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Abstract

Distributed measurement systems have been used in the industry for years and with great

success. However new technologies in IoT opens up for new solutions in the world of

control and sensory systems. LoRaWAN is one of many protocols made specifically for

low-power IoT devices.

In this thesis an embedded vibration-sensor has been designed, tested and implemented,

using LoRa as communication. A set of vibration-sensors has been deployed in order to

simulate a DMS (distributed measurement system) using LoRaWAN as a communications

protocol. This thesis investigates synchronization, power-consumption and connectivity

properties of LoRaWAN, with a DMS as a use-case. The deployed system managed to

successfully gather vibration data and store it on a remote server.

A full solution covering all aspects were never deployed. However, a DMS with LoRaWAN

as communications were deployed and data was collected. Synchronization was done using

LoRa and that proved to be a feasible solution for communications in DMS.

Many thesis. Such written. Many results... WoW
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Sammendrag

Distribuerte målesystem har blitt brukt i industrien i flere år og med stor suksess. Nye

teknologier innenfor IoT åpner opp for nye løsninger i verdenen av kontroll og målesystemer.

LoRaWAN er en av mange protokoller laget spesielt for lav-energi IoT enheter.

En trådløs vibrasjon-måler som bruker LoRa for kommunikasjon ble designet og im-

plementert. Ett sett med vibrasjon-målere ble utplassert med det formål å simulere ett

distribuert målesystem med LoRaWAN som kommunikasjon. Denne oppgaven undersøker

LoRaWAN’s egenskaper innenfor synkronisering, energi-forbruk og konnektivitet. Løsnin-

gen var i stand til å samle inn vibrasjonsdata fra forskjellige sensorer og lagre dataen på en

ekstern server.

En full løsning ble aldri implementert og testet. Ett distribuert målesystem med LoRaWAN

som kommunikasjon ble deployert og data innsamlet. LoRa ble brukt til å synkronisere

sensorer og det ble bevist å være en mulig løsning for kommunikasjon i et distribuert

målesystem.
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Chapter 1
Introduction

1.1 Background

Internet of things can be defined as the interconnection between embedded devices and the

internet. The area of application is still not fully envisioned as every year new applications

and areas of use are uncovered. A casual way of describing IoT is like a distributed set of

embedded systems sending usable data like for instance temperature, to a backend. One

such system is a wireless sensor network. Such a network collects valuable data from the

surrounding environment in order to observe the said environment. These have been used

to monitor agriculture, weather, air pollution, Forrest-fires, etc. Such sensors must have a

long battery life since they might be placed on remote locations over long periods of time.

One area these can be used is for measuring seismic activity. These are vibration sensors

that can be used to detect activity in exposed areas in order to warn in case of earthquakes

or tsunamis. However, vibration sensors can be used in other applications. For instance,

an important aspect of building and maintaining bridges is the frequency with which it

oscillates. During the design, it is important to uncover that the most common frequencies

induced are not in the area of the natural-frequency for the construction. Furthermore, the

measured frequency can also be used to detect structural integrity. These can be measured

by deploying measurement-devices that record vibrations over time, and are collected after

a certain amount of time. A better solution could be to deploy a device that continuously

provide data, and which is connected wireless. This would enable engineers to continuously

1



Chapter 1. Introduction

monitor the structural integrity of the construction.

Can a protocol designed for IoT was used to implement such a system? LoRaWAN is

one such protocol and is designed especially for being low-power and is seemingly a

candidate for such an implementation. Furthermore, such a system may have events that

are time-related, which in turn calls for a way to align data according to the time they were

collected.

1.2 Motivation

To work on something so new and inclusive as IoT is very interesting. New solutions and

areas of applications pop up all the time, so to spear this development is very motivating

indeed. Furthermore, to engage in the realization of an idea in embedded is at the very least

intriguing. Investigating new application-areas and properties for LoRaWAN gives a sense

of ownership.

1.3 Limitations

The sensors were never deployed out in the field, ideally, the vibration sensors would be

deployed on a structure, for instance, a railway-bridge. Furthermore, the system would

have been deployed using a private-network. The fact that only one gateway was available

invokes limitations in network-coverage, therefore it was decided to use an external public

network upon deployment.

1.4 Thesis structure

Chapter 2 Literature review contains a survey conducted on use of LoRaWAN in DMS,

synchronization in LoRa networks and life time expectancy of LoRa-devices.

Chapter 3 Theory adds the theory needed in order to understand this thesis. It covers

theory about LoRaWAN and MQTT.

Chapter 4 Specification and design present the functional and technical requirements

in addition to the acceptance criteria for both software and hardware. The chapter also

2



1.4 Thesis structure

contains a design for the distributed sensor network.

Chapter 5 Implementation contains details about the implementation of hardware soft-

ware and the complete system. Chapter 6 Testing and results describes the testing

procedure and corresponding testing-results.

Chapter 7 Discussion gives a further discussion of the results in addition to suggested

improvements.

Chapter 8 Conclusion concludes the thesis and its findings.

Chapter 9 Further work contains a list of suggested further work.

Appendix A contains snapshots of TTN’s application server-GUI and device control-panel.

Appendix B provides an HW-schematic and part-list for the embedded-system. Appendix
C contains snapshots of the private-gateway configuration and setup.
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Chapter 2
Literature review

The scope of this paper is to investigate LoRaWAN as a communications infrastructure in

a distributed measurement system(DMS). This section covers a literature review done on

this subject. IoT is often defined as the collection of large amounts of data from a large

set of sensors out there in the real world. This is virtually the same as a traditional DMS

only deployed on a much larger scale, thus a question raised in the last years: Are IoT

protocols suitable for traditional DMS? Furthermore is LoRaWAN as a protocol developed

specifically for IoT suitable for traditional DMS’s?[1]

"Since a DMS is involved with time-series collection, time-related FoM(Figures

of merit) as refresh time, latency, and required time synchronization accu-

racy are particularly meaningful." - M. Rizzi, P. Ferrari, A. Flammini, and E.

Sisinni.[1]

In other words: In distributed systems, it is of the utmost importance to have synchronization

across end-devices/nodes. LoRaWAN provides no such solution by itself, this means that it

is up to the developer to implement such a mechanism. In addition to solving problems

with concurrency and causality, synchronization may be used to improve the reliability of

channels implementing scheduled uplinks (Timed Division Multiple Access)[2].

The synchronization requirement for typical DMT’s varies widely with the domain in which

it is applied, the table in table 2.1 is taken from [1] and is a summary of the work done in

an article by M. Kuzlu, M. Pipattanasomporn, and S. Rahman[3].
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2.1 A lightweight synchronization algorithm

Application Update
time(s)

Latency(s) Sync
err.(s)

Data
Size(B)

#Nodes

Industrial

Automa-

tion(Factory)

<0.1 0.01 <10−4 <100 102

Industrial

Automa-

tion(Process)

<60s <1 <0.01 <100 103

Smart

Build-

ing(e.g

HVAC)

<600 <60 <1 <1k 102

Home

Automa-

tion(e.g

lighting)

Event based <60 <104 <100 102

Smart me-

tering (elec-

tricity)

<600 <10 <1 100 106

Smart me-

tering (Gas)

4day <3600 <60 100 106

Smart Grid

(PMU)

<0.01 <0.01 <10−6 <200 102

Smart Grid

(EV fleet)

4/day <15 <60 <300 102

Table 2.1: The typical timing requirements in traditional DMT’s.[1]

2.1 A lightweight synchronization algorithm

A synchronization algorithm is a viable way to synchronize distributed systems, which

also compensates for clock skew[2]. It utilizes hardware functionalities to compensate for

clock skew and drift over time. This enables a device to use lower grade parts and still have

accurate time stamping. L. Tessaro, C. Raffaldi, M. Rossi, and D. Brunelli[2] proposes the

5



Chapter 2. Literature review

simple algorithm in fig. 2.1. A summary of steps in fig. 2.1 can be listed as follows:

• A constant error margin is chosen.

• When the first synchronization message is received, the RTC is updated.

• At the next synchronization message, the received timestamp will be compared with

the current one es = tsync − tnew.

• If the error es is within the range of the error margin set, no operation is performed.

• If the error es is outside this range, the error is not acceptable and a correction will

be performed.

  

Boot and wait
for first sync

Receive first
sync message

Update RTC and
store timestamp

Wait next
sync message

es in
range?

YesNo
Calculate Δt

Calculate calibration
correction

Fig. 2. Online calibration algorithm work-flow.

at message reception and tsync is the master’s timestamp
corrected with the transmission time tx.

• if the error es is within the range [−sm,+sm], no
operation is performed.

• if the error es is outside this range, the error is not
acceptable and a correction will be performed. The time
since last RTC update is then calculated as Δt = tnew −
told = ti+tx−(ti−j+tx), where j is the number of cycles
since the last RTC update. Δt is now used as indication
of the magnitude of the oscillator’s drift (the smaller the
drifting behaviour, the larger Δt). Δt and sign(es) are
then used to calculate the calibration parameter variation
to apply. Once the calibration value is updated, the new
timestamp is written into the RTC and tnew becomes told.

In the next section some applicative tests of the designed
algorithm are reported.

III. RESULTS

The hardware used to keep track of the time can reach a
maximum time resolution of 1/1024 of second. Consequently,
the error resolution is also around 1 ms. If a smaller er-
ror resolution is needed, additional timers with higher time
resolution must be used. Furthermore, we verified that the
transmission time calculated using the formula from datasheet
[9] is not reliable for smaller time resolutions and consequently
is rounded up to the millisecond. Also the calibration values
used in the RTC registers are discrete and an increment corre-
sponds to a clock correction of about 0.955 ppm, as reported
in the hardware datasheet (full range is from -487.1 ppm to
488.5 ppm).

Before testing the calibration algorithm, the synchronization
error between each message is measured. The measurement
system consists of a pair of nodes (one behaving as master and
the other as slave) which are set to pull a digital pin high at
ti. An oscilloscope measures the effective temporal difference
of the two rising edges that coincide with the synchronization
error. The first test is performed with a clock that is drifting of
few ppm, resulting in an error of 0.16± 0.29ms. Secondly a
larger drifting behaviour (430 ppm) is forced and results in a

Fig. 3. Calibration value and Δt for three different correction policies.

larger average synchronization error (4.54± 1.28ms) outside
the limits of the GB. For this reason a calibration is necessary.

To correct the calibration value over the time, three solutions
are tested: the first two apply a constant correction (large with
15 ppm and small with 1 ppm) while the last one uses an
adaptive correction, from a lookup table, that depends on Δt

parameter. The 15 ppm solution has a fast convergence rate
but in steady state presents some unacceptable oscillations;
while the 1 ppm solution shows good performance in steady
state but requires longer time (several hours) to converge.
Notice that, even if not shown in the figures, also the 1 ppm
solution tends to oscillate at steady state because even with
the calibration there is always some drift that, at this point,
is below the resolution available to calibrate the clock. A
simple workaround to avoid the steady state oscillation is to let
the calibration value unchanged for Δt greater than a chosen
limit value. The gradual correction proposed merges the good
characteristics of the constant corrections and consists of the
lookup table reported in table I: to different values of Δt

correspond different correction values. In the specific case,
Δt is normalized with the synchronization period to obtain
the number of cycles since the last RTC update. With the
non constant correction, the clock converges faster when far
from the optimal calibration and keeps the calibration with
small changes in steady state (as clearly visible in figure
3). For every correction, after a first transient behaviour a
largely drifting node reaches a steady state in which a reduced
synchronization error occurs and thus longer synchronization
periods can be used. With Δt as only necessary information it
is possible to compensate for temperature changes and other
effects such as ageing. Figure 3 shows also the increasing trend
of Δt which can be seen alternatively as the synchronization
period necessary to keep the system in sync.

Figure 4 reports how the Δt changes in time with a drifting
clock. It is clearly visible that a fixed calibration value does
not bring any advantage while a correction policy increases Δt

261

Figure 2.1: Synchronization algorithm for LoRa network[2].

With this synchronization scheme L. Tessaro, C. Raffaldi, M. Rossi, and D. Brunelli

managed an average synchronization error(es) of 4.54 ± 1.28 ms.
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2.2 Connectivity limitations in LoRaWAN

2.2 Connectivity limitations in LoRaWAN

An important aspect in terms of RT use is the reliability of a protocol. More particularly the

end-devices capability under various circumstances to reach a drain in the network. The

main reasons for package loss between a GW and end-device are mainly that the drain is not

reachable from the end-device. This is mostly caused by two factors: duty-cycle limitations

and end-device RF power. The last of which is mostly restricted by the PHY-layer and

MAC-layer. Duty-cycle, on the other hand, is a the key-limitation brought upon the protocol

by the narrow-band channels(125 kHz[4]).

2.2.1 Duty-cycle limitation

The duty-cycle depends on the regional parameters set[4], and may vary from place to place.

For the EU863-870 ISM band it is set to be < 1 %.

Given the time on-air Ta and duty cycle d, the minimum off period Ts = Ta(1/d−1)[5], an

end-device in the EU can transmit for a maximum of 36 s/h. By exceeding the duty-cycle

the limitation becomes clear, the channels will get congested. Take fig. 2.2 taken from F.

Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-Segui, and T. Wat-teyne, as

an example. The given 250 end-devices sending 2500+ packages an hour, of these packages

only about 15 % are received. That gives a package loss of about 75 % due to end-devices

exceeding the duty-cycle. Given the case that several devices in a network must air at

virtually the same time, package loss is almost impossible to avoid.

2.3 Power consumption in LoRa networks

The promise and motivation behind LoRa-WAN are to have a Low-power RF-protocol

which can work over long distances. A central aspect of an end-device is then the expected

battery life of such a device.

7



Chapter 2. Literature review
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nels is analyzed. The number of received packets 
drops due to the effect of collisions.

In Fig. 3 the number of packets received suc-
cessfully per hour and end device is shown for 
deployments with {250, 500, 1000, 5000} end 
devices and n = 3 channels. For low transmission 
rate values (in packets per hour), throughput is 
limited by collisions; for high values, the maximum 
duty cycle prevents end devices from increasing 
the packet transmission rate and stabilizes the 
throughput. For deployments with a “small” num-
ber of end devices, the duty cycle constraint limits 
the maximum throughput.

Table 1 summarizes the maximum throughput 
per end device and the probability of successful 
reception for a set of different deployments. The 
maximum throughput falls as the number of end 
devices grows. 

Reliability and Densification Drain  
Network Capacity

In LoRaWAN, reliability is achieved through the 
acknowledgment of frames in the downlink. For 
Class A end devices, the acknowledgment can 
be transmitted in one of the two available receive 
windows; for Class B end devices, it is transmitted 
in one of the two receive windows or in an addi-
tional time-synchronized window; for Class C end 
devices, it can be transmitted at any time.

In LoRaWAN the capacity of the network is 
reduced not only due to transmissions in the down-
link, but also due to the off-period time following 
those transmissions (gateways must be compliant 
with duty cycle regulation). Therefore, the design of 
the network and the applications that run on it must 
minimize the number of acknowledged frames to 
avoid the capacity drain. This side-effect calls into 
question the feasibility of deploying ultra-reliable ser-
vices over large-scale LoRaWAN networks.

At this point of development of the technol-
ogy, LoRaWAN faces deployment trends that 
can result in future inefficiencies. Specifically, 
LoRaWAN networks are being deployed follow-
ing the cellular network model, that is, network 
operators provide connectivity as a service. This 
model is making gateways become base stations 
covering large areas. The increase in the number 
of end devices running applications from different 
vendors over the same shared infrastructure poses 
new challenges to coordinate the applications. 
In particular, each application has specific con-
straints in terms of reliability, maximum latency, 
transmission pattern, and so on. The coordination 
of the diverse requirements over a single shared 
infrastructure using an ALOHA-based access is 
one of the main future challenges for the technol-
ogy. Therefore, fair spectrum sharing is required 
beyond the existing duty cycle regulations. Finally, 
the unplanned and uncoordinated deployment 
of LoRaWAN gateways in urban regions, along 
with the deployment of alternative LPWAN solu-
tions (e.g., SigFox), could cause a decrease of the 
capacity due to collisions and the use of larger 
SFs (to cope with higher interference levels). 

Use Cases
Several application use cases are considered in 
order to analyze the suitability of LoRaWAN and 
complement the understanding of the advantages 
and limitations of the technology when applied 

to different types of data transmission patterns, 
latency requirements, scale, and geographic dis-
persion, among others.

Real-Time Monitoring

Agriculture, leak detection, and environment con-
trol are applications with a reduced number of 
periodic/aperiodic messages and relaxed delay 
constraints. In contrast, the communication range 
must be long enough to cope with dispersed loca-
tion of end devices. LoRaWAN has been designed 
to handle the traffic generated by this type of 
applications and meets their requirements as long 
as the deployment of the gateways is enough to 
cover all end devices.

On the other hand, industrial automation, 
critical infrastructure monitoring, and actuation 
require some sort of real-time operation. Real 
time is understood in general by low latency and 
bounded jitter, and depends on the specific appli-
cation. LoRaWAN technology cannot claim to 
be a candidate solution for industrial automation, 
considering, for example, that industrial control 
loops may require response times around 1–100 
ms and that even for small packets of 10 B, the 
time on air with SF = 7 is around 40 ms. As pre-
sented in the previous section, due to the MAC 
nature of LoRaWAN, deterministic operation 
cannot be guaranteed despite application-spe-
cific periodicity as ALOHA access is subject to 
contention, which impacts network jitter. Despite 
that, small LoRaWAN networks can deliver proper 
service to applications that require, for instance, 
sampling data every second. To do that, two 
main design considerations should be taken into 
account:

Figure 3. Number of 10 B payload packets received per hour and node for 
{250, 500, 1000, 5000} end devices and n = 3 channels as a function of 
packet generation.
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end devices[5].
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2.3 Power consumption in LoRa networks

2.3.1 Theoretical life-time expectancy of a LoRa device

Consider the following scenario: An end-device uses a 2000 mA/h battery and transmit

for a total duration of 30 s/24 h using the LoRa modulation scheme. Furthermore each

uplink-message containing a 10 B payload and is sent with CR = 1, BW = 125 kHz and

SF = 7 − 12. The following numerical results has been provided:
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Figure 3. Energy efficiency versus distance between one sensor and a gateway.
Effect of Transmission Power. BW = 125kHz, PL = 10 bytes, CR = 1,
and SF = 10.
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Figure 4. Lifetime in years for different selections of spreading factor
SF ∈ {7, 8, 9, 10, 11, 12}, under the constraint of 30 seconds per day in
transmission mode. Assuming a battery of 2 Ah and transmission power
PTX = 13 dBm.

in (14). We observe that smaller spreading factors, which are
preferable for shorter links, deplete the battery levels much
faster, because more packets can be transmitted per day under
the "30-second per day" rule. Surprisingly, a spreading factor
SF = 11 yields the largest lifetime in this case. We observe
that the total energy spent in a day is decreasing with the
spreading factor SF ∈ {7, 8, 9, 10, 11}, while the energy
consumption for SF = 12 is slightly larger than that with
SF = 11. This result is due to the use of ceiling and floor
functions in the calculations, as discussed in Section V.

VII. FINAL REMARKS AND FUTURE WORK

We analyzed the energy efficiency and lifetime of devices
using LoRATM platform. Our results provide guidance on
the selection of network parameters in order to improve per-
formance. We accounted for channel attenuation and fading,

and showed that small values of spreading factor provide far
superior performance regarding energy efficiency, but should
be used only in short range communication. The effect of
the selected spreading factor on device lifetime is significant,
with a difference of more than 50% in lifetime, comparing
the extreme values for spreading factor, with larger values
generally producing better results. However, we have shown
that the device lifetime is not monotonic with the spreading
factor, and the optimal value can be found using extensive
search, given the small search space. Our results for device
lifetime are obtained assuming a duty cycle constraint which
results in a maximum transmission time per day per device.
The time constraint yields a maximum number of packets
transmitted in a day, which is decreasing with the spreading
factor. Therefore, our observations of a longer lifetime come
at the expense of less data transmission. If a target amount of
data is to be transmitted, the number of packets needed will
increase. Therefore, we identify an important trade-off that
will be investigated next. Future extensions will also account
for interference among users. Multiple users can benefit from
the orthogonality of different spreading factors when using
the LoRATM modulation, in order to mitigate interference.
Nevertheless, we plan to investigate the effect of contention
on the performance regarding energy efficiency and lifetime
of the devices.
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These results are purely numerical and have not been field-tested. However can be used as

an indication for how a device should perform, given the same configuration.
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Chapter 3
Theory

3.1 Overview

This chapter intends to lay down basic theory relevant to the work done in the thesis. It

provides a simple explanation of the LoRaWAN network and some theories about the

LoRa-modulation. Most of the work in this chapter is a summary of theory presented in [7],

[7] and [8]. section 3.2.5 is deduced by the writer of this paper after being inspired by the

work done in [2]. Basic knowledge about LoRaWAN is required to understand the rest of

the thesis.

3.2 LoRaWAN protocol

LoRaWAN is a network protocol optimized for battery-powered devices. This section

is an amalgamation of information and theory taken from[7]. This provides a better

understanding of what LoRaWAN is and how it operates.

3.2.1 LoRa Basics

LoRaWAN networks consist of three main entities: End-devices, Gateways and Network-
server. An end-device is a device/sensor gathering information. This device will often be

10



3.2 LoRaWAN protocol

battery-driven and can be active without maintenance over long periods. These devices will

send the gathered information in an uplink(messages) to a gateway. The gateways relay

information from the end-device to the network server. The gateway is often associated

with base-stations or network-sinks. A network-server is where the information ends up,

either to be processed or to be distributed(for instance through MQTT). The specification[7]

treats the network-server, application-server(for instance MQTT broker) and join-server as

co-located(one entity). An illustration of a simple network is provided in fig. 4.1.

3.2.2 LoRa classes

In a LoRa-network end-devices are classified into 3 different classes: Class A, B, and

C. These give the end-device slightly different capabilities. Class A can only receive

messages(downlinks) right after sending an uplink during defined receive-windows. There

are two receive windows, if these are missed, no downlink is received. Class B devices can

schedule downlink-windows i.e set a time of day where it will listen for downlinks. Class

C has limitless receive windows. All classes offer bi-directional communication.

Receive windows

Following each uplink, end-devices must open two receive-windows. These windows have

a defined delay between each other, this delay may differ from network to network, however

for public networks they are defined in the Regional parameter specification[4]. fig. 3.1 is

taken from an earlier project[9] and illustrates how the receive-windows work.

Transmit Uplink RX2

RX1

Receive Delay 2

Receive Delay 1

Transmit/air-time
Uplink + Downlink time

Figure 3.1: Illustration of the LoRa class A receive windows following a uplink transmission.

11



Chapter 3. Theory

3.2.3 MAC message format

Each LoRa uplink and downlink has the format shown in fig. 3.2, with the exception for the

payload CRC, this is only available on uplink-messages.

The payload(PHYPayload) of each uplink has a sub-structure comprising of: a MAC-

header(MHDR), MAC payload(MACPayload) and a 4-octet message integrity code(MIC).

An illustration of the structure can be seen in fig. 3.3. The MAC-Header contains informa-

tion about what type of message this is. There are 7 different message types:

• Join-request

• Join-accept

• Unconfirmed data up

• Unconfirmed data down

• Confirmed data up

• Confirmed data down

• Rejoin-request

Table 3.1: Table listing the different types of LoRa messages.

Each MAC-payload(see fig. 3.4) can be seen as frames and comprises of: a header-

field(FHDR), a port number(FPort) and lastly the payload(FRMPayload). This contains the

actual data sent from the end-device, messages with different kinds of content can be sent

on different ports. This way an application or server can easily differentiate between what

kind of content each message contains. This is crucial since all information is sent as bytes.

LoRa Uplink Message(Physical layer)

Preamble PHYHeader PHYCRC PHYPayload Payload CRC

nPreamble Symbols nHeader Symbols

Figure 3.2: LoRa-uplink packet format.
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MHDR MACPayload MIC

PHYPayload

Figure 3.3: Physical payload structure.

FHDR FPort FRMPayload

MACPayload

Figure 3.4: MAC payload structure.

3.2.4 Network join procedures

To join a network, each end-device has to be activated. This is done by sending a join-

request which will be routed to a specific join-server. The join has a unique identifier

called JoinEUI(applicationEUI), this is a IEEE EUI64 address. The join server holds

the id(DevEUI) of every end-device attached to an application. The DevEUI is also a

EUI64 address, unique for each device. Furthermore each network has a AES-128 root-key,

specific for each device. These are often called AppKey’s or NwkKey’s. These are used to

encrypt all messages, such that any uplink can only be read by the corresponding application

or back-end. This ensure privacy both between end-devices, applications and networks. So

to join a network, every end-device must have a DevEUI, AppKey and AppEUI. There are

2 different ways to join a network: OTAA(over-the-air activation) or ABP(activation by

personalization). OTAA requires a unique DevEUI, AppKey and AppEUI for each device,

and derive specific session-keys from these. Thus the session-keys can be dynamically

updated. However ABP comes with pre-configured identifiers and session-keys from the

factory, this means that they never need to join a network, however it also means that they

have the same session-key throughout their lifetime. Thus for higher-security applications

OTAA should be the preferred join procedure.

3.2.5 LoRa uplink sequence and timing

During a normal generic uplink with a corresponding downlink, a class A LoRa device

will operate according to the sequence seen in fig. 3.5. Based on this diagram the different
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Chapter 3. Theory

timings/delays during such a sequence can be identified. This has been done in fig. 3.6,

further explanation will follow beneath the figure.

LoRa Gateway Server
LoRa 

End-Device

Actor

1: Event
2: Uplink Msg

4: msg forward

5: Generate Callback6: Callback-msg

8: Downlink Msg

3: Handle msg

7: Handle callback

Figure 3.5: Sequence diagram showing the processes from a uplink to a corresponding downlink.
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Figure 3.6: Timing diagram of a LoRa uplink and downlink.

To start the different delays/times are identified in table 3.2, they are presented in chrono-

logical order as presented in fig. 3.6.
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3.2 LoRaWAN protocol

TUL Time to air uplink
TRUL Time to receive uplink
TpUL Time to process uplink
RTT
2 Time to send a message from GW to server

TGC Time to generate a callback
TpDL Time to process downlink
TDL Time to air downlink
TRDL Time to receive downlink
Ttot Total time from uplink sent to downlink received

Table 3.2: Table describing the different identifiers in fig. 3.6.

All of the variables in fig. 3.6 can be measured during operation by the use of for instance

timers. This is except for the two air-times: TUL and TDL. Semtech has provided a way

to calculate the airtime, this is further investigated in section 3.2.6. Continuing on the

assumption that all variables except TDL are known. Ttot can be written as:

Ttot = TpUL +
RTT

2
+ TGC +

RTT

2
+ TpDL + TDL (3.1)

And assuming that all except TDL is known:

TDL = Ttot −
(
TpUL +

RTT

2
+ TGC +

RTT

2
+ TpDL

)
(3.2)

The total time from the uplink was engaged untill the server sends the callback is:

Ttot∗ = TUL + TpUL +
RTT

2
+ TGC (3.3)

The delay from TGC to the message is received at the end-device is denoted as Tskew. This

is the time passed from the timestamp was taken until it is received. This can be written as:

Tskew =
RTT

2
+ TpDL + TDL (3.4)
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Chapter 3. Theory

By using eq. (3.3), eq. (3.2) can be re-written as:

TDL = Ttot − Ttot∗ − TpDL − TDL (3.5)

And lastly putting eq. (3.5) into eq. (3.4):

Tskew = Ttot − Ttot∗ (3.6)

With Tskew known, a potential timestamp during synchronization can be corrected when

sent from the server. With the above scheme, an end-device could be synchronized with a

server over the air.

3.2.6 LoRa airtime

This section focuses on the theoretical calculation of packet air-time. This is most commonly

used to either calculate the duty-cycle for end-devices or estimate power consumption. The

following theory is an amalgamation of standards found in the regional-parameters[4] for

the EU and theory found in the SX1276-datasheet(section 4.1.1)[8].

The packet format is illustrated in fig. 3.2. To calculate the airtime, the number of symbols

used in each these fields must be known. The preamble is a fixed at 8 Bytes, this is set by

the regional parameters[4]. The header is optional, however in default mode in comprises

of: Payload length in bytes, the code rate(CR) used and a 16-bit CRC for the payload. The

payload length is dependant on the regional parameters and the data-rate(DR). selected[4].

Airtime calculation

The following is a summary of the airtime calculation given by Semtech[8].

Given the CR, Bandwidth(BW) and spreading factor(SF), the symbol duration(Tsym) can

be defined as:

Tsym =
2SF

BW
(3.7)
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3.2 LoRaWAN protocol

Furthermore the time to air the preamble can be written as:

Tpreamble = (npreamble + 4.25)Tsym (3.8)

Where npreamble is the number of preamble symbols(see fig. 3.2). The total symbol length

of the packet payload and header is then given by:

npayload = 8 + max

(
ceil

[
8PL− 4SF + 28 + 16CRC − 20H

4(SF − 2DE)

]
(CR + 4), 0

)
(3.9)

• PL is the number of payload bytes.

• SF is the sperading factor (7-12).

• H = 0 if the header is enabled.

• DE = 1 when LowDataRateOptimize is enabled.

• CR is 1-4 dependant on which is selected.

• CRC is 1 if payload CRC is enabled.

Following the EU863-870 MHz ISM Band[4], the following can be defined:

H = 0

CR = 1

CRC = 1

(3.10)

Using 3.10 and assuming that no uplink is sent without a payload, eq. (3.9) can be simplified:

npayload = 8 + 5

(
ceil

[
8PL− 4SF + 24

4(SF − 2DE)

])
(3.11)

Which can be used for all default LoRa devices following the EU863-870 MHz frequency-

plan, where the standard channel width is 125 kHz. According to [8], the low data rate

optimization bit is enabled whenever Tsym > 16 ms. Thus DE = 1 only for SF = 12 and

SF = 11, DE = 0 otherwise. With this Using eq. (3.11) the total airtime then becomes:

Tuplink = Tpreamble + (npayload × Tsym) (3.12)
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Chapter 3. Theory

LoRaWAN data rates

There now 7 defined data-rates(DR) in the LoRaWAN-specification[4], these are summa-

rized in table 3.3. The data-rate varies with the bandwidth(BW) and spreading-factor(SF).

The higher the BW and lower the SF, the higher the data-rate. This is evident by looking at

the airtime calculation in section 3.2.6. All devices supports BW of 125 kHz, larger BW is

not as commonly supported.

Data-Rate(DR) Spreading-factor/Bandwidth Physical bit rate
0 SF12 / 125 kHz 250 bit/s
1 SF11 / 125 kHz 440 bit/s
2 SF10 / 125 kHz 980 bit/s
3 SF9 / 125 kHz 1760 bit/s
4 SF8 / 125 kHz 3125 bit/s
5 SF7 / 125 kHz 5470 bit/s
6 SF7 / 250 kHz 11 000 bit/s
7 FSK(frequency shifting keying) 50 000 bit/s

Table 3.3: Supported data-rates in LoRaWAN[4].

3.3 MQTT

MQTT(MQ Telemetry Transport) is a publish/subscribe messaging protocol. It consists of

2 entities: a client and a broker. The client subscribes on something called topics which

the broker provides. The clients can publish messages on the topic they have subscribed

to. Every time the broker receive a message on a certain topic, it notifies(publishes) said

message to every client that subscribes to that topic. In other words, the broker routes

messages to and from different clients. An example of how the protocol works is given in

fig. 3.7. In the illustration, all the clients subscribes to the same topic.

3.4 NTP

NTP(network time protocol) is a networking protocol for clock synchronization between

computer systems. It is made specifically for systems working on a packet switched

network, like Ethernet. The protocol is made to synchronize network-entities within a

few milliseconds to coordinated universal time(UTC). One way to synchronize with the
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BrokerClient 1 Client 3

Client 4

Client 2

Publish Message

Publish

Publish

Puiblish

Figure 3.7: Collaboration diagram illustrating the interaction between a broker an it’s clients.

time server is to send a NTP request via UDP on port 123. The corresponding answer will

contain the current time. There are several public time-servers available, the one used in

this thesis is no.pool.ntp.org.
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Chapter 4
Specification and Design

The chapter is divided into four main parts, covering in order: The functional specification,

Technical specification, Acceptance criteria and design. For each of these sections, the

requirements for each of the main parts of the system will be derived.

4.1 Overview

This first section will focus on giving an overview of the system which consists of An

end-device, Gateway and an RT-server/back-end. A system overview is provided by the

collaboration diagram in fig. 4.1, this shows how the different entities are connected.

The embedded device(End device/Node) awakes by being triggered by an event, upon

awaking the device will store vibration-data. Then transmit said data via LoRa to a gateway.

Upon receiving the message(uplink) from the end device, the gateway will wrap the message

data into a JSON object and forward it to a handler/server. The server will then store the

vibration-data. If necessary the server will produce a callback-message that is being sent

back down to the end-device. The callback can contain configuration-data for the end-

device. The callback is sent to the gateway and gets processed to generate a downlink. The

downlink can be stored in a downlink-queue on the gateway, if the downlink window has

passed. If the downlink window haven’t passed, the message will be aired immediately if

the downlink window is still open.
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4.1 Overview

The complete system will provide various timestamped vibration-data from a number of

end-devices deployed in an area of LoRa coverage. This will help differentiate between

messages. Each end-device must be calibrated before they are deployed.

LoRa WAN

End-Device

Gateway

Back-End

End-device

Physical 
LoRa
HW 

Physical 
LoRa
HW 

LoRa-RF

Gateway

IP67

Server/Handler

Figure 4.1: System collaboration diagram/overview.
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4.2 Functional requirements

As a remote vibration sensor, the end-device must be portable and use LoRa-RF to com-

municate with the server. Furthermore the end-device must be able to measure vibrations

which in turn are processed and sent to a back-end/server. The measured values must be

timestamped in order to be aligned during analysis. The device must be battery-driven

and in turn rechargeable. To ensure future re-use it should also feature interface for repro-

gramming and peripherals. Furthermore, it should also feature human interfaces such as

status indication and buttons. The server must be able to store data and generate callbacks.

Furthermore, it should have a clock with which a end-device can synchronize. Upon storing

the data, the data should be timestamped.

1. End devices should be fully portable and able to collect vibration data in addition to

various internal diagnostics.

2. The system must provide 2-way communication to be able to configure devices

remotely.

3. To provide reliable time-stamping of vibration data, the end devices and server must

be synchronized.

4. The data sent from devices must, in turn, be stored on some kind of server for

analysis.

5. The device should have a long battery life(months).

6. The device must have interfaces for both debugging and peripherals.

7. Each device’s sensor should be calibrated.

Table 4.1: Functional specification for the system.
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4.3 Specification

4.3 Specification

This section states the technical specification for the system. It covers all three parts of the

system in order: end-device, gateway, and back-end/server.

4.3.1 End-device

To easier track the requirements during development, they are split into two different

context’s: embedded hardware and embedded software. This is a more in-depth analysis of

the previously stated functional specification given the previous section and summarized in

table 4.1.

Embedded hardware

Based upon the requirements stated in section 4.2, the technical specification for the node

is stated in table 4.2

1. Must be battery-driven.

2. The end-device should be rechargeable.

3. Should be powered during charging.

4. External charging power should be provided by 5V USB, which is a readily available

interface.

5. Low-power as it is battery-driven.

6. LoRa-capabilities(LoRa RF-module).

7. Ability to measure vibrations(accelerometer).

8. Battery diagnostic(level indication).

9. Interface for debugging, programming and peripherals.

10. Interface for reset and sending dummy messages.

11. Visual status indication.

Table 4.2: HW-specification.

The above stated specifications should in-part cover Pt. 1, 5 and 6 stated in table 4.1.
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Embedded software

The software must collect data from different peripherals(gyro and luminosity) and inner-

diagnostics(battery level). These data must be forwarded to a back-end/server via a LoRa

RF-transmitter. And must be done in an energy-efficient manner to preserve battery life.

Keeping track of when such events occur the dis done by implementing an RTC with

timestamps. A summary of the specification is provided in table 4.3.

1. Sleep modes should be used to save energy.

2. Should provide an interface for LoRa uplinks and downlinks.

3. Must be able to detect and store vibration data.

4. Must be able to send stored vibration data to the server.

5. Provide an RTC for time-stamping events.

6. Be able to synchronize with a backend/server.

7. Be able to detect external events caused by vibrations.

8. Have a routine for accelerometer-calibration.

9. Use LoRa to receive configuration parameters.

10. Handle unexpected errors.

11. Have one or several interfaces for debug-purposes.

Table 4.3: SW-specification.

The above stated specifications should in-part cover Pt. 2, 3, 4, 5 and 6 stated in table 4.1.

4.3.2 Gateway

The gateway should comply with the regional parameters in EU863-870 MHz ISM Band[4].

It should also work as a simple package-router with minimal processing time, in this way

keeping the GW-processing overhead to a minimum. This is essential to be able to propagate

the message to the server, and in turn, receive a potential callback before the downlink

window has passed. If the downlink-window passes, synchronization is not possible. The

requirements are summarized in table 4.4.

1. Must handle uplinks and downlinks before a downlink-window passes.

Table 4.4: Gateway-specification.
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4.4 Acceptance criteria

The above stated specifications should in-part cover Pt. 2 and 3 stated in table 4.1.

4.3.3 Server/Handler

The server side of the system must keep a global time, with which any end-device can

synchronize with. In addition to keeping the time, the server should be made specifically

for real-time. The server should also be able to get the current POSIX-epoch from a time

server, this is to be synchronized(within some seconds accuracy) with the current date and

time. It must be able to communicate via IP-67(Ethernet, UDP or TCP) with the GW. The

server should have timers that can be used to calculate RTT(round trip time) and callback

time. Uplinks from end-devices should be answered with a callback when required. The

server must be able to log uplink payload-data to file for later analysis.

1. Must be able to synchronize with a time server.

2. Must be able to send a callback.

3. Must be able to log payload-data with the corresponding timestamp.

4. Should be able to synchronize with an end-device by sending its current timestamp.

5. Must be able to send a callback/downlink to an end-device.

6. Must have either SW or HW-timers.

Table 4.5: Server-specification.

The above stated specifications should in-part cover Pt. 2, 3 and 4 stated in table 4.1.

4.4 Acceptance criteria

The acceptance criteria was derived from the requirements stated table 4.2, table 4.3,

table 4.4 and table 4.5. The system will work as intended if it passes all the criteria stated

in table 4.6.

25



Chapter 4. Specification and Design

Label Description
AC1 Vibration data and device diagnostics sent from an end-

device are stored.
AC2 The server stores the time-stamped vibration-data in order.
AC3 End-devices are calibrated.
AC4 End-devices synchronizes with the server in order to have a

common clock.
AC5 The server is synchronized with a time-server.
AC6 End-devices receives and applies configuration parameters

from the server.
AC7 End-devices handles unexpected errors.
AC8 End-devices has a long battery-life and can run for months

without recharging.
AC9 The end-device enters sleep mode when idle.
AC10 When an end-device dies, it is detectable at the back-end.
AC11 End-devices can be placed wherever as long as a LoRa-

gateway is reachable.
AC12 End-devices prints debug-data to terminal.
AC13 End-devices has status LED’s indicating the current status.
AC14 The end-device has interface for peripherals with I2C, UART,

SPI.

Table 4.6: Acceptance criteria for the complete system.

4.5 Design

This section covers the system design. The design for each part of the system will be

provided here, except the gateway. Since the gateway is a simple packet/message forwarder,

there are no underlying design-features to be uncovered. Thus this is skipped in this section.

4.5.1 PCB design

The PCB design was based upon the specifications given in table 4.2 and resulted in the

implementation seen in fig. 4.2.

As the diagram shows the PCB is driven by a battery that can be recharged. Thus making

it a completely wireless device. As it is battery-driven an LDO Regulator is suitable to

regulate the power level from the battery. The battery circuit also features 2 status LEDs

for power status and charge status. Furthermore, the board contains a LoRa RF transmitter,

which is compliant with both LoRa Class A and B. The accelerometer comes in the form of
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4.5 Design

a mems-sensor, it provides an accelerometer, gyro, and package-thermometer. 2 buttons

are added, one for sending a dummy-message, and one for hard-resetting the device. To

indicate current MCU-status, an LED array is added, which contains 3 LEDs of different

colors. Lastly, IO-headers are provided for interfacing external devices with the various

buses on the MCU.

Ext-Power 
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PCB

MCULoRa RF 
Transmitter

DEBUG/
Pheripheral
USB-UART

Antenna

LDO Voltage 
Regulator

Power

UART

General 
Protocol/IO 
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TWI
UART
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ARRAY

JTAG

Phototransistor
Mems Sensor

accelerometer + 
temp

RST
Send 

Dummy 
MSG

Battery
Battery 
Charger

Power
LED

Charge-status 
LED

Figure 4.2: Block diagram of the PCB.

4.5.2 Back end

The back-end of the system has 2 configurations: Using an RT-server or using The things

network[10] as a service provider. This section will cover both of these configurations.

RT-server

For the sake of investigating over the air synchronization, the intent is to have as low

overhead as possible. Furthermore using IO pins to check time-stamping makes the use of
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a normal computer difficult. Therefore the server/back end must be RT-compatible device,

preferably with GPIO and IP67 compatibility. This is to both communicate with a private

GW and to synchronize with a time-server using NTP(net time protocol). Combining this

with a configurable LoRa gateway should be sufficient to conduct a somewhat accurate

investigation of synchronization accuracy. The following diagram illustrates the back-end

of this configuration.

The things network

Using a single gateway is somewhat limited because the high-power gateways available

aren’t mobile. Thus to increase the overall coverage of the network, it was decided to use

the already available network provided by The thing network(TTN). Doing this makes it

easier to deploy nodes in a possible field test. However it limits the customizability of the

gateway and server, however coverage trumps this. The diagram in fig. 4.4 illustrates the

back-end when using TTN. TTN provides a API with which developers can implement a

MQTT-client, to which TTN’s handler forwards uplinks-messages. This means that the

only thing to configure is the TTN broker and a custom client.

4.5.3 System design

The full system design can be illustrated in two interface diagrams, one for each of the back-

end configurations. The first one with the RT-server is used for investigating synchronization.

The second using TTN is used for field deployment. Both is illustrated in fig. 4.3 and

fig. 4.4 respectively.
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Figure 4.3: System design utilizing an RT-server.
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Figure 4.4: System design when using The things network[10]
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Implementation

This chapter provides details on how the different parts of the system have been imple-

mented. As stated in 4 it consists of three main parts: End-device, Gateway, and Back-end.

The back-end comes in two configurations, thus these are covered in turn by two sections.

Furthermore, the implementation of the end-device has been split into 2 parts: Hardware

and software.

The main tool for developing schematics and PCB was Altium Designer. The PCB is a

2 layer design which features components on both the top and bottom side for a more

compact and space-efficient design. Most of the components are surface mounted as these

require less space and fewer drill holes.

5.1 Hardware End-device

The full schematic for the end-device can be found in Appendix B1, with corresponding

part-list given in Appendix B2. The parts have been selected to create a generic embedded-

device, with some considerations taken to make it somewhat energy efficient. The scope

is to investigate the use of LoRa in a distributed embedded system, in other words: a

battery-driven vibration-sensor with LoRa capabilities.
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5.1.1 Components

This section provides an overview of the components necessary to realize the schematic

seen in Appendix B1.

MCU Atmega324PB

The Atmega324PB was chosen because it is a known system for the developer. After

all, the same MCU was used in an earlier project[9]. The thought is that both tools

and hardware is easier to navigate. The Atmega324PB micro-controller is a 8 bit high-

performance processor utilizing the AVR-based RISC architecture. It comes with 32 kB

Program memory, 1 kB EEPROM storage and 2 kB SRAM. More importantly, it features

three separate UART buses, two separate I2C buses, SPI-bus and GPIO. Making it quite

versatile when interfacing with various peripherals. It also features an ADC(Analog to

Digital Converter), and both 8-bit and 16-bit timers/counters in addition to a real-time

counter with an optional separate crystal. As most of the micro-controllers in the AVR-

family, the Atmega324PB also features an IEEE compliant JTAG interface, which can be

used for both debug and reprogramming. For clock source, the Atmega324PB either uses

an 8 MHz internal crystal or an optional 1-20 MHz external crystal. It was decided to use a

1.8432 MHz crystal as a clock source. This was because this frequency gives an error of

0.0 % on the UART module on the bit-rates 2.4-57.6 bit
s . The alternative was to choose a

1 MHz crystal, even though this yields slightly less energy consumption, it also provides an

error of up to 8% on the UART.

The real-time counter is ideal for implementing an RTC, as it can be fitted with a 32.768 kHz

crystal. Based on the specification in section 4.3, the Atmega324PB is a good fit.

LoRa transceiver RN2483

The RN2483 is a low-power LoRa transceiver developed by Microchip in accordance with

LoRaWAN Class A protocol. It integrates RF, base band controller and a command API

processor. Which makes it suitable to interface with an external host MCU, where the host

MCU can send API-commands directly via UART. For simplicity the transceiver features

a fully implemented protocol stack for LoRa class A [11]. It requires a 2.1-3.6 V input

voltage, and can go into a sleep mode consuming only 2-26 µA[12] depending on the actual

input voltage.
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Battery Samsung INR18650-25R

It was decided to use a single cell 18650 Li-ion battery as power source. These cells

are one of the most used in the industry today, their application ranges from e-cigarettes,

power-banks to laptop-batteries[13]. The Samsung INR18650-25R is a 18650-sized single

cell Li-Ion battery, providing a nominal voltage of 3.6 V and a cut-off at 2.5 V[14].

Battery charge controller - MCP73830

The MCP73830 developed by Microchip is a single-cell Li-Ion charge management con-

troller. It requires a low number of external components when implemented, and power

can be drawn from the battery whilst charging. This fits well with the specifications set

in section 4.3. With a input voltage range from 3.75-6 V, it interfaces well with the well

known USB-standard for external power. It can provide a 20-1000 mA[15] charging cur-

rent at 4.2 V, which is the recommended charge rate for the INR18650-25R[14]. Upon

implementing the charge controller it was decided to go for a 500 mA charging current.

Accelerometer MPU-6050

The MPU-6050 developed by InvenSense is a 6-axis Motion-tracking device with 15-bit

resolution. It features a gyroscope, accelerometer and thermometer. The each data sample

is stored in 2 8-bit registers, and is read like a 16-bit signed integer. The accelerometer

has 4 levels of sensitivity: ±2g, ±4g, ±8g and ±16g. In addition to these sensors, it

comes with a built in 1024 B FIFO buffer, which can store sampled data. A nominal input

voltage between 2.4-3.4 V is required. The possibility to go into a low-power mode at

140-10 µA[16] makes it favorable in a battery-driven device. It also features an external

interrupt-pin, which can be triggered by either a motion-interrupt, FIFO-overflow or data-

ready. I2C provides the main interface with a external host MCU and other peripheral

devices.

LDO voltage regulator NCP718

The NCP718 from ON Semiconductor is a 300 mA low drop-out voltage regulator. It

comes with an ultra-low quiescent current[17]. It has a input voltage range of 2.5 V to

24 V and a fixed output of 1.2-5 V. Based upon the cut-off voltage of the chosen battery
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in section 5.1.1, this makes for an extra safety barrier protecting the battery. An output of

2.5 V would be ideal since this utilizes the most of the battery capacity before shutting of.

This and the ultra-low quiescent current makes it a good fit for the end-device, according

to the specifications given in section 4.3. It also fits all the required input voltages for the

other components mentioned earlier in this section.

5.1.2 Power circuit

The schematic of the power circuit is shown in fig. 5.1. As seen the power is taken from

the connector J2, which is a micro-USB type connector. This provide 5 V power to the

charging controller MCP73830(U4). The charging current is configured by the resistance

in R1, the current is set according to the following formula found in the data sheet[15]:

Icharge =
1000

R1
(5.1)

Where I = µA and R = kΩ. As seen in the schematic R1 is 2 kΩ, which according to eq. (5.1)

gives a charge current of 500 mA. Furthermore there are 2 LED’s, D1 and D2. D2 will light

up as long as there is power from J2, whereas D1 will give feedback of the charging status.

It will blink according to the output states given in Table 5-1 in the charge-controllers

data-sheet[15]. The charge-controller provides power to the 18650-Li-Ion battery, this is

held in place with simple clam-mountings. The output of the battery provides power to the

LDO voltage regulator U5. The two capacitors C1, C3 and C4 provides a low impedance

path to help reduce any noise.

Battery level indicator

As stated in section 4.3 the device should be able to read it’s battery status. The simplest

way to do this is to use a ADC to read the battery-voltage directly. However the battery

voltage varies from 4.2-2.5 V whereas the Atmega324PB operates on 2.5 V. The solution

was to create a voltage divider to scale down the battery voltage from 4.2 V to 2.5 V. This

can be seen in the schematic by looking at R8 and R7, with the outlet for the ADC Vbat in

between. By using the following formula:

Vbat = Vsource × (1 − R8

R8 + R7
) (5.2)
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Where Vsource is the battery output voltage and Vbat goes to the ADC input. The values of

R7 and R8 can be calculated, however these vary depending on the current through R8 and

R7. Table 32-2 in the Atmega324PB data-sheet[18] states that the lowest pin input leakage

current is 1 µA. Thus the maximum total resistance can be 4.2 MΩ. However to ensure that

the battery will be read, it was decided to go a total resistance of 420 kΩ, therfore due to

limitations in available resistanceses in real life, the R7 and R8 was chosen to be 255 kΩ

and 174 kΩ respectively.
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Figure 5.1: Schematic presenting the power circuit of the end device.

5.1.3 Accelerometer circuit

The schematic seen in fig. 5.2 presents the implemented circuit of the MPU6050 as U2A.

According to section 7.2 in the data-sheet[16] it is recommended to have 2 bypass capac-

itors on VLOGIC an VDD, C12 and C13 were therefore added. Furthermore as earlier

mentioned the MPU6050 features an external interrupt. This is interfaced with a pin on the

Atmega324PB, to notify the MCU upon an event.
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Figure 5.2: Schematic presenting the circuit of the accelerometer.
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5.1.4 RF transmitter circuit

The schematic in fig. 5.3 show the implementation of the RN2483(U3). As seen in the

schematic, it is interfaced with the UART0 on the Atmega324PB and interconnected with a

global RST. The header J2 is a ICPS header, it was implemented for flashing new software to

the RN2483. The 2-radio outlets(RFH and RFL) are connected to a common microcoaxial

RF-connector(MCRF) to which a antenna can be attached.
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Figure 5.3: Schematic presenting the circuit of the LoRa transmitter.

5.1.5 Headers and peripherals

As seen in the schematic found in Appendix B1, three LED’s(D3, D4 and D5) were added

to give some simple feedback to the user. D3, D4 and D5 emit green, yellow and red light

respectively when toggled.

The photo-transistor Q1 were added to collect some extra information from the nodes. It

reacts to ambient light in the spectral range of 300 nm-950 nm.

The buttons S1 and S2 are for hard-reset and to trigger an external interrupt. S1 pulls

the RST-line to ground, causing a reset on both the MCU and the RF-transmitter. S2 is

connected directly to an external-interrupt(INT1) pin on the Atmega324PB, which when

triggered sends a dummy-message.

All the free pins on the Atmega325PB is connected to corresponding headers This is to

ensure an interface with which any optional external devices can connect to. The headers J6
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and J11 was added to "sniff" on the communication with the MPU6050 and RF-transmitter.

J11 was solely added for debug purposes. However J6 is an I2C-line and can be used as an

interface with other slave-devices with an I2C interface.

5.2 PCB result

The PCB created and designed in Altium Designer and a prototype board were ordered from

JLCPCB in China. This was a 2-layer PCB, with a power-plane on top and ground-plane

on the bottom. A section of the top-plane were separated as a 5 V power-plane for the

charge-controller. The PCB trace, without the GND-plane or VCC-plane, can be seen in

Appendix B3. Upon arrival the prototype was soldered and tested at NTNU. After testing

had conceded, a batch of 15 fully assembled devices were ordered from the Chinese site

PCBWAY. The final board dimensions were 79.9 mm x 49.6 mm, and can be seen in fig. 5.4.

Figure 5.4: The assembled End-device with battery attached.
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5.3 Software End-device

The software developed for the Atmega324PB was entirely developed from the ground

up. Except for the MPU6050 driver and I2C driver. These drivers were found online and

heavily modified, the original drivers are open-source and can be found on GitHub[19].

The software modules are described in section 5.3.4. Some software were imported from

an earlier project[9], however they were somewhat modified.

The main tool for developing the software was Atmel Studio 7.0, this is a complete tool

which includes device-programming(setting fuses) and a functional debug tool. It was

mostly written in C++ using the AVR-G++ toolchain. Some drivers were written in C as

this was deemed more practical. The device was flashed using the Atmel-ICE programmer.

The drivers has been thoroughly tested, however the main program still possesses some

minor bugs.

The software-development were documented using GitHub1. The software itself have

Doxygen comments. Doxygen generates documentation based on comments in the code

and can be exported to HTML or PDF.

5.3.1 RTC

The end-device must be able to timestamp events, thus it must have a clock which keeps

the local time of the node. The solution was to use the 8-bit RT-timer(Timer 2) on the

Atmega324PB, this can be implemented with an external 32.768 kHz crystal. The big

advantage with this frequency is that it is equivalent to 215, which makes it perfectly

divisible with 2. Thus on the 8-bit timer with the prescaler set to 64, the timer will overflow

2 times per second. Meaning that every other time the overflow interrupt is triggered a

second has passed. The ISR(interrupt service routine) will then increment a 32-bit unsigned

integer which is used to store the local time. With a 32-bit integer the device can be synced

using Unix time, however the resolution of the timer is still only 1 s or at best 0.5 s.

It was thought beneficial to increase the resolution by using a different timer to keep track

of the µs and ms. Thus another 8-bit timer(Timer 1) was integrated into the RTC, this uses

the 1.8432 MHz crystal as a source. With no prescaler the ticks per ms can be calculated

1Repository available at https://github.com/tobulf/Master2019_End-device
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as:

0.001 s × 1843200 = 1843.2 (5.3)

and

255ticks

1843200
≈ 139 µs (5.4)

Which equals to an timer overflow of 7 and a reminder of 51.2. Thus for every timer

overflow, approximately 139 µs has passed. Additionally for every 7th overflow, a ms has

passed, and for every 52nd ms the clock must be corrected by subtracting 1 ms. Both the

microseconds and milliseconds are stored in 16-bit unsigned integers.

By using Timer 2 to keep track of the seconds and Timer 1 to keep track of the ms and µs,

the RTC has a resolution of ±139 µs. It is worth mentioning that Timer 2 resets Timer 1 for

every second that passes, thus keeping them synchronized. This also means that when the

ISR of timer 2 and 1 is triggered, all other interrupts are disabled until the ISR has finished.

This is to ensure atomic access which prevents race-conditions.

Both timers were wrapped into an object and interfaces to set at get time was implemented.

Using objects ensures that the user can’t abuse the driver by accessing variables directly.

An alarm system was also implemented, in which a user can set a periodic alarm. This can

be used to wake up the device periodically when in sleep mode.

5.3.2 Timer

A useful tool when investigating timing in embedded HW is timers. Thus it was decided to

implement a high resolution timer-object. This was done by using the three 16-bit timers

on the Atmega324PB, Timer 1, Timer 3 and Timer 4. The timer object was implemented in

such a way that every decleration of a object starts a new timer. This restricts the number

of declarations to 3, if more objects are declared the consequent objects will return a zero

value. The destructor ensures that the timer is reset and consequently turned off. Thus

timers which are not in use won’t be running. There are 4-interfaces, for resetting, stop,

start, read µs or read ms.
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5.3.3 Watchdog timer

The Atmega324PB has a built in watchdog timer, which can be configured to trigger a

reset, ISR or both ISR and reset upon overflow. It utilizes a dedicated 128 kHz oscillator

and a 2K - 1024K prescaler which gives a timeout between 16 ms to 8 s. However since

the WDT(Watchdog timer) can be configured to trigger an ISR, it can be implemented to

trigger a reset on a multiple of the given timeouts. This can be done by increasing an integer

every time the ISR is triggered, after a certain amount of timeouts, the ISR sets the WDT to

reset upon the next timeout.

The main usage of the WDT is to prevent deadlock or starvation. This can happen in

routines which polls a signal that never change or awaiting an answer which never come.

With a WDT the device will be stuck in these situation for only a certain amount of time,

before it restarts.

5.3.4 Drivers

UART

There are three separate UART hardware modules on the Atmega324PB, two of which are

in use on the end-device. These are used to interface with the radio and debug/printing to

terminal.

The first module (UART0) is interfaced with the radio-transmitter to send and receive

commands. This is done by a dedicated object(LoRa_COM) which works as a driver for

this module. This enables the developer to not only send and receive single characters and

strings, but also to send break conditions. When waiting for an incoming string, the MCU

is set to idle mode with the UART receive interrupt enabled, upon receiving a byte it will

wake up. This is to reduce the polling-time and energy consumption.

The second module UART2, is written in C and imported using the macro EXTERN. This

enables the C library function printf, can write to terminal via the UART. This is handy for

debug-purposes during development.

As mentioned the Atmega324PB has a third module(UART1), however this cannot be used

when it shares a pin with the external interrupt(INT0) which is connected to the MPU6050.
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RN2483 - Radio driver

The RN2483 driver inherits the functionality from the UART-driver LoRa_COM. Further-

more, it features functions for OTAA join procedures. Setting data-rates, receive window

sizes and channel duty cycles. Interfaces for sending and receiving LoRa messages on

different ports. Procedures for putting the RN2483 into sleep mode and waking it. Upon

sending a message the object returns a Boolean value depending on the success. However,

upon receiving a message, the object stores the payload in a buffer and sets an internal

Boolean value. To consume the value, the developer can check if there are messages present,

and then if so consume the message.

It is worth mentioning that in some cases a confirmed message can take over 8 s to be

successfully sent. This depends on how the radio is configured, however, this means that

the WDT must be able to have a timeout which is more than 8 s long.

For simplicity it was decided to import the String data-type from the official Arduino

library[20]. This simplifies the handling of strings and has almost no extra overhead.

EEPROM

The Atmega324PB has 1 kB of EEPROM available. A simple EEPROM driver was written,

to store MPU6050-accelerometer offsets after calibration. It features functions to write

and read single-bytes, which in turn are used in functions to read and write signed 16-bit

integers. Attached to the EEPROM driver, is a header file that contains the defined memory

locations for the different types of data.

MPU6050 - Accelerometer

As earlier mentioned the driver for the MPU6050 was imported together with an I2C-driver.

However to suit the application it the MPU6050 driver was heavily modified. There was

functionality for both initialization and reading measured values. The latest measured

16-bit data are stored in 2 1-byte registers on the MPU6050[21]. Each of the six-axis has

its register-space for storing the latest data. These values are raw data, such that they must

be converted into the software using the appropriate gain and offset. The gain values are

given in the MPU6050 data-sheet[16]. The initialization procedure was modified such that

upon initializing(if calibrated), the different calibrated-offsets are read from the EEPROM.
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The MPU6050 can be set in a low-power mode[21], this is done by enabling sleep mode

and setting a wake-up period. Upon waking up, the MPU6050 takes 1 sample, checks

for interrupts then goes back to sleep. This can be combined with disabling the gyro and

temperature, to lower the energy consumption to a minimum. Functions to switch between

normal and low power mode where thus added.

The MPU6050 also features an external interrupt-pin, this is connected to an interrupt

pin(INT0) on the MCU. The MPU6050 has 3 interrupt-modes[21][22]: FIFO overflow,

motion-threshold and data-ready. To check which interrupt is triggered, the MCU has to

read the interrupt status register on the MPU6050. The threshold for motion-interrupt can

be set by writing to a register on the MPU6050. This was not included in the original driver

and therefore added. The interrupt is mainly used to awake the MCU upon a sudden motion

surge and FIFO-overflow.

A 1024 B FIFO-buffer[16] is available to store the measured data on the MPU6050. When

enabled, every time there is new data available, these are put into the buffer in order. This

means that the 1st and 2nd byte in the FIFO buffer corresponds to the acceleration on the

X-axis, the 3rd and 4th to the Y-axis and the 5th and 6th to the Z-axis[21]. This changes if

the gyro and temperature sensor is enabled, however, in this case, these disabled. The FIFO

buffer can be used to take bursts of samples or store data over time. When the buffer is full,

and a new value is written, the FIFO-overflow interrupt(if enabled) is triggered. The buffer

can both be written to and read from. An additional register stores the current length of the

buffer, which is updated every time the buffer is either read from or written to. The buffer

is mainly used to store and read measured samples from the MPU6050-accelerometer.

ADC

A 10-bit ADC with 7 channels is embedded in the Atmega324PB. A simple driver was

written to read the battery and light-sensor voltage level. It features functions to get the

light and battery levels in percent. It can also be enabled/disabled when not in use. The

ADC was calibrated using a GwINSTEK GPS-3030 voltage supply.

LED’s

The status LEDs driver is a simple driver, which features functionality for toggling, resetting

and turning on the different LED’s. This control whether or not the green, yellow or red
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status-led is on or off.

5.3.5 Accelerometer and temperature calibration

To provide accurate measurements, each accelerometer(MPU6050) has to be calibrated

individually. A flowchart of the following explained scheme can be seen in fig. 5.5 Therefore

a simple calibration procedure was implemented.

The procedure is simple: The device is put on a sturdy surface with has little to no

vibrations, this can be a concrete floor, wall or roof. The accelerometer is then set to a

20 Hz sample rate, ±2G sensitivity, and the FIFO buffer are enabled together with FIFO

overflow interrupt. When the interrupt is triggered, the accelerometer has taken 1024 B of

sample data. Given that the accelerometer measures on all three axis(X,Y,Z), this results

in: 1024B
3×2B×20Hz ≈ 8.5 s of sampled data. Since the buffer can’t store an even amount of

data from all three axes, it is easier to read only the first 8.5 s of data, which is represented

by the first 1020 B in the buffer. When the FIFO overflow interrupt is triggered, the MCU

disables the FIFO buffer, such that no more data is written. The MCU proceeds to calculate

the mean value for each axis by summarizing each sample according to the axis before

dividing by the total sample number.

The temperature sensor is calibrated by taking 1 single raw sample, then searching for the

offset by adding/subtracting the gain to/from the raw sample before converting it. The

converted is given by: Traw−Toffset

Tgain
= Tconverted.

Upon calculating the mean values and finding the temperature offset, the MCU stores each

value in the device’s EEPROM. These offsets can be used for every other sensitivity as well.

This is done is by applying a fraction of the calculated offset as the current offset. As the

±2G sensitivity is half that of the ±4G, the offset should also be half as big in comparison.

This approach is used when changing the sensitivity from the to anything apart from ±2G.

5.3.6 Collecting vibration data

The data vibration-data collection is done mostly by the MPU6050(Accelerometer). When

configured in low-power mode and with the motion-interrupt enabled. The MPU6050

will provide an external interrupt by setting an external INT-pin to low. This will happen

whenever a large enough motion is detected. This will in turn trigger an ISR on the
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Start

set sensitivity to 
2G
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Enable FIFO and 
interrupt

Wait untill 
interrupt

Disable FIFO

FIFO pop X, Y, Z 

X_mean += X
Y_mean += Y
Z_mean += Z

Length of 
FIFO > 4

Yes

No

X_offset = X_mean/170
Y_offset = Y_mean/170
Z_offset = Z_mean/170

End

Read 
raw-temperature

calculate 
T_converted

T_converted 
= 20?

Yes

T_offset += 
T_GAIN

T_offset = 0

No

Store offsets in 
EEPROM

Figure 5.5: Flowchart illustrating the calibration scheme.

Atmega324PB. The workflow of the MCU-ISR is illustrated in fig. 5.6. Upon sensing an

MPU6050 interrupt, the MCU immediately read the interrupt register of the MPU6050

and disable the MCU sleep-mode. If it is a motion interrupt, the timestamp is saved in a

global variable and the MPU6050 is set into normal power mode. The FIFO-buffer is then

activated together with the FIFO-overflow-interrupt on the MPU6050. This means that the

next time the interrupt is triggered, it is because of the FIFO buffer overflowing. While

the FIFO fills up, the MCU will continue to sleep or do whatever it did before. When the

FIFO is full, the ISR is triggered once again. The FIFO will then be disabled(not emptied)

together with the MPU6050 interrupt. The interrupt remains disabled until the data in the

FIFO-buffer has been consumed and sent. An global Boolean variable is set true in order to

notify the IDLE state(see fig. 5.9) that there is data available.
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Start

Is it a motion 
interrupt?

End

Read MPU6050 
interrupt status

Set MPU6050 
normal mode

Yes

Enable FIFO and 
interrupt

No
Disable FIFO

accelerometer 
data = true

Save RTC 
timestamp

Disable 
MPU6050 
interrupt

Figure 5.6: Flowchart illustrating the operations of the MPU6050 ISR.

5.3.7 RTC alarm

The RTC contains as earlier mentioned an alarm. This alarm can be set to trigger periodically

within a second accuracy. The way it works is that every other time the Timer 2(RTC)

overflow ISR is triggered, the MCU checks if the difference between the last triggered

alarm and the current time is bigger than the configured period. If this is the case, the

RTC disables sleep-mode and sets an internal Boolean variable to true and set up the next

alarm. The sleep-mode is disabled to wake the MCU from sleep if it is in sleep mode at the

time of the alarm. The flowchart in fig. 5.7 illustrates the workflow of Timer 2(RTC) ISR.

The Boolean value is reset whenever the RTC.get_alarm_status() is called. This is done

whenever the state machine is in the IDLE state.

5.3.8 Main program

In normal operation mode, the device act in accordance to the state diagram in fig. 5.8.

The End device has 4-states: IDLE, SLEEP, DATA TRANSMIT, and ALIVE TRANSMIT.
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Start

Is current 
time > alarm 

time

End

Set alarm = true

Yes

alarm time += 
900 sec

No

Figure 5.7: Flowchart illustrating the operations in the RTC ISR(Here the period is 900 s / 15min).

Unless there is an RTC-alarm, an accelerometer-event or the message button is pressed.

The following sections explain each state. It’s worth noting that synchronization is not

implemented in this device, this is further explored in section 5.3.9.

SLEEP state

The Atmega324PB has several power management modes. These can be used to preserve

energy in situations when the MCU and its peripherals are idle. Whenever the program

enters the SLEEP state, the MCU is configured to go into Power-down mode[18]. In this

mode the main clock is turned off, however, Timer 2 is still enabled, thus keeping the RTC

running. In this mode, the MCU draws significantly less power compared to when it is

running. In this case, the device can only wake up when either an external interrupt or a

Timer 2 interrupt is triggered. The way these are triggered is explained in section 5.3.6 and

section 5.3.7 respectively.

IDLE state

Upon waking up, the MCU enters the IDLE state. In this state the MCU checks for

3 different things: is there an accelerometer-event? If so, change the state to DATA
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Power-On

INIT

Initialize drivers
commect to LoRa

IDLE

Clear LED's
If gyro_data:
     state = DATA_TRANSMIT
else if alarm or dummy_msg:
     state=ALIVE_TRANSMIT
else if unread_downlink:
       set new config
else:
     state = SLEEP

SLEEP

sleep()
state = IDLE

state = SLEEP

DATA_TRANSMIT

Green LED on
Yellow LED on
Send EVENT message on port 2
Untill all data sent: 
    Send DATA message on port 4
state = IDLE

ALIVE_TRANSMIT

Red LED on
Green LED on
Send Alive message on port 8
state = IDLE

state = IDLE

state = IDLE

state = ALIVE_TRANSMIT

state = IDLE
state = DATA_TRANSMIT

Figure 5.8: State diagram showing the state flow in during normal operation.

TRANSMIT. Is there an alarm or has the dummy button been pressed? If so, change the

state to ALIVE TRANSMIT. Is there an unread downlink? Depending on the port number

of the unread message. It can be a configuration message, to either set the sensitivity or

motion interrupt threshold for the MPU6050. The configurations are set using either port

3 or port 5. Thus when receiving a downlink message, the port number of that message

determines which configuration parameter is set. The threshold takes a value between

0-255 and the sensitivity between 0-3. It is worth noting that a device can only receive

a downlink after sending an uplink. However if several downlinks are queued during the

DATA TRANSMIT state, the last downlink is the only message that will be read. Every

other downlink will be overwritten and consequently lost. The operation in IDLE mode is

illustrated in fig. 5.9.

Alive Transmit state

Every 15 min the device will wake up to send a "still alive" message. This is to keep

track of whether the device is still functioning as intended or not. During the ALIVE

TRANSMIT state, the MCU enables the ADC and the MPU6050-temperature sensor to

read one sample. After disabling both of them, the MCU creates an EVENT uplink message.

This EVENT uplink message is sent as a confirmed LoRa uplink message(see section 3.2.3).

The EVENT uplink message is sent on port 8 and contains a 32-bit UNIX timestamp, the
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Yes

state = ALIVE 
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state = ALIVE 
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Check port 
number
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Yes
Yes

No No No

End

Yes
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Figure 5.9: Flowchart illustrating the operations in IDLE state.

current device-battery level, the light level, temperature and lastly the raw accelerometer

data from all three axes. The LoRa message payload is organized in the same way as the

frame shown in fig. 5.10.

Event Uplink Payload
13 Bytes

bit 0-7

Timestamp
4 Bytes(32-bit unsigned integer)

bit 8-15bit 15-23bit 24-31

Battery level
1 Byte

LIght level
1 Byte

Temperature
1 Byte

bit 0-7bit 8-15

Raw Acc data 
X-axis
2 byte

bit 0-7bit 8-15

RAW Acc data 
Y-axis
2 byte

bit 0-7bit 8-15

RAW Acc data 
Z-axis
2 byte

Figure 5.10: An illustration of the ALIVE message frame.

"Raw" means that the data is not corrected with any offsets, its read as-is from the MPU6050-

accelerometer. These readings can be used to determine the current positioning of the de-

vice(vertical, horizontal, up-side-down, etc.). The timestamp represents the exact local-time

the message was created, this will vary from the server time depending on synchronization

accuracy and clock skew. The message is broken down into bytes before the radio transmits

it. A flowchart illustrating the full sequence in the ALIVE TRANSMIT state is provided in

fig. 5.11.
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Figure 5.11: Flowchart illustrating the operations in ALIVE TRANSMIT state(FIFO refers to the
embedded FIFO buffer on the MPU6050).

Data Transmit state

Whenever the MCU enters the TRANSMIT DATA state, this means that an event has

occurred and there is data ready for transmission. This is done simply by sending an

EVENT-message on port 2 followed by several APPEND DATA messages on port 4. The

reason everything is not sent in one go is that the first the max payload in a LoRa-message

is 255 B. Moreover the LoRaWAN Regional parameters[4] states that a message sent with

an SF = 12 cannot be more than 51 B long. Thus the data has to be transmitted by sending
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multiple messages.

The EVENT-message is built up in the format seen in fig. 5.12.

Event Uplink Payload
7 Bytes

bit 0-7

Timestamp
4 Bytes(32-bit unsigned integer)

bit 8-15bit 15-23bit 24-31

Battery level
1 Byte

LIght level
1 Byte

Temperature
1 Byte

Figure 5.12: An illustration of the EVENT message frame.

The timestamp is as earlier mentioned in section 5.3.6 stored when the ISR is triggered.

The battery level, light level and temperature is sampled upon the message being made.

The APPEND DATA-message consist solely of Accelerometer data, these data points are in

comparison to the ALIVE-message corrected by the offset, thus giving us relative correct

data measurements. To preserve the measurement resolution and to decrease processing

overhead, these values are not converted. Each message contains 24 16 bit values, making

the total payload length 24 B. In normal mode, the MPU6050 is operating at a 20Hz

sampling rate, and the FIFO buffer can hold 1024 B of data. The first 8 s has a total size of

960 B. This means that 20 APPEND DATA messages containing 48 B has to be sent. Each

message is sent as a confirmed uplink, this is to ensure that no data is lost. Each APPEND

DATA message follows the format given in fig. 5.13.

Append Data Uplink Payload
48 Bytes

bit 0-7

Accelerometer Data
24  16-bit signed integers

bit 8-15

Acc data X-axis
2 byte

#1

bit 0-7bit 8-15

Acc data Y-axis
2 byte

#1

bit 0-7bit 8-15

Acc data Z-axis
2 byte

#1

bit 0-7bit 8-15 bit 0-7bit 8-15 bit 0-7bit 8-15

....... Acc data X-axis
2 byte
#24

Acc data Y-axis
2 byte
#24

Acc data Z-axis
2 byte
#24

Figure 5.13: An illustration of the APPEND DATA message frame.

The complete scheme is illustrated in the flowchart given in fig. 5.14
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Figure 5.14: Flowchart illustrating the operations in DATA TRANSMIT state(FIFO refers to the
embedded FIFO buffer on the MPU6050).

5.3.9 OTA Synchronization

The OTA(over the air) synchronization routine is not implemented in the main program,

this is because of the earlier mentioned limitations of the public network(see section 4.5.2).

However, the routine can easily be implemented as an own state in the main program. Upon
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engaging in a sync-message, the MCU starts a local timer. This timer is to estimate the total

time from the message being sent until it was received. The synchronization message is an

ALIVE message sent on port 1 instead of port 8. This is sent as a confirmed uplink. Upon

receiving the answer the timer is stopped and the server timestamp is extracted together

with the callback-time(eq. (3.3)). The timestamp is then corrected by the calculating Tskew

as in eq. (3.6). The downlink message has the frame-format described in fig. 5.16. This

was implemented as a separate main-program, and is illustrated in fig. 5.15.

Start

msg sent? End

wake up the radio

Transmit ALIVE 
message on port 1 
Start callback-timer

No

Yes

Stop 
callback-timer

received 
downlink?

No

Read downlink
calulate 

timestamp

Set new RTC
time

Set RT-server pin 
High

Figure 5.15: Flowchart illustrating OTA-synchronization on the end-device.

bit 24-31 bit 16-23 bit 7-15 bit 0-7

Global Timestamp in us(Tnew)
7 Bytes (56-bit integer)

Sync Downlink Payload
10 Bytes

Callback time in us(Ttot*)
3 Bytes(24-bit integer)

bit 48-55 bit 40-47 bit 32-39 bit 16-23 bit 7-15 bit 0-7

Figure 5.16: Frame of the downlink message received during OTA-synchronization.
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5.4 Private gateway

The private gateway used was Multitech’s MTCDTIP-LEU1. This is a robust gateway

with support for 4G, 3G, IP67 and GPS[23]. The gateway is powered by PoE(power over

ethernet) and can be configured using a web-GUI(graphic user interface).

5.4.1 LoRa network configuration

Through the GUI it was configured as a private gateway. The LoRa network can be

customized in almost any way, however, in this case, it was configured following the

EU863-870 MHz frequency-plan[4]. The only exception being the downlink queue. The

downlink queue is configured to hold at a max 1 downlink message for any device. This

means that if a callback misses it’s downlink-window, no downlink is sent. A snapshot of

the configuration is provided in Appendix C1. The gateway is also set to use the internal

join server(see section 3.2.4), a snapshot is provided in Appendix C2. This turns the

gateway into both a network-server and a join-server. Upon receiving an uplink it is now

forwarded to the internal Node-RED application, which us continuously running on the

gateway. Node-RED is a visual/graphical programming tool based on Node.js.

5.4.2 Gateway SW

The software on the gateway is made in Node-RED. The inner workings are quite simple:

it receives and processes uplinks and downlinks. The program has three different processes:

Uplink forward, downlink forward and RTT-response. These are further explained in the

following sections.

Uplink forward

Upon receiving an uplink, the meta-data is formatted and a JSON-object is created. The

JSON-object contains the following information:

This is then parsed to a string and sent using UDP to the RT-server. A snapshot of the

Node-RED program can be seen in fig. 5.17
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• freq: Which frequence the uplink was sent on.
• datr: The message data-rate/spreadfactor.
• size: The payload size in bytes.
• port: The uplink port.
• deveui: The EUI for the device which sent the uplink.
• payload: The message payload in bytes.
• TpUL: The gateway process time in ms(see section 3.2.5).

Table 5.1: Uplink metadata sent to the RT-server.

Figure 5.17: A snapshot of the code from the Node-RED application, showing the uplink-forward
procedure.

Downlink forward

A potential callback-message from the RT-server is received in the form of a JSON object.

The gateway parses this object upon reception and converts the message payload from

string to bytes. The bytes are then aired as a downlink-message. A snapshot of the program

is provided in fig. 5.18.

Figure 5.18: A snapshot of the code from the Node-RED application, showing the downlink-forward
procedure.

RTT response

The RTT-response procedure is used to answer the RTT call from the RT-server. This is

for the RT-server to calculate the RTT of a single UDP packet. Upon receiving a message

the gateway responds by sending the exact same message on a different port to which the

RT-server is listening. The only processing time required is upon reception and sending,

this should give a good RTT-estimate. A snapshot of the code is provided in fig. 5.19.
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Figure 5.19: A snapshot of the code from the Node-RED application, showing the RTT response
procedure.

5.5 RT server

The RT-server was implemented using the NUCLEO-F411RE dev-board. The NUCLEO-

F411RE from STMelectronics features an ARM STM32F411RE MCU and supports the

RT-operating system Mbed-OS developed by ARM. The following sections covers the

implementation of hardware and software respectively.

5.5.1 Hardware

The RT-server comprises of 2 main components: The NUCLEO-F411RE and an ENC28J60

Ethernet module. The NUCLEO-F411 is connected to a COM-port on a computer, that way

it can print to a terminal using UART. The ENC28J60 is connected via an Ethernet cable

to an Ethernet-switch, the GW(gateway) is connected to the same Ethernet-switch. The

switch is necessary because it supports PoE which the GW requires. The complete setup

can be seen as illustrated in fig. 5.20.

NUCLEO-F411RE
(RT-server)

ENC28J60 
Ethernet module

SPI

Ethernet Switch
IP67

Gateway

IP67

Terminal
(PC)

UART

Figure 5.20: Collaboration diagram showing the RT-server and it’s peripherals.
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5.5.2 Software

The entire software is written in C++ using Mbed-OS, github2 was used to document

development. All the drivers except the ENC28J60-driver are already present in the OS.

The ENC28J60-driver is imported from the library: UIPEthernet[24]. This is available

from the Mbed online community. The UIPEthernet-library provides support for TCP, UDP,

IP4, IP6 and more. This is exactly what is needed in the RT-server. IT was decided to use

UDP to communicate between the server and GW. Since UDP is known to be faster than

TCP, choosing UDP will reduce the total RTT. In addition to better RTT, it will increase the

chance of a callback catching the downlink-window.

To synchronize the RT-server with the local time, it was decided to use NTP(Network

time protocol) which is described in RFC 958. Upon booting, the server will send an

NTP request via UDP on port 123. The corresponding answer will contain a 32-bit UNIX-

timestamp. The scope of the task is to investigate synchronization between the RT-server

and the end-device, thus the clock skew between the RT-server and time server is irrelevant.

In our system the RT-server is the master-clock, therefore if the server deviates from the

time-server, this won’t affect our investigation.

Mbed-OS provides a driver for the STM32’s RTC. However, the RTC only works with

seconds, to be able to truly investigate clock drift and deviation it was decided to use one

of the 64-bit timers as an RTC instead. The 64-bit timer works with µs resolution. Upon

receiving the time from the time server, the timer is started and the received timestamp

stored. Thus to read the current time, the value of the timer is added to the stored timestamp,

resulting in the current time. This results in a 64-bit UNIX timestamp in µs resolution.

Time-server synchronization

Before initiating the main program, the RT-server synchronizes with a timeserver. This is

done by posting an NTP request on port 123 of the timeserver. The server then proceeds to

wait for an answer. If no answer is received after 3 seconds, the NTP-call is re-sent. The

sequence is illustrated in fig. 5.21.

2Repository available at https://github.com/tobulf/Master2019_RT-server
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Figure 5.21: Flowchart illustrating the time-server synchronization sequence.

Main program

The RT-server enters the main program immediately after synchronizing with the time

server. There are no defined states in this program, it only responds to synchronization

messages. Upon receiving an uplink, the RT-server checks if it is a sync message. If

it is, run the sync procedure, if not: do nothing. The callback sequence is illustrated in

fig. 5.22. The uplink-airtime is calculated using eq. (3.12). The gateway process time is a

part of the message metadata(see table 5.1). The RTT-timer and Callback-timer are used to

estimate the RTT and process timeTGC in eq. (3.3). The total time spent so far(Ttot∗) is

then calculated using eq. (3.3). The timestamp and Ttot∗ is then parsed to JSON and sent

back to the gateway as a callback. The gateway will forward the callback and send it as a

downlink to the end-device.
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Figure 5.22: Flowchart illustrating the callback-sequence upon receiving a sync-message from an
end-device.

5.6 TTN back-end

The TTN back-end was set up using the TTN-console and TTN’s python SDK(Software

development kit)[25]. Github3 was used to document the code. The console was used to set

up an application server, to which several end-devices can connect. The console works as

an MQTT-broker, such that a corresponding client was implemented as well. The client

receives data from the end device and writes these to file. These files are to be used for data

analysis at a later stage.

5.6.1 TTN console and SDK

The TTN-console is a GUI for configuring application-servers. A snapshot of the GUI is

provided in Appendix A1. This is where all the devices are added to the join-server. This

is very simple and straight forward since TTN generates all EUI’s and keys automatically.

3Repository available at https://github.com/tobulf/Master2019_TTN-server
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The application-server also works as an MQTT broker and the corresponding client can

be implemented using libraries provided by TTN[25]. In this case, the MQTT-broker was

implemented in Python. Using TTN’s Python SDK(Software development kit)[25] to make

a simple MQTT broker is straight forward. The client can then subscribe to the application-

server and receive uplinks from all end-devices attached to said application. Furthermore,

the application server enables the user to send downlinks directly to an end-device, this was

used to configure the end-devices after deployment. This can be seen in Appendix A2.

5.6.2 MQTT-client

The data collection is done within the callback function in an MQTT-client. This client

subscribes to our application-server at TTN. Thus every uplink sent to the application server

will be forwarded to the subscribing MQTT-client. This client is running on a personal

computer at the office at NTNU. Each time the client receives an uplink the data from the

end-devices are sorted depending on the port number and written to file. For each day that

passes, a new file will be created. This keeps the files from growing large. Each message

is timestamped using the servers clock. The files are in .csv format where each value is

comma-separated. Each line in the file represents either an event or an alive message.

Depending on the message type(event or alive) each line follow either the format in fig. 5.23

or fig. 5.24.

Alive message

msg port 
number

Server 
timestamp

(Unix)

End-device 
timestamp

(Unix)

Battery level
(in percent)

Light-level
(in percent)

Temperature
(in celsius)

Raw Acc 
data

X-axis

Raw Acc 
data

Y-axis

Raw Acc 
data

Z-axis

Figure 5.23: Frame showing the comma-separated ALIVE-message values in the log-files. The port
number here is always 8.

Event data

msg port 
number

Server 
timestamp

(Unix)

End-device 
timestamp

(Unix)

Battery 
level
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Figure 5.24: Frame showing the comma-separated data of an event. The port number here is always
2.

No end-device will be synchronized with the MQTT-client, thus the end-device timestamp

58



5.6 TTN back-end

will represent the total time the device has been active. This is because of the limitations

mentioned in section 1.3 and section 4.5.2.
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This section covers the testing and results of the system. The embedded-system was tested

and verified against the acceptance criteria in section 4.4. In addition to plotting the collected

vibration-data, two other tests have been done: OTA-synchronization and battery lifetime-

expectancy. Each of these will be covered by their respective section. Furthermore, tests

have been conducted to verify the calibration scheme, server-synchronization, end-device

clock-drift, and end-device configuration.

6.1 Test procedure

6.1.1 Hardware test

An oscilloscope was used to test both voltage levels, UART and I2C. Furthermore, the

UART was tested by connecting it to a COM-port and writing to a terminal. This was also

used as a debug-tool. The ADC was tested by using the light-sensor and an oscilloscope.

The battery-level circuit was verified using a voltage supply on varying voltages. The LoRa

capabilities were verified by sending messages to TTN-console[10]. One fault was found

and corrected. It was the I2C lines between the MCU and MPU6050. The internal pull-ups

on the Atmega did not work as the internal pull-up resistance was to great. This was solved

by making jumper with 2 1.5 kΩ resistors from the header J11 to VCC on J1.

60



6.1 Test procedure

6.1.2 OTA synchronization

In order to test the accuracy of the synchronization scheme, following setup was applied:

NUCLEO-F411RE
(RT-server)

ENC28J60 
Ethernet module

SPI

Ethernet Switch
IP67

Gateway

IP67

Terminal
(PC)

UART

Atmega324PB
(End-device)

INT1 INT2

UART

LoRa

RN2483
LoRa Transmitter

Figure 6.1: Collaboration diagram showing the OTA-synchronization test-setup.

In this scheme, only one end-device is used, together with the RT-server and the private

gateway. Upon synchronization, the End-device set a pin to high(See INT1 in fig. 6.1),

this is connected to the RT-server. Upon sensing the INT1, the RT-server stores the current

timestamp and toggle a different pin(See INT2 in fig. 6.1), this pin causes an interrupt on

the end-device on rising or falling edge, the RT-server then proceed to print the timestamp

for logging. Sensing the incoming interrupt causes the end-device to store the current

timestamp and print it for logging. After printing the timestamp the MCU resets the INT1,

letting the RT-server know it has printed the timestamp. This is to ensure that neither the

RT-server nor the end-device writes to log unless both are ready. This way the 2 different

logs will be symmetric. The logs are written using a terminal with capture-abilities. The

devices uses printf to write a .csv formatted string on each sync. The ISR is illustrated in

fig. 6.2. Upon measuring the mean, an attempt on improving the synchronization was made.

Simply by subtracting/adding the mean-difference to the applied synchronization value.

The scheme was tested using two different Data-rates(DR): DR-0 and DR-5(see table 3.3).

The data was plotted using Matlab and the results can be seen in section 6.2.1.
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Start

End

Reset RT-serve 
pin

Print timestamp 
to UART

Save RTC 
timestamp

Figure 6.2: Flowchart illustrating end-device ISR for printing the timestamp.

6.1.3 Battery lifetime expectancy

The power consumption has to be estimated to calculate the expected battery life of the

end-device. This was done with a Otii from QOITECH with a 4000 Hz sampling rate. To

check the power consumption, the battery was removed and the Otii used as a power source.

The power was measured in different states:

• Average power consumption during ALIVE TRANSMIT state

• Average power consumption during DATA TRANSMIT state

• Average power consumption during SLEEP state

• Average power consumption during the IDLE state

In addition to this, the power-consumption during sleep state, active state and transmit state

for DR = 0 and DR = 5 has been measured. In this configuration the end-device was

configured to send a 10 B unconfirmed message and the accelerometer sample-rate reduced

to 1.25 Hz. In this configuration, the device can be regarded as a simple end-device and

uses as little energy as possible. All the results can be found in section 6.2.2.
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6.1.4 Vibration data-collection

To collect vibration-data, three devices was deployed on a office-door. They were deployed

in the following way:

+Z

WALLWALL

+Y

Figure 6.3: Illustration of how the devices were mounted on the door, device 1(Red) and device
2(Green) was mounted directly on the door, while device-3(Purple) was mounted in the door-sill.

The devices were all mounted inline with the wall and with the accelerometer X-axis

pointing to the floor. The different axis are illustrated in fig. 6.4.

Figure 6.4: Illustration of the X(Red), Y(Orange) and Z(Purple) axis positive direction in comparison
to the end-device.

Devices 1 and 2 will be exposed to a decent amount of force compared to device 3. Device

3 was mounted in the door-sill, which is a different surface. The door sill is also stiffer,

thus smaller more high-frequent forces. Therefore device 1 has a sensitivity of ±4G and

40 Hz sample-rate, device 2 has a sensitivity of ±8G and 40 Hz sample-rate and lastly,

63



Chapter 6. Testing and results

device 3 has a sensitivity of ±2G and 166 Hz sample-rate. This means that device 3 records

approximately 2 seconds of data. The data was collected using the TTN-server and MQTT-

client on a local computer. The data was written to .csv files. Plots have been made in

Matlab using the received data. The results can be found in section 6.2.3.

6.1.5 End-device clock drift

The clock drift was tested by synchronizing two end-devices by using an interrupt pin on

interfaced with the RT-server. The RT-server set the pin high on a pre-determined time to

synchronize the devices. The synchronized end-devices were then put away for 1 month.

After this time the RT-server and the end-device printed their clock-time at the same time.

The result can be seen in section 6.2.6.

6.1.6 End-device remote configuration

The configuration of the end device was verified using the TTN application-server GUI.

An end-device was configured by en-queuing downlinks on port-5, this configures the

gyro-sensitivity. The result can be seen in section 6.2.7.

6.2 Results

It’s worth mentioning that not all devices have been deployed during the tests. However, all

devices were tested in terms of hardware. Out of 15 devices, one was found to be faulty.

The data-collection was verified since the MQTT-client stored the payload of EVENT and

ALIVE messages to .csv files, each data-entry was timestamped with a server-time and

event-time. The end-devices was triggered whenever the office door was opened or closed.

The simulate-downlink in the TTN-console was used to set new wake-up thresholds on the

deployed devices.

8,1580894382,316251,92,2,16,-7891,385,-727
8,1580895282,317152,92,4,16,-7873,357,-743

Table 6.1: Alive messages from device 1(section 6.1.4) stored by the MQTT-client. The above
example follows the format in fig. 5.23.
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2,1580895667,317528,92,4,16,33,-106,26,16,-117,27,20,-115,16,15,-123,-30,...
2,1580895811,317672,92,4,16,-54,-44,69,70,-114,-283,-87,-206,-26,215,-109,...

Table 6.2: Vibration data from device 1(section 6.1.4) stored by the MQTT-client. This is just some
of the data from 2 events and follows the format in fig. 5.24.

6.2.1 OTA synchronization

This section covers the results of the OTA-synchronization. 100 synchronization messages

was sent using DR = 5 and DR = 0(fig. 6.5 and fig. 6.9). After 100-messages, the mean

was calculated to see if there was a constant deviation(fig. 6.6 and fig. 6.10). After correcting

for the constant deviation, another 100 messages was sent(fig. 6.7 and fig. 6.11). The clock-

drift as seen from the end-device was plotted, and the accuracy of the synchronization

calculated(fig. 6.8 and fig. 6.12). For DR = 5 the error was estimated to ±223 ms, this

can be seen as the yellow red and green lines in fig. 6.8. For DR = 0 the same error was

estimated to ±140 ms, this can be seen in fig. 6.12.
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Figure 6.5: Time series showing the skew of the end-device compared to the server during 100
synchronizations.
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Figure 6.6: Time series showing the skew compared to server in the stable region(message 50-100 in
fig. 6.5).
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Figure 6.7: Time series showing the skew after compensating for the constant deviation.
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Figure 6.8: Time series showing the skew in the stable region(message 27-61 in fig. 6.7).
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Figure 6.9: Time series showing the skew of the end-device compared to the server during 100
synchronizations.
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Figure 6.10: Time series showing the skew compared to server in the stable region(message 3-69 in
fig. 6.9)
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Figure 6.11: Time series showing the skew after compensating for the constant deviation.
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Figure 6.12: Time series showing the skew in the stable region(message 17-71 in fig. 6.11).

6.2.2 Battery lifetime expectancy

The battery lifetime expectancy can be calculated knowing the power-consumption of the

end-device. The following sections presents the power consumption-data collected from

the Otii.

Power-Consumption while idle

power consumption-data collected throughout 16 h was used to estimate the average power-

consumption while the end-device is idle. During this time the end device woke up every

15 min to send an alive message, before going back to sleep. The measured average power

consumption was 651 µA. fig. 6.13 shows the consumption during one such message.

Power-Consumption while sending vibration data

Power-data collected from 12 events has been analyzed to estimate the average consumption

while sending the vibration data. This is the consumption during the TRANSMIT DATA

state. The calculated average power consumption was 19.75 mA and the average sequence

duration was 188.8 s. fig. 6.14 shows the consumption during one such sequence. During

this sequence, the end-device sends at least 21 messages. The average battery consumption

can also be written as 1.035 mA h.
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Figure 6.13: Time series showing the power-consumption during a single alive message.

Figure 6.14: Time series showing the power-consumption while sending vibration data.

Power-Consumption during sleep

With the sampling rate of the MPU6050 set to 40 Hz. It consumed an average of 509 µA.

When reduced to 1.25 Hz, the average became 326 µA. However during normal operation,

the end device will have a 40 Hz sampling rate. A one second sample is provided in fig. 6.15.

Furthermore fig. 6.17 shows the MCU waking from sleep mode, and fig. 6.18 shows the

MCU going back to sleep mode.
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Figure 6.15: Time series showing power-consumption during 1 second. The device is in sleep-mode
with 40Hz sampling-rate on the MPU6050

Figure 6.16: Time series showing power-consumption during 1 second. The device is in sleep-mode
with 1.25Hz sampling-rate on the MPU6050
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Figure 6.17: Time series showing power-consumption when the MCU wakes up from sleep mode.
The device was in sleep-mode with 40Hz sampling-rate on the MPU6050

Figure 6.18: Time series showing power-consumption when the MCU is going back to sleep mode.
The device goes into sleep-mode with 40Hz sampling-rate on the MPU6050

As a simple LoRa end-device

The consumption was measured for DR = 0 and DR = 5. During transmission the

average consumption was measured to 20.1 mA for a duration of 3.85 s for DR = 0 and

7.64 mA for a duration of 2.47 s for DR = 5. fig. 6.19 shows the consumption during one

message on each of these Data-rates.
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Figure 6.19: Time series showing power-consumption during 1 transmission with DR = 0(green)
and DR = 5(Red).

6.2.3 Vibration data

The three devices(device 1, 2 and 3) were deployed for a duration of 15 days, during this

time a lot of data was collected. They were deployed according to the setup in section 6.1.4.

A sample of data from February 1st have been plotted in fig. 6.20, fig. 6.21, fig. 6.22

and fig. 6.23. This sample is an amalgamation of data from all three devices, using the

server-timestamp for alignment. A plot of the light levels recorded during a period of 24 h

has been provided in fig. 6.24.
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Figure 6.20: Time series showing the acceleration on the x-axis of device 1 and 2.
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Figure 6.21: Time series showing the acceleration on the y-axis of device 1 and 2.
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Figure 6.22: Time series showing the acceleration on the z-axis of device 1 and 2.
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Figure 6.23: Time series showing the acceleration on all axis for device 3.
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Figure 6.24: Time series showing the light level during 1 day for device 1.
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6.2.4 Calibration results

The calibration scheme was tested by printing the accelerometer values to a terminal before

and after the calibration. The results can be seen in the screenshots provided in fig. 6.25.

Figure 6.25: Snapshot of the terminal printing the accelerometer values before(right) and after(left)
calibration.

6.2.5 Time server synchronization

The RT-server was able to synchronize by sending an NTP-request to a time-server. The

snapshot in fig. 6.26 shows the debug data printed upon booting, the NTP synchronization

can be seen at the beginning.

Figure 6.26: Snapshot of the terminal were the RT-server boot sequence is printed.
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6.2.6 End-device clock drift

The timestamps upon synchronization and at the end of the test were printed to a terminal.

This can be seen in the snapshots fig. 6.27 and fig. 6.28. Of the 2 devices only one survived

for 1 month, the other device had a dead battery. The clock drift can be calculated using the

timestamps provided in the snapshots.

Figure 6.27: Snapshot of the terminal at the start of the clock-drift test(RT-server-time to the right).

Figure 6.28: Snapshot of the terminal at the end of the clock-drift test(RT-server-time to the right).

6.2.7 End-device remote configuration

Upon receiving an configuration the end-device printed the new configuration parameter

to terminal, this is shown in fig. 6.29. The en-queued downlink messages can be seen in

fig. 6.30.

Figure 6.29: Screenshot of the terminal when configuring the sensitivity of a end-device.
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Figure 6.30: Snapshot application server GUI showing the en-queued configuration downlinks on
port 5(Row 4).
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Discussion

This chapter presents a discussion covering the system results in accordance with the

acceptance criteria set in section 4.4. Further analysis and investigation of the results in

section 6.2 is presented in their corresponding sections. Lastly, possible improvements to

the system are proposed and discussed.

7.1 System results

The collection of vibration data from the deployed devices proved that the system worked

as intended and thus pass AC1. Furthermore, the provided data in table 6.2 shows that the

data was received and logged in order. This can be seen by looking at the second value

which is the timestamp. Thus the system passes AC2. Looking at the same sample, the

fourth value is the current battery level, proving that the device provides diagnostic-data.

The third value is the local timestamp, if this timestamp is less than the local timestamp

in the last received message, the end-device has restarted. This can be used by the server

to detect if an end-device has reset. Also if an end-device hasn’t been heard from in more

than 15-minutes, it can be assumed that said device is either dead or out of reach. This is in

accordance with AC10. During transmission the device had different LED’s toggled, this

was confirmed visually and is in accordance with AC13. Furthermore in the section 5.2 it

can be seen that headers for peripherals have been provided. Some of these have been used

for debugging, this is in accordance with AC14.
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A screenshot of the results from the calibration of one device is provided in fig. 6.25. This

shows that the accelerometer offset is properly set. However, the accelerometer is not

calibrated to have equal values relative to each other. This means that a measured value on

one device may deviate from the same measurement on a different device, this is not ideal.

Thus the system fails AC3. However, this result also shows that the device indeed was able

to provide debug data, thus passing AC12.

The end-device was able to synchronize with the RT-server as seen in section 6.2.1, this

is in accordance with AC4 and the limitations stated in section 1.3. However, 2 system

configurations have been used to show this. Further testing should be done with a complete

network and deployment. The server was able to synchronize with a time-server, this can

be seen in section 6.2.5, thus passing AC5.

In order to pass AC6 an end-device must be able to receive and apply configuration

parameters. This was done and is shown in section 6.2.7, the criteria are therefore passed. A

WDT(watchdog-timer) was utilized in order to handle unexpected errors. However, this was

never fully implemented. During transmission, the device turns off the WDT. The reason

was that the watchdog would trigger resets at a seemingly random rate during transmission.

The cause of the problem was never found thus the system fails AC7.

Lastly, each end-device is fully battery-driven, the battery-lifetime can be calculated using

the results in section 6.2.2. The battery lifetime expectancy varies with the period between

events and applications. The devices deployed averaged between 16 and 20 events per

day. Using the worst case of 20 messages a day as the scenario, the total airtime per day is

188.8 s × 20 = 3777.6 s. This result in a total daily(24 h) consumption of:

(19.75 mA × 3777 s) + (651 µA × 82 623 s) = 0.0356 A h (7.1)

Given that the Samsung INR18650-25R has a capacity of 2.5 A h[14] the expected lifetime

can be said to be approximately 70 days. This is a little more than 2 months, and is simply

put not a good result. Thus AC8 is not accepted. A further analysis of the battery-lifetime is

provided in section 7.3. The device was however portable and capable of transmitting data

from the office to remote gateways using TTN. Thus passing AC11. The device was also

able to enter and exit sleep mode as seen in fig. 6.18 and fig. 6.17, which is in accordance

to AC9.
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7.2 Synchronization and clock accuracy

This section will cover a deeper analysis of the provided results in section 6.2.1 and

section 6.2.6.

7.2.1 End-device clock drift

The end-device clock drift can easily be calculated using the results in section 6.2.6 by

using the timestamps in fig. 6.27 and fig. 6.28. The drift can be found by using the following

equation ineq. (7.4), the used variables are described in table 7.1.

TDserver = TEserver − TSserver (7.2)

TDdevice = TEserver − TSserver (7.3)

Tdrift =

(
TDdevice

TDserver

)
− 1 (7.4)

TSserver Server time at the start of the test.
TEserver Server time at the end of the test.
TSdevice Device time at the start of the test.
TEdevice Device time at the end of the test.
TDserver Total time passed from server perspective(actual time passed).
TDdevice Total time passed from device perspective (relative time passed).
Tdrift The clock drift for the device.

Table 7.1: Table describing the different identifiers in eq. (7.4)

The clock drift can then be calculated using the numbers from section 6.2.6 in eq. (7.4):

Tdrift =

(
2 688 737 s

2 687 343 s

)
− 1 = 5.19 × 10−4 (7.5)

The end-device clock is thus faster than the server-clock, making it deviate with approx-

imately 1.87 s per hour or 44.8 s per day. Even though no results are presented, the drift

of a second device was checked over a smaller period of time. Said device had a dif-

ferent drift than the one tested. Given the requirements for traditional DMS stated in

table 2.1, the device must be synchronized within a certain period of time in order to be
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usable in a DMS. Since the device is remote and wireless, this calls for the necessity of a

OTA-synchronization-scheme.

7.2.2 Synchronization accuracy

The synchronization was tested on the private-network with DR = 5 and DR = 0. Based

on the results stated in section 6.2.1, it was possible to achieve synchronization within

±223.1 ms with DR = 5 and ±140.4 ms with DR = 0. However as seen in both fig. 6.8

and fig. 6.12, there is a constant positive deviation, so improvements can be made in order

to lower this deviation. Comparing this result with the result in section 2.1, there is a large

difference in the result. There are a lot of potential error-sources, like the gateway which

runs an instance of Linux and a NodeRED application. These are not RT-compliant in the

least were as [2] used all embedded hardware. So the deviation can be somewhat justified,

furthermore the system in fig. 5.20 has the potential to be deployed over a quite larger area.

Looking at fig. 6.5 and fig. 6.9 it is clearly spikes were the synchronization is way off. This

is due to sync-messages(uplinks) being re-sent, this should be addressed in the future, as

the spikes are quite severe in proportion. Looking at fig. 6.5 again, the deviation makes a

sudden "jump" at message 70. This is because of the gateway configuration. The gateway

is configured to hold 1 downlink in the downlink-queue, which is the least amount of

messages it can hold. This causes a constant deviation upon uplink re-transmissions. If an

uplink is sent and received but the confirmation sent to the end-device is never received.

The uplink is still forwarded to the server, and it will create a callback with a timestamp.

However, since the end-device never received a confirmation it will initiate a new message.

In the meantime, the callback has been made. The downlink corresponds to an earlier

message, causing the timestamp to shift approximately the time between the first and second

messages. This should be addressed as it makes the synchronization-scheme quite unstable.

Furthermore, the synchronization was tested using only one device. How the scheme holds

up with several devices, is not known.

7.3 Battery lifetime expectancy

As earlier stated in section 7.1 the estimated battery-lifetime of an end-device was estimated

to be 70 days. One of the biggest factors here was something that can be considered as a

bug on the RN2843. A post[26] written June 2019 was found on a forum-site, it stated that
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7.3 Battery lifetime expectancy

others had the same issue. So according to the LoRaWAN-parameters[4] the maximum

payload length varies with the Data-rate. The limitations are 51 B for DR = 0 and 222 B

for DR = 5. The RN2483 is programmed to act according to these limitations and return a

invalid_data_len-response whenever these are violated. However, after a random amount

of messages sent, the RN2483 enforces that 51 B is the maximum payload length for all

data rates. Whenever this happens, no more messages can be sent from the RN2483 before

it has been fully reset. This was solved by making the max payload size 51 B, however, this

increased the number of sent messages from 5 messages to 21 for each event. In addition to

this, each message is sent as a confirmed message. This is to guarantee that it is received

by the . A lot of the messages fail to transmit the first time. Such that the actual amount

of messages sent is often surpassing 30. This can be seen in fig. 6.14 where 30 messages

were sent during 1 event. This consumes considerably more energy and contributes to

unnecessary large consumption. The consumption without sending any event-messages

has been calculated in eq. (7.6). The battery-time is then 160 days when sending messages

every 15-minutes. This is not even close to the theoretical estimations given by [6] in

section 2.3. However, the device should have the potential for a longer battery-lifetime.

If the system could be made such that it accepts message loss and maybe tested with a

different LoRa-transceiver, it could see an improvement in battery-lifetime.

(651 µA × 86 400 s) = 0.0156 A h (7.6)

As a simple end-device

The device was also tested as a simple end-device. In this mode the end-device sends

unconfirmed messages and with the accelerometer set at a 1.25 Hz sampling-rate. Given

that the payload is 10 B, using eq. (3.12) the air-times are 991.23 ms for DR = 0 and

46.34 ms for DR = 5. Given that a device is on air approximately 30 s each day, the total

amount of messages sent with DR = 5 will be 30 s
46.34ms ≈ 647. Using the results from

section 6.2.2 the daily consumption can be calculated as:

647 × 2.47 s × 7.64 mA + 84 801.91 s × 326 µA ≈ 11.1 mA h (7.7)

This with a theoretical battery capacity of 2 A h, the battery-life is approximately 180 days.

Furhtermore if the data-rate was configured to DR = 0 the amount of messages would be
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30 s
991.23ms ≈ 30. This results in a actual daily consumption of:

30 × 3.85 s × 20.1 mA + 86 284.5 s × 326 µA ≈ 8.45 mA h (7.8)

With the same theoretical battery capacity of 2 A h, the battery-lifetime can be calculated to

approximately 236 days.

Comparing these results still not in accordance with the theoretical result provided in

section 2.3, however, these are much better estimates than that of the deployed devices.

Given that the minimum power consumption was measured to 326 µA, there must be

something that drains power. Some of the sources to this are known, such as the battery-

circuit and the light-sensor. However, these are not solely responsible for the drain. Further

investigation is needed to identify the sources responsible for this drainage.

7.4 Vibration data analysis

The collected data from the 3 devices can be seen in section 6.2.3. The devices were set to

be triggered at 4mg, that means that device 1 and 2 starts recording at the moment the door

is pushed/pulled on. Device 3 is triggered whenever the door-handle is operated. Devices

1 and 2 were deployed on the same surface thus the data from these two should correlate.

This can be seen in fig. 6.20 - fig. 6.22. Since the X-axis is the vertical axis, the forces can

be seen as very subtle. This is because the device is only exposed to vibration at the actual

moment the door is opened and slammed shut. Studying fig. 6.20 this can be clearly seen at

Device 2, the first spike is subtle were as the second spike is quite large. This is from the

slamming of the door and the oscillations that goes through it afterward. From fig. 6.3 it

can be deduced that the Z-axis on devices 1 and 2 should measure the largest force, this can

be confirmed by examining fig. 6.22. The most force detected was around 0.1g on device

2, this is to be expected due to the placement of the device. By looking at the spikes in

fig. 6.22, it can clearly be seen when the door was opened and closed, especially for the data

of device 2. A clear positive force can be seen followed by a halt, then it lingers for about 2

seconds before a clear negative force and some vibrations. The first spike is from opening

the door, the halt is from the person walking through the door, and finally, the last spike is

from the closing motion. Furthermore, a clear correlation can be seen between devices 1

and 2, in all the plots. The data aligns very well even though they are only timestamped by

the server, not by the end-devices. Looking at the range of forces recorded, the sensitivity
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should have been increased for both devices.

Looking at the plotted data for device 3 in fig. 6.23 it can be seen that a swift distinct

vibration is detected after 0.8 seconds. This vibration comes from the lock cycling upon

opening the door. The door has a spring-loaded door lock which cycles every time it is

opened or closed. So device 3 is triggered by the door handle, then after 0.8 seconds the

door is pulled open. This data does not correlate well with the data from device 1 and 2

since it starts recording before they are triggered.

The devices were able to provide readable data, which do give information about their

environments. The data was aligned well, even though the devices were not synchronized.

The devices were never deployed out in the real world, only locally. A full-fledged

deployment should be done in order to test the system further and to collect more valuable

data. Also, an investigation if time-stamping messages combined with OTA-synchronization

could improve the accuracy of the system. The scheme is not proven to hold up if the

number of devices increases, thus a larger more comprehensive investigation is needed.

Finally a plot of the recorded light levels for device 1 has been plotted in fig. 6.24, this is not

directly a part of the assignment. However, as seen in the plot, the light varies throughout

the day according to the day-light. The dip in the plot at 11:00 is due to the office being

vacant. There are automatic lights in the office. This proves that such a device can gather

several different kinds of information.

7.5 Areas of improvement

Battery life

As earlier stated, battery life of 70 days is not adequate. Calculations show that the device

may have a theoretical battery-life expectancy between 180 and 230 days dependant on

the data-rate used. Even though this is an improvement, more could be done. The circuit

could be designed better, using transistors to turn parts of the circuits on and off upon

use. Furthermore another RF-transmitter could be used. Because of the bug described

in section 7.3, the device ends up sending up to 6 times more messages than necessary.

Switching out the RN2483 with another transmitter might do the trick. The RN2483 can

also take direct radio commands skipping the mac-layer, so this might be a solution. This,

however, requires a much more complex driver. The Atmega324PB is not specialized for
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low-energy solutions, neither is the MPU6050, there might be better options. That being

said, an ultra-low power design was never the intent. The intent was to create a DMS using

LoRaWAN for communication, which has been done.

Full system deployment

As of today, the deployment has been done in two parts. Using the TTN as a service

provider and with a private network. Further development of the private network can be

done, implementing a server that can be used to synchronize and as an MQTT-broker. In

addition, a more elegant and dynamic way of applying configuration parameters could

be implemented. This would make a more complete end-to-end solution. Also, the

synchronization scheme needs more work. As discussed in section 7.2, the scheme has

some bugs, causing a constant deviation due to the en-queuing of messages. A better more

stable solution is needed in order to deploy a stable system. Improvements could also be

done in terms of synchronization accuracy as well. Lastly, the system should be deployed

and tested in the field. This could be done by deploying devices along-side railway-bridges

or similar. Data collected from such a deployment could, for instance, be used for analysis

to investigate structural integrity, and could prove valuable. This was the intent from the

start but never came to fruition.

End device

In addition to the hardware design mentioned in section 7.5, the end device needs more work

with the software. The end-device is currently not able to recover from unexpected errors,

so a better WDT implementation is advised. Furthermore, the RTC-clock drift is quite big,

reducing this would also be preferable. A solution is to implement an actual RTC-module,

this would improve both accuracy and SW complexity. Furthermore improving the total

amount of memory would be ideal, the current solution is to use an internal FIFO-buffer

on the MPU6050 to store accelerometer-data. In order to record longer time-series with

more resolution, more memory is needed. This could also enable the device to record data

throughout an entire event. And after, when idle, send a large amount of data continuously.

Furthermore, a better calibration scheme should be implemented, as is the calibration only

sets the offset. However, the sensitivity and actual measured force are not calibrated. A way

to measure and set a constant gain, in order to calibrate all devices to measure the exact

same amount of force is advisable. The results presented in this paper might not be exact
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measurements.
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Chapter 8
Conclusion

A full-fledged DMS designed to collect vibration-data has been suggested and implemented.

The thesis has proved that such a system is able to remotely collect vibration-data and send

said data to a server using LoRaWAN as infrastructure.

An embedded design has been proposed and implemented as a vibration-sensor. The design

was realized by ordering several assembled boards, which were calibrated and deployed to

collect different types of vibration-data. During the deployment, an investigation was done

to estimate battery-lifetime expectancy and synchronization properties. The system has

been proved to work and was able to collect vibration data which were stored on a server as

.csv files.

Most of the acceptance criteria were satisfied. Most of the failed criteria were not of

vital importance for the complete solution and resulted in a lower-battery lifetime and less

precise vibration measurements. The device was never able to fully handle unexpected

errors, making the system more fragile and prone to errors.

Even though a full-solution was not deployed the different concepts and use-cases were

proven to work.
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Chapter 9
Further Work

The following list of suggested work is based on the discussion in chapter 7.

Suggestions

• A re-design/improvement of the end-device HW to improve battery life.

• Reduce the number of messages needed for the end-device to transmit data.

• Improve the RTC-accuracy to get a more reliable clock on each end-device.

• Improve the calibration scheme in order to get consistent measurements across

end-devices.

• Improve the reliability and accuracy of the synchronization-scheme.

• Create a single complete solution implementing both data-logging and end-device

synchronization.

• Find a suitable application and deploy the system on a larger scale.
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Appendix A: The Things Network

A1: Application server GUI
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A2: Device control panel
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Appendix B: HW End-device

B1: Schematic



B2: Part list

Designator Description Value Package
18650 Li-Ion Battery Clip 18mm cell - Through Hole

C1, C2 SMD Capacitor 4.7 µF SMD 0603
C3-C6, C10, C11, C13 SMD Capacitor 1 µF SMD 0603

C7, C8, C9 SMD Capacitor 20 pF SMD 0603
C12 SMD Capacitor 10 nF SMD 0603

C14, C15 SMD Capacitor 5 pF SMD 0603
D2, D3 LED, Red - SMD 0805
D1, D4 LED, Yellow - SMD 0805

D5 LED, Green - SMD 0805
J1, J6, J10, J11 Board-To-Board Connector - Through Hole

J2 Micro USB Connector - SMD
J3 Wire-To-Board Connector - Through Hole

J4, J7 Board-To-Board Connector - Through Hole
J5 Coaxial Connector, MCX - SMD

J8, J9 Board-To-Board Connector - Through Hole
Q1 Phototransistor - SMD 0805
R1 SMD Chip Resistor 2 kΩ SMD 0805
R2 SMD Chip Resistor 1.74 kΩ SMD 0805

R3, R4 SMD Chip Resistor 10 kΩ SMD 0805
R5 SMD Chip Resistor 1.65 kΩ SMD 0805
R6 SMD Chip Resistor 40 kΩ SMD 0805
R7 SMD Chip Resistor 255 kΩ SMD 0805
R8 SMD Chip Resistor 174 kΩ SMD 0805
R9 SMD Chip Resistor 412 kΩ SMD 0805

R10, R11, R12 SMD Chip Resistor 300 Ω SMD 0805
S1, S2 Tactile switch - SMD Button

U1 8 Bit MCU, AVR Family Atmega324PB 44-pin TQFP
U2 Motiontracking MEMS MPU6050 24-pin QFN
U3 RF Transceiver RN2483 RM
U4 Battery Charger MCP73830T 2x2 TDFN-6
U5 LDO voltage regulator NCP718ASN250 TSOT 23 5
Y1 Crystal 1.8432 MHz Through Hole
Y2 Crystal 32.768 kHz SMD
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B3: PCB trace



Appendix C: Private gateway

C1: Gateway LoRa configuration
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