
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Bendik Stuevold Eger

Trajectory Planning for Fixed-wing
Unmanned Aerial Vehicles in Real World
Terrain Data

TTK4900

Master’s thesis in Cybernetics and Robotics

Supervisor: Lars Struen Imsland

January 2020

Bendik Stuevold Eger

Trajectory Planning for Fixed-wing
Unmanned Aerial Vehicles in Real
World Terrain Data

TTK4900

Master’s thesis in Cybernetics and Robotics
Supervisor: Lars Struen Imsland
January 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

To my friends and family

Summary

This thesis presents an implementation of a system capable of planning airplane-like tra-
jectories in real world terrain data intended for transmission mast inspection via fixed-wing
unmanned aerial vehicles (UAV). A contribution made to the Open Motion Planning Li-
brary embedding Dubins airplane model as a state space class is also presented. This
class serves as a local planning method in a sample-based planning context to give effi-
cient closed-form solutions to the boundary value problem connecting UAV configuration
pairs. The system uses the Flexible Collision Library combined with the OctoMap frame-
work to model three different scenarios. The results of several simulations, using different
planning algorithms, in all scenarios are presented. These simulations aim to find a good
choice of planning algorithm for the implemented system. The results indicate that the
Informed RRT* algorithm is a good choice when planning in the presented environments.

Sammendrag

Denne oppgaven presenterer en implementasjon av en system i stand til å planlegge fly-
lignende baner i realistisk terreng data ment for inspeksjon av radiomaster og strømnettverk
via fixed wing-drone. Et bidrag til rammeverket Open Motion Planning Library som im-
plemeterer Dubins flymodell som en state space-klasse er også presentert. Denne klassen
fungerer som en lokal planlegging metode i kontekst av sample-basert planlegging for å gi
en effektiv analytisk løsning til randverdiproblemet som kobler sammen et konfigurasjoner
for dronen. Systemet bruker rammeverkene Flexible Collision Library og OctoMap til å
modellere tre ulike scenarioer. Resultater fra ulike simuleringer, med ulike planleggings-
algoritmer, i alle scenarioene er presentert.Disse simuleringene har som mål å finne et godt
valg av planleggings-algoritme for det implementerte systemet. Resultatene indikerer at
Informed RRT*-algoritmen er et godt valg for å planlegge i de presenterte miljøene.

i

Preface

The work presented in this thesis, and the thesis itself, collectively make the submission
to my master thesis and final work regarding my masters degree at the Norwegian Univer-
sity of Science and Technology (NTNU). The topic of the project was suggested by the
Norwegian robotics company KVS Technologies, but the work presented in this thesis has
been performed by me independently. I am grateful for the encouraging conversations I
have had with both my NTNU supervisor, Lars Struen Imsland, and my contact at KVS,
Helge-André Langåker.

ii

Table of Contents

Summary i

Preface ii

Table of Contents iv

1 Introduction 1
1.1 Outline . 2

2 Background Theory 3
2.1 The piano mover’s problem . 3
2.2 Motion planning with differential constrains 4
2.3 Sample-based motion planning . 6
2.4 Local planning methods . 6

2.4.1 Geometric planning . 7
2.4.2 Control-based planning . 7
2.4.3 Closed form optimal paths . 7

2.5 Planning algorithms . 11
2.6 Software frameworks . 13

3 System Implementation 17
3.1 Implementing the UAV dynamics . 18
3.2 Collision detection module . 19
3.3 Planner implementation . 19

4 Simulations and Results 23
4.1 Simulation environments . 24
4.2 Issues using bidirectional and roadmap planners 28
4.3 Simulations without no-fly zones . 29
4.4 Simulations with no-fly zones . 36
4.5 Simulations in a large scale environment 44

iii

5 Discussion 47
5.1 Further work . 48

6 Conclusion 51

Bibliography 53

Appendices 55

A 57
A.1 Reading boxplots . 57
A.2 Code snippets . 57

iv

Chapter 1
Introduction

Homo Sapiens – wise man – a name asserting the importance of our intelligence. Human’s
ability to think rational and reasonable is a trait we seek to recreate through the field of
artificial intelligence. We have a unique ability to make complex decisions in a manner
that seems almost trivial. E.g. we recognize faces and sounds when we interact with other
people, we know where to place our feet to maintain balance while running and we plan
how to spend our time days (if not months) in advance. For a machine to solve the same
tasks each problem must be decomposed and translated to a logical form understandable
for a computer. In the field of navigation and path planning, e.g. for an autonomous car,
this involves sensing and comprehending the surrounding environment, understanding the
dynamic restrictions of the car and being able to make the right decisions to bring the car
to its destination is a safe manner.

The work presented in this thesis relates to these subjects, not through navigation of
an autonomous car, but through path planning for fixed-wing unmanned aerial vehicles
(UAVs). UAVs are widely used in today’s world to perform tasks deemed too tedious or
dangerous for humans to perform. This might be inspection of remotely located equipment
such as transmission masts or grid towers, emergency aid deliveries in disaster struck
areas or the more macabre scenario of military ”defense” systems – the latter being least
motivational topic.

The project summarized in this thesis aim to contribute to a solution for automating
long range trajectory planning for fixed-wing UAVs to perform inspection of remote trans-
mission masts. The work is a spiritual successor of a previous project by Eger (2019).
The previous project evaluated how the choice of heuristic function affected the use of a
weighted A* algorithm to plan optimal paths in a grid like terrain representation. This
project will rely on sample-based path planning to avoid explicitly modeling the environ-
ment all together. Path optimality will instead be implemented through using algorithms
proven to be asymptotically optimal, meaning a resulting path will converge towards a cost
minimum as the algorithm is given more iterations.

This thesis will present an implemented of a path planning system based on the Open
Motion Planning Library (OMPL) (Şucan et al., 2012). OMPL is a robotic motion plan-

1

ning framework consisting of state-of-the-art sample-based planning methods. To build a
planner capable of finding trajectories feasible for a fixed wing UAV a contribution inte-
grating the Dubins airplane system into the base version of OMPL has been made. This is
inspired by a similar work presented in a master thesis by Schneider (2016).

An outline for this project was developed in collaboration with the Norwegian robotics
company KVS Technologies, and the list of requirements formulated for such a planning
system is given below.

• The planner should take into account the system dynamics of the UAV and find a
feasible path considering these dynamics.

• It should find an efficient path through the environment.

• The system should plan a trajectory through real wold terrain data.

• The planner should take into consideration eventual no-fly zones.

• The planner should maintain a safe volume around the UAV keeping a minimal
distance to any terrain or no-fly zones.

• The planner should include several checkpoints in the trajectory. The checkpoints
should be given as an ordered list of poses (coordinate and heading).

1.1 Outline
The remainder of the thesis is divided into the follow parts:

• Theory: Introduces the theoretical background and topics used throughout the rest
of this thesis.

• System implementation: Presents the implemented system.

• Results and simulations: Presents what simulations were run to test the imple-
mented system and determine what parameters are best suited for said system.

• Discussion: Discusses the results presented in the chapter prior. Also briefly men-
tions what topics should be of interest with regards to further work.

• Conclusion: Concludes the thesis.

2

Chapter 2
Background Theory

The following chapter will introduce the theoretical background used throughout this the-
sis. The book by LaValle (2006) is used as a main source for these topics, as well as the
inspiration for most of the figures presented in this chapter.

The chapter will start off by introducing several topics within the field of motion plan-
ning needed to understand the implemented system. This includes:

• Planning with and without regarding the constraints sat by a dynamic system.

• Sample-based motion planning.

• Local planning methods and how this relates to Dubins system for a car and airplane.

• An introduction of several asymptotically optimal planning algorithms.

Lastly the chapter will briefly introduce the software frameworks used to implement
the planning system.

2.1 The piano mover’s problem
This section will give a formal definition of the motion planning problem not including dif-
ferential constraints given by a dynamic system. This definition only includes constraints
sat by geometric and kinematic restrictions. This formulation is called the piano mover’s
problem.

First, lets define the world W = R3 (can also be R2). The world generally contains
two kinds of entities:

• Obstacles: Portions of the world that are permanently occupied. For example the
walls of a building or terrain in nature.

• Robots: Bodies that are modeled geometrically and are controllable via a motion
plan.

3

Figure 2.1 The basic motion planning problem is illustrated in this very simple conceptu-
alization of C-spaces. The task is to find a path from qI to qG within Cfree. The content
of the entire ellipse represents C = Cfree ∩ Cobs.

Cobs

Cobs

Cobs

Cfree

qI

qG

Let the obstacle regionO denote the set of all points located within obstacles in the world,
O ⊂ W . Furthermore, let the geometry of a rigid body robot be defined by A ⊂ W . Let
the state space, or configuration space as used by LaValle (2006), C define the set of rigid
body transformations mapping the robot geometry, A, intoW via a function h(q) : A →
W , where q ∈ C defines a locational state called configuration of A.

The set of configurations where the robot geometry intersects with the obstacle region
is defined as:

Cobs = {q ∈ C|A(q) ∩ O 6= ∅} .

The leftover set of configurations is called the free space and is defined as:

Cfree = C \ Cobs.

Given an initial configuration, qI ∈ Cfree, and a goal configuration, qG ∈ Cfree, this is
the set of configurations a motion planning algorithm must traverse to solve the motion
planning problem. An illustration of the is given in Figure 2.1.

2.2 Motion planning with differential constrains
While solving the piano mover’s problem is sufficient for finding a path, in some cases it
puts a lot of responsibility in the robot control system’s ability to follow this path. There is
no consideration taken to account for the robots dynamics and the differential constrains
of the system. In the case of a fixed wing UAV this can lead to problems, especially if
the path is planned in low altitude and penetrating terrain. A motion planner not taking

4

into consideration a minimum turning radius and maximum climb angle might plan a path
unfeasible to navigate by the UAV’s autopilot.

This calls for an expansion of the planning problem’s formulation to take account for
the dynamics of the system. The following is a problem formulation given by LaValle
(2006):

Formulation 2.1: Motion planning with differential constrains

1. A worldW , a robot A an obstacle region O and a configuration space C, which are
defined the same as for the piano mover’s problem.

2. An unbounded time interval T = [0,∞).

3. A smooth manifold X , called the state space, which may be X = C or it may be
a phase space derived from C if dynamics are considered. Let κ : X → C denote
a function that returns the configuration q ∈ C associated with x ∈ X . Hence,
q = κ(x).

4. An obstacle region Xobs is defined for the state space. If X = C then Xobs = Cobs.
The notation Xfree = X \Xobs indicates the states that avoid collision and satisfy
any additional global constrains.

5. For each state x ∈ X , a bounded action space U(x) ⊆ Rm ∪ xT , which includes
the termination action uT and m is some fixed integer called the number of action
variables. Let U denote the union of U(x) over all x ∈ X .

6. A system is specified by ẋ = f(x, u), defined for every x ∈ X and u ∈ U .

7. A state xI ∈ Xfree is designated as the initial state.

8. A set XG ⊂ Xfree is designated as the goal region.

9. A complete algorithm must compute an action trajectory ũ : T → U , for which the
state trajectory x̃ satisfies: 1) x(0) = xI , and 2) there exists some t > 0 for which
u(t) = uT and x(t) ∈ XG.

This formulation can be combined with an optimization objective of the form

L(x̃tF , ũtF) =

∫ tF

0

l(x(t), u(t))dt+ lF (x(tF)), (2.1)

where x̃tF is the state trajectory, ũtF is the action trajectory, tF is the time at which
the termination action is applied, l(x, u) is the cost of a specific state x and input u and
lF (x(tF)) is the terminal cost.

Formulation 2.1 can be interpreted as a boundary value problem (BVP) where the start
state and goal region define the boundary conditions. The objective is to find a solution
trajectory within the obstacle-free configuration space Cfree, satisfying the differential
constrains.

5

2.3 Sample-based motion planning
One major challenge when solving a motion planning problem is representing Cobs. Sample-
based planning is a motion planning philosophy where one avoids explicitly modelling
Cobs by instead probing C based on a sampling scheme and checking if the sampled con-
figuration and robot geometry collides with the obstacle region, O. This actually avoids
requiring a discretization of the configuration space all together. The collision check can
be done by a separate module and can be implemented as a black box.

A general framework for a sample-based planning algorithm is formulated by LaValle
(2006) in the following way:

Formulation 2.2: Sample-based planning algorithm

1. Initialization: Let G(V,E) represent an undirected search graph, for which V con-
tains at least one vertex and E contains no edges. Typically, V contains qI , qG or
both.

2. Vertex selection method: Choose a vertex qcurr ∈ V for expansion.

3. Local Planning Method: For some qnew ∈ Cfree that may or may not be repre-
sented by a vertex in V , attempt to construct a path τs : [0, 1] → Cfree such that
τ(0) = qcurr and τ(1) = qnew. Check to ensure τs does not cause a collision. If it
fails to produce a collision-free path segment, then return to step 2.

4. Insert an Edge in the Graph: Insert τs into E, as an edge from qcurr to qnew. If
qnew is not already in V , then insert it.

5. Check for a Solution: Determine whether G encodes a solution path.

6. Return to step 2: Iterate unless a solution has been found of some termination
condition is satisfied, in which the algorithm reports failure.

A contrasting motion planning philosophy worth mentioning is combinatorial motion
planning. These motion planning algorithms revolve around explicitly representing the
planners input, such as the world, W , and the obstacle region, O, usually in a roadmap
or grid-like structure. These algorithms are generally harder to implement and is very
dependent on the application, but when done correctly they can be effective and offer
completeness. A sampling-based algorithm, on the other hand, can only give probabilistic
completeness. This means the probability that a sample-based algorithm will produce
an answer approaches 1 as more time is spend, but they can never determine if no path
actually exists. Whereas a combinatorial algorithm will yield a definite answer if no path
exists.

2.4 Local planning methods
Local planning methods (LMP) refer to the planning method used to connect configuration-
vertices when building a search tree, as used in step 3 in formulation 2.2. LaValle (2006)
mentions two different local planning methods: geometric and control-based planning.

6

2.4.1 Geometric planning

Geometric planning accounts for the geometric and kinematic constraints of the robot, A,
and the obstacle region,O. This can be used to solve the piano mover’s problem described
in the beginning of this chapter. Edges in the search tree are typically modeled as straight
lines, but can be represented by any motion primitive, as we will see later.

2.4.2 Control-based planning

Control-based planning solves the problem given in problem formulation 2.1. This method
creates edges by solving a BVP using a nearest neighbour node in the search tree and the
sampled node as boundary conditions. Efficient BVP solvers are however not designed for
handling global constraints such as obstacle regions. So when using a control-based local
planning method a BVP is solved with no regard of O. The solution path is then validated
by a collision check module before adding it to G.

2.4.3 Closed form optimal paths

The suggested approach for solving the path planning problem presented up until now is
to use a sample-based planning method to expand a search graph where the vertices are
viable robot configurations within the world. To model the obstacle region, O, a collision
detection module is used. A local planning method is used to connect vertices. Once a path
is found connecting two configurations, configurations along this path is also checked for
collision before adding it as an edge connecting the vertices.

The local planning methods mentioned in the previous section are geometric- and
control-based. Control-based LPMs are capable of finding paths satisfying the differential
constraints of a dynamic system. This is desirable when planning paths for fixed wing
aerial vehicles as the system dynamics can’t be ignored trivially, i.e. in the case of sharp
turn angles or straight vertical climbs.

A control-based LPM can find a solution path by representing the path planning prob-
lem as a BVM and solving it. This is however very computationally expensive compared
to its geometric counterpart, especially when combined with 2.1 to find an optimal trajec-
tory. A better solution would be to geometrically model an optimal path connecting two
robot configurations. The following section will present methods for doing so.

Dubins curves

LaValle (2006) presents several methods of finding shortest paths between configuration
pairs for wheeled vehicles. One of these methods is called Dubins curves or the Dubins
car, where optimal paths for a simple car model can be found. Chitsaz and LaValle (2007)
expands this model further to include all dimensions in 3D, and thus gives the possibility
to find optimal paths for a simple airplane model.

7

Symbol Steering: u
S 0
L 1
R -1

Table 2.1: The three motion primitives from which all optimal paths for the Dubins car can be
constructed.

Dubins car

Given a model of a simple car with constant unit velocity, defined by

ẋ = cos θ

ẏ = sin θ

θ̇ = u,

(2.2)

where the u is the cars turning rate chosen from the interval [− tanφmax, tanφmax] and
φmax is the maximum turn angle of the car, it has been shown by Dubins (1957) that
the shortest path between any two configurations of this system can be expressed as a
combination of no more that three motion primitives. Each of these primitives can be
applied by a constant action over a time interval. The only actions that are needed to
traverse the shortest path are u ∈ {−1, 0, 1}. Each primitive is associated with a symbol:
S, L and R. The primitives and their associated symbols can be seen in table 2.1. The S
primitive drives the car straight ahead. The L and R primitives turn the car as sharply as
possible to left and right, respectively.

Possible shortest paths can then be characterized as a sequence of these symbols that
corresponds to the order in which the primitives are applied. Such a sequence is called a
word. Dubins showed that only six words are possibly optimal:

{LRL, RLR, LSL, RSR, LSR, RSL} (2.3)

To be more precise the duration of each of the primitives can also be specified. For L
and R a subscript can denote the accumulated rotation angle during the application of the
primitive. For S a subscript can denote the total distance traveled. Using these subscripts,
the Dubins curves can be more precisly characterized as:

{LαRβLγ , RαLβRγ , LαSdLγ , RαSdRγ , LαSdRγ , RαSdLγ}. (2.4)

An illustration of two such paths can be seen in figure 2.2.
To use Dubins curves as an LPM two questions must be answered effieciently:

1. Which of the six words in 2.4 gives the shortest path between qI and qG?

2. What are the values of the subscripts α, γ, β and d?

A naive approach would be to find the Dubin curves for each word and select the shortest
one. However, Shkel and Lumelsky (2001) propose a more method to classify the set of
Dubins paths for two configurations based on the distance between them and their heading
angle. Methods for finding the subscripts are also given by Shkel and Lumelsky (2001).

8

Figure 2.2 Example showing two Dubin car paths and the word of each trajectory. The
words of each curve are RSL and RLR, shown inW = R2

qI

Rα

Lγ

qG

α

γ

d

qI

Rα

Lβ

Rγ

qG

α

β

γ

Dubins airplane

The Dubins airplane extends the Dubins car model into four dimensions by including a
Z-axis. The system in 2.2 can then be expanded to:

ẋ = cos θ

ẏ = sin θ

ż = uz

θ̇ = uθ,

(2.5)

where x, y and z is the airplanes position in euclidean space and θ is the orientation
angle in the xy-plane with regards to the x-axis. The rate of which the plane can climb

9

or sink is given by uz ∈ [−uz,max, uz,max]. The yaw turning rate is given by uθ ∈
[−uθ,max, uθ,max].

In many cases a closed form solution exists for finding an optimal path between con-
figurations of the Dubins airplane, as shown by Chitsaz and LaValle (2007). When this is
the case the problem can be reduced to finding the Dubins car path between projections of
the configurations in the xy-plane. To explain this further the problem should be split into
three cases. Two of which always will yield an optimal path through finding the projected
Dubins car path.

Let qI denote the initial configuration for the Dubins airplane system. Similarly let qG
denote the goal configuration. For simplicity the following cases will be explained in a
scenario where the airplane needs to ascend to reach the goal configuration, but all cases
can be inverted to where the airplane must descend. The projection of these configuration
into the xy-plane, thus becoming configurations for the Dubins car, will be denoted with a
subscript: qI,car and qG,car. The path connecting the will be denoted as pcar.

Low altitude Let the airplane fly directly over the projected Dubins car path connecting
qI,car and qG,car with a maximum climb rate uz = uz,max. If the altitude of the airplane’s
final configuration is higher than the altitude of qG, or at the same height as qG, the path
is in the case of low altitude. An example of such a path can be seen in Figure 2.3.

The optimal Dubins airplane path can then be found by flying directly over the pro-
jected Dubins car path, pcar, with an adequate climb rate

uz =
zG − zI

pcar.length
.

High altitude Let the airplane fly directly over the projected Dubins car path connecting
qI,car and qG,car with a maximum climb rate uz = uz,max. Afterwards the airplane flies
in a helix of 360◦ with a minimal turning radius rmin while maintaining a maximum climb
rate. If the altitude of the airplanes final configuration is beneath, or at the same height, as
the altitude of qG the path is in the case of high altitude. An example of such a path can
be seen in Figure 2.3.

The optimal Dubins airplane path can then be found by flying directly over the pro-
jected Dubins car path, pcar, with an maximum climb rate uz = uz,max. Followed by a
helix of n ∗ 360◦ with adequate turning radius

r =
|zG − zI | − pcar.length ∗ uz,max

2 ∗ π ∗ n ∗ uz,max
≥ rmin.

Where rmin is the minimum turn radius of the airplane and n is the maximum number of
helices at where the airplanes altitude is still beneath or equal to the altitude of qG.

Medium altitude Let the airplane fly directly over the projected Dubins car path con-
necting qI,car and qG,car with a maximum climb rate uz = uz,max. Afterwards the air-
plane flies in a helix of 360◦ with a minimal turning radius while maintaining a maximum
climb rate. If the altitude of the airplanes final configuration now is above as the altitude
of qG the path is in the case of Medium altitude.

This case can further be split into two categories:

10

Figure 2.3 Examples of Dubins airplane paths showing a high and low type path.

-100

-50

	0

	50

	100

-100-50	0	50	100	0

	10

	20

	30

	40

	50

	60

(a) Example of a high altitude Dubins
airplane path.

-100

-50

	0

	50

	100
-100 -50 	0 	50 	100

(b) Projection in the xy-plane of the
high altitude path shown in 2.3a.

-100
-50

	0
	50

	100

-100
-50

	0

	50
	100	0

	2

	4

	6

	8

	10

	12

	14

(c) Example of a low altitude Dubins
airplane path.

-100

-50

	0

	50

	100
-100 -50 	0 	50 	100

(d) Projection in the xy-plane of the low
altitude path shown in 2.3c

1. If there exists a projected Dubins car path pcar from which the airplane can fly above
with a maximum climb rate and reach qG this trajectory will be optimal. pcar does
not need to be an optimal path for the Dubins car, i.e. it can consist of curves with a
turn radius greater than rmin.

2. If there does not exist such a path for the Dubins car the optimal trajectory for the
airplane will consist of straight lines and turns and helices with minimal turning
radii. The climb rate will not be saturated, |uz| 6= uz,max.

2.5 Planning algorithms
In contrast to the local planning methods mentioned in the previous section the term plan-
ning algorithm is used when addressing the algorithm building the search graph for a
sample-based planner. This section will briefly mention the planning algorithms relevant
for this thesis. The original publication for each algorithm will be listed, so for more
information please refer to these.

11

All the algorithms presented are used for geometric planning with a cost optimization
goal. These algorithms can be split into two classes: expanding tree algorithms and road
map algorithms. Expanding tree algorithms work by growing a tree of states connected by
valid motions. These planning algorithms differ in the heuristic they use to control where
and how the tree is expanded. Some algorithms grow two trees: one from the start and one
from the goal. Road map algorithms initially sample states and build a road map of the
entire environment that is used for queries to find a path connecting a new configuration.

Informed RRT*

The Informed RRT* algorithm is an optimized extension of the RRT* algorithm. Here
RRT stands for rapid-expanding random tree. The original RRT* algorithm provides
asymptotically optimal paths through expanding a search tree and always finding the path
with minimal cost whenever a new vertex is added to the tree. In doing so it also finds an
asymptotically optimal path from the initial state to every vertex in the planning domain,
this behavior is inefficient.

Informed RRT* adds to the original implementation by once a path is found connecting
the initial state with the goal state it only samples states in an elliptical distribution around
the this path. If a better path is found this ellipse is shrunk to narrow the sampling domain.

For more informati on both the RRT* and the Informed RRT* planning algorithms
read the original paperes by Karaman and Frazzoli (2011) and Gammell et al. (2014),
respectively.

FMT*

FMT* is an asymptotically-optimal sampling-based motion planning algorithm, which is
guaranteed to converge to a shortest path solution. The algorithm is specifically aimed
at solving complex motion planning problems in high-dimensional configuration spaces
where obstacles are frequent. The FMT* algorithm essentially performs a lazy dynamic
programming recursion on a set of probabilistically-drawn samples to grow a tree of paths,
which moves steadily outward in cost-to-come space.

For more information please refer to the original publication by by Janson et al. (2015).

BIT*

Batch Informed Trees is a planning algorithm based on unifying graph- and sample-based
planning techniques. The following is a informal explanation given in the original paper
by Gammell et al. (2015).

BIT* works as follows: An initial random geometric graph (RGG) with implicit edges
is defined by uniformly distributed random samples from the free space and the start and
goal. An explicit tree is then built outwards from the start towards the goal by a heuristic
search. This tree includes only collision-free edges and its construction stops when a
solution is found or it can no longer be expanded. This concludes a batch.

To start a new batch, a denser implicit RGG is constructed by adding more samples. If
a solution has been found, these samples are limited to the subproblem that could contain
a better solution (e.g., an ellipse for path length). The tree is then updated using search

12

Figure 2.4 An illustration taken from the publication by Gammell et al. (2015) illustrating
the behavior of the RRT*, FMT*, Informed RRT* and BIT* algorithms.
c© 2015, IEEE

techniques that reuse existing information. As before, the construction of the tree stops
when the solution cannot be improved or when there are no more collision-free edges to
traverse. The process continues with new batches as time allows.

Figure 2.4 shows a comparison of how the RRT*, FMT* Informed RRT* and BIT*
algorithms build their search graph and sample configurations.

BFMT*

Bi-directional FMT* is an expansion of the original FMT* algorithm including bi-directional
search, expanding one tree from the initial configuration and one tree from the goal. More
info can be found in the original paper by Starek et al. (2015).

PRM*

PRM* is an asymptotically optimal version of the Probabilistic Roadmap (PRM) algo-
rithm. Kavraki et al. (1996) describes PRM in general terms as an algorithm split into two
phases: a learning phase and query phase. In the learning phase the algorithm constructs
a roadmap of the world by randomly sampling configurations and connecting them with a
local planning method. In the querying phase the algorithm tries to connect the initial and
goal configurations to this roadmap and searches for a connecting path.

The RPM* algorithm expands the original version to grow the roadmap in a way that
converges to the optimal solution. More information on this algorithm can be found in the
paper by Karaman and Frazzoli (2011).

2.6 Software frameworks

This section will serve as a brief introduction to the software frameworks used in the
project. Each framework has a comprehensive online documentation and an associated
paper. Please refer to these for more information.

13

Open Motion Planning Library

The Open Motion Planning Library (OMPL) is the main framework used in the project
behind this thesis. It provides an abstract representation for all core concepts in motion
planning. Such as:

• The configuration space, implemented through classes called state spaces.

• Collision detection is implemented through state validity checking callback.

• State-of-the-art sampling-based planning algorithms capable of both geometric and
control-based planning. It embeds all the planning algorithms mentioned in Section
2.5 and many more.

This section will not serve the purpose of being an OMPL tutorial, for this please
refer to their website (Şucan et al., 2012), but some core concepts should be mentioned.
The OMPL framework includes a helper class, called SimpleSetup, for both geometric
and control-based planning. Through this class one can access all necessary parts of the
framework with minimal setup.

For geometric planning it is required to set what state space to use for planning. The
library already includes state spaces embedding R2, R3, SE(2), SE(3) and much more.
It even includes a state space embedding the Dubins car. For control-based planning an
action space must also be set, along with a method describing the ODE of a system.

Once the state space is set a start and goal state must be given. It is also necessary
to implement a method for state validation checking. This is implemented as a callback
function used by the planning algorithm to check for state validity and collision. OMPL
itself does not include any code related to collision checking. This is a deliberate choice
by the developers so that OMPL is not tied to any particular framework dependency.

Flexible Collision Library

The Flexible Collision Library (FCL) is a collision and proximity detection library that
integrate several techniques for fast and accurate collision and proximity computation. To
read more about this library see the original publication by Pan et al. (2012) or see their
GitHub.

The framework gives a high level abstraction layer to create collision objects consist-
ing of geometric shapes, such as boxes, cylinders and spheres. The user can then apply
transformations to these shapes to position them in three dimensional space. The frame-
work also includes a class to group collision objects called collision managers. Collision
checking is done through ”colliding” the collision objects or mangers and querying for
collision points.

OctoMap

OctoMap is an integrated framework for representation of three-dimensional environ-
ments. For more information refer to the paper by Hornung et al. (2013) or their website.

The framework uses octrees to efficiently store information regarding structure and
occupancy of 3D space. An octree is a hierarchical data structure for subdivision in 3D.

14

Each node is an octree represents the space contained in a cubic volume, called a voxel.
This volume is recursively subdivided into eighth smaller voxels until a given minimum
voxel size is reached. The minimum voxel size is determined by the resolution of the
octree.

Octrees are widely used to generate 3D environments from sensor data such as LiDAR
readings or point clouds. It stores a probabilistic occupancy value in each voxel that can
be updated if new sensor data is available. This makes it possible to represent dynamic
environments and expand the environment if the sensor is mobile.

15

16

Chapter 3
System Implementation

This chapter will present how the path planner, capable of planning efficient and collision
free paths through real world terrain, is implemented. Chapter 1 introduced the following
requirements for the system:

• The planner should take into account the system dynamics of the UAV and find a
feasible path considering these dynamics.

• Should find an efficient path.

• Should plan a trajectory through real wold terrain data.

• Should take into consideration eventual no-fly zones.

• Should maintain a safe volume around the UAV keeping a minimal distance to any
terrain or no-fly zones.

• Should include several checkpoints in the trajectory. The checkpoints should be
given as an ordered list of poses (coordinate and heading).

Here efficiency is deemed with regard to path distance, aiming for minimal distance.
To simplify the problem the planner should not have to consider wind conditions and

can use a uniform movement cost throughout the world. The planner should also only be
concerned with finding a feasible trajectory and not calculate any control plan for navigat-
ing said trajectory.

To build such a system two software implementations are made. Firstly, a contribution
is made to the Open Motion Planning Library (OMPL) implementing the Dubins airplane
model local planning method. This makes it possible to use the sample-based planning
framework included in OMPL to plan paths in three dimensional space adhering the dy-
namics of a fixed wing UAV. Secondly, a path planner system is implemented using this
extended version of the OMPL framework. The planner is implemented as a Robot Oper-
ating System (ROS) node. All software implemented regarding OMPL and the planning
system is written in C++.

17

The following chapter will explain how the contribution to the OMPL-framework is
implemented, and also elaborate on the chosen method to represent terrain, do collision
detection and avoid any eventual no-fly zones. Lastly, the chapter will explain how all
this is joined together to create the implemented planning system. The choice of planning
algorithm will be covered through experiments in Chapter 4.

3.1 Implementing the UAV dynamics
For the planner to generate paths feasible for a fixed-wing UAV to maneuver, the contribu-
tion to the OMPL-framework embeds the system given in Equation 2.5. This system rep-
resents the dynamics of a real world airplane well enough to find suitable trajectories given
a reasonable choice of bounding climb and turn rates. Another advantage to this system
is that there exists an almost optimal closed-form solution to the boundary value problem
connecting configuration pairs. This closed-form solution to the BVP is implemented as a
local planning method through two new state space classes: SimpleSE3StateSpace
and DubinsAirplaneStateSpace.

SimpleSE3StateSpace embeds configurations consisting of coordinates along
the x-, y- and z-axes, combined with rotation about the z-axis relative to the x-axis, de-
noted as θ ∈ [−π, π). This state space is implemented similarly to the class SE2State-
Space already included in the base version of OMPL.

DubinsAirplaneStateSpace is implemented similarly to OMPL’s own Du-
binStateSpace which embeds the Dubins car system, but where the two-dimensional
car system inherits its configuration space from SE2StateSpace, the implemented air-
plane state space inherits from SimpleSE3StateSpace, expanding it to three dimen-
sions. Some of the member functions of DubinStateSpace are also extended to ac-
count for the added dimension. Naturally this includes the methods used to generate the
closed from solution path for the Dubins airplane path (how this is implemented can be
seen in Algorithm 1), but also methods to calculate path length and methods for inter-
polating along the path. The airplane state space is initialized with a bounding maximal
climb/sink angle and a minimum turn radius. These values are related to the bounding
climb/sink and turn rate in Equation 2.5 through:

uz,max = tan(γmax) (3.1)

uθ,max =
1

rmin
, (3.2)

where γmax is the bounding climb/sink angle and rmin is the minimum turn radius. The
paths illustrated in Figure 2.3 are found using this implementation of Dubins airplane state
space.

As mentioned in Section 2.4.3 an optimal path for the Dubins airplane can be found
through a closed-form expression in the cases of a low and high altitude path. The im-
plemented methods for finding paths in these cases can be seen in Algorithm 2 and 3,
respectively. In the case of a medium altitude path a choice is made to use a bounded
sub-optimal solution. The solution is to create a path the way its described in Section 2.4.3
(flying over the Dubins car path connecting the projected configuration pairs and flying

18

in a helix at the end), but instead of using a saturated climb rate an adequate climb rate
is chosen. This implementation can be seen in Algorithm 4 and is inspired by Schneider
(2016) whom solved the case of medium altitude paths in a similar manner. Schneider
(2016) showed through experiments that the sub-optimal path is bounded by:

pathsub.length− pathopt.length <
2πrmin

cos(γmax)
,

and claims this to be a more computationally efficient method than the one presented by
McLain et al. (2014), among other advantages.

The method used to find the Dubins car path, in Algorithm 1, is identical to the method
used in the original DubinStateSpace, which is based on Shkel and Lumelsky (2001).

3.2 Collision detection module

With a local planning method implemented as described is the previous section the next
step in developing a sample-based motion planning system is to create a collision detec-
tion module. As explained in Section 2.3 the purpose of such a module is to disqualify
any sampled configuration from being added to the search graph built by the planning al-
gorithm if the geometry of a robot in this configuration intersects with the obstacle region.
Considering the requirements listed in the beginning of this chapter an obvious choice was
to model the robot geometry as the safe volume around the UAV and the obstacle region
as a union of the terrain and any no-fly zones.

The terrain is modeled as an octree datatype from the OctoMap framework. Colli-
sion detection is done using the Flexible Collision Library (FCL). This library supports
OctoMap’s data types out of the box. The no-fly zones were modeled in FCL as verti-
cal cylinders, with the center of the bottom circle at a given coordinate in the xy-plane,
with a given cylinder radius and height. The obstacle region was then represented through
registering all no-fly zone cylinders and the OctoMap terrain with one of FCL’s collision
managers. Figure 3.1 visualizes an OctoMap environment with a no-fly zone cylinder.

The robot geometry is implemented in FCL as a sphere with its center given by the
x-, y- and z-coordinates of a configuration. The collision manager can then ”collide” the
sphere with its registered collision objects querying any collision points. In the existence
of any collision points the configuration is discarded and not added to the search graph.

3.3 Planner implementation

The planner system is implemented following the suggestions from OMPL online docu-
mentation and examples. It uses the ompl::geometric::SimpleSetup class with
the custom DubinsAirplaneStateSpace to allow for geometric planning while still
adhering to the dynamics of a fixed-wing UAV. The bounds of the state space are initialized
to the maximal and minimal values of the terrain Octree.

The collision detection module is implemented as described in the previous section and
set to be the SimpleSetup’s state validity checker. The setup of the collision manager

19

Figure 3.1 A illustration of an OctoMap environment combines with a no fly zone cylinder.
The arrows shown are markers for planning checkpoints.

is done initially. The OctoMap is published on a ROS topic from a octomap server -
node and the no-fly zones are stored as a list in the ROS parameter server.

A code snippet is included in Listing A.1 in Appendix A.2 showing the implementation
of both the planner system and the collision detection module.

Other parameter are also stored in the ROS parameter server, such as the ordered list
of checkpoints, the bounding turn radius and climb angle and the radius of the safe volume
sphere surrounding the UAV.

The system handles the requirement of several checkpoints in a path by managing each
pair of checkpoints as a separate planning task. It loops through all checkpoint pairs using
the same collision manager, but initializes a new state space for every iteration.

The planner is called from the command line specifying what planning algorithm to
use along with different search parameters. This can be run time to specify the time used
to plan between two checkpoints and/or a sample batch size to be used by the planning
algorithm. Once a path is found connecting all the specified checkpoints the system inter-
polates along the paths and writes the coordinates to a file. This allows for some flexibility
when choosing the size of the interpolation step, giving control over how many points
should be in a path and how often the UAVs autopilot need to update its target.

20

Algorithm 1 Algorithm for determining the type of a path connecting a configuration pair
in the Dubins airplane state space. The function DUBINCARPATH returns the optimal path
in the xy-plane connection the projected configurations.

function DUBINSAIRPLANEPATH(qI , qG)
dz ← qG.z − qI .z
carPath← DUBINCARPATH(qI , qG)
climbAngle← arctan2(dz, carPath.length)
if |climbAngle| ≤ climbAngleLimit then

return COMPUTELOWPATH(carPath, dz)
else

n←
⌊
|dz|/ tan(climbAngleLimit)−carPath.length

2∗π∗turnRadiusLimit

⌋
if n > 0 then

return COMPUTEHIGHPATH(carPath, dz)
else

return COMPUTEMEDIUMPATH(carPath, dz)
end if

end if
end function

Algorithm 2 Algorithm showing how the low altitude paths are computed. The algorithm
DUBINSAIRPLANEPATH returns an instance of a path consisting of a Dubins car path and
a climb angle.

function COMPUTELOWPATH(carPath, dz)
climbAngle← arctan2(dz, carPath.length)

airplanePath← DUBINSAIRPLANEPATH(carPath, climbAngle)
return airplanePath

end function

21

Algorithm 3 Algorithm showing how the high altitude paths are computed. The algorithm
DUBINSAIRPLANEPATH returns an instance of a path consisting of a Dubins car path and
a climb angle. The COPYSIGN function returns the value the first argument with the sign
of the second. The HELIX function returns a helix with given direction, radius r, climb
angle and n turns.

function COMPUTEHIGHPATH(carPath, dz)

climbAngle← COPYSIGN(climbAngleLimit, dz)

airplanePath← DUBINSAIRPLANEPATH(carPath, climbAngle)

n←
⌊
|dz|/ tan(climbAngleLimit)−carPath.length

2∗π∗turnRadiusLimit

⌋
r ← |dz|−carPath.length∗turnRadiusLimit∗tan(climbAngleLimit)

2∗π∗n∗tan(climbAngleLimit)

direction← carPath.lastSegmentDirection

airplanePath.helix← HELIX(direction, r, climbAngle, n)

return airplanePath
end function

Algorithm 4 This algorithm shows how the medium altitude paths are computed. The
algorithm DUBINSAIRPLANEPATH returns an instance of a path consisting of a Dubins
car path and a climb angle. The HELIX function returns a helix with given direction,
radius r, climb angle and n turns.

function COMPUTEMEDIUMPATH(carPath, dz)
climbAngle← arctan2(dz, carPath.length+ 2 ∗ π ∗ turnRadiusLimit)
airplanePath← DUBINSAIRPLANEPATH(carPath, climbAngle)
r ← turnRadiusLimit

direction← carPath.lastSegmentDirection

airplanePath.helix← HELIX(direction, r, climbAngle, 1)
return airplanePath

end function

22

Chapter 4
Simulations and Results

This chapter will present what simulations where run to evaluate the implemented sys-
tem’s performance using several of OMPL’s out-of-the-box planning algorithms. The re-
sults from these simulations will be presented and discussed in order to determine which
algorithm is best suited to be used when planning for fixed-wing UAV trajectories. While
searching for a suitable algorithm some pitfalls were also discovered regarding some of
the planning algorithm in conjunction with the implemented local planning method.

Path planning is a demanding computational task, especially when the world to plan in
is large. It became apparent while testing the implemented planner that the system mem-
ory of the computer running the simulations limited how computationally intensive each
simulations could be. For this reason the simulations were separated into two categories: a
set of less resource demanding simulations to give a statistical analysis of the systems per-
formance and a set of more thorough simulations to give a qualitative analysis of the more
optimal paths. The statistical analysis will be composed of several simulations repeated
multiple times to give a distribution of resulting path lengths. The qualitative analysis will
focus on single more resource demanding simulations, yielding paths closer to the optimal
solution.

All five planning algorithms introduced in Section 2.5 were originally tested, but only
some of them were deemed suitable to be used in the system. The main reason for this be-
ing how local paths found using DubinAirplaneStateSpace are asymmetric, mean-
ing a path from qI to qG will not always be equal to a path from qG to qI . This will be
discussed further in Section 4.2. The algorithms at issue is RPM* and BFMT*.

As stated in the requirements listed in the beginning of chapter 3 the system should
find an efficient path, where efficiency is comparable to a minimal length path. Therefore
the main criteria for evaluating the system will be path length.

The algorithms were tested with different relevant parameters:

• IRRT* and BIT* are evaluated as a function of run time.

• FMT* is evaluated as a function of number of samples initially chosen.

23

Climb angle, γmax 0.1 rad
Turn radius, rmin 300m
Saftey radius 150m

Table 4.1: The values for the initialization parameters for the DubinAirplaneStateSpace and
the saftey radius used in the simulations.

The simulations also test the systems performance in different environments. The
purpose of this is to capture the effect of introducing no-fly zones to the system, as well
as the impact of the terrain size on the system. The first two sets of simulations were
all performed in the same terrain environment, but one was without no-fly zones and one
was with. Lastly simulations were run in a larger terrain environment without any no-fly
zones. This last environment did however include a maximal height restriction to make
the simulations a bit more demanding.

Common for all simulations is the initialization parameters of the DubinAirplane-
StateSpace, the ordered list of checkpoints to be visited by the planner and the radius
of the sphere representing the safety volume around the UAV. The values used for the state
space’ parameters and the chosen safety radius can be seen in Table 4.1. The checkpoints
will be introduced in the following section.

4.1 Simulation environments

The simulation environments used in the test are based on OctoMaps generated from ter-
rain taken from the municipality of Sykkylven, located along the west coast of Norway.
The OctoMaps were generated in relation to a previous project by Eger (2019). The envi-
ronment consists of diverse terrain, with both fjords and mountains with altitudes of over
1700m. For the OctoMap used in the two first sets of simulations the area covered by
the model is roughly 50 000m × 17 000m. An elevation map of the environment can be
seen in Figure 4.1. For the OctoMap used in the large scale experiment the model covered
roughly 50 000m× 100 000m. Both environments had a voxel resolution of 50m.

As stated in the project thesis by Eger (2019) the OctoMap was generated by collect-
ing elevation data from hoydedata.no and converted into a point cloud with a given
density. The octree is then created by ray-casting from a ceiling, set to the highest z-value
in the point cloud plus 550m, down to each point in the cloud.

For the first two simulation scenarios there are six checkpoints included, their location
can be seen in Table 4.2. The distance between each pair of checkpoints can be seen in
Table 4.3. For the simulations including no-fly zones, four no-fly zones were added. Their
coordinates and radii can be seen in Table 4.4. All but one of the no-fly zones’ altitudes
reach the ceiling altitude of the OctoMap, meaning the planner could not fly over them.
Z2 is possible to fly over. An overview of the environment can be seen in Figure 4.2. Here
the no-fly zones are visualized as dark cylinsers and the checkpoints are visualized with
red arrows.

24

hoydedata.no

Checkpoint x, y, z, θ (m, rad)
C1 42500.0, 600.0, 700.0, 1.6
C2 42500.0, 14500.0, 1200.0, −3.1
C3 39000.0, 5000.0, 1100.0, 0.0
C4 20000.0, 2600.0, 750.0, −3.1
C5 17000.0, 14000.0, 750.0, −3.1
C6 1300.0, 11000.0, 600.0, 0.0

Table 4.2: Coordinate and heading orientation for each of the checkpoints used in the simulations.

Checkpoint pair Length
p1,2 13 908.99m
p2,3 10 124.72m
p3,4 19 154.18m
p4,5 11 788.13m
p5,6 15 984.76m
Total 70 960.78m

Table 4.3: Euclidean distance between each of the checkpoint pairs and the total distance linking
together all checkpoints. Terrain is ignored in this distance measure.

No-fly zone x, y, h, r (m)

Z1 28000.0, 7500.0, 5000.0, 4000.0
Z2 24000.0, 2500.0, 2000.0, 3000.0
Z3 8000.0, 13000.0, 3000.0, 4000.0
Z4 43000.0, 10000.0, 3000.0, 4000.0

Table 4.4: Radius, x- and y coordinate of all no-fly zones.

25

Figure 4.1 An elevation map of the Sykkylven environment. Height is given in meters.
The origin is located in the bottom right hand corner. The figure is taken from previous
work by Eger (2019).

y

x

26

Figure 4.2 An overview of the Sykkylven environment visualizing both checkpoints as
red arrows and no-fly zones as dark cylinders. The checkpoints are located as the tip of
the arrows and have heading in the same direction as the arrow. The origin is located in
the bottom right hand corner.

27

4.2 Issues using bidirectional and roadmap planners
As mentioned in the beginning of this chapter some pitfalls were discovered during the
simulations while using the RPM* and the BFMT* algorithms. The issue being that using
these planning algorithms combined with the implemented DubinAirplaneState-
Space would cause the paths crashing into the terrain. Figure 4.3 shows how using these
algorithms yielded invalid paths cutting through the terrain.

After researching the problem and coming across an issue post on OMPL’s Github
repository (Moll, 2016) it became apparent that it is not possible to use bidirectional or
roadmap based planners on state spaces with asymmetric interpolation. This limitation
is caused by the implementation of these planners. A custom implementation for these
algorithm with an asymmetric state space might be possible, but falls outside the scope of
this thesis.

Further presentation of the simulations will therefore not include any of the results
from these algorithms.

Figure 4.3 Illustrating how using the BFMT* and RPM* planning algorithms yielded
invalid paths cutting through terrain.

(a) The illustrated path was found using the PRM* algorithm. This results in
invalid trajectories cutting through terrain.

(b) Showing how the BFMT* algorithm plans invalid trajectories cutting through
terrain.

28

4.3 Simulations without no-fly zones
To set a baseline for the system’s performance simulations were run in an environment
without any no-fly zones.

The planning algorithms included in the statistical analysis are IRRT*, BIT* and
FMT*. IRRT* was evaluated with regards to given run time. The simulations using BIT*
differed in both run time and batch size. BIT* did however not always yield a solution.
FMT* was evaluated with regards to the initial sample pool size. These results can be seen
in Figures 4.4 to 4.7. Here all planning algorithms were run in 20 simulations each. Other
than setting the mentioned parameters the algorithms used their default settings.

From these statistical results is apparent that the IRRT* algorithm yields paths with
the shortest distance. By comparing the most demanding simulations of IRRT* and FMT*
it can be seen that using the IRRT* with a 50 s run time between checkpoints yields a
distribution of shorter paths than using FMT* with a sample pool size of 5000. For the
simulations using FMT* the run time was varied, but the median total run time was ap-
proximately 700 s, giving an average run time per checkpoint of 140 s. The BIT* algorithm
did not always find a solution within the given run time. A trend can be seen in how the
sample batch size affects how many paths were found. Looking at the most demanding
simulations for the BIT* algorithm the distribution of path lengths seem to become shorter
as the batch size increases. However, using a large batch size with a small run time is not
convenient when using the BIT* algorithm.

To approximate the path length of an optimal path in this scenario some more resource
intensive simulations were run. This was done by running single simulations using the
IRRT* and BIT* algorithms with a run time of 300 s between each checkpoint. BIT*
was tested with batch sizes of 100, 300 and 1000. The best result was found using 100.
This might be a coincidence given the previously mentioned trend in a slightly shorter path
found with a bigger batch size for simulations with a run time of 50 s. The FMT* algorithm
was run with an initial sample pool size of 15 000. This simulation lasted for a total of
2141 s, giving an average run time between checkpoints of 428.2 s. The resulting path
lengths can be seen in Table 4.5. The shortest path was found using the IRRT* algorithm.
This was however also the most memory demanding simulation. This simulation almost
used all 16 GB of the available system memory.

The distance of the path found using IRRT* for 300 s is illustrated with a horizontal
line in Figures 4.4 to 4.7. Comparing the resulting path lengths of the less demanding
simulations it is clear that the IRRT* converges asymptotically to an optimal path faster
than the other three in this given scenario.

An overview showing the shortest path from Table 4.5 alongside the median distance
paths found using IRRT* with 50 s and FMT* with 5000 samples can be seen in Figure
4.8. The behavior of the same paths at checkpoints C2, C3, C4, C5 and C6 can be seen in
in Figure 4.9.

From Figure 4.8 and 4.9 it is easy to see that the most resource demanding simulation
always chooses a more effective trajectory compared to the two less demanding simula-
tions. From the overview in figure 4.8 it is however apparent that they do choose a similar
trajectory, but the 300 s simulation minimizes the amount of turns and unnecessary helices.

29

Algorithm Path length
Informed RRT* 84 204.03m
FMT* 87 233.55m
BIT* k100 91 465.88m

Table 4.5: Resulting path lengths of three resource demanding simulations. IRRT* and BIT* where
both run with 300 s runtime between checkpoints. BIT* used a batch size of 100. FMT* was wan
with a sample pool size of 15 000, the entire simulation lasted for 2141 s for an average runtime of
428.2 s between checkpoints. All simulations were run in the small scale Sykkylven environment
without no-fly zones.

Figure 4.4 Boxplot showing the resulting distributions of path lengths for the simulations
using the IRRT* algorithm in the small scale Sykkylven environment without no-fly zones.
20 simulations were run at each run time. The horizontal line at 84 204m marks the
shortest path found in this simulation setup, from Table 4.5. Read A.1 for how to interpret
the boxplot.

85000m

90000m

95000m

100000m

105000m

1s 2s 3s 5s 7s 10s 15s 20s 30s 50s

Informed RRT*

••

•••

•

30

Figure 4.5 Boxplots showing the result for the FMT* planning algorithm, illustrating the
distribution of path lengths and run times as function of number of samples chosen initially.
The simulations were run in the small scale Sykkylven environment without no-fly zones.
The algorithm ran for 20 simulations at each sample size. The horizontal line at 84 204m
marks the shortest path found in this simulation setup, from Table 4.5. Read A.1 for how
to interpret the boxplot.

85000m

90000m

95000m

100000m

105000m

110000m

115000m

500 1000 2000 3000 5000
Number of samples

FMT*

•

•
•

•

(a) Simulation results using FMT* in an environment without no-fly zones.
Comparing the resulting path length to number of samples. The horizontal
line at 84 204m marks the shortest path found in this simulation setup, from
Table 4.5.

0s
100s
200s
300s
400s
500s
600s
700s
800s

500 1000 2000 3000 5000
Number of samples

FMT*

••••

(b) Simulation results using FMT* in an environment without no-fly zones.
Comparing the run time to the number of samples.

31

Figure 4.6 The boxplots show the distributions of path lengths at different batch size values
and run times using the BIT* algorithm. The bar plot shows the amount of simulations
resulting in a path at with the given parameters. The horizontal line at 84 204m marks the
shortest path found in this simulation setup, from Table 4.5. 20 simulations were run at
each run time. All simulations were run in the small scale Sykkylven environment without
no-fly zones. Read A.1 for how to interpret the boxplot.

85000m
90000m
95000m

100000m
105000m
110000m
115000m
120000m
125000m
130000m

1s 2s 3s 5s 7s 10s 15s 20s 30s 50s

BIT* k50

• •

•

(a) Distribution of path lengths for simulations
with a batch size of 50.

0
2
4
6
8
10
12
14
16
18
20

1s 2s 3s 5s 7s 10s 15s 20s 30s 50s

BIT* k50

(b) Amount of solutions found by the simula-
tions with a batch size of 50.

85000m
90000m
95000m

100000m
105000m
110000m
115000m
120000m
125000m

1s 2s 3s 5s 7s 10s 15s 20s 30s 50s

BIT* k100

•

••

(c) Distribution of path lengths for simulations
with a batch size of 100.

0
2
4
6
8
10
12
14
16
18
20

1s 2s 3s 5s 7s 10s 15s 20s 30s 50s

BIT* k100

(d) Amount of solutions found by the simula-
tions with a batch size of 100.

85000m
90000m
95000m

100000m
105000m
110000m
115000m
120000m
125000m
130000m

1s 2s 3s 5s 7s 10s 15s 20s 30s 50s

BIT* k300

•
••

(e) Distribution of path lengths for simulations
with a batch size of 300.

0
2
4
6
8
10
12
14
16
18
20

1s 2s 3s 5s 7s 10s 15s 20s 30s 50s

BIT* k300

(f) Amount of solutions found by the simula-
tions with a batch size of 300.

32

Figure 4.7 The boxplot shows the distribution of path lengths at different batch size values
and run times using the BIT* algorithm. The bar plot shows the amount of simulations
resulting in a path at with the given parameters. The horizontal line at 84 204m marks the
shortest path found in this simulation setup, from Table 4.5. 20 simulations were run at
each run time. All simulations were run in the small scale Sykkylven environment without
no-fly zones. Read A.1 for how to interpret the boxplot.

85000m

90000m

95000m

100000m

105000m

110000m

115000m

120000m

1s 2s 3s 5s 7s 10s 15s 20s 30s 50s

BIT* k500

••

•

•••

(a) Distribution of path lengths for simulations
with a batch size of 500.

0
2
4
6
8
10
12
14
16
18
20

1s 2s 3s 5s 7s 10s 15s 20s 30s 50s

BIT* k500

(b) Amount of solutions found by the simula-
tions with a batch size of 500.

85000m

90000m

95000m

100000m

105000m

110000m

115000m

120000m

1s 2s 3s 5s 7s 10s 15s 20s 30s 50s

BIT* k1000

••

•

•
•

•

(c) Distribution of path lengths for simulations
with a batch size of 1000.

0
2
4
6
8
10
12
14
16
18
20

1s 2s 3s 5s 7s 10s 15s 20s 30s 50s

BIT* k1000

(d) Amount of solutions found by the simula-
tions with a batch size of 1000.

33

Figure 4.8 Overview of three paths found in the baseline scenario: with an OctoMap res-
olution of 50m and without no-fly zones. The green path was found using the IRRT*
algorithm with a run time of 300 s, this is the shortest path found in this simulation sce-
nario. The orange path was found using the IRRT* algorithm with a run time of 50 s, this
is the median result of the simulations with this configuration. The red path was found
using the FMT* algorithm with a sample pool size of 5000, this is the median result of the
simulations with this configuration.

34

Figure 4.9 Comparisons of the behavior of three at different checkpoints. Found in the
baseline scenario with an OctoMap resolution of 50m and without no-fly zones. The green
path was found using the IRRT* algorithm with a run time of 300 s, this is the shortest path
found in this simulation scenario. The orange path was found using the IRRT* algorithm
with a run time of 50 s, this is the median result of the simulations with this configuration.
The red path was found using the FMT* algorithm with a sample pool size of 5000, this is
the median result of the simulations with this configuration.

(a) Behavior at checkpoints C2 (back) and C3 (front).

(b) Behavior between checkpoints C4 (right) and C5 (left).

(c) Behavior at checkpoints C5 (front) and C6 (back right).

35

4.4 Simulations with no-fly zones
To determine if the implemented system could handle path planning in environments in-
cluding no-fly zones simulations were run similar to the ones presented in the previous
section, but this time the no-fly zones listed in Table 4.4 were included.

The planning algorithms used in these simulations are the same as in Section 4.3, the
only difference being in the choice of batch sizes for the BIT* algorithm. For the simula-
tions using BIT* batch sizes of 50, 300 and 1000 samples were used. The distribution of
path lengths from the different algorithms can be seen in Figures 4.10 to 4.12. Similarly
to the previous section 20 simulations were run for each parameter with every algorithm.

From the statistical results we see a similar trend in performance between the algo-
rithms as in the scenario without no-fly zones. Here, of course, all paths are longer as
the no-fly zones are placed so that they obscure any straight overhead line between check-
points. Comparing simulations using IRRT* with a 50 s run time to simulations using
FMT* with a sample pool size of 5000 the former yielded a distribution centered around
a shorter path distance. The simulations using FMT* with a sample size of 5000 had a
median total run time of 750 s giving an average run time between checkpoints of roughly
150 s, triple the amount from used by IRRT*. For simulations with BIT* the distances do
not converge towards the optimum as quickly as with the IRRT* algorithm. Similarly to
the previous simulations increasing the batch size affects the amount of runs yielding a
solution, especially at lower run times.

Some more resource demanding simulation were run to approximate an optimal min-
imum path length in this environment. A simulation using the IRRT* algorithm was run
for 300 s as well as a simulation using the FMT* algorithm with a sample pool size of
10 000. The FMT* simulation lasted for a total of 1315 s, giving an average run time be-
tween checkpoints of 263 s. The BIT* algorithm was tested with different batch sizes with
run times of both 300 s and 500 s, the best result was found with a batch size equal k = 50
and a run time of 500 s. The resulting path lengths can be seen in Table 4.6. Similarly to
the previous simulations the simulation using IRRT* yielded the shortest path length. The
shortest path found through these simulations are also marked in Figures 4.10 to 4.12 with
a horizontal line.

Figures 4.13 and 4.14 show a comparison of paths found using the FMT* algorithm
with different initial sample pool sizes in the environment. Specifically, paths found using
10 000 and 7000 samples, and the median path found using 5000 samples are shown. One
noteworthy observations is how the path found using the most samples flew around no-fly
zone Z1, while the other two took a u-turn at checkpoint C2. This seemed to be a common
trend, where the more resource intensive simulations chose the path going around the no-
fly zone. Another observation is how the path found using 5000 samples traverses over
no-fly zone Z2, this was one of the few inspected paths that chose this route.

Figures 4.15 and 4.16 compare paths found using the IRRT* and BIT* algorithm. The
paths shown found by the IRRT* algorithm used run times of 300 s, 50 s and 10 s. For the
prior the shortest path is shown for the latter two the median distance paths are shown.
The paths found using the BIT* algorithm used run time 300 s and 500 s.

Contrary to to the paths found by FMT* here both the shortest and longest path found
by IRRT* flew around the first no-fly zone. This indicates the segments might be of close to
equal length, and the choice of trajectory is more dependent on the random state sampling.

36

Algorithm Path length
Informed RRT* 103 431.91m
FMT* 110 288.83m
BIT* k50 116 267.80m

Table 4.6: Shortest path lengths found by three resource demanding simulations. The simulation
using Informed RRT* ran for 300 s, the simulation using FMT* had a batch size of 10 000 and the
simulation with BIT* ran for 500 s with a sample batch size of 50 samples.

Figure 4.10 Boxplot showing the distribution of path lengths found as a result for simula-
tions using the Informed RRT* algorithm in the Sykkylven environment including no-fly
zones. 20 simulations were run at each run time. The horizontal line marks the minimum
path found in this setup from Table 4.6. See appendix A.1 for how to interpret the boxplot.

105000m

110000m

115000m

120000m

125000m

130000m

135000m

1s 2s 3s 5s 7s 10s 15s 20s 30s 50s

Informed RRT*

•

•
••

37

Figure 4.11 Boxplot showing the distribution of path lengths found and run times simula-
tions using the FMT* algorithm in the Sykkylven environment including no-fly zones. 20
simulations were run at each run time. See appendix A.1 for how to interpret the boxplot.

105000m
110000m
115000m
120000m
125000m
130000m
135000m
140000m
145000m

500 1000 2000 3000 5000
Number of samples

FMT*

•

(a) Distribution of resulting path lengths in relation to number of samples
initially chosen. The horizontal line marks the minimum path found in this
setup from Table 4.6.

0s
100s
200s
300s
400s
500s
600s
700s
800s
900s

500 1000 2000 3000 5000
Number of samples

FMT*

• ••
•

••
••

•

(b) Distribution of total run time in relation to number of samples initially
chosen.

38

Figure 4.12 Boxplot showing the distribution of path lengths and number of paths found
for simulations using the BIT* algorithm in the Sykkylven environment including no-fly
zones. 20 simulations were run at each run time. See appendix A.1 for how to interpret
the boxplot.

110000m

120000m

130000m

140000m

150000m

160000m

1s 2s 3s 5s 7s 10s 15s 20s 30s 50s

BIT* k50

•

•••

(a) Path lengths found using a batch size of 50.

0
2
4
6
8
10
12
14
16
18
20

1s 2s 3s 5s 7s 10s 15s 20s 30s 50s

BIT* k50

(b) Number of solutions found by the simula-
tions with a batch size of 50.

110000m

120000m

130000m

140000m

150000m

160000m

170000m

1s 2s 3s 5s 7s 10s 15s 20s 30s 50s

BIT* k300

•

•
•

(c) Path lengths found using a batch size of
300.

0
2
4
6
8
10
12
14
16
18
20

1s 2s 3s 5s 7s 10s 15s 20s 30s 50s

BIT* k300

(d) Number of solutions found by the simula-
tions with a batch size of 300.

105000m

110000m

115000m

120000m

125000m

130000m

135000m

1s 2s 3s 5s 7s 10s 15s 20s 30s 50s

BIT* k1000

•

•

(e) Path lengths found using a batch size of
1000.

0
2
4
6
8
10
12
14
16
18
20

1s 2s 3s 5s 7s 10s 15s 20s 30s 50s

BIT* k1000

(f) Number of solutions found by the simula-
tions with a batch size of 1000.

39

Figure 4.13 Overview of some paths found using the FMT* algorithm in the Sykkylven
environment with a resolution of 50m including no-fly zones.

(a) Both paths were found using the FMT*
algorithm. The green path used an initial
sample pool size of 10 000 while the red
path is the median path found using 5000
samples.

(b) Both paths were found using the FMT*
algorithm. The green path had an initial
sample pool size of 10 000, while the or-
ange path had 7000.

40

Figure 4.14 A comparison of two paths found using the FMT* algorithm. The green path
used an initial sample pool size of 10 000, while the red path is the median path found
using 5000 samples.

(a) The path found using more samples chose a different path around the first no-fly zone.

(b) The path found using 5000 samples chose to fly over the second no-fly zone.

41

Figure 4.15 Overview of paths found using the Informed RRT* and BIT* algorithms in
the Sykkylven environment including no fly zones.

(a) The three paths shown were all
found using the Informed RRT* algo-
rithm. The green path used a run time
of 300 s, the orange path is the median
path found with run time 50 s and the
red path is the median path found with
run time 10 s.

(b) The three paths shown were found
using the Informed RRT* and BIT*
algorithm. The green path used In-
formed RRT* with a run time of
300 s, the orange path used BIT* with
500 s and the red path used BIT* with
300 s. Both BIT* algorithms used a
batch size of 50 samples.

42

Figure 4.16 A comparison of three paths found using the Informed RRT* algorithm. The
green path used a run time of 300 s, the orange path is the median path found with run time
50 s and the red path is the median path found with run time 10 s.

(a) Both the shortest and longest path chose to fly around the first no-fly zone.

(b) The longer paths are ineffective in situations where climbing is needed, resulting in paths with
long and unnecessary helices. The shortest path uses as few turns as possible.

43

4.5 Simulations in a large scale environment
The results presented in the up until now indicates that the Informed RRT* algorithm is
the best choice of planning algorithm if the scale of the environment and distance between
goal and start configurations matches the first environment described in Section 4.1. The
following section will present simulations run in an environment of a much larger scale.
As mentioned in Section 4.1 this environment is also based on terrain from the Sykkylven
municipality, but this model is a super set of the first environment presented. This larger
environment spans an area of 50 000m × 100 000m, over 5 times the size of the smaller
environment.

Due to the scale of this environment a minor tweak had to be made to the OMPL set-
tings. The resolution at which state validity is checked had to be increased via ompl::-
base::SpaceInformation::SetValidityCheckingResolution(). Mean-
ing state validity checks will happen more often. The default value of 0.01 was changed
to 0.001. This value is specified as a fraction of the environments extent.

These simulations only included two checkpoints, a start and goal, with a Euclidean
distance of 90 077.74m between them. The environment was not augmented by any no-fly
zones, but a maximal height restriction of 700m was added. This gave the environment
a maze-like nature, where the planner could not traverse over the high terrain, but had to
find a trajectory following the open water and the fjords to reach the goal.

The planning algorithms tested in these simulations were Informed RRT* and FMT*.
Contrary to the previously presented results the FMT* algorithm came out on top. After
running 5 simulation of the Informed RRT* algorithm with a run time of 300 s none of the
results yielded a trajectory where the goal state was reached. With the FMT* algorithm,
however, 5 simulations each at sample sizes of 500, 1000, 2000, 3000 and 5000 all yielded
valid paths to the goal. This showcases the FMT* algorithm’s strength is scenarios where
collision checking is expensive and obstacles are frequent. The distribution of path lengths
and run times can be seen in Figure 4.17. Figure 4.18 and 4.19 shows the median path
found using the FMT* algorithm with an initial sample pool size of 5000 samples.

Figure 4.17 Scatter plot showing the paths lengths and run times given by simulations with
the FMT* algorithm in the large scale Sykkylven environment. Five simulations were run
at each sample pool size.

95000m

100000m

105000m

110000m

115000m

120000m

125000m

500 1000 2000 3000 5000
Number of samples

FMT*

+
+++ +

×
×
××

×

∗∗∗ ∗
∗

��� �
�

��� �
�

(a) Resulting path lengths in relation to number
of samples initially chosen.

0s

20s

40s

60s

80s

100s

120s

140s

500 1000 2000 3000 5000
Number of samples

FMT*

+++

+
+

×××
×
×

∗∗

∗

∗
∗

��� �
�

���
�
�

(b) Run times in relation to number of samples
initially chosen.

44

Figure 4.18 The median distance path found using the FMT* algorithm with a initial
sample pool size of 5000 in the large scale Sykkylven environment.

45

Figure 4.19 An overview of the median path found using the FMT* algorithm with a
sample pool size of 5000 in the large scale Sykkylven environment.

46

Chapter 5
Discussion

The following chapter will discuss the results presented in the previous chapter and reflect
upon choosing a planning algorithm for the system. Afterwards a summary of potential
areas of improvement for the implemented planner and further work will be given.

By evaluating the results from Chapter 4 it is apparent that the implemented system
meets the requirements presented in the beginning of Chapter 3. The resulting planned
trajectories obey the dynamics of the Dubins airplane model through the use of the imple-
mented DubinsAirplaneStateSpace. This model doea in turn mimics the dynam-
ics of a fixed-wing UAV. The system has the capability to plan trajectories in real world
terrain data and avoid any potential no-fly zones in this terrain. It also manages to keep a
minimal safety distance between the trajectory and any obstacle, terrain or no-fly zone, in
the environment. Through dividing the ordered list of checkpoints to be visited into sepa-
rate individual planning problems and solving them in turn the system is able to plan paths
linking together multiple target locations. Lastly, by evaluating the systems performance
with different planning algorithms an opinion can be made about which is best suited for
path efficiency.

The results presented in Sections 4.3 and 4.4 indicate that using the Informed RRT*
algorithm is a good choice when the environment is similar the one used described in
Section 4.1. However, this algorithm fell short compared to the FMT* algorithm in the
simulations using an environment of a larger scale, as shown in Section 4.5. This is not
necessarily due to the size of this environment, but rather due to the maze-like nature
caused by the maximal height restriction. This scenario showcased the strengths of the
FMT* algorithm: being efficient in environments with many obstacles and where collision
checking is expensive. In simulations without this height restriction both FMT* and the
Informed RRT* algorithm found a path simply by flying over the terrain until the goal was
reachable.

For the task of planning trajectories to be used for transmission mast and power grid
inspection the Informed RRT* algorithm would be the best choice in most situations. In
this scenario a height restriction, such as the one in Section 4.5, is unlikely. This choice
of planning algorithm is consistent with the conclusion given by Schneider (2016). The

47

different capabilities of the planning algorithms should, however, be taken into account
when designing a planing problem, and the choice of planner might vary based on specific
problems.

5.1 Further work

As mentioned in the beginning of Chapter 4 all the planning algorithms tested in the pre-
sented simulations were out-of-the-box. As the majority of the time spend working on this
project went to implementing the dynamics of a fixed-wing UAV into in the Open Motion
Planning Library there is a potential performance increase available by further tuning the
planning algorithms. Better performance could also be made possible through customiz-

Figure 5.1 How the terrain model can be cropped to encircle only a selection of terrain
relevant for path planning between two checkpoints. Each dashed ellipse represent the
relevant terrain for an individual planning problem.

48

ing the algorithms to fit the implemented DubinsAirplaneStateSpace better. One
possibility is to create a state sampling scheme that fits the system dynamics, as seen in
the project presented by Schneider (2016).

Furthermore, the implemented system proved itself to be quite resource demanding,
especially with regards to system memory. Little focus has been put into optimizing the
implemented planner regarding resource usage, such as memory or cpu utilization, this
might also be an area where better performance could be retained. When planning a path
connecting two checkpoints it might be unnecessary to use a terrain model of an area much
larger than whats relevant. E.g. looking at Figure 4.2 it is obvious that the OctoMap does
not need to model the terrain around checkpoints C4, C5 and C6 when planning a path
to connect checkpoints C1 and C2. A system could be implemented to crop the terrain
model to only include the necessary area encircling the two checkpoint. The idea of such
a system is illustrated in Figure 5.1, where each dashed ellipse contain the terrain relevant
for planning between two checkpoints. This, of course, relies heavily on assuming the
terrain is not shaped in a way so that a more optimal path could lie outside the cropped
boundary. It also assumes it is more effective to fly over terrain then around. There is also
a possibility that two checkpoints will be separated by a no-fly zone, so some method must
be implemented to make sure the cropped terrain is a continuous space. Such an imple-
mentation could free up resources to be put elsewhere, e.g. into bettering the resolution of
the terrain OctoMap to give safer and more accurate trajectories, or giving the simulations
more run time.

This could be extended even further by solving the planning problems in parallel. Once
an adequate terrain model is generated between two checkpoints the planning problem
could be handed off to a separate computing system and a terrain model for the next
checkpoint pair can be generated, this could in turn be handed of to a second separate
computing system. Such a parallel pipeline could be used to ensure an effective and, most
importantly, safe path is found between all checkpoints while reducing computation time
significantly.

49

50

Chapter 6
Conclusion

As a final conclusion to the work behind this thesis it is evident that using the Open Motion
Planning Library as a framework in a planning system to find trajectories for fixed-wing
UAVs is a solid choice. Sample-based planning is a standard approach to robotic motion
planning as it gives asymptotically optimal solutions well suited for real world navigation.

As in the case of the implemented system using the Dubins airplane model and its
closed form solutions to the boundary value problem connecting configurations with al-
most optimal paths gave reasonable results. By setting a conservative minimal turn radius
and climb rate the outcome are paths comparable to that of a fixed-wing UAV. Through the
results presented in Chapter 4 a suitable choice of planning algorithm is Informed RRT*.
In some cases the FMT* algorithm should also be considered.

The implemented DubinAirplaneStateSpace embedded this behavior in an ef-
fective manner. Combined with the Flexible Collision Library and the OctoMap frame-
work the implemented system is capable of finding airplane like trajectories in real world
terrain while respecting cylinder shaped no fly zones.

51

52

Bibliography

Chitsaz, H., LaValle, S.M., 2007. Time-optimal paths for a dubins airplane, in: Proceed-
ings of the IEEE Conference on Decision and Control, pp. 2379–2384. doi:10.1109/
CDC.2007.4434966.

Dubins, L.E., 1957. On Curves of Minimal Length with a Constraint on Average Curva-
ture, and with Prescribed Initial and Terminal Positions and Tangents. American Journal
of Mathematics 79, 497. doi:10.2307/2372560.

Eger, B.S., 2019. Long-range path planning for fixed-wing UAVs using A* search and
OctoMap. Ph.D. thesis. The Norwegian University of Science and Technology.

Gammell, J.D., Srinivasa, S.S., Barfoot, T.D., 2014. Informed RRT*: Optimal sampling-
based path planning focused via direct sampling of an admissible ellipsoidal heuristic,
in: IEEE International Conference on Intelligent Robots and Systems, Institute of Elec-
trical and Electronics Engineers Inc.. pp. 2997–3004. doi:10.1109/IROS.2014.
6942976, arXiv:1404.2334.

Gammell, J.D., Srinivasa, S.S., Barfoot, T.D., 2015. Batch Informed Trees (BIT*):
Sampling-based optimal planning via the heuristically guided search of implicit ran-
dom geometric graphs, in: Proceedings - IEEE International Conference on Robotics
and Automation, Institute of Electrical and Electronics Engineers Inc.. pp. 3067–3074.
doi:10.1109/ICRA.2015.7139620, arXiv:1405.5848.

Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W., 2013. OctoMap:
An efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots
34, 189–206. doi:10.1007/s10514-012-9321-0.

Janson, L., Schmerling, E., Clark, A., Pavone, M., 2015. Fast Marching Tree: a
Fast Marching Sampling-Based Method for Optimal Motion Planning in Many
Dimensions. The International journal of robotics research 34, 883–921. URL:
http://www.ncbi.nlm.nih.gov/pubmed/27003958http://www.
pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4798023,
doi:10.1177/0278364915577958.

53

http://dx.doi.org/10.1109/CDC.2007.4434966
http://dx.doi.org/10.1109/CDC.2007.4434966
http://dx.doi.org/10.2307/2372560
http://dx.doi.org/10.1109/IROS.2014.6942976
http://dx.doi.org/10.1109/IROS.2014.6942976
http://arxiv.org/abs/1404.2334
http://dx.doi.org/10.1109/ICRA.2015.7139620
http://arxiv.org/abs/1405.5848
http://dx.doi.org/10.1007/s10514-012-9321-0
http://www.ncbi.nlm.nih.gov/pubmed/27003958 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4798023
http://www.ncbi.nlm.nih.gov/pubmed/27003958 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4798023
http://dx.doi.org/10.1177/0278364915577958

Karaman, S., Frazzoli, E., 2011. Sampling-based Algorithms for Optimal Motion Planning
URL: http://arxiv.org/abs/1105.1186, arXiv:1105.1186.

Kavraki, L.E., Švestka, P., Latombe, J.C., Overmars, M.H., 1996. Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Transactions on
Robotics and Automation 12, 566–580. doi:10.1109/70.508439.

LaValle, S.M., 2006. Planning algorithms. volume 9780521862. Cam-
bridge University Press, Cambridge. URL: https://www.cambridge.
org/core/product/identifier/9780511546877/type/book, doi:10.
1017/CBO9780511546877.

McLain, T., Beard, R., Owen, M., 2014. Implementing Dubins Airplane Paths on
Fixed-wing UAVs. Faculty Publications URL: https://scholarsarchive.
byu.edu/facpub/1900.

Moll, M.m., 2016. GeometricCarPlanning demo gives invalid solutions for dubins state
space · Issue #329 · ompl/ompl. URL: https://github.com/ompl/ompl/
issues/329.

Pan, J., Chitta, S., Manocha, D., 2012. FCL: A general purpose library for collision
and proximity queries, in: Proceedings - IEEE International Conference on Robotics
and Automation, Institute of Electrical and Electronics Engineers Inc.. pp. 3859–3866.
doi:10.1109/ICRA.2012.6225337.

Schneider, D., 2016. Master Thesis Path Planning for Fixed-Wing Unmanned Aerial
Vehicles URL: https://www.research-collection.ethz.ch/handle/
20.500.11850/116625, doi:10.3929/ethz-a-010646508.

Shkel, A.M., Lumelsky, V., 2001. Classification of the Dubins set. Robotics and
Autonomous Systems 34, 179–202. URL: https://www.sciencedirect.
com/science/article/pii/S0921889000001275?via{%}3Dihub,
doi:10.1016/S0921-8890(00)00127-5.

Starek, J.A., Gomez, J.V., Schmerling, E., Janson, L., Moreno, L., Pavone, M., 2015.
An Asymptotically-Optimal Sampling-Based Algorithm for Bi-directional Motion
Planning URL: http://arxiv.org/abs/1507.07602http://dx.doi.
org/10.1109/IROS.2015.7353652, doi:10.1109/IROS.2015.7353652,
arXiv:1507.07602.

Şucan, I.A., Moll, M., Kavraki, L., 2012. The open motion planning library.
URL: https://ompl.kavrakilab.org/index.html, doi:10.1109/MRA.
2012.2205651.

54

http://arxiv.org/abs/1105.1186
http://arxiv.org/abs/1105.1186
http://dx.doi.org/10.1109/70.508439
https://www.cambridge.org/core/product/identifier/9780511546877/type/book
https://www.cambridge.org/core/product/identifier/9780511546877/type/book
http://dx.doi.org/10.1017/CBO9780511546877
http://dx.doi.org/10.1017/CBO9780511546877
https://scholarsarchive.byu.edu/facpub/1900
https://scholarsarchive.byu.edu/facpub/1900
https://github.com/ompl/ompl/issues/329
https://github.com/ompl/ompl/issues/329
http://dx.doi.org/10.1109/ICRA.2012.6225337
https://www.research-collection.ethz.ch/handle/20.500.11850/116625
https://www.research-collection.ethz.ch/handle/20.500.11850/116625
http://dx.doi.org/10.3929/ethz-a-010646508
https://www.sciencedirect.com/science/article/pii/S0921889000001275?via{%}3Dihub
https://www.sciencedirect.com/science/article/pii/S0921889000001275?via{%}3Dihub
http://dx.doi.org/10.1016/S0921-8890(00)00127-5
http://arxiv.org/abs/1507.07602 http://dx.doi.org/10.1109/IROS.2015.7353652
http://arxiv.org/abs/1507.07602 http://dx.doi.org/10.1109/IROS.2015.7353652
http://dx.doi.org/10.1109/IROS.2015.7353652
http://arxiv.org/abs/1507.07602
https://ompl.kavrakilab.org/index.html
http://dx.doi.org/10.1109/MRA.2012.2205651
http://dx.doi.org/10.1109/MRA.2012.2205651

Appendices

55

Appendix A
A.1 Reading boxplots
The top and bottom edge of each box mark the edges for the 25th and 75th percentiles,
respectively. The line in the middle of the box is the median observation. The whiskers
extend to include the most distant observation within 1.5 times the interquartile range.
Beyond this outliers are marked with dots.

A.2 Code snippets

Listing A.1: Implementation of the planner system. The code is cleaned for readability by removing
imports, global variables, namespaces etc.

1 // Collision check module
2 bool isStateValid(SpaceInformation *si, State *state,
3 shared_ptr<OcTree> map,
4 shared_ptr<CollisionManagerd> manager)
5 {
6 shared_ptr<Sphere> geom(new Sphere(safeVolumeRadius));
7 Transform3d pose = Transform3d::Identity();
8 Vector3d tran = Vector3d(s->getX(), s->getY(), s->getZ());
9 pose.translation() = tran;

10

11 CollisionObject* obj = new fcl::CollisionObject(geom, pose);
12 CollisionData cdata;
13

14 manager->collide(obj, &cdata, defaultCollisionFunction);
15

16 return si->satisfiesBounds(state) && !cdata.result.isCollision();
17 }
18

19 // Planning algorithm
20 void plan(Checkpoint start,
21 Checkpoint goal,
22 shared_ptr<OcTree> map,
23 shared_ptr<CollisionManagerd> manager,
24 Planner planner,
25 vector<PathGeometric> paths)
26 {
27 StateSpacePtr space =
28 make_shared<DubinsAirplaneStateSpace>(turnRadius, climbAngle);
29

57

30 double xMax, yMax, zMax;
31 map->getMetricMax(xMax, yMax, zMax);
32 double xMin, yMin, zMin;
33 map->getMetricMin(xMin, yMin, zMin);
34

35 RealVectorBounds bounds(3);
36 bounds.setHigh(0, xMax);
37 bounds.setHigh(1, yMax);
38 bounds.setHigh(2, zMax);
39

40 bounds.setLow(0, xMin);
41 bounds.setLow(1, yMin);
42 bounds.setLow(2, zMin);
43

44 space->as<SimpleSE3StateSpace>()->setBounds(bounds);
45

46 SimpleSetup ss(space);
47 SpaceInformation *si = ss.getSpaceInformation().get();
48

49 // Set Collision check module.
50 ss.setStateValidityChecker([si, map, manager](State *state) {
51 return isStateValid(si, state, map, manager);
52 });
53

54 // Must be set on use, as its not done by the OMPL contrib.
55 si->setMotionValidator(make_shared<DubinsAirplaneMotionValidator>(si));
56

57 // Set start and goal checkpoints.
58 ScopedState<SimpleSE3StateSpace> start(space);
59 start->setXYZYaw(start.x, start.y, start.z, start.yaw);
60 ScopedState<SimpleSE3StateSpace> goal(space);
61 goal->setXYZYaw(goal.x, goal.y, goal.z, goal.yaw);
62 ss.setStartAndGoalStates(start, goal);
63

64 // Planner given as parameter and initialized outside this scope.
65 ss.setPlanner(planner);
66 ss.setup();
67

68 // Solver run time is set to value from ROS parameter server.
69 // Variable solverRunTime is defined globally.
70 PlannerStatus solved = ss.solve(solverRunTime);
71

72 if (solved)
73 {
74 ss.simplifySolution();
75 PathGeometric path = ss.getSolutionPath();
76 paths.push_back(path);
77 }
78 else
79 {
80 // Detect if no path is found by comparing
81 // length of paths with number of checkpoints.
82 cout << "No solution found" << endl;
83 return;
84 }
85 return;
86 }
87

88 int main(char argc, char* argv)
89 {
90 vector<Checkpoint> checkpoints;
91 vector<NoFlyZone> zones;
92 vector<PathGeometric> paths;
93 StateSpacePtr space;
94 Planner planner;
95

96 // These functions also set global variables such as run time,
97 // safety radius, turn radius, climb angle.

58

98 readParameterServer(checkpoints, zones, planner);
99 parseArgs(argc, argv);

100

101 auto map = readOctomapTopic();
102 auto manager = setupCollisionManager(map, zones);
103

104 for (int i = 0; i < checkpoints.size() - 1; i++)
105 {
106 plan(checkpoints[i], checkpoints[i+1], map, manager, planner, paths);
107 }
108

109 if (paths.size() != checkpoints.size() - 1)
110 {
111 writeFail();
112 return 0;
113 }
114 writePaths(paths);
115 return 1;
116 }

59

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Bendik Stuevold Eger

Trajectory Planning for Fixed-wing
Unmanned Aerial Vehicles in Real World
Terrain Data

TTK4900

Master’s thesis in Cybernetics and Robotics

Supervisor: Lars Struen Imsland

January 2020

	Summary
	Preface
	Table of Contents
	Introduction
	Outline

	Background Theory
	The piano mover's problem
	Motion planning with differential constrains
	Sample-based motion planning
	Local planning methods
	Geometric planning
	Control-based planning
	Closed form optimal paths

	Planning algorithms
	Software frameworks

	System Implementation
	Implementing the UAV dynamics
	Collision detection module
	Planner implementation

	Simulations and Results
	Simulation environments
	Issues using bidirectional and roadmap planners
	Simulations without no-fly zones
	Simulations with no-fly zones
	Simulations in a large scale environment

	Discussion
	Further work

	Conclusion
	Bibliography
	Appendices
	
	Reading boxplots
	Code snippets

