
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

M
as

te
r’

s
th

es
is

Camilla Sterud

Feedback linearizing neural network
controllers

Master’s thesis in Cybernetics and robotics
Supervisor: Prof. Jan Tommy Gravdahl og Dr. Signe Moe

December 2019

Camilla Sterud

Feedback linearizing neural network
controllers

Master’s thesis in Cybernetics and robotics
Supervisor: Prof. Jan Tommy Gravdahl og Dr. Signe Moe
December 2019

Norwegian University of Science and Technology

Preface

For the past 18 weeks, I have spent a substantial part of my waking hours working
on this thesis. It is the work that will conclude my time at the Norwegian
University of Science and Technology (NTNU), and attempt to show some of
what I have learned during the past five years.

While studying engineering cybernetics at NTNU, I have especially enjoyed the
courses on advanced control theory. A couple of years ago, I also started dabbling
in statistical learning and machine learning. When I was offered to do my thesis in
cooperation with SINTEF Digital’s Analytics and Artificial Intelligence group,
I was given the perfect opportunity to apply two of my favorite topics in one
thesis.

This thesis is about combining the expressive power of neural networks with
the mathematical soundness of nonlinear control theory. It is an exciting topic
within a rapidly developing research field that has been gaining traction in recent
years. I hope that the contents of this thesis are of interest to the reader and
that my work may provide some insight into how deep learning can be safely and
beneficially applied in control.

It is assumed that the reader of this thesis has in-depth knowledge of control
theory, Lyapunov theory, and linear algebra. Some experience with deep learning
is beneficial, but not strictly necessary, as this topic will be introduced.

One of the contributions of this thesis is a neural network controller that is
partially based on the work of Shi et al. [1]. The Python programming language
and the Keras library was used to implement and train the neural networks
for this controller [2], [3]. The other contribution is an extension of a method
for estimating the Lipschitz constant of neural networks, initially developed by
Fazlyab et al. [4]. This extended method was implemented in MATLAB 2019b
with the CVX library [5], [6].

Both of my supervisors, Dr. Signe Moe and Prof. Jan Tommy Gravdahl, as
well as the head of the Analytics and AI group, Anne Marthine Rustad, have
offered valuable help by reading through a draft for this thesis, and suggesting
improvements.

i

ii

Acknowledgments

This thesis was done in cooperation with SINTEF Digital, more specifically the
Analytics and AI group. While working on this thesis, I have been fortunate to
be part of the great work environment at SINTEFs offices in Oslo. I want to
thank everyone in the Analytics and AI group that have been eager to discuss
my academic challenges, offer their help and go for lunch and coffee breaks. In
particular, I want to thank my supervisor from SINTEF, Dr. Signe Moe, who
has been available whenever, two offices down, this entire semester. I also want
to thank my supervisor from the Department of Engineering Cybernetics, Prof.
Jan Tommy Gravdahl, for asking insightful question and answering slightly less
insightful ones.

Great thanks are also owed to my family and my partner, who have all offered
their support and their proof reading skills.

iii

iv

Summary

Unknown and unmodeled dynamics is a reoccurring topic in the practical appli-
cation of control systems. When using popular control methods such as model
predictive control and feedback linearization, it is assumed that an analytical
model of the system dynamics is available and that the model is so accurate that
the modeling error is negligible, or at the very least bounded. However, this is
not always the case, and often the control system is simplified at the expense of
optimal performance.

Currently, there is a push to unify the frameworks of traditional control the-
ory and data-driven modeling. In particular machine learning, and its subfield
deep learning, seems to have much to offer the field of control theory. The prob-
lem with including deep learning methods in control systems is the resulting
loss of transparency. Deep learning is mostly concerned with neural networks,
which are vast black-box models that are hard to analyze mathematically. Con-
trol systems with machine learning in the loop often lack stability proofs and
performance guarantees, which are crucial if they are applied in safety-critical
situations.

In this thesis, a feedback linearizing controller, which uses a neural network to
estimate unknown dynamics, is suggested. The suggested controller is designed
for solving a general trajectory tracking problem for a broad class of two dimen-
sional nonlinear systems. The controller is proven to stabilize the closed-loop
system, such that it is input-to-state and finite-gain Lp-stable from the neural
network estimation error to the tracking error. Further, the controller is proven
to make the tracking error globally and exponentially converge to a ball centered
at the origin. The convergence bound is shown to be dependent on the Lipschitz
constant of the neural network estimator when the estimate is updated discretely,
or the state measurements are affected by bounded noise.

Through experiments on a simulated mass-spring-damper system, the validity of
the theoretical results is investigated, for when the system dynamics are unde-
layed and also when they are time-delayed. In the time-delayed case, convolu-
tional neural networks are used to estimate unknown dynamics. A procedure for
estimating the Lipschitz constant of feedforward networks is therefore extended
to work for convolutional neural networks.

In the experiments, all tested controllers outperform a feedback controller that
does not compensate for unknown dynamics. When the dynamics are undelayed,
there is a relationship between the size of the Lipschitz constant of the neural
network and a controller’s ability to reject noise. There is also a connection
between the Lipschitz constant and the change in performance when the update
frequency of the neural network estimate declines.

v

Sammendrag

N̊ar reguleringssystemer anvendes i praksis er ukjent og umodellert dynamikk
et tilbakevendende problem. Ved anvendelse av avanserte reguleringstekniske
metoder, som modellbasert prediktiv og tilbakekoblingslineariserende regulering,
antas det at matematiske modeller av systemdynamikken er tilgjengelig, og at
de tilnærmer det virkelige systemet s̊a godt at modelleringsfeilen er neglisjerbar,
eller i det minste begrenset. Dette er imidlertid ikke alltid tilfellet, og man tar
isteden til takke med forenklede reguleringssystemer p̊a bekostning av optimal
ytelse.

For tiden finnes det store interesser for å kombinere teoriene fra tradisjonell regu-
leringsteknikk og datadrevne metoder. Spesielt synes feltet maskinlæring, og dets
underordnede felt dyp læring, å ha mye å tilby reguleringsteknikken. Problemet
med å inkludere metoder fra dyp læring i reguleringssystemer er at systemet
blir mindre gjennomskuelig. Dyp læring handler i hovedsak om nevrale nettverk
som er vanskelige å analysere matematisk siden de er store, ugjennomskuelige,
ulineære modeller. Reguleringssystemer med maskinlæringskomponenter man-
gler ofte stabilitetsbevis og garantier for sin oppførsel. Dette er uakseptabelt
hvis de skal anvendes i situasjoner hvor sikkerhet er sentralt.

I denne oppgaven utformes en tilbakekoblingslineariserende (feedback lineariz-
ing) regulator som bruker et nevralt nettverk til å estimere ukjent dynamikk.
Regulatoren har som form̊al å løse et generelt stifølgingsproblem for en omfat-
tende klasse todimensjonale systemer. Det bevises at regulatoren stabiliserer den
lukkede sløyfen, slik at den er p̊adrag-til-tilstand-stabil (input-to-state stable) og
endelig-forsterket Lp-stabil (finite-gain Lp-stable) fra det nevrale nettverkets es-
timeringsfeil til avviket i stifølgingsproblemet. Videre bevises at regulatoren f̊ar
avviket til å konvergere eksponentielt og globalt mot en ball sentrert i origo.
Konvergensgrensene avhenger av Lipschitzkonstanten til det nevrale nettverket
n̊ar nettverksestimatet oppdateres sjeldent, eller n̊ar tilstandsm̊alingene p̊avirkes
av støy av begrenset størrelse.

Eksperimenter utføres p̊a et simulert masse-fjær-dempersystem for å undersøke
holdbarheten til de teoretiske resultatene, b̊ade n̊ar systemets dynamikk er uforsin-
ket og n̊ar den er tidsforsinket. N̊ar dynamikken er tidsforsinket brukes nevrale
konvulsjonsnettverk til å estimere den ukjente dynamikken. En metode for å
estimere Lipschitzkonstanten til nevrale forovernettverk utvides til å fungere for
nevrale konvulsjonsnettverk.

I eksperimentene utkonkurrerer alle de foresl̊atte regulatorene en tilbakekoblingsreg-
ulator som ikke kompenserer for den ukjente dynamikken. N̊ar dynamikken er
uforsinket finnes det et forhold mellom størrelsen p̊a Lipschitzkonstanten til den
nevrale nettverket og regulatorens evne til å undertrykke m̊alestøy. Det finnes

vi

ogs̊a en kobling mellom Lipschitzkonstanten og endringen i regulatorens ytelse
n̊ar estimatet fra det nevrale nettverket oppdateres sjeldnere.

vii

viii

Table of Contents

Preface i

Acknowledgements iii

Summary v

Sammendrag vi

Table of Contents x

List of Tables xi

List of Figures xiv

Nomenclature xvi

1 Introduction 1
1.1 Background and motivation . 1
1.2 Problem formulation . 3
1.3 Contributions of this thesis . 4
1.4 Thesis outline . 4

2 Theory 5
2.1 The 2-norm . 5
2.2 Convolution . 5

2.2.1 Causal convolution . 6
2.2.2 Convolutions as matrix multiplications 6

2.3 Semidefinite programming . 6
2.4 Machine learning . 7

2.4.1 The dataset . 8
2.4.2 Regression loss functions . 8
2.4.3 Bias-variance trade-off . 10
2.4.4 L2 regularization . 10

2.5 Deep learning . 11
2.5.1 Feed forward networks . 11
2.5.2 Training feedforward networks 12

ix

2.5.3 Convolutional neural networks 15
2.6 The Lipschitz constant . 16

2.6.1 Naive bounds on the Lipschitz constant for feedforward
networks . 17

2.6.2 Spectral normalization . 18
2.6.3 Efficient estimation of the Lipschitz constant for feedfor-

ward networks: LipSDP . 19
2.7 Nonlinear control theory . 22

3 Methodology and Theoretical Results 23
3.1 LipSDP for convolutional neural networks with temporal convolu-

tions . 23
3.2 Feedback linearizing neural network controller 25

3.2.1 Controller design . 25
3.2.2 Proof of Theorem 3.1 . 28
3.2.3 Proof of Theorem 3.2 . 30

3.3 Time-delayed system with convolutional neural network controller 31
3.4 Mass-spring-damper datasets . 32
3.5 Training neural networks . 35

4 Experiments and Results 37
4.1 Experiment setup . 37
4.2 Feedback controller . 38
4.3 Experiment 1: Continuously updated feed forward network con-

trollers . 38
4.4 Experiment 2: Discretely updated feed forward network controllers 39
4.5 Experiment 3: Continuously updated convolutional neural net-

work controllers . 42
4.6 Experiment 4: Discretely updated convolutional neural network

controllers . 42

5 Discussion and Further Work 47
5.1 Discussion . 47
5.2 Further work . 48

6 Conclusion 51

References 53

Appendix A Definitions, lemmas and theorems from Khalil 57
A.1 Feedback linearization . 57
A.2 Perturbed systems . 57
A.3 Lp-stability . 58
A.4 Input-to-state stability . 59
A.5 Comparison principle . 59

x

List of Tables

3.1 The coefficients of the MSD from (3.22). 33
3.2 The FFN architecture that is used for all FFNs in this thesis. Each

FFN has 801 trainable parameters. 35
3.3 The CNN architecture that is used for all CNNs in this thesis.

The CNNs receive inputs where there are ∆T = 0.1 s between
each sample, and have a receptive field size of sr = 49. 36

3.4 The three FFNs used in the controllers in Experiment 1 and 2. . . 36
3.5 The three CNNs used in the controllers in Experiment 3 and 4. . . 36

4.1 Feedback controller: Expected mean error for the controllers from
(4.1) and (4.2) when the estimator always outputs 0. The con-
troller was tested on 500 trajectory tracking problems three times
with varying levels of measuring noise. 38

4.2 Experiment 1: Expected mean error and retrospective convergence
bounds for the controllers in Table 3.4 when the forward pass is
calculated every ∆tmax = 0.01 s. Each controller was tested on
500 trajectory tracking problems three times with varying levels
of measuring noise. 39

4.3 Experiment 2: Expected mean error and retrospective convergence
bounds for the controllers in Table 3.4 when the forward pass is
calculated every ∆tmax = 1 s. Each controller was tested on 500
trajectory tracking problems three times with varying levels of
measuring noise. 39

4.4 Experiment 3: Expected mean error and retrospective convergence
bounds for the controllers in Table 3.5 when the forward pass is
calculated every ∆tmax = 0.1 s. Each controller was tested on
500 trajectory tracking problems three times with varying levels
of measuring noise. 43

4.5 Experiment 4: Expected mean error and retrospective convergence
bounds for the controllers in Table 3.5 when the forward pass is
calculated every ∆tmax = 1 s. Each controller was tested on 500
trajectory tracking problems three times with varying levels of
measuring noise. 43

xi

xii

List of Figures

1.1 Hybrid analytics combines the pattern-recognition capabilities of
data-driven methods with the soundness of physics- and knowledge-
based models. 3

2.1 It is common to roughly divide machine learning into three ap-
proaches: Supervised, unsupervised and reinforcement learning. . . 8

2.2 The mean squared error, mean absolute error, and the Huber loss
with δ = 1. 9

2.3 Three models are fitted to data points originating from a noisy
sampling of y = x2. The three fitted models are polynomials of
degree one, two and five. The blue dots represent the training data. 11

2.4 Figure 2.4a visualizes a FFN of depth 3. The edges represent
multiplication by the entries of the weight matrices, where wij,k is

the element in row j and column k of W i. The nodes are neurons
where the input is summed, bias added and the activation function
applied in accordance with (2.11). Figure 2.4b shows how each
neuron computes its output. uij is the j-th element of layer i. . . . 12

2.5 A one-dimensional convolutional layer has Cin input channels and
Cout output channels. Here, rectangles represent convolution, and
circles represent summation, bias addition and application of the
activation function. Each of the output channels is computed as
in (2.20). 15

2.6 The receptive field of a CNN with two layers with filter lengths 3
and 4, and one input and one output channel for each layer. 16

2.7 A Lipschitz continuous function will always stay outside the infi-
nite green cone, as the center of the cone moves along the trajec-
tory of the function. The slope of the cone is equal to the tightest
Lipschitz constant of the function. Here, tanh(x), which has Lip-
schitz constant Λ = 1, is shown with a cone of slope 1 centered at
three different points of its trajectory. As seen here, tanh(x) will
always stay outside the cone. 17

3.1 The mass spring damper system that is used as a test system for
the suggested NN controllers. 33

xiii

3.2 One simulation from each of the datasets. 34

4.1 Experiment 1: The three controllers described in Table 3.4 were
tested on 500 trajectory tracking problems. This depicts the ex-
pected performance of the controllers when ∆tmax = 0.01 s. The
solid lines mark the empirical mean, and the shaded area around
the lines represent ± one standard deviation. A plot showing the
error of the feedback controller is included for comparison. The
measuring noise is zero in these plots. 40

4.2 Experiment 2: The three controllers described in Table 3.4 were
tested on 500 trajectory tracking problems. This depicts the ex-
pected performance of the controllers when ∆tmax = 1 s. The
solid lines mark the empirical mean, and the shaded area around
the lines represent ± one standard deviation. A plot showing the
error of the feedback controller is included for comparison. The
measuring noise is zero in these plots. 41

4.3 A visualization of the data from Tables 4.1 to 4.3. The left part of
each bar presents the results from Experiment 1, while the right
presents results from Experiment 2. SpectNorm 1 is less affected
by the switch from continuous and discrete operation than the
other two controllers, and is also relatively less affected by mea-
suring noise. 42

4.4 Experiment 3: The three controllers described in Table 3.5 were
tested on 500 trajectory tracking problems. This depicts the ex-
pected performance of the controllers when ∆tmax = 0.1 s. The
solid lines mark the empirical mean, and the shaded area around
the lines represent ± one standard deviation. A plot showing the
error of the feedback controller is included for comparison. The
measuring noise is zero in these plots. 44

4.5 A visualization of the data from Tables 4.1, 4.4 and 4.5. The left
part of each bar presents the results from Experiment 3, while the
right presents results from Experiment 4. 45

xiv

Nomenclature

Abbreviations

CNN Convolutional Neural Network, page 15

FFN Feedforward Network, page 11

GES Globally Exponentially Stable, page 28

LipSDP Lipschitz Semidefinite Program, page 19

MAE Mean Absolute Error, page 9

MSD Mass-Spring-Damper, page 32

MSE Mean Squared Error, page 9

NN Neural Network, page 11

SDP Semidefinite Program, page 6

SGD Stochastic Gradient Descent, page 13

Symbols

αL2 L2 regularization parameter, page 10

∆tmax Update time of neural network estimator, page 27

η Learning rate, page 13

Λ Lipschitz constant, page 16

λ Least negative closed-loop eigenvalue, page 27

ρu Upper bound on input change, page 27

ρx Upper bound on system state change, page 27

σ Standard deviation of measuring noise, page 37

θ Regression model parameters, page 8

ε Maximal estimation error of neural network estimator, page 26

J(·) Loss function, page 8

xv

NMB Mini batch size, page 14

sr Receptive field size, page 16

xvi

1 Introduction

1.1 Background and motivation

Practical application of complex control systems is not always straight-forward.
Theoretical assumptions might be violated, or the required expert knowledge un-
available. A physical model of the plant one wants to control is often required but
not always available. For instance, when controlling a small, unmanned aircraft,
inaccurately modeled forces might provoke unwanted behavior when operating
at differing heights [1]. In the process industry, time delays and nonlinearities
that are hard to model are commonplace. Lack of expert knowledge and off-the-
shelf solutions makes the industry settle for simple PID controllers, at the cost
of performance [7]. Consequently, there is a gap between modern control theory
in academia and in industry.

For the last three decades, researches have been eager to utilize the enormous
amounts of information that exists after years of collecting sensor data for process
monitoring and control purposes [8]. Soft-sensors, which combine measurement
data and analytical models in clever ways to make synthetic measurements, and
smart maintenance are two profitable research fields that are part of this data
exploitation wave [9].

Machine learning is a research field that has exploded in the last decades due
to the availability of data and inexpensive computing power. This has been
especially beneficial to the subfield of machine learning known as deep learning,
which is mostly concerned with large black-box models called neural networks.
Deep learning algorithms have been suggested and successfully implemented for
natural language processing, operating autonomous vehicles, object classification,
and playing video games, among other things [10]–[13].

Although their feats are seemingly impressive, deep learning systems have been
proven to generalize less than one could hope, exemplified by their weakness to
adversarial attacks [14]. By adding small, deliberate perturbations in the input
data, consistently terrible performance can be achieved from networks with high
accuracy on the original data [15]. If perturbations in the input data, so small
that they are invisible to the human eye, can completely offset a deep learning
system, the time is not ripe for letting it pilot an airplane or control an explosive
chemical reaction. From a control engineering perspective, stability proofs, safety
certificates, and performance guarantees are absolute necessities for applying a
controller to safety-critical settings.

The problem with assuring safety in systems based on neural networks often
stems from the fact that neural network design relies on the theoretical repre-

1

Chapter 1. Introduction

sentational power of combining enough nonlinearities, instead of sound physical
principles [16]. The internal workings of a neural network are hard to analyze,
and their behavior is challenging to predict. Not only is this lack of interpretabil-
ity a challenge in regards to performance, but it can also be an ethical one when
considering various decision systems and classifiers [17].

Several methods for verifying the performance of neural networks have been sug-
gested. Liu et al. summarizes methods for verifying assumptions about neural
networks [18]. Others seek to increase robustness to adversarial examples, by ad-
versarial training, optimizing a robust outer loss or penalizing an upper bound of
the Lipschitz constant [14], [19], [20]. Though these approaches make the network
more likely to be more robust, no proofs of stability or robustness exist.

Lately, there has been an increasing initiative to combine control theory and
machine learning in order to bring rigorous mathematical proofs and reasoning
based on physics into data-based methods. An example of this rise in popularity
is the conference Learning for Dynamics and Control, which was held for the first
time in May 2019 at Massachusetts Institute of Technology. This combination
of paradigms is part of the up and coming field explainable artificial intelligence,
and its subfield sometimes referred to as hybrid analytics, hybrid modeling or
physics-based AI [21]. In hybrid analytics, the goal is to entwine the thorough
understanding and mathematical soundness of physics-based modeling with the
accuracy, general applicability, and automatic pattern-identification capabilities
of advanced data-driven methods [22]. Figure 1.1 illustrates how hybrid analytics
relates to other system analysis approaches.

Many have suggested ways to incorporate learning into the popular model pre-
dictive control scheme, for instance, to achieve stability with pre-learned models,
and safe exploration for online model learning [23], [24]. Lyapunov theory has
been applied in learning systems to ensure safe exploration in reinforcement learn-
ing settings, as done by Berkenkamp et al. [25]. Richards et al. use a particular
class of neural networks, dubbed Lyapunov neural networks, to estimate safe sets
for dynamical systems [26]. Others have let the notion of closed-loop stability
inspire new neural network architectures [27]–[29].

In the recent publication of Shi et al., stability and convergence in a drone path-
following problem are proven for a controller where a neural network learns un-
known dynamics. They claim to be the first to provide stability guarantees for
a neural network-based feedback controller that can utilize arbitrarily large net-
works [1]. This last work has been a great inspiration for this thesis, and the
transformation that will be used in the feedback linearization later is taken from
this paper.

The Lipschitz constant is a measure of the maximum rate of change of a continu-
ous function, which is what a neural network happens to be. It has mostly been
used for increasing robustness in classification problems [20], [30], but Shi et al.
proved that the stability of their feedback controller is dependent on the Lips-
chitz constant of its neural network estimator [1]. Computing the exact Lipschitz
constant of general feedforward networks is NP-hard [31], and several methods

2

1.2 Problem formulation

A
m

ou
nt

 o
f

re
le

va
nt

 d
at

a

Complexiy of knowledge base

Knowledge/physics based model

High-fidelity simulation

Data driven methods

Analytical model

Statistical/machine learning

Complex physical model

Combination of data-driven
and knowledge-based methods

Hybrid analytics

Figure 1.1: Hybrid analytics combines the pattern-recognition capabilities of data-
driven methods with the soundness of physics- and knowledge-based models.

for efficient estimation have been proposed [31]–[33]. In particular, Fazlyab et al.
propose a method that involves solving a semidefinite program to estimate the
Lipschitz constant, which will be expanded in this thesis [4].

1.2 Problem formulation

This thesis is an attempt to further the field of hybrid analytics by incorporating
deep learning into nonlinear control. Before such a hybrid approach can be
applied to situations where safety is critical, it is essential to make guarantees on
stability and performance. Hence, two questions related to the safety of a neural
network controller are posed:

1. Can stability and convergence be proven for a neural network controller
operating on a general class of nonlinear systems?

2. How can the Lipschitz constant be used to evaluate the robustness of the
neural network controller?

The work in this thesis attempts to answer these questions.

3

Chapter 1. Introduction

1.3 Contributions of this thesis

This thesis makes the following contribution to the understanding of how data-
driven learning and control theory can be safely and productively combined:

1. A controller is suggested that gives the closed loop system attractive stabil-
ity traits, and provably bounds the error in a trajectory tracking problem.
The stability and convergence properties of the controller are summarized
in two theorems: Theorem 3.1 and Theorem 3.2.

The Lipschitz constant of the neural network in the controller is proven to influ-
ence the robustness of the controller, but this is only proven to hold when using a
feedforward network on systems without time delay. In order to examine whether
the Lipschitz constant has the same influence as in the undelayed case, convolu-
tional neural networks are applied to systems with time-delayed dynamics. This
leads to the second contribution of this thesis:

2. The method of Fazlyab et al. for estimating the Lipschitz constant of
feedforward networks is extended to convolutional neural networks.

1.4 Thesis outline

The thesis is organized as follows:

Chapter 2 gives an overview of some necessary background theory, including
convolution, the Lipschitz constant, semidefinite programming and deep learning.
The reader is referred to the appendix and external literature for background
theory on nonlinear control.

In Chapter 3, the extension to the method of Fazlyab et al. is presented before
the feedforward neural network controller is derived. Two theorems summarize
the stability and convergence properties of this controller. Proofs follow. Next,
a controller with a convolutional neural network estimator is suggested before
neural network architectures, and training schemes are laid forth.

Then, in Chapter 4, experiments testing the controllers on a simulated mass-
spring-damper system with an unknown input-nonlinearity are conducted.

Next, in Chapter 5, the results of these experiments are discussed to evaluate
the coherence between the results and the predicted behavior from Chapter 3.
Further extensions to this work are then suggested, before the thesis is concluded
in Chapter 6.

4

2 Theory

This chapter provides the reader with some necessary background knowledge.
First, a short introduction to the 2-norm, causal convolution, and semi-definite
programming is given. Machine learning and deep learning are more thoroughly
covered, as these are central to the work in this thesis. Further, the Lipschitz
constant and its properties are covered, before the method of Fazlyab et al., which
will be extended later, is presented.

2.1 The 2-norm

The 2-norm of a vector is defined as follows:

‖x‖2 =

√√√√ n∑
i=1

x2
i , x ∈ Rn.

Further, the 2-norm of a matrix is defined as the largest singular value of the
matrix:

‖A‖2 = σmax(A).

Generally, the singular values of any real matrix A are the square roots of the
non-negative eigenvalues of both AAT and ATA. In particular, the singular
values of a positive definite matrix P are just the eigenvalues of P .

In this work, the norm notation ‖.‖ will always refer to the 2-norm of the argu-
ment unless otherwise specified.

2.2 Convolution

The discrete convolution operator, denoted by ∗, computes the response of a re-
laxed linear system, h, to any input sequence x. The linear system h is commonly
referred to as a filter, in signal processing jargon, or a kernel by data scientists.
The one-dimensional convolution operator is defined as in (2.1).

(x ∗ h)[i] =

∞∑
k=−∞

x[k]h[i− k] =

∞∑
k=−∞

h[k]x[i− k], ∀ i ∈ Z (2.1)

5

Chapter 2. Theory

2.2.1 Causal convolution

As shown in (2.2), a convolution operation can be split into a causal and a
non-causal part. The output of a causal system cannot depend on future input
or output values. When the output signal is causal, the non-causal terms of the
convolution in (2.2) are invalid, as it is not possible to look into the future.

(x ∗ h)[i] =

∞∑
k=0

h[k]x[i− k] +

−1∑
k=−∞

h[k]x[i− k], ∀ i ∈ Z (2.2)

When working with physical signals, causality is inherent. Also, when x[i] is a
time series signal, let x[i] = 0, ∀ i ≤ 0, and call x a causal signal. Hence, the
convolution of a causal signal with a causal filter reduces to the expression in
(2.3) [34].

(x ∗ h)[i] =

n∑
k=1

h[k]x[i− k] =

i∑
k=1

x[k]h[i− k], ∀ i ∈ Z (2.3)

2.2.2 Convolutions as matrix multiplications

Assume that the input signal is of length T , and that the filter is of length N ,
where N ≤ T . Then all non-zero outputs of the convolution in (2.3) is given by
the matrix multiplication in (2.4). The output y will be of length N+T−1.

y = h ∗ x =

h[1] 0 0 0 0 . . . 0
h[2] h[1] 0 0 0 . . . 0

...
. . .

. . .
. . .

...
. . .

...
h[N] . . . h[2] h[1] 0 . . . 0

0 h[N] . . . h[2] h[1] . . . 0
...

. . .
. . .

...
. . .

. . .
...

0 . . . 0 h[N] . . . h[2] h[1]
...

. . .
...

. . .
. . .

... h[2]

0 . . . 0 . . . 0 h[N]
...

0 0 0 0 h[N]

x[1]
x[2]

...
x[T]

 (2.4)

2.3 Semidefinite programming

In a semidefinite program (SDP), a linear objective function is minimized while
ensuring that some symmetric matrix remains positive semidefinite. This is a
convex constraint, and hence, semidefinite programming is a subfield of convex
optimization.

6

2.4 Machine learning

Any SDP can be formulated as shown in (2.5), whereMj = MT
j , j ∈ {1, . . . , n} [35].

SDPs have been thoroughly studied, as numerous practical optimization problems
can be posed as SDPs. For instance, the need to solve linear matrix inequalities
is often present when proving robustness for controllers operating in overlapping
affine regions. Besides, SDPs express weak duality to their related dual problems
and can therefore be solved efficiently using interior point methods [36].

min
x

cTx

subject to 0 ≤M(x)

x ∈ Rn, M(x) = M0 +

n∑
j=1

xjMj

(2.5)

2.4 Machine learning

In machine learning, the goal is to develop learning algorithms that enable com-
puters to solve a problem based on experience, rather than being explicitly in-
structed how to solve it. The following quote by Tom Mitchell is a much-used
definition of a learning algorithm [37]:

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P , if its performance at tasks in T , as
measured by P , improves with experience E.

Machine learning is a vast research field that is heavy in statistics, linear algebra,
and computer science. In machine learning, it is usually assumed that there
exists some true mapping y = f(x) that one wants to estimate with some model

ŷ = f̂(x).

Figure 2.1 illustrates the three categories that machine learning is commonly, but
roughly, divided into: Supervised, unsupervised, and reinforcement learning. In
supervised learning, there exists a set of examples that are indicative of how the
true mapping f behaves. These examples consist of data points xi, and corre-
sponding ground truth points yi. The goal is to learn the mapping from these
examples. Performance in the supervised setting is evaluated by how similar
outputs of f̂ are to f . When doing unsupervised learning, no such ground truth
is available, and the performance must be measured only based on the avail-
able data points. Clustering is a typical application of unsupervised learning,
which is concerned with finding similarities between data points. Reinforcement
learning is motivated by the way humans learn through interaction and feedback
evaluation. The model is left to explore an environment, and its performance is
evaluated in terms of a reward it receives for acting the way it does [37].

In this work regression will be performed as a supervised learning problem. Re-
gression is the task of finding statistically significant relationships between a
quantitative variable y and covariates x. The regression model f̂ can be anything
from a polynomial to a deep neural network, as will be discussed later.

7

Chapter 2. Theory

Figure 2.1: It is common to roughly divide machine learning into three approaches:
Supervised, unsupervised and reinforcement learning.

2.4.1 The dataset

As the goal in machine learning is to learn from observed data, there is always
a dataset that one is interested to learn from. The model should capture the
underlying distribution of the dataset so that it is well prepared when faced with
unseen data. In the supervised setting, the dataset consists of pairs of data points,
and corresponding ground truth points (xi,yi). Usually, the data is divided into
three subsets, called the training set, the validation set, and the test set.

The training set is given to the model for learning. Using this data, the model
repeatedly tests its performance and evaluates how to change in order to perform
better. This is referred to as training the model. However, the performance of
the model on the training set might be deceiving, as it is adjusting itself to fit
this data as well as possible. As a sanity check, the model performance is also
calculated on the validation set during training. Ideally, the performance on the
validation set should be equal to the performance on the training set, as this
implies that the model has learned the true underlying distribution of the data,
and not only a distribution that fits the training set.

Finally, when the model has finished training, and the final model is at hand,
the performance is calculated on the test set. It is important that the test set
is not available to the regression model during training, and the performance on
the test set should never be used for hyperparameter tuning or selecting model
type.

2.4.2 Regression loss functions

It is central in machine learning to have a measure of performance that accurately
reflects how well a model is doing its job. For this task a loss function J(θ) is
employed, which is dependent on the model parameters θ. The loss function has
the attribute that the parameters corresponding to the global minimum of the
loss yield the sought after behavior of the model.

For regression tasks, it is natural to evaluate how close the predictions ŷi are to

8

2.4 Machine learning

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

Error

0.0

0.5

1.0

1.5

2.0

L
os

s
va

lu
e

Huber MAE MSE

Figure 2.2: The mean squared error, mean absolute error, and the Huber loss with
δ = 1.

their corresponding ground truth values yi, i ∈ {1, 2, . . . , n}. Two measurements
of this are the Mean Squared Error (MSE) and the Mean Absolute Error (MAE),
which are presented in (2.6) and (2.7), respectively. Both MSE and MAE are valid
and common loss functions. However, the MAE is not continuously differentiable,
and the MSE is sensitive to outliers, as its derivative is proportional to the error
(ŷ − y).

JMSE =
1

n

1

2

n∑
i=1

(ŷi − yi)2 (2.6)

JMAE =
1

n

n∑
i=1

|ŷi − yi| (2.7)

A compromise between the MSE and the MAE is the Huber loss, shown in (2.8).
The Huber loss is continuously differentiable, and the parameter δ decides where
it behaves as the MSE and the MAE. The Huber loss with δ = 1 is illustrated in
Figure 2.2.

JHuber =
1

n

n∑
i=1

{
1
2 (ŷi − yi)2, |ŷi − yi| ≤ δ
δ|ŷi − yi| − 1

2δ
2, |ŷi − yi| > δ

(2.8)

9

Chapter 2. Theory

2.4.3 Bias-variance trade-off

Though it will not be proven here, the expected MSE of a regression model f̂
at a data point x0 in the test set can be decomposed as in (2.9). Here ε is
some zero mean noise affecting the sampling of the true mapping yi = f(xi) +
ε [38]. Equation (2.9) shows that the performance of the model at a test point
is dependent on the variance of ε, as well as what is referred to as the bias and
variance of the trained model. An optimal estimator would have zero bias and
variance, but as it turns out, reducing one usually leads to an increase in the
other.

E{(y0 − f̂(x0))2} =
(
y0 − E{f̂(x0)}

)2

+ E{
(
E{f̂(x0)} − f̂(x0)

)2

}+ Var(ε)

= Var(f̂(x0)) + [Bias(f̂(x0))]2 + Var(ε)

(2.9)

Consider Figure 2.3, where three polynomials of degree one, two and five are
fitted to data points sampled from y = x2 + ε. The polynomial of degree one
does not have enough flexibility to fit these data points and capture the true
mapping. Hence, its bias is too high, and its variance too low. This scenario is
known as underfitting. On the other hand, the polynomial of degree five passes
through every single training data point, but does a poor job of extrapolating
beyond these. This polynomial clearly has high variance and low bias, leading
to the situation called overfitting. While the polynomial of degree two is clearly
affected by the noise ε, its bias and variance seem well balanced.

Generally, it is said that a complex model introduces more variance, while a
simpler model has higher bias [39].

2.4.4 L2 regularization

A means for reducing variance in a machine learning model is regularization.
Regularization is meant to discourage overfitting and make the model generalize
better, but it also increases bias, and makes the model more rigid. The goal is
to trade off a small, acceptable increase in bias for a large reduction in variance,
overall bettering the performance of the model.

A prevalent form of regularization is called L2 regularization, where the term in
(2.10) is added to the loss function during training. L2 regularization is a penalty
term that incentivizes small parameters, where θR ⊆ θ are the parameters that
are affected. Typically,bias terms are not included in the L2 regularization term.
The weight of the penalty relative to the original loss is controlled with the
regularization parameter αL2 [39].

JL2 = αL2
1

n

1

2

∑
θj∈θR

θ2
j (2.10)

10

2.5 Deep learning

−3 −2 −1 0 1 2 3
−1

0

1

2

3

4

5

y p1 p2 p5

Figure 2.3: Three models are fitted to data points originating from a noisy sampling
of y = x2. The three fitted models are polynomials of degree one, two and five. The
blue dots represent the training data.

2.5 Deep learning

Deep learning is a sub-field of machine learning where complex, non-linear func-
tion approximators called neural networks (NNs) are central. Originally inspired
by the human brain, NNs have proven to be excellent estimators for both clas-
sification and regression problems. Neural networks have out-competed many
traditional signal processing and pattern recognition methods, becoming state
of the art in research fields such as natural language processing and computer
vision [40].

2.5.1 Feed forward networks

The simplest form of a neural network dates back to the 1960s, and is called a
feedforward network (FFN), or a deep feedforward network [40]. A FFN takes
an input x and maps it to an output y = f(x; θ), where θ denotes the network
parameters. The mapping can be seen as L nonlinear mappings applied in suc-
cession; f(x) = fL(fL−1(...f2(f1(x)))). Each non-linear mapping is referred to
as a layer. The number of layers is known as the depth of the network.

The output of layer i, ui, is computed as shown in (2.11). First, the output of the
previous layer ui−1 is multiplied with a weight matrix W i and then a bias vector
bi is added to the product. The resulting vector is then fed to an activation
function ai, which typically is of the type sigmoid, ReLU, or tanh [41]. Often,
the activation function of the last layer is chosen to be the identity mapping, so
that the output is not restricted.

11

Chapter 2. Theory

(a) A FFN with three layers. (b) Zoomed in view of a single neuron.

Figure 2.4: Figure 2.4a visualizes a FFN of depth 3. The edges represent multipli-
cation by the entries of the weight matrices, where wi

j,k is the element in row j and
column k of W i. The nodes are neurons where the input is summed, bias added and
the activation function applied in accordance with (2.11). Figure 2.4b shows how each
neuron computes its output. ui

j is the j-th element of layer i.

ui = ai(W i · ui−1 + bi) (2.11)

The FFN can be visualized as a graph where each node, called a neuron, outputs
an element of a layer vector ui. Figure 2.4a shows the graph representation of a
three-layer neural network. The edges represent the multiplication of a neuron
output with an element of the weight matrix of the next layer. At each neuran,
the incoming products are summed, a bias added, and the activation function
applied, as shown in Figure 2.4b.

2.5.2 Training feedforward networks

When training a NN, the goal is to minimize some loss function J(θ) by adjusting
the network parameters. Usually, θ consists of the weights and biases of the
network. The most popular way to minimize the loss in deep learning is by using
some version of gradient descent.

Gradient descent is an algorithm that updates the parameters of a network by
perturbing them in the opposite direction of ∇θJ(θ), which is the gradient of
J(θ) with respect to θ. As is well known, the gradient of a scalar function
points in the direction of steepest ascent. An estimate of the gradient can be
efficiently computed by applying the chain-rule cleverly in a method known as
back-propagation [41].

Back-propagation

Let y be the output layer of some FFN with L layers. Then, to compute the
gradient of the loss J with respect to θ, the derivative of the loss with respect
to W i, bi ∀ i ∈ {1, . . . , L} must be computed. For clarity, the notation vi =
W i · ui−1 + bi is adopted, so that y = uL = aL(vL). As seen from (2.12),

12

2.5 Deep learning

applying the chain rule reveals that the derivatives share terms. This opens up
for computing the derivatives efficiently, as there is no need to compute every
derivative from scratch.

The back-propagation algorithm builds a computational graph that defines how
to calculate all the necessary derivative terms. In 1986, Rumelhart et al. showed
how back-propagation of errors could be used for learning [42]. Today, calculating
the gradients of neural networks during training is almost exclusively done with
back-propagation [41].

∂J

∂WL
=

∂J

∂uL
∂uL

∂vL
∂vL

∂WL
=

∂J

∂uL
∂uL

∂vL
[uL−1]T

∂J

∂bL
=

∂J

∂uL
∂uL

∂vL
∂vL

∂bL
=

∂J

∂uL
∂uL

∂vL

∂J

∂WL−1
=

∂J

∂uL
∂uL

∂uL−1

∂uL−1

∂vL−1
[uL−2]T

...

∂J

∂W 1
=

∂J

∂uL
∂uL

∂uL−1
. . .

∂u2

∂u1

∂u1

∂v1
xT

∂J

∂b1
=

∂J

∂uL
∂uL

∂uL−1
. . .

∂u2

∂u1

∂u1

∂v1

(2.12)

There are many different possible schemes for performing gradient descent, and
only some of them are explained here. Assume the supervised setting, so that n
training examples (xi,yi) are available.

Batched gradient descent

In what is known as batched, or vanilla, gradient descent, the gradient is com-
puted based on all available training examples. The parameters are then updated
as shown in (2.13), where η, the learning rate, decides how much the parameters
are perturbed. Here, X =

[
x1 . . . xn

]
and Y =

[
y1 . . . yn

]
.

θ = θ − η∇θJ(θ;X,Y) (2.13)

The number of times the parameters are updated using the same subset of the
training data is known as the number of epochs NE of training. Using all training
examples to compute the gradient is often infeasible due to memory constraints.
Further, it does not allow online learning; all training examples must be available
before training starts [43].

Stochastic gradient descent

Stochastic gradient descent (SGD) performs updates by calculating the gradient
of one training example at a time, as indicated by (2.14). Performing stochastic

13

Chapter 2. Theory

updates enables online learning, but as the gradient is estimated based on one
single example, the variance of the updates is high. High variance results in the
updates not always changing the parameters towards the closest local minimum,
and typically when using SGD, the loss will not steadily decrease but fluctuate
heavily. Convergence of this algorithm can be achieved at the same rate as with
batched gradient descent by steadily decreasing the learning rate throughout the
training [43].

θ = θ − η∇θJ(θ; xi,yi) (2.14)

Mini-batch gradient descent

As a compromise between batched gradient descent and SGD, mini-batched gra-
dient descent performs updates on small subsets of the training examples at a
time. If the mini-batch is of size NMB , NMB samples are drawn randomly from
the n training samples. Increasing the number of samples reduces the variance
of stochastic gradient descent, while still being computationally feasible [43]. Let
the subset of training examples drawn for the mini-batch be denoted by XMB,
YMB. The resulting update rule is shown in (2.15).

θ = θ − η∇θJ(θ;XMB, YMB) (2.15)

Adaptive moment estimation

Many improvements to gradient descent, mostly aimed at reducing variance and
speeding up convergence, have been suggested. One such method is Adaptive
Moment Estimation (Adam) that makes use of moving averages of the first and
second moments of the gradient [44].

Instead of updating the weights in the direction of the last gradient, Adam up-
dates them in the direction of the moving average of the gradients mt, shown in
(2.16). This way, the update direction becomes less sensitive to the statistical
properties of the current gradient estimate and more dependent on the average
direction over the last updates. When using gradient descent, some parameters
might experience consistently large gradients, while others are barely updated, as
the same learning rate is applied to all elements of θ. Scaling the update of each
parameter by the amount the parameter has been updated previously, smooths
out this difference. In Adam, this is done by scaling the learning rate by the
moving average of the gradient estimate squared, seen in (2.17).

mt = β1mt−1 + (1− β1)∇θJ(θ) (2.16)

vt = β2vt−1 + (1− β2)(∇θJ(θ))2 (2.17)

As Kingma and Ba point out in their paper, the estimated moments (2.16) and
(2.17) are biased towards zero, which they counteract by using the bias-corrected

14

2.5 Deep learning

Figure 2.5: A one-dimensional convolutional layer has Cin input channels and Cout

output channels. Here, rectangles represent convolution, and circles represent sum-
mation, bias addition and application of the activation function. Each of the output
channels is computed as in (2.20).

moments in (2.18). The final update rule of Adam is shown in (2.19), where ε is a
small number added to avoid division by zero. The authors suggest the following
values for the parameters: β1 = 0.9, β2 = 0.999, ε = 1× 10−8.

m̂t =
mt

1− β1
, v̂t =

vt
1− β2

(2.18)

θt = θt−1 − η
m̂t√
v̂t + ε

∇θJ(θ) (2.19)

2.5.3 Convolutional neural networks

A convolutional neural network (CNN) is a neural network where at least one
of the layers performs a convolution operation on its input. Here, CNNs with
one-dimensional filters for convolution in the time dimension is considered.

A one-dimensional convolutional layer is defined by the number of input chan-
nels Cin, the number of output channels Cout, the filter length N , and the
choice of padding of the input. A vanilla convolutional layer is illustrated in
Figure 2.5

The padding parameter of a convolutional layer decides what part of the convo-
lution to calculate. There are three common modes of padding, usually referred
to as valid, same and causal. Only the causal padding mode is considered here.
When the padding is causal, only the first T terms of the convolution is per-
formed, where T is the input length. This is equivalent to removing the last N
rows of the matrix in (2.4).

The input to a convolutional layer consists of Cin vectors ui ∈ RT , where T is
the number of time-steps. Each of the Cout output channels of the layer are

15

Chapter 2. Theory

calculated as in (2.20), where ai denotes some activation function, and the bias
bij is added element-wise.

An important size measure of a CNN is its receptive field size sr, which is defined
in Definition 2.1. An illustration of the receptive field of a two-layer CNN with
one input and one output channel for each layer is shown in Figure 2.6.

uij = ai(bij +

Cin∑
k=1

hij,k ∗ ui−1
k), j ∈ {1, 2, . . . , Cout} (2.20)

Definition 2.1 (Receptive field)
The receptive field size of a CNN layer is the number of elements of the network
input that influence the layer output. Let a CNN have Lc undilated convolutional
layers, where each layer applies filters of length Ni, i ∈ {1, . . . , Lc}. The receptive
field size sri of layer i is computed by solving the recursion

sri = sri−1 +Ni − 1, sr0 = 1.

6

Figure 2.6: The receptive field of a CNN with two layers with filter lengths 3 and 4,
and one input and one output channel for each layer.

2.6 The Lipschitz constant

The Lipschitz condition is given by (2.21). If this condition holds for all x, y in
a neighborhood of some point x0, the function f is said to be locally Lipschitz
in this neighborhood. If (2.21) hold for all values of x and y, f is globally
Lipschitz and Lipschitz continuous. A Lipschitz continuous function is illustrated
in Figure 2.7.

Every Λ that satisfy (2.21) in some neighborhood, is called a Lipschitz constant
of f in that neighborhood. The smallest Lipschitz constant gives a bound on how
much the output of f can change, given some change in the input [45].

∥∥f(x)− f(y)
∥∥ ≤ Λ ‖x− y‖ (2.21)

If the Lipschitz constant of a function is known, a worst case evaluation of the
effect of a perturbation z to the input can be estimated as

16

2.6 The Lipschitz constant

∥∥f(x+ z)− f(x)
∥∥ ≤ Λ ‖z‖ .

−4 −3 −2 −1 0 1 2 3 4
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Figure 2.7: A Lipschitz continuous function will always stay outside the infinite green
cone, as the center of the cone moves along the trajectory of the function. The slope
of the cone is equal to the tightest Lipschitz constant of the function. Here, tanh(x),
which has Lipschitz constant Λ = 1, is shown with a cone of slope 1 centered at three
different points of its trajectory. As seen here, tanh(x) will always stay outside the
cone.

2.6.1 Naive bounds on the Lipschitz constant for feedfor-
ward networks

Lemma 2.1 (Lemma 3.1 from Khalil, 2013 [45])
Let f : D → Rm be continuous for some domain D ⊂ Rn. Suppose that ∂f

∂x exists
and is continuous on D. If, for a convex subsetW ⊂ D, there is a constant Λ ≥ 0
such that ∥∥∥∥∂f∂x

∥∥∥∥ ≤ Λ

for all x ∈ W, then ∥∥f(x)− f(y)
∥∥ ≤ Λ ‖x− y‖ , ∀ x, y ∈ W.

Lemma 2.2
Let f : Df → Rm be continuous in some domain Df ⊂ Rn. Let g : Dg →
Image(g) be continuous in some domain Dg ⊂ Rp, where Image(g) ⊆ Df . As-
sume that f is Lipschitz continuous in Df with Lipschitz constant Λf , and that
g is Lipschitz continuous in Dg with Lipschitz constant Λg. Then

∥∥f(y1)− f(y2)
∥∥ =

∥∥f(g(x1))− f(g(x2))
∥∥ ≤ Λf

∥∥g(x1)− g(x2)
∥∥ ≤ ΛfΛg ‖x1 − x2‖

⇒
∥∥f(x1)− f(x2)

∥∥ ≤ ΛfΛg ‖x1 − x2‖ .

17

Chapter 2. Theory

Hence, f is Lipschitz continuous in Dg with Lipschitz constant ΛfΛg.

Consider the FFN layer presented in Section 2.5, and again adopt the notation
ui = ai(vi). The gradient of a layer output ui with respect to its input layer
ui−1 is

∂ui

∂ui−1
=

∂ai

∂vi−1
W i

= diag

([
∂ai

∂vi−1
1

∂ai

∂vi−1
2

. . . ∂ai

∂vi−1
ni

])
W i.

Recall that the activation functions of neural networks are typically of type ReLU,
tanh or sigmoid. All these functions are Lipschitz continuous and their deriva-
tives are contained in the interval [0, 1]. Thus, the theoretical maximum of the
gradient above is achieved when (∂ai)/(∂vi−1

j) = 1 ∀ j ∈ {1, 2, . . . , ni}. Hence,
the partial derivatives are bounded, and by Lemma 2.1, the FFN layer has a
Lipschitz constant Λi =

∥∥W i
∥∥:

∥∥∥∥∥ ∂ui

∂ui−1

∥∥∥∥∥ =

∥∥∥∥diag(
[
∂ai

∂vi−1
1

∂ai

∂vi−1
2

. . . ∂ai

∂vi−1
ni

]
)W i

∥∥∥∥
≤
∥∥∥∥diag(

[
∂ai

∂vi−1
1

∂ai

∂vi−1
2

. . . ∂ai

∂vi−1
ni

]
)

∥∥∥∥∥∥∥W i
∥∥∥

≤ ‖I‖
∥∥∥W i

∥∥∥ ≤ ∥∥∥W i
∥∥∥ .

Thus, by Lemma 2.2 a FFN with L layers is Lipschitz continuous in its input
space with a naive upper bound on the Lipschitz constant given by (2.22). A
lower bound on the Lipschitz constant of the same FFN is given in (2.23), as
proven by Combettes and Pesquet. The naive upper bound is provably quite
loose, but serves as a sanity check [46].

ΛUN =
L∏
i=1

∥∥∥W i
∥∥∥ (2.22)

ΛLN =

∥∥∥∥∥∥
L∏
i=1

W i

∥∥∥∥∥∥ (2.23)

2.6.2 Spectral normalization

Spectral normalization is a novel regularization technique developed for stabiliz-
ing the training process of Generative Adversarial Networks [47]. The technique

18

2.6 The Lipschitz constant

is easily applied to FFNs, and allows us to fix the naive upper bound on the
Lipschitz constant (2.22) to some value γ > 0.

Recall from Section 2.1 that the 2-norm, also called the spectral norm, of a matrix
is equal to the largest singular value of the matrix. Hence, the naive upper bound
on the Lipschitz constant is simply a product of the largest singular values of the
layer weight matrices. Miyato et al. therefore suggest normalizing the weight
matrices by their largest singular value, such that the normalized matrix has
2-norm equal to 1:

W̄ =
W

σmax(W)
⇒
∥∥W̄∥∥ = 1

Further, exchanging the weight matrices for their normalized counterparts mul-
tiplied by γ

1
L leads to a naive upper bound equal to γ:

ΛUN =

L∏
i=1

∥∥∥∥∥ W i

σmax(W)

∥∥∥∥∥ γ 1
L = γ.

The largest singular values of the weight matrices can be estimated using the
power iteration method, as suggested by Miyato et al..

2.6.3 Efficient estimation of the Lipschitz constant for feed-
forward networks: LipSDP

Here, the method called LipSDP, for Lipschitz Semidefinite Program, is de-
scribed. It was developed by Fazlyab et al. for estimating the Lipschitz constant
of FFNs [4].

Definition 2.2 (Slope-restricted function)
Let f : R → R satisfy (2.24), where 0 ≤ α < β < ∞. Then f is said to be slope
restricted on [α, β].

α ≤ ϕ(y)− ϕ(x)

y − x ≤ β, ∀ x, y ∈ R (2.24)

Let ϕ be a slope-restricted non-linearity, as described in Definition 2.2. The
criterion for slope-restriction (2.24) can be rewritten into the form of (2.25a),
which is equivalent to (2.25b) as long as λ ≥ 0.

0 ≤
[

x− y
ϕ(x)− ϕ(y)

]T [−2αβ α+ β
α+ β −2

] [
x− y

ϕ(x)− ϕ(y)

]
(2.25a)

0 ≤
[

x− y
ϕ(x)− ϕ(y)

]T
λ

[
−2αβ α+ β
α+ β −2

] [
x− y

ϕ(x)− ϕ(y)

]
(2.25b)

19

Chapter 2. Theory

The idea from (2.25b) can be extended to reflect the interaction between ele-
ments of a vector of non-linearities φ(x) =

[
ϕ(x1) ϕ(x2) . . . ϕ(xn)

]
. If all

all elements of φ(x) are outputs of the same slope-restricted function on [α, β]
applied on n different inputs, φ(x) satisfies (2.27). Here, T ∈ Tn, were Tn is
described in (2.26), and Sn is the set of symmetric matrices of size n× n.

Tn = {T ∈ Sn|T =

n∑
i=1

λiieie
T
i +

∑
1≤i<j≤n

λij(ei − ej)(ei − ej)t, λkl ≥ 0} (2.26)

0 ≤
[

x− y
φ(x)− φ(y)

]T [−2αβT (α+ β)T
(α+ β)T −2T

] [
x− y

φ(x)− φ(y)

]
(2.27)

Consider the L-layer FFN applying the same activation function a at every layer,
except for the output layer which has no activation:

g(x) = uL = WLaL−1(. . . a2(W 2a1(W 1x + b1) + b2)) . . .) + bL

As in Section 2.5, ui denotes the output of layer i. This FFN can be rewritten to

the compact form of (2.28), where zT =
[
xT (u1)T . . . (uL−1)T

]
, and A,

B, C and b are as in (2.29).

Bz = a(Az + b), g(x) = Cz + bL (2.28)

A =

W 1 0 . . . 0 0

0 W 2 . . . 0 0
...

. . .
. . .

. . .
...

0 . . . 0 WL−1 0

 , B =

0 . . . 0 In1

0 . . . 0

0 . . . 0 0 In2

. . .
...

...
. . .

...
...

. . .
. . . 0

0 . . . 0 0 . . . 0 InL

C =

[
0 . . . 0 WL

]
, bT =

[
(b1)T (b2)T . . . (bL−1)T

]
(2.29)

By realizing that Bz = a(Az + b) is just a slope restricted function applied to
some input vector Az + b, the compact version of the FFN can be inserted into
(2.27) to yield

0 ≤
[

Az1 −Az2

a(Az1 + b)− a(Az2 + b)

]T [−2αβT (α+ β)T
(α+ β)T −2T

] [
Az1 −Az2

a(Az1 + b)− a(Az2 + b)

]

0 ≤ (z1 − z2)T
[
A
B

]T [−2αβT (α+ β)T
(α+ β)T −2T

] [
A
B

]
(z1 − z2)

20

2.6 The Lipschitz constant

Now, assume that some T ∈ Tn and Λ > 0 can be found such that (2.30) is
fulfilled. Then, the right hand side of (2.30) must be non-negative, as the left
hand side is non-negative by the slope restriction condition. From the deriva-
tion shown in (2.31), it can be concluded that Λ is a Lipschitz constant for the
FFN.

(z1 − z2)T
[
A
B

]T [−2αβT (α+ β)T
(α+ β)T −2T

] [
A
B

]
(z1 − z2)

≤ (z1 − z2)T

Λ2In0

0 . . . 0

0
...

. . .
...

... 0 . . . 0
0 . . . 0 −(WL)TWL

 (z1 − z2)

(2.30)

0 ≤ (z1 − z2)T

Λ2In0 0 . . . 0

0
...

. . .
...

... 0 . . . 0
0 . . . 0 −(WL)TWL

 (z1 − z2) (2.31a)

0 ≤ (x1− x2)TΛ2(x1− x2)− (uL−1
1 −uL−1

2)T (WL)TWL(uL−1
1 −uL−1

2) (2.31b)

(
WL(uL−1

1 − uL−1
2)

)T
W (uL−1

1 − uL−1
2) ≤ Λ2(x1 − x2)T (x1 − x2) (2.31c)

∥∥∥g(x1)− g(x2)
∥∥∥2

≤ Λ2
∥∥∥x1 − x2

∥∥∥2

(2.31d)

To find the smallest Λ satisfying (2.30), the SDP in (2.33) is solved, where

M(Λ, T) is as in (2.32). This is a SDP with 1 + N(N+1)
2 decision variables,

where N =
∑L−1
j=1 nj is the number of neurons in the FFN. Solving a SPD with

O(N2) decision variables is infeasible for large networks without extraordinary
amounts of computational power. Therefore, the authors of [4] suggest replac-
ing T with a diagonal matrix, reducing the number of variables to N + 1. This
relaxation does not invalidate the proofs of finding a Lipschitz constant for the
FFN, though it will be slightly looser than the one found with T ∈ TN .

M(Λ, T) =

[
A
B

]T [−2αβT (α+ β)T
(α+ β)T −2T

] [
A
B

]
+

−Λ2In0

0 . . . 0

0
...

. . .
...

... 0 . . . 0
0 . . . 0 (WL)TWL

(2.32)

21

Chapter 2. Theory

min
Λ,T

Λ s.t. M(Λ, T) � 0, Λ > 0, T ∈ TN (2.33)

2.7 Nonlinear control theory

Established results from nonlinear control theory are extensively used in this the-
sis. All necessary information to follow the reasoning can be found in Nonlinear
Systems by Khalil (2015) [45]. For ease of reading, the definitions, lemmas and
theorems that are used later are reiterated in Appendix A.

22

3 Methodology and
Theoretical Results

In this chapter, a method for estimating the Lipschitz constant of CNNs is pre-
sented. Next, a feedback linearizing controller with a FFN estimating unknown
dynamics is suggested. Two theorems summarize the stability and convergence
properties of the FFN controller. A CNN controller for time-delayed systems is
also suggested. Then, a mass-spring-damper system that will be used for exper-
iments is introduced, before the NNs that are trained for the experiments are
presented.

3.1 LipSDP for convolutional neural networks with
temporal convolutions

The LipSDP method, presented in Section 2.6.3, can be applied to convolutional
neural networks by rethinking them as structured feedforward networks. By
doing this, an efficient and accurate method for estimating the Lipschitz constant
of CNNs is gained.

Recall formula (2.20) for calculating the output of a convolutional layer with Cin

input channels and Cout output channels:

ui+1
j = ai+1(bi+1

j +

Cin∑
k=1

hi+1
j,k ∗ uik), j ∈ {1, 2, . . . , Cout} (2.20 revisited)

Technically, this equation can be fed an input of any length T :

uik =
[
uik[1] uik[2] . . . uik[T]

]T
.

However, if T is larger than the receptive field size (Definition 2.1) sr of the last
convolutional layer of the network, the exact same outputs can be restored by
feeding the CNN several inputs[

uik[1] . . . uik[sr]
]T[

uik[2] . . . uik[sr + 1]
]T

...[
uik[T − sr + 1] . . . uik[T]

]T
.

23

Chapter 3. Methodology and Theoretical Results

In the case that T < sr, the first sr − T elements of the input vector might be
set to zero. This justifies the assumption that the length of the input is always
equal to the receptive field size without loss of generality.

Under this assumption, the filters from (2.20) can be rewritten in the fashion of
(2.4), by dropping the last N rows. Then each filter hi+1

j,k of length Ni has its

matrix equivalent Hi+1
j,k ∈ Rsr×sr as shown in (3.1).

Hi+1
j,k =

hi+1
j,k [1] 0 0 0 0 . . . 0

hi+1
j,k [2] hi+1

j,k [1] 0 0 0 . . . 0
...

.
...

. . .
...

hi+1
j,k [Ni] . . . hi+1

j,k [2] hi+1
j,k [1] 0 . . . 0

0 hi+1
j,k [Ni] . . . hi+1

j,k [2] hi+1
j,k [1]

. . .
...

...
. . .

. . .
...

. . .
. . . 0

0 . . . 0 hi+1
j,k [Ni] . . . hi+1

j,k [2] hi+1
j,k [1]

(3.1)

By adopting this causal matrix form of the filters and stacking the input vectors
vertically, (2.20) can be rewritten as a matrix multiplication that returns the
output stacked vertically. The final expression for this is (3.2). This shows
that a convolutional layer is just a feed forward layer with structured weight
matrices.

ui+1
j = ai+1(bi+1

j +

Cin∑
k=1

Hi+1
j,k uik)

= ai+1(bi+1
j +

[
Hi+1
j,1 Hi+1

j,2 . . . Hi+1
j,Cin

]

ui1
ui2
...

uiCin

)

ui+1

1

ui+1
2
...

ui+1
Cout

 = ai+1(

bi+1

1

bi+1
2
...

bi+1
Cout

+

Hi+1

1,1 Hi+1
1,2 . . . Hi+1

1,Cin

Hi+1
2,1 Hi+1

2,2 . . . Hi+1
2,Cin

...
...

. . .
...

Hi+1
Cout,1

Hi+1
Cout,2

. . . Hi+1
Cout,Cin

ui1
ui2
...

uiCin

)

ui+1 = ai+1(bi+1 +Hi+1
all ui)

(3.2)

When only a prediction of the next time step is desired, it is common to flat-
ten the output of the last convolutional layer and add one or more fully con-
nected layers. The flattened output either has the form of (3.2), or is shaped as

24

3.2 Feedback linearizing neural network controller

ui =
[
ui1[1] ui2[1] . . . uiCout

[1] ui1[1] . . . uiCout
[T]
]T

. Either way, it is always

possible to reshape the weight matrix of the following fully connected layer such
that its output is ui+1 = ai+1(W i+1ui + bi+1).

The LipSDP program for CNNs was implemented in MATLAB using CVX, which
is a package for specifying and solving convex programs [5], [6].

3.2 Feedback linearizing neural network controller

In this section, a neural network controller based on feedback linearization is de-
rived. It is proven that the resulting closed-loop system is finite gain Lp stable,
input-to-state stable and that it converges to an error ball centered at the origin
whose radius is possible to influence. It is also shown that the Lipschitz constant
of the neural network affects the noise rejection capabilities of the controller.
Finally, it is shown how these results change when the assumption that the con-
troller can be updated continuously is violated. These results are presented in
two theorems, Theorem 3.1 and Theorem 3.2, which are proven in Section 3.2.2
and Section 3.2.3.

3.2.1 Controller design

Consider all systems of the form (3.3), where c11 and c12 are known constants, and
d(x, u) is a continuous, unknown, nonlinear mapping. The objective is making x1

track the trajectory xr1(t), or equivalently, driving (3.4a) to zero. It is assumed
that the trajectory is twice continuously differentiable, and that its derivatives
are known.

ẋ1 = c11x1 + c12x2

ẋ2 = d(x, u) + bu
(3.3)

Define the reference value (3.5), such that the composite variable z2 can be
defined as in (3.4b), where Γ is a freely chosen parameter. Rearranging (3.4b)
yields the dynamics of z1 in (3.6a). Taking the derivative of z2 with respect to
time results in (3.6b). The dynamics of z =

[
z1 z2

]
is a form of error dynamics

of (3.3), when the objective is trajectory tracking of xr1(t).

It should be noted that when c11 = 0 and c12 = 1, x1 can be seen as the position,
and x2 as the velocity, of (3.3). If z1 is driven to the origin, z2 is the difference
between x2 and ẋr1(t), which is an intuitive velocity error for the system.

z1 = x1 − xr1(t) (3.4a)

z2 =
1

c12
(ż1 + Γz1) =

1

c12
(ẋ1 − ẋr1(t) + Γz1) = x2 − xr2(t) (3.4b)

25

Chapter 3. Methodology and Theoretical Results

xr2(t) = − 1

c12
(c11x1 − ẋr1(t) + Γz1) (3.5)

By Definition A.1, systems of the form (3.3) are feedback linearizable under the
change of variables z =

[
x1 − xr1(t) x2 − xr2(t)

]
, given that d(x, u) is continuous.

This diffeomorphism transforms the system into the form of (A.1), as shown in
(3.7). The pair (A,B) is controllable for all c12 6= 0.

ż1 = −Γz1 + c12z2 (3.6a)

ż2 = d(x, u) + bu− ẋr2(t) (3.6b)

ż =

[
−Γ c12

0 0

]
z +

[
0
b

]
(u+

1

b

[
d(x, u)− ẋr2(t)

]
)

ż = Az +B(u− 1

b

[
−d(x, u) + ẋr2(t)

]
)

(3.7)

Let d̂(x(t), u(t)) be the output of a neural network estimating d(x, u) by mapping

the states and input to a real number: d̂ : R2×R→ R. Define the estimation error
of the neural network as v(t) = d(x, u) − d̂(x, u). Assuming that new estimates
are continuously available, the controller (3.8) is proposed, where K =

[
k1 k2

]
.

Applying this controller to (3.7) yields the closed loop dynamics in (3.9).

u = −Kz− 1

b

[
d̂(x(t), u(t))− ẋr2(t)

]
(3.8)

ż = (A−BK)z +

[
0
1

]
v(t) (3.9)

Theorem 3.1 (Closed-loop stability and convergence of a continuous NN con-
troller.)

Let d̂ : R2 × R → R be a neural network estimating the unknown dynamics of
(3.3), and define v(t) = d(x, u)− d̂(x, u). Assume that

(i) The error of the NN estimate is bounded:
∥∥v(t)

∥∥ ≤ ε.
(ii) The estimator d̂(x, u) is Lipschitz continuous with Lipschitz constant Λ.

(iii) The estimate of the unknown dynamics can be updated continuously.

Let the input u of (3.3) be given by the continuous NN controller (3.8), where K
and Γ satisfy (3.10).

k1 = −c12

b
, Γ > 0, Γk2 >

c212

b
(3.10)

26

3.2 Feedback linearizing neural network controller

Then, the resulting closed loop system (3.9) is input-to-state and finite-gain Lp-
stable from v(t) to z(t).

The error norm converges globally and exponentially to a ball centered at the
origin:

lim
t→∞

∥∥z(t)
∥∥ ≤ ∣∣∣∣ ελ

∣∣∣∣ , (3.11)

where λ denotes the least negative eigenvalue of A−BK.

Further, if the measurements of x are affected by some additive bounded noise
qx = [q1 q2]T satisfying |q1| ≤ qm1 , |q2| ≤ qm2 , the error norm converges to

lim
t→∞

∥∥z(t)
∥∥ ≤ ∣∣∣∣ 1λ (Λ ‖qx‖+Bq + ε

)∣∣∣∣ (3.12)

where Bq = |c12 + bk2+1
c12

(c11 + Γ)|qm1 + |k2b|qm2 .

Even though the forward pass of a neural network is relatively quick, the assump-
tion that the controller in (3.8) can be updated continuously might be violated.
Therefore, the scenario where a new estimate can only be made every ∆tmax sec-
onds is considered. This results in the controller (3.13), where ∆t ≤ ∆tmax is the
time since the last estimate was made. It is assumed that the linear term of the
controller can be updated continuously. Applying (3.13) to (3.7) yields the per-

turbed system (3.14), where w(t) = d(x(t), u(t))− d̂(x(t−∆t), u(t−∆t)).

u(t) = −Kz(t)− 1

b
[d̂(x(t−∆t), u(t−∆t))− ẋr2(t)] (3.13)

ż = (A−BK)z +

[
0
1

]
w(t) (3.14)

Theorem 3.2 (Closed-loop convergence of a discrete NN controller.)

Define w(t) = d(x(t), u(t))− d̂(x(t−∆t), u(t−∆t)), and assume that

(i) The error of the NN estimate is bounded:
∥∥∥d(x(t), u(t))− d̂(x(t), u(t))

∥∥∥ ≤ ε.
(ii) The estimator d̂(x, u) is Lipschitz continuous with Lipschitz constant Λ.

(iii) The change in the system state is bounded:
∥∥x(t)− x(t−∆t)

∥∥ ≤ ρx for
some small time-step ∆t ≤ ∆tmax.

(iv) The change in the system input is bounded:
∥∥u(t)− u(t−∆t)

∥∥ ≤ ρu for
some small time-step ∆t ≤ ∆tmax.

27

Chapter 3. Methodology and Theoretical Results

Let u be given by the discretely updated NN controller (3.13) where K and Γ
satisfy (3.10), and let λ denote the least negative eigenvalue of A − BK. Then,
the resulting closed loop system (3.14) is input-to-state and finite-gain Lp-stable
from w(t) to z(t).

The error norm converges globally and exponentially to an error-ball centered at
the origin:

lim
t→∞

∥∥z(t)
∥∥ ≤ ∣∣∣∣ (Λ(ρx + ρu) + ε)

λ

∣∣∣∣ . (3.15)

Further, if the measurements of x are affected by some additive bounded noise
qx = [q1 q2]T satisfying |q1| ≤ qm1 , |q2| ≤ qm2 , the error norm converges to

lim
t→∞

∥∥z(t)
∥∥ ≤ ∣∣∣∣ 1λ (Λ(ρx + ρu + ‖qx‖) +Bq + ε

)∣∣∣∣ , (3.16)

where Bq = |c12 + bk2+1
c12

(c11 + Γ)|qm1 + |k2b|qm2 .

3.2.2 Proof of Theorem 3.1

If the nonlinearity d(x, u) is perfectly estimated by d̂(x, u), the control law (3.8)
transforms (3.3) into the form of an autonomous system with a single trivial
equilibrium point in z = 0, as shown in (3.17). Choosing K and Γ such that (3.10)
is satisfied forces A − BK to be a symmetric negative definite matrix. Hence,
(3.17) is a linear, autonomous system with strictly negative eigenvalues, and is
therefore globally exponentially stable (GES). Consequently, finding a Lyapunov

function V = c1 ‖z‖2 satisfying the requirements in (A.4) is trivial.

ż = (A−BK)z (3.17)

Convergence

When the nonlinearity is unknown, (3.9) can be seen as (3.17) perturbed by
the bounded term v(t). By Lemma A.1, the perturbed system (3.9) converges
globally and exponentially to some error ball centered at the origin. Therefore,
the NN controller in (3.8) is guaranteed to drive the system towards the set-point
at an exponential rate.

Let λ be the largest eigenvalue of (A − BK) (the smallest in magnitude). As
(A−BK) is real symmetric negative definite, λ is real and strictly negative. In
addition, xT (A − BK)x ≤ λxTx [48]. To further investigate what z converges

to, the Lyapunov function V = 1
2 ‖z‖

2
= 1

2zT z is used. Taking the derivative of
V yields

28

3.2 Feedback linearizing neural network controller

V̇ = zT (A−BK)z + zT
[
0
1

]
[d(x(t), u(t))− d̂(x(t), u(t))]

≤ λzT z + ‖z‖
∥∥v(t)

∥∥
≤ λ ‖z‖2 + ‖z‖ ε

V̇ ≤ 2λV +
√

2V ε.

Define W =
√
V = 1√

2
‖z‖, so that

Ẇ =
V̇

2
√
V
≤ λW +

ε√
2
. (3.18)

With initial condition z(t0) = z0, the solution to the differential inequality (3.18)
is

W (t) ≤ 1√
2

(‖z0‖+
ε

λ
)eλ(t−t0) − ε√

2λ
.

As d
dt ‖z‖ =

√
2Ẇ , it can be concluded by the comparison lemma that

∥∥z(t)
∥∥ ≤ ‖z0‖ eλ(t−t0) +

ε

λ
(eλ(t−t0) − 1). (3.19)

This shows that z(t) will converge to the ball centered at the origin with radius∣∣ε/ λ∣∣ at an exponential rate. Hence, the tightness of the estimate d̂ and the
poles of A−BK bound the final error.

Input-to-state and Lp-stability

If (3.19) holds, it must also hold that

∥∥z(t)
∥∥ ≤ ‖z0‖ eλ(t−t0) − ε

λ
.

By Definition A.2 and Definition A.4, γ(ε) = −ε/λ belongs to class K, and
β(‖z0‖ , t − t0) = ‖z0‖ eλ(t−t0) is a class KL function. As ε = supt0≤τ≤t

∥∥v(τ)
∥∥,

system (3.9) is input-to-state stable from v(t) to z(t) by Definition A.5.

Further, as z globally and exponentially converges to an error ball of radius r, it
is clear that

∥∥z(t)
∥∥ ≤ max(r, ‖z0‖) for all t ∈ {t0,∞}. As mentioned before, the

unforced system is GES, and it is trivial to find a Lyapunov function satisfying
the requirements (A.4). Using this, together with the assumption that ‖v‖ ≤ ε,
proves that (3.9) is finite gain Lp stable from v(t) to z(t) by Theorem A.1.

29

Chapter 3. Methodology and Theoretical Results

Noise rejection

It is possible to evaluate how robust the controller (3.8) is to noise. Assume

the measurement of x is affected by additive noise qx =
[
q1 q2

]T
, where

|q1| ≤ qm1 and |q2| ≤ qm2 . This implies that z is affected by the noise qz =[
q1 1/c12(c11 + Γ)q1 + q2

]T
. Hence, Γ amplifies the noise affecting z2. The

noisy controller input when the noise has been added to the computation of Kz
and ẋr2 is

u(x+qx) = −Kz−1

b
(d̂(x+qx, u)−ẋr2)− c12

b
q1−(k2+

1

b
)(

1

c12
(c11+Γ)q1+q2)+

1

b
q2.

Using the Lyapunov function from earlier, and letting Λ denote the Lipschitz
constant of d̂, it follows that

V̇ ≤ zT (A−BK)z + zT
[
0
1

]
[d(x, u)− d̂(x + qx, u)]

+ ‖z‖ (|c12 +
bk2 + 1

c12
(c11 + Γ)|qm1 + |k2b|qm2)

≤ λzT z + ‖z‖ (
∥∥∥d(x, u)− d̂(x, u)

∥∥∥+
∥∥∥d̂(x, u)− d̂(x + qx, u)

∥∥∥)

+ ‖z‖ |c12 +
bk2 + 1

c12
(c11 + Γ)|qm1 + |k2b|qm2)

≤ λzT z + ‖z‖ (Λ ‖qx‖+ |c12 +
bk2 + 1

c12
(c11 + Γ)|qm1 + |k2b|qm2 + ε).

By the same reasoning as before, z converges at an exponential rate to the circle

with radius
∣∣∣(Λ ‖qx‖+ |c12 + bk2+1

c12
(c11 + Γ)|qm1 + |k2b|qm2 + ε)/λ

∣∣∣. From this it

can be concluded that the size of Λ, as well as the choice of K, impacts the effect
the noise has on the final error.

3.2.3 Proof of Theorem 3.2

As before, let λ < 0 be the largest eigenvalue of (A−BK), and Λ the Lipschitz
constant of the NN. The perturbation term in (3.14) satisfies

∥∥w(t)
∥∥ =

∥∥∥d(x(t), u(t))− d̂(x(t−∆t), u(t−∆t))
∥∥∥

≤
∥∥∥d(x(t), u(t))− d̂(x(t), u(t))

∥∥∥+
∥∥∥d̂(x(t), u(t))− d̂(x(t−∆t), u(t−∆t))

∥∥∥
≤ ε+ Λ

∥∥x(t)− x(t−∆t)
∥∥+ Λ

∥∥u(t)− u(t−∆t)
∥∥∥∥w(t)

∥∥ ≤ ε+ Λ(ρx + ρu).

30

3.3 Time-delayed system with convolutional neural network controller

Again the Lyapunov function V = 1
2 ‖z‖

2
= 1

2zT z is employed.

V̇ = zT (A−BK)z + zT
[
0
1

]
w(t)

≤ λzT z + ‖z‖ (Λ(ρx + ρu) + ε)

V̇ ≤ 2λV +
√

2V (Λ(ρx + ρu) + ε)

By using Lemma A.2 in the same way as in the previous section, it is concluded
that

∥∥z(t)
∥∥ ≤ ‖z0‖ eλ(t−t0) +

(Λ(ρx + ρu) + ε)

λ
(eλ(t−t0) − 1).

Hence, the system still converges to an error ball centered at the origin at an
exponential rate, but the radius of the error ball now depends on the upper
bounds on the change in state and input and the Lipschitz constant of d̂.

Input-to-state and Lp-stability

The stability proofs are identical to those proving Theorem 3.1 when v(t) is
exchanged for w(t), and ε for ε = Λ(ρx + ρu) + ε.

Noise rejection

The proof for noise rejection is also analogous to the one for Theorem 3.1, and
will not be repeated.

3.3 Time-delayed system with convolutional neu-
ral network controller

Consider the time-delayed system (3.20), where hi are continuous mappings h :
R2×R→ R. The time delays τi are unknown, but it is assumed that the largest
time delay τnτ is relatively small. For this system, a controller that can utilize
short term historical data to make x1 follow xr1 is needed.

In spite of recurrent architectures being the default for many data-scientists when
meeting sequence modeling problems, CNNs are employed for this task, as they
have been demonstrated to work just as well [49]. Their architecture is also less
complicated and easier to analyze.

As in Section 3.2.1, the diffeomorphism z = [x1 − xr1 x2 − xr2] is applied. The
suggested controller is shown in (3.21), where ĝ is made by a CNN with three
input channels which produces one output at each time-step. The number of

31

Chapter 3. Methodology and Theoretical Results

time-steps nT to look back, and the interval between each sample ∆T = Tj−Tj−1

must be decided by the control designer.

ẋ1 = c11x1 + c12x2

ẋ2 = bu+ d(x, u) +

nτ∑
i=1

hi(x(τi), u(τi))

= bu+ g(x(t), x(t− τ1) . . . , x(t− τnτ), u(t), u(t− τ1), . . . , u(t− τnτ))

(3.20)

u(t) = −Kz(t)− 1

b
[ĝ(x(t− T1) . . . ,x(t− TnT), u(t− T1), . . . , u(t− TnT))

− ẋr2(t)]

(3.21)

If it is assumed that the estimation error is bounded, such that |g − ĝ| < ε, the
same proof as in Section 3.2.2 can be used to show that the system converges
to ε/λ. In Section 4.5 and Section 4.6, the performance of this controller is
empirically investigated, and it is explored whether it expresses similar behavior
to the FFN controller designed in Section 3.2.

3.4 Mass-spring-damper datasets

The mass-spring-damper (MSD) system in (3.22) is used to investigate the behav-
ior of the previously suggested controllers. The MSD is illustrated in Figure 3.1.
Here, x1 is the position of the mass, and x2 is its velocity. The input non-linearity
is given by d(x, u), while Fs and Fd are known forces generated by the spring
and the damper, respectively. The mass rolls on wheels that experience no fric-
tion. The spring force is given by Hooke’s law, and the damping is assumed
to be proportional to the velocity, as shown in (3.23). The spring and damper
coefficients are such that when the input nonlinearity is not present, the system
is under-damped. All coefficients of the MSD are listed in Table 3.1.

ẋ1 = x2

ẋ2 =
b

m
u− 1

m
Fd(x2)− 1

m
Fs(x1) + d(x, u)

(3.22)

Fs = csx1, Fd = cdx2 (3.23)

For this system, the NN controller (3.8) derived in Section 3.2 turns into (3.24),
where z =

[
x1 − xr1 x2 − xr2

]
and xr2(t) = ẋr1 − Γz1.

32

3.4 Mass-spring-damper datasets

u = −Kz− m

b
[d̂(x(t), u(t))− 1

m
Fd(x2)− 1

m
Fs(x1)− ẋr2(t)] (3.24)

Figure 3.1: The mass spring damper system that is used as a test system for the
suggested NN controllers.

Table 3.1: The coefficients of the MSD from (3.22).

Coefficient b m cs cd
Value 1 1 1 0.72

Two datasets were created by simulating the MSD in MATLAB 2019b with
Simulink [5]. Each set consists of 500 simulations of the PID controller in (3.25)
attempting to make the mass follow a sine curve with amplitude and period
sampled from a uniform distribution, as in (3.26). Each simulation runs for 20 s
and is sampled at 10 Hz. Hence, the sets consists of 100 000 samples, which are
split 60/15/25 into training, validation and test set.

Set 1 is affected by the input nonlinearity given in (3.27), and Set 2 by the one
in (3.28). One simulation from each dataset is plotted in Figure 3.2.

uPID = 5(x1(t)− xr1(t)) +

∫ t

0

(x1(τ)− xr1(τ))dτ + x2(t) (3.25)

xr1(t) = A sin(
2π

T
t), A = 5w1, T = 19w2 + 1, w1, w2 ∼ U(0, 1) (3.26)

d(x, u) = sin(u)(sin(x1) + sin(x2)) (3.27)

d(x, u) = (sin(x1) + sin(x2))

39∑
i=0

1

i+ 1
sin(u(t− 0.1i)) (3.28)

33

Chapter 3. Methodology and Theoretical Results

−5

0

5

x
1
(t

)

−5

0

5

x
2
(t

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

time (s)

−10

0

10

u
P
I
D

(t
)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

time (s)

−0.5

0.0

0.5

1.0

1.5

d
(x
,u

)

(a) One 20 s simulation from Set 1.

−5

0

5

x
1
(t

)

−5

0

5

x
2
(t

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

time (s)

−10

0

10

u
P
I
D

(t
)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

time (s)

−4

−2

0

2

4

g
(x
,u

)

(b) One 20 s simulation from Set 2.

Figure 3.2: One simulation from each of the datasets.

34

3.5 Training neural networks

3.5 Training neural networks

Here, the networks that were trained for testing the suggested NN controllers (3.8)
and (3.21) are presented. It should be noted that little time was spent tuning
hyperparameters and testing different network architectures and optimizers, as it
was not seen as important in regards to the goal of this thesis. Hence, all FFNs
and all CNNs respectively have the same architecture.

The neural networks were implemented and trained using the Keras library for
Python 3, which provides easy-to-use functionality for working with neural net-
works in Python [2], [3]. A summary of the FFN architecture is given in Table 3.2,
and the CNN architecture is summarized in Table 3.3.

All networks were trained with a Huber loss function with δ = 1 and the Adam
optimizer with a learning rate of 1× 10−3. Each network was trained for 1600
epochs, with a batch size of 32. After these epochs, both training and validation
loss had both stabilized for all the networks. After training, predictions were
made on the test sets, and the largest prediction error was stored to use for
estimating convergence bounds later.

Three FFNs and three CNNs were trained. These are named in Table 3.4 and
Table 3.5, respectively. SpectNorm 10 and SpectNorm 1 were trained with spec-
tral normalization with target Lipschitz constant 10 and 1, respectively. As seen
in Table 3.4, the LipSDP program from (2.33) reveals that the Lipschitz constant
of the network may vary from the target value of the spectral normalization. The
CNNs called L2 1× 10−3 and L2 1× 10−2 were trained with L2 regularization
with αL2 = 1× 10−3 and αL2 = 1× 10−2, respectively. L2-regularization was
applied in order to decrease the size of the network weights, and thereby also the
Lipschitz constant of the CNNs.

The CNNs receive samples that are spaced evenly in time with ∆T = 0.1 s
between each sample of each input. The receptive field size of the CNNs is
sr = 49.

Table 3.2: The FFN architecture that is used for all FFNs in this thesis. Each FFN
has 801 trainable parameters.

Layer type Input shape Output shape Parameters Activation
Fully connected (NMB , 3) (NMB , 32) 128 tanh
Fully connected (NMB , 32) (NMB , 16) 528 tanh
Fully connected (NMB , 16) (NMB , 8) 136 tanh
Fully connected (NMB , 8) (NMB , 1) 9 Identity

35

Chapter 3. Methodology and Theoretical Results

Table 3.3: The CNN architecture that is used for all CNNs in this thesis. The CNNs
receive inputs where there are ∆T = 0.1 s between each sample, and have a receptive
field size of sr = 49.

Layer type Input shape Output shape Filter length Parameters Activation
Temporal convolution (NMB , 29, 3) (NMB , 29, 8) 25 608 tanh
Temporal convolution (NMB , 29, 8) (NMB , 29, 4) 25 164 tanh
Flatten (NMB , 16) (NMB , 116) 0 Identity
Fully connected (NMB , 116) (NMB , 16) 1872 tanh
Fully connected (NMB , 16) (NMB , 1) 17 Identity

Table 3.4: The three FFNs used in the controllers in Experiment 1 and 2.

Controller LipSDP bound Test loss Max error on test set
FFN 69.311 0.017 2.463
SpectNorm 10 5.960 0.023 1.958
SpectNorm 1 0.726 0.103 2.262

Table 3.5: The three CNNs used in the controllers in Experiment 3 and 4.

Controller LipSDP bound Test loss Max error on test set
CNN 658.516 0.070 4.293
L2 1× 10−3 55.218 0.107 5.149
L2 1× 10−2 10.041 0.318 4.060

36

4 Experiments and
Results

Four experiments are conducted to test the controllers suggested in Section 3.2
and Section 3.3. Their performance is compared with a feedback controller that
does not compensate for the unknown dynamics.

4.1 Experiment setup

In Experiment 1 and 2, three NN controllers are tested on the MSD from Sec-
tion 3.4 with the undelayed input nonlinearity (3.27). The controllers use the
networks described in Table 3.4 to estimate the unknown dynamics. In Experi-
ment 3 and 4, controllers with the three CNNs from Table 3.5 are tested on the
MSD with the delayed input nonlinearity (3.28). From here on the controllers
will be referred to by the name of the network they use as an estimator.

The CNN and FFN controllers are given in (4.1) and (4.2), respectively. The
controller parameters were chosen to be Γ = 2 and K =

[
−1 2.5

]
, such that

the eigenvalues of A−BK are −3.281 and −1.219. Other parameter values were
considered, but an increase in λ leads to an increase in noise amplification, and
a decrease in λ results in a slow controller. The chosen parameter values seem to
balance these behaviors well.

u(t) = −Kz(t)−m
b

[d̂(x(t−∆t), u(t−∆t))− 1

m
Fs(x1)− 1

m
Fd(x2)− ẋr2(t)] (4.1)

u(t) = −Kz(t)− m

b
[− 1

m
Fs(x1)− 1

m
Fd(x2)− ẋr2(t)

+ ĝ(x(t),x(t−∆T), . . . ,x(t− (sr − 1)∆T),

u(t), u(t−∆T), . . . , u(t− (sr − 1)∆T))]

(4.2)

The controllers are exposed to 500 trajectory tracking tasks three times with three
different levels of measuring noise. In each trajectory tracking task the controller
attempts to follow a random sine wave reference, generated in the same way
as the trajectories for the datasets, explained in Section 3.4. The measurement
noise on both x1 and x2 is sampled from a truncated normal distribution with
zero mean and standard deviation σ, truncated at ±σ.

37

Chapter 4. Experiments and Results

The empirical averages of |z1| and ‖z‖ are used as performance indicators. The
averages are calculated over the entire simulation time, and averaged over the
500 tasks with the same measurement noise levels.

Retrospective bounds were calculated using (3.12) for Experiments 1 and 3, and
(3.16) in Experiment 2 and 4. The maximum error of the NN estimators on
the test set, listed in Table 3.4 and Table 3.5, was used as an approximation of
ε. The limits on the change in states and input, ρx and ρu, were estimated by
finding the maximum L2-distance between consecutive samples of x and u while
running the experiments. From the truncated noise distribution it is known that
qm1 = qm2 = σ.

The Lipschitz constants of the CNNs are estimated by the LipSDP program
described in Section 3.1. The LipSDP values end up between the naive lower and
upper bounds described in Section 2.6.1, as expected.

4.2 Feedback controller

For comparison, a controller that does not have an estimator of the unknown
dynamics is tested on all the 500 scenarios. This controller is equivalent to the
controllers in (4.1) and (4.2) with estimators that always predicts 0, and has
Lipshitz constant Λ = 0. The performance of the feedback controller is displayed
in Table 4.1, where E{.} denotes the empirical average.

Table 4.1: Feedback controller: Expected mean error for the controllers from (4.1) and
(4.2) when the estimator always outputs 0. The controller was tested on 500 trajectory
tracking problems three times with varying levels of measuring noise.

Noise limit

Input nonlinearity
σ = 0 σ = 0.1 σ = 0.25

E{|z1|} E{‖z‖} E{|z1|} E{‖z‖} E{|z1|} E{‖z‖}
Undelayed 0.376 0.893 0.380 0.902 0.438 1.053
Delayed 0.231 0.513 0.236 0.237 0.255 0.579

4.3 Experiment 1: Continuously updated feed
forward network controllers

In this experiment, the scenario where ∆tmax ' 0 was emulated by forcing
Simulink to perform the FFN forward pass every 0.01 s. Mean error and es-
timated convergence bounds are presented in Table 4.2. The performance of
the controllers in the case without measuring noise is visualized in Figure 4.1.
When noise is not present, all three controllers outperform the pure feedback
controller.

Table 3.4 shows that the performance of the controllers is largely unaffected by
the size of the Lipschitz constant of the FFN, even though the convergence bounds

38

4.4 Experiment 2: Discretely updated feed forward network controllers

clearly are. SpectNorm 1 performs slightly worse than FFN and SpectNorm 10
when there is no measuring noise, which is not surprising, as it had the highest
loss on the test set after training. When measuring noise is added, however, the
performance evens out.

Table 4.2: Experiment 1: Expected mean error and retrospective convergence bounds
for the controllers in Table 3.4 when the forward pass is calculated every ∆tmax = 0.01 s.
Each controller was tested on 500 trajectory tracking problems three times with varying
levels of measuring noise.

Controller
Noise limit

σ = 0 σ = 0.1 σ = 0.25
E{|z1|} E{‖z‖} Bound E{|z1|} E{‖z‖} Bound E{|z1|} E{‖z‖} Bound

FFN 0.102 0.179 2.020 0.135 0.264 12.467 0.299 0.682 54.266
SpectNorm 10 0.105 0.187 1.606 0.136 0.266 3.154 0.299 0.681 9.343
SpectNorm 1 0.136 0.269 1.855 0.151 0.308 2.801 0.301 0.686 6.583

4.4 Experiment 2: Discretely updated feed for-
ward network controllers

When the forward pass is only calculated every ∆tmax = 1 s, expected mean error
and estimated convergence bounds are as in Table 4.3. Table 4.3 reveals that, as
before, the bounds are tighter when the Lipschitz constant is low, but that low
bounds have no great effect on performance. The performance of the controllers
in the case without measuring noise is visualized in Figure 4.2.

Figure 4.3 displays the data from Table 4.2 and Table 4.3 together with the
performance of the pure feedback controller from Table 4.1. From this plot it is
clear that all the controllers outperform the feedback controller. Even though
SpectNorm 1 has the highest expected tracking error when measuring noise is not
present, it is barely affected by the transition to discrete updates. SpectNorm 1
also experiences a smaller drop in performance when measuring noise is added,
than SpectNorm10 and FFN do.

Table 4.3: Experiment 2: Expected mean error and retrospective convergence bounds
for the controllers in Table 3.4 when the forward pass is calculated every ∆tmax = 1 s.
Each controller was tested on 500 trajectory tracking problems three times with varying
levels of measuring noise.

Controller
Noise limit

σ = 0 σ = 0.1 σ = 0.25
E{|z1|} E{‖z‖} Bound E{|z1|} E{‖z‖} Bound E{|z1|} E{‖z‖} Bound

FFN 0.131 0.265 24.744 0.152 0.319 82.745 0.307 0.708 272.699
SpectNorm 10 0.129 0.259 3.509 0.149 0.311 8.157 0.306 0.703 24.366
SpectNorm 1 0.139 0.279 2.226 0.153 0.315 3.322 0.300 0.687 7.970

39

Chapter 4. Experiments and Results

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.5

1.0

1.5

2.0

|z 1
|(t

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

time(s)

0

1

2

3

4

5

||z
||(
t)

(a) Feedback

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.5

1.0

1.5

2.0

|z 1
|(t

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

time(s)

0

1

2

3

4

5

||z
||(
t)

(b) FFN

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.5

1.0

1.5

2.0

|z 1
|(t

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

time(s)

0

1

2

3

4

5

||z
||(
t)

(c) SpectNorm 10

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.5

1.0

1.5

2.0

|z 1
|(t

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

time(s)

0

1

2

3

4

5

||z
||(
t)

(d) SpectNorm 1

Figure 4.1: Experiment 1: The three controllers described in Table 3.4 were tested
on 500 trajectory tracking problems. This depicts the expected performance of the
controllers when ∆tmax = 0.01 s. The solid lines mark the empirical mean, and the
shaded area around the lines represent ± one standard deviation. A plot showing the
error of the feedback controller is included for comparison. The measuring noise is zero
in these plots.

40

4.4 Experiment 2: Discretely updated feed forward network controllers

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.5

1.0

1.5

2.0

|z 1
|(t

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

time(s)

0

1

2

3

4

5

||z
||(
t)

(a) Feedback

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.5

1.0

1.5

2.0

|z 1
|(t

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

time(s)

0

1

2

3

4

5

||z
||(
t)

(b) FFN

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.5

1.0

1.5

2.0

|z 1
|(t

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

time(s)

0

1

2

3

4

5

||z
||(
t)

(c) SpectNorm 10

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.5

1.0

1.5

2.0

|z 1
|(t

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

time(s)

0

1

2

3

4

5

||z
||(
t)

(d) SpectNorm 1

Figure 4.2: Experiment 2: The three controllers described in Table 3.4 were tested
on 500 trajectory tracking problems. This depicts the expected performance of the
controllers when ∆tmax = 1 s. The solid lines mark the empirical mean, and the shaded
area around the lines represent ± one standard deviation. A plot showing the error of
the feedback controller is included for comparison. The measuring noise is zero in these
plots.

41

Chapter 4. Experiments and Results

SpectNorm1 SpectNorm10 FFN Feedback
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
E
{|
z 1
|}

Experiment 1 | Experiment 2

σ = 0 σ = 0.1 σ = 0.25

Figure 4.3: A visualization of the data from Tables 4.1 to 4.3. The left part of each bar
presents the results from Experiment 1, while the right presents results from Experiment
2. SpectNorm 1 is less affected by the switch from continuous and discrete operation
than the other two controllers, and is also relatively less affected by measuring noise.

4.5 Experiment 3: Continuously updated convo-
lutional neural network controllers

In this experiment, the CNN forward pass is calculated every ∆tmax = 0.1 s.
As the CNN is designed to take a vector of length sr = 49 as input, where all
elements are 0.1 s apart in time, this is the practical equivalent of continuous
operation for this controller.

The performance of the three CNN controllers from Table 3.5 is summarized in
Table 4.4. All the controllers outperform the pure feedback controller, which is
clearly seen in Figure 4.5. L2 1× 10−2 is the best performing controller out of
the three, even though it had the highest loss on the test set. Figure 4.4 shows
the operation of the controllers when the noise level is 0. Here, it can be seen
that not only does L2 1× 10−2 have a lower expected error, but the standard
deviation of the error is also much smaller, than it is for Feedback, CNN and L2
1× 10−3.

4.6 Experiment 4: Discretely updated convolu-
tional neural network controllers

When the CNN controllers are updated discretely, the expected mean error and
estimated bounds are as in Table 4.5. Figure 4.5 reveals that neither of the CNN
controllers handles the transition to discrete operation very well, and when noise

42

4.6 Experiment 4: Discretely updated convolutional neural network controllers

is added to the measurements, the performance is worse than the pure feedback
controller.

The relationship seen in Experiments 1 and 2 between the Lipschitz constant and
the corresponding robustness to noise and discrete operation cannot be observed
for the CNN controllers.

Table 4.4: Experiment 3: Expected mean error and retrospective convergence bounds
for the controllers in Table 3.5 when the forward pass is calculated every ∆tmax = 0.1 s.
Each controller was tested on 500 trajectory tracking problems three times with varying
levels of measuring noise.

Controller
Noise limit

σ = 0 σ = 0.1 σ = 0.25
E{|z1|} E{‖z‖} Bound E{|z1|} E{‖z‖} Bound E{|z1|} E{‖z‖} Bound

CNN 0.174 0.374 3.521 0.178 0.390 80.766 0.306 0.714 389.74
L2 1× 10−3 0.157 0.327 4.223 0.160 0.342 11.490 0.304 0.709 40.554
L2 1× 10−2 0.128 0.304 3.330 0.146 0.334 5.356 0.302 0.708 13.460

Table 4.5: Experiment 4: Expected mean error and retrospective convergence bounds
for the controllers in Table 3.5 when the forward pass is calculated every ∆tmax = 1 s.
Each controller was tested on 500 trajectory tracking problems three times with varying
levels of measuring noise.

Controller
Noise limit

σ = 0 σ = 0.1 σ = 0.2
E{|z1|} E{‖z‖} Bound E{|z1|} E{‖z‖} Bound E{|z1|} E{‖z‖} Bound

CNN 0.206 0.475 1211.320 0.239 0.557 1765.396 0.354 0.844 3349.609
L2 1× 10−3 0.213 0.498 83.526 0.290 0.700 262.22 0.430 1.057 399.664
L2 1× 10−2 0.192 0.450 12.317 0.222 0.525 33.467 0.378 0.914 59.470

43

Chapter 4. Experiments and Results

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.5

1.0

1.5

2.0

|z 1
|(t

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

time(s)

0

1

2

3

4

5

||z
||(
t)

(a) Feedback

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.5

1.0

1.5

2.0

|z 1
|(t

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

time(s)

0

1

2

3

4

5

||z
||(
t)

(b) CNN

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.5

1.0

1.5

2.0

|z 1
|(t

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

time(s)

0

1

2

3

4

5

||z
||(
t)

(c) L2 1× 10−3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.5

1.0

1.5

2.0

|z 1
|(t

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

time(s)

0

1

2

3

4

5

||z
||(
t)

(d) L2 1× 10−2

Figure 4.4: Experiment 3: The three controllers described in Table 3.5 were tested
on 500 trajectory tracking problems. This depicts the expected performance of the
controllers when ∆tmax = 0.1 s. The solid lines mark the empirical mean, and the
shaded area around the lines represent ± one standard deviation. A plot showing the
error of the feedback controller is included for comparison. The measuring noise is zero
in these plots.

44

4.6 Experiment 4: Discretely updated convolutional neural network controllers

L2 1× 10−2 L2 1× 10−3 CNN Feedback
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

E
{|
z 1
|}

Experiment 3 | Experiment 4

σ = 0 σ = 0.1 σ = 0.25

Figure 4.5: A visualization of the data from Tables 4.1, 4.4 and 4.5. The left part of
each bar presents the results from Experiment 3, while the right presents results from
Experiment 4.

45

Chapter 4. Experiments and Results

46

5 Discussion and
Further Work

Here, the results of experiments 1-4 as well as the validity of Theorem 3.1 and
Theorem 3.2 are discussed. Suggestions for how to proceed and extend this work
are then laid forth.

5.1 Discussion

The results of experiments 1 and 2 confirm that the convergence bounds de-
rived in Section 3.2 apply in practice. The controllers outperform the pure feed-
back controller that does not compensate for the unknown dynamics, even when
the NN estimate is rarely updated, and the state measurements are affected by
noise.

The experiments reveal that the error bounds are quite loose and that a low
bound does not necessarily imply better performance overall. Nonetheless, the
experiments indicate that a lower Lipschitz constant reduces the relative effect of
rarely updating the neural network estimate, as well as the controller’s sensitivity
to measuring noise.

Although the performance of the CNN controllers from experiments 3 and 4 do
not seem to be correlated with the Lipschitz constant in the same way as the
FFN controllers, they consistently outperform the pure feedback controller when
updated every 0.1 s. The error stays well within the retrospective bounds in
these experiments as well. Nonetheless, the bounds are too loose for this to be
a convincing indication of whether such bounds generally hold for this kind of
controller.

The original plan was to implement spectral normalization for CNNs as well, but
there was no time for this. Therefore, L2-regularization was used as a means
to train CNNs with differently sized Lipschitz constants. Both spectral normal-
ization and L2-regularization are methods that reduce the variance of neural
networks, possibly at the cost of accuracy, as demonstrated by the test loss of
the NNs recited in Table 3.4 and Table 3.5. However, it is clear from exper-
iments 1 and 2 that this bias-increase can be beneficial for tackling noise and
discrete updates. In experiments 3 and 4, the controller with the most heavily
regularized model outperformed the two others, even though it had the highest
test loss.

One of the cornerstones of the results in this thesis is the boundedness of the
estimation error, which was assumed in both Theorem 3.1 and Theorem 3.2. In

47

Chapter 5. Discussion and Further Work

the experiments, it was assumed that ε could be approximated by the maximum
prediction error on the test set. This assumption is reasonable, as the samples in
the test set seem to be representative of the data the estimator will meet during
operation. However, if the test set is small, or gathered from operation in a
limited area of the state space, this approximation might be optimistic.

If the unknown dynamics are known to be locally Lipschitz in the area of op-
eration, with Lipschitz constant L, an argument can be made for having higher
trust in the estimation error bound of a NN with a small Lipschitz constant Λ.
Let the maximum prediction error on the test set be ε̂, observed at some test
sample x̂. When the estimator makes a prediction on a new, unseen observation
x̃, the estimation error satisfies the following:

∥∥∥d(x̃)− d̂(x̃)
∥∥∥ =

∥∥∥d(x̃)− d(x̂) + d(x̂) + d̂(x̂)− d̂(x̂)− d̂(x̃)
∥∥∥

≤
∥∥d(x̃)− d(x̂)

∥∥+
∥∥∥d(x̂)− d̂(x̂)

∥∥∥+
∥∥∥d̂(x̂)− d̂(x̃)

∥∥∥
≤ (L+ Λ) ‖x̃− x̂‖+ ε̂.

However, decreasing Λ makes the NN less flexible, as the variance is reduced,
and the bias increased, which might contribute to an increase of ε. Hence, the
control designer must consider when the NN grows too rigid to learn the dynamics
accurately.

Another challenge is the assumptions made in Theorem 3.2 that the convergence
bounds are dependent on the maximum rate of change of the state and input.
It is relatively common to assume that the input change is bounded, but for
the state change to be upper bounded, it must be required that the dynamics
are bounded as well. This does not hold globally when parts of the dynamics
are, for instance, linear or polynomial. If applying this controller, one must be
certain that either, the update rate of the NN estimate is faster than the system
dynamics, or the dynamics are bounded.

5.2 Further work

A significant advantage of using this controller for trajectory tracking is that ẋ2

can be measured at a high sampling rate with an accelerometer. From these
measurements, it is possible to get ground truth values of the unkown dynamics,
by utilizing d(x, u) = bu − ẋ2. This real life data would probably be affected
by noise, as well as uncertainity in the knowledge of b. Seeing what effect noisy
training data has on the controller would be interesting. Also, it is reasonable to
believe that restricting the Lipschitz constant of the estimators will be beneficial
in this situation, as argued by Shi et al. [1].

The class of systems that the suggested controller can be applied to can easily be
extended to include systems with more than two states. As long as the unknown
dynamics affect the derivatives of states that also have a known, linear input

48

5.2 Further work

term in their derivatives, the method from Section 3.2 can be directly extended
to include these systems.

It is possible that the convergence bound can be tightened by, for instance, using
a different Lyapunov function, or changing the controller design slightly. The
controller parameters k2 and Γ were chosen by trial and error, and it would be
a good idea to develop a scheme that chooses them more intentionally. These
parameters decide the size of λ, which sets the rate of convergence. Also, the
convergence bound is directly dependent on the size of both k2 and Γ when
the measurements are noisy. It should be possible to find values that balance
convergence rate and noise rejection intelligently.

The LipSDP program that was extended to include CNNs worked as expected,
where the predicted Lipschitz constant lies between the naive lower and upper
bound. However, as the originally suggested program has O(N2) decision vari-
ables, the simpler version where T is diagonal had to be applied, as discussed in
Section 2.6.3. The matrix in (3.2), which is the weight matrix of a CNN layer
when the CNN is written as a FFN, consists of lower triangular blocks of size
sr × sr. Also, each diagonal of these lower triangular blocks is just one repeated
number. It might be possible to exploit this special structure to make the LipSDP
program more efficient, and perhaps more accurate.

49

Chapter 5. Discussion and Further Work

50

6 Conclusion

This work attempts to further the sound unification of data-driven methods and
traditional control theory.

A feedback linearizing controller with a neural network estimating unknown dy-
namics is suggested. The controller is proven to stabilize the closed-loop error
dynamics in a general two-dimensional trajectory tracking problem. Moreover,
the controller globally and exponentially drives the error to a ball centered at the
origin. A specific upper bound on the radius of the error ball is found. Measuring
noise and the update rate of the neural network estimate influence the size of the
convergence bound.

Experiments on a simulation of a mass-spring-damper system affected by an
unknown input nonlinearity confirm the theoretical findings. The convergence
bounds are dependent on the Lipschitz constant of the neural network estima-
tor. Experiments show that the Lipschitz constant influences the noise rejection
capabilities of the controller, as well as its ability to handle a low update rate of
the neural network estimate.

A method for approximating the Lipschitz constant of feedforward neural net-
works is extended to convolutional neural networks, and a controller with a con-
volutional neural network estimator is tested on a system with time-delayed input
nonlinearity. Experiments with this controller indicate that the Lipschitz con-
stant does not have the same influence as in the undelayed case. However, all the
suggested controllers consistently outperform a feedback controller, which does
not compensate for unknown dynamics.

51

Chapter 6. Conclusion

52

References

[1] G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli, A. Anandkumar,
Y. Yue, and S. Chung, “Neural lander: Stable drone landing control using
learned dynamics,” in International Conference on Robotics and Automa-
tion, ICRA 2019, (Montreal, QC, Canada, May 20-24, 2019), IEEE, 2019,
pp. 9784–9790, isbn: 978-1-5386-6027-0.

[2] ”Python 3.6”, https://www.python.org/.
[3] F. Chollet et al., ”Keras 2.3.1”, https://keras.io, 2015.
[4] M. Fazlyab, A. Robey, H. Hassani, M. Morari, and G. J. Pappas, ”Ef-

ficient and Accurate Estimation of Lipschitz Constants for Deep Neural
Networks”, 2019. arXiv: 1906.04893 [cs.LG].

[5] ”Matlab version 9.7.0 (r2019b)”, Natick, Massachusetts, USA, 2019.
[6] M. Grant and S. Boyd, ”CVX: Matlab software for disciplined convex pro-

gramming, version 2.1”, http://cvxr.com/cvx, Mar. 2014.
[7] National Instruments. (2019). Pid theory explained, [Online]. Available:

http://www.ni.com/en- no/innovations/white- papers/06/pid-

theory-explained.html (visited on 11/11/2019).
[8] P. Kadlec, B. Gabrys, and S. Strandt, “Data-driven soft sensors in the pro-

cess industry,” Computers & Chemical Engineering, vol. 33, no. 4, pp. 795–
814, 2009. doi: https://doi.org/10.1016/j.compchemeng.2008.12.
012.

[9] J. Lee, H.-A. Kao, and S. Yang, “Service innovation and smart analytics for
industry 4.0 and big data environment,” Procedia CIRP, vol. 16, pp. 3–8,
2014, issn: 2212-8271. doi: https://doi.org/10.1016/j.procir.2014.
02.001.

[10] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and
K. Zieba, ”End to End Learning for Self-Driving Cars”, Apr. 2016. arXiv:
1604.07316 [cs.CV].

[11] L. Deng and Y. Liu, ”Deep Learning in Natural Language Processing”,
1st ed. Springer Singapore, 2018, isbn: 9789811338489.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Informa-
tion Processing Systems 25: 26th Annual Conference on Neural Information

53

https://www.python.org/
https://keras.io
https://arxiv.org/abs/1906.04893
http://cvxr.com/cvx
http://www.ni.com/en-no/innovations/white-papers/06/pid-theory-explained.html
http://www.ni.com/en-no/innovations/white-papers/06/pid-theory-explained.html
https://doi.org/https://doi.org/10.1016/j.compchemeng.2008.12.012
https://doi.org/https://doi.org/10.1016/j.compchemeng.2008.12.012
https://doi.org/https://doi.org/10.1016/j.procir.2014.02.001
https://doi.org/https://doi.org/10.1016/j.procir.2014.02.001
https://arxiv.org/abs/1604.07316

REFERENCES

Processing Systems 2012, NIPS 2012, (Lake Tahoe, Nevada, United States,
December 3-6, 2012), 2012, pp. 1097–1105.

[13] T. P. Lillicrap, J. J. Hunt, A. e. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, ”Continuous control with deep reinforcement
learning”, Sep. 2015. arXiv: 1509.02971 [cs.LG].

[14] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, ”Intriguing properties of neural networks”, Dec. 2013. arXiv:
1312.6199 [cs.CV].

[15] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A simple and
accurate method to fool deep neural networks,” in 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2016, (Las Vegas,
NV, USA, June 27-30, 2016), IEEE Computer Society, 2016, pp. 2574–
2582, isbn: 978-1-4673-8851-1.

[16] K. Hornik, “”approximation capabilities of multilayer feedforward networks”,”
Neural Networks, vol. 4, no. 2, pp. 251–257, 1991.

[17] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D.
Pedreschi, “A survey of methods for explaining black box models,” ACM
Comput. Surv., vol. 51, no. 5, 93:1–93:42, Aug. 2018.

[18] C. Liu, T. Arnon, C. Lazarus, C. Barrett, and M. J. Kochenderfer, ”Algo-
rithms for Verifying Deep Neural Networks”, Mar. 2019. arXiv: 1903.06758
[cs.LG].

[19] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in 3rd International Conference on Learning Repre-
sentations, ICLR 2015, (San Diego, CA, USA, May 7-9, 2015), 2015.

[20] E. Wong and Z. Kolter, “Provable defenses against adversarial examples via
the convex outer adversarial polytope,” in Proceedings of the 35th Interna-
tional Conference on Machine Learning, ICML 2018, (Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018), PMLR, 2018, pp. 5286–5295.

[21] D. Gunning and D. W. Aha, “Darpa’s explainable artificial intelligence
program,” AI Magazine, vol. 40, no. 2, pp. 44–58, 2019. [Online]. Avail-
able: https://search.proquest.com/docview/2258093718?accountid=
12870.

[22] S. Rahman, A. Rasheed, and O. San, “A hybrid analytics paradigm com-
bining physics-based modeling and data-driven modeling to accelerate in-
compressible flow solvers,” Fluids, vol. 3, no. 3, p. 50, 2018.

[23] D. Limon, J. Calliess, and J. Maciejowski, “Learning-based nonlinear model
predictive control,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 7769–7776,
2017. doi: https://doi.org/10.1016/j.ifacol.2017.08.1050.

[24] T. Koller, F. Berkenkamp, M. Turchetta, and A. Krause, “Learning-based
model predictive control for safe exploration,” in 57th IEEE Conference
on Decision and Control, CDC 2018, (Miami, FL, USA, December 17-19,
2018), IEEE, 2018, pp. 6059–6066, isbn: 978-1-5386-1395-5.

[25] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe model-
based reinforcement learning with stability guarantees,” in Advances in
Neural Information Processing Systems 30: Annual Conference on Neural

54

https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1903.06758
https://arxiv.org/abs/1903.06758
https://search.proquest.com/docview/2258093718?accountid=12870
https://search.proquest.com/docview/2258093718?accountid=12870
https://doi.org/https://doi.org/10.1016/j.ifacol.2017.08.1050

REFERENCES

Information Processing Systems 2017, (Long Beach, CA, USA, December
4-9 2017), 2017, pp. 908–918.

[26] S. M. Richards, F. Berkenkamp, and A. Krause, “The lyapunov neural
network: Adaptive stability certification for safe learning of dynamical sys-
tems,” in Proceedings of Machine Learning Research, ser. Proceedings of
Machine Learning Research, vol. 87, PMLR, 2018, pp. 466–476.

[27] B. Chang, M. Chen, E. Haber, and E. H. Chi, ”AntisymmetricRNN: A
Dynamical System View on Recurrent Neural Networks”, Feb. 2019. arXiv:
1902.09689 [stat.ML].

[28] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural
ordinary differential equations,” in Advances in Neural Information Pro-
cessing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, (Montréal, Canada, December 3-8 2018),
2018, pp. 6571–6583.

[29] M. Ciccone, M. Gallieri, J. Masci, C. Osendorfer, and F. Gomez, “Nais-
net: Stable deep networks from non-autonomous differential equations,” in
Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018, (Montréal,
Canada, December 3-8 2018), 2018, pp. 3025–3035.

[30] H. Qian and M. N. Wegman, ”L2-Nonexpansive Neural Networks”, Feb.
2018. arXiv: 1802.07896 [cs.AI].

[31] K. Scaman and A. Virmaux, “Lipschitz regularity of deep neural networks:
Analysis and efficient estimation,” in Advances in Neural Information Pro-
cessing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, (Montréal, Canada, December 3-8 2018),
2018, pp. 3839–3848.

[32] R. Balan, M. Singh, and D. Zou, ”Lipschitz Properties for Deep Convolu-
tional Networks”, Jan. 2017. arXiv: 1701.05217 [cs.LG].

[33] D. Zou, R. Balan, and M. Singh, ”On Lipschitz Bounds of General Convo-
lutional Neural Networks”, Aug. 2018. arXiv: 1808.01415 [cs.IT].

[34] J. G. Proakis and D. K. Manolakis, ”Digital Signal Processing”, 4th ed.
Edinburgh Gate: Pearson, 2014, vol. 4, pp. 43–150, isbn: 9781292025735.

[35] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM review,
vol. 38, no. 1, pp. 49–95, 1996.

[36] H. Wolkowicz, R. Saigal, and L. Vandenberghe, ”Handbook of semidefinite
programming: theory, algorithms, and applications”. Springer Science &
Business Media, 2012, vol. 27, isbn: 9781461543817.

[37] T. M. Mitchell, ”Machine Learning”. McGraw-Hill Education, 1997, vol. 76,
isbn: 9780070428072.

[38] T. Hastie, R. Tibshirani, and J. Friedman, ”The Elements of Statisti-
cal Learning: Data Mining, Inference, and Prediction”, 2nd ed. Springer-
Verlag, 2009, vol. 12, isbn: 9780387848570.

[39] T. H. Gareth James Daniela Witten and R. Tibshirani, ”An Introduction
to Statistical Learning with Applications in R”, 1st ed. Springer Science &
Business Media, 2013, isbn: 9781461471370.

55

https://arxiv.org/abs/1902.09689
https://arxiv.org/abs/1802.07896
https://arxiv.org/abs/1701.05217
https://arxiv.org/abs/1808.01415

REFERENCES

[40] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural
Networks, vol. 61, pp. 85–117, 2015.

[41] I. Goodfellow, Y. Bengio, and A. Courville, ”Deep Learning”. MIT Press,
2016, http://www.deeplearningbook.org.

[42] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representa-
tions by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536,
1986.

[43] S. Ruder, ”An overview of gradient descent optimization algorithms”, Sep.
2016. arXiv: 1609.04747 [cs.LG].

[44] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR 2015,
(San Diego, CA, USA, May 7-9, 2015), 2015.

[45] H. K. Khalil, ”Nonlinear Systems”, 3rd ed. Edinburgh Gate: Pearson, 2015,
vol. 4, pp. 87–90, isbn: 9781784490133.

[46] P. L. Combettes and J.-C. Pesquet, ”Lipschitz Certificates for Neural Net-
work Structures Driven by Averaged Activation Operators”, Mar. 2019.
arXiv: 1903.01014 [math.OC].

[47] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normaliza-
tion for generative adversarial networks,” in 6th International Conference
on Learning Representations, ICLR 2018, (Vancouver, BC, Canada, April
30 - May 3, 2018), OpenReview.net, 2018.

[48] D. S. Bernstein, ”Scalar, Vector, and Matrix Mathematics: Theory, Facts,
and Formulas”, 2nd ed. Princeton University Press, 2009, p. 467, isbn:
9780691140391.

[49] S. Bai, J. Zico Kolter, and V. Koltun, “An Empirical Evaluation of Generic
Convolutional and Recurrent Networks for Sequence Modeling,” arXiv e-
prints, arXiv:1803.01271, arXiv:1803.01271, Mar. 2018. arXiv: 1803.01271
[cs.LG].

56

http://www.deeplearningbook.org
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1903.01014
https://arxiv.org/abs/1803.01271
https://arxiv.org/abs/1803.01271

A Definitions, lemmas
and theorems from
Khalil

A.1 Feedback linearization

Definition A.1 (Definition 13.1 from Khalil [45])
A nonlinear system

ẋ = f(x) +G(x)u

where f : D → Rn and G : D → Rn×p are sufficiently smooth on a domain D ⊂
Rn, is said to be feedback linearizable if there exists a diffeomorphism T : D → Rn
such that Dz = T (D) contains the origin and the change of variables z = T (x)
transforms the system into the form

ż = Az +Bγ(x)[u− α(x)] (A.1)

with (A,B) controllable and γ(x) nonsingular for all x ∈ D.

By sufficiently smooth in Definition A.1 we mean that the mappings must be
continuous, and that partial derivatives are as smooth as might be required by
later applications.

A.2 Perturbed systems

Let (A.3) be the perturbed version of the nominal system (A.2), where g(t,x) is
some bounded perturbation term.

ẋ = f(t,x) (A.2)

ẋ = f(t,x) + g(t,x) (A.3)

Lemma A.1 (Lemma 9.2 from Khalil [45])
Let x = 0 be an exponentially stable equilibrium point of the nominal system
(A.2). Let V (t, x) be a Lyapunov function of the nominal system that satisfies

c1 ‖x‖2 ≤ V (t, x) ≤ c2 ‖x‖2

∂V

∂t
+
∂V

∂x
f(t,x, 0) ≤ −c3 ‖x‖2∥∥∥∥∂V∂x

∥∥∥∥ ≤ c4 ‖x‖
(A.4)

57

Chapter A. Definitions, lemmas and theorems from Khalil

in [0,∞) × D, where D = {x ∈ Rn| ‖x‖ < r}. Suppose the perturbation term
g(t, x) satisfies ∥∥g(t,x)

∥∥ ≤ δ < c3
c4

√
c1
c2
θr

for all t ≥ 0, all x ∈ D, and some positive constant θ < 1. Then, for all∥∥x(t0)
∥∥ < r

√
c1/c2, the solution x(t) of the perturbed system (A.3) satisfies

∥∥x(t)
∥∥ ≤ k exp(−γ(t− t0))

∥∥x(t0)
∥∥ , ∀t0 ≤ t < t0 + T

and

∥∥x(t)
∥∥ ≤ b, ∀t ≥ t0 + T

for some finite T , where

k =

√
c2
c1
, γ =

(1− θ)c3)

2c2
, b =

c4
c3

√
c2
c1

δ

θ
.

A.3 Lp-stability

The space Lmp for 1 ≤ p < ∞ is defined as the set of all piecewise continuous
functions u : [0,∞)→ Rm such that

‖u‖Lp =

(∫ ∞
0

‖u(t)‖pdt
) 1
p

<∞.

We define the extended space Lmp,e as Lmp,e = {u|uτ ∈ Lmp ,∀ τ ∈ [0,∞)}, where
uτ is a truncation of u defined by

uτ (t) =

{
u(t), 0 ≤ t ≤ τ
0, t > τ.

Definition A.2 (Definition 4.2 from Khalil [45])
A continuous function α : [0,∞) → [0,∞) is said to belong to class K if it is
strictly increasing and α(0) = 0.

Definition A.3 (Definition 5.2 from Khalil [45])
A mapping H : Lmp,e → Lqp,e is Lp stable if there exists a class K function α,
defined on [0,∞), and a nonnegative constant β such that

∥∥(Hu)τ
∥∥
Lp ≤ α(‖uτ‖)Lp + β

for all u ∈ Lmp,e and τ ∈ [0,∞). It is finite-gain Lp stable if there exist nonnegative
constants γ and β such that

58

A.4 Input-to-state stability

∥∥(Hu)τ
∥∥
Lp ≤ γ ‖uτ‖Lp + β

for all u ∈ Lmp,e and τ ∈ [0,∞).

Theorem A.1 (Theorem 5.1 from Khalil, paraphrased [45])
Consider the system (A.5) and take r and ru such that ‖x‖ ≤ r in D and ‖u‖ ≤
ru in Du. Suppose that x = 0 is an exponentially stable equilibrium point of
the unforced system ẋ = f(t,x, 0) and that a Lyapunov function satisfying the
requirements of (A.4) exists.

If the origin is globally exponentially stable and in addition D = Rn and Du =
Rm, then, for each x0 ∈ Rn, the system (A.5) is finite-gain Lp stable for each
p ∈ [1, ∞].

ẋ = f(t,x,u), x(t0) = x0

y = h(t,x,u), x ∈ Rn, u ∈ Rm
(A.5)

A.4 Input-to-state stability

Definition A.4 (Definition 4.2 from Khalil [45])
A continuous function β : [0,∞) × [0,∞) → [0,∞) is said to belong to class
KL if, for each fixed s, the mapping β(r, s) belongs to class K with respect to
r and, for each fixed r, the mapping β(r, s) is decreasing with respect to s and
β(r, s)→ 0 as s→∞.

Definition A.5 (Definition 4.7 from Khalil [45])
The system (A.5) is said to be input-to-state stable if there exist a class KL
function β and a class K function γ such that for any initial state x(t0) and any
bounded input u(t), the solution x(t) exists for all t ≥ t0 and satisfies∥∥x(t)

∥∥ ≤ β(
∥∥x(t0)

∥∥ , t− t0) + γ

(
sup

t0≤τ≤t

∥∥u(τ)
∥∥) .

A.5 Comparison principle

Lemma A.2 (Lemma 3.4 from Khalil [45])
Consider the scalar differential equation

u̇ = f(t, u), u(t0) = u0

where f(t, u) is continuous in t and locally Lipschitz in u, for all t ≥ 0 and all
u ∈ J ⊂ R. Let [t0, T) (T could be infinity) be the maximal interval of existence
of the solution u(t), and suppose u(t) ∈ J for all t ∈ [t0, T). Let v(t) be a
continuous function that satisfies the differential inequality

v̇(t) ≤ f(t, v(t)), v0 ≤ u0

with v(t) ∈ J for all t ∈ [t0, T). Then, v(t) ≤ u(t) for all t ∈ [t0, T).

59

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

M
as

te
r’

s
th

es
is

Camilla Sterud

Feedback linearizing neural network
controllers

Master’s thesis in Cybernetics and robotics
Supervisor: Prof. Jan Tommy Gravdahl og Dr. Signe Moe

December 2019

	Preface
	Acknowledgements
	Summary
	Sammendrag
	Table of Contents
	List of Tables
	List of Figures
	Nomenclature
	Introduction
	Background and motivation
	Problem formulation
	Contributions of this thesis
	Thesis outline

	Theory
	The 2-norm
	Convolution
	Causal convolution
	Convolutions as matrix multiplications

	Semidefinite programming
	Machine learning
	The dataset
	Regression loss functions
	Bias-variance trade-off
	L2 regularization

	Deep learning
	Feed forward networks
	Training feedforward networks
	Convolutional neural networks

	The Lipschitz constant
	Naive bounds on the Lipschitz constant for feedforward networks
	Spectral normalization
	Efficient estimation of the Lipschitz constant for feedforward networks: LipSDP

	Nonlinear control theory

	Methodology and Theoretical Results
	LipSDP for convolutional neural networks with temporal convolutions
	Feedback linearizing neural network controller
	Controller design
	Proof of Theorem 3.1
	Proof of Theorem 3.2

	Time-delayed system with convolutional neural network controller
	Mass-spring-damper datasets
	Training neural networks

	Experiments and Results
	Experiment setup
	Feedback controller
	Experiment 1: Continuously updated feed forward network controllers
	Experiment 2: Discretely updated feed forward network controllers
	Experiment 3: Continuously updated convolutional neural network controllers
	Experiment 4: Discretely updated convolutional neural network controllers

	Discussion and Further Work
	Discussion
	Further work

	Conclusion
	References
	Appendix Definitions, lemmas and theorems from Khalil
	Feedback linearization
	Perturbed systems
	Lp-stability
	Input-to-state stability
	Comparison principle

