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Abstract

The alarm system plays a vital role to grant safety and reliability in the process
industry. Ideally, an alarm should inform the operator about critical conditions only,
and a set of corrective actions should be associated with each alarm. During alarm
floods, the operator may be overwhelmed by several alarms in a short time span.
Crucial alarms are more likely to be missed during these situations. Poor alarm
management is one of the main causes of unintended plant shut down, incidents and
near misses in the chemical industry. Most of the alarms triggered during a flood
episode are nuisance alarms -i.e. alarms that do not communicate new information to
the operator, or alarms that do not require an operator action. Chattering alarms -i.e.
that repeat three or more times in a minute, and redundant alarms -i.e. duplicated
alarms, are common forms of nuisance. Identifying nuisance alarms is a key step to
improve the performance of the alarm system. Advanced techniques for alarm
rationalization have been developed, proposing methods to quantify chattering,
redundancy and correlation between alarms. Although very effective, these
techniques produce static results. Machine learning appears to be an interesting
opportunity to retrieve further knowledge and support these techniques. This
knowledge can be used to produce more flexible and dynamic models, as well as to
predict alarm behaviour during floods. The aim of this study is to develop a machine
learning-based algorithm for real-time alarm classification and rationalization, whose
results can be used to support the operator decision-making procedure. Specifically,
efforts have been directed towards chattering prediction during alarm floods.
Advanced techniques for chattering, redundancy and correlation assessment have
been performed on a real industrial alarm database. A modified approach has been
developed to dynamically assess chattering, and the results have been used to train
three different machine learning models, whose performance has been evaluated and

discussed.
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Chapter 1

Introduction

1.1. Background

The alarm system has always played a vital role to grant safety and reliability in the
process industry. Before the advent of the DCS, the alarms were hard-wired (Katzel,
2007). Installing a new alarm was expensive (approx. 1000 $/alarm) (Katzel, 2007),
and few alarms could be installed due to the limited space on the annunciator panel
(Shaw, 1993). For these reasons, only crucial alarms were installed, and the need for
a new alarm must have been carefully justified.

Nowadays, the alarm system is integrated with the DCS (Shaw, 1993; Katzel, 2007).
Adding an alarm does not involve connecting cables and purchasing new hardware
anymore (Shaw, 1993). Basically, installing new alarms has become “free”. This has
tremendously improved the flexibility of the alarm system, but some problems have
arisen as well.

For instance, in modern industries, the ease of configuring new alarms has led to a
large number of alarms being installed. Often, many of these alarms are added without
proper rationalization (Kondaveeti et al, 2010). As a result, the workload for the
operator (i.e. the number of alarms to address) is often unbearable. Alarm floods and

nuisance are problems that affect most of the modern chemical plants.



During alarm floods, the operator may be overwhelmed by hundreds of alarms in a
short time span; in these situations, it is impossible to provide a timely response, and
crucial alarms are more likely to be missed (Laberge et al., 2014). Nuisance alarms do
not communicate new information to the operator, or do not require an operator
action (ANSI ISA, 2016). Chattering alarms -i.e. that repeat three or more times in a
minute, and redundant alarms -i.e. duplicated alarms, are common forms of nuisance
(Kondaveeti et al, 2010). Typically, most of the alarms triggered during a flood
episode are nuisance ones (Kondaveeti et al, 2010; ANSI ISA, 2016). Identifying
nuisance alarms is a key step to improve the performance of the alarm system.

Poor alarm management is one of the leading causes of unintended plant shut down,
accidents, and near misses in the chemical industry (Stanton and Barber, 1995; Health
and Safety Executive, 1997). Recently, standard manuals have been published
(EEMUA, 2013; ANSI ISA, 2016), providing guidelines for effective alarm management
and nuisance reduction. In addition, advanced alarm management techniques have
been developed, proposing methods to quantify chattering, redundancy and
correlation between alarms (Kondaveeti et al, 2010, 2013; Yang et al, 2012). But,
although effective, these techniques produce static results. A chemical plant is not a
static element, and so is the alarm system. In this “multivariate” context, the need of a
dynamic and adaptive model is real.

We now live in the Digital Era; computational capabilities and data analysis
techniques have extremely improved over the past few years. Industry 4.0,
Digitalization and Internet of things (IoT) are deeply affecting the chemical industry
(Raviand Wu, 2016; Reis and Kenett, 2018). An immense amount of data can be stored
in Cloud services and server farms. Still, extracting information and acquiring
knowledge from raw data are not trivial tasks; unfortunately, data are stored but
(often) not further analysed (Han, Kamber and Pei, 2012). Thus, the chance to acquire
further knowledge from data is missed.

In this context, Machine Learning techniques have progressively captured the
attention of the international scientific community (Liu et al., 2018). These algorithms
can “learn” from past data, and the knowledge achieved during the learning phase (i.e.
training) can be used to predict future events (Brink, Richards and Fetherolf, 2016);
hence, Machine Learning appears to be a good chance to use historical data to develop

dynamic and flexible models.



1.2. Objective

The aim of this study is to develop a machine learning-based algorithm for real-time
chattering prediction during alarm floods. In general, the method proposes an
interesting opportunity to analyse historical alarm data and to extract knowledge
from them.

The analysis includes the application of state-of-the-art techniques developed by
Kondaveeti et al. (2010, 2013); this has been done to show the performances of the
most recent alarm management techniques. From the results of these techniques, the
work has proceeded through the development of a new, dynamic, method to assess
chattering. Finally, the Machine Learning models have been developed and tested on

their ability to predict chattering alarms.
The main objectives of this master’s thesis can be summarized as follows:

1. the application of advanced alarm management techniques on a real industrial
alarm database.

2. the development of a method to dynamically assess alarm chattering;

3. to use the results of the method mentioned above for training three different
Machine Learning models: Linear, Deep and Wide&Deep;

4. to evaluate the capability of the models to predict alarm chatter.

1.3. Approach

A case study approach has been used in this thesis. All the analyses described in the
present work have been performed on a real industrial alarm database, which was
provided by the Norwegian chemical company Yara. Figure 1.1 describes the analyses’
workflow.

Firstly, the database has been studied and the main issues identified; time has been
spent to become familiar with the database and with the plant layout. Secondly, the
original database has been modified, and a new, more convenient, database has been
created (Step 1 in Figure 1.1). Later, advanced alarm management techniques

proposed by Kondaveeti et al. (2010, 2013) have been performed (Step 2).



Then, the original chattering index approach has been modified into a new, dynamic,
method to assess alarm chatter (Step 3).

Finally, the results of the Dynamic chattering index method, along with alarm data
from the original alarm database, have been used to train and evaluate three Machine

Learning models (Step 4).

[ Alarm database ]

[Binary Alarm Database}

/ \ Step 2

ASCM Chattering Index HDAP
(W)
ﬂ Step 3

Dynamic Chattering Index

W) )

ﬂ Step 4

Machine Learning
(Tensor Flow)

Figure 1.1 - Analyses workflow

In Figure 1.1, blue objects depict methods that have already been discussed in
previous works (Kondaveeti et al, 2010, 2013; Hu et al,, 2015). The green items
represent original methods, developed during the present work.

The analyses have been performed using python as a programming language.
PyCharm 2019.2 IDE has been used.

It is worth noting that the approach and the proposed method are limited to the case
study under assessment. The results of the Machine Learning models are strictly
related to the features of the plant under assessment (ammonia production,
continuous operation, alarm flood episodes). Similarly, the method presented in this
thesis has been developed with the sole purpose of predicting alarm chatter; using the

same method to predict other metrics may not lead to the same results.
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1.4. Outlines

This work includes seven chapters and three appendices. Chapter 2 describes the
theoretical background of the present work, and it comprises two sections. In the first
section, the key concepts of “alarm” and “alarm system” are described, as well as state-
of-the-art techniques for alarm management. In the second section, Machine Learning
is introduced. Chapter 3 focuses on the alarm database, which represents the case
study of the present work. Furthermore, a brief description of the chemical plant
associated with the alarm database is provided. In Chapter 4, the analyses performed
during this thesis work are described in detail. Specifically, the first sections of the
chapter focus on the application of the techniques proposed by Kondaveeti et al.
(2010, 2013), and on the development of the Dynamic chattering index. The final
section of the chapter focuses on the Machine Learning simulations. In Chapter 5, the
results obtained from the analyses described in Chapter 4 are revealed. The results
are discussed and evaluated in Chapter 6. Additionally, the limitations of the methods
are highlighted and, finally, recommendations for further works are provided. In the
final chapter (Chapter 7), the findings are summarized and framed into the context
outlined in section 1.1.

The three appendices include a list of acronyms (Appendix A), the code used for the
Machine Learning simulations (Appendix B) and the tables that are either too large to

be displayed in the main body or that are believed to be less relevant (Appendix C).






Chapter 2

Theoretical background

2.1. Introduction

In the next two subchapters, the key concepts about the alarm system and Machine

Learning are presented.

In the first subchapter, the alarm system is described. First, the definitions of “alarm”
and “alarm system” are provided, including their main features and related issues (e.g.
nuisance). Secondly, the alarm management lifecycle is introduced, and how to
properly manage and maintain the alarm system is described. Thirdly, an overview of
the most significant metrics to evaluate the performance of the alarm system is
provided. Unless otherwise specified, ANSI/ISA - 18.2 (2016) has been used as the
main reference in these sections. Finally, state-of-the-art techniques for alarm

management and rationalization are presented.

In the second subchapter, Machine Learning is introduced; including origins,
development and actual applications. Next, the most important metrics to evaluate the
performance of a Machine Learning classification algorithm are introduced. Finally,

the models and the software used in this thesis are described.



2.2. The alarm system

According to the definition provided in ANSI/ISA - 18.2 (2016), the alarm system is a

collection of hardware and software that detects an alarm state, communicates the

indication of that state to the operator, and records changes in the alarm state.

The alarm system represents a communication channel between the plant and the
operator. During abnormal events, situations may arise where automatic systems (e.g.
BPCS-Basic Process Control System, SIS-Safety Instrumented System) are not capable
to restore normal process conditions; human intervention is needed to handle these
situations. But, the first step to address a problem is being aware that a problem
exists; through the alarm system, the operator is informed about abnormal process
conditions or equipment malfunctions. The operator him/herself is part of the alarm
system and can affect its performance. A well designed and reliable alarm system is
an essential condition to grant a safe and stable plant.

A more detailed description of the alarm system is presented in Figure 2.1; arrows

represent the dataflow between the elements of the system.

« Alarm System >
Alarm Advanced
historian > alarm
applications
O
SIS
> Alarm External
Sensors > >
log systems
| _C) ‘ o 10 [ : K
| BPCS | ]
Final N HMI
control »
elements Packaged | -
)« o| 110 [ 7" systems [*
: Y
| ,| Panel | :/Op;ator
—/
Process Control & safety systems Interface

NOTE Other packaged systems (i.e., fire and gas systems) can be included in the control system.

Figure 2.1 - Alarm system dataflow (ANSI ISA, 2016)



From the “Process”, data are sent to the “Control & safety system”, which comprises
the Safety Instrumented System (SIS), the Basic Process Control System (BPCS), the
“Packaged systems” and the “Panel”. Each element of the “Control & safety system”
can communicate with the others. Then, data are sent to the “Interface” section, where
alarm data are registered and stored (Alarm log and Alarm historian) and, finally, sent
to the operator through the Human Machine Interface (HMI -e.g. a computer screen
and a console). A two-way communication exists between the process and the
operator, who does not passively receive information; the operator can affect the
process conditions through the HMI, the panel and the packaged systems.

The alarm system is not a static element, it ages and degrades like all the other
elements inside a plant. Thus, it needs to be managed and maintained to ensure good
performances over time. Before going deeper into the description of the alarm system

management, a fundamental element must be described: the alarm.

2.2.1. The alarm

According to the definition provided in ANSI/ISA - 18.2 (2016), an alarm is

an audible and/or visible means of indicating to the operator an equipment

malfunction, process deviation, or abnormal condition requiring a timely response.

It is worth noting that each alarm requires a timely response. If an alarm cannot be
solved (i.e. no actions available or not enough time to respond), the alarm is ineffective
and unnecessary. Typically, during an abnormal event, an alarm transitions into
different states. The state of an alarm defines whether the alarm is active or not, as
well as whether the operator has acknowledged the alarm. Figure 2.2 depicts the

possible transition paths for the majority of the alarms.



Unacknowledged alarm
Process: Abnormal
Alarm: Active
Ack: Unacknowledged

A

Normal
Process: Normal
Alarm: Not Active

Ack: Acknowledged

Abnormal
condition

Re-alarm
Abnormal

condition

Cc

Acknowledged alarm
Process: Abnormal
Alarm: Active
Ack: Acknowledged

Return to Acknowledge
normal

condition

Acknowledge

normal
condition

D

RTN unacknowledged
Process: Normal
Alarm:Not Active

Ack: Unacknowledged,

5 / g ——  Designed / x
/ /‘\ K esigne un-suppression i
F

e Remove Return to
from service G service

E Un-shelve

Suppressed

Shel\{ed by design Out Of service
Process: N/A . Process: N/A
Alarm: N/A PIOBRER. ¥ Alarm: N/A
; Alarm: N/A Qi

Ack: N/A Ack: N/A Ack: N/A

NOTE 1 States E, F, and G can connect to any alarm state in the diagram.
NOTE 2 The dotted line indicates an infrequently implemented option.
NOTE 3 N/A indicates not applicable or that the condition is not relevant in the alarm state.

Figure 2.2 - Alarm state transition diagram (ANSI ISA, 2016)

During normal operations, an alarm is not active, and its state is represented by the
circle labelled as “A” in Figure 2.2. An abnormal event may occur, and the alarm state
switches to “B” active and unacknowledged (because the operator response to an
alarm is not instantaneous). Then, the alarm state may proceed along two different

paths:

1. the alarm returns to normal condition without being acknowledged (B = D);

2. the alarm is acknowledged by the operator (B = C).

In case 1, the control system (e.g. BPCS, SIS, etc.) solved the abnormal event without
human intervention, and before the operator has acknowledged the problem; the
alarm state is not active and unacknowledged (C). Then, when the operator
acknowledges that the alarm has been solved, the alarm state returns to “A”, or, if an

abnormal event occurs again, the alarm state returns to “B”.
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In case 2, the operator acknowledges the active alarm (typically pressing a button)
before normal process conditions are restored; the alarm state is active and
acknowledged. Then, the process may return to normal operation (A) or a new
abnormal event may arise (B). A special case is the transition from “C” to “B”, this
happens when an alarm has been acknowledged but the situation does not return
normal in a reasonable time. In this situation, an alarm may be built to re-activate after
a pre-defined amount of time.

Circles “E”, “F” and “G” represent special cases of alarm states:

e “Shelved”: temporarily suppressed by the operator;

e “Suppressed-by-design”: temporarily suppressed based on plant operating
condition (i.e. start-up, maintenance, tests, etc.);

e “Out-of-service”: manually suppressed and removed from service (e.g. for

maintenance).

As previously argued, timing is a key concept in managing alarms. A typical alarm

response timeline is described in Figure 2.3.

Normal Unacknowledged Acknowledged alarm Return-to

(A) alarm (B) (C) normal (D)

— i =9 l - P e
~ allowable response tlme/ ~
process response

_l_ consequence ; ™

threshold |\ w:thout‘gperator ~

process

measurement

Process Variable
|
|

process —7
Jeaporso t? deadband
operator action del
—t— operator elay
takes action -
i / alarm setnoint
-4 ack operator process alarm deadband ¥ __ | "\ | _
delay |response deadtime
’ 3 delay l< > | Lrocess response time l<
| | 1 1 [ | l ]
0 1 1 1. 1 1 1 1 1
Time

Figure 2.3 - Alarm response timeline (ANSI ISA, 2016)

The figure above represents a process value that increases over time (solid line);
alarm states at different times (according to Figure 2.2) are described on the top of
Figure 2.3. When the process value crosses the alarm setpoint (i.e. an alarm design
attribute, see 2.2.1.2), the alarm state turns to active. Then, after a certain amount of

time, the operator acknowledges the alarm; the amount of time between the alarm

11



and the acknowledgment is the ack delay. After the operator has acknowledged the
alarm, he/she takes action to return to normal operations. The amount of time
between the acknowledgement and the action is the operator response delay, which is

a function of several factors, such as:

e operator workload;

e the complexity of determining the operator action;
e the complexity of the operator action;

e operator awareness and training;

e operator console clarity and ergonomics.

The sum of the ack delay and the operator response delay is the actual response time,
which is bounded from above by the allowable response time. If an action is taken after
the allowable response time the consequence will occur in any case. Process deadtime,
rate of change of the process variable and the difference between the consequence
threshold and the alarm setpoint are characteristics that influence the allowable
response time. If the correct actions are taken in time, the process variable will start to
decrease after the process dead time, eventually reaching the alarm setpoint again.
Typically, the alarm does not return-to-normal immediately after crossing the
setpoint, a deadband delay is set to prevent the alarm from turning on and off
frequently if the process variable fluctuates around the alarm setpoint.

If the wrong actions are taken (or the correct actions are taken too late) the process

variable continues to increase, and the consequences occur (dashed line in Figure 2.3).

2.2.1.1. Nuisance alarm
According to the definition provided in ANSI/ISA - 18.2 (2016), a nuisance alarm is:

an alarm that annunciates excessively, unnecessarily, or does not return to normal

after the operator action is taken.

Basically, a nuisance alarm does not provide any new information to the operator, or
there are no possible actions to solve the alarms (Kondaveeti et al, 2010); thus, it
constitutes a distraction for the operator. It is mandatory to periodically assess and

reduce the number of nuisance alarms to grant a stable and efficient alarm system.

12



Examples of nuisance alarms are:
a. chattering alarms;
b. fleeting alarms;
c. stale alarms;

d. redundantalarms.
According to ANSI/ISA - 18.2 (2016), a chattering alarm

repeatedly transitions between the active state and the not active state in a short

period of time.

Within a few hours, or even minutes, a chattering alarm could be triggered hundreds
of times. Obviously, the operator has no chance to manage such a vast amount of
alarms. A rule of thumb to determine chattering behaviour is 3 or more alarm records
(from the same alarm) in one minute (Kondaveeti et al., 2013).

Fleeting alarms share the characteristic of rapid transition between the active and not
active state but, unlike chattering alarms, they do not do it repeatedly (i.e. with high
frequency). Stale alarms are alarms that stay active for a long time (e.g. more than a
day). Finally, redundant alarms are two or more alarms that always occur together

(e.g. they are associated with the same process variable).

2.2.1.2. Alarm types and attributes

Different types of alarm exist in a plant, for instance:

a. absolute alarm: alarm generated when the alarm setpoint is exceeded (e.g.
high-high, high, low, low-low);

b. discrepancy alarm: alarm generated by the difference between the expected

plant or device state to its actual state (e.g., when a motor fails to start after it
is commanded to the on state);

c. calculated alarm: alarm generated from a calculated value instead of a direct

process measurement;

d. instrument diagnostic alarm: alarm to indicate a field device or signal fault;

e. bad-measurement alarm: alarm generated when the signal for a process

measurement is outside the expected range;

f. adaptive alarm: alarm for which the setpoint is changed by an algorithm.

13



The definitions provided in the previous list are entirely drawn from ANSI/ISA - 18.2.

Furthermore, each alarm is characterized by a series of attributes, which define the

behaviour of the alarm within the control system. These attributes may vary

depending on the specific alarm type, and they include:

ISE

© o o

-

g.

alarm description;
alarm setpoint;
alarm priority;

alarm deadband;
on-delay or off-delay;
alarm group;

alarm message.

Each of these attributes is important, but some of them directly affect how the alarm

behaves during an abnormal event; a brief description is needed to further describe

these “special” attributes:

alarm setpoint: a threshold value that, when crossed, causes the alarm to

transition into the active state. The alarm setpoint greatly affects the alarm
performance, since it directly determines the allowable response time (see
Figure 2.3). The alarm setpoint determination must follow a clear and rational
method, that must consider the consequence threshold, the complexity of the

operator actions, the normal operating range, etc.;

alarm priority: as the name suggests, this attribute determines the urgency of

the alarm. It supports the operator to decide in which order the alarms should
be addressed. Priority is not just a matter of severity of the consequences;
allowable response time must be considered as well. Typically, three or four
priority levels are used. The alarm priority determination must follow a clear
and rational method and, ideally, most of the alarms should have low priority

levels, while only a few of them should have higher priority levels;

alarm deadband: Figure 2.4 clarifies the function of the deadband. The solid
line represents the process variable. When the value crosses the upper,
horizontal, solid line (“High Limit” in Figure 2.4 -i.e. the alarm setpoint) a

notification is sent to the operator. Then, due to measurement noise, the

14



process value crosses three more times the alarm setpoint value, but no
notification is sent to the operator; this is because of the deadband
(represented as the dashed, horizontal, line in Figure 2.4 -i.e. “High - DB”). If
the process value stays between the setpoint and the deadband, no notification
is sent to the operator. An accurate deadband setting can significantly reduce

the number of nuisance alarms;

First - Second
Indicates when an alert o
hotification \ wollkd have been sent if notification
opens there were no deadband. OpENS.
] |
1 |
1 |
] I
1 I
| ]
oo™ L1 b1 5
!1"\ A A N !/"\ A b H i
'y — o — S~ L I;Ih Limit
e f\ ---------------- \d ---------- High = DB
g First violation Firstviolation =~
[V starts here. ends here. Sacond violation
g starts here.
I
-
o
g
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Figure 2.4 - Deadband and setpoint (livelibrary.osisoft.com, 2020)

e alarm off-delay: a parameter that defines how long an alarm has to stay active

after the process condition has returned normal. It is similar to the deadband,
but it is based on a time value, instead of a process value. If an active alarm
crosses the setpoint (and an eventual deadband) and no off-delay is set, the
alarm turns not active. But, if an off-delay of one minute is set, the alarm stays
active one minute more, no matter if the process condition has returned
normal already. An accurate off-delay tuning can significantly reduce

chattering.

Alarm attributes are decided during the basic design phase of the alarm system (2.2.2
points C and D), and they are not static parameters. They can be “manually” changed
to address a known nuisance problem, or they can be programmatically changed

based on the current plant state (e.g. start-up, normal operation, etc.). Every time the
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alarm attributes are changed, the operator must be informed about the change. Every
change must be authorized and approved.

It is worth noting that alarm attributes can be changed also by advanced alarming
techniques, which is the scope of this thesis work. An example is the “Model-based
alarming” technique, according to which the alarms’ behaviour (e.g. attributes) can be
changed based on a model prediction if a reliable model is available. For instance, the
model could predict the plant state or the alarm behaviour, and it could change the

alarms attributes to adapt the alarm system to the upcoming conditions.

2.2.2. The alarm management lifecycle

The alarm system needs to be properly managed and maintained to ensure its
effectiveness. ANSI/ISA - 18.2 (2016) proposes a lifecycle-based alarm management,
which comprises ten stages and three internal loops; a schematic description of the
alarm management lifecycle is presented in Figure 2.5.

Either if a new alarm system is installed, or an existing one needs to be managed, the
alarm management lifecycle will provide a rational method to ensure an efficient

system.
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Figure 2.5 - Alarm management lifecycle (ANSI ISA, 2016)

It is worth noting that, according to “note 3” in Figure 2.5, that one can enter the alarm
lifecycle through the “Philosophy” stage (A), the “Monitoring & assessment” stage (H)

or the “Audit” stage (J). A brief description of each stage will now be provided:

A. Philosophy

the Philosophy stage constitutes the foundations of the whole alarm
management lifecycle. During this stage, a document must be drawn,
containing the criteria, definitions, principles and responsibilities of the alarm
management lifecycle. The alarm Philosophy provides the method that must
be followed by the other stages of the lifecycle to achieve their purposes.
Recommended/required topics that must be covered over the alarm
Philosophy are presented in Table C. 3. For example, the philosophy must
clarify the purpose of the alarm system, the methods for the alarm design (i.e.
how to calculate setpoints, deadbands, off-delay, alarm types, etc.), the basis

and the metrics used for alarm prioritization, the methods for monitoring and
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maintaining the alarm system, and much more. Basically, it provides the
guidelines on how to perform each stage of the alarm management lifecycle,

and it constitutes the natural entry point for new systems.

. Identification

during this stage, a collection of potential alarms is provided. The
identification method (i.e. how to quantify the need for a new alarm) must
follow the guideline presented in the Philosophy stage. An alarm may be
identified by formal methods (such as HAZOP, FMEA, P&ID reviews, etc.) or by
operational experience and plant knowledge. The output of the Identification

stage (list of potential alarms) is the input to the Rationalization stage.

. Rationalization

first, during the Rationalization stage, the need for each potential alarm must
be justified (it must be ensured that the alarm meets the criteria of the alarm
Philosophy). During the justification phase, it should be also verified that the
potential alarm does not duplicate an existing alarm, and that it will not
become a nuisance. If the alarm is consistent with the Philosophy, the alarm
setpoint is determined as well as the alarm priority and classification. The list

of partially determined alarms is then sent to the “Detailed design” stage.

. Detailed design

during this stage, the alarm if fully designed and determined. Additional alarm
attributes are specified (e.g. deadbands, off-delay, etc.), HMI is designed (e.g.
how the alarm is presented to the operator based on the priority, the state,
etc.) and advanced alarming is designed. The latter is used if the basic alarm
design is not sufficient to grant the performances required by the alarm
Philosophy. An example is the “Model-based alarming” technique, which was

introduced at the end of paragraph 2.2.1.

. Implementation

during this stage, the alarms are physically installed and tested. Finally, the

operators are trained.

. Operation

the alarm/the alarm system is operative.
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G. Maintenance
in this stage, the alarm is not operative because tests or reparation are needed.
Periodical maintenance on the alarm system is essential to sustain its

performance.

H. Monitoring & assessment

during this phase, the performances of the alarm system are monitored. Alarm
data are analysed, and performance metrics are produced (see 2.2.3 for more
details). If the effectiveness of the alarm system does not match the Philosophy
requirements, maintenance or changes to the alarm system may be required
(e.g. different alarm attributes, new alarms, advanced alarming techniques,
reparation, etc.). This is the natural entry point for existing alarm systems.
Furthermore, the “Monitoring & assessment” stage is the entry point for the
techniques discussed in this work; since the aim of this thesis is to provide a
method to address nuisance and enhance the alarm system performances. The

output of this stage is a list of suggestions to improve the performances.

I Management of change

in this stage, the changes identified during “Monitoring & assessment” are
discussed and approved. The output of this stage is a list of authorized

changes, which is fed to the “Identification” stage.

J. Audit

this is a separate stage of the alarm management lifecycle. It is periodically
conducted to preserve the efficiency of the alarm system and the alarm
management lifecycle itself. This is the only phase where modifications to the
Philosophy can be discussed and, eventually, approved. Audit stage may

highlight issues not recognizable by the “Monitoring & assessment” stage.

In Table C. 4, a concise description of the activities performed in each stage of the

alarm management lifecycle is provided, along with the inputs and the outputs.
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2.2.3. Performance of the Alarm system

During the “Monitoring & assessment” stage, the performance of the alarm system
must be monitored and evaluated against the Philosophy requirements. Various
performance metrics exist to assess the alarm system's effectiveness. All the metrics
are calculated from alarm data (i.e. an alarm database, a collection of alarm records)
and, usually, at least thirty days of alarm data are needed. The metrics suggested by

ANSI/ISA 18.2 are summarized in Table 2.1.

Alarm performance metrics
based upon at least 30 days of data

Metric Target value
Target value: very likely to be Target value: maximum

Annunciated alarms per time acceptable manageable
Annunciated alarms per hour per
operator console ~6 (average) ~12 (average)
Annunciated alarms per 10
minutes per operator console ~1 (average) ~2 (average)

Metric Target value

Percentage of 10-minute periods
containing more than 10 alarms ~<1%

Maximum number of alarms in a
10-minute period <10

Percentage of time the alarm
system is in a flood condition ~<1%

Percentage contribution of the top
10 most frequent alarms to the
overall alarm load ~<1% to 5% maximum, with action plans to address deficiencies.

Quantity of chattering and fleeting

alarms Zero, action plans to correct any that occur.
Stale alarms Less than 5 present on any day, with action plans to address.
Annunciated priority distribution 3 priorities: ~80% low, ~15% medium, ~5% high or

4 priorities: ~80% low, ~15% medium, ~5% high, ~<1% highest
Other special-purpose priorities) excluded from the calculation

Table 2.1 - Recommended alarm performance metrics summary (ANSI ISA, 2016)

A brief description of the metrics is presented below.

1. Average alarm rate per operator console

number of annunciated alarms per operator based upon one month of data (i.e.
thirty-day average). The following limits are suggested:

» acceptable: ~ 6 alarms per hour per operator (average);

* maximum: ~ 2 alarms per ten minutes per operator (average).
The thresholds presented above consider the experience of the operator and
the time needed to study the situation, to take corrective actions and to verify

that the situation has returned normal.
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2.

3.

Peak alarm rate per operator console

an operator cannot handle more than 10 alarms in a 10-minutes interval. Peak
alarm rate analysis consists in dividing the month into 10-minutes-spaced
intervals. For each interval, the number of annunciated alarms per operator is
calculated. The number of intervals containing more than ten alarms
represents the “Peak alarm rate per operator console”. The recommended
value is less than 1% (i.e. less than 43.2 ten-minutes intervals in a month).
“Peak alarm rate per operator console” and “Average alarm rate per operator

console” must be considered simultaneously.

Alarm floods

Alarm floods are periods of intense alarm activity. Hundreds (or even
thousands) of alarms may occur during a flood episode; in situations like this,
crucial alarms are more likely to be missed. The duration of an alarm flood is
variable; it starts when the alarm rate exceeds 10 alarms/operator per ten
minutes time interval, and it ends when the alarm rate returns normal (e.g. less
than 5 alarms/operator per ten minutes time interval). It is reccommended that
the alarm system should not experience floods for more than 1 % of the total

time.

Frequently occurring alarms

usually, in a chemical plant, hundreds of alarms are configured. However, only
a few of them are responsible for most of the total alarms count (i.e. from ten,
up to twenty alarms only are responsible for more than 70% of the total alarm
occurrences within the study period). Addressing these frequent alarms can
greatly enhance the alarm system performance. As a recommendation, the top
10 most frequent alarms (namely, ‘top 10 bad actors’) should not constitute

more than 5% of the total alarm occurrences.

Chattering and fleeting alarms

chattering and fleeting alarms have already been defined in 2.2.1.1. Chattering
alarms are usually in the list of the “Frequently occurring alarms”. Chattering
and fleeting alarms are not tolerated in any way. If chattering or fleeting alarms

are identified, actions must be taken to correct them.
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6. Stale alarms
stale alarms have already been defined in 2.2.1.1. There is no long-term
acceptance for these kinds of alarms, but it is tolerable to have less than five

stale alarms per day.

7. Annunciated alarm priority distribution

as it was already mentioned in 2.2.1.2, alarms with higher priority should be
annunciated less frequently compared to the ones with lower priority. The
“Alarm priority distribution” quantifies the consistency of the alarm

prioritization procedure.

2.2.4. Chattering, Redundancy and Correlation assessment

As previously argued, a key step to improve the performance of the alarm system is to
remove nuisance alarms (2.2.1.1 and 2.2.3) and to address frequently occurring alarms
(2.2.3). During the past years, advanced alarm management tools have been
developed to quantify chattering (Kondaveeti et al, 2010, 2013), redundancy and
correlation (Kondaveeti et al, 2010; Yang et al., 2012; Ahmed et al.,, 2013). These
techniques represent the foundations of this thesis work; a brief description of each

of them is presented in the next three paragraphs.

2.2.4.1. Chattering assessment: the chattering index ()

In section 2.2.1.1 a rule of thumb to identify a chattering alarm is defined as 3 or more
alarms in a minute. But the definition is vague, and no standard or guideline exists to
quantify the chattering behaviour of an alarm. Kondaveeti et al (2013) proposed a
method based on run length distributions to quantify alarm chattering. The method

follows 5 steps:

binary alarm database creation;

run length (r) calculation;

Run Length Distribution (RLD) calculation;
Discrete Probability Function (DPF) calculation;

S

chattering index (y) calculation.
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Each step will be described in detail in paragraphs 4.2 and 4.5.

The result of the procedure is a chattering index i for each unique alarm that occurred
within the study period. The chattering index 1 of an alarm can be interpreted as the
“mean frequency of annunciation of that alarm assuming that the abnormal event
prevails for an indefinite period of time” (Kondaveeti et al, 2013), and it has the

following properties:

e P €[0,1] (thecloserto 1,the more the alarm shows chattering behaviour);

e 1 units are alarms/s.

A suggested rule to determine whether an alarm shows chattering behaviour is:

alarms

This is because 0.05 alarm/s is equal to 3 alarms/min, which is the suggested value

already discussed in 2.2.1.1.

2.2.4.2. Correlation and redundancy assessment: the ASCM

Redundancy has already been discussed in 2.2.1.1, while “correlation” must be
described further. The “correlation” is a measure that indicates “how much” two
alarms are similar. If two alarms are correlated, they tend to be annunciated together.
This does not necessarily mean that two correlated alarms appear always at the same
time; for example, one of them may occur two minutes after the other. But, if the same
delay between two alarms happens frequently, it means that the two alarms are
somehow correlated. For example, the first alarm could be a high-temperature alarm
of a gas-phase batch reactor, while the second one a high-pressure alarm of the same
reactor; they are not the same alarm (i.e. they are not redundant) but they are
certainly correlated. In this example, the operator actions should be aimed at
decreasing the temperature, rather than decreasing the pressure; solving the high
temperature will solve the high pressure as well. In this example, it is trivial to
recognize correlation; instead, in more complex systems, it may not be intuitive.
Obviously, correlation is not a form of nuisance, it is a measure to quantify the
relationship between alarms. It could be used to support the operator actions and to
assess redundancy (i.e. if two alarms are “extremely” correlated, they probably will be

redundant).
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A method to assess the correlation between two alarms was proposed by Kondaveeti
etal. (2010). Itis based on the binary representation of alarm data and the application
of the Jaccard measure, which measures the “distance” (i.e. the correlation) between
two binary sequences (Lesot, Rifqgi and Benhadda, 2009). The method develops
through five steps:

binary alarm database creation;

padding each binary sequence with extra 1’s;

1

2

3. calculation of similarity measure;

4. re-ordering of the similarity matrix;
5

colour coding.

Each step will be described in detail in paragraphs 4.2 and 4.4.
The result of the procedure is the Alarm Similarity Color Matrix (ASCM, Figure 2.6).
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Figure 2.6 - An example of ASCM (Hu et al., 2015)

Figure 2.6 introduces an example of an Alarm Similarity Color Matrix (ASCM), which
is a symmetric matrix whose elements represent the degree of correlation between
couples of alarms. The rows and the columns of the matrix represent a unique alarm.

Each element of the matrix is displayed as a coloured square, the colour represents
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the value of the similarity measure (i.e. the Jaccard measure) between two alarms (the
row and column index of the element). The Jaccard measure is bounded between 0
and 1; the higher the similarity (i.e. the correlation) the higher the Jaccard measure.
Since the matrix is symmetric, the diagonal elements represent the correlation
between one alarm and the alarm itself (i.e. the diagonal element of the row
“Tag21.DVLO” in Figure 2.6 represents the correlation between the binary sequences
of “Tag21.DVLO” and “Tag21.DVLO”). But, the degree of correlation of two identical
alarm is 1 (the binary sequence are identical); thus, every element in the diagonal has
a Jaccard measure equal to 1 (maximum degree of correlation) and is represented as
a black square, according to the colour bar on the right of Figure 2.6. Intuitively, the
darker the colour of the matrix element, the higher the correlation between the two
alarms. It is worth noting that the alarms are not randomly displayed in the matrix.
Alarms are reordered (step 4 of the method) in such a way that alarms with higher
correlation are displayed together in the matrix (Kondaveeti et al, 2010), forming
clusters of correlated alarms. If an alarm of a cluster is triggered, it is very likely that
another alarm of the same cluster will be triggered anytime soon. This information
could be used to support the operator decision-making procedure. Furthermore, the
ASCM is used to assess redundancy; for example, if two different alarms have a
similarity measure close to 1, it is highly probable that they are redundant alarms. One
of the two redundant alarms can be silenced since it does not provide any new
information to the operator. To conclude, ASMC is not just a graphical tool, the
coloured squares represent a “real” similarity value that, as discussed above, is a

meaningful and valuable piece of information.

2.2.4.3. The High Density Alarm Plot (HDAP)

In (Kondaveeti et al., 2010) the authors proposed another alarm visualization tool, the
High Density Alarm Plot (HDAP), which can be used to support the findings obtained
by the techniques discussed above (Chattering index and ASCM). The HDAP is a
convenient way to display large alarm databases and can be used to visually recognize

periods of plant instability as well as to preliminary assess chattering and redundancy.
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To obtain the HDAP the following steps must be followed:

1. binary alarm database creation;
2. time bins creation and alarm count;

3. HDAP creation.

Each step will be described in detail in paragraph 4.2 and 4.3
The result of the procedure is the HDAP (Figure 2.7).
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Figure 2.7 - An example of HDAP (Kondaveeti et al., 2010)

Each row (i.e. point of the y-axis) represents the “temporal representation of a unique
alarm over the selected time range” (Kondaveeti et al., 2010), each column (i.e. point
of the x-axis) represents a 10 minutes time interval (bin). The coloured sticks in the
plot represent how many times the alarm of concern (row) is occurred within the time
bin (column) according to the colour bar on the right of Figure 2.7. It is worth noting
that the alarms are sorted in such a way that the total alarm count decreases from the
top to the bottom of the plot (i.e. the first alarm of Figure 2.7 -i.e. “tag.id1” has a higher
total alarm count than the second one -i.e. “tag.id2”, etc.). In this way, alarms with

higher alarm count (i.e. the “Frequently occurring alarms”, the “bad actors”) are
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displayed on the top of the HDAP. Furthermore, redundant alarms tend to be
displayed together since they have similar alarm count. The annotations in Figure 2.7
clarify the usefulness of the HDAP; for instance, it can be used to recognize periods of
plant instability, it can be used for preliminary redundancy assessment (alarms that
appears always together in the plot, and with the same alarm count) and, finally, it can
be used for preliminary chattering assessment (alarm with very high count within the
time interval). It should be emphasized that the HDAP is just a visual tool, it is useful
for a preliminary assessment, but it cannot substitute the two techniques described

earlier (¥ and ASCM).
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2.3. Machine Learning

Machine Learning is the field of Artificial Intelligence (AI) (Brink, Richards and
Fetherolf, 2016) that comprises all the techniques (i.e. algorithms) through which a
machine can gain knowledge from the past (i.e. past data), and use the acquired
knowledge to perform several tasks (e.g. predictions, classification, pattern
recognition, etc.).

There is not one, universally accepted, Machine Learning definition. In Mohri et al

(2012) it is defined as:

computational methods using experience to improve performance or to make

accurate predictions.

The term “Machine Learning” was coined by Arthur L. Samuel (1959). He developed a
computer algorithm to play checkers in such a way that the program “will learn to play
a better game of checker that can be played by the person who wrote the program”
(Samuel, 1959). The program was trained on playing thousands of games against
itself; depending on the situation, the program learned the best moves (i.e. the moves
that led to a victory). By 1970 the software achieved the level of an amateur player
(Brink, Richards and Fetherolf, 2016), and this led to the birth of Machine Learning.
Since then, Machine Learning techniques have progressively captured the attention of
the international scientific community, and now they represent one of the “hot topics”
of the 215t century (Liu et al, 2018).

The actual applications of Machine learning are countless (Mohri, Rostamizadeh and
Talwalkar, 2012; Brink, Richards and Fetherolf, 2016), the list below is just a quick
and non-comprehensive review of the variety of different scientific fields that have

taken advantage of Machine Learning techniques:

e computer vision tasks, e.g., image recognition, face detection;

¢ medical diagnosis;

e computational biology applications, e.g., protein function or structured
prediction;

e text or document classification, e.g., spam detection;

e stock-market prediction;

e risk management.
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And new applications are found every day.
Although dozens of Machine Learning algorithms exist, each of them falls into three

big classes;

1. supervised learning;
2. unsupervised learning;

3. reinforcement learning.

In this thesis, only supervised learning has been used. Furthermore, supervised
learning can be divided into two main categories: Regression and Classification. Since
the aim of the present work is to classify alarms (i.e. the alarm “will show chattering”
or “will not sow chattering”), Classification only has been used. Thus, in the following
sections, the key concept about Classification problems, and related machine learning
algorithms, will be provided (e.g. definitions, characteristics, performance metrics,
tasks, models). In the final section, the software used during the simulations

(TensorFlow) will be introduced.

2.3.1. Definitions and general aspects

Two definitions are needed before proceeding further into the description of

unsupervised learning:

e features

the features are meaningful attributes of the problem under assessment. The
features should capture the relevant aspect of the problem (Brink, Richards
and Fetherolf, 2016) and constitute the inputs of the Machine Learning model.
For instance, if the task is to classify emails to detect spam, some relevant
features may be the sender, the subject, the presence of specific keywords, etc.
In this way, an email is completely described by a series of attributes. If the task
is to predict alarms behaviour (like in this thesis), the features may include the
alarm tag, the alarm status, the alarm attributes, the value of the associated

process variable, etc.
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e labels (or targets)
the labels are the values or categories that the model has to predict. For
instance, in the spam detection example, the label associated with an email is
“Spam” or “Not Spam”. In this thesis work, since the objective is to predict
chattering, the labels may be “The alarm is going to show chattering” or “The

alarm is not going to show chattering”.

Supervised learning develops through two main steps:
1. training;

2. evaluation.

First, the original dataset (i.e. a database of features and associated labels) is divided
into two distinct datasets (e.g. in a half):
a. the training dataset;

b. the evaluation dataset.

During the training phase, the algorithm has access to the training dataset only, which
contains both the features and the labels. The scope of the training step is to build a

function f such that:

Y=fX)+¢ 29

where:

e Y =labels;
e X = features (tipically a matrix);

e & = noise.

Thus, the aim of the training is to find a relationship (f) between the labels (Y) and
the features (X) ignoring the data noise (&) (Brink, Richards and Fetherolf, 2016).
How the best function is found is out of the scope of this work; usually, the loss is
minimized, for more see Brink et al. (2016) and Mohri et al. (2012). Hopefully, at the
end of the training phase, a function that well represents the relationship between
features and labels is found.

After the training phase, the performance of the algorithm needs to be tested. The
knowledge gained during the training is now used to predict the labels of a new set of

features; this is the evaluation phase. First, the labels are removed from the evaluation
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dataset (remark: the algorithm has not come into contact with the evaluation dataset
so far) and the unlabelled dataset is fed to the trained algorithm. The task here is to
predict the labels of the new features. If the training was successful, the algorithm
would be able to predict most of the new labels (i.e. the predictions would match the
real labels).

A clarification about the nature of the predictions is needed. The output of a model is
not a label itself, but a list of label’s probabilities. For instance, in the emails example,
the raw output of the algorithm is not simply “Spam”, but a probability vector like
[0.78, 0.22], where 0.78 is the probability of the label being “Spam” and 0.22 the
probability of the label being “Not Spam”. Then, comparing the probabilities with a
threshold value, the raw output is converted into the label, that is finally returned by
the program. By default, the probability threshold level is 0.5 (i.e. a certain label will
be predicted if its probability is greater than 0.5). The threshold value can affect the
performance of the algorithm (Google, 2020b).

In the next sections, the metrics used to quantify the performance of a machine

learning algorithm will be described.

2.3.2. Performance of machine learning algorithms

Several metrics are used to quantify the performance of a Machine Learning
algorithm. It is worth noting that the performance is strictly related to the evaluation
phase; a model cannot be assessed based on the results of the training phase only.
Before introducing the performance metrics, the definitions of True Positive, True
Negative, False Negative and False Positive are needed.
In the emails example, one can represent the labels (i.e. “Spam”, “Not Spam”) as a
binary sequence, where “1” is the label “Spam” and “0” is the label “Not Spam”. With
this notation:
e True positive (TP)
a “True positive” occurs when the model correctly predicts the label “1” (i.e.

during the evaluation phase, for one set of features, the model predicted the

label to be 1, and the true label was 1 as well).
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e true negative (TN)
the model predicted the label to be 0, while the true label was 0.

e false positive (FP)

the model predicted the label to be 1, while the true label was 0.

e false negative (FN)

the model predicted the label to be 0, while the true label was 1.

Typically, a confusion matrix is used to display TP, FP and FN. An example of a

confusion matrix is presented in Figure 2.8.

0 TN =90 FP=1

Expected

Predictions

Figure 2.8 - The confusion matrix

The x-axis of Figure 2.8 represents the predictions of the model (i.e. 0 and 1 - “Spam”
and “Not Spam”) while the y-axis represents the real value of the labels. Looking at

this matrix one can conclude that:

e the class “1” has been correctly predicted 1 time (TP);
e the class “0” has been correctly predicted 90 times (TN);
e theclass “1” has been incorrectly predicted 1 time (FP);

e the class “0” has been incorrectly predicted 8 times (FN).

The confusion matrix is a useful tool to have a quick overview of the model

performance, but it is not enough; performance needs to be further quantified.
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Three metrics are widely used to assess the algorithm performance: Accuracy,

Precision and Recall.

P _ TP4TN
WA = TP ¥ TN + FP + FN 2.3
poision — TP
recision = o 2 4
Recall = —
T TP FN 2.5

Accuracy is the ratio between the correct predictions and the total number of
predictions. Thus, it is a good starting point to evaluate the performance of the
algorithm, but it is not enough. For instance, imagine that a Machine Learning
algorithm to classify tumours have been created, the two labels to be predicted are
“Benign” and “Malignant”. The algorithm is evaluated on a dataset containing 100
tumours, 91 are benign and 9 are malign. Now, imagine that the model produced the
results in Figure 2.8. Thus, the accuracy would be 0.91 (91 correct predictions out of
a total of 100); it seems good. But a closer look at the results reveals that the model
performance is totally unacceptable. In fact, of the 9 malign tumours, only 1 has been
correctly predicted. This example (Google, 2020a) clarifies that accuracy alone is not
enough, especially for unbalanced problems. Both precision and recall must be
considered together.

The Precision is the fraction of correct positive predictions. The Recall is the fraction
of real positive correctly predicted. In the tumour’s classification example, according
to the values in Figure 2.8, the precision would be 0.5 and the recall would be 0.11.
The recall reveals that only 11 % of the actual malignant tumour have been correctly
predicted; this is obviously not adequate.

All the metrics described above must be considered together but, depending on the
problem of concern (e.g. spam identification, tumour identification, etc.), one metric
is usually more significant than the others. For example, in the tumour classification
problem, the Recall is the most important metric, because it is crucial to identify most
of the malignant tumour. In the email classification, it is crucial to not classify legit

emails as “Spam” ones; thus, precision is the metric that must be optimized.
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Precision and Recall are affected by the threshold (i.e. the probability level beyond
which the predicted label is “1”) but, unfortunately, precision and recall are often “in
tension” (Google, 2020b); usually, trying to improve one metric will cause the other
to worsen. The Precision-Recall curve is a visualization tool that displays the precision

and recall values varying the threshold. An example is presented in Figure 2.9.

l H T T I
: Algorithm 1
Algorithm 2 -

Precision

0 0.2 0.4 0.6 0.8 1
Recall
Figure 2.9 - Precision-Recall curves
The Precision-Recall curves associated with two different algorithms are presented in
Figure 2.9. Focusing on the solid curve (i.e. “Algorithm 1”), if one modifies the
threshold to obtain a recall equal to 0.6, the precision will be less than 0.2 (blue arrows
in Figure 2.9). Similarly, if one wants a precision equal to 0.6, the recall will be less

than 0.3 (orange arrows in Figure 2.9).

In the next section, the three classification models used in this thesis are introduced.
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2.3.3. Models

The aim of a Machine Learning algorithm is to find a function (f) that well represents
the relationship between inputs (features) and output (labels). The “Model” defines
how the function is built and what are its main attributes. In Tensorflow.org (2020e)
the model is defined as
a function with learnable parameters that maps an input to an output. The optimal
parameters are obtained by training the model on data. A well-trained model will

provide an accurate mapping from the input to the desired output.

Numerous models are available for addressing a classification problem. In this thesis,

three different models have been used: Linear, Deep Neural Network and Wide&Deep.

2.3.3.1. The Linear model

In linear models, the relationship between the features and the labels is described as

a linear function (Hastie, Friedman and Tibshirani, 2009):

14
Y=3o+zxjﬁj 2.6
j=1

J
being:
= Y = labels;
= X = [Xl,XZ, ...,Xp] = the features vector;
= X = a feature;
» S, = intercept (or bias);

* Bj = coefficient (or weight);

The vector 8 = [ﬁl, ...,,Bp] is the vector of weights. During the training, the optimal
values of bias and weights are found. If a linear model is used in a binary classification
problem with two features (p = 2 in equation 2.8), the decision boundary is a straight

line. Figure 2.10 clarifies this aspect.
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Figure 2.10 - Linear Regression of 0/1 Response (Hastie, Friedman and Tibshirani, 2009)

Figure 2.10 is a visual representation of a binary classification problem. “Orange” and
“Blue” circles represent the real labels. The x and y-axis represent the values of the
features (in this example only two features are considered). The solid black line
represents the decision boundary generated by the linear model. The decision
boundary divides the plane into two decision regions. Every circle above the decision
boundary will be labelled by the model as “Orange”. Every circle below the decision
boundary will be labelled as “Blue”. The number of wrong predictions (i.e. orange
circles below the decision boundary and blue circles above the decision boundary)
represents the False Negative and False Positive. Of course, the position of the
decision boundary is strictly related to the threshold value (i.e. varying the threshold

causes the boundary to translate).

It is worth noting that, in linear models, each feature is associated with a different
coefficient (Hastie, Friedman and Tibshirani, 2009). In other words, each feature is
independent, and the model cannot assess how “inter-features” relationships affect
the output. This limitation can be partially solved by “combining features into a single
feature” (TensorFlow.org, 2020c) and feeding this new, more meaningful, feature to
the linear model; this process is called Feature Crosses (Google, 2020c). Still, the linear
model is not able to generalize to previously unseen features combinations (Cheng et

al, 2016).

Despite its simplicity, the linear model is still widely used (James et al., 2013); it is

well-known, fast, reliable and it works well on large sets of features (Santini, 2018).
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2.3.3.2. The Deep Neural Network model

In Deep Neural Network (DNN) models, the inputs (i.e. features) are linearly
combined and converted into derived features through a non-linear function (Hastie,
Friedman and Tibshirani, 2009). Derived features are named hidden units, and they
constitute the so-called hidden layer of the Neural Network (Hastie, Friedman and
Tibshirani, 2009). An example of a Neural Network with a single hidden layer is

presented in Figure 2.11. Neural networks can have multiple hidden layers as well.
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Figure 2.11 - Schematic of a single hidden layer, feed-forward neural network. Adapted from
(Hastie, Friedman and Tibshirani, 2009)

Labels

In the figure above, the DNN model is fed with a vector of p features (X). Then, the
features are linearly combined and converted into M derived features (Z) according

to:

Zm = o(agm + al, X), m=1,.. M 2.7

where:

" @y, = bias;
" a,, = vector of model coef ficients;
» Z,, =derived feature (hidden unit);

" ¢ = activaction function.
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The activation function o is non-linear. Usually, it is chosen to be the sigmoid function:

1
1+e?

o(v) = 2.8

If there is more than one Hidden Layer, equation 2.7 is used again to calculate the
hidden units of the second hidden layer. In this case, X must be replaced by Z in eq.

2.7, and the coefficients must be updated.

Finally, the derived features of the last hidden layer are linearly combined and used

to obtain the labels:

Ty =Pox + B Z, k=1..K 2.9
Yk = gk(T), k= 1, ,K 2.10

where:

» T, = linear combination of the derived features;
* Box = bias;

» B = vector of model coef ficients;

» 7 =[Z;,..,Zy] = vector of the derived features;
» Y, =alabel;

= T =[Ty, .., T¢l;

* gy = the output function.

Several kinds of output functions exist. An example is the softmax function (Hastie,
Friedman and Tibshirani, 2009):

eTk

9(T) = 2.11
1=1€"

The equations presented above refer to a general K classification problem (i.e. the

number of labels to predict is K). For binary classification K = 2.

The number of hidden units (M), and the number of hidden layers, are adjustable
parameters, and they can greatly affect the performance of the algorithm. In general,
too many hidden units are better than too few (Hastie, Friedman and Tibshirani,
2009). The selection of the number of hidden layers is basically guided by experience

and trial-and-error method (Hastie, Friedman and Tibshirani, 2009).

38



It is worth noting that the model has different sets of coefficients (also called weights).
When the labels (Y) are calculated, a set of K coefficients (f) and the bias (f,;) are
needed. Furthermore, each Hidden Layer requires the calculation of M coefficients
(@) and a bias (@, ). Similarly to the Linear model, the weights are optimized during

the training phase.

The DNN model can overcome the limitations imposed by the Linear model. DNN
models can capture nonlinearities in the data, they can produce decision boundaries
of any shape and they can generalize better than the Linear model (Hastie, Friedman
and Tibshirani, 2009; Cheng et al.,, 2016). In Figure 2.12, the results of the application

of a DNN model (on the same dataset described in Figure 2.10) are presented.

Training Error: 0.160
Test Error: 0.223
Bayes Error:  0.210

Figure 2.12 - Decision boundaries for a neural network model (Hastie, Friedman and Tibshirani, 2009)

The solid line in Figure 2.12 represents the decision boundary produced by the DNN
model. Comparing Figure 2.12 with Figure 2.10 reveals that the DNN model can

produce more accurate and well-shaped decision regions.

DNN models are widely used in images and sounds recognition (Hastie, Friedman and
Tibshirani, 2009; Brink, Richards and Fetherolf, 2016) and they are one of the most
flexible models. Although, flexibility comes to a price: DNN requires more
computational effort, they are harder to optimize and they are prone to overfitting

(Hastie, Friedman and Tibshirani, 2009; Brink, Richards and Fetherolf, 2016).
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2.3.3.3. The Wide&Deep model

The Wide&Deep model was created to join the benefits of the Linear (i.e. wide) and
DNN models. As previously argued, the Linear model is fast, reliable and it is good at
assessing the relative weight of each feature, or group of features (feature crosses).
However, the linear model lacks in flexibility and generalization. Instead, the DNN
model is flexible and better at generalizing and capturing inter-feature relationships
and nonlinearities in the data. However, the deep model may overgeneralize and
detect a relationship also where no (or poor) relationship exists.

To overcome the limitations of both models, and to enhance their qualities, the
Wide&Deep model uses both the Linear and the Deep approaches (Cheng et al,, 2016).
Figure 2.13 depicts the general structure of the model.

e /s Output Units Ve
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Sparse Features
Wide Models Wide & Deep Models Deep Models

Figure 2.13 - The spectrum of Wide & Deep models (Cheng et al., 2016)

The Wide&Deep model consists of a Linear partand a DNN part (centre of Figure 2.13).
The two parts are jointly trained, and their parameters are optimized simultaneously
(Chengetal, 2016). In the Cheng et al. (2016) original work, the wide part comprised
only a small number of significant crossed features. The Wide&Deep model was used
to develop a user recommender system, and it proved to perform better than the

Linear and the Deep models.
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2.3.4. TensorFlow

TensorFlow is an open-source, machine learning oriented, software library developed
by Google Brain team and released under Apache 2.0 License in 2015 (Abadi et al,
2016), the last stable version is r2.0.

The TensorFlow web homepage describes the software as:

an end-to-end open source platform for machine learning. It has a comprehensive,
flexible ecosystem of tools, libraries and community resources that lets researchers
push the state-of-the-art in ML and developers easily build and deploy ML powered

applications.

TensorFlow is widely used for both research and production (Abadi et al., 2016), and
it owes part of its fame to its simplicity and flexibility. The library offers different
levels of abstraction, including high-level APIs and pre-made estimators (i.e. a high-
level representation of a complete model), which are particularly suitable for
inexperienced users.

Several leading companies have used/use TensorFlow to solve real-world problems
and increase productivity (TensorFlow.org, 2020b). Furthermore, the software is
supported by an active and diverse online community (github, StackOverfolw).
TensorFlow runs on Ubuntu, Windows, MacOS and Raspberry (TensorFlow.org,
2020d). The python API is the most complete and easy to use, but also other languages
are supported (e.g. C++, JavaScript, Go, and more) (GitHub.com, 2020;
TensorFlow.org, 2020a).

In this thesis, TensorFlow r1.15 has been used, the platform has been installed on a

python 3.7.4 release running on Windows 10.
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Chapter 3

The alarm database

3.1. Introduction

The purpose of this chapter is twofold: firstly, to provide a brief description of the case
study considered (the Yara production plant located in Ferrara - Italy; and secondly,

to describe the alarm database used in this work.

3.2. The Yara production plant

The plant forms part of the chemical pole located in Ferrara (Italy), the main activity
consists in the production of ammonia and urea. Due to the large quantity of
hazardous substances stored and handled during normal activity, the plant has been
classified as an “upper tier” Seveso Il establishment, along with four more sites inside

the chemical pole (Arpae, 2019).
The plant consists of seven different sections:

1. ammonia plant;

2. urea plant;

3. ammonia solution plant;
4

. membrane and IGI plant;
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5. carbon dioxide liquefaction plant;
6. AIR-1 plant (32.5% urea solution production);

7. urea storage and bagging plant.

Italian law (“Decreto Legislativo n. 105 del 26 giugno 2015 ‘Attuazione della direttiva
2012/18/UE relativa al controllo del pericolo di incidenti rilevanti connessi con
sostanze pericolose.”) (D.Lgs. 105/2015) requires that a Safety Report must be
provided for “upper tier” establishments. Specifically, during the drafting of the Safety
Report, a preliminary analysis shall be carried out, to identify critical sections of the
plant (D.Lgs. 105/2015, Annex C, part 1). Two plant sections may meet the

requirements to be considered critical, namely:

1. ammonia plant;

2. urea plant.

This result is strictly related to the substances handled in these two sections, as well

as to the operating conditions.

Extensive use of methane, hydrogen and ammonia (anhydrous and aqueous solution)
occurs in the ammonia plant section, while in the urea plant the key substances are
ammonia, hydrogen, urea-formaldehyde (Formurea), and Sodium hypochlorite. A list
of the main hazardous substances handled in the plant, along with their classification
according to CLP regulation (1272/2008/CE) is presented in Table C. 1; bold tags
represent hazardous properties subject to D.Lgs. 105/2015.

Table 3.1 summarizes what has been told so far about the hazardous substances
present in the two plant sections of concern; it contains the hazardous characteristic
that might lead to a major accident, the substances associated with those

characteristics and the plant sections where these substances are produced /handled.
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HAZARDOUS CHARACTERISTIC
(subject to D.Lgs. 105/2015)

KEY SUBSTANCE

PLANT SECTION

Flammable gas

Anhydrous ammonia

Ammonia plant

Urea plant

Methane

Ammonia plant

Hydrogen

Ammonia plant

Urea plant

Hazardous to the aquatic

Anhydrous ammonia

Ammonia plant

Urea plant

Ammonia aqueous solution

Ammonia plant

environment (15-30%)
Sodium hypochlorite
Urea plant
(14 - 15 %)
Ammonia plant
Anhydrous ammonia
Acute toxicity Urea plant
Formurea Urea plant

Table 3.1 - Hazardous substances and plant sections

Remark: in Table 3.1, “key substance” has the meaning of “substance that best
represents the hazardous properties of a stream/plant section”. Therefore,
the fact that methane can be found in the ammonia plant does not
necessarily mean that it is only found in that plant section, or that methane
is the only substance in that plant section. If a “key substance” is found within
a specific plant section, one can conclude that there are streams or

equipment whose hazardous properties are well described by the key

substance.
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In addition to an extensive use of both toxic and flammable substances, severe
operational conditions (i.e. high temperature, and high pressure) are often required,
due to the kinetic and thermodynamic features of the reactions involved.
Furthermore, in specific parts of the plant, high temperature and pressure are
associated with corrosive substances; this contributes to the risk of mechanical
failure, which represents the major safety issue for this specific plant. Indeed, the
technologies involved are extremely well known (they have been used for more than
60 years) and the SIS is efficient and reliable.

Therefore, the efforts must be directed to prevent:

* corrosion: caused by acid condensate in the ammonia plant and by carbamate
and ammonium carbonate in the urea plant;

* Stress Corrosion Cracking: it arises in the anhydrous ammonia storage tanks,
in presence of dissolved oxygen, high pressure and temperatures above 0°C;

* hydrogen embrittlement: worsened by high hydrogen concentration
combined with high temperature (conditions that often arise in the ammonia

plant section).

All the phenomena described above were considered during the design phase of the
plant. Proper corrosion allowances, special alloys, lining, operational precautions and
periodic non-destructive tests are the main safety barriers to avoid mechanical

failure.

Even if both ammonia and urea plant sections are safety-critical, during the initial
phase of this work the attention has been focused solely on the ammonia plant; this
choice has been forced by the available data: Yara provided P&IDs and PFDs of the

ammonia plant only.

The next paragraph presents an overview of the ammonia plant section, the purpose
is to familiarize with the design and to describe the plant's operational activity. The

equipment’s names have been changed due to the sensitive nature of this information.
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3.2.1. The ammonia plant

The ammonia plant is based on Haldor Topsoe technology, and the capacity is 1720
t/d (YaraItalia S.p.A, 2016). Approximately 60% of the ammonia produced within this
plant section is used to synthesize urea; the other part is sent to the Ravenna chemical

pole via pipeline (Yara.it, 2020).
The plant section comprises seven subsections:

Desulfurization, Reforming and Breda Boiler;

ISR

Conversion, Decarbonization and Methanation;

Ammonia synthesis and Cooling circuit;

a o

Anhydrous ammonia storage, Pipeline and Loading/unloading tankers.

®

Cooling and clarification towers;

-

Instruments air production and nitrogen compression and storage.

The ammonia synthesis is carried out according to the reaction:

N, + 3H, & 2NH, 3.1

Nitrogen is supplied by air and hydrogen is produced through methane steam

reforming.

Not all the sub-sections are equally interesting from the safety point of view. The
analysis of past accidents (e.g. FACTS and MARS databases) that occurred in ammonia
plants highlights that most of the accidents happened within the process section (i.e.
subsections a, b and c). For this reason, and because of documentation availability
constraints, only these three subsections are described in the next seven sub-
paragraphs; each sub-paragraph describes the design and the activities of the sub-
section of concern. The only exception is the Breda boiler: it has been decided to not
further describe this unit because it is not directly involved in the ammonia

production.
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3.2.1.1. Desulfurization

Methane enters the plant via pipeline in the form of natural gas (vol%CH4 ~ 98 %),
the pressure is then reduced from 50 bar to 40 bar, which is the feed pressure. Even
though the natural gas content of sulphur compounds is relatively low, the catalyst
used in the upcoming sections of the plant is extremely sensitive to these compounds.
Consequently, sulphur must be removed to avoid the risk of catalyst deactivation.

Desulfurization section (first step of sub-section a.) consists of three catalytic

reactors:

1) R-03: hydrogenator;
2) R-01: first sulphur absorber;
3) R-02:second sulphur absorber.

After a preheating stage, the natural gas at the temperature of 400°C flows into R - 03;

in the reactor, the sulphur compounds are hydrogenated to H,S according to the

reactions:
RSH + H, - RH + H,S 3.2
R{SR, + 2H, - R{H + R,H + H,S 3.3
COS+H, - CO + H,S 3.4

Then, the gas flows into R - 01 and R - 02 reactors (usually arranged in series) where

hydrogen sulphide is absorbed according to the reaction:

H,S + Zn0 - ZnS + H,0 3.5

Finally, the natural gas flows out the sub-section with a sulphur content < 1 ppm, and

it approaches the Reforming sub-section.
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3.2.1.2. Reforming

The de-sulphurated natural gas is mixed with medium pressure steam (P ~ 40 bar)
to ensure an optimal vapour/carbon feed ratio (Steam/C = 3). Next, the mixture is
preheated and enters the reforming section (second step of sub-section a.) at a
temperature of 540°C.

The reforming section comprises two reforming stages:

1) B - 01: primary reformer;

2) R-03:secondary reformer.

The primary reformer is a vertical, proprietary, side-fired