TTK4550 - Specialization Project
Long-range path planning for fixed-wing
UAVs using A* search and OctoMap

Bendik Stuevold Eger

NTNU

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Trondheim, January 15, 2020

Abstract

Fixed-wing UAVs are suitable for long-range tasks such as power grid in-
spection, due to their long flight time. This paper aims to contribute to the
development of an autonomous system using such UAVs to perform inspec-
tion. This is done by evaluating how use of the OctoMap framework can
be combined with a weighted A* search algorithm to perform long-range
path planning.

Implementation of a simple planner is presented and tested in an envi-
ronment created from real world terrain data. The testing evaluates the use
of two different heuristic functions: the diagonal distance and the Euclidean
distance. By using the weighted A* algorithm we allow the planner to find
bounded sub-optimal paths in exchange for better search times. Results
show that the diagonal distance performs better when only allowing the
planner to find optimal paths. However, when the environment resolution
is adequately fine to safely be used for UAV path planning, finding optimal
results is, computationally, very resource demanding. When allowing for
sub-optimal paths, searching with the diagonal distance heuristic resulted
in longer paths than with the Euclidean distance at similar search depths.

Acknowledgement

I would like to thank Helge-André Langaker at KVS Technologies for his
role as co-supervisor. He suggested evaluating the OctoMap-framework
and helped forming the boundaries of the project.

Also, I would like to thank Lars Imsland for supervising the project and
for giving solid feedback during the writing of this paper.

Lastly, I would like to thank Mia Olea Vettestad for proof reading this
paper and being my linguistic sparring partner.

i

Table of Contents
[Abstractl

[Acknowledgement|

[Table of Contents|

[List of Figures|

2 eor

2.1 Manhattan, diagonal and Euclidean distance|

(2.2 Informed search algorithms|

2.2.1 Greedy best-first search|

2,2,2 is* {Ef:;“!:hl

[2.2.3 Weighted AM
2.3 OctoMap|.

[3 Implementation|

[3.1 Neighbour finding|
[3.2 Search algorithm|
8.3 Heuristic calculationl

[>.1 Search behaviour for optimal results|

[>.2 Search behaviour when allowing sub-optimalityl]

[5.3 Using OctoMap as a terrain modell

il

ii

iv

vii

10
10
11
11
12

13
13
15
16
20
24
27

6 Further Workl

[6.1 Implementing a UAV model|

6.2 Alternative environment modelsf

[r__Conclusion|

A _Listings
A1 Plannerd

[References|

v

33
33
33

35

36
36
39
40
40
40
41

42

List of Figures

(1

Comparison of different distance measurements. Green line:

[Manhattan distance. Red [line: Euclidean distance. Blue |

line: diagonal distance)

P

Algorithm describing a best-first search for a graph environ-

ment. Search behavior is determined by choice of evaluation

functionl L

Path tound by greedy best-first search using the Manhattan

distance heuristic. The start node is in red and the goal in

blue. Yellow tiles have a large heuristic value while black

tiles have a low heuristic.

Non-optimal path found by using greedy best-first search.

Yellow tiles have a large heuristic value while black tiles have

a low heuristicl

Optimal path found by using A* and the Manhattan dis-

tance heuristic. Teal tiles have a large heuritic value and

vellow tiles have a large travel cost.|

(6

kxample of how an octree contains its voxels. The hierar-

chical volumetric model is shown to the right and the corre-

sponding voxels to the left. The occupied voxels are colored

with dark grey and free voxels are white,|

Elevation map of the Sykkylven environment. The area is

roughly 50000 x 17000 meters with the lowest point at sea

level and the highest peak at around 1793 meters. Visual-

1zation is done using CloudCompare. |.

Example of how the Sykkylven environment is modelled us-

ing an OctoMap with minimum voxel size of 100 meters.

Visualization is done using RViz. |

9

A comparison of the results from Table [1f and |2, Euclidean

distance 1s 1n blue and diagonal distance i1s red. Each point

Mo

[llustrations of paths found in the environment with 300 me-

ter resolution. Red and pink paths are the optimal paths

found using diagonal and Fuclidean distance, respectively.

Yellow and orange paths are found with € = 20 using diag-

onal and Fuclidean distance, respectively. Visualization is

done i Rwvizl

M1

Comparison of the results from Table 3] and |4, Euclidean

distance 1s 1n blue and diagonal distance 1s red. Each point

(12 Illustration comparing paths found using both diagonal and
Fuclidean distance. The pink path is found using the Eu-
clidean heuristic with € = 0.07. The red path is an optimal
path found using the diagonal distance. The yellow path 1s
found using the diagonal distance with e = 0.01. | 22

(13 Comparison of the results from Table [o[and |6 Fuclidean |

| distance is in blue and diagonal distance is red. Each point |

(14 Aerial view of the paths found in the environment with 50 |
| meter resolution. The red path has ¢ = 1 and uses the Eu- |
| clidean distance heuristic. The pink path has e = 0.09 and |
| uses the FEuclidean distance heuristic. Both paths found us- |
| ing the Euclidean heuristic maintains a continuous altitude |
I |
I |
I

until close to goal. The yellow path has ¢ = 0.01 and uses
the diagonal distance heuristic. This path lays close to the
terrain, if the terrain has a higher elevation than the goal| . 26
(15 Comparison of the results from Table [7] and [§. Fuclidean |
| distance is in blue and diagonal distance is red. Each point |

(16 Illustration comparing sub-optimal paths found using the |
[two heuristics in an environment with 25 meter resolution |
| The red path uses the Euclidean distance with ¢ = 0.11, |
| while the yellow path uses the diagonal distance with e = 0.06.| 29

(17 Example of a visibility graph. Each node in the graph rep- |
| resents a corner of an obstacle. En edge is inserted between |
| the nodes if they are in clear view of each other.|. 34

List of Tables

(1 Results for simulations using the Fuclidean distance in an |

[environment with minimum voxel size 300 meters) 16
[2 Results for simulations using the diagonal distance in an |
[environment with minimum voxel size 300 meters.) 16

[3 Results for simulations using the Euclidean distance heuris- |
[ticin an environment with minimum voxel size 100 meters. |
| Producing results for € > 0.07 was not possible within a rea- |
[sonable time frame. Some results are not included due to |

[Iittle to no variation. 20
|4 Results for simulations using the diagonal distance heuristic |

[in an environment with minimum voxel size 100 meters). . . 20

vi

(5 Results for simulations using the Euclidean distance heuris- |
| — - o T se o0 l
| Results for € < 0.09 was not possible to produce within a |
[reasonable time frame. oL 24

(6 Results for simulations using the diagonal distance heuris- |
[tic 1n an environment with minimum voxel size 50 meters |
| Results tor ¢ = 0 was not possible to produce within a rea- |

[7 Results for simulations using the Euclidean distance heuris- |
L ticin an environment with minimum voxel size 25 meters) . 27
(8 Results for simulations using the diagonal distance heuristic |
[10 an environment with minimum voxel size 25 meters.) . . . 27

vil

1 Introduction

Nowadays, focusing on green energy plants, the need for reliable electrical
transport is growing all over Europe. With the Norwegian power grid
spanning thousands of kilometers, damage to grid towers and power lines
is not uncommon. Power outages can be prevented by regular inspection
and maintenance of the grid.

Damage inspection has for a long time been done manually by linework-
ers, whose job is time consuming and dangerous. In the past years, in-
spection has also been performed using camera equipment and helicopters.
With the advancement of robot technology, state of the art solutions makes
it possible to create totally automated systems for power grid inspection
(Pagnano, Hopf, and Teti, [2013)).

Rotorcraft UAVs are frequently used for inspection of structures, such
as windmills, buildings and even electrical towers. It is possible to get high
quality inspection images due to the rotorcrafts payload capacity and sta-
bilization properties (Boon, Drijfhout, and Tesfamichael, |2017). However,
they are limited in flight time and area coverage.

Fixed-wing UAVs have greater flight time, are more cost efficient and
are easier to maintain (Boon, Drijfthout, and Tesfamichael, [2017)). This
make them suitable for long-range tasks such as power grid inspection. A
challenge arises, however, due to the fixed-wing UAVs inability to hover
stationary. Where the rotorcraft has the ability to maneuver freely to get
inspection images at any angle, the fixed-wing UAV needs extensive path
planning.

The project summarized in this paper aim to contribute to a solution for
this problem by assessing the performance and qualities of common robotic
path planning methods when applied to long-range trajectory planning. By
evaluating these methods we aim to present findings relevant for further
development of a long-range path planner for fixed-wing UAVs, to be used
in a system for automatic power grid inspection.

The evaluated methods are: the use of OctoMap as a framework for ter-
rain representation, combined with weighted A* search for path planning.
Evaluating the OctoMap framework in long-range setting was suggested by
the Norwegian robotics company KVS Technologies.

This paper will present a simple implementation of a path planner, using
weighted A* search in combination with the OctoMap framework. We will
examine how different search heuristics affect the resulting path length and
search depth. The heuristic functions that are evaluated are the diagonal
distance and the Euclidean distance.

1.1 Related work

The Octomap framework is a frequently used environment mapping tool in
the field of robotics. Anastasios and Zompas, 2016| presents a system using
OctoMap paired with the A* algorithm to plan paths for Aerial Robotic
Workers. They discuss several methods of structuring the map environ-
ment for path planning, among using a 3D grid and a visibility graph.
Their thesis focuses on improving the performance of the system through
optimizing the map environment.

In the field of fixed-wing UAV path planning Xia et al., 2009| presents
a system for military threat avoidance by low penetration path planning.
Their research shows that implementing the UAV dynamics via an im-
proved A* algorithm gives better search results.

Section [6] further discuss both these papers, and suggest how their find-
ing can be relevant for out system.

1.2 OQOutline

The remainder of this paper is divided into the following parts:

e Theory: Documents the theoretical background needed in this pa-
per. This includes: heuristic estimates, best-first search algorithms
and the OctoMap framework.

e Implementation: Describes challenges met during implementation
of the path planner and how these challenges were solved.

e Simulations and results: Contains a description of how simulations
were run and presents results from these simulations.

e Discussion: Discusses the results presented in the earlier chapter,
and gives an intuitive explanation for the planner behavior.

e Further work: Presents topics relevant for further development of
the path planner.

e Conclusion: Concludes the report.

2 Theory

The following sections depict a basic theoretical background necessary for
the remainder of the paper. The part about informed search algorithms is
mainly gathered from the book Artificial Intelligence - A Modern Approach
by Russell and Norvig, and the publication Weighted A* search -
unifying view and application by Ebendt and Drechsler, The figures
used to illustrate the search algorithms are inspired by Amit’s A* Pages
by Patel, [1997.

The part containing an introduction to the OctoMap framework is de-
veloped from the publication OctoMap: An efficient probabilistic 3D map-
ping framework based on octrees by Hornung et al.,

2.1 Manhattan, diagonal and Euclidean distance

The terms Manhattan, diagonal and Euclidean distance will be used through-
out the paper. All three can be used as distance measurements for move-
ment in a grid.

The Manhattan distance is a measurement of movement restricted to be
parallel to the grid axes. The diagonal distance allows for movement along
the diagonal axis as well. The Euclidean distance is not concerned with
movement restrictions. Examples of the distances can be seen in Figure [I}

e

/

g

~

Figure 1: Comparison of different distance measurements. Green line:
Manhattan distance. Red line: Euclidean distance. Blue line: diagonal
distance.

2.2 Informed search algorithms

By using problem-specific knowledge beyond the definition of the problem
itself it is possible to preform general informed searching yielding better
results than any uninformed search strategy (Russell and Norvig, [2010)).
The so called best-first search is an instance of the general tree-search or
graph-search that selects nodes for expansion based on an evaluation func-
tion, f(n). The evaluation function is construed as a cost estimate, so the
node with the lowest evaluation function is expanded first. The algorithm
can be implemented as shown in Figure

How f(n) is chosen determines search strategy. Best-first algorithms
often include a heuristic function as a component of f(n), denoted h(n).
The heuristic function estimates the cost of the cheapest path from a state
at node n to the goal state.

2.2.1 Greedy best-first search

The greedy best-first search algorithm tries to expand the node that is
closest to the goal state. It therefore has the evaluation function

f(n) = h(n). (1)

By always expanding the node closest to the goal greedy best-first is

function BEST-FIRST-SEARCH(start, goal) returns a solution, or failure
node < start
explored < an empty set
frontier < an empty priority queue ordered by EVALUATION-FUNCTION
frontier < INSERT(frontier, node)
loop do
if EMPTY?(frontier) then return failure

node < POP(frontier)
if node = goal then return SOLUTION(node)

add node to explored
for each neighbour of node do
if neighbour is not in explored or frontier then
frontier < INSERT(frontier, neighbour)
else if neighbour is in frontier with higher PATH-CoOST then
neighbour. CAME-FROM < node
replace frontier node with neighbour

Figure 2: Algorithm describing a best-first search for a graph environment.
Search behavior is determined by choice of evaluation function.

Figure 3: Path found by greedy best-first search using the Manhattan
distance heuristic. The start node is in red and the goal in blue. Yellow
tiles have a large heuristic value while black tiles have a low heuristic.

capable of finding a solution with minimal search cost (Russell and Norvig,
2010). See Figure |3/ for an example of how a path is found in a two dimen-
tional grid using the Manhattan distance as heuristic function.

However, greedy best-first search does not always provide optimal re-
sults. This can be seen in Figure [4) where an obstacle is placed between the
start and goal tiles, resulting a path consisting of a detour.

2.2.2 A* search

The A* search algorithm is one of the more widely known forms of best-first
search. The algorithm combines the path cost to reach a node, g(n), with
the heuristic estimate to reach the goal from the same node, h(n), giving
the evaluation function:

f(n) = g(n) + h(n). (2)
Since g(n) gives the shortest path from the start node to node n, and
h(n) gives an estimate of the cost from n to the goal node, f(n) estimates
the cost of the cheapest solution through n.
A* can give both optimal and complete results if h(n) is chosen accord-
ing to the right conditions (Russell and Norvig, 2010).
The first condition required is for h(n) to be admissible. An admissible
heuristic is one that never overestimates the minimum cost to reach the

Figure 4: Non-optimal path found by using greedy best-first search. Yellow
tiles have a large heuristic value while black tiles have a low heuristic.

goal.

The second condition is for h(n) to be consistent. Consistent means
that, for every node n and every successor n’ available from n, the estimated
cost of reaching the goal from n is no greater than the step cost of getting
to n’ plus the estimated cost of reaching the goal from n'.

The right choice of heuristic function is dependent on the problem for-
mulation. Figure [5] illustrates how using the Manhattan distance in an
environment where the actions are restricted to horizontal and vertical
movement finds an optimal path. If we relax the problem in Figure [5] i.e.
by allowing diagonal movement, the Manhattan heuristic will overestimate
the shortest path to the goal and we might not get an optimal result. Using
the diagonal distance would be better in this case.

Using the diagonal distance as a heuristic for the original, un-relaxed,
problem would however yield an optimal path. In fact, any heuristic yield-
ing an optimal result for a relaxed problem will be admissible for the original

problem (Russell and Norvig, 2010)).

2.2.3 Weighted A*
By rewriting as

f(n) = g(n) + (L +€)h(n), (3)

Figure 5: Optimal path found by using A* and the Manhattan distance
heuristic. Teal tiles have a large heuritic value and yellow tiles have a large
travel cost.

where € > 0, we get an algorithm called weighted A*. Increasing e relaxes
the admissibility condition on the heuristic to direct the search in a more
promising direction. When searching, this will break ties in the evaluation
function in favor of points with lower h(n) value, i.e. points closer to the
goal.

Given that h(n) is admissible it can be shown that weighted A* is e-
admissible, meaning that is always finds a solution whose cost does not
exceed the optimal cost by more than a factor of 1+ e (Ebendt and Drech-
sler, 2009). Giving a bound to how sub-optimal the solution can be.

If we choose a large € the h(n) term will dominate g(n) and the algorithm
will behave like a greedy best-first search.

2.3 OctoMap

Octomap is an integrated framework for representation of three-dimensional
environments (Hornung et al., . It uses octrees to efficiently store in-
formation regarding structure and occupancy. An octree is a hierarchical
data structure for subdivision in 3D.

Each node is an octree represents the space contained in a cubic volume,
called a voxel. This volume is recursively subdivided into eighth smaller
voxels until a given minimum voxel size is reached. This subdivision is visu-
alized in Figure[6] The minimum voxel size is determined by the resolution

Figure 6: Example of how an octree contains its voxels. The hierarchical
volumetric model is shown to the right and the corresponding voxels to the
left. The occupied voxels are colored with dark grey and free voxels are
white.

of the octree.

Voxels in the OctoMap framework are indexed using unique keys em-
bedding their xyz-coordinates within the tree boundaries. A voxel’s key
consists of a triplet of sub-indexes, each representing its placement along
the coordinate axes. Conversion between xyz-coordinate and voxel key is
available through the framework.

Each voxel in the octree holds a field containing a pointer to an array
of eighth pointers, one for each child. This array is only allocated if the
voxel has any children, meaning it is not a leaf node. If a field in this child
pointer array is uninitialized the volume contained by the respective voxel
is unexplored or unknown.

Each voxel also holds a field containing the probability for the it being
occupied. This probabilistic representation of occupancy makes OctoMap
a framework well suited for dynamic environments.

In the OctoMap framework the maximum tree depth is 16, meaning
that there are 16 possible subdivisions between the largest root node and
the smallest leaf nodes. This gives a maximum number of 81¢ leaf nodes. As
mentioned earlier the pointer to the array of child pointers is only allocated
if there indeed exists any child voxel nodes within it. This has a beneficial
impact on the memory performance of the framework as it does not allo-
cate memory for nodes without explicitly inserting information about its
occupancy (Hornung et al., [2013).

As for data insertion there are three different methods available through
the framework. Individual range measurements can be integrated using
ray-casting by calling the method insertRay. This updates the end point
of the measurement as occupied while all other voxels along a ray to the

sensor origin are updated as free. Point clouds, e.g., from 3D laser scans or
stereo cameras can be integrated using insertScan. This batch operation
is optimized to be more efficient than tracing each single ray from the
origin. Finally, a single node in the octree can be updated with a point
measurement by calling updateNode.

3 Implementation

The following chapter will explain how the OctoMap framework is inte-
grated with a best-first search algorithm, as the one in Figure [2] to create
a path planner capable of planning long distance trajectories in real world
terrain data. The evaluation function used in the planner is implemented
as , where h(n) can be both the diagonal and Euclidean distance.

System implementation is done using Robot Operating System (ROS)
and the chosen programming language is C++. The actual code imple-
mentation can be seen in Listing [T in Appendix [A.T]

The movement of the search algorithm is dependent on how neighbours
are defined in the environment. The OctoMap, being a hierarchical tree
structure, has no direct relation between neighbouring voxels of the same
resolution. A node only stores pointers to its children, unless it is a leaf and
has no children. Therefore, when creating an algorithm to search through
an OctoMap environment, is was necessary to implement a method that
made traversing to neighbouring voxels possible.

Once an efficient way to retrieve neighbouring voxels was available the
next challenge was to implement the search algorithm. How nodes should
be maintained as the search progresses, yielding new results for the evalua-
tion function, and how these nodes should be represented programmatically.

This chapter will also explain how the two different heuristic functions
are implemented and lastly, describe how the planner finds a path that
keeps a safe distance from nearby terrain by making sure a volume sur-
rounding each point in the path is unoccupied.

3.1 Neighbour finding

A simple way to solve the neighbour finding problem would be to iterate
through the entire octree and check if a node’s coordinate placed it as a
neighbour to the current node. Anastasios and Zompas, 2016/ discuss sev-
eral methods to retrieve neighbouring voxels. They suggest more efficient
ways of doing so than the naive full tree iteration approach.

The method for neighbour finding implemented in this project uses a
voxel’s unique key and the fact that this key directly relates to its xyz-
coordinate. A voxel’s key consists of a triplet of indexes, each representing
its placement along the coordinate axes. By incrementing one of these in-
dexes its possible to move along the axis to the neighbouring voxel. The
function getNeighbourKeys retrieves the keys belonging to the 26 neigh-
bouring voxels of a node. The function implementation can be seen in

Listing [4] in [A.4]

10

3.2 Search algorithm

The implementation of the search algorithm combines two data structures
to manage the relevant information. One being an OctoMap, modelling
the terrain to be navigated. The OctoMap is the source of information for
if a point is pathable and for calculating distances between points.

The other data structure is a map storing pointers to a custom node
struct, called PointNode. This structure contains information about a
point that relevant to the search algorithm. The PointNode struct keeps
track of values used in the evaluation function, along with what node was
previously visited to reach the current point. It also stores a flag marking
a point as pathable or not. Its implementation can be seen in Listing [5|in
Appendix

Whenever a new OctoMap voxel is chosen for expansion a corresponding
PointNode object is instantiated and a pointer to it is stored in the map.
The access key used in the map is the same as the OctoMap’s voxel key.
If the expanded voxel has been traversed before, i.e. there already exists
a node in the map with the same key as the voxel, the corresponding
PointNode is retrieved from the map instead of being re-instantiated.

Pointers to the instantiated node objects are also stored in the search
algorithm’s frontier and explored sets. Where the frontier is sorted by the
evaluation function.

If the goal is located, the PointNode corresponding to that point is
returned. By using the parrentKey member of the PointNode struct it
is possible to iterate through all points in the path leading to the goal.
By converting the keys of all points in this path to the coordinate of the
corresponding voxels, the optimal path can be generated.

3.3 Heuristic calculation

The Euclidean distance heuristic is calculated using an implementation of
the Pythagorean theorem. It’s code can be seen in Listing [3] in Appendix
A3l

The implementation of the diagonal distance heuristic can be seen in
Listing[2]in Appendix[A.2] Here, the distance D, is defined as the resolution
of the OctoMap. This is the distance to a neighbouring voxel found by
incrementing the key in one direction, moving along only one axis. The
distance Dy = +/2D; is the distance to a diagonal neighbour found by
incrementing the key in two directions. Dy = v/3D; is the distance to a
neighbour found by incrementing the key in all directions.

11

3.4 Collision detection

When creating a long-range path planner for a fixed-wing UAVs it was
important to make sure the path kept a safe distance from any surrounding
terrain. This is done by making sure none of the voxels contained in a
volume around the expanded point are marked as occupied. By using
the OctoMap framework’s bounding box iterators it was possible to loop
through all voxels contained in a specified volume around a point. How
this is implemented can be seen in Listing [6] in Appendix [A.6]

The bounding box is set to have a 50 meter radius around the selected
point.

This check is preformed whenever a new voxel is expanded and a new
PointNode is instantiated. A traversability flag in the PointNode object is
set depending on the result of this check. This way, if the point is expanded
again, the check does not need to be re-evaluated.

If a PointNode is marked as not traversable the corresponding point is
disregarded by the search algrorithm.

12

4 Simulations and Results

Searching for an optimal solution to a problem where the number of states
is massive can be very hard. So is the case for optimal path planning using
an OctoMap to precisely model a vast terrain. By using weighted A* it is
possible to sacrifice some path optimality and in return relax the problem,
as described in Section [2.2.3] making the search less demanding.

All mentions of optimality in this paper refer to shortest distance pos-
sible.

This chapter will present results of how optimal a path it was possi-
ble to achieve using the path planner, while still not demanding immense
computing resources. This is done by testing the planner in a relevant
simulation environment. The simulation environment is described in the
following section.

4.1 Simulation environment

To test the capabilities of the path planner it was desirable to run simu-
lations in a real world environment with diverse terrain. The Norwegian
west coast, consisting of fjords and mountains, could serve this purpose.
More specifically the municipality of Sykkylven and the surrounding area
was chosen as a simulation environment.

Elevation data for the Sykkylven area was collected from hodedata.no
and converted to a point cloud modelling the terrain. An elevation map of
the selected area can be seen in Figure [7]] An octree was created by ray-
casting from a ceiling, set to the highest Z value in the data set plus 500m,
down to the each point in the cloud. Several OctoMap environments were
created with different resolutions. A part of the Sykkylven environment
modelled with an OctoMap with a resolution of 100 meters can be seen in
Figure

The start and goal points were the same for all simulations. The start
point was at (1250m, 2250m, 750m) and the goal at (49750m, 11750m, 750m).
These points are relative to the bounding box of the octree. The distance
between these points is 49421.7m.

13

hodedata.no

Coord. Z
1793.36

1737.32

1681.27

1625.23

1569.19

1513.15

1457.10

1401.06

1345.02

1288.98

1232.93

1176.89

1120.85

1064.81

1008.76

952.72

896.68

840.64

784.59

728.55

672.51

616.47

560.42

504.38

448.34

392.30

336.25

280.21

22417

168.13

112.08

56.04

0.00

Figure 7: Elevation map of the Sykkylven environment. The area is roughly
50000 x 17000 meters with the lowest point at sea level and the highest
peak at around 1793 meters. Visualization is done using CloudCompare.

14

Figure 8: Example of how the Sykkylven environment is modelled using
an OctoMap with minimum voxel size of 100 meters. Visualization is done
using RViz.

4.2 Reduction of heuristic admissibility

To evaluate the performance of weighted A* search, a series of tests were
run using the two different heuristic functions, the diagonal distance and
the Euclidean distance. This was done at four different resolutions: 25, 50,
100 and 300 meters, varying the admissibility constraint parameter e.

The evaluation criteria for the simulations were the number of nodes
explored by the search and the total distance of the resulting path.

Search time is also included to get an idea of how the admissibility con-
straint affects execution timings. However, these simulations were not run
on a dedicated computer, but on a computer with a general purpose op-
erating system, leading to inconsistent run times if the program execution
was affected by system overhead.

For the simulations run at finer resolutions the search time grew to large
and the tests were not able to finish within a reasonable time frame. These
results will therefore try to indicate how good a path we can achieve, given
limited computing resources, using the high resolution environments.

All results will be presented as raw data in tables, one for each heuristic,
and a combining graph representation to better compare their performance.
Each subsection will also include a small summary of what is noteworthy
before further discussing the results in the next chapter.

15

4.2.1 Simulations with 300 meter resolution

€

Nodes explored Path length (m)

Search time (s)

0
0.01
0.03
0.05
0.06
0.07
0.08
0.09

0.1
0.2
0.5
1
20
50
100

28004
26 304
22124
15443
11642
8731
5416
2344
755
175
161
161
161
161
161

52657.8
592657.9
52657.9
52657.9
92715.7
52773.5
52906.4
52906.4
52 906.4
52906.4
592935.3
52 848.6
53461.3
54 426.5
56 050.5

443.78
353.76
268.26
147.08
94.06
70.53
32.83
9.07
1.46
0.15
0.15
0.12
0.18
0.14
0.14

Table 1: Results for simulations using the Euclidean distance in an envi-

ronment with minimum voxel size 300 meters.

€

Nodes explored Path length (m)

Search time (s)

0
0.01
0.03
0.05
0.06
0.07
0.08
0.09

0.1
0.2
0.5
1
20
50
100

59548
1873
551
372
379
341
309
256
234
183
163
161
161
161
161

52657.9
52 686.8
52935.3
52964.2
52964.2
53594.1
93594.1
53594.1
03 594.1
54120.1
54923.5

55172
56 050.5
56 050.5
56 050.5

29.68
3.33
0.52
0.28
0.29
0.26
0.22
0.18
0.17
0.13
0.12
0.12
0.12
0.12
0.12

Table 2: Results for simulations using the diagonal distance in an environ-

ment with minimum voxel size 300 meters.

T T T T T T T T

e Euclidean | |
9 e Diagonal ||

00 oS 1

Nodes explored

10% | .

NN
N

102 = | | | | | | | =
2.25 53 535 54 545 55 555 56

Path length 104

Figure 9: A comparison of the results from Table [T] and 2] Euclidean
distance is in blue and diagonal distance is red. Each point is marked with
the e-value used for that simulation.

17

(a) The yellow path is an illustrative example of a path found by a search with greedy
characteristics. The path drops in elevation quickly between terrain peaks due to the
goal being at a lower position on the Z axis.

(b) Paths around the start point illustrating the divergence of the optimal paths. Due
to how movement is implemeted in the 3D grid several paths can be optimal.

Figure 10: Hlustrations of paths found in the environment with 300 meter
resolution. Red and pink paths are the optimal paths found using diagonal
and Euclidean distance, respectively. Yellow and orange paths are found
with € = 20 using diagonal and Euclidean distance, respectively. Visual-
ization is done in Rviz.

18

Summary

Using an environment resolution of 300 meters it was possible to produce
optimal results (¢ = 0) using both heuristic functions. All the results found
at this resolution can be seen in Figure [0] and Table [T and 2

The optimal path found with each heuristic are of roughly the same
length, and the small deviation in distance between them is probably due
to a rounding error in floating point arithmetic. The paths are illustrated in
Figure The optimal paths diverge in the beginning, but merge together
as they encounter the first major terrain.

Comparing the performance of the heuristics it is obvious that using
diagonal distance will yield optimal results while exploring fewer nodes. It
does, on the other hand, have a quicker drop off in path optimality as €
increases.

With € = 1 both search variants explore the same number of nodes, but
the one using diagonal distance is several hundred meters longer than the
one using Euclidean distance. Increasing e further it becomes clear that
using the diagonal distance makes the search behave more greedy faster
than using the Euclidean distance. This can be seen in Figure where
the search using the diagonal distance looses elevation quickly between
terrain peaks.

19

4.2.2 Simulations with 100 meter resolution

e Nodes explored Path length (m) Search time (s)

0.07 160129 52 864.6 30528.1
0.08 92 863 52928.2 11002.5
0.09 26 823 52928.2 993.51
0.1 6119 52928.2 63.08
0.2 047 52947.5 1.35
1 485 52880 1.28

10 485 53 064.9 1.43
20 485 53406 1.54
50 485 54 658.2 1.45
100 485 55371 1.28

Table 3: Results for simulations using the Euclidean distance heuristic in
an environment with minimum voxel size 100 meters. Producing results
for € > 0.07 was not possible within a reasonable time frame. Some results
are not included due to little to no variation.

e Nodes explored Path length (m) Search time (s)

0 87765 52689.3 11968.7
0.01 30708 02874.3 956.02
0.02 17768 52893.6 273.54
0.03 5586 53011 34.23
0.04 7174 53 040 48.04
0.05 3649 53167.1 15.87
0.06 2719 53259.6 10.29
0.07 2145 53240.3 7.34
0.09 1972 53488.8 6.14

0.1 1655 53610.2 4.85
0.2 831 04 053.3 2.06
0.3 698 54 301.9 1.85
0.4 626 54477.2 1.57
0.5 572 54633.2 1.44

1 503 54999.3 1.26

5 486 55199.6 1.21
10 485 56224.5 1.23

Table 4: Results for simulations using the diagonal distance heuristic in an
environment with minimum voxel size 100 meters.

20

T T T T T T T T T
gt e Euclidean
N e Diagonal
[]
NS
5 Q- |
10° | . ® i
O |
L Q\ ° i
L . |
\L
RS
2
o 104 - |
3 I o]
é i ° |
N
o [Q [] B
Z, o o |
L . |
QP
L \B O |
A\
V)
i Q.Qq. .Q'Q .
[]
QY
10° i
i ° |
I) ¥ - |
[Q Q QD’. .Q% \ XQQ i
Q
B ° N o) ° ® ¢ 0 ° g
i AW N S N\,
| | | | | | ||

| |
525 53 535 54 545 55 555 56 5.65
Path length . 104

Figure 11: Comparison of the results from Table [3 and [d Euclidean dis-
tance is in blue and diagonal distance is red. Each point is marked with
the e-value used for that simulation.

21

Figure 12: Illustration comparing paths found using both diagonal and
Euclidean distance. The pink path is found using the Euclidean heuristic
with € = 0.07. The red path is an optimal path found using the diagonal
distance. The yellow path is found using the diagonal distance with ¢ =
0.01.

Summary

The results from simulations done in an environment with a minimum voxel
size of 100 meters can be seen in Figure [I1] and Table [3] and [4]

The search variants behave similar to what is described in the previous
section. The difference now, however, is that is was not possible to gener-
ate results using the Euclidean distance heuristic with ¢ < 0.07 within a
reasonable time frame. The simulation ran with ¢ = 0.07 used almost 8.5
hours to finish.

Using the diagonal distance it was possible to find an optimal path.
Comparing it to the best path found using Fuclidean distance we see that

22

the optimal path is about 200 meters shorter.

Comparing sub-optimal results we can see from Figure that using
the Euclidean distance gives a path that maintains altitude towards the
goal. Using the diagonal distance the path quickly converges to a straight
line towards the goal. However, this straight line is obstructed so the path
needs to regain elevation to reach the goal.

23

4.2.3 Simulations with 50 meter resolution

€ Nodes explored Path length (m) Search time (s)

0.09 161697 52 896.4 35966.6
0.1 34 487 52 896.4 1797.08
0.11 11738 52 891.6 191.35
0.12 4772 52 896.4 49.34
0.13 1940 52 896.4 10.48
0.15 1322 52901.3 5.81
0.2 1097 02874.3 6.11
0.5 970 52928.2 5.78
1 970 52 848.2 5.38

20 970 53 393.5 6.24
50 976 04 746.3 6.16
100 975 55 348.7 6.06

Table 5: Results for simulations using the Euclidean distance heuristic in
an environment with minimum voxel size 50 meters. Results for ¢ < 0.09
was not possible to produce within a reasonable time frame.

e Nodes explored Path length (m) Search time (s)

0.01 224199 52859.8 62 758.9
0.02 127512 52 888.7 19278.6
0.03 39295 53025.5 2134.81
0.04 49498 53 066.9 3684.09
0.05 26429 53 301 1002.67
0.06 16 658 53342.4 330.58
0.08 13626 53425.2 250.95
0.09 12473 93517.7 200.52
0.1 11148 53637.2 185.49
0.2 3698 54 058.2 27.53
0.3 2492 54270.1 15.68
0.4 2097 94 550.4 12.13
0.5 1666 54 699.2 9.66
0.6 1455 54740.6 8.34
0.8 1289 54 996.8 7.53
1 1127 55096.9 6.33

5 971 55 353.2 5.54

10 970 56 229.3 5.47

Table 6: Results for simulations using the diagonal distance heuristic in an
environment with minimum voxel size 50 meters. Results for ¢ = 0 was not
possible to produce within a reasonable time frame.

24

T T T T T T T T

- e Fuclidean |
o e Diagonal

105 Q- .

[]
Q>

Nodes explored
)
%
[]

X Ql e N AN x@g
10° oo Qb ° ° Ne e
A 9 N

| |

53 535 54 545 55 555 56 565
Path length . 104

Figure 13: Comparison of the results from Table [f] and [} Euclidean dis-
tance is in blue and diagonal distance is red. Each point is marked with
the e-value used for that simulation.

25

Figure 14: Aerial view of the paths found in the environment with 50
meter resolution. The red path has e = 1 and uses the Euclidean distance
heuristic. The pink path has ¢ = 0.09 and uses the Fuclidean distance
heuristic. Both paths found using the Euclidean heuristic maintains a
continuous altitude until close to goal. The yellow path has e = 0.01 and
uses the diagonal distance heuristic. This path lays close to the terrain, if
the terrain has a higher elevation than the goal.

Summary

The results from simulations done in an environment with a minimum voxel
size of 50 meters can be seen in Figure [I3] and Tables [f] and [0}

When running simulations in this environment neither of the search
variants were able to find an optimal solution within a generous time frame.
The shortest path found using diagonal distance heuristic explored over
200000 nodes, resulting in a search time of almost 17.5 hours!

The shortest path found in this resolution was discovered using the
Euclidean distance heuristic with e = 1. Looking at the results from sim-
ulations at other resolutions this combination of heuristic and e-value has
given a short path length while exploring a small set of nodes. In Figure
we see that this path moves straight towards goal with minimal change
of heading.

26

4.2.4 Simulations with 25 meter resolution

€

Nodes explored Path length (m)

Search time (s)

0.11 82954 52 896.4 9303.83
0.12 29997 52 896.4 1191.06
0.13 8989 52901.3 94.11
0.14 7204 53002.4 62.91
0.15 4485 52903.7 34.02
0.16 3885 52908.5 30.52
0.17 3249 52908.5 27.11
0.2 2535 52910.9 24.02
1 1940 02 834.8 22.03

5 1940 52897.8 25.58

10 1940 53 000.4 25.75
20 1940 53337.6 30.82
20 1955 04 807.4 29.19
100 1961 55 597.8 27.92

Table 7: Results for simulations using the Euclidean distance heuristic in
an environment with minimum voxel size 25 meters.

e Nodes explored Path length (m) Search time (s)

0.06 118774 53 340 16168
0.07 93 448 53404.5 10024.2
0.09 86171 53593.4 8374.54
0.1 81603 53 681 11307.1
0.2 23150 54103.2 939.36
0.3 13751 94 339.7 294.76
0.4 9325 54 585.8 148.71
0.5 6665 04 718.7 116.56
0.6 5144 54 698 88.14
0.7 4241 547274 59.27
0.8 4089 55 043.3 55.93
0.9 3510 55114.1 45.23
1 3092 55161.8 44.13

5 1978 55 648.6 29.06

10 1958 56 586.8 26.59

Table 8: Results for simulations using the diagonal distance heuristic in an
environment with minimum voxel size 25 meters.

27

T T T T T T T T T

e Euclidean
e Diagonal

O
51 Q i
10° | O

Nodes explored

10t oY 1

% DN N xQQ
X.. o XQ [} [] [[} 1

| |

525 53 535 54 545 55 555 5.6 5.65
Path length . 104

Figure 15: Comparison of the results from Table [/ and 8l Euclidean dis-
tance is in blue and diagonal distance is red. Each point is marked with
the e-value used for that simulation.

28

Figure 16: Illustration comparing sub-optimal paths found using the two
heuristics in an environment with 25 meter resolution. The red path uses
the Fuclidean distance with € = 0.11, while the yellow path uses the diag-
onal distance with € = 0.06.

Summary

The results from simulations done in an environment with a minimum voxel
size of 25 meters can be seen in Figure [I5] and Tables [7] and

When using the environment with 25 meter resolution neither got close
to finding an optimal solution. These results does highlight how using the
Euclidean distance outperforms the diagonal distance when the results can
be sub-optimal.

Figure [16|illustrates a similar scenario to the one in Figure the path
found using the Euclidean distance maintains its altitude after traversing
high terrain before descending when closing in on the goal point. The diag-
onal distance converges to a straight line towards the goal, but is hindered
by obstructiong terrain.

29

5 Discussion

All results presented in the previous chapter were found by simulating in
only one scenario. The aim of these simulations were merely to get an idea
of how the different heuristics affect the behavior of the planner.

With this in mind the following sections will further discuss the results
presented in the previous chapter. We will compare the performance of the
two heuristic functions and give an intuitive explanation of their behavior.
This can give information that could prove useful for further development
of the path planner.

5.1 Search behaviour for optimal results

Looking at the results from the simulations presented in Sections and
[1.2.2] (coarse resolution simulations) we see that using the diagonal distance
heuristic decreases the search size when only allowing optimal results. This
is due to the diagonal distance being a more accurate estimate of the actual
movement cost between two nodes in our environment. In fact, if the path
between to nodes is unhindered the diagonal distance between them is an
exact estimate of the movement cost.

The movement cost is dependent on how neighbour finding and move-
ment is implemented in the search algorithm. In our case: allowing only
movement to each neighbouring voxel in the 3D grid, matches the diagonal
distance behavior.

The Euclidean distance, on the other hand, will underestimate the
movement cost between two nodes as long as movement in more than one
direction is necessary to traverse between them. This underestimation of
h(n) will cause the search to explore more nodes.

As an example on how an underestimating heuristic increases the search
size imagine h(n) = 0, a heuristic that always will underestimate, giving
f(n) = g(n) in (@). This will make the search behave like Dijkstra’s algo-
rithm. This gives an optimal result, but does so in an uninformed manner,
increasing the number of nodes explored drastically.

So if the path needs to be optimal, with regards to distance, using
the diagonal distance heuristic might be a good choice. However, if the
path is to be used as a basis for a UAV trajectory the need for high-
resolution terrain models is apparent. Finding an optimal solution in such
environments has proven to be hard, using either heuristic, due to the size
of the environment.

30

5.2 Search behaviour when allowing sub-optimality

Even though the diagonal distance performs better for optimal results, the
case is not the same when allowing sub-optimality. From Table 4| we can
see that € = 0.01 increases the path length by over 200 meters. Increasing
the bound even further, at ¢ = 1, the diagonal distance heuristic gives
a sub optimal path that is 2300 meters longer than the optimal result.
Comparing results with the same e from Table 3| (Euclidean distance) the
path is only about 200 meters longer than than the optimal path.

Investigating the sub-optimal paths, illustrated in Figure [12] and
[16] the different behavior of the two search variants is apparent. Using
the Euclidean distance the path prefers to maintain it’s heading until the
direction towards the goal has changed significantly enough. While the tra-
jectories found using the diagonal distance quickly converges to a direction
in a straight line towards goal.

This behaviour can again be explained by how movement is defined in
the 3D grid and how the heuristics are influenced by relaxation of admis-
sibility. When the heuristic is relaxed the search will prioritize moving to
nodes that minimizes h(n).

For the diagonal distance heuristic this will always be movement to a
diagonal neighbour if the current node is not in a straight line towards goal.
This is intensified when the admissibility of the heuristic is relaxed, leading
to the greedy behavior shown in Figure

The behavior of the Euclidean distance is due to how, when far from
goal, the estimate is dominated by one axis. Imagine a vector [x,y, z],
where © > y and x > z, the length of the vector (Euclidean distance)
will be /22 + 32 + 22 = x. So as long as a move decreases the dominating
coordinate the decisive factor for what neighbour to explore next is deter-
mined by the movement cost. Moving to non-diagonal neighbours have the
smallest movement cost and is therefore preferred.

By relaxing the admissibility of the heuristic the evaluation function
becomes more sensitive to nuances in Euclidean distance between neigh-
bours. Looking at Figure [14] this explains why the path found using e = 1
changes its heading faster than ¢ = 0.09.

5.3 Using OctoMap as a terrain model

The aim of this paper is to investigate the possibilities for using an A*
path planner in conjunction with the OctoMap framework for long-range
UAV trajectory planning. The following section will therefore discuss some
experiences made while implementing the presented system.

The OctoMap framework has proven to be an intuitive representation
of a 3D environment. It models both free and occupied volumes in a grid,
making the implementation of an A* search algorithm not too difficult.

31

However, using the framework as presented in this project does not fully
utilize all it’s functionalities. OctoMap is capable of online terrain mod-
elling, and is often used for collision avoidance in dynamic environments.
Using it to represent a static environment is of course not wrong, but a
simpler terrain model might have been just as good.

One possibility might have been to formulate the problem so it could be
solved using mixed integer linear programming. For this purpose a simple
elevation model can be suitable, modelling the terrain as a constraint.

Alternative environment models will be discussed further in the follow-
ing chapter.

Another point to mention is how the resolution of an OctoMap not only
affects search performance, but also has an impact on the pre-processing
pipeline to generate said OctoMap. Although, this is not a major concern
as the pre-processing is done offline beforehand.

32

6 Further Work

. The following chapter will present some ideas for what topics to explore
for further development of the path planner.

6.1 Implementing a UAV model

The current solution of neighbour finding, by expanding all 26 surrounding
neighbours to a center voxel, does not reflect the behavior of a fixed-wing
UAV. By implementing a model for the UAV dynamics, the neighbour
finding functionality could instead return voxels in a conical shape in front
of the aircraft, dependent on it’s heading and turning radius.

The method presented as an improved A* algorithm by Xia et al., [2009
suggest an implementation. Their results show a reduction of both path
distance and number of explored nodes. Their implementation does not
use the OctoMap-framework, but they do model terrain in a grid structure
to be searched in by A*.

An implementation such as this would require choosing the OctoMap
resolution with the UAV’s turning radius in mind. A fine resolution might
be necessary for this functionality to make sense, but it could result in a
path well suited as a UAV trajectory basis.

6.2 Alternative environment models

The following section will present some alternative methods for modelling
terrain to be used for path planning.

Visibility graph

Anastasios and Zompas, [2016| presents a method of using the OctoMap
framework to create a visibility graph of the modelled environment. This
reduces the set of nodes in the search, by instead of planning a path through
adjacent voxels, the idea is to travel from one obstacle to another one. See
Figure for an illustrative image of what a visibility graph represents.
This makes traversing large open areas trivial as they are modelled as only
one edge in the graph.

The implementation presented in Anastasios and Zompas, 2016 calcu-
lates what voxels in the octree are obstacle corners, and sub-samples all
the corner candidates to further minimize the node set. They then use
the ray casting feature of the framework to create a visibility graph of the
environment.

Their results show that the visibility graph implementation reduces the
search time and the number of explored nodes.

33

Figure 17: Example of a visibility graph. Each node in the graph represents
a corner of an obstacle. En edge is inserted between the nodes if they are
in clear view of each other.

Smoothed safe surface

Xia et al., 2009 creates a search environment by running terrain data
through a smoothing algorithm h(z,y) and adding a safe height h.. A
synthetic terrain is then given as:

H(z,y) = h(z,y) + he.

This smoothing method is based on a Chinese paper called Smoothing
Approach to Digital Terrain for Low Altitude Penetration. The paper is
unfortunately not available without access to the Chinese National Knowl-
edge Infrastructure (CNKI).

34

7 Conclusion

The OctoMap-framework is a viable method to model terrain, and imple-
menting it with the A* algorithm is feasible. The resolution of the octree
has a severe impact on performance, both for the search algorithm and
for data pre-processing. What resolution is needed for UAV path planning
may be of importance for further development of the planner.

Choosing the heuristic function in the A* algorithm is also of great
importance for further development of the path planner. The simulation
results presented in this paper give reason to believe that a weighted A*
algorithm implemented with the Euclidean distance heuristic is a valid
choice.

Results also show that searching for an optimal path using the diagonal
distance yields a more effective search, but the drop-off in path optimality
when allowing sub-optimal results is not wanted.

35

1
2
3
1
5

NN
© 0 N O U e W

0w W oW W W W NN NN

Y R W N =

A Listings

A.1 Planner

Listing 1: Implementation of the search algorithm used in the simulations.

struct key_compare

{

};

bool operator () (
const OcTreeKey &ki1,
const OcTreeKey &k2) const

{
if (k1[0] == k2[0])
{
if (k1[1] == k2[1])
{
return k1[2] < k2[2];
}
else
{
return ki1[1] < k2[1];
}
}
else
{
return k1[0] < k2[0];
}
}

bool operator==

const shared_ptr <PointNode> &lhs,
const shared_ptr<PointNode> &rhs)

return *lhs == *rhs;

bool operator<(

const shared_ptr <PointNode> &lhs,
const shared_ptr<PointNode> &rhs)

return *lhs < *rhs;

int main(int argc, char **argv)

{

string tree_path;

float epsilon = stof (argv([2]);
point3d startp;

point3d goalp;

utils::readConf (argv[1], tree_path, startp, goalp);
OcTree tree(tree_path);

stringstream nodename;
nodename << "planner_" << tree.getResolution();
ros::init (argc, argv, nodename.str());
ros::NodeHandle node_handle;

ros::Rate rate(1);

// cast goal and start points into their containing
OcTreeKey startk = tree.coordToKey(startp);

36

voxel centers

59 startp = tree.keyToCoord(startk);
60 OcTreeKey goalk = tree.coordToKey(goalp);
61 goalp = tree.keyToCoord(goalk);

63 // diagonal distances

64 float d1 = tree.getResolution();
65 float d2 = sqrtf(2.0) * di;

66 float d3 = sqrtf(3.0) * di;

67

68 // Astar begin

69 map<0cTreeKey, shared_ptr<PointNode>, key_compare> lookuptable;
set<0OcTreeKey, key_compare> closed_list;

71 vector<shared_ptr <PointNode>> open_list;

72

73 shared_ptr<PointNode> startmn =

74 make_shared<PointNode >(PointNode (startk));
75

76 startn->gval = 0.0;

77 // startn->hval = (1 + epsilon)

78 // *# utils::distance(startp, goalp);

79 startn->hval = (1 + epsilon)

80 * utils::diagonaldistance(startp, goalp, d1,d2,d3);
81 startn->fval = startn->hval + startn->gval;

82

83 open_list.push_back(startn);

84 lookuptable [startn->key] = startn;

85

86 int count = 0;

87

88

89 clock_t start;

90 double duration;

9

92 start = clock();

93

94 while (!open_list.empty() && ros::o0k())

95 {

96 sort (open_list.rbegin(), open_list.rend());
97 shared_ptr<PointNode> currentn = open_list.back();
98 open_list.pop_back();

99 point3d currentp = tree.keyToCoord(currentn->key);
100

101 if (currentn->key == tree.coordToKey(goalp))
102 {

103 break;

104 }

105

106 closed_list.insert (currentn->key);

107

108 vector<OcTreeKey> neighbourkeys =

109 utils::getneighbourkeys (currentn->key);

110

111 for (auto neighbourk_it = neighbourkeys.begin();
112 neighbourk_it != neighbourkeys.end(); ++neighbourk_it)
113 {

114 OcTreeKey neighbourk = *neighbourk_it;

115

116 // is the node in the closed list

117 if (find(

118 closed_list.begin(),

119 closed_list.end (),

120 neighbourk) != closed_list.end())

121 {

122 continue;

123 }

37

point3d neighbourp = tree.keyToCoord(neighbourk);
shared_ptr<PointNode> neighbourn;

[« SN

NN N NN
5 B -

_ o e e e

3]

// if the node has not been expanded before

129 if (lookuptable.count (*neighbourk_it) == 0)
130 {

131 neighbourn =

132 make_shared<PointNode >(PointNode (neighbourk));
133

134 lookuptable [neighbourk] = neighbourn;

135

136 neighbourn->traversable =

137 !collisiondetect (tree, neighbourp);

138 }

139 // if the node has been expanded before

140 else

141 {

142 neighbourn = lookuptable[neighbourk];

143 }

144

145 OcTreeNode* n = tree.search(neighbourp);
146 if (n == NULL)A{

147 continue;

148 }

149

150 if (!neighbourn->traversable)

151 {

152 continue;

153 }

154

155 float tentative_gval = currentn->gval

156 + distance(currentp, neighbourp);

157

158 if (find(

159 open_list.begin(),

160 open_list.end(),

161 neighbourn) == open_list.end())

162 {

163 open_list.push_back(neighbourn);

164 }

165 else if (tentative_gval > neighbourn->gval
166 && neighbourn->gval != -1)

167 {

168 continue;

169 }

170

171 neighbourn->parrentkey = currentn->key;

172 neighbourn->gval = tentative_gval;

173

174 // mneighbourn->hval = (1 + epsilon)

175 // * distance(neighbourp, goalp);

176 neighbourn->hval = (1 + epsilon)

177 * diagonaldistance (neighbourp, goalp, d1,d2,d3);
178

179 neighbourn->fval = tentative_gval + neighbourn->hval;
180 }

181 }

182

183 duration = (clock() - start) / (double) CLOCKS_PER_SEC;
184

185

186 if (lros::0k()) {

187 // ctrl+c signal given to ROS

188 return O0;

38

189 }

190

191 if (open_list.size() == 0) {
192 // no solution found

193 return O0;

194 }

195
196 // The following code appends the data
197 // about the found path to a output file.

198 ofstream outfile;

199 stringstream outname;

200 outname << "all_paths_res_" << tree.getResolution() << ".txt";
201

202 outfile.open(outname.str(), ios_base::app);
203 outfile

204 << epsilon << " "

205 << closed_list.size() << " "

206 << lookuptable[goalk]->gval << " "

207 << duration

208 << endl;

209

210 OcTreeKey key = goalk;

211 outfile.close();

212

213

214 // The following code write the path found to a file
215 ofstream pathfile;

216 stringstream ss;

217 ss << "path_res_" << tree.getResolution ()
218 << "_eps_" << epsilon << ".txt";

219 pathfile.open(ss.str());

220

221 while (key != startk)

222 {

223 point3d p = tree.keyToCoord(key);

224 pathfile << p.x() << " " << p.y() << " " << p.z() << endl;
225 key = lookuptable[key]->parrentkey;

226 }

227

228 // add the start coorinate also

229 point3d coord = tree.keyToCoord(key);

230 pathfile

231 << coord.x() << " "

232 << coord.y() << " "

233 << coord.z ()

234 << endl;

235

236 pathfile.close();

237

238 return 1;

239}

A.2 Diagonal Distance

Listing 2: Implementation of how the diagonal distance heuristic is calcu-
lated.

1 float diagonaldistance (
2 point3d start,

3 point3d end,

1 float di,

5 float d2,

6 float d3) {

7 float dx = abs(start.x() - end.x()) / di;

39

8 float dy = abs(start.y() - end.y()) / di;

9 float dz = abs(start.z() - end.z()) / di;

10 float dmin = std::min({dx, dy, dz});

11 float dmax = std::max({dx, dy, dz});

12 float dmid = dx + dy + dz - dmin - dmax;

13

14 return (d3 - d2) * dmin + (d2 - d1) * dmid + d1 * dmax;
15}

A.3 Euclidean Distance

Listing 3: Implementation of how the euclidean distance heuristic is calcu-
lated.

float distance(point3d start, point3d end){
float x = pow(end.x() - start.x(), 2.0);
float y = pow(end.y() - start.y(), 2.0);
float z = pow(end.z() - start.z(), 2.0);

I N

6 return sqrtf(x + y + z);

}

A.4 Get Neighbour Keys

~

Listing 4: Function for retrieving the keys of all neighbouring voxels to a

current voxel.
vector<OcTreeKey> getneighbourkeys (0cTreeKey c_key){

1

2 vector<OcTreeKey> neighbours;

3 for(int xx = -1; xx < 2; ++xx) {

4 for (int yy = -1; yy < 2; ++yy) {

5 for (int zz = -1; zz < 2; ++zz) {

6 if (xx == 0 && yy == 0 && zz == 0) {
7 continue;

8 }

9 else {

10 OcTreeKey new_key;

11 new_key.k[0] = c_key.k[0]+xx;
12 new_key.k[1] = c_key.k[1]l+yy;
13 new_key.k[2] = c_key.k[2]+zz;
14 neighbours.push_back(new_key);
15 }

16 }

17 }

18 }

19 return neighbours;

20 }

A.5 PointNode

Listing 5: The PointNode struct. The gval, fval and hval members are
initialized to —1 functioning as an infinite value.

struct PointNode

{
3 OcTreeKey key;
! OcTreeKey parrentkey;
5 float gval, fval, hval = -1;
6 bool traversable = true;
A

40

19

A.6 Collision Detection

Listing 6: Implementation of the collision detection check.

bool collisiondetect(OcTree &tree, point3d center)

{

OcTreeNode* n = tree.search(center);
if (n == NULL){
return true;
}
if (tree.isNodeOccupied(n)) {
return true;

}

point3d bbx_offset (50, 50, 50);
for (OcTree::leaf_bbx_iterator
it = tree.begin_leafs_bbx(center - bbx_offset, center + bbx_offset),
end = tree.end_leafs_bbx();
it != end; ++it)
{
if (tree.isNodeOccupied (*it))
{
return true;
}
}

return false;

41

References

Anastasios, A (‘and) Zompas (2016). Development of a Three Dimensional
Path Planner for Aerial Robotic Workers. Tech. rep. URL: https://
pdfs.semanticscholar.org/900e/87b9c9228f755d8d37f9ee8f68532d0a0ffe.
pdf.

Boon, M. A.; A. P. Drijthout, and S. Tesfamichael (2017). “COMPARISON
OF A FIXED-WING AND MULTI-ROTOR UAV FOR ENVIRON-
MENTAL MAPPING APPLICATIONS: A CASE STUDY.” In: ISPRS
- International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences XLII-2/W6, pp. 47-54. 1SSN: 2194-9034.
URL: https://www. int-arch-photogramm-remote-sens-spatial -
inf-sci.net/XLII-2-W6/47/2017/.

Ebendt, Riidiger and Rolf Drechsler (2009). “Weighted A* search — unifying
view and application.” In: Artificial Intelligence 173.14, pp. 1310-1342.
ISSN: 0004-3702. URL: https://www.sciencedirect.com/science/
article/pii/S000437020900068X.

Hornung, Armin et al. (2013). “OctoMap: An efficient probabilistic 3D
mapping framework based on octrees.” In: Autonomous Robots 34.3,
pp. 189-206. 1SSN: 09295593. URL: http://link.springer.com/10.
1007/s10514-012-9321-0.

Pagnano, A., M. Hopf, and R. Teti (2013). “A Roadmap for Automated
Power Line Inspection. Maintenance and Repair.” In: Procedia CIRP 12,
pp- 234-239. 1SSN: 22128271. URL: https://linkinghub.elsevier.
com/retrieve/pii/S2212827113006823.

Patel, Amit (1997). Amit’s A* Pages. URL: http://theory.stanford.
edu/~amitp/GameProgramming/|

Russell, Stuart and Peter Norvig (2010). Artificial Intelligence - A Modern
Approach (3rd ed). 1ISBN: 0136042597

Xia, Li et al. (2009). “Path planning for UAV based on improved heuris-
tic A* algorithm.” In: 2009 9th International Conference on Electronic
Measurement € Instruments. IEEE, pp. 3-488. 1SBN: 978-1-4244-3863-
1. URL: http://ieeexplore.ieee.org/document/5274271/.

42

https://pdfs.semanticscholar.org/900e/87b9c9228f755d8d37f9ee8f68532d0a0ffe.pdf
https://pdfs.semanticscholar.org/900e/87b9c9228f755d8d37f9ee8f68532d0a0ffe.pdf
https://pdfs.semanticscholar.org/900e/87b9c9228f755d8d37f9ee8f68532d0a0ffe.pdf
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W6/47/2017/
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W6/47/2017/
https://www.sciencedirect.com/science/article/pii/S000437020900068X
https://www.sciencedirect.com/science/article/pii/S000437020900068X
http://link.springer.com/10.1007/s10514-012-9321-0
http://link.springer.com/10.1007/s10514-012-9321-0
https://linkinghub.elsevier.com/retrieve/pii/S2212827113006823
https://linkinghub.elsevier.com/retrieve/pii/S2212827113006823
http://theory.stanford.edu/~amitp/GameProgramming/
http://theory.stanford.edu/~amitp/GameProgramming/
http://ieeexplore.ieee.org/document/5274271/

	Abstract
	Acknowledgement
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Related work
	Outline

	Theory
	Manhattan, diagonal and Euclidean distance
	Informed search algorithms
	Greedy best-first search
	A* search
	Weighted A*

	OctoMap

	Implementation
	Neighbour finding
	Search algorithm
	Heuristic calculation
	Collision detection

	Simulations and Results
	Simulation environment
	Reduction of heuristic admissibility
	Simulations with 300 meter resolution
	Simulations with 100 meter resolution
	Simulations with 50 meter resolution
	Simulations with 25 meter resolution

	Discussion
	Search behaviour for optimal results
	Search behaviour when allowing sub-optimality
	Using OctoMap as a terrain model

	Further Work
	Implementing a UAV model
	Alternative environment models

	Conclusion
	Listings
	Planner
	Diagonal Distance
	Euclidean Distance
	Get Neighbour Keys
	PointNode
	Collision Detection

	References

