frequency difference is proportional to the angular rotation of the device.
Another proprioceptive sensor is the thrust force. A system can, for example, mea-
sure the number of rotations of the shaft of the thruster and from it computes
the forces generated based on hydrodynamical properties. Then, a navigation al-
gorithm uses the forces to compute the position using double integration [28].

Environmental sensors measure a global spatial position relative to the NED frame.

Definition: Environmental sensor

measure position with bounded error relative to a fixed and external
reference.

These sensors bound the error of the position estimate; however, they require ex-
ternal mounting and calibration. A global navigation satellite system (GNSS) [32]
is such a system. It is used to obtain a position for a surfaced UUV, or a reference
position at the sea surface, as for acoustic transponders. A GNSS uses the TOF
(TOF) from at least four satellites in order to triangulate a position. There are
also different grades of accuracy. The one used in this work is Europe’s regional
satellite-based augmentation system, which yields sub-meter-level accuracy.

The third group of sensors is the exteroceptive sensors. They take measurements
of external references that are relative to the body frame of the vehicle.

Definition: Exteroceptive sensor

sense the external environment from the body frame.
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1.3. Framework of Unmanned Underwater Vehicles

The most widely used exteroceptive sensor in robotics is the camera. In aquacul-
ture, visual inspection is used to obtain information on the state of equipment and
the health of the fish. Cameras are an essential source of navigational information
for land vehicles; in contrast, the underwater environment has turbid water that
creates light backscatter, which limits the applicability of cameras in navigation.
Other geophysical properties include bathymetry, pressure, earth’s magnetism, and
hydroacoustics. Pressure sensors are a vital sensor that bound the horizontal po-
sition error by depth. Even though the surface varies due to tidal currents, the
horizontal accuracy is at a cm resolution. It is important to note that pressure
varies with the salinity and temperature profile of the water column. Magnetic
compasses and magnetometers measure the magnetic North Pole, but they are
prone to biases due to magnetic distortions. An alternative is gyro-compassing,
which uses the rotation of the earth to determine the direction of true north; how-
ever, this approach requires a high-grade IMU. A review of gyro-compassing and
other methods for determining heading can be found in [29].

There are some auxiliary sensors for the support of the navigational sensors.

Definition: Auxiliary sensors

measure parameters to support the navigation sensors.

An example of an auxiliary sensor is the conductivity–temperature–depth (CTD)
sensor that measures the salinity, temperature, and depth of saltwater. This sensor
is particularly useful for the computation of the speed of sound, which depends on
multiple factors [41] and is elaborated in the next section.

Acoustic Underwater Sensors

(a) Multibeam echo sounder (b) Doppler velocity log (c) Imaging sonar

Figure 1.6: Acoustic sensors from a side view, where the blue colored areas indicate
the trace of the acoustic pulse for each sensor.
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The ingenuity of the animal kingdom has inspired acoustic localization technology.
For example, dolphins use biological sonar to localize in underwater environments.
They can perform complex tasks as shown in [68], where they do a navigation task
blindfolded using only ultra-high acoustical frequencies in a challenging acousti-
cal environment. In robotic underwater localization, acoustic-based solutions have
proven to be a robust choice [74] in comparison with electromagnetic-based sen-
sors, e.g., cameras, which suffer in high turbidity due to their dependency on light
conditions. Acoustics are mechanically-generated pressure waves that have quite
low attenuation in seawater compared with electromagnetic signals [32]. Acous-
tic systems rely on piezoelectric transducers that generate and measures acoustic
waves by using a particular crystal material that changes its electrical properties
according to acoustic-mechanical stress [41]. The piezoelectric elements are recip-
rocal and can both emit and receive acoustic pulses. Distances are measured based
on the speed of sound and TOF, which assumes that the acoustic pulse travels
the shortest path. Common errors in acoustic navigation are due to the bending
effects from differences in the speed of sound, timing errors due to clock error,
and external acoustical noise. A significant error factor can be the multipath of a
pulse; this means that a pulse is bounced off an object, seafloor, or sea surface,
thereby violating the assumption of the pulse traveling the shortest path. This er-
ror is, in particular, challenging during a high-sea state, because echoes from the
surface may be largely due to the bouncing angle of the waves. The properties of
the medium in which the sound wave propagates determine the speed of the pulse,
c0. An empirical formula presented in [41] formulates the relation as follows:

c0 =1448.6 + 4.6418T − 0.0523T 2 + 1.25(S − 35) + 0.017D, (1.1)

where c0, T , S, and D correspond to the speed of sound in the seawater [m/s], the
temperature [◦C], salinity [�], and depth [m], respectively.

Other essential acoustic properties are the maximum range and resolution of the
pulse. The former is inversely proportional to the frequency of the pulse, and the
latter is proportional to the frequency. These relations mean that there is a trade-
off between maximum range and resolution. Table 1.2 shows the frequency, wave-
length, and distance relation for acoustic waves in saltwater. Note that the hearing
frequency range of salmon which is the most farmed fish in Norway, were reported
in [36] to be 380 Hz. Therefore, the acoustic navigation system should have fre-
quencies far above 380 Hz, to avoid stressing the fish.

Sonar is an active exteroceptive sensor that emits a short acoustic pulse and mea-
sures the two-way TOF and the returning echo intensities. The output of one echo
is multiple discrete distances with an intensity. Figure 1.7 shows the concept of
a sonar pulse at the bottom and the echo intensity signal versus range. The echo
intensity peak marks the distance to an object, and the weaker intensities are the
result of backscatter from the water column. In reality, the echo intensity is cor-
rupted with ambient noise and is not as smooth as illustrated in the figure.
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Table 1.2: Sonar two-way working ranges. Courtesy of [16].

Frequency Wave length Distance
100 Hz 15 m 1000 km or more
1 kHz 1.5 m 100 km or more
10 kHz 15 cm 10 km
25 kHz 6 cm 3 km
50 kHz 3 cm 1 km
100 khz 1.5 cm 600 m
500 khz 3 mm 150 m
1 MHz 1.5 mm 50 m

Net

Imaging 

Sonar

Echo Intensity [dB]

Range [m]

z

x

Pulse

Echo

Figure 1.7: Echo intensity measurement

The signal resolution and range depend on the pulse’s frequency, as seen in Table
1.2. The former means that in order to measure the distance to a fishnet, the pulse
needs a sufficiently high frequency. The width of a fishnet thread is approximately
3 mm, which means that a frequency higher than 500 kHz may be sufficient [82].
The pulse length of the signal is also important for measuring the frequency differ-
ence in the Doppler effect, and an increase in pulse length increases the accuracy
of the frequency estimate, but decrease the accuracy in ranging.

An acoustic transducer array consists of multiple piezoelectric elements on a small
surface and can create directed acoustic beams with a specified vertical and cross-
track angle. The angle of the beams determines if a sonar is an imaging or profiling
sonar. The former has a high vertical angle, which can be, for example, approxi-
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mately 60°. The latter has a lower angle beam, for example, 3°. The angle of the
vertical and cross-track, with new lens-based technology, can be reduced to 0.5° [6].
There is also mechanically scanning and static sonars, which can do either imaging
or profiling. Scanning sonars have a servo that rotates the sensor to generate a 360°
image.

Other groups of sonar are single and multibeam. As the name suggests, a multi-
beam has a transducer array that generates multiple beams in specific directions,
as shown in Figure 1.1. In contrast, a single beam only has one beam, as illustrated
in Figure 1.6c. In a multibeam sonar, a beam needs to have a distinct frequency in
order to determine its source. For both multibeam and single beam sonars, there
is an imaging and profiling type. There is also a difference between 2D and 3D
profiling multibeam sonars [43, 1]. Some other types not mentioned are side-scan
sonar and synthetic aperture sonar. See more on sonar in [16].

LBL and SBL are acoustic environmental sensors that compute the distance based
on a two-way TOF, or delayed time of arrival, both based on the speed of sound.
A possible transponder configuration is having a short baseline mounted on the
vehicle as in [63]. Transponders mounted on the vehicle are an advantage, because
only one external transponder is required instead of multiple. Another potential
sensor technology is the GNSS intelligent buoy, which is a buoy that integrates
transponder technology with GNSS to ECEF reference each transponder [89]. For
more information on other configurations, see [16].

1.4 Research Objectives

The main research objective was to enhance the spatial and temporal perception
of UUVs in aquaculture operation near or in fish cages. This objective may be of
help in enabling autonomous vehicles in the future. Figure 1.8 shows an overview
of the fish cage environment and acoustic sensor systems relevant to this thesis,
and illustrates the research objects.

The first objective is to develop SLAM algorithms for use inside an aquaculture
fish cage using acoustic exteroceptive sensors, without any environmental sensors.
This objective resulted in articles J1, J2, and C3. Figure 1.8 shows the case where
the UUV can localize and map using only sonar, DVL, and other proprioceptive
sensors.

Research Objective O1

Research and develop SLAM algorithms for UUVs operating near or in
a fish cage based on acoustic exteroceptive sensors.
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The second objective aims to develop a mapping method using acoustical tags,
which resulted in articles J3 and C4. Figure 1.8 shows a case where acoustic tags
and hydrophones localize the anchor line of a fish cage. The acoustic tags transmit
depth and ID information to the hydrophones mounted on the fish cage.

Research Objective O2

Research and develop a method for online spatial representation using
acoustic tags.

The third objective is to develop algorithms that reduce localization error due to
wave motion in environmental sensors, i.e., LBL. The objective is relevant for envi-
ronmental sensors mounted in the wave zone. This resulted in articles C1 and C2.
Figure 1.8 shows the sensor setup for such a system where transducers are mounted
on the fish cage and the UUV.

Research Objective O3

Research and develop a method that reduces localization error due to
wave disturbances at surface mounted transponder networks.

�
n
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Sonar

Acous c tag

Transducer Tether

Underwater Vehicle
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Figure 1.8: UUV localization and mapping in a fish cage.
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Figure 1.9: Linking each article to the scope of the thesis

1.5 Overview of Articles and Contributions

Table 1.3 presents an overview of the main articles of the thesis. J denotes the
Journal articles, and C references the conference articles. Figure 1.9 shows the ob-
jectives and the connection between the articles. The first objective is related to
localization, the second to mapping, and the third to both mapping and localiza-
tion. The arrows of each paper indicate the time of origin of each article. Note that
the order necessarily connects to when the article was published. The contribution
of each article are as follows:

Contributions - J1

� This article is an extension of Article C3. It suggests a new sensor model that
makes the SLAM method more robust when sonar measurements are used. A
loss function increases the robustness of the algorithm, which is a method that
deals with outliers. Outliers are misinformation in the measurements due to
errors such as multipathing in acoustic localization. The suggested method is
compared with two different range and bearing sensors, namely a multibeam
profiling sonar and a mechanical scanning imaging sonar in a tank. Also,
the work compares the method with other SLAM algorithms using the same
field experiment. This article makes a contribution because it enhances the
robustness of UUV perception, thereby introducing more robust information
for planning, guidance, and control.

Contributions - J2

� The contribution of this work is a novel map representation that models
enclosed vertical structures. The mapping method is memory and run-time
efficient, making it an ideal choice in online operations. This approach is also
applicable to both static and dynamic environments for adapting temporal
change to the environment. The proposed method is also scalable in terms
of map resolution, which can benefit fish cage mapping systems that require
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minimal system memory or computational effort. This article demonstrates
the map through a simulated UUV operation for a known location mapping
scenario. It also demonstrates the map with the SLAM algorithm proposed
in Article J1 and validates it in a tank experiment, where the UUV has no
prior knowledge of the environment. The map representation is an essential
contribution because it enables online autonomous systems in an aquaculture
environment with lower memory consumption and run-time complexity. The
method may also be the basis of development for new and more efficient
planning, guidance, and control algorithms.

Contributions - J3

� The main contribution of this article is the demonstration of a suggested
mapping method that uses off-the-shelf acoustic tags mounted on an anchor
line, and hydrophones mounted at the surface. The article presents a second
positioning method and compares it to the one presented in Article ??, in
addition to an accuracy analysis. Article J3 makes an essential contribution
because it shows the mapping possibilities when using tags and hydrophone
network in field experiments.

Contributions - C1

� The main contribution of this paper is a method that minimizes errors due to
wave motion in surface mounted transponders. The suggested method sepa-
rates the UUV dynamics and wave dynamics when using TOF measurements.
This work makes a significant contribution because it enables the mounting
of transponders near the ocean surface on aquaculture structures and enables
higher positioning accuracy in high sea states.

Contributions - C2

� The main contributions of this paper are an experimental verification of the
filter presented in Article C1, and a method for computing the parameters
of the filter. The work contributes to enabling the mounting of transponders
near the ocean surface on aquaculture structures in harsh conditions without
fully compromising positioning accuracy.

Contributions - C3

� The main contribution of this article is the implementation of an underwater
SLAM method using occupancy grid maps with mechanical scanning imag-
ing sonar measurements. The SLAM method uses dead reckoning through
DVL, FOG, and pressure measurements. Simulations and experiments in a
tank validate the approach, where the UUV has no prior knowledge of the
environment. The work contributes to enhancing the UUV’s perception in en-
closed environments by providing a location and map to be used in planning,
guidance, and control algorithms.
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Contributions - C4

� The main contribution of this paper is a method for estimating the map of a
flexible structure below the surface of the sea. The work is a conceptual study
that uses simulated measurements. The map of the structure is found through
the use of acoustical transmitters, herein referred to as tags. The tags emit
their respective identification number and depth. Multiple surface mounted
hydrophones receive the emitted signal, and from that, they triangulate the
position through depth information and time-delay-of-arrival measurements.
Using the tag identification number, a probabilistic interpolation between
the positing of each tag gives the map of the structure. This map can serve
as a tool for robotic vehicles that seek to plan and execute operations au-
tonomously within and around the structure, or as a visualization tool for
human operators.

Table 1.3: Overview of articles

Journal Articles

J1 Sandøy, S. S., Matsuda T., Sangekar M., Schjølberg, I., Maki T., Particle Filter-based
Simultaneous Localization and Mapping for Underwater Vehicles with Sonar,
Robotic and Autonomous Systems(For review)

J2 Sandøy, S. S., Hegde, J., Schjølberg, I., Utne, I. B., Polar Map: A Digital Repres-
entation of Closed Structures for Underwater Robotic Inspection, Aquacultural
Engineering, 2020, doi:10.1016/j.aquaeng.2019.102039

J3 Sandøy, S. S., Haugaløkken, B. O. A., Schjølberg, I., Utne, I. B., Localization of
a Flexible Underwater Anchor Line using Acoustic Transmitter Tags and Receivers.
Applied Acoustics.(For review)

Conference Articles

C1 Sandøy, S. S., Schjølberg, I., Underwater Positioning Using Near Surface Long
Baseline Transponder’s Induced by Wave Motion, doi:10.1115/OMAE2017-61742.

C2 Sandøy, S. S., Schjølberg I., Experimental Verification of Underwater Positioning
System in Aquaculture, OCEANS 2017 - Aberdeen, Aberdeen, 2017, pp. 1-7.
doi: 10.1109/OCEANSE.2017.8084947

C3 Sandøy, S.S., Matsuda, T., Maki, T., Schjølberg, I. (2018)
Rao-Blackwellized Particle Filter with Grid-Mapping for AUV SLAM Using Forward-
Looking Sonar.Proceedings of MTS/IEEE Oceans’18, Techno-Ocean 2018 - OTO’18.

C4 Arnesen, B. O., Sandøy, S. S., Schjølberg, I. ,Alfredsen, J. A., Utne, I. B., Prob-
abilistic Localization and Mapping of Flexible Underwater Structures Using Octomap,
2018 European Control Conference (ECC), Limassol, 2018, pp. 268-275.
doi: 10.23919/ECC.2018.8550498
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1.6 Thesis Outline

The thesis is a written summary of the work performed. It is divided into three
parts: the main report, a collection of articles, and a list of theses previously pub-
lished in the Department of Marine Technology at the Norwegian University of
Science and Technology. Firstly, Part I contains the main report and is organized
as follows.

Chapter 1 This chapter presents an introduction to UUVs and localization and
mapping in aquaculture, the research objectives, and an overview of articles and
contributions related to the work of this thesis.

Chapter 2 This chapter elaborates on the preliminary methods in order to under-
stand the paper and research methods for validating and verifying the algorithms.
It divides the preliminary methods into two parts, namely the underwater posi-
tioning problem and the SLAM problem.

Chapter 3 This chapter presents the research methods herein. The methods used
for validation are similar to Chapter 2 and are divided by the use of exteroceptive
and environmental acoustic sensors.

Chapter 4 This chapter presents a summary of the articles from this work. It
divides the work into four sections based on the research objectives of each article.
Note that the first objective is divided into two sections because Articles J1 and
C3 contain an overall underwater SLAM approach using an occupancy grid map.
Article J2 presents a new mapping method along with the suggested underwater
SLAM approach.

Chapter 5 This chapter presents conclusions from this work and a summary of
recommendations for further work.

Secondly, Part II contains the article collection, and thirdly, Part III contains theses
previously published in the Department of Marine Technology at the Norwegian
University of Science and Technology.
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Chapter 2

Relevant Methods in Localization
and Mapping

This chapter presents the algorithms utilized in this work. There are two main
sections; localization with acoustic environmental sensors and SLAM, which

uses exteroceptive acoustic sensors.

2.1 Underwater Localization with Environmental Acoustics

This section presents two known algorithms for acoustic environmental sensors,
namely circular and hyperbolic localization, in addition to the concept of the delu-
sion of precision(DOP). The last subsection reviews the EKF and the PF, which
are two well known probabilistic nonlinear estimation methods.

2.1.1 Circular and Hyperbolic Localization

LBL and SBL acoustic positioning systems use different methods to obtain a source
position. Even though these strategies are common knowledge, they are reviewed
due to their importance in Articles C1, C2, C4, and J3. First, according to the con-
cept of circular acoustic positioning, an acoustic transducer located at the UUV
transmits a signal that is received by a transponder. The transponder then sends
a new signal back to the transducer, which computes the TOF and the distance
between the devices. A second approach uses hyperbolic positioning, where a trans-
mitter sends an acoustic signal, and multiple hydrophones at known locations re-
ceive the signal. Based on the signal’s arrival time, a computer computes the time
difference of arrival (TDOA) between pairs of receivers to determine the position
of the transmitter. TOF requires at least three transponders and TDOA at least
four hydrophones with positions that are linearly independent in vector space. Lin-
early independent means that any plane in the space can contain more than two
transducers.

Mathematically, the following equation describes the position and TOF relation:
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(a) 2D circular localization using TOF mea-
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(b) 2D hyperbolic localization using TDOA
measurements.

Figure 2.1: Geometrical solution of circular and hyperbolic localization.

tTOF,i

2
c0 = ||x− pi||, i = 1 . . .m, (2.1)

where tTOF,i is the time of flight, x is the vehicle position, pi is the position of
transponder i and m is the number of transponders. Figure 2.1a shows a 2D geo-
metrical representation with three transponders. Furthermore, the TDOA can be
written as:

dtTDOA,ic0 = (||x− pi|| − ||x− pi+1||), i = 1 . . .m− 1, (2.2)

where dtTDOA,i is the TDOA for the two hydrophones i and i+1. Figure 2.1b shows
the hyperbolas with three hydrophones [34]. The target position is the intersection
of the lines. Note that TDOA gives one less measurement than TOF with the same
number of transponders; however, TDOA only requires one-way communication if
the position is only topside. “Topside” means above the waterline, where personnel
typically do the monitoring.

The reason for the name circular and hyperbolic positioning is that the solution x
is determined by the crossing of circles and hyperbolas. This is illustrated by Fig-
ure 2.1, where Figure 2.1a shows the circular localization, and Figure 2.1b shows
the hyperbolic localization. Without noise, one can find algebraic solutions for the
localization problem; however, the result varies when noise is present. Figures 2.2a
and 2.2b show a ±10−3 s error in timing, and the solutions vary by several meters.
Large position errors due to small timing errors or other effects are the reason why
filtering is an important step in the localization problem.
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(a) DOP position 1
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Figure 2.2: Geometrical examples of delusion of precision.

2.1.2 Delusion of Precision

The DOP is a measure of the magnitude of an estimate’s position accuracy due to
the geometrical properties of the triangulation problem [47]. The magnitude of the
position certainty relies on the accuracy of the clock, the locators’ relative position,
and disturbances from environmental factors such as multipathing, ray bending,
and errors in the estimate of the speed of sound. The DOP concept is useful because
it is possible to investigate the magnitude of all error terms before implementing
an estimator. Figure 2.2 shows a geometric representation of the DOP. There is a
timing error of ±1e−3 s, and there are two locators. Case 1, shown in Figure 2.2a,
has a lower DOP than Case 2, shown in Figure 2.2b.

2.1.3 Probabilistic Nonlinear Estimators

The most widely used probabilistic filters for nonlinear problems are the EKF [46],
and the PF [22]. Using these filters gives the problems a probabilistic represen-
tation with parameters that can be determined by the expected amount of noise
in the measurement. The EKF assumes uncorrelated additive noise for each mea-
surement, while the PF does not use this assumption. However, the PF is, in most
cases, more computationally expensive than the EKF. This work considers only
the EKF and the PF but notes that there are also other variants. For example,
the unscented Kalman filter [45], extended information filter [91], point mass filter
[34], and nonlinear optimization [34].
The nonlinear filtering problem can be defined by the continuous state equations
as follows:

ẋ = f(x, ω) ∈ Rn, (2.3)

y = h(x, ω) ∈ Rm, (2.4)
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where x is the state vector, f and h are nonlinear vector functions, and ω is a
vector of independent normally distributed Gaussian random variables. The process
model, x, is typically a kinematics model. The sensor model, y, use proprioceptive,
exteroceptive, or environmental sensors.

Extended Kalman Filter

The EKF is a variant of the Kalman filter [46]. The Kalman filter assumes that
the system is linear, and the noise is additive and Gaussian, which means that the
nonlinear system in Equations (2.3) and (2.4) needs to be written in the following
form:

ẋ = Ax + chol(Q)ω ∈ Rn, (2.5)

y = Cx + chol(R)ω ∈ Rm, (2.6)

where

A =
∂f

∂x
, C =

∂h

∂x
, (2.7)

Q =
∂f

∂ω

T ∂f

∂ω
, R =

∂h

∂ω

T ∂h

∂ω
. (2.8)

Running the EKF on a computer requires discretization of (2.5) and (2.6). The
appendix in Brown and Hwang [11], shows a method for the discretization of the
equations. The following equations review the discrete EKF equations:

Kk = P̄kC
T
k (CkP̄C

T
k +Rk)−1

x̂k = x̄k +Kk(yk − h(x̄k)))

P̂k = (In×n −KkCk)P̄k

x̄k+1 = x̂k + f(x̂k)∆t

P̄k+1 = AkP̂kA
T
k +Qk,

where Kk is the Kalman gain, Qk ∈ Rn×n and R ∈ Rm×m are the process and
sensor noise covariance matrices, and x̄ and x̂ denote the predicted and estimated
states, respectively. Furthermore, Pk is the covariance matrix, and ∆t is the time
step. Note that (̄·) marks the posterior estimates. Also, note that the first iteration,
k = 0, uses the initial values x̄0 and P̄0.

Particle Filter

This section discusses the sampling importance resampling PF [33]. The PF is
more computationally expensive than the EKF; however, the PF does not neces-
sarily need to assume Gaussian density functions and does not require linearization.
The PF can also represent multimodal probability density functions, which means
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that the probability density function does not need to have only one peak. The PF
contains three steps:

1. Sampling

2. Importance weighting

3. Resampling

Sampling consist of choosing the hypotheses of the process given in the next
time step from (2.3) corresponding to the statistical properties of the process or
p(xk|xk−1). The particle set and its weights are defined as follows:

Xk = {x(1)
k , . . . ,x

(N)
k }, (2.9)

where x
(i)
k denotes the states representing the hypothesis. Subscript k and super-

script i are the time step and particle number, respectively, and N is the number
of particles. The importance weighting step assigns a weight wik to each particle.
The set of weights are expressed as follows:

Wk = {w(1)
k , . . . , w

(N)
k }, (2.10)

The weight of each particle is computed as follows:

w
(i)
k =

p(x
(i)
k |ȳk,x

(i)
k−1)

π(x
(i)
k )

, (2.11)

where p(x
(i)
k |ȳk,x

(i)
k−1) is called the target distribution, and π(x

(i)
k ) the proposal

distribution. The latter must fit the problem at hand. Figure 2.3 shows an example
of a proposal distribution and a target distribution. The particles shown as green
circles are chosen based on the proposal distribution

The resampling step consists of choosing the particles for the next iteration with
the probability proportional to the weight of the particle. There are multiple ways
to resample; one is multinomial resampling [33], where a multinomial distribution
is created based on the weights of the particles. The resampling consists of drawing
the particle set of the next step from the proposal distribution. The particle set
will contain duplicates of the particles that have the highest weights. Note that
the initial particle set X0 depends on the application. It can, for example, be a
Gaussian distribution, a uniform grid over a square, or all particles in the same
position.
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Figure 2.3: Target and proposal distribution in a PF
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Figure 2.4: Reference systems and notation of the vehicle from the top view.

2.2 Localization and Mapping with Exteroceptive
Acoustics

This section presents methods in localization and mapping. The topics are the
UUV motion model, sensor model, map representation, scan matching, outlier ro-
bustness, and SLAM using the Rao-Blackwellized PF (RBPF). Note that many
other methods are also relevant although they are not mentioned here.

2.2.1 Motion Model Using Doppler Velocity Log and Gyro

The motion model uses proprioceptive sensors to perform dead reckoning to es-
timate position. These sensors measure the internal motion of the vehicle. The
equation below presents the differential equations of motion:

ẋ = R(ψ)xyψub, (2.12)

where x =
[
x y ψ

]T ∈ R3 is the position of the body frame, (xb, yb), relative to

the (x, y) map-frame, ub =
[
ubDVL vbDVL rbG

]T ∈ R3 is the velocity of the vehicle
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given in the body frame, as indicated by b. The rotation matrix, Rxyψ(ψ) ∈ R3×3,
corresponds to the rotation between a vector in the body frame and one in the
reference frame. Figure 2.4 shows the notation of the 2D kinematics for the vehicle.
The discrete kinematic equation follows, assuming low velocities and sufficiently
small time steps:

xk+1 = xk +Rxyψ(ψk)ubk∆t+ wu∆t, (2.13)

where wu ∼ N (
[
0 0 0

]T
, Q) is a Gaussian distribution with mean zero and

covariance Q = diag(σ2
DVL, σ

2
DVL, σ

2
G)/∆t ∈ R3×3, and ∆t is a small time step. The

subscripts DVL and G indicate DVL and gyro measurements, respectively. Note
that the equation neglects depth, pitch, and roll motion, because the former was
assumed constant, and the latter two were approximately zero. Equation (2.13)
contains a probability distribution for the probability of a given position, xk+1,
given the last position, xk. It is written as follows:

p(xk+1|ubk,xk) =
1√

2π det(Q)
exp(−1

2
(xk+1 − µk+1)TQ−1(xk+1 − µk+1)),

(2.14)

where µk+1 ∈ R3 is equal to (2.13) with wu =
[
0 0 0

]T
.

2.2.2 Sensor Model Using an Imaging Sonar

The sensor model for a sonar measurement is the representation of a range and bear-
ing measurement to a nearby object. Figure 2.4 illustrates a sonar measurement.
The combination of the vehicle position, and the range and bearing information
results in an endpoint. The output of the sonar is a series of echoes, as seen in
Figure 2.5. The series needs to be interpreted for each echo intensity, as seen at
the top of Figure 2.5, to determine the range to the closest object. The simplest
method is the threshold model, which sets the range of a measurement to be the
first intensity point higher than a given threshold.
The range and bearing measurement, z at time step k is defined as:

zk =
[
r θ

]T
+
[
ωr ωθ

]T
, (2.15)

where r is the range from the sonar, and θ is the angle of the sonar relative to
the vehicle’s yaw angle, as seen in Figure 2.4. Furthermore, ωr = N (0, σ2

r) and
ωθ = N (0, σ2

θ) are both Gaussian random variables with mean zero and standard
deviation σr and σθ, respectively. To obtain the endpoint position relative to the
reference frame, the following expression is used:

e(zk,xk) = Rxy(ψ)

([
r cos θ
r sin θ

]
+

[
xbsonar

ybsonar

])
+

[
x
y

]
, (2.16)

where xbsonar and ybsonar are the x- and y-positions of the sonar sensor relative to the
origin of the body frame, and the rotation matrix is Rxy(ψ) ∈ R2×2. The equation
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Figure 2.5: Range extraction from echo intensity measurements

assumes that there are no pitch and roll angles when using the MPS. Figure 1.6c
shows that the acoustic beam of the MSIS is wider when viewed from the side
compared with the MPS. A larger beam width makes it less essential to model the
pitch motion.

2.2.3 Occupancy Grid Mapping

Occupancy grid mapping is an old concept [24, 67], that is still heavily utilized
in robotics mapping because of its versatility in 2D and 3D applications. In grid
maps, the environment is divided into finite cells, as seen in Figure 2.6, where
each cell has a probability of being occupied and is independent of all other cells.
One downside of the grid map is that the static assumption, meaning the map’s
actual state, does not change over time. The update scheme of the map consists
of inserting a point cloud into it based on the location of each measured endpoint.
The scheme updates the cells in the trace of measurement from the vehicle pose
to the endpoint. The cells along the trace are updated using a log-odds scheme
[91], which is a logarithmic notation for numerical stability. The relation between
Log-Odds and probabilities is defined as follows:

l(m
(j)
k ) = log

(
p(m

(j)
k )

1− p(m(j)
k )

)
(2.17)

where l(m
(j)
k ) is the so-called log-odd ratio for a given cell (j). The scheme updates

each cell with a probability phit if the endpoint of a ray hits a cell, and pmiss if the
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Figure 2.6: Grid mapping

Figure 2.7: Octree representation. Courtesy of [40].

ray only traverses a cell.

There are various representations for occupancy grid mapping, each with its disad-
vantages and advantages. For example, the classical grid mapping approach from
[24] and [67] is computationally efficient for map evaluation, having a runtime com-
plexity of O(1). However, it is not memory efficient for large maps, because the
number of cells increases quadratically in 2D and cubically in 3D. Tree-based grid-
map representations, such as quadtrees in 2D and octrees in 3D [26, 40], require
less memory. These representations have higher computational complexity in the
map evaluation step.

Another grid-based map is the 2.5D grid map or bathymetry map, where under-
water terrain-based navigation is an application [5]. Figure 2.8 shows the concept.
Each mesh point in the north-east plane is associated with a Gaussian distribution
uncertainty variable, where the depth corresponds to the mean and the uncertainty
corresponds to the variance of the depth. The update procedure is performed in-
dependently for each cell using a Kalman filter. The map evaluation complexity, in
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Figure 2.8: The 2.5D bathymetry map

this case, is O(1), and the memory consumption is quadratic. Unlike the previously
described models, the 2.5D grid map cannot model vertical environments, such as
cliffs on the ocean floor.

There are also other types of representations, like feature-based [57], continuous
[73] and Hilbert space-based [79]; however, this work does not evaluate these rep-
resentations.

2.2.4 Scan Matching

Scan matching is the alignment of a point cloud with a representation of previous
measurements used for improving odometry estimates and detecting loop closures.
It improves the odometry estimate through optimization of the current range and
bearing measurements given by a set z1:M = {z1, . . . , zM}, with corresponding
poses given by a trajectory x1:M = {x1, . . . ,xM}.

Figure 2.9 illustrates the optimization problem. On the left, the believed position
deviates from the true position. The scan matching problem aims to find the trans-
formation, ξ, to minimize the error between the reference and the map, as shown
on the right of Figure 2.9.

There are many different approaches to scan matching [8, 9, 38, 61], but the two
types that are important in this work are:

� Point cloud to point cloud matching
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Figure 2.9: Scan matching

� Grid map to point cloud matching

Firstly, point cloud-based scan matching can be solved using the iterative closest
point (ICP) method [7]. ICP uses an unaligned point cloud and a reference point
cloud as input. First, the ICP determines the correspondence of each point in the
point cloud. It then minimizes the distance between the correspondences, and the
minimization problem can be defined as follows:

Ficp(z1:M ,x1:M ,m0, ξ) = argmin
ξ

M∑

i=1

||e(zi, T (xi, ξ))−Π(m0, T (xi, ξ), zi)||2,

(2.18)

where

T (xi, ξ) =




cos(ξψ)xi − sin(ξψ)yi
sin(ξψ)xi + cos(ξψ)yi

ψi


+



ξx
ξy
ξψ




︸ ︷︷ ︸
ξ

∈ R3, (2.19)

and the transformation parameter ξ rotates and translates the trajectory x1:M

through the following transformation function: Π is the function that finds the
point correspondences. Note that m0 denotes the point cloud. Montesano et al.
[65] implemented a variant of the ICP algorithm, termed probabilistic iterative
correspondence (pIC). It incorporated the uncertainty of the points by using a
probabilistic length, called the Mahalanobis distance, instead of a metric measure,
as shown in 2.18. The pIC was developed to account for noisy range measurements
and errors in position due to odometry drift. Hernández et al. [38] extended the
approach to handle MSIS by removing the distortions at each scan point caused
by vehicle motion.

Secondly, point cloud to grid map matching uses a grid map as a reference and a
point cloud as input. Kohlbrecher [49] used the approach successfully with Lidar
measurements in a cluttered environment. There are multiple methods used within
grid map matching as well [49, 75]. The advantage of the point cloud to grid map
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Figure 2.10: Examples of loss functions

approaches is that no point correspondence needs to be determined, which is the
most computationally expensive operation in ICP. The methods in this thesis focus
on probabilistic matching inspired by Pedrosa [75], which uses likelihood fields that
are computed from the grid map. The following equation presents the optimization
problem:

Fgrid(z1:M ,x1:M ,m0, ξ) = argmin
ξ
−

M∏

k=1

p(zk|T (xk, ξ),m0), (2.20)

Equation (2.20) may then be optimized using, for example, either the Gauss–Newton
[70] or Levenberg–Marquardt [58, 62] methods. Note that m0 denotes a grid map.
There is also a grid map to grid map matching, which has the advantage of also
be able to match unoccupied space cells.

2.2.5 Outlier Robustness

The next important principle is the introduction of loss functions into the optimiza-
tion problem [92]. A loss function is a passive approach to dealing with outliers and
excessive noise in probabilistic optimization problems. The use of such functions
removes the need for outlier detection, making the optimization problem more ro-
bust. Examples of loss functions are the Cauchy (2.21), arctan (2.22), and the soft
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one loss (2.23) functions, all shown in Figure 2.10.

ρchauchy(s) =
c

2
ln(1 +

s

c
) (2.21)

ρarctan(s) = arctan(s) (2.22)

ρsoftone(s) = 2((
√

1 + s)− 1) (2.23)

2.2.6 SLAM Using RBPF with Occupancy Grid Maps

This section introduces SLAM using RBPF with grid maps [30]. The main idea
behind RBPF is to separate mapping and localization such that the localization
assumes a known map and the mapping assumes a known vehicle location. In
estimating the distribution of the vehicle pose, the distribution consists of particles,
where each particle represents a pose with a map constructed from the range and
bearing measurements along the trajectory. A particle set is defined as follows:

S = {[x(1)
k ,m

(1)
k , w

(1)
t ], . . . , [x

(N)
k ,m

(N)
k , w

(N)
k ]}, (2.24)

where k is a time step, (i) is a particle number, x
(i)
k is a pose, m

(i)
k is an occupancy

grid map, and w
(i)
k denotes a particle weight. Doucet [23] established the theoretical

foundation for splitting the process into two, as described in the full SLAM problem
equation below:

p(x1:n,m1:n|z1:n,u0:n−1,x0:n−1,m0:n−1) =

p(m1:n|xt1:n , z1:n,m0:n−1)︸ ︷︷ ︸
Map estimation

∗

p(x1:n|z1:n,x0:n−1,u0:n−1,m0:n−1)︸ ︷︷ ︸
Pose estimation

. (2.25)

The implemented filter is termed sampling importance resampling PF [33]. In this
method, each particle pose is sampled from a distribution given by (2.14). Each
particle is then given a weight based on the ratio of the likelihood of its sample
being correct, and the range and bearing measurements. This weight was computed
using the following equation:

w(i)
n =

Likelihood of being the correct trajectory given all information︷ ︸︸ ︷
p(x

(i)
1:n|z1:n,x

(i)
0:n−1,u0:n−1,m

(i)
0:n−1)

π(x
(i)
1:n)︸ ︷︷ ︸

The proposal distribution is the likelihood of choosing a sample

, (2.26)

where π(x
(i)
d ) is known as the proposal distribution.
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Once all weights were computed, a normalization of the weights is performed as
follows:

w̃(i)
n =

w
(i)
n∑N

i=1 w
(i)
n

. (2.27)

The effective number of particles quantifies how well the weights were distributed
in the particle set [91]. It indicates whether to perform resampling or to leave the
particle set unchanged. Avoiding unnecessary resampling is essential to the perfor-
mance of the algorithm, because resampling increases computational complexity.
The following equation computes the effective number of particles:

Neff =
1

∑N
i=1(w̃(i))2

, (2.28)

where N is the number of particles, and w̃(i) is the normalized weight for each
particle i. Note that Neff = N is equivalent to all the particles having equal weight,
and Neff = 1 corresponds to having the total weight in one particle.

Algorithm 1 summarizes the steps of a RBPF SLAM approach, and Figures 2.11,
2.12, and 2.13 illustrate the steps. In lines 1 to 4 of the algorithm, the odometry,
and range and bearing measurement are gathered until it was considered a full
scan using Equations (2.14) and (2.16). Each particle trajectory is then updated in
a “for-loop” from lines 5 to 8. An improved trajectory is estimated through scan
matching by optimizing Equation (2.20). Finally, an importance weight is given to
each particle, as seen in Figure 2.11. The weight of each particle is determined by
the likelihood of a scan being correct in relation to the map. Red circles mark the
endpoints that have a higher weight. In Figure 2.11, particle number 2 would have
the highest weight and particle number 1 would have the lowest. The new particle
set is resampled by duplicating the particles with the highest weight. The proba-
bility of a particle being picked for the new set is proportional to the importance
weight. For example, in Figure 2.12, particle number 2 is chosen twice, and particle
number 3 is only chosen once. Lastly, the map is updated for each particle based
on the previous map and scan, as shown in Figure 2.13. In this case, the particle’s
map changed from a bright to a dark color, illustrating an increase from low to
high probability of being occupied.

Par�cle 1 Par�cle 2 Par�cle 3

Figure 2.11: RBPF importance weighting with occupancy grid maps
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Algorithm 1 Scan matching aided RBPF with occupancy grid maps

1: repeat
2: Motion model sampling
3: Gather range and bearing measurement
4: until scan is considered full
5: for each particle trajectory do
6: Scan matching
7: Importance weighting
8: end for
9: Resampling

10: Map estimation

Par�cle 1

Par�cle 2

Par�cle 3

Par�cle 1

Par�cle 3

Par�cle 2

Figure 2.12: RBPF resampling

Par�cle 1

Figure 2.13: Map estimation

The RBPF is the most popular PF solution for online SLAM schemes, and was
first suggested in [57] using known landmark associations. In order to use unknown
data associations, a grid map representation was customized [30]. The computa-
tional complexity of the RBPF is O(NW ), where N is the number of particles,
and W is the size of the map. The complexity comes from the fact that each par-
ticle has a map, and the RBPF requires copies of the map at each resampling
step. However, by using adaptive resampling, many of the steps have a complex-
ity of O(N) instead, as adaptive resampling allows for skipping the resampling step.
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Another RBPF solution for bathymetry, PF SLAM [4, 5], which uses Gaussian
processes, was originally suggested in [96] in order to generate a prediction of the
seafloor terrain. The Gaussian processes approach was considerably slower than PF
SLAM with 2.5D grid maps [4]. 2.5D grid maps contain a 2D mesh of the seafloor,
where each cell contains the estimate and variance of the seafloor depth at a point.
Distributed particle SLAM is one possible representation for more memory-efficient
storage of the states [25].
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Chapter 3

Research Methods

This chapter reviews the research methods herein, where the methods’ purpose
is to measure the statistical accuracy of the algorithms. Similar to Chapter 2, it

is divided into two sections: localization and mapping with exteroceptive acoustic
sensors, and underwater localization with environmental acoustic sensors. There are
three steps in the validation of the design of the algorithms. The first is statistical
simulation of a sensor, vehicle, or an artificial environment. Multiple statistical
simulations with averaged results known as Monte Carlo simulations, which is a
reliable method determining the robustness of algorithm design. The second is
through tank experiments, which allow for testing in a controlled environment.
The third step is validation through field experiments.

3.1 Underwater Localization and Mapping with
Exteroceptive Acoustics

This section reviews the experimental methods for confirming the accuracy and
robustness of the localization and mapping algorithms when using exteroceptive
acoustic sensors. The studies that used exteroceptive sensors are C3, J1, and J2.
Article C3 used simulations of a vehicle using a dynamic model [28]. The dynamic
model, in addition to Gaussian white noise, was used for the DVL, gyro, depth, and
sonar measurements. The sonar measurements were the range from the vehicle to
the wall of a square tank in the bearing direction. The second validation type was
through experimental methods in a tank environment to check that the integration
of the system worked in a controlled environment. Articles C3, J1, and J2 used
an experimental dataset obtained at the University of Tokyo. Figure 3.1 shows
the AUV Tri-Dog 1 and the tank environment. The vehicle took, similar to the
simulations, DVL, gyro, depth, and sonar measurements. Also, because the ground
truth position was not available, a shell was placed on the tank floor and observed
through a camera on the AUV. In post-processing, an algorithm computed the
location of the shell for each pass.

The last stage of validation was the field experiments. The author was not able to
gather a field experiment in a fish cage. A dataset called the Abandoned Marina
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ShellPath

Tank

Tri-Dog 1

7.5 m

8 m

7.5 m

Figure 3.1: The hovering AUV Tri-Dog 1 developed at the University of Tokyo,
and the setup of the tank experiment.

Figure 3.2: On the left: The ROV used for recording the Abandoned Marina
Dataset. On the right: an overview of the abandoned marina, courtesy of [80] and
Google Maps.

Dataset is frequently used in underwater SLAM articles [81, 61]. The dataset is
similar to an aquaculture structure in the sense that it is closed. Figure 3.2 shows
the ROV to the left, and a flight photo of the abandoned marina. In addition to
gathering DVL, gyro, depth, and sonar measurements, GPS measurements contain
actual positioning for algorithm validation.

3.2 Underwater Localization with Environmental Acoustics

The statistical simulation of underwater environmental acoustics is herein per-
formed by calculating the exact ranges between the transponders/hydrophones
and the true position of the object of interest, and then adding Gaussian noise.
The algorithm design is then tested on the range measurements with noise to test
the accuracy and robustness of the algorithm. This was performed in Articles C1,
C4, and J3.

For tank experiments, an approach was demonstrated in C2, where an underwater
motion capture system called Qualisys was used to track the motion of reflective
markers that acted as the position of a transponder. Waves were created in the
tank to make the transponders oscillate, as shown in Figure 3.3. The algorithm de-
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Figure 3.3: Experimental setup in the marine cybernetics lab

sign of interest could, after that, use the data in post-processing as input, instead
of using the simulated data.

Further, a field experiment was performed in Article J3 using an array hydrophone
at a dock. Figure 3.4a shows the setup of the experiment. The red dots are the
hydrophones, where each has an identification number starting with the letter H.
The receivers recorded the time of arrival of signals emitted from small tags located
at a rope with an anchor, as seen in Figure 3.4b, located at the points noted in
Cases 1 and 2. Each tag’s signal contained an identification number and a depth
measurement that was also recorded by the hydrophones. The validation of the
position of the tags was done by distributing the tags along a line and measuring
the location of the line at the surface with a DGPS.

H631
63.332577, 10.073699

63.332979346, 10.073467847

63.333279384, 10.07482644
H632

Case 2
63.333123, 10.072734

63.332966, 10.0725
H633

Case 1

(a) Underwater mapping experiment (b) Tags mounted on
an anchor line

Figure 3.4: Acoustic tag experiment

41





Chapter 4

Summary of Research Results

This chapter presents a summary of the enclosed articles. The chapter is divided
into four sections, where each section presents the novelty, methodology, and re-

sults of each topic. The articles are organized in the enumerated sections as follows:

1. Articles C3 and J1,

2. Article J2,

3. Articles C4 and J3, and,

4. Articles C1 and C2.

The reason for the divisions is to follow the ordering of research objectives presented
in Section 1.4. Sections 4.1 and 4.2 address O1, Section 4.3 addresses objective O2,
and Section 4.4 objective O3.

4.1 Underwater Simultaneous Localization and Mapping

This section summarizes Articles C3 and J1, which address research objective O1.

Problem Description and Novelty

These articles aim to develop underwater SLAM using acoustic exteroceptive sen-
sors. The proposed method performs dead reckoning through a DVL, FOG, and
pressure sensor. Figure 4.1 shows an illustration of the acoustic sensor setup of the
vehicle, where (a) is the DVL, (b) is the MSIS, and (c) is the multibeam sonar.
The contribution of Article C3 is to implement a known RBPF algorithm [30] with
sonar measurement. Article J1 extends this by introducing a new likelihood sensor
model that makes the SLAM method more robust when using sonar measurements.
A loss function enhances the robustness of the likelihood model by dealing with
measurement outliers. An outlier means that there is no information in the mea-
surement due to an error, e.g., multipath in acoustic localization.
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4. Summary of Research Results

(a)

(b)

(c)

Figure 4.1: Sensor suite

Methodology

Articles C3 and J1 use a modification of the RBPF SLAM introduced by Grisetti
[30], with occupancy grid maps for spatial representation, and a scan matching
algorithm in order to improve the position estimates based on range and bearing
measurements (Section 2.2.6). Article C3 presents an RBPF that uses MSIS range
and bearing measurements. The challenge with using an MSIS is that there are
outliers in the range measurements. An outlier located far away from the expected
position leads to errors in the PF and the scan matcher. In the PF, it may result in
more frequent resampling, faster deterioration of the particle set, and false matches
in the scan matcher.

Article J1 extends Article C3 by introducing a Cauchy loss function (Section 2.2.5)
to make the algorithm more robust to outliers. The following equation is the sug-
gested sonar likelihood model, which includes the Cauchy loss function from (2.21):

p(zk|xk,mk) ∝ exp

(
−1

2
ρcauchy

(
∆θ2

k

σ2
θ

+
∆r2

k

σ2
r

))
, (4.1)

where ∆rk and ∆θk are the difference in range and bearing between the closest
occupied cell in the map, mk, and the measurement endpoint given by (2.16).
σr and σθ model the white noise standard deviations of the range and bearing
measurements. Both the PF measurement update in (2.11) and the scan matcher
in (2.20) uses the a sonar model with the loss function. In the PF, the sonar model
is used to compute the particle weight for each step k as following:

w
(i)
k ∝ w

(i)
k−m

k∏

n=k−m
p(zn|T (x(i)

n , ξ),mk−m−1), (4.2)

where T (x
(i)
k , ξ) is the position found from scan matching, m is the number of

range and bearing samples, and (i) is the particle number. Derivation is found in
Article J1. The loss function lowers the rate of the effective number of particles and
gives the scan matcher a more conservative estimate, preventing large jumps in the
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4.1. Underwater Simultaneous Localization and Mapping
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Figure 4.2: SLAM in tank using MSIS

estimates. Article J1 uses an occupancy grid map matcher instead of the ICP scan
matcher, which was used in Article C3. The occupancy grid map matcher utilizes
local maps within the maximum range of the sensor for increased computational
speed. Tank experiments were used to validate the methods in both articles. Figure
3.1 shows Tri-Dog the to the left the vehicle [50], and to the right is an illustration
of the tank experiment and the dimensions of the tank shown. Tri-Dog follows the
path drawn and uses a shell as a reference through camera images. In Article J1
there were also field experiments from the Abandoned Marina Dataset [80]. Figure
3.2 shows the UUV used to the left, and an overview of the abandoned marina to
the right.

Results

The experiments from the final results in Article J1 are shown in Figures 4.2 and
4.3. The former shows the tank occupancy grid map as a color map, and the esti-
mated particle trajectory of the particle with the highest weight in the background.
The arrows illustrate the particle set, where each arrow starts in the position of
the particle, and the direction of the arrow shows the heading. The right plots, in
Figure 4.2, present the covariance of each state in the particle set over time.

The left of the latter figure shows the abandoned marina occupancy grid map
along with an overlay of the occupancy grid map with a bird’s-eye view photo.
The right plots in the figure present the particle set covariance and the effective
number of particles. This article makes an important contribution as it enhances
the robustness of UUV perception, and thereby introduces more robust information
for planning, guidance, and control algorithms.
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Figure 4.3: Results using the open Abandoned Marina dataset as a test case for
the suggested method

4.2 Polar Map: A New Map Representation for
Localization and Mapping in Fish Cage Structures

This section summarizes Article J2, which addresses research objective O1. This
article presents a grid mapping scheme termed the polar map. It is applicable as a
spatial representation in RBPFs. Article J1 is also related to this article.

Problem Description and Novelty

Figure 4.4 shows an illustration of a typical fish cage construction. It has a cylindrical-
shaped bag at the top with a diameter and height of 30 m; the cone-shaped bottom
has a dimension of approximately 15 m. In order for a UUV to autonomously in-
spect the construction, it would be beneficial to have a map representation of the
fish cage in order to do online planning, guidance, and control. Such a represen-
tation would have memory, computational power, and resolution constraints, and
must be able to represent the full 3D environment. The present study is restricted
to looking at grid map representations, which are one of the most popular repre-
sentations in robotics. Currently, there is multiple map representation in robotics.
Section 2.2.3 presented the most common, namely the 3D occupancy grid map,
the octree representation, and the 2.5D terrain map; however, this article presents
a new representation that has some beneficial properties in online mapping in en-
closed environments.

Methodology

The present study was inspired by the 2.5D mapping solution in [4] for terrain-based
SLAM in RBPF, meaning localization and mapping based on the seafloor terrain.
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4.2. Polar Map: A New Map Representation for Localization and Mapping in
Fish Cage Structures
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Figure 4.4: Illustration of a typical fish cage
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Figure 4.5: Section-wise discretization of a solid cylinder by angle, θ, and depth, z.
The range r is the variable that describes the edge of the cylinder for each section.

The 2.5D terrain map, presented in Section 2.2.3, is memory and computationally
efficient, as it represents a 3D environment on a projected surface in the x-y plane;
however, the representation is not applicable to vertical and enclosed environments.
Figure 4.5 shows the concept of the suggested map representation. Sections from a
centerline represent the enclosed 3D environment where each section is divided by
planes on the z-axis and angles, θ, similar to cylindrical coordinates. The range r
for each section gives the outer surface of the enclosed environment.

Figure 4.6 shows how probability is incorporated into the polar map. A Gaus-
sian distribution represents the range of each section with an estimated mean r̂, a
variance P̂ , and the indices i and j gives the angle and depth of each section. Fur-
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Figure 4.6: Top view of the discretized structure (left) and the uncertainty model
of a single section (right) in the 2.5D polar map representation
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Figure 4.7: 2.5D Polar map representation of a fish cage

thermore, each section is assumed to be independent, and a Kalman filter updates
the ranges.

Results

Simulations were carried out to validate the method for mapping with known lo-
cations, and tank experiments with the UUV Tri-Dog were used to validate the
map for use in SLAM. Figure 4.7 shows a polar map of a fish cage. The mapping
scheme uses simulated range measurements to update the polar map. To the left,
the figure shows the mean ranges for each section, and the color map represents
the distance from the true range. To the right, the figure shows the cross-section
of the probability distributions of each section in a top and side view.

Figure 4.8 shows the results of using a polar map in the underwater SLAM ap-
proach. The tank environment is the same as that used in Article J1. Comparing
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4.2. Polar Map: A New Map Representation for Localization and Mapping in
Fish Cage Structures

Figure 4.8: PF-based SLAM in tank using polar map

the results of using a polar map versus an octomap in RBPF SLAM, it is clear that
the polar map has a lower run time. The main reason is that each particle in the
RBPF contains a map, which needs to be copied for each resampling procedure.
Because the polar map needs less memory than the other representations, it is
easier to copy. The computational complexity of the copy operation increase with
memory size.
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4. Summary of Research Results

4.3 Underwater Mapping Using Multiple Acoustic Tags

This section summarizes the results from Articles C4 and J3, which address research
objective O2. These articles aim to develop an underwater mapping method for a
flexible structure using environmental acoustic sensors. Field experiments with an
anchor line were used to validate the suggested procedure.

Problem Description and Novelty

The problem of inspecting underwater equipment in sea-based aquaculture is that
the equipment is not always rigid and mounted in one place. The objective of these
articles was to use multiple acoustic transmitters or tags [87] and hydrophones [88].
The tags transmitted their respective identification number and depth measure-
ment to the hydrophone receivers through acoustic communication. The procedure
needed to compute the positions from the tag information and the TDOA between
the hydrophones. Using the tag identification number, a probabilistic interpolation
between the positing of each tag gave the map of the structure. This map could
serve as a tool for robotic vehicles that seek to plan and execute operations au-
tonomously within and around the structure, or as a visualization tool for human
operators.

Methodology

Article C4 presents a conceptual design study, where filters fused the hyperbolic
localization and depth information for each tag. The filters used were an EKF [11]
and a PF, as presented in Sections 2.1.3 and 2.1.3. They used the equations for
hyperbolic localization and depth measurement given in Section 2.1.1. Article C4
suggested a probabilistic parameterized interpolation v(t), between each point x =[
q̂ID1

T

q̂ID2
T
]T

, where q ∈ R3 is the location of each tag. The parameterization

is defined as:

v(t) = A(t)x, (4.3)

where A(t) and x are given as:

A(t) =




(1− t) 0 0 t 0 0
0 (1− t) 0 0 t 0
0 0 (1− t) 0 0 t


 . (4.4)

The function v(t) has the covariance matrix:

Γxyz(t) = covar(vxyz(t)) = A(t)ΣxyzA(t)T ∈ R3×3. (4.5)

The uncertainties estimated by the filter can also be interpolated for the two tags
and can be found as:
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4.3. Underwater Mapping Using Multiple Acoustic Tags

Σxyz =

[
P̂ ID1 0

0 P̂ ID2

]
∈ R6×6. (4.6)

Article C4 validated the method through simulations and inserted the inter-
polation into the Octomap software. Article J2 extended the previous article by
also using a PF, as described in Section 2.1.3, and compared the results from the
EKF in the previous article. A DOP analysis was also performed, which used the
geometry of the hydrophones and the depth measurement to find the Cramer lower
bound, as presented in Section 2.1.2. Figure 3.4 shows two pictures from the acous-
tic experiments. Figure 3.4a shows the location of the hydrophone and an anchor
line, and Figure 3.4b shows the anchor line with the tags mounted.

Results

Figure 4.9 show two time series with RMSE for position estimation using the PF
and EKF in the field experiments. It can be seen that the PF has a lower RMSE
than the EKF for the lower case. The reason for this is that the DOP of the second
case is worse due to the initial position of tag ID 32, and the EKF, therefore, needs
more time to converge. A visualization of the interpolated anchor line is shown in
Figure 4.10.
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Figure 4.9: Time-series for RMSE of tag ID 32 with the EKF and PF for Case
Studies 1 (top subplot) and 2 (bottom subplot). The blue line is the RMSE for the
PF, the red line for the EKF.
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Figure 4.10: Visualization of the interpolated anchor line from Article J1

4.4 Positioning Error Correction for Ocean Wave Induces
Long Baseline Navigation System

This section summarizes the research presented in conference Articles C1 and C2.
The aim is to estimate a UUV positioning based on an LBL network exposed to
wave motion, which addresses research objective O3.

Problem Description and Novelty

These articles aim to estimate a UUV positioning based on an LBL network ex-
posed to wave motion. The wave motion occurs when acoustic transponders are
mounted near the sea surface, which is typically done for convenience in aquacul-
ture. The positioning concept used is circular positioning or TOF, as explained in
Section 2.1.1. The problem identified in Article C1 is that the transponder posi-
tion varies periodically with time, which means that the assumed known location
of each transponder, pi, from (2.1) has an unknown periodical error, which gives
a time-varying error in the final UUV position estimate. The article aims to find a
method that removes this time-varying error in the UUV position estimate. Arti-
cle C2 extends C1 by including a suggestion for wave spectrum analysis using the
transponder position time series.

Methodology

Article C1 proposes a solution that simplifies the UUV position into two parts: the
position dynamics and the error dynamics. The position dynamics slowly vary and
depend on a random walk process or the UUV dynamics, and a second-order wave
model represents the wave error dynamics [2, 28]. The idea behind the wave model
is to be able to estimate the error motion from the waves. The wave model assumes
that the wave spectrum of ocean waves is known or estimated beforehand. The two
parts are then merged in an EKF, as presented in Section 2.1.3 for the general case,

52



4.4. Positioning Error Correction for Ocean Wave Induces Long Baseline
Navigation System

RMSE x[m] y[m] z[m]
Uncompensated 0.0292 0.0281 0.03366
Compensated 0.0062 0.0167 0.0076
Decrease in RMSE 78.8% 40.5% 77.4%

Table 4.1: RMSE for uncompensated versus compensated

along with the TOF measurement equation. Inspired by Bancroft [3], Article C2
extends the work by introducing a method that algebraically computes the UUV
position error dynamics. With the algebraic computations, the UUV position error
can be extracted from a time series of transponder position measurements. A fast
Fourier transform analysis determines the spectrum of the error dynamics from the
position error.

Results
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Figure 4.11: Estimated states with EKF in x direction

The experiments presented in Article C2 showed that a considerable amount of
the error is separate from the wave motion, as seen in Figure 4.11, where the po-
sition and error dynamics are separated. Moreover, in the x-direction facing wave
direction, there was a 78.4 % decrease in RMSE, as seen in Table 4.1. Figure 4.11a
shows the estimated position dynamics with, x̂− ê, and without, x̂, compensation
in correspondence to the true position, x. Furthermore, Figure 4.11b presents the
estimated error dynamics, ê, versus the true e. Even though there is a large cor-
rection, there are still a position error. This is a result of the fact that the error
dynamics model does not capture all the nonlinearities of the problem.
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Chapter 5

Conclusions and Further Work

Section 1.4 presented three research objectives. This chapter concludes how the
work meets the objectives. The last section discusses further work.

5.1 Conclusions

The main topic of this thesis is localization and mapping using acoustic sensors in
an underwater aquaculture environment for a UUV. Specifically, the challenges re-
lated to perception, meaning how sensory information is processed and represented
for decision-making, planning, guidance, and control as required by an underwater
inspection operation. The reason for using acoustics is that the electromagnetic
sensors are less reliant in a turbid underwater environment, which is the case in
aquaculture environments.

Research objective O1 was to develop a SLAM algorithm for UUVs using acoustic
exteroceptive sensors in an aquaculture environment. This was mainly addressed
in articles J1 and J2. The former presented a PF-based SLAM solution using
exteroceptive measurements from a sonar for underwater vehicles in an enclosed
environment. The filter design compensated for a high number of outliers and low
resolution in sonar measurements by using a novel sonar likelihood model. Further-
more, the efficiency was improved using a sonar update scheme that only utilized
map information close to the vehicle. However, the map representation in Article
J1 represented a 2D environment, and therefore a suggested 3D map representa-
tion termed polar map that was suitable for a 3D aquaculture environment was
presented in Article J2. The representation was implemented with the SLAM algo-
rithm in Article J1, and compared with the map representation named octomap.
The polar map consumed significantly less memory and required minimal compu-
tational effort compared with octomap, meaning that it enabled a large number of
sensor readings and could still be used on low-cost computer/circuit boards. The
efficiency was beneficial to the methods implemented in a UUV due to its limited
space and communication without an umbilical, which called for more memory and
computationally efficient methods. The aquaculture environment is also a challenge
due to flexible cages, although more rigid constructions are coming to the market.
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The fish cages deform in ocean currents, and waves and make the environment
unpredictable, and thus an a priori map cannot be used in a UUV planning algo-
rithm. To conclude, the suggested SLAM algorithm and the map representation
meet the first research objective of this thesis by suggesting a possible solution for
localization and mapping in an aquaculture environment using sonar.

Research objective O2 was to use environmental sensors to generate a probabilistic
map of an aquaculture structure. The main work was addressed in Article J3, and
presented a novel method for localizing and mapping a submerged anchor line by
using acoustic tags and hydrophones. The suggested method was proven through
field experiments using both an EKF and a PF, and was shown to have an RMSE
of 2–3 m. The work showed that the PF outperformed the EKF in areas with high
DOP. The suggested map can be used for operations with underwater vehicles for
an enhanced operator or robot perception, or solely for structure monitoring pur-
poses, thereby fulfilling the second objective.

Research objective O3 was to develop an algorithm that reduced localization error
when using surface mounted transponder networks. The challenge in using surface
mounted networks is that waves induce motion in the transponders, which results
in an oscillating position estimation error. Articles C1 and C2 met the research
objective by suggesting an EKF that filtered the oscillation by using a wave filter
model. Article C2 also suggested a solution for determining the parameters of the
wave model. Tank experiments validated the EKF design, and the oscillating error
showed an almost 80% decrease in RMSE compared with not using the wave filter.

Thus, to conclude, this thesis has addressed some challenges and solutions for more
human-independent UUVs and is, therefore, a step toward autonomous operations
in aquaculture. The methods presented may help to build a foundation for planning,
guidance, and control algorithms, as well as to enhance the accuracy of localization
and mapping during an underwater inspection of an aquaculture environment using
a UUV.

5.2 Further Work

As with most work, there is always needed some further investigation or improve-
ment to be performed. For the first research objective, there are still questions
related to how well sonar sensors will perform in a fish cage, how much the fish will
influence the blocking of the sensor signal, and if the methods presented are able to
handle them, or if adjustments are needed in the SLAM method. Difficulties with
waves and currents are especially important to consider. For the suggested map rep-
resentation, a possible improvement is the integration of a Gauss-Markov process
model instead of a random walk. A Gauss-Markov model can improve the temporal
modeling of a fish cage substantially. Firstly, it does not have a range uncertainty
that increase towards infinity, but instead reaches an upper limit. Secondly, the
Gauss Markov model can configure the range for each section to be aligned with
the expected range, and the range will always tend towards that mean.
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5.2. Further Work

Computational speed and memory capacity in computers increase possibilities in
the future, and there is also continuous improvement in acoustic sensor technology.
For instance, new 3D sonar were presented in [1] and new lens-based sonars with
high resolutions are also a important topic that should be further investigated.
This thesis have a limited view on localization and mapping, and there is a multi-
tude of other approaches to investigate in fish cage inspection, for instance, graph-
based SLAM [31] and semantic mapping of the environment.
For the second research objective, the most apparent point is the use of the mapping
apporach in a fish cage, instead of anchor line. The approach could be integrated
to create an initial map of the system and therefore it can be tested along with
UUV inspection.
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A B S T R A C T

This article presents a novel 2.5D map representation, termed polar map, that has a memory consumption of O
(ML), where M and L depend on the map's angular and depth resolution, respectively. The map has a compu-
tational effort of O(1) in the update and evaluation process, where updates are performed through the use of
Kalman filters. The representation can only be applied to structures in an environment that can be represented
uniquely in a cylindrical coordinate system, such as fish cages, and square and cylindrical tanks. The work
presents two case studies that compare the proposed polar map with the octomap. The first case shows a si-
mulated example when mapping a fish cage. The second, an experiment in a square tank, where an unmanned
underwater vehicle performs simultaneous localization and mapping (SLAM) using both the polar map and
octomap representation. The results show that the polar map performs better, both in terms of memory con-
sumption and computation effort, in both mapping and SLAM in the selected case studies.

1. Introduction

The Norwegian aquaculture industry produces around 1.3 million
tons of fish every year (Norway, 2017). As of December 2018, the
production (of mainly salmon and trout) was taking place in 1015
aquaculture fish farms (Directorate, 2018). To increase production
volumes, larger structures are installed, and more exposed sites are
adopted due to the lack of available sheltered locations. Inspection and
maintenance activities are vital for cost efficient and safe aquaculture
operations, but sea-based fish farming is a dangerous occupation. The
harsh environmental conditions, a high manual workload for the op-
erators, the utilization of heavy equipment, as well as a high work ef-
ficiency pressure, contribute to the occupational risks (Holen et al.,
2018). Also, there are risks to the environment, such as fish escape. Fish
escape incidents have a negative impact on the environment because
they are a threat to biodiversity and wild fish (Thorvaldsen et al.,
2015). In addition, they cause economic losses, and attract considerable
negative attention from the public, with corresponding losses to the fish
farm reputation. On average, 372,000 salmon and trout have escaped
annually since 2001 (Directorate of Fisheries, 2019).

Sea-based aquaculture fish farms require periodic and conditions-
based maintenance, with inspections and maintenance performed by
human divers and remotely-operated vehicles (ROVs) (Utne et al.,
2015). Diving is hazardous and costly, and the improved utilization of

unmanned underwater vehicles (UUVs) for inspection could reduce the
risk of human injury and fatality. It is therefore believed that UUVs will
become more important for the safe and cost-efficient operation and
maintenance of larger and more exposed fish farms. A major challenge
for both existing fish farms and future larger ones is that the human
divers and ROV operators have to keep track of the inspected areas of
the net cages themselves, which is often limited to a localized region
within their field of view. This can lead to uncertainty in how well an
area is being covered during inspection operations and to undetected
damage that can potentially lead to fish escapes.

Interactions with equipment, the hard physical working environ-
ment, the operator's workload, work pressure, training, skills, experi-
ence, co-operation, communication, and safety management can impact
the likelihood of fish escape (Thorvaldsen et al., 2015). Aquaculture
nets are not only wore out with time, but also prone to damage, such as
holes made by predators and boat collisions. (Jensen et al., 2010). In
addition, fish cages in sea-based fish farms are exposed to strong sea
currents, which can result in large structural deformations (Lader et al.,
2008). These deformations may make inspection and maintenance op-
erations more difficult.

It is envisioned that resident autonomous underwater vehicles
(AUVs) will be used for inspection operations in the future. Resident
AUVs may increase the sustainability of underwater operations, as well
as reducing costs and enhancing efficiency, since a reduced need for
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equipment transportation could lead to a reduction in greenhouse gas
emissions. To enable this type of system, it is necessary that all sig-
nificant parameters that could affect the operation are taken into ac-
count, so that the AUV can make the best possible decisions. Therefore,
a global digital representation of the underwater structure is of high
value for the AUV for it to be able to position itself and move around
safely, whilst having sufficient inspection coverage. Such a re-
presentation, however, will not only be useful in future AUV operations,
but could also improve ROV operations today.

The work presented in this paper contributes a novel mapping ap-
proach that is able to model enclosed vertical structures. The method is
highly memory efficient and has low run-time complexity, making it an
ideal choice for online applications. Furthermore, the approach is ap-
plicable in both static and dynamic environments. The proposed method
is scalable, in terms of map resolution, which can benefit fish-cage
mapping through its minimal system memory and / or computational
effort. Even though the method is described and demonstrated here for
fish-cage inspection, it is expected to be highly useful in other applica-
tions, such as industrial inspections using drones in confined areas.

The paper is structured as follows: Section 2 provides a brief
background of the literature relevant to 2D and 3D map representa-
tions. The proposed 2.5D polar map is described in Section 3. The
system setup for the proposed method is described in Section 4. Two
case studies to test the proposed method are outlined in Section 5.
Section 6 presents the results from the simulation trials and lab ex-
periments. The results are discussed in Section 7, followed by the
conclusions and scope for future works in Section 8.

2. Related Work on Map Representations

A map is a set of estimated values that describe an environment.
Mapping algorithms include two steps: the first step is evaluation of the
map, which means obtaining the probability of occupancy of a certain
location. The second step is the map update, where detected occupied
or free locations are inserted into the representation. The primary
motivation for such map is to provide perception to a robot, so that it
can localize itself in an environment, hence increasing its autonomy.
This localization can be done both through Markov localization (Fox
et al., 1999; Maki et al., 2012), which is used when the environment is
already known, or through simultaneous localization and mapping
(SLAM) (Ribas et al., 2008; Barkby et al., 2012; Mallios et al., 2014;
Cadena et al., 2016; Ma et al., 2018; Sandøy et al., 2019) when the
environment is unknown. Secondly, the execution of planning algo-
rithms for constrained environments requires a map representation
(Lau et al., 2013; Pairet et al., 2018). Thirdly, for ROV operations, these
representations improve safety and efficiency because the ROV op-
erator is also provided with increased situational awareness (Utne et al.,
2015). Thus, it is crucial to have efficient map representations for au-
tonomous systems. The latter reason (improved safety and efficiency) is
an issue that, to a minimal extent, has been discussed in the literature.
For the aquaculture industry, AkvaGroup has developed a solution for
mapping during fish-cage cleaning operations (Group, 2019), which
ensures that the operator has traversed all of the surface area of the fish
cage. The system uses a short baseline acoustic network for positioning
the vehicle. The limitation of this approach is that it can only define a
static cylindrical shape and cannot take into account potential sig-
nificant deformations in fish cages. This means, firstly, that the re-
presentation cannot be used as a map for localization, secondly, it is not
possible to use it to plan autonomous operations because of the in-
complete map, and thirdly, there are no descriptions of the un-
certainties in the map, which makes it difficult to perform risk assess-
ments for operations.

In general, the map representations available can be divided into
three types: (i) grid-based (Moravec, 1988; Elfes, 1987); (ii) landmark-
based (Leonard and Durrant-Whyte, 1991); and (iii) continuous-space-
based (Vallicrosa and Ridao, 2018).

In grid-based maps, the world is divided into a finite number of
cells. The probability of each cell being occupied is independent of all
other cells, and is assumed to be static. The drawback of grid-based
maps is that one cell's true state does not change with time, meaning
that it cannot handle dynamic obstacles that change during mission
times (i.e., dynamic deformations in fish cages). With finite re-
presentations, there are numerous approaches, each with its dis-
advantages and advantages. For instance, the classical grid-mapping
approach of (Moravec, 1988; Elfes, 1987) is computationally efficient
for map evaluation, having a runtime complexity of O(1) and being able
to describe any type of environment; however, it is not memory effi-
cient for large maps, since the number of cells increases quadratically in
2D and cubically in 3D maps. Tree-based grid-map representations,
such as Quadtrees in 2D and Octrees in 3D (Fairfield et al., 2007;
Hornung et al., 2013), require less memory; however, these re-
presentations come with a higher computational complexity in the map
evaluation step. Another type of grid-based map is the so-called 2.5D
map, which is used in underwater, terrain-based navigation (Stephen
and Oscar, 2011). In this approach, each cell is associated with a depth
and a reliability value; the latter corresponds to the probability of the
cell having the exact depth. The map evaluation complexity is here O
(1), and the memory consumption is low, making it the most efficient
grid-based approach; however, unlike the other grid-based approaches,
it can only be used to model environments that can be projected onto
the x-y plane, and not vertical structures, such as fish cages.

Landmark-based mapping describes the relation between features’
positions. A feature, or landmark, is something used to describe a
specific location, such as a window or a door. This representation is
usually included in an extended Kalman filter, or extended information
filter, framework (Thrun et al., 2005). The most challenging part of this
type of representation is the identification of the features, which re-
quires the use of machine-learning algorithms that can be error prone,
making false associations of features, which can lead to an erroneous
location estimate. Landmark-based mapping is a so-called sparse re-
presentation that does not model dense maps, which is the most useful
representation when planning a path for inspection tasks.

In (Vallicrosa and Ridao, 2018), the continuous-space model of an
environment was suggested; however, this approach has a higher
computational complexity than the discrete grid-map solution in
(Stephen and Oscar, 2011), making it an unsuitable representation for
online operations in fish cages. Besides, it cannot model vertical en-
vironments. In more recent works, Ramos et al. (Ramos and Ott, 2016)
presented a map representation - named a Hilbert map - as an alter-
native to the Gaussian processes occupancy maps. It utilizes a kernel
approximation model and, from this, defines an objective function that
is minimized by a stochastic gradient optimizer to find the global op-
timum map representation. Hilbert maps need the same order of
memory (quadratic) as 3D occupancy grid maps because kernel points
need to be distributed in the space of interest.

3. Proposed Map Representation: Polar Map

This section describes the proposed novel mapping approach in
detail, combining process and sensor models. Note that the sensor and
process models, and the Kalman filter are interchangeable with other
models or filters; however, the general idea of a cylindrical discretiza-
tion approach would remain the same.

3.1. Discretization and Uncertainty Modeling

The structure of interest is discretized using cylindrical coordinates,
given as {θ, z}, where θ and z are the angle and depth, respectively, as
shown in Fig. 1. The discretization is given by the set Z={z1, …, zL}
and Θ={θ1, …, θM}, which contains L depths and M angles, respec-
tively, with a fixed resolution of zres and θres between each discretiza-
tion point.
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The range for each section is modeled as a Gaussian distribution,
with the probability p(r) given a range of r. The estimated mean is r̂ t( )ij ,
and the estimated variance is P̂ t( )ij

, as shown in Fig. 2(right-hand side).
The mapping between each section and range is defined as follows:

… …ˆˆz r P i L j M{ , } { , } {1 }, {1 }.i j ij ij
(1)

Equation (1) is central for the term 2.5D, which refers to the dis-
cretization of a 3D space by using only two variables, namely depth and
angle. This separates the representation from other approaches. For
instance, in 3D grid mapping, cells are discretized by a Cartesian grid in
such a way that free cells are also included; however, this is avoided in
the proposed mapping approach, thereby reducing the number of re-
quired cells in the representation.

The assumptions that need to be fulfilled when using the proposed
mapping approach are:

Assumption 1. The ranges of the sections are statistically independent
of each other.

Assumption 2. Each point in the structure can be defined from a
vertical line along the z-axis, given an angle and a range.

Assumption 1 says that one section in the structure has no relation
to the other sections; however - for instance, in a fish cage - neighboring
sections are highly dependent and, if this is ignored, there is a loss of
information. On the other hand, it is a very practical assumption be-
cause it simplifies the updating process significantly.

Assumption 2 sets a constraint on what type of structure this map-
ping approach can be used for. The implication of this assumption is
that closed shapes that are too complex to be modeled from a single
point cannot be mapped. Examples are shown in Fig. 3, where the
structure has a shape that can be mapped from the dot in the center
(left), while the structure is too complex to be represented by polar
coordinates (right).

To convert the cylindrical coordinates to the north-east-down (NED)
frame for each section of angle j and depth i, the following known re-
lations are used:

= ˆx r cos( ),jij ij (2)

= ˆy r sin( ),jij ij (3)

=z z .iij (4)

3.2. Process Model

An online mapping approach for a flexible structure needs a model
that reflects the change in the structure's position over time. The change
in fish cages can be periodically rapid and / or slowly varying, due to
ocean waves and currents. In this work, the slowly-varying current ef-
fect was modeled as a random walk process, which requires that
Assumption 3 is valid.

Assumption 3. The change in the range of each section can be modeled
by a random walk process.

The discrete equations for a random walk process can be written as
follows:

= +r r Q, (0, ),k k r r
ij

1
ij (5)

where rk is the predicted range for time step k, and ωr is a Gaussian
random variable with variance Q.

3.3. Sensor Model

In order to update the 2.5D polar map, measurements are required.
Firstly, this work assumed the range measurements originates from a
vehicle with a known pose given as =x p[ ]T n T , where

= x y zp [ ]n n n T is a position in relation to the NED frame (Fossen,
2011), as indicated by the superscript n, and ψn is the heading of ve-
hicle. Note that the pose does not include the roll and pitch angles of
the vehicle because they are in this case assumed to be negligible.

The model for the measured range can be written as:

= +y r R, (0, ),y y (6)

where r is the true range and ωy is a normally distributed variable with
variance R, which means that Assumption 4 needs to be fulfilled.

Assumption 4. The sensor noise is Gaussian distributed.

To relate a measurement to a section in the structure, given the pose
of the sensor, the endpoint = e ee [ ]x y of the measurement needs to be
related to the fish cage reference frame. The relations are given as:

= +y y y x ye x( , ) ([ cos( ) sin( )] [ ]) ,n n n n T (7)

= e eatan2( , ),y x (8)

=z z ,n (9)

Fig. 1. Section-wise discretization of a solid cylinder by angle, θ, and depth, z.
The range r is the variable that describes the edge of the cylinder for each
section.

Fig. 2. Top view of the discretized structure (left) and the uncertainty model of
a single section (right) in the 2.5D polar map representation.

Fig. 3. Shape limitations for a polar map representation.

S.S. Sandøy, et al. Aquacultural Engineering 89 (2020) 102039

3
99



where atan2 is an inverse of tangents that is valid for all angles (Thrun
et al., 2005). The range measurement is then simply computed by
taking the Euclidean norm of the endpoint ym=||e||, and θ and z are
the respective angle and depth of the measurement in relation to the
NED frame. The indices i and j are determined by the values in the Z and
Θ set closest to z and θ, respectively.

3.4. Outlier Rejection and Initial Smoothing

A weakness of the Gaussian distributed model is that it does not take
into account outliers in the sensor measurements, and therefore a se-
parate outlier detection step and initial smoothing need to be per-
formed for each measurement before they enter the Kalman filter.
Gustafson (Gustafsson, 2012) suggested a statistical test of two hy-
potheses for a measurement being an inlier or an outlier. Simplified, the
method is a χ2-test, implemented as:

=
+

<T y
y r
P R

( )
( )

,m
m k

k

2
2

(10)

where χ2 represents the threshold shown in Fig. 4, rk is the predicted
range, and Pk is the predicted covariance. This exploits the Gaussian
distribution estimated for each section to accept or reject new mea-
surements. As seen in Fig. 4, measurements outside the threshold are
rejected and the others are accepted. All points outside this threshold
are rejected.

In addition, initial smoothing steps are necessary to account for
potential outlier points. This is done through defining an uncertainty,
Rstart, that decays with each iteration (Gustafsson, 2012).

3.5. Map Update Method Using Kalman Filter

A mapping approach for a flexible structure needs to fuse new in-
formation with the estimates over time, as described by the process and
sensor model in the previous subsections. A Kalman filter with one state
was used for each section, due to the fact that initial conditions can be
specified, and both sensor and process updates are performed. In the
case where there are no initial conditions, or only the sensor update
process is used, an information filter would be more advantageous
because it can define the covariance matrix as infinite, thus avoiding
the need for initial conditions and reducing the runtime complexity
(Stephen and Oscar, 2011; Thrun et al., 2005). The Kalman filter
equations are shown, step by step, in Algorithm 5. The algorithm re-
quires the range measurement, along with the index of each section,
given as i and j, the previous range in the section, rk 1

ij , and the variance,
Pk 1

ij .

Algorithm 5. Kalman filter section update including outlier rejection
and smoothing

Require: ym, i, j, r P Q R, , ,k k1
ij

1
ij

1: for all sections do
2: %Process update
3: =r rk k

ij
1

ij

4: = +P P Qk k
ij

1
ij

5: %Sensor update
6: if T(ym) < χ2 then
7: = + +K P P R( )k

R
k

ij ij start
2

1

8: = +r̂ r K y r( )k k m k
ij ij ij

9: = + +P̂ K P K R(1 ) ( )k k
R

k

ij 2 ij 2 start
2

10: = ˆr rk k
ij ij

11: =ˆP Pk k
ij ij

12: else
13: =r̂ rk k

ij ij

14: =P̂ Pk k
ij ij

15: end if
16: end for
17: return ˆr̂ P r P, , ,k k k k

ij

4. System Setup for Localization and Mapping in Aquaculture

This section presents two different sensor setup scenarios for the
localization and mapping of UUVs in aquaculture. The definition of
robot localization is finding its position and orientation at a certain time
relative to a local environment given a reference frame. A natural point
of reference in an aquaculture operation is the center of the fish cage, as
shown in Figs. 5 and 6 , where the position and orientation (pose) of the
robot is denoted by x. The xn-axis points north, the zn-axis downwards,
and the yn-axis completes the right-hand rule. The heading ψn relates to
the difference in angle between the vehicle's body frame and north.
Note that, in this work, pitch and roll were assumed negligible, which is
a poor assumption if the UUV is close to the sea surface when there are
waves making the attitude of the UUV less stable. The next two sub-
sections present two possible sensor setups for a UUV.

4.1. Underwater Mapping with Known Locations

To obtain the poses of a UUV, a positioning system is required. In
underwater environments, acoustic positioning is considered to be the
state of art, as opposed to land robots that use the global navigation
satellite system. One particular type of acoustic positioning system,
termed short base-line (SBL) (Christ and Wernli, 2013), uses the time-

Fig. 4. Outlier rejection scheme.

Fig. 5. Illustration of a mapping scenario.
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of-flight from a transponder located at a UUV to an array of fixed
transponders of known location, as illustrated in Fig. 5. The speed of
sound is then used to locate the UUV based on the time-of-flight signals.
In order to find the heading of the vehicle, it is necessary to use a
magnetic compass or gyro-compass. A magnetic compass is prone to
electromagnetic noise, which can be a challenge in some underwater
environments, however, a gyro-compass is robust from magnetic dis-
turbances. The range and bearing measurements from the UUV to the
edge of the fish cage are then needed. These can be measured by a sonar
sensor mounted on the UUV. Sonars use acoustic echo intensities to
determine the range to objects. A possible type of sonar is the me-
chanical scanning imaging sonar as shown in Fig. 5. Finally, a pressure
sensor provides the depth measurement, which results in the zn posi-
tion, with centimeter accuracy.

4.2. Underwater Simultaneous Localization and Mapping

The SLAM method, as the name indicates, performs the operation of
finding the location of the robot and, at the same time, making a re-
presentation (map) of the environment. This is particularly difficult
because it is considered to be a chicken-and-egg problem, meaning that,
in order to localize, the map needs to be known, and vice-versa. The
advantage of using SLAM is that only sensors mounted in the UUV are
required, as illustrated in Fig. 6. Also, a compass is not essential, which
avoids potential heading errors due to magnetic noise. It requires only
odometry-type sensors, providing velocity and angular rate; in this case,
a Doppler velocity log (DVL) and gyro. Inside an aquaculture fish cage,
the DVL can either be faced towards the net pen structure (Rundtop and
Frank, 2016), as in Fig. 6, or towards the seafloor. Of course, this as-
sumes that the seafloor is not too deep, and that there are no obstacles
to any of the beam paths. The second sensor is the gyro, which mea-
sures the rate of the heading angle. As in the previous subsection, sonar
is used for ranging to the net pen, and a pressure sensor is used to
measure depth.

In this work, two particle-filter-based SLAM methods were im-
plemented and compared. Fig. 7 illustrates the sensor flow for the ap-
proaches. Firstly, the sensor measurements are used in both the map-
ping and localization updates. Secondly, the particle filter has multiple
hypotheses for each location and map pair. Thirdly, the mapping ap-
proach can be either the occupancy grid map or the proposed polar
map. For more information on particle-filter-based SLAM, see (Grisetti
et al., 2007; Sandøy et al., 2019).

5. Case Studies

This section presents two case studies for localization and mapping

using a UUV for the inspection operations of fish cages. Case Studies 1
and 2 reflect the system setups presented in subsections 4.1 and 4.2,
respectively. These cases were of particular interest because they had
different degrees of complexity and distinct advantages. Case Study 1
required an SBL network for the vehicle position estimation. Case Study
2 did not require an SBL, and could therefore perform the inspection
operation using only local sensors mounted on the vehicle. This could
potentially lower the costs and thresholds related to the use of the
proposed method.

5.1. Case Study 1: Underwater Cage Mapping with Known Pose

The purpose of this case study was to generate a polar map using
sonar measurements, assuming known vehicle poses x, as presented in
Subsection 4.1. The polar map is compared to an octomap representa-
tion (Hornung et al., 2013; Mathworks, 2018).

To simulate a scenario with a UUV having a known position and a
sonar, 28,800 range and bearing measurements were generated, evenly
distributed over the fish cage surface. To simplify the simulation, it was
assumed that the range and bearing sensor was located at the center of
the cage and was travelling along the zn-axis. Gaussian noise, with a
standard deviation of 0.1 m, was added to the range measurements. The
fish cage had a 15 m radius, was 40 m deep, and had a tilt of 8.53∘,
which is a realistic scenario for an aquaculture structure, according to
(Lader et al., 2008). In addition, a randomly selected 10% of the 28,800
ranges was set to outlier measurements, defined as:

= +y 5 ,outlier outlier outlier (11)

where σoutlier = 5, is the standard deviation, and ωoutlier is a random
variable with standard distribution. The outlier measurements are to
model fish that are blocking the range sensor.

The generated points are scattered as a point cloud in Fig. 11a. As
can be seen, the cage is slightly tilted towards the north in order to
simulate a case where the fish cage is deformed by the presence of
underwater currents. Tables 1 and 2 present the parameters used for the

Fig. 6. Illustration of autonomous inspection scenario.

Fig. 7. Flow chart of particle-filter SLAM using polar and occupancy grid maps.

Table 1
Polar map parameters for Case Study 1

Parameter Unit Value

θres [deg] 4
zres [m] 1
zmin [m] 1
zmax [m] 40
rij ∀ i, j [m] 15
Pij ∀ i, j [m2] 202

R [m] 0. 12

Rstart [m] 152

Q [m] 0. 0052

χ [-] 3
Memory usage [KB] 0.29
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two methods. Note the large difference in the memory consumption of
the two methods in the memory usage column in the tables. Polar map
requires only fraction of the memory compared to Octomap, even
though both methods have approximately the same resolution at 15
meter range from the center line of the cage.

5.2. Case Study 2: Underwater Mapping with Unknown Poses

The purpose of this case study was to analyze an experimental SLAM
scenario in a closed environment, such as in a square tank, using a polar
map and an octomap. The UUV was equipped with a sonar (Tritech,
2018), an inertial measurement unit (Japan Aviation Electronics
Industry, 2018) and a DVL (Teledyne, 2018). The time-series of the
sensor data was collected in a tank experiment at the University of
Tokyo. The UUV applied in the experiment was Tri-Dog 1 (Kondo,
2001), as shown in Fig. 8, and the size of the tank was 7.5×7.5× 8.0
m, as illustrated in Fig. 9. The time-series was first published in (Sandøy
et al., 2019), in which a particle-filter-based SLAM approach, using 2D
occupancy grid maps as the spatial representation, was applied to
process the data.

6. Results

This section contains the results of the case studies presented in
Subsections 5.1 and 5.2.

6.1. Case Study 1: Underwater Cage Mapping with Known Poses

Fig. 10 shows the polar map after processing the scattered 28,800
range and bearing measurements from Fig. 11a. The polar map is illu-
strated by a surface plot that interpolates the estimated ranges for each
section. The error of the ranges vs. the true ranges for each section are
shown in the color map. The Gaussian distributions of each section are
shown in top and side views in a cross-section of the plane z=0.5 and
y=0 in Figs. 10b and 10 c, respectively. Fig. 11b shows the results of the
occupancy grid map, in which the color bar indicates the depth of the cell.

6.2. Case Study 2: Underwater Tank Mapping with Unknown Poses

The parameters of the two mapping methods are shown in Tables 3
and 4 . In the former, note that the polar map was only represented for
4-8 m in depth, at a resolution of 1 m, because the UUV was limited to
that region; the angle had a resolution of 1∘. Outlier rejection and initial
smoothing was not required in this case. The process model was not
utilized here either because the tank was a static structure.

The SLAM computer processing time for each iteration using the
octomap and the polar map are shown as a time-series budget of each
task in Figs. 12 and 13 , respectively. The tasks were divided into re-
sampling, map updating and other. Resampling is the time consumed

Table 2
Occupancy grid map parameters for Case Study 1

Parameter Unit Value

Resolution [m] 1.0
phit [] 0.7
pmiss [] 0.4
Occupancy threshold [] 0.71
Memory usage [KB] 429

Fig. 8. The UUV Tri-Dog 1 was used in the Case Study 2 tank experiment.

Fig. 9. The path of the vehicle, the size of the tank, and the location of a shell
placed on the tank floor for reference.

Fig. 10. Case Study 1: 2.5D polar map.
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by resampling particles in the particle filter, map updating is the time it
takes to update the map, and other represents all other operations.

The resulting outputs of the SLAM approaches are shown in Figs. 14
and 15 . In Fig. 14, the polar map is represented as a surface plot given by
the mean range of each section. In Fig. 15, the resulting octomap is shown
by boxes marking the occupied cells. The probabilities are not shown

because the concept was proven in Case Study 1. The estimated and
odometry trajectories are indicated by solid red and dashed blue lines,
respectively. To the right in both figures is the covariance in x, with the y
and ψ positions plotted. In addition, the resampling and imaging events are
shown by + and a solid red dot, respectively. The image event refers to
the event of taking a picture of the shell located on the tank floor as a
position reference. The estimated positions of the shell are scattered in the
left plot. The number of particles was N=50 for both approaches.

7. Discussion

7.1. Case Study 1: Underwater Fish Cage Mapping with Known Poses

The generated polar map shown in Fig. 10a has a root mean square
error (RMSE) of 0.332 m compared to the true fish cage position. The
RMSE was found by computing the error between the estimated range and
true range in each section of the fish cage. The surface representation gives
an intuitive representation due to the ease of interpolating between the
mean range points in the polar map. There were some cells that were
affected by the outliers, as seen in the error of 3.5 m; however, the
smoothing and outlier rejection schemes performed well, considering the
low RMSE. Note that it can be a challenge to maintain the validity of
Assumption 2. As seen in Fig. 10c, the map is at the limit of Assumption 2
due to the large deformations in the fish cage; however, the centerline can
be adjusted to another function to deal with the tilt in depth. The octomap
illustrated in Fig. 11b has an RMSE of 0.337 m. The result resembles the
RMSE value obtained using the polar mapping approach. The RMSE
computations were performed by generating a 3D nearest-neighbor
transform, using the binary 3D occupancy grid map and MATLAB function

Table 3
Parameters for the polar map in Case Study 2

2.5D polar map Unit Value

θres [deg] 1
zres [m] 1
zmin [m] 4
zmax [m] 8
rij ∀ i, j [m] 5
Pij ∀ i, j [m2] 1e10
R [m2] 0. 12

Table 4
Parameters for the octomap in Case Study 2

Octomap Unit Value

Resolution [m] 0.05
phit [] 0.7
pmiss [] 0.4
Occupancy threshold [] 0.71

Fig. 12. Update time of SLAM approach when using polar map.

Fig. 13. Update time of SLAM approach when using octomap.

Fig. 11. Raw data point cloud and octomap.
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bwdist. The nearest neighbor transform is the distance to the nearest oc-
cupied cell in a grid. The error was computed by evaluating the true map's
position in the generated map's nearest neighbor transform. The occu-
pancy grid map produces a discrete representation. Therefore, it is chal-
lenging to generate a continuous surface. This is not the case in the pro-
posed polar mapping approach. When comparing the memory usage
shown in Tables 1 and 2, the polar map can be seen to require only a
fraction of the memory compared to the occupancy grid map. Although
the output of the occupancy grip map is compact (in form of octrees), it
still needs to represent a higher number of nodes. The memory for the
polar map is computed using the formula mempolarmap=M× L×8 B,
whereM and L are the angular and depth resolution, and B is the unit byte.

The memory of the octomap is computed by the formula
memoctomap=Ninternalnodes×40 B+Nleafnodes×8 B (Hornung et al.,
2013), where Ninternalnodes is the number of internal nodes and Nleafnodes is
the number of leaf nodes. In this work, the octomap's memory was found
through octovis1 .

7.2. Case Study 2: Underwater Tank Mapping with Unknown Poses

The results of the second case study are shown in Figs. 14 and 15 .
The polar map and octomap approaches show similar performance in

Fig. 14. Particle filter-based SLAM in tank using polar map.

Fig. 15. Particle-filter-based SLAM in tank when using octomap.

1 http://wiki.ros.org/octovis
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position accuracy, as seen in the consistency of the shell position esti-
mates, although there were some differences in the estimated vehicle
trajectory compared to the odometry trajectory in the SLAM approach
using octomap. The covariance of the particle set (on the right in the
figures) shows a standard deviation of between 0.1 and 0.3 m in the x
and y location estimates for both approaches. Note that the covariance
increased from 0 to 100 seconds due to the low accuracy of the sonar.
Also, there was an increase in covariance at 500 seconds due to the fact
that the UUV changed depth and encountered an unexplored map that
did not depend on the previous depth, as stated in Assumption 1. In the
polar map, this could be handled by relaxing the independence as-
sumption in the depth; for example, by initializing the next depth using
the estimate of the previous depth and adding some uncertainty.

The most important point for low computational complexity is the
cost of updating the map with range and bearing measurements. In an
octomap, the update depends on the range of the measurements, since
the insertion of a range into a map requires traversal of all cells on the
trace of the range measurement. On the other hand, the polar map does
not require this traversal, and only the range estimate of the section
containing the measurement needs to be updated. This difference is
shown clearly in Figs. 12 and 13 by the map update time. They show that
the polar map requires one-fifth of the computation time compared to the
octomap. The resampling operation gave the most apparent differences
in runtime between the two mapping approaches. This is due to the fact
that each particle's map needs to be copied, and that the octomap re-
presentation is a lot more time-consuming to copy than the polar map.
Also, due to the depth change, there was a radical increase in the com-
plexity of the octomap, as shown by the doubling in runtime from the
80th iteration, which would continue to grow for each depth change,
while the polar map's copying time will remain the same. Note that the
SLAM approaches were run in the post-processing of the sensor data
using a desktop computer with an Intel(R) Core(TM) i7-8700 CPU@
3.20GHz. The SLAM approaches were implemented using MATLAB.

7.3. Other Advantages and Challenges of the Polar Map

Firstly, the polar map considers uncertainties in both the sensor
measurements, via the sensor model in Section 3.3, and in the en-
vironment, in the form of underwater currents, by the process model
described in Section 3.2. However, underwater currents are slowly
varying and more rapid motion, such as from wave motion is not taken
into account. This means that the suggested method is only applicable
for environments where wave motion is negligible.

In nowadays's mapping methods, the static assumption of the maps is
strong, as mentioned in Section 2, and there is a need for methods that
relax this assumption because of the environmental uncertainties. The
proposed polar map is able to handle such uncertainties with the inclusion
of a simple random walk process model, although this was not demon-
strated in the chosen case studies. The ability to handle outliers in a map
strengthens the robot's perception of the environment. This is a big ad-
vantage when, for instance, something blocks a range sensor, such as a fish
in a fish cage, where noisy sonar data with outliers often occur (Rundtop
and Frank, 2016). This was also somewhat dealt with in the octomap re-
presentation, but this might not be as robust when it comes to multiple
outlier measurements, which can happen when fish block the sensor. In the
octomap, a predefined map size is required. In the polar map, this is not
required because the range can, in theory, continue infinitely. However, for
large ranges, a higher angular resolution is required to maintain accuracy.

A challenge of polar maps is that they cannot model environments
outside their scope, meaning environments that cannot be described by a
single point, as shown in Fig. 3. In an aquaculture scenario, this can happen
when there is an object located inside the fish cage that must be avoided,
such as an underwater camera. A possible solution is to use local maps in
the ego-space (Fragoso and Anthony, 2019) of the vehicle that can be used
for obstacle avoidance. Another difficulty with polar maps for aquaculture
application is in situations where a fish cage is highly deformed, which can

occur with rapid currents (Lader et al., 2008). This might introduce diffi-
culties when modeling the lower part of the cone, since the centerline that
models the structure might fall outside of the structure, which would
breach Assumption 2. A possible way to handle this would be to update the
centerline from where the polar coordinates are defined; however, this was
left for future work. Another factor for the proposed sensor model is waves,
which are present close to the wave zone. This might lead to large roll and
pitch motions. Herein, the pitch and roll angles were assumed to be small,
and would be invalid if waves were considered.

7.4. Discussion of Assumptions

The main drawback associated with Assumption 1 is the loss of
information because the dependencies between the sections are re-
moved. Therefore, other interesting techniques that could relax this
assumption and utilize the compact 2.5D map, such as Gaussian pro-
cesses occupancy maps (O’Callaghan and Ramos, 2012) or Hilbert maps
(Ramos and Ott, 2016), need to be investigated.

Assumption 2 is necessary for using the polar representation; how-
ever, it can be adjusted in the way that the centerline is defined, as
mention in the discussion of Case Study 1, by changing the position of
the centerline, such that the entire space can be represented. This was,
however, not taken into account in this paper.

Assumption 3 is a crude way of modeling a fish cage. Including the
modeling of wave and current changes would improve the fish cage
model significantly. The benefit of the random walk process model is
that no measurement is required; however, if current measurements are
available, for instance, it would also be possible to use a more pre-
dictive model, based on (Lader et al., 2008), for example.

Assumption 4 could be adjusted if we looked into the use of other
estimation algorithms. For instance, multi-modal distributions could be
added, such that each section could have multiple means for each
section. This would require a higher memory consumption; however, a
polar map would still have a lower memory consumption compared to a
3D occupancy grid map or octomap.

7.5. Model for Fish Cage Uncertainty

In addition to a thorough and efficient inspection of the net, pro-
vided by the mapping method presented in this paper, it is important to
avoid fish escape by preventing holes to develop in the fish net. This
means that the UUV should not become tangled in the net or with other
types of vulnerable equipment in the cage, which means that precise
positioning is very important in reducing risk. Hence, better mapping
should also lead to improved localization of the underwater vehicle.

ISO 31000 (International Organization for Standardization, 2018)
defines risk as the effect of uncertainty on objectives. The values Q and
R represent the uncertainty (variance) associated with an update, or
change in the range, in each section of the model, as the vehicle moves
around in the cage. Therefore, it is relevant to investigate risk-influ-
encing factors that could impact Q and R during operation of the un-
derwater vehicle. Examples of such factors might include environ-
mental conditions (e.g., currents, waves), sensor quality and
measurements, the technical condition and speed of the vehicle, and the
distance to the fish net. By developing a model - for example, a Bayesian
belief network (BBN) - the various conditions of relevant risk-influen-
cing factors can be represented and updated during operation of the
underwater vehicle (Hegde et al., 2018; Utne et al., 2018). Information
from the BBN can be used to represent uncertainty, and therefore for
choosing the Q and R values. This is subjected to further work.

8. Conclusions and Further Work

This work presented a method to generate a novel map representation,
termed a polar map, which can be used in robotic applications. The robotic
application examples given included a mapping scenario of a fish cage and
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an underwater SLAM case performed in a square tank. In both case studies,
the polar map was compared with an octomap, in terms of memory
consumption and computational effort. The polar map was shown to have
significantly lower memory consumption, and required minimal compu-
tational effort, compared to the octomap, meaning that it can enable large
amount of sensor readings and still be used on low-cost computer / circuit
boards. In aquaculture, polar maps can enable automatic inspection /
cleaning operations in fish cages, and has the potential to reduce the op-
erational costs and risks related to personnel and the environment. In
future works, it will be possible for other estimation algorithms to be
considered in the polar map, meaning that the Kalman filter could be
replaced with a particle filter or a Gaussian mixture estimation method, so
that multiple hypotheses can be obtained for each section. This would
increase the computational cost of the method; however, it would improve
the accuracy. Other methods might include using the polar representation
as a continuous representation through the use of Gaussian process oc-
cupancy maps. Another option for further work would be to integrate
custom-planned algorithms with the proposed mapping method. There
may be an advantage to including computational complexity in the gui-
dance algorithms by exploiting 2.5D representation. Furthermore, the fu-
sion of other sensors into the polar map, such as cameras, or short baseline
or different types of sonar sensors, can be explored by exploiting the
probabilistic representation of the polar map.
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ABSTRACT
This paper presents a filter for underwater positioning in

an aquaculture environment with demanding weather condi-
tions. The positioning system is based on acoustic transpon-
ders mounted at a net pen on the sea surface. The transpon-
ders are exposed to oscillations due to wave disturbance. This
will have an impact on the accuracy of the positioning system.
An extended Kalman filter (EKF) solution has been proposed in-
cluding a wave motion model integrated with the pseudo-range
measurements from the transponders. Simulations show that the
proposed filter compensates well for the disturbances.

1 Introduction
1.1 Background and Motivation

Recently, there has been an increased interest in exposed
aquaculture due to environmental and spatial limitations in more
sheltered areas [1]. Remoteness and harsh environments moti-
vate the use of Underwater Vehicles (UV) in inspection, main-
tenance, and repair (IMR) operations. Positioning and localiza-
tion are key technologies for enabling such operations. Global
Navigation Satellite Systems (GNSSs) cannot be used under wa-
ter. However, other technologies like long baseline (LBL), short
baseline (SBL) and ultra short baseline (USBL) systems are
available [2]. LBL systems use the same principle as GNSS,
namely multiple transponders measuring the distance to a re-
ceiver, also known as a pseudo-range measurement. Current LBL

systems are expensive and mounted on the sea-bed, which is not
optimal in an aquaculture environment. In the aquaculture in-
dustry, the overall goal is to reduce on-site manual operations for
increased safety and reduced risk for workers [3]. Moreover, to
keep the cost of installation, operation and maintenance low. One
way of doing this is increased use of remote operations and UVs.
For efficient UV operations, there is a need for an underwater
positioning system. The configuration of an acoustic transponder
system for range measurements is a key challenge and is further
assessed. The main idea behind this work is to analyze and re-
duce negative effects that motion in near surface transponders has
on a positioning system. The motion is caused by environmen-
tal disturbances like current or waves and can create large errors
in the position estimate if not contracted. It is essential that this
error is as small as possible to ensure an accurate positioning of
the UVs.

1.2 Literature review
There has been a considerable amount of work in navi-

gation, which is meant as finding a position relative to some
reference [4]. Especially for GNSS/Inertial Navigation System
(INS) [21]. However, the environmental disturbance like ocean
current and waves on transponders has not been discussed, and is
highly relevant in an aquaculture setting near the ocean surface.
Surveys on underwater navigation [5, 6] discuss the sensors
available, their accuracy and how state estimation can be applied
to fuse sensor information together using both dead reckoning
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sensors like accelerometers and gyros to find orientation. A
celebrated nonlinear filter for the latter is the complementary
filter from [7] and later enhanced in [8] to an attitude observer. A
widely used extended Kalman filter (EKF) approach is presented
in [9]. Other, various translation observers using Kalman filter
(KF) approaches are discussed in literature like [10]. Examples
are Unscented KF, Ensemble KF and particle filter. However,
in general, the nonlinear KF’s are not proven globally stable in
estimating position by pseudo ranges. Recently there has been
a suggestion to transform the problem into a quasi-linear. The
transformation was first suggested in [11]. Use for KF was
first developed in [12], which made the implemented observer
Global Exponential Stable (GES), but the transformation is
optimal with noisy measurements. This can be resolved by
using the Exogenous KF (XKF) presented in [13]. The KF using
the quasi-linear model are here used as a linearization point
for the next KF inheriting the stability properties and the noise
reduction. A complete implementation for navigation using
pseudo-range measurements is presented in [14]. Later, it has
been implemented in combination with attitude filter in [15]
using the attitude filter from [8]. However, this implementation
dose not account for the biases in LBL systems. This is imple-
mented using the three stage filter in [16, 17]. Study of wave
motions and sea states has been a wide research field. Examples
can be found in [18–20].

1.3 Main Contribution and Structure
The main contribution of this paper is the integration of a

wave filter model with pseudo-range measurements. This is an
important contribution since it enables mounting of transponders
near the ocean surface on aquaculture structures, without hav-
ing the need to calculated the position in real time with GNSS.
The solution is simulated with measurements from a LBL system
setup near the ocean surface, assuming that the mean transpon-
der position is known and there are only oscillating perturbations.
Each measurement correlates and can, therefore, be estimated as
a single oscillating term.

This paper will first present the problem statement in Sec-
tion 2. Further in 3, will necessary mathematical models for the
problem at hand be designed. From this will Section 4, develop
an extended Kalman filter for each case. Results and discussion
are presented in sections 5 and 6, followed by conclusion in Sec-
tion 7.

1.4 Notation
(·)T is the transposed of a vector or matrix, and || · || is used

as the euclidean norm. As the set of real numbers are noted as
Rn×m with the dimension n×m, where no indication R, implies
m = 1 and n = 1. 0p×q and Ip×q are the zero and identity ma-
trix respectively, with dimension p× q. Position will always

FIGURE 1: TRANSPONDER CONFIGURATIONS

be denoted as a vector p =
[
x y z

]T ∈ R3×1 where x is surge,
y is sway and z is heave. Wave motion vector will be desig-
nated pw =

[
xw yw zw

]T ∈ R3×1. N(0,σ2) is a Normal Gaus-
sian distribution with variance σ2 and mean zero. ˆ(·) is the no-
tation for an estimated variable. For a matrix A and value xi,
A = diag(x1, . . . ,xn) ∈Rn×n means a matrix with diagonal terms
x1 to xn and zeros everywhere else. For a function h(x) and vector
x, ∂h(x)

∂x is notation for the partial derivative.

2 Problem Statement
The problem of oscillating transponders will be studied in

an aquaculture environment around a net pen as seen in Figure
1. Two cases will be discussed. In the former case denoted as A,
transponders are rigidly mounted, which is the standard case for
a LBL system. In the latter case denoted as B, are transponders
mounted near the ocean surface. The case is illustrated in Figure
1. The main difference in these configurations is the near ocean
surface disturbance’s from wave motion. Here will two different
measurement equations describe this deviation. The following
section presents these and their assumptions. It should also be
mentioned that the reference frame has an origin in the fish cage
center at the mean sea surface. Positive z-axis points towards
the sea floor and x-axis north. The y-axis complete the right
hand, meaning eastward. This is known as the North-East-Down
(NED) reference frame [20].

3 Mathematical Modeling
This section presents the mathematical models applied in the

EKF. Both measurement and process model equations, are given
in this section.

2 Copyright © 2017 ASME
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3.1 Measurement Model
Case A: Rigidly Mounted Transponders

Equation (1) assumes that the position for each transponder
is known, as stated in Assumption 1. The measurement model is
the same formulation as in [16].

yi =
1√
β
(||p− p̆i||+ εm) = hi(x) (1)

Each pseudo-range measurement from transponder i is noted
as yi ∈ R. The ROV and transponder position are p and p̆i, re-
spectively. β ∈ R is a multiplicative bias which account for bias
in the speed of sound in water as discussed in [16]. Measure-
ment noise for each transponder is written as εm ∈R in N(0,σ2

m).

Assumption 1. The transponder position p̆i is known.

Case B: Surface Mounted Transponders
The measurement model applied for each pseudo-range

from transponder ”i” with position p̆i is modeled in the following
equation:

yi =
1√
β
(||p− p̆i− p̆wi||+ εm) = hi(x) (2)

Equation (2) is similar to (1) with the exception of wave motion
term, denoted as p̆wi ∈ R3×1. It assumes that the mean transpon-
der position is known as p̆i and it is subjected to time varying
oscillations, denoted as p̆wi. However, each motion ˙̆pwi can cor-
relate when placed in a pattern around a fish cage. So estimating
all of them will be a waste of computational power. Also, the
assumption of uncorrelated process noise in the KF would be vi-
olated leading to suboptimal estimates. Therefore, it is simplified
to only one wave motion vector pw, as following:

yi =
1√
β
(||p+ pw− p̆i||+ εm) = hi (3)

This rough simplification can be justified not only by corre-
lating motion and computational power. If we assume another
wave motion spectra different from the transponders, can pw
estimate the oscillations that would be induced in the position
estimate without it. Effectively, this can lead to an increased
performance without adding too many additional computations
or sensors. Finding this spectrum will not be performed here,
but a simulation example will be presented in Section 5.

Assumption 2. The mean transponder position p̆i is known
and the wave frequency spectrum from each transponder can be
modeled as a single wave spectrum denoted pw.

Mark that for both Case A and B the full measurement vector is
denoted as y = h(x) =

[
h1 . . . hm

]T ∈ Rm×1.

3.2 Process Model
Case A and B: Kinematic Model

The EKF process model requires kinematic equations of mo-
tion of the vehicle. This model will be the same for Case A and
B. The velocity will be modeled as a random walk as following:

ṗ = Ap p+ εp (4)

Where εp ∈ R3×1 is N(0,σ2
p) and Ap = 03×3. Random walk

is used because this case study only takes into account pseudo-
range measurements. The velocity is not estimated in this case.
It should be remarked that it is simple to also include a velocity
state by including accelerometer measurements directly in the
process model [14]. This would also improve the position esti-
mates, of course depending on the quality of the accelerometer.
However, since this is not the purpose of this paper, it is not taken
into account. Only having position estimates also make it possi-
ble to further include this in a loosely coupled observer [21].

Case A and B: Bias Model
The sound speed bias in water, β , which are both in Case

A and B will be modeled in the same manner as [16], ie. as the
following:

β̇ = Aβ β + εβ (5)

Where Aβ = 0 and εβ ∈ R is N(0,σ2
β ). Note that this is a

random walk process.

Case B: Second Order Wave Motion Model
The goal of the wave motion model presented in this section

is to separate the low and wave frequency motions. This is illus-
trated in Figure 2. The blue dashed line is the combined low and
wave frequencies, while the red solid and yellow dash-dot line
are the separated low and wave frequency motions, respectively.
Here is the second-order wave model used for the separation of p
and pw given in Equation (3). This model originated in [19] and
can also be found in newer literature [20]. The model is given as
following:

[
ζ̇
ṗw

]
= Aw

[
ζ
pw

]
+Ewεw ∈ R6×1 (6)
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where εw ∈ R3×1 and each noise term is N(0,1). Further,
the matrices are defined as the following:

Aw =

[
03×3 I3×3
−ω2

0 I3×3 −2λω0I3×3

]
,Ew =

[
03×3
Kw

]

where Kw = diag(σw1,σw2,σw3) ∈ R3×3.

4 Extended Kalman Filter’s Design
The general structure of the EKF for pseudo-range measure-

ments is described in Figure 3 [10]. The filter estimate feedback
x̄k, generates a linearized measurement matrix called Ck. Initially
in the first iteration k = 0, a guess x̄0 is used. The process and
measurement equations will in this section be put together to fit

the cases. Discrete process model will be defined as following:

ẋk = Axk−1 +Dεk (7)

where xk is the state vector, A is the transition matrix, D is the
noise driver matrix and εk is the noise vector with uncorrelated
white noise terms which is N(0,σ2). The process model of Case
A will be on state space form from both Equation (4) and (5).
These leads to the following state and noise vectors:

x =
[

p
β

]
,ε =

[
εp
εβ

]

From this it is easy to find the A and D matrix, remark that
it needs to be discretized before use in the EKF. Process model
of Case B is only an extension of the previous system. The state
and noise vectors are defined as following:

x =




ζ
pw
p
β


 ,ε =




εw
εp
εβ




Also here are the corresponding A and E matrices easy to derive
and is therefore not stated.

For the EKF it is also necessary to have a measurement ma-
trix Ck. This is found by taking the Jacobian of Equation (1) for
Case A and (3) for B. This is defined as following:

Ck =
∂h(x)

∂x
=




Ck,1
...

Ck,m


 ∈ Rm×10

where m is the number of pseudo-range measurements. For Case
A will the Ck matrix be:

Ck,i =
∂hi(x)

∂x

∣∣
x̄

=

[
p−p̆i√

β ||p−p̆i||
− ||p−p̆i||

2β
3
2

]∣∣
x̄ ∈ R1×4

And for each row in Case B it is as following:

Ck,i =
∂hi(x)

∂x

∣∣
x̄

=
[

∂hi
∂ζ

∂hi
∂ pw

∂hi
∂ p

∂hi
∂β

]∣∣
x̄
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Where

∂hi

∂ζ
∣∣
x̄ = 01×3

∂hi

∂ pw

∣∣
x̄ =

∂hi

∂ p

∣∣
x̄ =

p+ pw− p̆i√
β ||p+ pw− p̆i||

∣∣
x̄

∂hi

∂β
∣∣
x̄ =−

||p+ pw− p̆i||
2β

3
2

∣∣
x̄

Now, that both process and measurement model are derived, can
the EKF be stated. The equations are as following [22]:

Kk = P̄kCT
k (CkP̄CT

k +Rk)
−1

x̂k = x̄k +Kk(yk−h(x̄k)))

Pk = (In×n−KkCk)P̄k

x̄k = Ax̂k−1

P̄k = APk−1AT +DT QD

where Q ∈ Rn×n and R ∈ Rm×m are the process and sensor
noise covariance matrices, respectively. Further, corresponds n
and m to the number of states and measurements. Pk is the co-
variance matrix. Note that ¯(·) mark posterior estimates. Also, it
should be noted that the first iteration, k = 0, are the initial values
x̄0 and P̄0 used.

4.1 Observability Analysis
Observability means that we can recreate uniquely all states

from the measurement vector y. If this is the case, then the ob-
servability matrix of the pair (A,C) have full rank, which means
rank(O) = n, where n is the number of states. The matrix is
defined as following [10]:

O =




Ck
CkA

...
CkAn−1


 (8)

Assumption 3. m ≥ 4 pseudo-range measurement and all
transponder positions is not co-planar.

Lemma 1. The pair (A,C) is observable for both Case A and B.

Proof: It is trivial to calculate the observability matrix in
Equation (8). For case A and B, investigating the rank shows that
rank(O) = 4 and O = 10, respectively. That is if Assumption 3
is satisfied. From the full rank of Equation (8) in both Case A
and B, can observability be concluded. q.e.d.

5 Case Study
This section will present a simulation study of Case A and B.

The study includes the two EKF developed in Section 4 and they
are implemented in Matlab. The two filters are compared and
discussed. The number of transponders are m = 4 and are placed
such that they are not co-planar with the following positioning:

p̆1 =
[
15 0 1

]T
, p̆2 =

[
0 15 20

]T

p̆3 =
[
−15 0 5

]T
, p̆4 =

[
0 −15 16

]T

The position of the receiver at the ROV is kept constant at
p =

[
1 2 3

]T . The measurements for Case A are generated from
Equation (1) and correspondingly (3) for B. To simulate the wave
motion pw in Equation (3), a second order wave model was used.
Parameters in the wave model are set to ω0 = 0.8, λ = 0.1017
and σwi = 0.8367 for i = 1,2,3. This means that the wave fre-
quency estimated, is defined for a spectrum in each direction.
The speed of sound bias in water is set to β = 0.95 for both
cases. The measurement noise is σ2

m = 1e− 2. The time step
used for discretization and simulation is ∆t = 0.2.

For the initialization of the EKF in Case A is x̄0 =
[
01×3 1

]T .
Further, sensor noise matrix is R = diag(σ2

m,σ2
m,σ2

m,σ2
m) and the

process noise is Q = diag(σ2
p ,σ2

p ,σ2
p ,σ2

p ,σ2
β ) ∈ R4×4. Here are

σ2
p = 1e−4 and σ2

β = 1e−6. The covariance matrix is initial set
to P0 = diag(0.1,0.1,0.1,1e−4) ∈ R4×4.

For Case B the model is the initial states set to x̄0 =[
01×9 1

]T . The sensor noise covariance matrix R is the same
as in Case A, but the process noise covariance matrix is Q =
diag(11×3,σ2

p ,σ2
p ,σ2

p ,σ2
p ,σ2

β )∈R7×7. The inital covariance ma-
trix is set to P0 = diag((1e− 3)1×6,(0.1)1×3,1e− 4) ∈ R10×10

where the subscripts denote dimensions.

RMS x[m] y[m] z[m] beta[]

EKF Case A 0.009 0.009 0.0336 0.0013

EKF Case B 0.013 0.013 0.049 0.0014

TABLE 1: RMS ERROR FOR CASE A and B

6 Simulation Results and Discussion
The simulation results from the case study in the previous

section are presented in Table 1 and Figure 5-4. Both case A and
B are run for 300 seconds.

Table 1 presents the Root Mean Square (RMS) for the posi-
tion and bias estimation. It is apparent that the RMS performance
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FIGURE 4: ESTIMATED STATES WITH EKF INCLUDING WAVE FILTER.

is similar for the cases, with naturally slightly worse performance
in Case B. Both A and B have a small RMS in surge, sway and
heave. However, heave has a larger RMS, which is due to the
short transponder placement in z-direction. The estimated biases
have very similar RMS performance.

Figure 4 presents how the wave filtering implementation in
Case B separates the wave and low-frequency motion in sway
and heave as exemplified in Figure 2. Figure 4a has one plot
showing the combination of real low and wave frequency mo-
tions, y+ yw, shown by a solid blue line. The other plot in the
figure is estimated low-frequency motion, ŷ in a red dashed line.
From this, we can see that the estimate converges smoothly to
the real position at y = 2, as defined in the simulation study. Fur-
ther, the wave frequency motion is filtered away. It is impor-
tant to note that the assumed noise variance is relatively low at
σ2

p = 1e− 4. Meaning that the model is trusted more than the
measurements. This is good in this case since ṗ = 0. Figure 4b

shows the simulated wave frequency yw against estimated ŷw in
the blue solid line. Since the ŷw is very similar to the simulated
yw means that we have a good estimate. The resulting estimates
in heave motion are shown in Figure 4c and 4d. Here does also
the heave position estimate, ẑ converge towards z = 3. The con-
vergence time seems to be a bit longer, but it can be explained
by the transponder positions and that it is the state furthest away
from the initial condition at z̄ = 0. The surge results are left out
here since the result is very similar to the results in sway. Figure 5
shows how the covariance matrix converges towards steady state
values. This effectively means that the filter converges. However,
since the EKF is not proven globally stable, this can’t be guaran-
teed. But this simulation shows how well the wave motion can
be estimated.
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7 Conclusion and Further Work
In this paper, a filter for underwater positioning in an aqua-

culture environment is presented. Demanding weather condi-
tions will impose oscillations on the transponders near the sur-
face area. An EKF solution has been proposed including a wave
motion model integrated with pseudo-range measurements. This
was simulated in Matlab with a predefined case study. The results
show that the filter compensates for the wave motion and gives
almost the same performance as a system without environmental
disturbances. Further work will include experimental analyzes
of real wave motion spectra. Fusion of more sensors integrated
into the same filter will increase performance.
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