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Abstract

Docking is considered a complex, high-risk process where a vessel must follow the rules of the
harbour, avoid both static and dynamic obstacles, reach the desired docking point, and hold its
position while awaiting fastening to the dock. Autonomous docking is a vital part of achieving
ship autonomy, and has been researched since the 1990s. It has proven to be a difficult task,
due to significantly reduced manoeuvrability during docking and nonlinearities, to mention
some of the more essential challenges. Techniques such as optimal control theory and fuzzy
control logic have been proposed to solve the task of autonomous docking. These methods
have produced noteworthy results but also have some drawbacks. One prominent example
is the need for reliable and good mathematical models, coping with inherent nonlinearities
and varying conditions (including speed, weather etc.). Other limitations are dependencies
on lower-level controllers, and for some methods high computational requirements during

operations.

In recent years, a data-based field of study called deep reinforcement learning (DRL) has
successfully been applied to some continuous control problems of marine vessels in simula-
tions. Deep reinforcement learning optimises decision-making problems through exploring
actions in an environment and receiving feedback on performance. Recent developments in
DRL have led to successful solutions of previously unsolved tasks by otherwise promising
data-based approaches. Deep RL is, for instance, able to utilise sensor information to create
functional control laws and end-to-end solutions. Using DRL to create docking models helps
towards avoiding several of the drawbacks of previous methods. A DRL-based docking model
can handle uncertainties in the models of the marine vessel and harbour and utilise direct
sensor information. Additionally, Deep RL-based models may benefit from having access to
manoeuvring data from the ship master during learning or retraining, but the method does

not need it.

The main objective of this thesis is to explore the possibility of using deep reinforcement
learning (DRL) to create an end-to-end harbour docking system for a 3 degrees-of-freedom
(3-DOF) fully-actuated autonomous surface vessel, and analyse its performance and explain-

ability. The DRL-based docking model is created through a progressive methodology, first



solving tasks such as berthing and target tracking, before combining these solutions into
an end-to-end docking model. The docking model can control a vessel efficiently from just

outside the harbour to a berth, and hold its position once at the berth.

The end-to-end DRL-controller uses information about the vessel’s position relative to the
harbour, to avoid collisions and can (up to a certain extent) handle unforeseen ocean currents.
The DRL agent solves all these tasks by controlling both thruster angles and forces. The
DRL-based control law is, therefore, able to both replace thruster allocation, the traditional

controllers and guidance systems.

The DRL-based model was analysed using Shapley additive explanation (SHAP), a technique
from the field of explainable AI (XAI), to get insight and understanding of the model. Shapley
additive explanation was used to find the states’ relative contributions to the agent’s selection
of thrust, and thereby provide insight into certain aspects of the DRL-agent’s reasoning. The
reasoning was analysed both from general point of views, and for given events at specific
moments. [t was demonstrated that such insight, provided by SHAP, could be used to improve
the DRL-agent.

Two different DRL-algorithms were explored, namely proximal policy optimization (PPO)
and deep deterministic policy gradient (DDPG). It was found that PPO was easier to adapt to
the docking phases, where PPO was equally or more successful on all encountered aspects

of docking.

The result of this thesis shows that DRL can be useful to solve several aspects and the entire
docking problem, creating models with high accuracy and efficient trajectories. The proposed
use of SHAP for analysing the behaviour of DRL-based controllers shows promising results
of gaining better insight. It consequently makes it easier improve solutions and increases
the trust of DRL-based models. Even though DRL-based controllers were found using a

simplified simulator, the methodology can be extended to real systems.
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Sammendrag

Automatisk dokking er viktig for a realisere autonom skipsfart, og har blitt forsket pa siden
1990-tallet. Dokking ses pa som en kompleks heyrisikoprosess, der et fartey trenger a folge
havnens regler, unnga bade statiske og dynamiske hindringer, na det enskede dokkingspunk-
tet og holde sin posisjon mens det venter pa a bli festet pa en trygg mate. Dette har vist seg
a veere en vanskelig oppgave, blant annet pa grunn av betydelig redusert mangvrerbarhet

under dokking og faren for kollisjoner og andre uhell.

Teknikker som optimal kontrollteori og fuzzy-logikk (eng. fuzzy logic) har blitt foreslatt
for & lese oppgaven med automatisk dokking. Disse metodene har noen ulemper. Et viktig
eksempel er behovet for palitelige og gode matematiske modeller. Utfordringer med a lage
gode matematiske modeller ligger i & handtere iboende ulineariteter og varierende forhold
under dokking av et fartey, slik som vekslende hastigheter og veerforhold. Andre utfordringer
med tradisjonelle metoder inkluderer blant annet avhengigheter av lavniva kontrollsystemer

og meget hoye beregningskrav i kontrollsystemene, om bord pa skipene.

De siste arene har et felt innen databaserte tilneerminger, kalt dyp forsterkende leering (eng.
deep reinforcement learning, DRL), blitt brukt med gode resultater pa endel tilfeller av
kontinuerlig styring av farteyer i simuleringer. Dyp forsterkende leering (DRL) optimaliserer
lgsninger pa beslutningsmessige (eng. decision-making) problemer. Dette skjer ved at
leeringssystemet selv utforsker handlinger i et miljo, og mottar tilbakemeldinger pa det som
er oppnadd. Nyere utvikling innen DRL har fort til vellykkede lgsninger pa tidligere ulgste

oppgaver sammenlignet med andre lovende databaserte tilneerminger.

Ved a bruke DRL for & styre et fartoy til kai (kalt dokking, fra engelsk «docking») unngas flere
av ulempene med tidligere brukte metoder. En DRL-basert modell for dokking kan handtere
usikkerhetene i modellene til bade fartey og havn, og kan koples direkte til styringsorganene
(aktuatorene), i en ressurseffektiv ende-til-ende-lgsning. I tillegg kan DRL-baserte modeller
dra fordel av tilgang til manegvreringsdata fra fartey under leeringen, men metoden krever
det ikke. Dyp forsterkende leering (DRL) er ogsa i stand til a bruke sensorinformasjon direkte

for & lage funksjonelle styringsregler (eng. functional control laws).
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Hovedmalet med denne masteroppgaven er a utforske muligheten for a bruke dyp forsterk-
ende leering (DRL) for & lage et ende-til-ende dokkingssystem for et 3-frihetsgraders (3-DOF)
fullstyrt autonomt overflatefartoy, og analysere ytelsen og forklarbarheten til kontrollreglene.
Den DRL-baserte dokkingsmodellen er opprettet gjennom en progressiv metodikk, som forst
laser oppgaver som a legge til kai og malsporing (eng. target tracking), for disse kombineres i
en ende-til-ende dokkingmodell. Ende-til-ende dokkingsystemet leder fartayet pa en effektiv
mate fra like utenfor havnen helt fram til kai, og holder fartoyet ved den angitte plasseringen

ved kaia.

Ende-til-ende DRL-kontrolleren bruker informasjon om farteyets posisjon i forhold til havna
for & unnga kollisjoner, og kan til en viss grad handtere uforutsette havstremmer. DRL-
agenten lgser alle disse oppgavene ved & kontrollere bade thrustervinkler og krefter. Den
DRL-baserte modellen er derfor i stand til bade a erstatte thrusterallokeringen, de tradisjonelle
kontrollerne og feringssystemet. Den DRL-baserte modellen ble analysert ved bruk av en
tilpassning av Shapley additiv forklaring (eng. Shapley additive explanation, SHAP). Dette er
tilpasning av en teknikk fra feltet for forklarbar AI (XAI), og har som formal a skaffe innsikt
i og forstaelse av DRL-baserte dokkingmodellen. Teknikken presenterer mal pa tilstandenes
relative bidrag til agentens valg av thrustere, og gir dermed innsikt i enkelte aspekter av
DRL-modellenes resonnement. Resonnementet ble analysert bade fra generelle synspunkt og
for gitte hendelser pa bestemte gyeblikk. Det ble vist at slik innsikt fra SHAP kunne brukes
til a forbedre DRL-dokkingmodellen.

To forskjellige DRL-algoritmer ble utforsket, proksimal politikkoptimalisering (eng. proximal
policy optimisation, PPO) og dyp deterministisk politikkgradient (eng. deterministic policy
gradient , DDPG). Det ble vist at PPO fungerte like bra eller bedre enn DDPG for alle

leeringsaspektene i denne oppgaven rundt dokking.

Dette prosjektet viser at DRL kan veere nyttig for a lese dokkingsproblemer, og lage modeller
med hey neyaktighet og effektive baner. Den foreslatte bruken av SHAP for & analysere
atferden til DRL-baserte modeller viser lovende resultater med tanke pa a skaffe seg bedre
innsikt i resonnementet. Dette gjor det folgelig lettere & forbedre lasningene, og kan gke
tilliten til DRL-baserte modeller. Selv om de DRL-baserte kontrollerne ble funnet ved hjelp

av en forenklet simulator, kan metodikken utvides til reelle systemer.
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Preface

This thesis is a result of my work in the fall of 2019 at the Department of Engineering
Cybernetics at the Norwegian University of Science and Technology, as part of the course

TTK4900. It was performed under the supervision of Associate Professor Anastasios Lekkas.

The main contribution of this thesis is a progressive methodology to solve the docking
problem for a marine surface vehicle, using deep reinforcement learning (DRL), and how to
analyse the reasoning of the model, using explainable AI (XAI). The thesis is a continuation
of my specialisation project, where path following for a fully-actuated vessel using DRL was
studied. In the specialisation project, the deep deterministic policy gradient (DDPG) from
Lillicrap et al. [1] was adapted based on an implementation by OpenAlI [2]. The dynamics of
a container vessel model was also implemented in the specialisation project, based on vessel
model presented in Martinsen et al. [3]. The DDPG implementation and vessel model from
the specialisation project are reused here but adapted to the new scenario of docking. The
main contributions come, however, from the DRL-algorithm proximal policy optimization
(PPO), which needed to be added due to poor performance of the DDPG agent in several of
the docking problems.

For continuation, relevant information from the specialisation project is included here,
with some modifications. These chapters include background and theory material on DRL,
artificial neural networks (ANNs), dynamics of surface vessels and implementation of DDPG
and the vessel model. A complete list of the material included (with minor modifications)
from the specialisation project is Chapter 1 (some paragraphs in Section 1.1), Chapter 2
(Section 2.2-2.3.3.3), Chapter 3 (Sections 3.2.1 and 3.4.1) and Appendix A.1.

This assignment is inspired by Martinsen et al. [3-5]. Martinsen et al. [3] developed an
algorithm of autonomous docking using optimal control theory, where their representation
of the harbour and vessel as a convex set is reused in this thesis. Martinsen et al. [4, 5] was

the inspiration to use Gaussian-shaped reward functions, for some purposes.

Deep RL can solve several complex continuous problems. It does however require extensive

computations, and several libraries are therefore used to save computational time. The



methods are implemented in the open source programming language Python, using libraries
such as Tensorflow [6], Numpy [7], Matplotlib [8], SHAP [9] and Pandas [10], all available as
open source code. The DRL algorithms PPO and DDPG, were both based on an open source
implementation by the organisation Spinning Up [2]. They were modified in this thesis, to
better correlate with the original algorithm and fit the docking problem better. This includes
adding normalisation of state vector, tuning of parameters, adding batch normalisation,
adding transferring of weights between DRL agents and changing handling of the action
space by scaling and saturation. The report is written in Latex, and most visualisations are

produced using the library Matplotlib and the webpage Draw Io [11].

The software was run on a Lenovo Yoga Pro 2 and a Dell workstation provided by NTNU,
neither with GPU, using the Linux operating system. The learning processes of the DRL-
based controllers needed high computational capacity, witnessed through extensive learning
runs, ranging from several hours to several days. In an effort to be able to run quicker, a
considerable amount of time was used to adapt the solution to an Intel-based university
internal high-performance computing facility. This did, unfortunately not improve the speed

of the process, due to difficulties utilising parallelisation successfully in the environment.

I wish to thank supervisor Anastasios Lekkas for invaluable discussions, with deep insight
and suggestions of how to develop docking DRL-algorithms, and how they should be tested.
I also wish to thank Andreas Bell Martinsen for discussing his docking article [3], and
for advice on how to build on his work in developing the proposed autonomous docking
system design. In addition I wish to thank deck officer Bjorn Erik Mellomsether and harbour
captain Svein Olav Fagerdal for clarifications about harbours in general and specifications of

Trondheim harbour.
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Nomenclature

Acronyms
Al Artificial intelligence
ANN Artificial neural network
COLREGS The international regulation for preventing collision at sea
DDPG Deep deterministic policy gradient
DL Deep learning
DOF Degree of freedom
DP Dynamic positioning
DRL Deep reinforcement learning
MDP Markov decision process
ML Machine learning
MPC Model predictive control
NED North-East-Down frame
POMPDP  Partially observable Markov decision process
ReLU Rectified linear unit
RL Reinforcement learning
SGD Stochastic gradient descent

TD Temporal difference
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Symbols

n Position vector for marine vessel

% Velocity vector for marine vessel

a Learning rate

1 Heading, yaw

w Weight vector

b Bias vector

J(0) Loss/objective function of parameter vector 0

Q(s,a)  Action-value function

V(s) State-value function

R(s, a) Reward-function given by state s and action a
S State-space

A Action-space

R Reward-space

The cartesian distances from origin of vessel to a target

Y in body coordinates.

¥ The relative difference between heading of vessel and a target

l A binary variable describing whether the vessel is on land.

h A binary variable describing whether the vessel is inside a harbour
- Linear and rotational velocities in body frame of the vessel,

called surge (forward velocity), sway and yaw rate (SNAME convention)
dops, 1,501,5 Describes the relative distance and angle from the vessel to an obstacle, given in body.
fa The fraction of a vessel area inside a target rectangle

fa The derivative of the fraction of vessel inside a berth-rectangle
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Chapter 1

Introduction

1.1 Background and previous research

The use of autonomous systems is increasing, ranging from robotic vacuum cleaners, lawn-
mowers and unmanned busses, to name a few. Autonomous marine vessels are an example
a of a still largely emerging but very prominent field within autonomous systems. There
is increased interest in several fields of autonomy at sea, such as transportation, environ-
mental monitoring, seafloor mapping, oceanography, and military use. There have been
developed full-scale prototypes of autonomous marine surface vessels, such as Falco [12]
which represent the world’s first fully-autonomous ferry. Even more are being developed,
for instance Yara Birkeland [13], which is the world’s first autonomous zero-emission bulk
freight ship, respectively. According to Rolls-Royce Marine (now part of Kongsberg Mar-
itime), autonomous ships will be a common sight and play an important part in the oceans
by 2030 [14, 15].

There are several potential advantages of autonomous marine systems, such as the ability to
go into places and situations where humans cannot, elimination of human error, reduction
of crew costs, increase in the safety of life, more efficient use of fuel as well as decrease
of greenhouse gas emissions [16—-19]. Over 90 % of the global trade is carried by sea and
studies indicate that 60 % of accidents on merchant ships are due to human error [20].
Autonomous systems are therefore believed to be a key element in achieving a competitive
and sustainable shipping industry in the future, changing transportation systems, operations
and business models [18, 21, 22]. The MUNIN-project (Maritime Unmanned Navigation
through Intelligence in Network) has for instance predicted savings of over 7 million USD

over 25 years per autonomous vessel in fuel consumption and crew costs [23].



2 CHAPTER 1. INTRODUCTION

Despite recent theoretical and practical achievements within the field of autonomous marine
vessels, several challenges remain. These challenges must be addressed before the potential
of safe, efficient, accurate, and reliable operation in a harsh marine environment can be

realised in a viable manner. One of these challenges is docking.

Docking refers traditionally to the process of reaching a berth in a controlled manner [24-26].
A berth is a fixed location with a structure facilitating fastening of a vessel along a quay,
jetty or similar, in order to get off and on the vessel, safekeeping or maintenance. Docking is

usually divided into several steps [27-29]:

+ The first step consist of moving from open seas into confined waters, where the vessel

needs to adapt to the local speed regulations, and start heading towards the desired

berth.

+ The second step is berthing, which starts when the vessel is in the proximity of the
desired berth .Berthing is the specific process of positioning a vessel at the berth and

may be likened with parking a vessel in a designated area.

« The last step is mooring, fastening the vessel to the dock. How the docking is performed
depends on several factors, such as the design of the ship and quay, weather conditions,
available personnel and whether help from smaller vessels such as tugboats (tugs) is

involved.

During docking, the shipmaster can be forced to maintain a specific position, for instance
immediately before mooring when the vessel is close to the quay. This operation has close
ties to dynamic positioning. Dynamic positioning (DP) can be defined as the procedure
of maintaining a vessel’s position and heading (fixed location and pre-determined track),
exclusively utilising thrusters [30]. The position is maintained by producing thrust in multiple
directions, obtained typically by applying either tunnel thrusters and main thrusters or only
azimuth thrusters. DP has proven to be highly efficient and useful in a multitude of settings

such as deepwater operations.

Docking of a vessel, is considered a complex and high-risk operation, needing high precision
and gentle control of the shipmaster to ensure safe operations [27, 29, 31]. The procedure
depends highly on the shipmaster’s experience/expertise and involves at times intensive
control operations, where several tasks need to be carried out concurrently. To ensure
safe operations, the shipmaster needs to know the ship’s position precisely and be able to
predict the movement toward the berth. During docking, the vessel dynamics are highly
nonlinear, and predicting the behaviour is difficult, needing to consider numerous factors
such as actuator characteristics, wind effects, wave and current disturbances. The vessel has

significantly reduced manoeuvrability during docking as well, due to factors such as operating
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in a confide area with reduced speed, which reduces the utility of the main propulsion/rudder.
[27, 28, 31, 32]. Reduction in speed also means that disturbances such as tides, wind, and
ocean currents have more effect, making manoeuvering even harder. Due to the significant
reduction in manoeuvrability of larger vessels, auxiliary devices are often used to make the

approach safer and faster, such as tugboats [33].

The shipmaster is usually able to dock the vessel successfully. However, 70% of the insurance
claims from harbours are due to inappropriate ship handling, such as too rapid approaches,
tug errors and other pilot errors [31]. A majority of these errors are caused by simple mistakes
made by individuals. Autonomous vessels can potentially be able to reduce the occurrence of
at least some of these mistakes. Enabling new information and communication technologies
for autonomous vessels can on the other hand lead to new challenges and associated risks

that must be mitigated efficiently.

Autonomous docking has been performed on full-scale vessels in real life. Wartsild [34]
tested their autodocking technology on an 83-meter long ferry owned by the Norwegian
operator Norled in 2018. The testing started 2000 meters from the berth in transit speed,
and the autonomous system gradually slowed down the speed and manoeuvred the ship to
the berth. Rolls-Royce (now part of Kongsberg Maritime) and a Finnish state-owned ferry
operator Finferries [12] successfully demonstrated the world’s first fully autonomous ferry

Falco later the same year, conducting not only docking but also collision avoidance.

A limited number of studies focusing on autonomous docking of marine vessels has been
published. Examples of proposed techniques are optimal control theory, expert systems,
fuzzy logic controllers and artificial neural networks (ANNs) [27, 33]. One key distinguishing
factor has been to what degree the solutions rely on a well-defined mathematical model of the
dynamics of the vessel and its surroundings. Example of methods using a well-defined model
of the vessel are often found in optimal control theory, with examples such as target tracking
[35], model predictive control [3], optimal preview sliding mode controller with adaptation
mechanisms [36] and quasi-real-time optimal control scheme [37]. Several of these systems
solutions often involve a cascade of controllers, constructed of three independent systems,
called navigation, guidance and control [38]. The control system consist of lower-level
controllers which satisfies a specific control objective, such as speed control and course
control. Navigation estimates the state of the vessel, and guidance system performs the
higher-level tasks of planning the trajectory of the vessel and provide references to the

control system.

A significant challenge of docking is its highly nonlinear nature, making it hard to establish
reliable mathematical models of ship manoeuvring at all speeds and under all circumstances,

used in traditional control-systems. Trying to overcome these challenges relating to the
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lack of well-defined mathematical models, previous research have focused on fuzzy control

[39, 40] and supervised learning using artificial neural networks (ANNs) [28, 33, 41, 42].

Fuzzy logic control is a heuristic approach that tries to embed the knowledge and critical
elements of human thinking into the design of nonlinear controllers [43]. A difficulty with
fuzzy rules is defining rules for ship docking in all situations, including weather influences

and other disturbances that may arise.

Artificial neural networks (ANNs) are a set of algorithms designed to recognise patterns,
loosely modelled after the human brain [44, 45]. ANNs have been used to learn how to dock
based upon manoeuvring data [33], which is a technique within supervised learning. One
limitation of these methods is that the they can only be as good as the explicit domain knowl-
edge and experiences provided, using collected or simulated training data [42]. Supervised
learning methods will in essence copy the behaviour with all inherent limitations and any
bad practices. Deep Reinforcement Learning (DRL) is one way of avoiding depending on
learning all the necessary behaviours directly from humans. Deep reinforcement learning
(DRL) is a technique were the properties of the ANNs are exploited, but with not need of
explicit need of manoeuvring data. This means DRL-methods can be capable of finding an
acceptable, equally good or sometimes even better way of solving a problem than humans.
There are already published a few articles successfully demonstrating the use of DRL for

aspects of theoretical autonomous docking.

Reinforcement learning (RL) is also known as neuro-dynamic programming or approximate
dynamic programming. It is a theory developed by the artificial intelligence (AI) community
for obtaining an optimal performance of a system, accounting for uncertainties of the
environment [46]. The main idea in RL is that an agent learns, by interacting with the
environment, to find a behavioural policy optimising some objective given in the form of
cumulative rewards. The environment may be stochastic, and the agent may even only
perceive partial information about the current state. RL algorithms have demonstrated to be
capable of tackling a wide range of control problems, ranging from robotics and healthcare to
self-driving cars and finance. All these applications consist of finding a sequence of actions
to be performed in an uncertain environment to achieving predefined goals. RL proposes a

formal framework for solving such tasks.

Reinforcement learning has close ties to optimal control theory, both trying to maximise
an objective function over time [45]. A behaviour policy is the equivalent of a control law
in traditional control theory and solves the goal/objective in the best way possible [47].
The main distinguishing factor is that RL gives evaluative feedback, rather than instructive
feedback when creating these control laws. The evaluative feedback in RL is typically

given through an engineered reward function, using a scalar depending on whether an
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action improves on the given objective or not in a specific state. The RL algorithm uses this
evaluative feedback to find a mapping from state to action, called policy. This means that RL

evaluates the actions taken rather than instructing by giving correct actions [46].

The interest in RL was boosted when RL’s potential to deal with the curse of dimensionality
and modelling was discovered [47]. The curse of dimensionality concerns the explosion of
computational cost as the number of states increases, while the curse of modelling concerns
how to model the reality accurately. Being able to handle these challenges represented a break-
through in the practical application of RL to complex problems. Some of the achievements
were realised by combining RL with deep learning techniques, called deep RL (DRL). Deep
learning is a field within artificial intelligence, concerned with finding levels of abstraction
within raw data [44, 48, 49].

Deep reinforcement learning is most advantageous in problems with high dimensional state-
spaces and helps in tasks with lower prior knowledge because of its ability to implicitly
learn different levels of abstractions from data [50]. Through the development in DRL,
machines have attained a "super-human" level in playing Atari video game based on pixel
information [51, 52] and mastering the game of Go [53]. Through impressive results on
sequential decision-making problems in computer games, researchers started using DRL for
real-world applications such as robotics [54], self-driving cars [55] and finance [56]. DRL
has increased the applicability of RL for continuous control. Even so, challenges remain
for efficient exploration of the environment, generalizing good behaviour in a similar but

slightly different context, etc. To improve this, several algorithms have been proposed.

DRL is proved successful in controlling marine vessels in several tasks for both guidance and
control [4, 5, 57]. A few articles using DRL to solve select parts of the docking problem of a
marine vessel using DRL have recently been published, where few are related to unmanned
surface vehicles (USVs). These published works consist of solving problems such as docking
of autonomous underwater vehicles (AUVs), navigation in restricted waters of USVs, and
obstacle avoidance of USVs. DRL has also been used to solve tasks similar to marine dockings,

such as parking of ground vehicles [58, 59], and landing of aircraft [60, 61].

Anderlini et al. [62] used DRL to solve docking of an AUV onto a moving platform in 3 degrees
of freedom, by control of continuous thruster force and rudder angle. The agent was given
information about the continuous distance to the target and their derivatives and rewarded
if converging towards the desired pose, and penalised if crashing. The agent is trained on
only one scenario and close to the dock. The agent is however not given information about
the distance to potential obstacles in the environment, making this solution less capable to

generalise its knowledge to other docking scenarios.
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Amendola et al. [63] solved the problem of keeping a ship at the centre of a straight channel,
aligned with a guidance line. In this case the DRL-agent controls discretised rudder angles
and receives continuous information about the length to desired guidance line, distance to
the shore (channel sides), turning rate and velocity. The agent was rewarded when close
to the guidance line and with a low rotational element. Amendola et al. [63] gives the
agent information about the distance to obstacles, meaning thea agent might have some
generalisation abilities, but we are not presented with more test cases to verify this hypothesis.
A drawback of both these methods is the use of discretised control inputs, which can lead to

suboptimal control.

A successful DRL-agent finding a collision-free path through an area of static obstacles
is presented by Cheng et al. [64]. It uses continuous observations of obstacles and basic
measurements of the vessel’s operational states and controls discretised forces, and the agent
is rewarded based on vessels distance to obstacles, velocity and distance to the desired position.
Shen et al. [65] presented a DRL-agent performing automatic collision avoidance of multiple
vessels in restricted waters and incorporates environmental elements such as the vessel’s
manoeuvrability, human experience, and navigation rules. The algorithm uses discretised
course changes and is rewarded based on the distance to obstacles. This demonstrates a
hybrid approach, using heuristics to incorporate existing knowledge, and switches between

different controller modes, leading to a high number of design parameters.
Summarized the reasons for using DRL approaching the docking problem are:

« DRL has started to prove successful in controlling marine vessels in several tasks for
both guidance and control [4, 5, 57].

« DRL’s data-based approaches might help towards creating a more general approach
with less time spent on engineering a solution for each scenario, compared to more

traditional methods.

« DRL is well suited due to the possibility of using multiple sources of measurements,
especially important in restricted waters, where several sensors often are involved to

detect potential obstacles.

« Not necessitating previous knowledge of the ship dynamics or harbour area to learn
how to handle guidance and control. This means better handling of scenarios with

high uncertainty in the modelling and changing dynamics, such as in a harbour.

« DRL includes the possibility of creating end-to-end control laws, eliminating cascaded
control systems, where the resulting accuracy depends highly on the performance

of lower-level systems. This is especially important in the docking scenario, due to
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complexity of modelling, as discussed by Bitar et al. [66]. They experienced that the
PID-controller was unable to keep up with their Model Predictive Controller (MPC).

« In a harbour area, there is a need for swift decisions due to high-risk operations in
restricted waters. While it takes time to learn a control law with DRL, the computational

time is low during operations, compared to that of optimal control theory.

One of the most discussed issues using deep reinforcement learning is how to ensure safety
and reliability, due to the "black-box" nature of artificial neural networks. "Black-box" is
a term used for describing a system that "hides" its internal logic to the user. The lack of
explainability and transparency constitutes both a practical and ethical issue to users and
creators [67, 68]. Explainable artificial intelligence (XAI) has become an area of interest in
the research community. It tries to improve trust, by analysing, for instance, the degree of
unbiasedness (fairness), reliability, safety, explanatory justifiably, privacy and usability. To
increase trust, XAl can be used to create abstract explanations to find useful properties and
generating hypotheses about data-generating processes, such as causal relationships. It can
therefore be interesting to apply XAl-techniques to the RL created control law, to obtain

some comprehension into the logic of the control law.

Few works are conducted within reinforcement learning and explainable Al. Early research
shows that the decision-making processes of RL agents can be translated into human readable
descriptions [69, 70]. They are "post-hoc" interpretation approaches, meaning interpretations
made on a trained model, and provide some insights into RL agents decision -making process.
Lee [71] created a solution which derive a more comprehensible agent from a trained DRL
agent [71]. This DRL-agent is more comprehensible due to simpler and more easily human-

readable models, in addition to having comparable accuracy to that of the original RL-agent.

1.2 Goal and research questions

The goal of this thesis is to explore how to use deep reinforcement learning (DRL) to create
an end-to-end harbour docking system for fully-actuated autonomous surface vessel and
how to analyse the reasoning of the DRL-model using explainable AI (XAI). Docking consists
of several stages. In this thesis, we study the phases from when the vessel starts to slow
down its speed before entering the harbour, to when it reaches the desired berth. Mooring
is not considered in this thesis since it is not a motion control problem of the vessel. The
docking scenario of this thesis, consists of a simple convex harbour, without any additional
obstacles, and the only external force on the vessel is a constant current, which is a common

approach in research works dealing with ship control and guidance systems.
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A DRL-agent performing docking will need to meet several objectives, changing over different
phases of the docking process. The agent will need to handle both obstacle avoidance, speed
regulation, and convergence to the desired docking position. Additionally, the agent’s

behaviour should be interpretable since it is performing actions within a challenging area.

Based on the goal of the thesis and these problems, the following research questions were

formulated for this thesis:

« Isit possible to create an end-to-end model solving the complex multi-layer problem of
docking successfully, handling model uncertainties, the influence of unknown ocean

current and static obstacles?

» Isit possible to understand the reasoning behind the DRL-controller, using Explainable
Al (XAI) algorithms?

1.3 Contributions

This thesis has the following main contributions:

« A progressive methodology for creating an end-to-end docking controller, solving the
task of controlling a vessel from just outside a harbour to the desired berth, using
deep reinforcement learning (DRL). The performances of the resulting controllers from
the progressive methodology are analysed, such as accuracy when operating under

external disturbance.

« Comparison of the training process and performance of the proximal policy optimisa-
tion (PPO) and deep deterministic policy gradient (DDPG) in the initial phases of the

progressive methodology, showing consistent and good results using PPO.

+ Application of Shapley additive explanations (SHAP), an explainable AI (XAI) tech-

niques, to gain insight into the reasoning of DRL-based controllers.

Compared to previous work within DRL, the proposed docking model represents a more
complete docking operation, in a more thorough simulation of a fully-actuated vessel in
a harbour. The DRL-based controller uses state information such as the vessels velocities
and distance to the target and the closest obstacle, to avoid static obstacles, perform target

tracking and obey speed regulations.

The docking problem is solved progressively, given the complexity and challenges of the

problem. By designing the solution progressively, the individual phases can be confirmed sep-
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arately, before combining them. The suggested progressive methodology has the advantages

of being model-free and optimising a specific control objective.
The progressive methodology consists of solving the following learning phases:

« Controlling the vessel from proximity of a target to the target, and keeping it there, in

essence performing dynamic positioning.

+ Controlling the vessel from the proximity of the berth into the berth, and keeping it
there, without getting in physical contact with the quay.

« Controlling the vessel from just outside the harbour to the proximity of the berth, and

keeping it.

+ Performing the three previous phases into one integrated operation, controlling the
vessel from the start of the harbour to the berth, and holding the vessel in the desired
pose without physical contact with the berth.

« Performing the previous phase, but also obeying the velocity limits inside the harbour.

The two DRL-algorithms, proximal policy optimization (PPO) and deep deterministic policy
gradient (DDPG), were applied in this thesis. Initially, DDPG was applied; inherited from the
specialisation project. The performance was however not satisfactory, and PPO was tested

and found to be a good alternative.

It was investigated how to use Shapley additive explanations (SHAP) on the DRL-based con-
troller, to provide an intuition of the DRL-agents reasoning, and thereby increase the insight
and understanding of the control law found during learning. Shapley additive explanations
are used to explain supervised learning models, and is a technique from explainable Al There
is little previous work on how to use explainable Al in deep reinforcement learning. This is,
therefore, an initial study of how to use SHAP to analyse the relative contribution of a state

to the agent’s decision making, with little previous work on the use of explainable Al in DRL.
The thesis contribution is the result of the following steps:
+ Creating a simulator:

- Implementing a simulator based on the dynamics of the fully-actuated cargo
vessel with a pentagon-shape, a static convex harbour and a constant ocean
current, based on a part of Trondheim harbour. The vessel model is reused from

Martinsen et al. [3].

— Creating states to improve the learning of the DRL-based controllers, such as

distance to berth given in body-frame, distance to obstacles, area of the vessel
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inside a berth-rectangle and binary variables for when a vessel is inside the

docking area and harbour.
+ Creating DRL-based controllers solving the docking problem:

— Formulating the learning phase as a Markov decision processes (MDPs), which

involves designing action spaces, state spaces and reward functions.

— Adapting the DRL implementations by SpinningUp [2], to better fit with the
docking problem.

— Tuning and learning the end-to-end DRL-based models for each of the learning

phases of the progressive methodology.
« Analysing the performance and reasoning of DRL-based controllers

— Performing general analysis of the performance for all the phases, using numerical
values, illustrations and videos. The robustness of some of the phases is analysed

by subjecting the vessel to a constant ocean current.

— Apply SHAP to the DRL-based controller, and analyse the SHAP-values to gain
insight into the reasoning of the DRL-based controllers.

- Comparing the performance of the PPO- and DDPG-based controllers, from

several aspects of docking problem.
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1.4 Outline of the thesis

The thesis consists of six chapters, which consists of:

« Chapter 1 introduces the motivation behind the thesis, providing an overview of related

work, goal, research questions and contributions.

« Chapter 2 presents a theoretical background, explaining main concepts of docking,
kinetics and kinematics of marine vessels, before moving on to reinforcement learning

and explainable artificial intelligence (XAI).

« Chapter 3 presents the design and implementation details of this thesis. This includes
presenting the progressive methodology used to solve the docking scenario using
DRL algorithms. It is also explains how the DRL-based controllers can be studied and
improved with the application of a XAI technique.

« Chapter 4 presents the simulation results of the implemented DRL-based controller
of the progressive methodology, and analysis of the DRL-based controllers using the
chosen XAI technique.

« Chapter 5 discusses suggestions for future work.
« Chapter 6 gives a brief conclusion of the thesis.

+ Appendix A shows parameter values relevant to the behaviour of the container vessel

and harbour.
« Appendix B shows formulas for calculating are of polygon from vertexes.
+ Appendix C includes extra plots of learning phases.

+ Appendix D shows a few extra SHAP plots.
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Chapter 2
Theory

In this thesis a controller is created using deep reinforcement learning (DRL). The DRL
algorithm learns control laws through interacting with an environment, in this case the
vessel in a docking scenario. The DRL-based control laws were analysed using a technique

from explainable Al This chapter will give an introduction to :
+ Section 2: Aspects of docking.
« Section 2.2: Kinetics and dynamics of a marine vessel.
« Section 2.3: Reinforcement learning.

« Section 2.4: Explainable artificial intelligence.

2.1 Aspects of docking

The Bureau Veritas S. A. is an international certification agency and has created guidelines
for autonomous vessels [19]. Following the guidelines, any autonomous vessel should have
at least the same degree of safety, security, and protection of the environment as provided
by a conventional vessel having the same purpose of design. It is therefore crucial that the
autonomous vessels are designed to be safe in themselves, to the other vessels, maritime
infrastructures and the marine environment. The crew or remote operators should always

be able to regain control of an autonomous vessel in case of emergency.
In general, any vessel covered by the Guidance note should be capable of:
« Complying with all relevant international and local regulations

13
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« Managing, updating and navigating according to a predefined voyage plan while

avoiding collisions with any obstacles

« Maintaining a sufficient level of manoeuvrability and stability under various sea

conditions.
« Withstanding unauthorised physical or virtual trespassing

In this thesis, withstanding unauthorised physical or virtual trespassing is not part of the
scope. In these next subsections, voyage plan, obstacle avoidance and manoeuvrability are

discussed related to the docking scenario.

2.1.1 International and local regulations

All autonomous vessels must comply with the same set of rules and regulations as nonau-
tonomous vessels, as noted in the previous section. Currently, there exist few (if any)
regulations targeting autonomous vessels directly. Due to increased activity and develop-
ment within the field of autonomous vessels, the topic has received more attention. In
2015, the fiord "Trondheimsfjorden" in Norway was established as the first test area for
autonomous vessels. In addition to testing new technology, this area is also used to research
regulations, operations, and infrastructure needed for autonomous vessels [18, 72]. The
IMO has already started to address safe, secure, and environmentally sound operations of
Maritime Autonomous Surface Ships (MASS). The IMO and Norwegian Maritime Author-
ity ("Sjefartsdirektoratet”) are expected to publish regulations for Autonomous shipping

operations by 2023 [18].

Generally, there are several regulations related to activities at ports. Some of the principal
regulations in Norway and internationally are the rules of the road at sea (“Sjoveisreglene”)
[73], the maritime code (“Sjeloven”) [74], the harbor act (“Havne- og farvannsloven”) [75],
the International convention of life at sea (SOLAS), and convention on the International
Regulations for Preventing Collisions at Sea (COLREG) [76]. These regulations cover topics
such as collision avoidance, placement, and operation of lanterns and signals, responsibilities

to ensure safe navigation, shipbuilding and salvaging.

Of these rules and regulations, the harbour act, COLREGs, and SOLAS are of particular

interest in this thesis, and will be discussed in the following sections.
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2.1.2 SOLAS

A detailed plan of the voyage from berth to berth, including areas necessitating the presence
of a pilot [77], is required for all vessels by the SOLAS. In addition, SOLAS specifies a
minimum standard for the construction, equipment, and operation of ships, compatible with

their safety requirements [78].
A voyage follow the IMO Guidelines for Voyage planning [79] must:
« Take into account any relevant ship routeing systems
« Ensure sufficient sea room for the safe passage of the ship throughout the voyage
« Anticipate all known navigational hazards and adverse weather conditions
« Take into account marine environmental protection measures that apply

Factors that need to be considered are, for instance, the condition and state of the vessel,

relevant charts, current, tidal atlases, existing ships’ routing.

A somewhat more specialised plan is the port passage plan, which will connect the various
port sections the vessel is navigating through from the open sea to the berth [26]. This plan

will include the berth position.

The berth is allocated based on planned arrival, size of the ship, cargo etc. In the local
harbour of Trondheim a berth is given a number or name, and if necessary the navigational
coordinates [80]. The vessels will manoeuvre into its designated berth, between two marks
on the quay, until finally, it lies beside the fenders. Fenders are bumpers designed to absorb
the kinetic energy of a vessel berthing against a jetty, quay or another vessel [71]. They
are used to prevent damages to vessel and berthing structures. At Trondheim Harbour the

fenders diameter range from approximately 60 cm to 120 cm [80].

2.1.2.1 The harbour act

The harbour act was agreed upon by the IMO (international maritime organization) and
EU (European Union), to facilitate efficient and safe port operations and sea transport [75].
The Norwegian coastal administration is upholding these regulations within the confines of

Norwegian harbours.

The harbour act can supplement, clarify, or derogate from the general rules that seafarers

must follow, e.g., the rules of the road at sea ("sjoveisreglene"). The harbour act includes traffic
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regulations, e.g., sailing rules (including rules of speed), traffic management and injunctions

towards specific types of vessels regarding the path. The general speed recommendation is:

(In my own translation): Vessels shall exercise caution and adjust the speed to the size, con-
struction, manoeuvrability and water conditions of the vessel so that no damage or danger of
injury to persons, including bathers, other vessels, shorelines, quays, aquaculture facilities or

any surrounding area, may occur.

In addition to the mentioned general speed regulations, there often exist local regulations
established by the local city council. The maximum speed in the harbour is often set to 5

knots (2.57 m/s), at least for smaller vessels.

2.1.2.2 COLREGs convention

The Convention on the International Regulations for Preventing Collisions at Sea (COLREGs)
is published by the IMO and are rules to be followed by vessels to prevent collisions between
vessels at sea [76]. In the guidance notes for autonomous vessels [19], they have analysed

two tasks that should be handled by any ship covered by the Guidance note:

+ The lookout: To ensure that the ship is always monitored by using appropriate infor-

mation to have a full appraisal of the situation and the risk of collision.
+ The operational decisions: Obligation for a ship to take avoidance decisions.

Although this thesis scope does not include other vessels, there are however three rules which
affect this thesis from COLREGs Part B regarding steering and sailing section 1 (Conduct of

vessels in any conditions of visibility):

« 6. Safe speed: Every vessel shall at all times proceed at a safe speed so that she can take
proper and effective action to avoid collision and be stopped within a distance appropriate

to the prevailing circumstances and conditions.

« 7.Risk of collision: Vessels must use all available means to determine the risk of a collision,
including the use of radar (if available) to get early warning of the risk of collision by
radar plotting or equivalent systematic observation of detected objects. (e.g. ARPA, AIS).

« 9: Narrow channels:
— A vessel proceeding along a narrow channel must keep to starboard.

— Small vessels or sailing vessels must not impede (larger) vessels which can navigate

only within a narrow channel.
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— Ships must not cross a channel if to do so would impede another vessel which can

navigate only within that channel.

2.1.3 Navigation system

In the guidelines for autonomous vessels [19], the minimum level of functionality of the

navigation automation system (NAS) is as follows:

The goal of the Navigating Automation System (NAS) is to be able to navigate a ship safely and
efficiently along a predefined voyage plan taking into account of traffic and weather conditions.

The NAS should be able to handle all matters related to navigation, including voyage planning,
docking and undocking, mooring and unmooring, navigation, anchoring and assistance in
distress situations. It is emphasised that during docking and undocking monitoring sensors
should be used (e.g. pressure sensors, radar) to confirm that there are no obstacles. Another
functional requirement is that a device must be able to stop the sequence of docking or

undocking at any time in case the system has not detected a hazardous situation.

2.1.4 Manoeuvrability

The manoeuvrability of a vessel is an important factor in planning the docking process and

includes factors such as:

« The ships dynamics, e.g., ships inertia, response to strong currents, wind gusts and

propulsion, and hydrodynamic effects such as thrusters working near harbor structs

« The available actuators and control system

2.1.4.1 Ship dynamics

A "masters guide to berthing" [31] defined a set of "golden rules of berthing." These include
the importance of planning the voyage to the berth, teamwork, checking the equipment, slow
speed, and controlled approach towards the dock. Slow speed and controlled approach are
needed due to the conditions of a harbour, containing regions of small under-keel clearance,

narrow channels, sailing proximity of other ships, and collaboration with tugs.

Generally, many berthing accidents occur due to overly high approach speed. The speed
should always be such that the ship’s stopping distance and general manoeuvring characteris-

tics are within critical range. When close to a dock, speed should be the minimum necessary



18 CHAPIER 2. THEORY

to maintain control. It can be challenging to reduce speed and maintain control, and therefore
it is essential to reduce speed in good time. At lower speeds, the current and wind have
a more significant effect on manoeuvrability, and characteristics of the thrusters change.
The captain needs to fully understand the ship’s speed and manoeuvring characteristics to

successfully dock.

2.1.4.2 Actuators

Historically, docking of large vessels has been performed by support vessels such as tug
boats [3, 81]. This was mainly due to limitations in manoeuvrability and problems with
accuracy. The manoeuvrability of vessels has been improved drastically, by adding for

instance thrusters such as:

« Transverse tunnel thrusters: Used by ships to provide low-speed lateral manoeuvrabil-
ity when docking and high thrust while at a standstill. Tunnel thrusters are mainly
used during the berthing of ships, especially for huge ships, in heavy wind and tide

conditions [82].

+ Azimuth thrusters: Gives ships better manoeuvrability than a fixed propeller and

rudder system, and are even used at high speeds.

During docking, it is important to use thrusters in the right sequence and combination, to
achieve accurate and efficient docking. For a traditional or fully actuated vessel, the steps

can be:

« Approach the quay at an angle, applying astern thrust in order to turn the ship and
bring it parallel to the quay.

+ Once stopped, the vessel can be manoeuvred into the right position using transverse
thrust (if available) or by applying small kicks [of astern thrust, ed.] with an appropriate

angle using a rudder.

2.2 Kinetics and kinematics of a marine vessel

A marine vessel can maximally have 6 degrees of freedom (DOF), meaning the vessel can
move and rotate along all the (x,y and z) coordinate axis [38]. "The Society of Naval Architects
and Marine Engineers" (SNAME) notation of 6-DOF are presented in Table 2.1, and are the
notation used in this thesis. These six coordinates can be used to determine the position and

orientation of the marine vessel, and can be grouped as the following:
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«+ Coordinates describing position and translation motion: The Cartesian coordinates

describing position (x, y, z) and linear velocities (u, v, ®).

« Coordinates describing orientation and rotational motion: The Euler angles (¢, 8, )

and angular velocities (p, g, r).

Table 2.1: The notation of SNAME (1950) for marine vessels , [38, p. 16].

DOF Linear and ' Position and Force and
angular velocite | euler angle moment
Motions in the x direction (surge) | u X X
Motions in the y direction (sway) | v y Y
Motions in the z direction (heave) | w zZ 4
Rotation about the x axis (roll) p 0] K
Rotation about the y axis (pitch) | q 0 M
Rotation about the z axis (yaw) r 14 N

These coordinates can be given in several geographic reference frames. Two common

reference frames are:

« The north-east-down (NED) coordinates system: {n} = {xy,,y,,z,}, is usually

defined in the tangent plane on the surface of the earth moving with the craft. The

x-axis points towards north, the y-axis points towards east, and the z-axis points

downwards normal to the earths surface.

« The body-fixed (BODY) reference frame: b = {xp, yp, 25} is a moving coordinate

frame fixed to the craft. The body axes of a marine craft are chosen to coincide with

the principal axes of inertia, giving x; directed from aft to the fore, y; directed to

starboard, and z; directed from top to bottom.

The dynamics of a system consists of kinematics and kinetics. Kinematics concerns the

geometrical aspects of motion, while kinetics is concerned with motion caused by forces. The

marine craft equations of motion give a vectorial form of a rigid body dynamics, notation

from [38], and are:

n=Je(mv,

Mppv + Cgp(V)v = Tgp,

TRB = Thyd t Ths T Twind T Twave T T control;

(2.1a)
(2.1b)

(2.1¢)

where the rigid-body forces are represented in (2.1c). The matrices consist of inertia matrix
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Figure 2.1: An illustration of a 3-DOF surface vehicles, with illustration of surge u, sway
v, course y, heading angle ¢/ and sideslip angle f, with body-fixed reference frame {b} =
{x», yp, zp} and Earth-fixed reference frame {n} = {x,, y,, z,}. lllustration from [38, p. 40].

M € R*¢ and Coriolis matrix C(v) € R%®. v = [u, v, w, p, q, r]" and n = [Xn, Yn> 2n, , 0, Y1,
consisting of:

* (x,y,z): The distance from NED to BODY expressed in NED coordinates.

« (¢,0,9): The Euler angles, representing angles between n and b.

e (u,v,w,p,q,r): The linear and angular velocities in body-fixed reference frame.

2.2.1 Manoeuvring models for surface vessel

A frequently used simplification of a surface vessel is to only us 3-DOF. The three remaining

degrees of freedom are surge,sway and yaw, and are illustrated in Figure 2.1.

The 3-DOF horizontal plane models for manoeuvring are based on Equation (2.1b). The
assumptions for using 3-DOF model is that the hydrostatic forces ;s = 0 and with small
angular velocity o and Euler angles ¢ and 6. These simplifications provide the basis for
a sufficiently good approximation for most conventional ships, and yields the following

equations of motion:

n=Jo(mv, (2.22)
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Mppv + CRB(V)V = Twind T Twave T T controls (2-2b)

where v = [u,v,r]! and 5" = [N, E, ¢/]. The rotation matrix R(1)) is:

cos(yy) —sin(yy) 0
R(Y) = |sin(yy) —cos(y) 0. (2.3)
0 0 1

If an ocean current is present, the hydrodynamic forces need to be considered. The hydrody-

namic forces can be modelled for a 3-DOF marine vessel as:

Thyd = Myv + Ca(vy) vy — D(vy)vr, (2.4)

where v, is the relative velocity v — v, and v, is the velocity of the ocean current.

If the ocean currents are constant and irrotational in n, and use the model of hydrodynamic

forces from (2.4), the equations of motion be can reorganised to:

MV, + C(v;)v, + D(v,)V; = Tyind + Twave + Tcontrol (2.5a)
M = Mgg + Ma, (2.5b)
C(v;) = Crp(v;) + Ca(vy), (2.5¢)

with inertia matrix M € R3*®, Coriolis matrix C(v) € R3*® and dampening matrix M € R3*3

2.2.2 Ocean current forces and moments

One simple model of an ocean current for a 3-DOF marine vessel model is a 2-D irrotational

ocean current model [38]. The model only simulates motion in the horizontal plane, with:

V. cos(fe)
¢ = | Vesin(Bo) | (2.6)
0

where f, is the angle of the current and V, the absolute value of the ocean current velocities.



22 CHAPIER 2. THEORY

The ocean current can be transformed to reference-frame BODY {b} by using the rotation

matrix R(¢) from (2.3), leading to:

vl =R(y)Tv.. (2.7)

2.2.3 Control allocation

The generalised control forces Tcontrol € R" to the actuators, need to be expressed in terms
of control inputs u € R" [38]. When r >= n it is called an fully-actuated control problem,

and if r < n it is referred to as an underactuated control problem.

The relationship between actuator forces, moments and control forces can be specified by
the thrust configuration matrix T(a) € R®. For a 3-DOF model it maps the thrust force f and
body-frame angles « from each thruster into the surge, sway and yaw forces and moments

in the body frame. The control force is calculated as follows:

7 = T(x)f, (2.8)

where each column in T(e) gives the thruster configuration of thruster i, called T;(«;).

Thruster configuration of thruster i is:

F, fi cos(a;)
Ti(ai) fi = Fy fi sin(a;) , (2.9)
FyI, — FI, fily sin(e;) — I, cos(a;))

where I, and [, are the moment arms.

The thruster allocation problem is selecting thruster angles @ and forces f to achieve the
desired force 7. It can be solved in numerous ways for a fully-actuated vessel. The problem

can also include for instance limitations of input amplitude or rate saturation.

The thruster allocation problem depends on the characteristic of the thruster, and two

examples of common actuators are:

+ Tunnel thrusters produces force F; in the y-direction. It is only effective in low

speeds, and are therefore typically used in low-speed manoeuvring and stationkeeping.
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« Azimuth thrusters produces two force components Fy, F; in the horizontal plane,

controlled by rotating with an angle « about the z-axis and force F.

2.3 Reinforcement learning

Artificial intelligence (AI) has no generally accepted formal definition, but there is however
consensus that it is concerned with a thought process, reasoning and behaviour [45]. An
important field within Al is Machine Learning (ML), which addresses the question of how to
build computer programs that improve their performance of some task through experience
[83]. ML algorithms have successfully been applied on several problems, e.g. playing chess

at master level and driving autonomously in a crowded street [45].

Commonly ML algorithms are divided into four categories, based on their purpose and data

[45]. The four main categories are:

+ Supervised learning: The task of supervised learning approximates the relationship
between given input- and output-data, learned by a training set of examples of input-

output pairs.

« Unsupervised learning: In unsupervised learning, the program learns patterns/rules
based on only the input data, and is not supplied any explicit feedback, meaning

input-output pairs.

« Semi-supervised learning: In semi-supervised learning, the program learns pattern-
s/rules based on a given mixture of examples of input-output pairs and input without

output examples.

+ Reinforcement learning: In reinforcement learning (RL) the program learns by
receiving a series of reinforcements, called rewards, in addition to inputs. The program

needs to analyse and learn how to act to to receive the highest cumulative reward.

Deep reinforcement learning (DRL) is a subfield within RL, using deep learning to approximate
functions, and thereby approximating an optimal solution to the RL-problem. Deep learning

opens the possibility of using RL efficiently in continuous control input and state space.

The subjects of the next sections give an overview of fields related to deep reinforcement
learning, and provides an introduction to specific areas and methods used in this project.

Introductions provided are:

« Section 2.3.1: Artificial neural networks (ANNs), used for function approximation.
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« Section 2.3.2: Reinforcement learning fundamentals.

« Section 2.3.3: Deep reinforcement learning (DRL).

2.3.1 Neural networks for function approximation

Function approximation is an instance of supervised learning, where the mathematical
definition is [45]:

Given a training set of n example input-output pairs (x1, y1), (x2, y2), ...(xn, yn) where each y;
was generated by an unknown function y = f(x) discover a function f that approximates the

true function.
The set (x1,y1), (x2,Y2), ...(xN, yn) is called a training set.

The function approximation f is found through searching the space of possible function
approximations, for one who performs well on the training set. A hypothesis performs well
if it correctly predicts the value of y for a sample not present in the training set. If so, this
means the algorithm is applicable to other relevant datasets of the domain in question and

generalises well.

Different techniques exist, based on the type of input-output data (continuous, discrete,etc.)
and complexity of function (linear, nonlinear, etc.). In recent years deep neural networks
(DNNs) have improved the learning from high-dimensional data such as time series, images
and videos [50]. DNNs is the combination of artificial neural networks (DNNs) and deep
learning (DL). DNNs are considered well suited when working on continuous input-output
pairs, and with high function complexity, and has shown great promise in Deep Reinforcement
Learning (DRL) [51-53]

To give a short introduction into this filed, this section will briefly present:
« Section 2.3.1.1: Artificial neural networks (ANNSs).
« Section 2.3.1.2: Deep neural networks (DNNs).

« Section 2.3.1.3: Training of neural networks.

2.3.1.1 Artificial neural networks

Artificial neural networks (ANNs) is data-driven computing, inspired by the human brain [46,

84]. The internal function structure of ANNS is patterned after the interconnections between
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neurons found in biological systems and is capable of performing advanced computing with
large amounts of data. The ANN is well suited for finding relations in problems with huge
amounts of data, without prior explicit knowledge of the underlying relationship between

the measured inputs and the observed outputs.

The objective of an ANN is to map an input into a desired output, analogous to a mathematical
function, and can be used for nonlinear function approximation. It uses training data (X, Y)
to learn the function f : X « Y, giving approximation f(x;w,b), parameterized with w and
b. The parameters of the neural network (w, b) are adjusted during training, such that the

networks predictions g(x) matches the target output y(x) provided by the training data.

An ANN is a network of interconnected units, inspired by th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>