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Abstract
Offshore well drilling operations from floating rigs or drilling ships are associated with
considerable challenges, especially related to weather conditions.

During offshore drilling, the rig is heave compensated by a system which keeps the
drill string steady relative to the formation (Kvernland et al., 2018). However, whenever
the drill string is set in slips for connections of new drill pipe sections, the drill string is
attached to the rig and will move along with the heaving motion of the rig. This can cause
a piston-like movement in the bottom of the well, which introduces an unacceptable risk
of mud loss or kick due to significant downhole pressure oscillations (Landet et al., 2013).

Specifically, the heaving motion of the rig when the drill string is set in slips is an
especially challenging factor in the North Sea where the majority of the subsea wells are
drilled from floating rigs (Godhavn, 2010). In harsh weather, the heaving motion can have
an amplitude of more than 3 meters and an associated period of 10-20 seconds, introducing
downhole pressure variations in the order of 10-20 bars (Kvernland et al., 2019).

Today, the only remedy for this problem is to wait for wind and waves to subside,
increasing the Non-Productive Time (NPT) and thereby costs. Therefore, Kvernland et al.
(2019) at Heavelock AS developed a well-simulator which predicts the downhole pressure
oscillations based on input variables such as drill pipe movement, drilling fluid properties,
pump flow, weather forecasts and rig motion and characteristics, among others.

Specifically, the rig characteristics in the simulator are given as response amplitude
operators (RAO), which describes the relation between ocean waves and rig motion. The
RAO, which only depends on the rig type, is used to predict the heaving motion of the rig
which is related to the downhole pressure oscillations.

The RAO is usually determined at the design stage by the manufacturer (Clauss et al.,
1992). However, simulations indicates that a constant RAO only depending on the rig type
can give inaccurate rig heave predictions. Moreover, software programs, such as WAMIT
(Lee and Newman, 2006) and ShipX (Fathi), require information regarding the geometry
of the rig as well as a valid license.

Thus, the objective of this MSc project is to develop a RAO estimation and rig heave
prediction methodology based on data available on the rig for the purposed-developed
simulator. A data-driven method for RAO estimation could potentially improve the sim-
ulator’s ability to predict rig heave motions and thereby the ability to predict downhole
pressure oscillations.

Therefore, an important part of this project was to determine which measurements that
are available on the rig. Thus, this report presents the format of the data available on the
rig in addition to weather forecasts services.

Moreover, two methods for RAO estimation and rig heave prediction based on real
measurements are presented. One method is categorized as parametric as it models the
heaving motion as a mass-spring-damper system, while the other is non-parametric. Both
methods are tested with real wave spectra and model wave spectra as well as real heave
amplitude measurements.

Additionally, if sea state parameters or wave spectra are unavailable, sea state pa-
rameters from weather forecasts can be utilized to predict the heaving motion of the rig.
Thus, both methods are tested with model wave spectra based on sea state parameters from
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weather forecasts services.
Furthermore, quantified calculations of the performance of the methods indicate that

the non-parametric method overall performs better with real measurements than the para-
metric method. However, none of the proposed methods are tested with the simulator and
thus it remains to conclude whether the proposed RAO estimation and rig heave prediction
methodology improves downhole pressure predictions.
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Sammendrag
Å bore etter olje fra flytende plattformer er ofte assosiert med store utfordringer, særlig
relatert til vær- og vindforhold.

Under boreoperasjonen er boreplattformen hiv-kompensert ved hjelp av et system som
holder borestrengen stødig i forhold til formasjonen (Kvernland et al., 2018). Dette kon-
trollsystemet må frakobles når borestrengen festes til riggen for tilkobling av nye borerør.
Dermed følger borestrengen riggens bevegelser, noe som forårsaker en stempel-lignende
bevegelse i bunnen av brønnen, noe som igjen introduserer en uakseptabel risiko for tap
av borevæske og brønnspark (Landet et al., 2013).

Det er særlig riggens vertikale bevegelse, hiv, som skaper ekstra utfordringer i områder
der majoriteten av brønnene bores fra flytende rigger, slik som i Nordsjøen (Godhavn,
2010). Under krevende værforhold, der hiv-bevegelsens amplitude kan komme opp i over
3 meter med en tilhørende periode på 10-20 sekunder, kan trykkvariasjonene i bunnen av
brønnen komme opp i 10-20 bar (Kvernland et al., 2019).

Den eneste tilgjengelige løsningen på problemet er å vente til vær- og vindforhold av-
tar, noe som øker den ikke-produktive tiden (NPT) og dermed også kostnadene. Nettopp
denne problemstillingen motiverte Kvernland et al. (2019) ved Heavelock AS til å utvikle
en brønn-simulator som predikerer trykkvariasjonene i bunnen av brønnen basert på en
rekke input-parametere slik som borerørets bevegelse, borevæskens egenskaper, pumper-
ate, værmeldinger og riggens bevegelser og karakteristikk.

I simulatoren er riggens karakteristikk gitt som reponse amplitude operatorer (RAO),
som beskriver forholdet mellom bølger og riggens bevegelser. RAOen, som kun er avhengig
av riggtypen, blir direkte anvendt for å predikere riggens hiv-bevegelse, som igjen er
tilknyttet trykkvariasjonene i bunnen av brønnen.

RAO blir vanligvis beregnet av rigg-produsentene under designfasen (Clauss et al.,
1992), men simuleringer antyder at konstante, pre-definerte RAOer kun basert på riggtype
kan gi upresise prediksjoner av riggens hiv-bevegelser. I tillegg krever software program-
mer som WAMIT (Lee and Newman, 2006) og ShipX (Fathi), informasjon om riggens
geometri og ikke minst en gyldig lisens.

Formålet med denne masteroppgaven er derfor å utvikle en prosedyre for RAO es-
timering og hiv-prediksjon basert på tilgjengelig data fra riggen og værmeldingstjenester.
En datadrevet metode for RAO estimering kan potensielt forbedre simulatorens evne til å
predikere riggens hiv-bevegelse og dermed også trykkvariasjonene i bunnen av brønnen.

En viktig del av oppgaven var derfor å undersøke hvilke data som er tilgjengelig
på riggen, samt formatet, i tillegg til hvilke værmeldingstjenester som gir prognoser på
sjøtilstand.

Som et resultat ble to metoder for RAO estimering og hiv-prediksjon utviklet, én
parametrisk metode som modellerer riggens hiv-bevegelse som et masse-fjær-demper sys-
tem og én ikke-parametrisk metode. Begge metodene ble testet med ekte målinger i
form av riggens hiv-amplitude, målt bølgespektrum og modellbølgespektrum basert på
målt sjøtilstand. I tillegg ble metodene testet med modellbølgespektrum basert på meldt
sjøtilstand fra værmeldingstjenester.

Tallfestede beregninger av ytelse indikerer at den ikke-parametriske metoden presterer
bedre med ekte målinger enn det den parametriske metoden gjør. Ingen av metodene er rik-
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tignok testet med simulatoren og det gjenstår dermed å konkludere om de foreslåtte meto-
dene for RAO estimering og hiv-prediksjon faktisk forbedrer prediksjonen av trykkvari-
asjonene i bunnen av brønnen.
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Chapter 1
Introduction

Some aspects of this chapter, specifically the parts involving well drilling and Heavelock
AS, are inspired by Vettestad (2019).

Offshore oil drilling from floating rigs or drilling ships introduces severe challenges,
often related to weather conditions. Specifically, the major pressure fluctuations in the
well when the drill pipe is set in slips, caused by the heaving motion of the floater, can
introduce an unacceptable risk of mud loss or kick (Landet et al., 2013).

During offshore drilling, a heave compensation system keeps the drill string steady rel-
ative to the formation (Kvernland et al., 2018). Thus, the vertical motion of the oil rig due
to sea waves will not affect the drill string or the downhole pressure. However, approxi-
mately every 28-30 meters the drill string is set in slips for connection of a new drill pipe
section (Kvernland et al., 2019). During these connections the drill string is attached to
the rig and will therefore move along with the heaving motion of the rig, causing a piston-
like movement in the bottom of the well and introducing significant downhole pressure
oscillations referred to as surge and swab effects.

The heaving motion is especially an extra challenging factor in the North Sea where the
majority of subsea wells are drilled form floating rigs (Godhavn, 2010). In harsh weather,
the heaving motion can have an amplitude of more than 3 meters and an associated period
of 10-20 seconds, introducing downhole pressure variations in the order of 10-20 bars
(Kvernland et al., 2019).

Kvernland et al. (2019) describe several proposed methods of reducing surge and swab
effects, such as mechanical heave compensation of the drill floor. However, this requires a
large capital investment as mechanical installations in this scale are very expensive.

Thus, the only remedy for downhole heave-induced pressure oscillations is to wait
for wind and waves to subside, resulting in a more time-consuming and possibly more
expensive drilling operation as high costs are related to Non-Productive Time (NPT).

The challenges related to heave-induced downhole pressure oscillations inspired
Kvernland et al. (2019) at Heavelock AS to design a simulator which models dynamic
interactions between the drilling fluid and the drill string in an accurate manner, which
gives it ability to predict fast downhole changes.
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Chapter 1. Introduction

The purposed-developed software utilizes input variables such as wave height from
weather forecasts, drill pipe movements, drilling fluid properties, pump flow as well as
well design, drill pipe, rig heave motion and characteristics and Bottom Hole Assembly
(BHA) data to simulate heave-induced downhole pressure.

Specifically, the rig characteristics are given as response amplitude operators (RAO),
which describes the relation between ocean waves and rig motion. The RAO, which in the
simulator only depends on the rig type, is used to predict the heaving motion of the rig
which is related to the downhole pressure oscillations.

The RAO is usually determined at the design stage, which allows the manufacturer to
make appropriate modifications for safety purposes or to improve the performance (Clauss
et al., 1992). However, simulations indicate that a constant RAO only depending on the
rig type can give inaccurate rig heave predictions. Moreover, software programs, such
as WAMIT (Lee and Newman, 2006) and ShipX (Fathi), which can be used to calculate
the RAO require information regarding the geometry of the rig as well as a valid license.
Additionally, WAMIT computations does not account for all physical effects, like mooring
loads, forces on risers and empirical corrections based on model tests (Lee and Newman,
2006).

Nevertheless, Heavelock AS’s simulator aims to determine a dynamic rig heave limit
based on how much surge and swab the particular well can tolerate (Heavelock AS). There-
fore, the simulator can give valuable insight into risks and well pressure margins during
both well planning and at the operational phase.

The simulator has been validated with data from the North Sea provided by Equinor
ASA, giving an accuracy of the simulated versus measured peak-to-peak surge and swab
effects between 76.7% to 98.2%, depending on the test cases (Kvernland et al., 2019).

Furthermore, the accuracy of the simulator depends on the input data, thus the ac-
curacy of the rig heave prediction, and thereby the RAO, are important. Therefore, the
objective of this MSc project is to design a methodology for estimating the RAO based
on data available from the rig, specifically wave and rig heave measurements. Further,
the estimated RAO should be utilized when predicting future heaving motion of the rig in
order to accurately predict the downhole pressure in the well.

1.1 Task Description
The objective of this project is to develop an algorithm for RAO estimation based on
available data from the rig to predict the rig heave motion. As highlighted in Kvernland
et al. (2019), information regarding the expected surge and swab effects in the near future
is not available on the rig, neither is the exact magnitude in real time of those effects.

However, the well-simulator designed by Heavelock AS (Kvernland et al., 2019), in-
tends to provide accurate information regarding surge and swab effects. The simulator
utilizes a predefined RAO only depending on the rig type. However, simulations indicate
that a constant RAO can give inaccurate rig heave predictions. Therefore, a data-driven
RAO estimation method could potentially improve the simulator’s ability to predict down-
hole pressure oscillations.

In order to design a RAO estimation methodology, estimation methods and system
identification in general, as well as RAO estimation methods in particular has to be exam-
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1.1 Task Description

ined. Therefore, a brief introduction to system identification, including parameter estima-
tion will be given in Chapter 2. Additionally, principles of marine craft motion, involving
the heave motion and RAO will be presented as well as wave spectrum theory and models.

Furthermore, the estimation methodology depends on available data. As a result, the
project involves investigating the availability of heave and ocean wave measurements from
both the oil rigs as well as weather forecast services, which will be presented in Chapter
3.

Chapter 4 will describe how the proposed RAO estimation and heave prediction meth-
ods are implemented, while Chapter 5 to 7 present the performance of the proposed meth-
ods illustrated with three different experiments. Specifically, Chapter 5 will demonstrate
the estimation of RAO based on real measurements. Further, Chapter 6 will present the
performance of the heave prediction methodology with real measurements, while Chap-
ter 7 will show how the proposed methods predict rig heave motion based on weather
forecasts. Moreover, Chapter 8 will discuss these results and conclude the report.

Finally, suggestions regarding further improvements, applications and experiments
will be presented in Chapter 9.
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Chapter 2
Background Theory

This chapter will give a brief introduction to system identification and parameter estima-
tion methods, mainly based on Ljung (1999). Additionally, marine craft motion, including
response amplitude operator (RAO), and wave spectrum theory will be presented, mainly
based on Fossen (2011) and Faltinsen (1990).

2.1 System Identification

Lennart Ljung, one of the pioneers in system identification and control theory, defines sys-
tem identification as techniques for building mathematical models of dynamical systems
based on observed data (Ljung, 1999). Based on three fundamental entities:

1. A data set

2. A set of candidate models

3. A rule by which the candidate models can be assessed using the data

system identification provides powerful techniques with a wide application area.
First of all, the input-output data, or the data set, should be maximally informative for

the intended purpose, which means that the data set has to be selected with care. Fur-
thermore, the single most important, and yet often the most difficult, aspect of system
identification is to decide which collection of models will best fit the system to identify.
Sometimes these models are chosen based on some a priori knowledge of the system, like
basic physical laws or other well-established relationships. However, standard linear mod-
els without reference to the physical background may also be employed. The former is
often referred to as grey box modeling while the latter is often referred to as black box
modeling. Lastly, the identification method involves determining the best model in the set,
guided by the data. The evaluation of model quality is typically based on how the models
perform when they attempt to reproduce the measured data.

5



Chapter 2. Background Theory

2.1.1 The System Identification Loop
The system identification procedure loop is illustrated in Figure 2.1. System identification
starts with collecting information about the system, data, followed by selecting a model
set. Finally, the ”best” model in the set is chosen as the mathematical representation of
the system. However, it is likely that the model first obtained will not pass the model
validation tests. Therefore, various steps of the procedure must be revised.

The model may be inadequate for a variety of reasons such as

• The numerical procedure failed to find the best model according to the validation
criterion

• The validation criterion was not well chosen

• The model set itself was not appropriate, meaning that it did not contain any good
enough descriptions of the system

• The data was not informative enough to provide guidance in selecting good models

Therefore, the major part of system identification consists of addressing the problems
listed above in an iterative manner. In particular, deficient model sets are often the cause
of unsatisfying system identification. Further, prior information about the system and the
outcomes of previous attempts can lead the system identification process closer to a good
enough description of the system for the intended purpose.
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2.1 System Identification

Experiment 
Design

Data

Choose
Model Set

Choose
Criterion

of Fit

Calculate Model

Validate
Model

OK: Use it!

Prior
Knowledge

Not OK: Revise

Figure 2.1: The system identification loop. First of all, collect data, then choose a model set before
picking the ”best” model within that set. If the validation criterion does not hold, repeat. Remake of
Figure 1.10 in Ljung (1999).

2.1.2 Models

A model of a dynamical system is defined as a description of the system’s properties.
Mathematical or analytical models, which describe the relationship between the system
variables in terms of mathematical expressions, are often effective models and are exten-
sively used in all fields of engineering. However, a model can never be acknowledged as
a true description of the system. Preferably, it can at best be considered as a good enough
description of certain aspects which are of particular interest. Nevertheless, all models
attempt to link observations together into some pattern.

Generally speaking, a model structure is a parametrized mapping from past inputs and
outputs, Zt−1 to the space of the model outputs (Ljung, 1999), see Equation 2.1
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Chapter 2. Background Theory

ŷ(θ|t) = g(θ, Zt−1) (2.1)

Where θ is a vector containing the unknown parameters.
A first step when selecting a model is to determine a class of models within which the

search for the most suitable model is to be conducted.
A linear time-invariant (LTI) model is presented in Equation 2.2, with fe(·) being

the probability density function (PDF) of the disturbance e(t). Thus, a particular model
corresponds to specifications of the three functions G, H and fe(·). Typically, rational
transfer functions and finite-dimensional state-space descriptions are used to specify G
and H .

y(t) = G(q)u(t) +H(q)e(t) (2.2)

Furthermore, Equation 2.2 can be rewritten as shown in Equation 2.3, depending on the
parameter vector θ.

y(t) = G(q, θ)u(t) +H(q, θ)e(t) (2.3)

Equation Error Structure

One of the most simple input-output relationships is obtained by describing it as a linear
difference equation. The model in Equation 2.4 is often referred to as an equation error
model or structure due to the white-noise term e(t) entering as a direct error.

y(t) + a1y(t− 1) + · · ·+ ana
y(t− na) = b1u(t− 1) + · · ·+ bnb

u(t− nb) + e(t) (2.4)

Where the parameters to be estimated can be represented as

θ = [a1a2 · · · ana
b1 · · · bnb

]T (2.5)

An by introducing

A(q) = 1 + a1q
−1 + · · ·+ ana

q−na (2.6)

and

B(q) = b1q
−1 + · · ·+ bnb

q−nb (2.7)

Eventually, equation 2.4 can be rewritten as Equation 2.3 with

G(q, θ) =
B(q)

A(q)
, H(q, θ) =

1

A(q)
(2.8)

The model structure defined in Equation 2.4 will also be referred to as an ARX struc-
ture, where AR refers to the autoregressive part A(q)y(t) and X to the extra input
B(q)u(t). Notice that q, the argument of A(q) and a polynomial in q−1, is used to be
consistent with the definition of the z-transform and Fourier transform, see Equation 2.9.
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2.1 System Identification

G(z) =

∞∑
k=1

g(k)z−k (2.9)

Where G(z) is the z-transform of g(k)∞1 . Thus, the transfer function G(q) from u to y,
y(t) = G(q)u(t), will be denoted as

G(q) =

∞∑
k=1

g(k)q−k (2.10)

In order to be consistent with Equation 2.9.

General Models

Furthermore, the structure presented in Equation 2.3 can be expanded to a general family
of model structures, consisting of the five polynomials A, B, C, D and F , resulting in
Equation 2.11.

A(q)y(t) =
B(q)

F (q)
u(t) +

C(q)

D(q)
e(t) (2.11)

Depending on which of the five polynomials in Equation 2.11 that are used, this general
structure can result in 32 different model sets. Table 2.1 shows some of these model
structures.

Polynomials Used in Equation 2.11 Name of Model Structure
B FIR
AB ARX
ABC ARMAX
AC ARMA
ABD ARARX
ABCD ARARMAX
BF OE

BFCD BJ

Table 2.1: Some common black-box SISO models as special cases of Equation 2.11. Based on
Table 4.1 in Ljung (1999). MA refers to moving average, FIR to finite input response, OE to output
error and BJ to Box-Jenkins.

Linear Regression

The white noise in Equation 2.4 is assumed to go through the denominator dynamics of
the system, A(q), before being added to the output, which from a physical point of view
might seem odd. Nevertheless, the predictor of the equation error model set defines a
linear regression, which makes the structure a prime choice in many applications.

Thus, the predictor ŷ(t|θ) for Equation 2.4, presented in Equation 2.12, is referred to
as linear regression since the predictor is a scalar product between a known data vector,
ϕ(t) and the parameter vector θ, see Equation 2.14

9



Chapter 2. Background Theory

ŷ(t|θ) = B(q)u(t) + [1−A(q)]y(t) (2.12)

With ϕ is given as

ϕ(t) = [−y(t− 1) · · · − y(t− na)u(t− 1) · · ·u(t− nb)]T (2.13)

Then the predictor can be presented as

ŷ(t|θ) = θTϕ(t) = ϕ(t)T θ (2.14)

2.1.3 Methods
System identification methods can roughly be categorized as parametric or non-parametric.

Parametric Estimation Methods

Parametric methods are model-based, which means that a set of candidate models has been
selected and parametrized as a model structure using the parameter vector θ. The problem
of determining or estimating θ then decides the best model within the model set.

In mathematical notation, a parameter estimation method is a mapping from the data
ZN to the set DM.

ZN → θ̂N ∈ DM (2.15)

Where DM is the set of values over which θ ranges in a model structure and the data is
defined by ZN = {u(0), y(0), · · · , u(N), y(N)}.

For parametric estimation methods, the candidate models have to be evaluated in some
sense, preferably according to their ability to describe the observed data. The essence of a
model is its ability to predict the output based on past measurements. Hence, a reasonable
evaluation of a model is to judge its performance in respect of prediction.

A 1-step-ahead predictor is defined in Equation 2.16 and is called a predictor model.
Notice that the predictor does not depend on fe(·), just G and H .

ŷ(θ|t) = H−1(q, θ)G(q, θ)u(t) + [1−H−1(q, θ)]y(t) (2.16)

The prediction error given by a certain model can thus be formulated as

ε(t, θ∗) = y(t)− ŷ(t|θ∗) (2.17)

Therefore, a ”good” model will be a model which produces small prediction errors.
Ljung (1999) introduces two approaches to qualify what small in this sense should mean.
One option is to form a scalar-valued norm or criterion function that measures the size of
ε, while the other is to demand that ε(t, θ̂N ) is uncorrelated with a given data sequence.

One example of the former approach are prediction-error identification methods
(PEM), which is a general term for the family of approaches which minimizes a norm of
the form presented in Equation 2.18.

10



2.1 System Identification

θ̂N = θ̂N (ZN ) = arg min
θ∈DM

VN (θ, ZN ) (2.18)

Where the criterion function VN (θ, ZN ) is a well-defined scalar function of the model
parameter θ, for given data ZN and defined as

VN (θ, ZN ) =
1

N

N∑
t=1

`(εF (t, θ)) (2.19)

Where the norm `(·) is a scalar-valued, often positive, function and εF is the prediction
error filtered through a stable linear filter L(q), which acts like frequency weighting.

Hence, particular methods associated with specific names are obtained as special cases
of 2.18, depending on the choice of `(·), L(·), the model structure and, in some cases, the
choice of the method by which the minimization is realized.

The least-squares method is one example of a special case of the PEM presented in
Equation 2.18. With a quadratic norm and linear parametrization, the least-squares crite-
rion for linear regression forms a quadratic function in θ.

With L(q) = 1 and `(ε) = 1
2ε

2, the least-squares criterion for linear regression then
becomes

VN (θ, ZN ) =
1

N

N∑
t=1

1

2
[y(t)− ŷ]2 =

1

N

N∑
t=1

1

2
[y(t)− ϕ(t)θ]2 (2.20)

The least-squares estimate, θ̂LSN = arg minVN (θ, ZN ), can be solved using QR fac-
torization, see Appendix A.1.

Furthermore, as an alternative to norms or criterion functions which measure the size of
ε, a certain finite-dimensional vector sequence {ζ(t)} derived from Z−1, may be selected
such that a certain transformation of ε(t, θ) is uncorrelated with this sequence. Thus, the θ
value which satisfies Equation 2.21 would be the best estimate of θ̂N based on the observed
data.

1

N

N∑
t=1

ζ(t)α(ε(t, θ)) = 0 (2.21)

Where α(ε) is the chosen transformation of ε, typically α(ε) = ε.
Moreover, Equation 2.19 can be expressed in the frequency-domain, Equation 2.22,

using Parseval’s relationship, see Appendix A.2.

VN (θ, ZN ) =
1

N

1

2

N∑
k=1

|EN (2πk/N, θ)|2 (2.22)

Where EN is the Fourier transform of ε(t, θ).
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Chapter 2. Background Theory

Non-Parametric Estimation Methods

Non-parametric methods on the other hand, relay on the fact that the system model behav-
ior is represented in the measurements. Therefore, non-parametric methods require rich
data sets and will in theory model an infinite amount of parameters. Non-parametric meth-
ods determine the impulse responses or transfer functions of a system directly, without
first selecting a restricted set of possible models.

In the frequency-domain, Fourier analysis can be utilized to estimate the transfer func-
tion from the input to the output.

ˆ̂
G(eiω) =

YN (ω)

UN (ω)
(2.23)

Where ˆ̂
G(eiω) is referred to as the empirical transfer function estimate (ETFE) and YN (ω)

and UN (ω) are the discrete Fourier transforms of the output and the input, respectively.
Evidently, Equation 2.23 holds for UN (ω) 6= 0. Further, no other assumptions have been
imposed than linearity, thus this estimate is called empirical.

2.2 Marine Craft Motion
The term marine craft includes semi-submersible, floating rigs as well as ships, sub-
marines, high-speed craft, torpedoes, remotely operated and autonomous underwater ve-
hicles and other propelled and powered structures.

Marine crafts experience motion in 6 DOF, as illustrated in Figure 2.2. The rigid-body
translatory motions in the horizontal and vertical plane are defined as surge (x), sway (y)
and heave (z), respectively. Rotation about the x-axis is defined as roll, while rotation
about the y-axis is defined as pitch and yaw is defined as rotation about the z-axis.

The basis equation for all 6 DOF models considered in Fossen (2011) are defined in
Equation 2.24.

Mν̇ + C(ν)ν + D(ν)ν + g(η) + g0 = τ + τwind + τwave (2.24)

Where

η = [x, y, z, φ, θ, ψ]T (2.25a)

ν = [u, v, w, p, q, r]T (2.25b)

η and ν are vectors for generalized velocities and position/Euler angles, respectively. The
model matrices M, C and D represents inertia, Coriolis and damping, respectively. g(η)
is a vector of generalized gravitation and buoyancy forces, while g0 stores static restoring
forces and moments due to ballast systems and water tanks. The generalized forces in 6
DOF is stored in the vector τ .
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2.2 Marine Craft Motion

Figure 2.2: Rigid-body motions, illustrated on a deep concrete floater rig. Oscillatory translatory
motions about the x-, y- and z-axis are referred to as surge, sway and heave, respectively. Oscillatory
angular motions about the x-, y- and z-axis are defined as roll, pitch and yaw, respectively. Source:
Faltinsen (1990), Figure 1.3.

2.2.1 Heave Equation of Motion
Equation 2.26 describes the undamped equation of motion in the mass-force domain for
the heave motion in beam seas (Faltinsen, 1990) for a semi-submersible oil rig.

(M +A33)
d2η3
dt2

+ ρgAwη3 = F3(t) (2.26)

Where Aw is the water plane area under the oil rig, η3 is the heave displacement, M the
mass and A33 the added mass which is defined by Salvesen et al. (1971), while F3 is the
hydrodynamic force in the z-direction. Lastly, g is the acceleration of gravity and ρ is the
density of water.

The added mass and damping loads are steady-state hydrodynamic forces and mo-
ments due to forced harmonic rigid body motions (Faltinsen, 1990). The forced motion of
the structure results in oscillating fluid pressures on the body. Forces and moments on the
body can be found by integrating these fluid pressure forces over the body surface.
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Chapter 2. Background Theory

Equation 2.27 defines the force component due to harmonic motion mode, ηj in the
x-, y- and z-direction for k = 1, 2, 3 and the moment components along the same axis for
k = 4, 5, 6.

Fk = −Akj
d2ηj
dt2
−Bkj

dηj
dt

(2.27)

Where Ajk is the added mass, Bjk is the damping coefficient and j, k = 1, · · · , 6.
Specifically, the linear forced harmonic heave motion of a structure can be written as

Equation 2.28. When the velocity potential is known, the pressure can be found by using
a linearized Bernoulli’s equation. The vertical force on the body can then be found by
excluding the hydrostatic pressure and integrating the remaining pressure properly over
the body. The linear part of this force is obtained by integrating the linearized pressure
over the mean position of the body.

F3 = −A33
d2η3
dt2
−B33

dη3
dt

(2.28)

The added mass and damping coefficients depend on frequency and thereby the motion
mode. Therefore, the added mass in heave for a body will not necessarily be the same as
the added mass in sway.

2.2.2 Response Amplitude Operator
The major objective of this project is to estimate the RAO of an offshore oil rig to predict
the heave motion.

The RAO of a marine craft describes how sea states affect the motion of the marine
craft. Particularly, the vertical motion, heave, is of interest. Therefore, the RAO serves as
a transfer function representing the relationship between the heave motion of the marine
craft and the wave motion.

Specifically, the RAO is used to compute motion due to first- and second-order wave
forces. The former describes wave-frequency motions observed as zero-mean oscillatory
motions, while the latter are wave drift forces observed as nonzero slowly varying compo-
nents.

The definition of RAO is based on the hypothesis that the relation between wave ex-
citation and ship response is linear (Tannuri et al., 2003). This simplification is valid for
small oscillations around the equilibrium position. However, nonlinear effects become rel-
evant in critical situations where the ship response can reach high values. Moreover, the
large number of mooring lines and risers increase the nonlinear viscous damping of the
system.

Baghfalaki et al. (2012) present mathematical modeling of RAO and frequency-based
analysis for coupled roll and yaw motions in regular waves. Generally, the RAO is repre-
sented in the frequency-domain with frequency-dependent excitation forces. Thus, frequency-
dependent hydrodynamic coefficients are required to solve potential theory equations de-
scribing the RAO in the frequency-domain. The hydrodynamic coefficients and the wave
force applied on the floating body is calculated based on the strip theory formulation by
Salvesen et al. (1971).
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2.2 Marine Craft Motion

The floating body, which is assumed to be rigid and slender, has six degrees of freedom
(DOF) under the action of waves. Further, under the assumptions of linear and harmonic
responses, lateral symmetry of the floating body, sinusoidal form of the indecent wave and
by not considering the force component generated by the propeller, wind or current, the
equation of motion in the frequency-domain representing linearly coupled conditions can
be written as

[
−ω2(Mjk +Ajk(ω)) + iωBjk(ω) + Cjk

]
Xk(ω)eiωt = DjFj(ω)eiωt (2.29)

for j, k = 1, · · · , 6.
Here, Mjk, Ajk, Bjk and Cjk represent the mass, added mass, damping and restoring

matrix coefficients, respectively. Xk is the displacement in the kth mode, while Fjk the
wave force matrix and Dj is the wave amplitude of the jth mode of motion.

By rearranging Equation 2.29, the complex amplitude of the body in the jth mode in
response to an incident wave of unit amplitude, frequency ω and direction θ, also known
as the RAO, can be written as

Zj(ω, θ) =
Xk(ω)

Dj
= Hjk(ω)−1Fj(ω) (2.30)

Where
Hjk = −ω2(Mjk +Ajk(ω)) + iωBjk(ω) + Cjk (2.31)

From Equation 2.30, Baghfalaki et al. (2012) derive a decoupled 1-DOF Equation for the
RAO, expressed in Equation 2.32.

Zk(ω, θ) =
Fk(ω)

−ω2(Mkk +Akk(ω)) + iωBkk(ω) + Ckk
(2.32)

Furthermore, Fossen (2011) introduces two representations of the RAO; force RAO
and motion RAO. For the former, the response will be generalized forces. In a linear
system, however, it is possible to move the forces through a chain of integrators to obtain
generalized position. The motion RAO can be used to translate wave amplitude to 1st-
order wave-induced positions as illustrated in Figure 2.3.

Wave Spectrum Motion RAO

�(�)

Sea state

,�� ��

Wave
amplitude

��

1st-order wave-
induced positions

��

Figure 2.3: First-order wave-induced positions based on motion RAOs. The sea state parameters,
significant wave height, Hs, and wave peak period, Tp, are the basis of a model wave spectrum,
S(ω). The wave amplitude, Ak, is related to the wave spectrum by Equation 2.41 and together with
the motion RAO, first-order wave-induced positions can be obtained. Remake of Figure 8.14 in
Fossen (2011).
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For motion RAOs, Fossen (2011) introduces the linear system in Equation 2.33.

[MRB + A(ω)]ξ̈ + B(ω)ξ̇ + Cξ = τwave1 (2.33)

Where τwave1 are the 1st-order wave induced forces, MRB is the rigid-body mass matrix,
A the added mass matrix, B the damping matrix and C the spring stiffness matrix. The
state vector, ξ, represents perturbations with respect to a fixed equilibrium state.

Further, by assuming harmonic motions with ξ̄ as a vector of amplitudes, i.e.

ξ = ξ̄ cosωt = ξ̄Re(ejω)

Then Equation 2.33, which is referred to as the seakeeping model by Fossen (2011), can
be rewritten in the frequency domain as

− ω2[MRB + A(ω)]ξ̄ − jωB(ω)ξ̄ + Cξ̄ = τ̄wave1 (2.34)

Thus, the force-to-motion transfer function, Equation 2.35, is a low-pass filter representing
the marine craft dynamics, which means that the first-order wave-induced position can be
computed by low-pass filtering the generalized forces τwave1.

Hv(jω) =
[
−ω2[MRB + A(ω)]− jωB(ω) + C

]−1
(2.35)

Where the responses of Equation 2.34 can be written as

ξ̄ = Hv(jω)τ̄wave1 (2.36)

Moreover, the RAO can be obtained experimentally, either in full-scale or model-scale
tests. However, wave-body interaction software are usually applied to perform the evalua-
tion of RAOs (Tannuri et al., 2003). Nevertheless, such evaluations may introduce inaccu-
racies due to nonlinearities or loading conditions.

However, Fossen (2011) introduces several hydrodynamic programs based on potential
theory which computes both force and motion RAOs. When the motion of the fluid can
be approximated as two-dimensional, strip theory ((Salvesen et al., 1971) and (Faltinsen,
1990)), can be applied to estimate the hydrodynamic forces. In short, the principle of strip
theory is to divide the underwater part of the ship into a number of strips. Hence, the 2D
hydrodynamic coefficients for added mass can be computed for each strip and alternatively
summed over the length of the body to obtain the three-dimensional coefficients.

Commonly used 2D programs which utilize strip theory are ShipX by MARINTEK,
(Fathi), and Octopus Office by Armacon Inc. (Journée and Adegeest, 2003).

However, it is the 3D software program WAMIT, (Lee and Newman, 2006) which
computes first- and second-order wave load transfer functions, among others, that has
become the industry standard for the oil and gas industry. Specifically, the 3D panel code
computes the linear wave forcing and motion characteristics of an offshore structure in the
frequency domain (Ramachandran et al., 2013).

An alternative approach to the motion RAO in Figure 2.3 is to formulate the RAO as
a state-space model where the wave spectrum is approximated by a linear filter. Addition-
ally, the response of the motion RAOs and the linear marine craft dynamics in cascade can
be modeled as constant tunable gains.
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K = diag
{
K(1),K(2),K(3),K(4),K(5),K(6)

}
Thus, the RAO model can be approximated as

HraoHv ≈ K (2.37)

Where Hrao is the wave amplitude-to-force transfer function and Hv is the force-to-motion
transfer function given by 2.35.

With Equation 2.37, the system can be illustrated as 2.4, where Hs(s) is the linear
wave spectrum approximation, introduced in Section 4.1.3.

Linear wave
spectrum

approximation

(�)��

Sea state
(white noise)

w

Wave
amplitude

��

1st-order wave-
induced positions

��

1st-order Force RAO
Linear marine craft

dynamics

�����1

(�)���� (�)��

Figure 2.4: First-order wave-induced positions based on force RAOs. The linear approximation of
the wave spectrum is obtained by Equation 4.6. The wave amplitude, Ak, is related to the wave
spectrum by Equation 2.41 and together with the first-order force RAO and the linear marine craft
dynamics, first-order wave-induced positions are obtained. Remake of Figure 8.15 in Fossen (2011).

Figure 2.5 shows the RAO for an actual oil rig for wave directions from 0° to 180° as
a function of frequencies. The data is provided by Heavelock AS.

0 0.5 1 1.5 2 2.5 3

Frequency [rad]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
A

O

Response Amplitude Operator

Wave dir 0°

Wave dir 22.5°

Wave dir 45°

Wave dir 67.5°

Wave dir 90°

Wave dir 112.5°

Wave dir 135°

Wave dir 157.5°

Wave dir 180°

Figure 2.5: Response Amplitude Operator (RAO) for an actual oil rig as a function of frequencies
for wave directions ranging from 0° to 180°. Data provided by Heavelock AS.
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Moreover, Clauss et al. (1992), Aarsnes et al. (2013), Molland (2008) and Tupper
(2013) argue that the energy spectrum of the heave motion, Sh is related to the wave
energy spectrum, Sw by the square of the RAO, see Equation 2.38.

Sh(ω) = RAO(ω)2Sw(ω) (2.38)

Thus, the RAO could be formulated as

RAO(ω)2 =
Sh(ω)

Sw(ω)
(2.39)

2.3 Wave Spectrum Theory and Models
Statistical estimates of ocean waves can be obtained by simulating irregular waves using
linear theory (Faltinsen, 1990). In the time domain, the wave elevation propagating along
the positive x-axis can be represented as a sum of wave components, see Equation 2.40.

ζ =

N∑
j=1

Aj sin (ωjt− kjx+ εj) (2.40)

Where Aj is the wave amplitude, ωj the circular frequency, kj the wave number and εj
the random phase angel.

Moreover, the wave amplitude is related to the frequency domain by the following
equation

1

2
A2
j = S(ωj)∆ω (2.41)

S(ω) being the wave spectrum and ∆ω the constant difference between successive fre-
quencies.

The wave spectrum can be estimated from measurements, assuming that the sea can
be described as a stationary process. In practice, this means that the time frame is limited,
from about 1

2 hour up to 10 hours.
Furthermore, DNV (2010) defines the wave spectrum as the power spectral density

(PSD) function of the vertical sea surface displacement.
The wave spectrum can either be represented as a function of frequencies, ω, and

wave directions, θ, which is often referred to as a two-dimensional (2D) spectrum, or as a
spectral density per frequency function, a one-dimensional (1D) spectrum.

2.3.1 Sea State Parameters
From the 1D wave spectrum, so-called integrated parameters, or sea state parameters can
be obtained. These are often used to describe empirical wave spectra such as JONSWAP
and Torsethaugen spectra.

The wave spectrum can be described by means of spectral moments, a series of char-
acteristic numbers (Fossen, 2011), see Equation 2.42.
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mk :=

∫ ∞
0

ωkS(ω)dω (2.42)

And for k = 0, Equation 2.42 can be simplified to Equation 2.43

m0 =

∫ ∞
0

S(ω)dω (2.43)

Where the variance of the instantaneous wave elevation, which is Gaussian distributed
with zero mean, is related to the first spectral moment by Equation 2.44.

σ2 = m0 (2.44)

σ being the root-mean-square (RMS) value of the wave spectrum. This can be related
to the definition of significant wave height, the mean of the one third highest waves by
Equation 2.45.

Hs = 4σ = 4
√
m0 (2.45)

Another important sea state parameter, the modal or peak frequency, ω0, is derived by
requiring that (

dS(ω)

dω

)
ω=ω0

= 0 (2.46)

Hence, the peak frequency will be the frequency associated with the most energetic
wave. Consequently, the modal period or wave peak period can be defined as

T0 = Tp =
2π

ω0
(2.47)

Lastly, the average wave period is defined as

T1 = 2π
m0

m1
= 0.834T0 (2.48)

2.3.2 The JONSWAP Spectrum
Parts of this section is based on the specialization project by Vettestad (2019).

From 1968 to 1969 Hasselmann et al. (1973) conducted a comprehensive measurement
program in the North Sea between Iceland and Sylt, a German island, known as the Joint
North Sea Wave Project (JONSWAP). In 1984 the 17th International Towing Tank Con-
ference (ITTC) adopted the results from the measurement program as an ITTC standard.

The JONSWAP spectrum, which is a single-peaked, non-directional spectrum for wind
seas, is presented as a function of integrated wave parameters, such as significant wave
height, Hs, and average wave period, T1. The spectral density function is defined by
Fossen (2011) and Faltinsen (1990) as

S(ω) = 155
H2
s

T 4
1

ω−5exp
(
−944

T 4
1

ω−4
)
γY (2.49)
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, where Y is defined as

Y = exp
[
−
(

0.191ωT1 − 1√
2σ

)]
(2.50)

And σ, the spectral width parameter, is defined as

σ =

{
0.07 ω ≤ 5.24

T1

0.09 ω > 5.24
T1

(2.51)

Hasselmann et al. (1973) suggest setting the non-dimensional peak shape parameter to
the average value γ = 3.3. Increasing γ will result in a sharper peak in the spectrum.

However, Sørensen (2018) suggests representing Equation 2.49 as

S(ω) = α
g2

ω5
exp

[
−5

4

(ωp
ω

)]
γY (2.52)

Where g is the gravity constant and α is defined as

α = 0.2
H2
sω

2
p

g2
(2.53)

And Y from Equation 2.50 is rewritten as

Y = exp

[
−1

2

(
ω − ωp
σω

)2
]

(2.54)

Directly from Equation 2.47 and 2.48, we see that Equation 2.51 can be written as

σ =

{
0.07 ω ≤ ω0

0.09 ω > ω0

(2.55)

Moreover, DNVGL (2018) emphasizes that the operational range for the JONSWAP
spectrum is

3.6 <
Tp√
Hs

< 5 (2.56)

and that the spectrum should be used with caution outside this interval. Additionally,
γ = 3.3 is just an average value for experimental data, therefore DNVGL (2018) suggests
that the peak shape parameter should be defined as

γ =


5

Tp√
Hs
≤ 3.6

exp(5.75− 1.15
Tp√
Hs

) 3.6 <
Tp√
Hs

< 5

1
Tp√
Hs
≥ 5

(2.57)
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2.3.3 The Torsethaugen Spectrum

The Torsethaugen wave spectrum is a two-peaked spectrum and was originally developed
by fitting two JONSWAP spectra to average measured spectra from the Norwegian Conti-
nental Shelf (Torsethaugen, 1993). The sea states were grouped with respect to wave peak
period, Tp, and significant wave height, Hs.

For peak frequencies ω0 > 0.6rad/s two characteristic peaks in the spectrum appear,
while ω0 < 0.6rad/s results in a single-peaked spectrum where swell dominates, i.e. low
frequency waves (Fossen, 2011).

The Torsethaugen spectrum is defined by Equation 2.58 (Torsethaugen, 1993).

S(fn) =

2∑
j=1

EjSjn(fjn) (2.58)

Where j = 1 is defined as the primary sea system and j = 2 as the secondary sea system.
And E1, E2 is specified as Equation 2.59.

E1 =
1

16
H2

1Tp1 , E2 =
1

16
H2

2Tp2 (2.59)

Additionally, Sjn is defined by Equation 2.60

S1n(f1n) = G0Aγf
−4
1n e

f−4
1n γ(exp−(1/2σ

2)(f1n−1)2) (2.60a)

S2n(f2n) = G0f
−4
2n e

f−4
2n (2.60b)

Where G0 = 3.26, Aγ = (1 + 1.1[lnγ]1.19)/γ, f1n = f · Tp1, f2n = f · Tp2 and

σ =

{
0.07 fn < 1

0.09 fn > 1
(2.61)

For wind sea dominated cases, i.e. where the wave peak period is less than the spectral
peak period for fully developed sea, Tp < Tpf , the resulting parameters are defined as

H1 = Hw1 = RwHs , Rw = (1− a10)e−(εl/a1)
2

+ a10 (2.62a)
Tp1 = Tpw1 = Tp (2.62b)

γw1 = kgs
6/7
p , sp =

2π

g

Hw1

T 2
pw1

(2.62c)

H2 = Hw2 = (1−R2
w)1/2Hs (2.62d)

Tp2 = Tpw2 = Tpf + b1 (2.62e)
γw2 = 1 (2.62f)

For swell sea dominated cases, i.e. where Tp > Tpf , the resulting parameters are
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defined as

H1 = Hs1 = RsHs , Rs = (1− a20)e−(εu/a2)
2

+ a20 (2.63a)
Tp1 = Tps1 = Tp (2.63b)

γs1 = kgs
6/7
f (1 + a3εu) , sf =

2π

g

Hs

T 2
pf

(2.63c)

H2 = Hs2 = (1−R2
s)

1/2Hs (2.63d)

Tp2 = Tps2 = afH
1/3
s2 (2.63e)

γs2 = 1 (2.63f)

Where the empirical parameters are defined in Table 2.2 and the non-dimensional scales
for the spectral peak period are defined as

εl =
Tpf − Tp
Tpf − Tl

(2.64)

For wind sea and

εu =
Tp − Tpf
Tu − Tpf

(2.65)

For swell sea.

Parameter Value Unit
af 6.6 sm1/3

ae 2.0 sm1/3

au 25.0 s
a1 0.5 []
a10 0.7 []
a2 0.3 []
a20 0.6 []
a3 6.0 []
b1 2.0 s
kg 35.0 []

Table 2.2: The empirical parameters for the Torsethaugen wave spectrum defined by Torsethaugen
(1993).

Figure 2.6 shows the Torsethaugen spectrum compared with a JONSWAP spectrum
with γ = 1, from DNVGL (2018), and a JONSWAP spectrum with γ = 3.3, for Hs =
5m and Tp = 12s, leading to a peak frequency of ω0 = 0.52rad/s, which is why the
Torsethaugen wave spectrum is single-peaked.

Moreover, Figure 2.7 shows the two-peaked Torsethaugen spectrum compared with
JONSWAP spectra with γ = 5, from DNVGL (2018), and γ = 3.3 for Hs = 5m and
Tp = 4s and thereby a peak frequency of ω0 = 1.57rad/s.

These examples are inspired by Figure 8.10 in Fossen (2011). Notice that the latter
example, Figure 2.7, does not necessarily reflect a real sea state.
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Figure 2.6: The Torsethaugen wave spectrum compared with a JONSWAP model with γ = 1 and
γ = 3.3. The spectra are generated with the Marine Systems Simulator Toolbox by Fossen and
Perez (2009). Here, the significant wave height is 5m, the wave peak period is 12s and peak frequent
is 0.5236rad/s which is why the Torsethaugen is a single-peaked spectrum.
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Figure 2.7: The Torsethaugen wave spectrum compared with a JONSWAP model with γ = 5 and
γ = 3.3. The spectra are generated with the Marine Systems Simulator Toolbox by Fossen and
Perez (2009). Here, the significant wave height is 5m, the wave peak period is 4s and peak frequent
is 1.5708rad/s which is why the Torsethaugen is a two-peaked spectrum.
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Chapter 3
An Overview of Available Data

One important aspect of this project was to investigate the available data format and its
availability. The data format sets the outlines of the project and will give an indication of
what it is possible to achieve. Additionally, the available data format will be an important
factor when choosing the final estimation and prediction methodology.

This chapter will give an overview of the anticipated available data, both from the oil
rig and from weather observation and forecast services. Taking into account the scope
of this project, forecasts, observations or actual measurements of sea states and rig heave
motion are of particular interest.

3.1 Weather Observations and Forecasts
Ideally, measurements of wave elevation and heave amplitude were available. However,
sea state variables such as significant wave height and wave peak period can be used to
calculate a model spectrum which together with heave amplitude measurements can give
valuable information about the system. However, wave spectra will not provide informa-
tion about the phasing between waves and rig heave motion.

3.1.1 StormGeo

One of the leading weather services for the oil and gas industry, StormGeo, offers off-
shore weather forecasts and motion forecasts of the rig. However, according to Roar Inge
Hansen, Offshore Duty Forecaster at StormGeo, they do not have their own ocean wave
measurements and referred to Equinor ASA for further details.

3.1.2 The Norwegian Meteorological Institute

The Norwegian Meteorological Institute offers multiple weather forecast and observation
services. The online weather service, Yr, provides detailed weather forecasts and are
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Chapter 3. An Overview of Available Data

unique in the sense that they operate with a free data access policy (The Norwegian Mete-
orological Institute). Yr offers weather forecasts for about 1 million places in Norway and
10 million places worldwide, including oil platforms in the North Sea and the Norwegian
Sea.

The data format available for download are either XML or GRIB. The latter option is
well suited for chart plotters. However, neither give access to historical weather data and
the XML files does not contain information about wave height or period.

Lastly, the Norwegian Meteorological Institute operates the data server
thredds.met.no which contains ocean and ice models. Additionally, the data server
provides free access to historical ocean wave forecasts. The Norwegian Meteorological
Institute runs the wave model, MyWaveWam (Behrens, 2013), four times a day on a 4km
grid covering Europe and the Arctic, resulting in four NetCDF weather forecast files each
day. Additionally, the model is run twice daily with European Centre for Medium-Range
Weather Forecasts (ECMWF) for rand values to provide weather forecasts 66 hours ahead.

The wave model solves the wave transport equation without any presumptions regard-
ing the shape of the wave spectrum. As a result, the MyWaveWam model is more complex
than idealized spectra based on empirical functions such as JONSWAP or Torsethaugen.

The integrated 1D wave spectrum is defined in Equation 3.1, where
F (f, θ) is the 2D wave spectrum resulting from the wave transport equation.

E(f) =

∫ 2π

0

F (f, θ)dθ (3.1)

The parameters of interest from the forecast files are listed in Table 3.1. Implementa-
tion specific details are presented in Chapter 4.

Parameter Unit Description
Significant wave height m Calculated from the wave spectrum, see Equation

2.45
Wave peak period s Calculated from the wave spectrum, see Equation

2.47

Table 3.1: Sea state parameters from the Norwegian Meteorological Institute’s data server
thredds.met.no, which contains wave forecasts for Europe and the Arctic, among others.

3.2 Actual Measurements From An Oil Rig

Fortunately, Senior Engineer at Equinor ASA, Rune Bjørkli, provided access to actual
wave radar measurements. The given data contains 1D wave spectrum and sea state pa-
rameters with a sampling rate of approximately 20 minutes.

The measurements are based on a wave radar of the MIROS SM-050 type, which uses
a dual-footprint pulse Doppler method to measure waves (Miros Group, 2019). From a
distance of 180 to 450 meters, depending on a installation height typically ranging from
25 to 80 meters, the wave radar observes the ocean surface in a semi-circle.
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3.2 Actual Measurements From An Oil Rig

The parameters from the data set utilized in this project are presented in Table 3.2. The
given wave spectrum represents the actual sea state and therefore no assumptions regarding
the spectrum are made.

The measured spectrum and a model spectrum based on measured significant wave
height and wave peak period are both used in the methods presented in Chapter 4.

Parameter Unit Description
Wave spectrum m2s One-dimensional wave spectrum
Frequencies Hz Ranges from 0.03-0.3Hz with a resolution of

0.0078Hz
Significant wave height m Calculated from the wave spectrum, see Equation

2.45. Resolution of 0.1m and accuracy of ±0.2m
for 0 < Hs < 4 and ±5% for 4 < Hs < 30

Wave peak period s Calculated from the wave spectrum, see Equation
2.47. Resolution of 0.1s and an accuracy of ±5%

Table 3.2: Wave parameters provided by Equinor based on measurements from a MIROS SM-050
wave and current radar. The sampling rate is 20 minutes and the data set provides data from 67
hours, which only 44 hours has associated heave amplitude measurements. Information regarding
the resolution and accuracy of the parameters are specified in the wave radar datasheet (Miros Group,
2019).

Additionally, Senior Engineer Bjørkli gave access to associated heave amplitude mea-
surements in meters with a sampling rate of 1 second. Since the wave peak period ranges
in a rate of seconds, a lower sampling rate would not be able to capture the full impact
ocean waves has on the vertical rig motion.

Table 3.3 shows the median, mean, maximum and minimum values of the given sig-
nificant wave height and wave peak period in addition to the heave amplitude.

Parameter Median Mean Max Min
Significant Wave Height [m] 5.6796 5.6107 9.1471 2.8088

Wave Peak Period [s] 9.8462 11.1846 16.0000 7.5294
Heave Amplitude [m] 0.0000 0.0022 3.6700 -3.8800

Table 3.3: Statistical analysis of the sea state parameters and the heave amplitude from the data
provided by Equinor ASA. Specifically, the median, mean, maximum and minimum values for the
significant wave height, the wave peak period and the heave amplitude.

The given rig heave amplitude is illustrated in Figure 3.1. The heave amplitude is
measured at approximately the center of the unit, thus representing a pure heave motion
of the unit unaffected by other degrees of freedom. The measurements are obtained from
a Motion Reference Unit (MRU), a common measuring device for marine applications
which utilizes accelerometers and gyros.

Further details about the measurements have not been received.
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Figure 3.1: The rig heave amplitude from the given data set measured by a MRU and provided by
Equinor ASA. The median, mean, maximum and minimum values of the rig heave is presented in
Table 3.3.
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Chapter 4
The Implementation of the
Proposed RAO Estimation and
Heave Prediction Methods

This chapter will present implementation specific details regarding the proposed RAO
estimation and heave prediction methods. Specifically, two methods are introduced: a
parametric method with an ARX model describing the heave motion dynamics and a non-
parametric method based on Equation 2.39.

The two proposed methods are implemented with both measured wave spectrum and
model wave spectrum based on the data set introduced in Section 3.2, as well as the mea-
sured heave amplitude.

Furthermore, the performance will be demonstrated in Chapter 5, 6 and 7.

4.1 A Parametric Method for RAO Estimation and Heave
Prediction

As described in Section 2.1.3, system identification methods are classified as parametric
when a priori assumptions are made regarding the structure of the dynamics. In other
words, the system is expected to behave as a predefined model structure.

As introduced in Section 2.2.2, Fossen (2011) and Faltinsen (1990) represents the
equation of motion in the vertical direction, heave, of a marine craft as a modified mass-
spring-damper system. Moreover, the mathematical model of the RAO derived by Bagh-
falaki et al. (2012) also has the form of a mass-spring-damper system. However, simpli-
fications need to be made in order to obtain a linear and decoupled system. Therefore,
the heave motion is assumed to be decoupled from other degrees of freedom and will be
simplified to a single-input single-output (SISO) system defined by Equation 4.1.
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u = mÿ + dẏ + ky (4.1)

Where m is the mass, d the damping coefficient and k the spring constant. The equation
is derived from Newton’s second law.

The input to the system, u, is wave elevation and the output, y, is heave motion. How-
ever, the available data set does not include measurements of wave elevation, see Section
3.2. Therefore, the system has to be expressed in the frequency domain, resulting in an
approximation of wave elevation generated by a model wave spectrum as described in
Section 4.1.3.

The parametric method is implemented using the System Identification Toolbox in
MATLAB (Ljung, 2014), based on Ljung (1999).

4.1.1 Model Structure

As described in Section 2.1, an important step in the system identification procedure is to
decide the model structure. The mass-spring-damper system is expressed using an input-
output relation often referred to as an equation error or ARX structure (Ljung, 1999),
expressed as Equation 2.4. Eventually, Equation 2.4 can be rewritten as Equation 2.3 with

G(q, θ) =
B(q)

A(q)
, H(q, θ) =

1

A(q)
(4.2)

For a SISO mass-spring-damper system, the order of the system matrices are na = 2,
nb = 1 and nh = 1. Some experiments regarding the system order have been performed,
however with little influence on the performance.

4.1.2 Estimation Algorithm

The model structure is implemented using the arx MATLAB function (MathWorks). The
parametric method functions from the System Identification Toolbox in MATLAB, based
on Ljung (1999), serve both as model structure and estimation algorithm.

Equation 4.1 can be rewritten as

y = θTϕ (4.3)

Where θ holds the unknown parameters m, d and k, and ϕ is the known data vector.
The parameters, θ, are estimated using a least-squares method, see Section 2.1.3. The

equation error model set predictor defines a linear regression, see Section 2.1.2, which
makes this model structure particularly useful in describing basic linear and nonlinear
systems
(Ljung, 1999).

The least-squares estimate is solved by QR factorization, see Appendix A.1, meaning
that the ARX model parameters are estimated using Equation 4.4.

(JTJ)θ = JT y (4.4)
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Where J is the regressor matrix and y is the measured output. Thus, the parameter vector
can be expressed as

θ = (JTJ)1JT y (4.5)

4.1.3 Input and Output Generation
As described by Fossen (2011), the wave spectrum can be approximated by a second-order
system with relative degree one, see Equation 4.6.

h(s) =
Kws

s2 + 2λω0s+ ω2
0

(4.6)

Where the gain constant K = 2λω0σ, the dominating wave frequency ω0 is defined by
Equation 2.47 and σ, the wave intensity constant, is defined by Equation 4.7.

σ2 = max
0<ω<∞

S(ω) (4.7)

The damping coefficient λ can be computed using a nonlinear least-squares curve fit-
ting approach where the PSD function, Equation 4.8, fits the wave spectrum (Fossen and
Perez, 2009).

P (ω) = |h(jω)|2 =
4(λω0σ)2ω2

(ω2
0 − ω2)2 + 4(λω0ω)2

(4.8)

Ultimately, white noise is given as input to the transfer function h(s) to generate wave
elevation. This will serve as input to the mass-spring-damper model, see Figure 4.1. The
transfer function in the Wave Generation block is an implementation of Equation 4.6 and
inspired by the Marine Systems Simulator Toolbox by Fossen and Perez (2009).

The wave elevation will act as the applied force to the mass-spring-damper system,
resulting in rig heave amplitude as output y for the Simulink system.

Now, the resulting input and output from Figure 4.1 will be represented in the time
domain. However, as previously emphasized, the available data set does not contain wave
elevation, only measured wave spectrum and sea state parameters. Therefore, the model
needs to manage frequency domain input and output data. Thus, the final input and out-
put data for the ARX model are the discrete Fourier transforms of the data generated in
Simulink.

More precisely, the generated input based on measurements and the measured out-
put are used to create an iddata object which is transformed to the frequency domain
using discrete Fourier transform. However, this transformation has to be done carefully.
Transforming the input and output data directly using the MATLAB function fft would
give a two-sided spectrum with frequencies ranging from the negative half of the Nyquist
frequency to the positive half of the Nyquist frequency.

However, the MATLAB fft function with an iddata object as input returns a
frequency-domain iddata object with frequencies ranging from 0 to the Nyquist fre-
quency. In order to preserve the signal power and noise level, the fast Fourier transforms
(FFT) are normalized by dividing each transform by the square root of the length of the
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original time-domain signal. This would be equivalent to taking the discrete Fourier trans-
form of the time-domain input or output signal, y, and computing the one-sided spectrum
from the first half of the FFT divided by the square root of the length of y:

Y = fft(y)

N = length(y)

P1 =
Y (1 : N/2)√

N

u y

Mass Spirng Damper Model

Wave Generation

White
Noise

White Noise

h(s)

Figure 4.1: The Simulink model which generates data from a known mass-spring-damper system.
The linear approximation of the wave amplitude, h(s), expressed by Equation 4.6 is implemented in
the Simulink block Wave Generation. Together with the Mass Spring Damper Model, Equation 4.1,
the Simulink model generated heave amplitude, y.

Measured Wave Spectrum as Input

As described in Section 3.2, the given data set includes a 1D wave spectrum from a MIROS
wave radar. Therefore, to minimize sources of error, the parametric method was tested with
the measured wave spectrum. However, the input to the ARX model is still the linearly
approximated wave response, h(s) defined by Equation 4.6, but the spectrum which is
approximated is the 1D wave spectrum from the given data set.

Model Wave Spectrum as Input

Furthermore, as a 1D wave spectrum from a wave radar might not always be accessible,
the ARX model was tested with a model wave spectrum as well.

After trial and error, the Torsethaugen model spectrum was used in the final implemen-
tation with significant wave height and wave peak period from the given measurements.
Specifically, the model wave spectrum was implemented with the Marine Systems Simula-
tor Toolbox by Fossen and Perez (2009) and their wavespec function which implements
the JONSWAP and Torsethaugen spectra as described in Section 2.3.2 and 2.3.3, respec-
tively.

However, the model wave spectrum is evaluated for frequencies in radians per second,
while the measured wave spectrum is in Hz. According to DNV (2010) a spectrum S(ω),
given as a function of angular frequencies, is related to the spectrum S(f), given as a
function of frequencies in Hz, by Equation 4.9.

S(ω) =
S(f)

2π
(4.9)
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Thus, the model wave spectrum in radians per second is multiplied by a factor of 2π.
One drawback when using a model wave spectrum instead of the measured wave spec-

trum is that the model spectra are single-peaked and does not fully capture the sea state for
particularly low frequencies, see Figure 4.2. As a result, the model spectra are approxi-
mately zero for these low frequencies and Equation 2.39 does not hold. Therefore, when a
model spectrum is used as the input spectrum, the frequency vector ranges from 0.0547Hz
instead of 0.0312Hz. This range was found by trial and error.
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Figure 4.2: Measured wave spectrum compared with JONSWAP wave spectra with γ = 3.3 and
γ = 2.1915, from Equation 2.57, and a one-peaked Torsethaugen spectrum. Notice the difference
between the measured wave spectrum and the model wave spectra, specifically for low frequencies.

The area underneath the wave spectrum represents the total energy. Thus, the area un-
derneath the model wave spectra should not differ much from the measured spectrum. Ta-
ble 4.1 shows the total energy for the spectra illustrated in Figure 4.2. The model spectrum
which most precisely captures the energy of the measured spectrum is the Torsethaugen
spectrum.

Notice that this is an arbitrary example from the given data set, but the trend is that the
Torsethaugen fits the measured spectrum better than the JONSWAP spectra.

Aarnes et al. (2019) validate 2D wave spectra obtained from ECMWF at the location
of Gullfaks C. The 2D wave spectra has been compared against a Wavescan directional
buoy and a Miros Doppler radar. Moreover, these spectra have been compared to model
wave spectra, such as JONSWAP and Torsethaugen, both 2D and 1D, based on sea state
parameters obtained from the 2D ECMWF spectra. Aarnes et al. (2019) conclude that the
model, or idealized, spectra are only applicable in certain sea states which are typically
less complex. Additionally, they found that the Torsethaugen wave spectrum is superior to
JONSWAP in representing the observed 1D and 2D spectrum.
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Spectrum Area
Measured 299.8958

JONSWAP γ = 3.3 190.1251
JONSWAP γ = 2.1915 189.0640

Torsethaugen 302.8375

Table 4.1: The total energy of the measured and model wave spectra illustrated in Figure 4.2. The
area underneath the wave spectrum represents the total energy. The Torsethaugen wave spectrum is
the best fit to the measured wave spectrum.

Nevertheless, the input to the ARX model is still the linearly approximated wave re-
sponse, h(s) defined by Equation 4.6 with the model spectrum as the spectrum which is
approximated.

4.1.4 Heave Prediction from Generated Data

In order to test the parametric method for RAO estimation and heave prediction, the ARX
model was initially tested with an ideal case with generated wave and heave data from the
Simulink system illustrated in Figure 4.1. By having full control of the system dynamics,
i.e. the mass-spring-damper system, it is easier to identify implementation and fundamen-
tal errors. Thus, this case serves as a test for which the heave motion can be simplified to
a SISO mass-spring-damper system.

The input data is generated based on arbitrary significant wave height and wave peak
period values and these sea state parameters are used to generate a model wave spectrum.

After trial and error to obtain the desired dynamics, the parameter vector, θ, was set to

θ =

md
k

 =

100
5
25

 (4.10)

Validation

The model set for the ideal case was tested with three quarters of the measured input-
output data while the remaining one quarter was used for validation. The measured output
was compared with both simulated and predicted output from the identified model. The
simulated model output is estimated based on measured input data and initial conditions.
The predicted model output at some specified time in the future is based on measured input
data and initial conditions in addition to measured output data (MathWorks, 2020d).

Specifically, the ideal case was tested using the MATLAB function compare, further
explained in Section 4.1.6.

Figure 4.3 shows the magnitude and phase of the measured output compared with the
magnitude and phase of the simulated model output. Figures 4.4, 4.5 and 4.6 shows the
magnitude and phase of the measured output compared with the magnitude and phase of
the predicted model output 1-step-ahead, 2-steps-ahead and 10-steps-ahead, respectively.
The prediction time unit is seconds.
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Increasing the prediction horizon results in a poorer estimate. As Ljung (1999) points
out: A model can never be accepted as a final and true description of the system. There-
fore, there will always be some prediction error which will accumulate over the increased
prediction horizon.

Nevertheless, the ARX model works well with the generated input and output data,
which makes it easier to debug the model tested with actual measurements.
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Figure 4.3: The simulated output response, sysARX, compared with the measured output response,
validation. The plot is generated with the MATLAB compare function and the percentage in the
upper right corner is the NRMSE fitness value where 100% is perfect fit.
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Figure 4.4: The 1-step-ahead predicted output response, sysARX, compared with the measured
output response, validation. The plot is generated with the MATLAB compare function and the
percentage in the upper right corner is the NRMSE fitness value where 100% is perfect fit.
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Figure 4.5: The 2-step-ahead predicted output response, sysARX, compared with the measured
output response, validation. The plot is generated with the MATLAB compare function and the
percentage in the upper right corner is the NRMSE fitness value where 100% is perfect fit.

36



4.1 A Parametric Method for RAO Estimation and Heave Prediction

-60

-50

-40

-30

-20

-10

0

y
1

validation (y1)

sysARX: 62.29%

10
0

10
1

-1440

-1080

-720

-360

0

360

720

1080

Output Comparison, 10-step-ahead-prediction

Frequency  (rad/s)

M
a
g
n
it
u
d
e
 (

d
B

) 
; 
P

h
a
s
e
 (

d
e
g
)

Figure 4.6: The 10-steps-ahead predicted output response, sysARX, compared with the measured
output response, validation. The plot is generated with the MATLAB compare function and the
percentage in the upper right corner is the NRMSE fitness value where 100% is perfect fit.

4.1.5 Heave Prediction Based on Measured Data
After the parametric method was tested with generated input and output data to design an
ideal case, see Section 4.1.4, the ARX method was tested with the given data set.

Thus, the input was generated as described in Section 4.1.3 where the wave spectrum
resulted from either wave radar measurements, i.e. measured spectrum, or from given sea
state parameters, i.e. model spectrum.

Moreover, the heave amplitude from the given data set has a sampling frequency of
1 second, while the wave spectrum, significant wave height and wave peak period are
updated every 20 minutes. Therefore, the output data consists of heave measurements
for the past 20 minutes and the input data will be the wave radar measurements for the
associated time period.

The system identified based on measurements from sample time j, referred to as
sysARX, represents the relation between the wave spectrum and the heave energy spec-
trum. Thus, the k-step-ahead predicted heave motion can be defined as

ŷj+k = predict(sysARXj , Zj+k) (4.11)

Where the data Zj+k is defined as

Zj+k = uj+k, · · · , u0, yj , · · · , y0 (4.12)

Furthermore, the MATLAB System Identification Toolbox operates with the term
simulated output whenever the predicted output only depends on current and past inputs
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and initial conditions, and not on previous output measurements (MathWorks, 2020d).
Thus, the simulated output can be defined as

ŷs(j) = predict(sysARXj , Zs(j)) (4.13)

Where the data Zs(j+k) is defined as

Zs(j) = uj , · · · , u0 (4.14)

Moreover, Chapter 6 demonstrate the performance of the parametric methodology for
heave prediction.

4.1.6 Validation of the Parametric Method

After selecting the model structure and the estimation algorithm, the model has to be
validated. One common validation technique presented in Ljung (1999) is to compare the
measured output with the simulated or predicted output.

The parametric method was validated with the MATLAB function compare which
compares the identified model output with the measured output (MathWorks, 2020b). The
percentages in the upper right corner of the figures, like the ones from Section 4.1.4, are
normalized root-mean-square error (NRMSE) fitness values which indicated how well the
simulated or predicted output matches the measured data. 100% indicates perfect fit, −∞
indicates bad fit and a fitness value of 0 means that the predicted output is no better at
matching the measured output than a straight line.

4.2 A Non-Parametric Method for RAO Estimation and
Heave Prediction

According to Molland (2008), Tupper (2013) and Aarsnes et al. (2013), the the heave
energy spectrum is related to the wave spectrum by the square of the RAO, see Equation
4.15. Therefore, instead of identifying the whole system, it is possible that the RAO
estimate can be determined from the relationship between the input and output spectra,
see Equation 2.39.

This method does not make any assumptions regarding the structure of the system,
thus the following implementations will be categorized as non-parametric. However, like
the parametric metod, this approach also assumes a linear relation between the heave and
the wave spectrum.

Sh(ω) = RAO(ω)2Sw(ω) (4.15)

As specified by Oppenheim and Verghese (2015), when the input signal itself is not ac-
cessible, i.e., the wave elevation, but the spectrum is, then the magnitude of the frequency
response can still be determined as long as the output spectra can be estimated.
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4.2.1 Input and Output Generation
The input spectrum, i.e. the wave spectrum Sw, is either given directly by the data set
or modeled based on sea state parameters. The heave spectrum Sh, however, has to be
estimated based on the given heave amplitudes.

Measured Wave Spectrum as Input

Like the parametric method, the non-parametric was also tested with the measured 1D
wave spectrum from the given data set as input. As described in Section 3.2, this wave
spectrum is a function of 37 linearly spaced frequencies ranging from 0.03 to 0.3 Hz and
it is updated every 20 minutes.

Model Wave Spectrum as Input

Additionally, the non-parametric method, like the parametric method, was tested with the
Torsethaugen model wave spectrum from Fossen and Perez (2009) as input. As the model
wave spectrum is given as a function of angular frequencies and the measured wave spec-
trum and the predicted heave energy spectrum are in Hz, the model wave spectrum is
multiplied by a factor of 2π according to Equation 4.9 (DNV, 2010).

Furthermore, Figure 4.2 shows the measured 1D wave spectrum compared with a JON-
SWAP spectrum with γ = 3.3, a JONSWAP spectrum with the DNVGL (2018) suggestion
of γ, resulting in γ = 2.1915 and a Torsethaugen spectrum. None of the model spectra are
able to capture the sea state at low frequencies. However, as illustrated in Table 4.1, the
Torsethaugen spectrum gives the most accurate representation of the wave energy.

Heave Energy Spectrum as Output

Equation 4.15 is generally used to calculate the heave energy spectrum when the RAO and
the wave spectrum are known. However, for this project, the RAO is subject to estimation
based on heave energy spectrum and wave spectrum and therefore unknown.

Thus, the heave energy spectrum is estimated using a PSD estimate function. After
trial and error, the MATLAB function pwelch was used to calculate the heave energy
spectrum based on rig heave amplitude measurements.

4.2.2 Mean RAO vs Previous RAO
The non-parametric RAO estimation methodology was obtained by estimating the RAO
from measurements and by estimating the RAO from the average of the previously esti-
mated RAOs.

Specifically, for a data sample at time j, the RAO is estimated either as

RAO(j) =
Sh(j)

Sw(j)
(4.16)

or, due to the discovery of non-captured nonlinearities, as the average of the n last RAO
estimates
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R̂AOn(j) =
RAO(j) + · · ·+RAO(j − n− 1)

n
(4.17)

The results and comparison of Equation 4.16 and 4.17 are presented in Chapter 5.

4.2.3 Heave Prediction Based on Measured Data
Moreover, the estimated RAO is used to predict the heave energy spectrum Sh. Therefore,
the heave energy spectrum at time j will be predicted as

Sh(j) = RAO(j − 1) · Sw(j) (4.18)

Where RAO(j − 1) is defined by Equation 4.16 or 4.17.
Furthermore, the estimated RAO is also used to predict the heave energy spectrum k-

step-ahead of time with k being the prediction horizon. Thus, the k-step-ahead predicted
heave energy spectrum is defined as

Sh(j + k) = RAO(j) · Sw(j + k) (4.19)

Here, the wave spectrum is either given from measurements or weather forecasts. The
prediction time unit is 20 minutes. Therefore, j + 1 will in practice mean 20 minutes after
time j. This is because the wave spectrum, and therefore the sea state parameters, are
updated every 20 minutes, see Section 3.2.

Furthermore, the performance of the non-parametric methodology for heave prediction
is demonstrated in Chapter 6.

4.3 RAO Estimation and Heave Prediction Based on
Forecasts

Moreover, the RAO estimation and heave prediction methodology was implemented with
model wave spectrum as input where the sea states were obtained from weather forecasts
from the Norwegian Meteorological Institute, see Section 3.1.2.

4.3.1 Extracting Sea State Parameters
The sea state parameters of interest for this project are the significant wave height and
the wave peak period. These parameters are given as three-dimensional matrices with
dimensions

relative longitude × relative latitude × time

where the unit of time is hours.
The wave model which gives the forecasts is run on a rotated grid. Therefore, to access

the desired parameters for a given location in latitude and longitude, the coordinates has
to be transformed to relative coordinates.

Scientist at the Norwegian Meteorlogical Institute, Ole Johan Aarnes, shared his al-
gorithm, find nearest gridcell, which uses triangulation to extract the indices which
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connects the relative latitude and longitude to the actual latitude and longitude, see Listing
B.1 in Appendix B.1.

When the relation between relative and actual coordinates have been established, the
desired forecast parameters can be extracted, see Listing B.2 in Appendix B.1. Specifi-
cally, significant wave height and wave peak period for a given location can be used to
generate a model wave spectrum. This model spectrum based on forecasts can be used to
predict future heave motion, see Equation 4.19.

Further, the forecast files overlap by 60 hours, which means that more than one file can
contain forecasts for the desired point in time. Therefore, the newest file, i.e. the forecast
file closest in time with time j is chosen.

Figure 4.7 shows the significant wave height from the measured wave spectrum com-
pared with significant wave heights from forecasts from the Norwegian Meteorological
Institute. As described in Section 3.1.2, the forecasts are updated four times daily, result-
ing in four NetCDF files each day. The forecasts in Figure 4.7 are from 22 hours, 16 hours,
10 hours and 4 hours ahead, respectively.

The performance of the RAO estimation and heave prediction methodology based on
weather forecasts for both the parametric and the non-parametric methods are demon-
strated in Chapter 7.
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Figure 4.7: The measured significant wave height compared with the significant wave height from
forecasts from the Norwegian Meteorological Institute. The forecasts are from 4, 10, 16 and 22
hours ahead.
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Figure 4.8: The measured wave peak period compared with the wave peak period from forecasts
from the Norwegian Meteorological Institute. The forecasts are from 4, 10, 16 and 22 hours ahead.

4.4 Statistical Analysis
The performance of the proposed methods for RAO estimation and heave prediction was
statistically evaluated by a heave prediction error defined in terms of a normalized root-
mean-square error (NRMSE) fitness value. Here, the NRMSE function is defined as

NRMSE = 1− ||y − ŷ||
||y −mean(y)||

(4.20)

Where || indicates the 2-norm of a vector. Specifically, the MATLAB functions
compare (MathWorks, 2020b) and goodnessOfFit (MathWorks, 2020c) are utilized
for the parametric and the non-parametric methods, respectively, to calculate the NRMSE
fitness value.

Furthermore, these prediction errors were illustrated with box plots, using the MAT-
LAB function boxplot (MathWorks, 2020a). Particularly, the box plot shows the median
of the prediction error marked as a red horizontal line within the box, while the upper and
lower edges represent the 75th and the 25th percentile, respectively. Outliers are marked
as red plus signs.
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RAO Estimation Based on
Measured Data

This chapter will demonstrate the performance of the non-parametric methodology for
RAO estimation illustrated by its ability to predict the heave energy spectrum. The heave
energy spectrum was estimated using overlapping segments of the time-domain heave am-
plitude signal, also known as Welch’s technique. Using the relationship established in
Equation 4.15, the heave energy spectrum was predicted based on the estimated RAO and
the measured wave spectrum.

The heave prediction errors are expressed in terms of NRMSE fitness values as intro-
duced in Section 4.4. Moreover, the heave energy spectrum predicted from the associated
measured or modeled wave spectrum and the estimated RAO based on the average of the
n last measurements will be compared to the heave energy spectrum predicted from the
associated wave spectrum and the estimated RAO based on only the last wave and heave
measurements. After trial and error n = 2, 4, 5.

Thus, the heave prediction errors will be given as

eavg = yj − ŷavg (5.1a)
elast = yj − ŷlast (5.1b)

for heave energy spectrum, y, and wave measurements, u, at sample time j+1, where ŷavg
is predicted based on an RAO defined by Equation 4.17 at time j and ŷlast is predicted
based on an RAO defined by Equation 4.16 at time j.

Thus, this chapter will present how the RAO estimation based on an average of the
last n RAOs and RAO estimation based on only one set of input-output data affects the
method’s ability to predict the heave energy spectrum.

The prediction errors will be presented in box plots, see Section 4.4, resulting from
ten random samples from the given data set, see Section 3.2. The intention is that these
random samples can provide helpful insight into the performance of the proposed methods.
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Furthermore, the significant wave height and wave peak period of the ten random sam-
ples are listed in Table 5.1, while the median, mean, maximum and minimum values of the
significant wave height and wave peak period from the given data set are listed in Table
3.3.

Significant Wave Height [m] Wave Peak Period [s]
6.5673 11.6364
7.5500 11.6364
8.8544 16.0000
8.8052 11.6364
8.6725 16.0000
6.2575 9.8462
5.0935 9.8462
3.9084 9.8462
3.4384 9.1429
3.3650 8.5333

Table 5.1: Significant wave height and the associated wave peak period of the ten random samples
from the given data set. The median, mean, maximum and minimum value of the sea state parameters
from the data set are presented in Table 3.3.

Additionally, the prediction horizon, k, will in this case be 20 minutes, due to the
specifications of the measurements described in Section 3.2.

5.1 The Non-Parametric Method With Measured Wave
Spectrum as Input

As described in Section 4.2.1, the non-parametric method was tested with measured wave
spectra from the given data set as inputs.

First of all, the non-parametric method with measured wave spectrum as input was
tested with n = 2, meaning that the RAO was estimated based on an average of the last two
estimated RAOs and then used to predict the heave energy spectrum 1-step-ahead. Further-
more, this predicted heave energy spectrum was compared to the heave energy spectrum
predicted 1-step-ahead based on the RAO estimated from only the previous input-output
data.

Figure 5.1 shows the box plot of the heave prediction errors for the heave energy spec-
trum predicted from an average of the last 2 estimated RAOs and from only the last RAO
estimate.

Additionally, Table 5.2 shows the median and the mean of the prediction errors illus-
trated in Figure 5.1, where the prediction errors are defined by Equation 5.1.
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Prediction Errors Median Mean
eavg 0.5871 0.5887
elast 0.4880 0.4956

Table 5.2: The median and the mean of the prediction errors defined by 5.1 for the ten random data
samples from Table 5.1. Here, eavg is defined as the predicted heave based on average of the last 2
estimated RAOs, see Equation 4.17 for n = 2, while elast is based on the RAO defined by Equation
4.16.
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Figure 5.1: The box plots of the prediction errors defined by Equation 5.1 for the ten random
samples form Table 5.1. The eavg is the predicted heave based on the estimated RAO defined by
Equation 4.17 for n = 4, while elast is based on the RAO defined by Equation 4.16, with real wave
spectra. The median is marked as a red line and the upper and lower edges of the box represents the
75th and the 25th percentile, respectively.

The average of the two last RAOs gives a marginally better NRMSE fitness value
compared to the RAO from only the last input-output data.

Figure 5.2 shows the average of the last two RAOs compared with the previous, last
RAO and the next (actual) RAO, which is the RAO estimated at time j + 1. For this par-
ticular example, the prediction errors, eavg and elast are 0.7514 and 0.5455, respectively.
From Table 5.2, these prediction errors are far above average. Moreover, the sea state
parameters are 6.5673m and 11.6364s, which according to Table 3.3 are above average.
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Figure 5.2: The estimated RAOs based on Equation 4.16 in red and Equation 4.17 in blue for the
data sample at time j compared with the RAO for the data sample at time j + 1 in yellow. The
significant wave height is 6.5673m and the wave peak period is 11.6364s for this particular example,
which are above average according to Table 3.3. The prediction errors, eavg and elast are 0.7514
and 0.5455, respectively, which are above average, see Table 5.2.

Secondly, the non-parametric method with measured wave spectrum as input was
tested with n = 4, meaning that the RAO was estimated based on an average of the
last four estimated RAOs and then used to predict the heave energy spectrum 1-step-
ahead. Furthermore, this predicted heave energy spectrum was compared to the heave
energy spectrum predicted 1-step-ahead based on the RAO estimated from only the previ-
ous input-output data.

Figure 5.3 shows the box plot of the heave prediction errors for the heave energy spec-
trum predicted from an average of the last four estimated RAOs and from only the last
RAO estimate.

Additionally, Table 5.3 shows the median and the mean of the heave prediction errors
illustrated in Figure 5.3 and defined by Equation 5.1.

Prediction Error Median Mean
eavg 0.6318 0.6214
elast 0.4880 0.4956

Table 5.3: The median and the mean of the prediction errors defined by 5.1 for the ten random data
samples from Table 5.1. Here, eavg is defined as the predicted heave based average of the last 4
estimated RAOs, see Equation 4.17 for n = 4, while elast is based on the RAO defined by Equation
4.16.

Furthermore, Figure 5.4 shows the estimated RAO based on the average of the last four
measurements compared with the estimated RAO based on the last measurements from the

46



5.1 The Non-Parametric Method With Measured Wave Spectrum as Input

data sample at time j and the actual RAO, i.e. the RAO estimated at time j + 1. Here, the
prediction errors, eavg and elast are 0.7527 and 0.4291, respectively. According to Table
5.3, these values are above and below average, respectively.

Moreover, the significant wave height is 5.0935m and the wave peak period is 11.6364s,
which are below and above average, respectively according to Table 3.3.
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Figure 5.3: The box plots of the prediction errors defined by Equation 5.1 for the ten random
samples form Table 5.1. The eavg is the predicted heave based on the estimated RAO defined by
Equation 4.17 for n = 4, while elast is based on the RAO defined by Equation 4.16. The median
is marked as a red line and the upper and lower edges of the box represents the 75th and the 25th
percentile, respectively.
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Figure 5.4: The estimated RAOs based on Equation 4.16 in red and Equation 4.17 in blue for the
data sample at time j compared with the RAO for the data sample at time j + 1 in yellow. The
significant wave height is 5.0935m and the wave peak period is 9.8462s for this particular example,
which are below average according to Table 3.3. The prediction errors, eavg and elast are 0.7527
and 0.4921, respectively, which are above an below average, see Table 5.3.

Lastly, the non-parametric method with measured wave spectrum as input was tested
with n = 5, meaning that the RAO was estimated based on an average of the last five es-
timated RAOs and then used to predict the heave energy spectrum 1-step-ahead. Further-
more, this predicted heave energy spectrum was compared to the heave energy spectrum
predicted 1-step-ahead based on the RAO estimated from only the previous input-output
data.

Figure 5.5 shows the box plot of the heave prediction errors for the heave energy spec-
trum predicted from an average of the last five estimated RAOs, compared to the predicted
heave energy spectrum from only the last RAO estimate.

Likewise, Table 5.4 shows the median and the mean of the heave prediction errors
illustrated in Figure 5.5 and defined by Equation 5.1.

Prediction Error Median Mean
eavg 0.6434 0.6157
elast 0.4880 0.4956

Table 5.4: The median and the mean of the prediction errors defined by 5.1 for the ten random data
samples from Table 5.1. Here, eavg is defined as the predicted heave based average of the last 5
estimated RAOs, see Equation 4.17 for n = 5, while elast is based on the RAO defined by Equation
4.16.
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Figure 5.5: The box plots of the prediction errors defined by Equation 5.1 for the ten random
samples form Table 5.1. The eavg is the predicted heave based on the estimated RAO defined by
Equation 4.17 for n = 5, while elast is based on the RAO defined by Equation 4.16, with real wave
spectra. The median is marked as a red line and the upper and lower edges of the box represents the
75th and the 25th percentile, respectively.

Furthermore, Figure 5.6 shows the estimated RAO based on the average of the last
five estimates from time j, compared with the RAO estimated only on the previous mea-
surements from the data sample at time j and the actual RAO estimated at time j + 1.
For this particular example, the prediction errors, eavg and elast are 0.7423 and 0.4305,
respectively, which are above and below the average values for the prediction errors, see
Table 5.4.

Moreover, the sea state parameters are 8.8052m and 11.6364s, which are above aver-
age, see Table 3.3.
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Figure 5.6: The estimated RAOs based on Equation 4.16 in red and Equation 4.17 in blue for the
data sample at time j compared with the RAO for the data sample at time j + 1 in yellow. The
significant wave height is 8.8052m and the wave peak period is 11.6364s for this particular example,
which are above average according to Table 3.3. The prediction errors, eavg and elast are 0.7423
and 0.4305, respectively, which are above and below average, see Table 5.4.

5.2 The Non-Parametric Method With Model Wave
Spectrum as Input

Moreover, the non-parametric estimation methodology was tested with a model wave spec-
trum as input, see Section 4.2.1.

First of all, like the previous section, the non-parametric method with a model wave
spectrum as input was tested with n = 2, meaning that the RAO was estimated based
on an average of the last two estimated RAOs and then used to predict the heave energy
spectrum 1-step-ahead. Furthermore, this predicted heave energy spectrum was compared
to the heave energy spectrum predicted 1-step-ahead based on the RAO estimated from
only the previous input-output data.

Figure 5.7 shows the box plots of the heave prediction errors for the heave energy
spectrum predicted from an average of the last two estimated RAOs and from only the last
RAO estimate. There is one outlier, marked with a red plus sign, at -0.6405 for the average
of the last two RAOs, and at -0.9213 for the heave energy spectrum estimated based on
only the previous estimated RAO. The former is from the sample where the significant
wave height is 8.6725m and the wave peak period is 16.0000s, which compared to Table
3.3 are more or less the maximum values of the sea states. Moreover, the latter outlier is
from a sample where the sea states are 6.2575m and 9.8462s, respectively, which are both
close to the median of the sea states.
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Furthermore, Table 5.5 shows the median and the mean of the prediction errors illus-
trated in Figure 5.7 and defined by Equation 5.1.

Prediction Error Median Mean
eavg 0.6622 0.4660
elast 0.4691 0.3741

Table 5.5: The median and the mean of the prediction errors defined by 5.1 for the ten random data
samples from Table 5.1. Here, eavg is defined as the predicted heave based average of the last 2
estimated RAOs, see Equation 4.17 for n = 2, while elast is based on the RAO defined by Equation
4.16.
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Figure 5.7: The box plots of the prediction errors defined by Equation 5.1 for the ten random
samples form Table 5.1. The eavg is the predicted heave based on the estimated RAO defined by
Equation 4.17 for n = 2, while elast is based on the RAO defined by Equation 4.16, with model
wave spectra. The median is marked as a red line and the upper and lower edges of the box represents
the 75th and the 25th percentile, respectively. Outliers are marked with red plus signs.

Figure 5.8 shows the estimated RAO based on the average of the last two estimates
from time j, compared with the last RAO, at time j and the next estimated RAO, at time
j + 1. For this example, the prediction errors, eavg and elast were 0.9229 and 0.9244,
respectively. Compared to Table 5.5 these values are far above average.

Furthermore, the significant wave height and wave peak period was 3.3650m and
8.5333s, which are below average, see Table 3.3.
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Figure 5.8: The estimated RAOs based on Equation 4.16 in red and Equation 4.17 in blue for the
data sample at time j compared with the RAO for the data sample at time j + 1 in yellow. The
significant wave height is 3.3650m and the wave peak period is 8.5333s for this particular example,
which are below average according to Table 3.3. The prediction errors, eavg and elast are 0.9929
and 0.9244, respectively, which are above average, see Table 5.5.

Secondly, the non-parametric method with a model wave spectrum as input was tested
with n = 4, meaning that the RAO was estimated based on an average of the last four es-
timated RAOs and then used to predict the heave energy spectrum 1-step-ahead. Further-
more, this predicted heave energy spectrum was compared to the heave energy spectrum
predicted 1-step-ahead based on the RAO estimated from only the previous input-output
data.

Figure 5.9 shows the box plots of the heave prediction errors for the heave energy
spectrum predicted from an average of the last four estimated RAOs and from only the last
RAO estimate.

Notice the outliers at -0.0507 for eavg and at -0.9213 for elast. Both outliers are from
the same data sample where the sea states are 6.2575m and 9.8462s, respectively, which
are both close to the median of the sea states.

Further Table 5.6 shows the median and the mean of the prediction errors illustrated in
Figure 5.9 and defined by Equation 5.1.
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Prediction Error Median Mean
eavg 0.5806 0.4818
elast 0.4691 0.3741

Table 5.6: The median and the mean of the prediction errors defined by 5.1 for the ten random data
samples from Table 5.1. Here, eavg is defined as the predicted heave based average of the last 4
estimated RAOs, see Equation 4.17 for n = 4, while elast is based on the RAO defined by Equation
4.16.
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Figure 5.9: The box plots of the prediction errors defined by Equation 5.1 for the ten random
samples form Table 5.1. The eavg is the predicted heave based on the estimated RAO defined by
Equation 4.17 for n = 4, while elast is based on the RAO defined by Equation 4.16, with model
wave spectra. The median is marked as a red line and the upper and lower edges of the box represents
the 75th and the 25th percentile, respectively. Outliers are marked with red plus signs.

Figure 5.10 shows the estimated RAO based on the average of the last four estimates at
time j, compared with the estimated RAO defined by Equation 4.16 at time j and the next
estimated RAO, the actual RAO, estimated at time j + 1. For this example, the prediction
errors, eavg and elast were 0.8749 and 0.9244, respectively. Compared to Table 5.6, these
values are far above average.

Moreover, the sea state parameters were 3.3650m and 8.5333s, which are below aver-
age according to Table 3.3.
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Figure 5.10: The estimated RAOs based on Equation 4.16 in red and Equation 4.17 in blue for the
data sample at time j compared with the RAO for the data sample at time j + 1 in yellow. The
significant wave height is 3.3650m and the wave peak period is 8.5333s for this particular example,
which are below average according to Table 3.3. The prediction errors, eavg and elast are 0.8749
and 0.9244, respectively, which are above average, see Table 5.6.

Lastly, the non-parametric method with a model wave spectrum as input was tested
with n = 5, meaning that the RAO was estimated based on an average of the last five es-
timated RAOs and then used to predict the heave energy spectrum 1-step-ahead. Further-
more, this predicted heave energy spectrum was compared to the heave energy spectrum
predicted 1-step-ahead based on the RAO estimated from only the previous input-output
data.

Figure 5.11 shows the box plots of the heave prediction errors for the heave energy
spectrum predicted from an average of the last five estimated RAOs and from only the last
RAO estimate. The outliers at -0.0507 for eavg and at -0.9213 for elast are both from the
same data sample where the sea states are 6.2575m and 9.8462s, respectively, which are
both below average and close to the median of the sea states.

Further Table 5.7 shows the median and the mean of the prediction errors illustrated in
Figure 5.11 and defined by Equation 5.1.
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Prediction Error Median Mean
eavg 0.5642 0.4457
elast 0.4691 0.3741

Table 5.7: The median and the mean of the prediction errors defined by 5.1 for the ten random data
samples from Table 5.1. Here, eavg is defined as the predicted heave based average of the last 5
estimated RAOs, see Equation 4.17 for n = 5, while elast is based on the RAO defined by Equation
4.16.
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Figure 5.11: The box plots of the prediction errors defined by Equation 5.1 for the ten random
samples form Table 5.1. The eavg is the predicted heave based on the estimated RAO defined by
Equation 4.17 for n = 5, while elast is based on the RAO defined by Equation 4.16, with model
wave spectra. The median is marked as a red line and the upper and lower edges of the box represents
the 75th and the 25th percentile, respectively. Outliers are marked with red plus signs.

Figure 5.12 shows the estimated RAO based on the average of the last five estimates
at time j, compared with the last RAO estimated based on Equation 4.16 at time j and
the next estimated RAO, the actual RAO, at time j + 1. For this example, the prediction
errors, eavg and elast were 0.8255 and 0.9244, respectively. According to Table 5.7 these
values are above average.

Moreover, the significant wave height was 3.3650m and the wave peak period was
8.5333s, which both are below average according to Table 3.3.
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Figure 5.12: The estimated RAOs based on Equation 4.16 in red and Equation 4.17 in blue for the
data sample at time j compared with the RAO for the data sample at time j + 1 in yellow. The
significant wave height is 3.3650m and the wave peak period is 8.5333s for this particular example,
which are above average according to Table 3.3. The prediction errors, eavg and elast are 0.8255
and 0.9244, respectively, which are above an below average, see Table 5.7.
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Chapter 6
Heave Prediction Based on
Measured Data

This section will present the results from the proposed RAO estimation and heave predic-
tion methods introduced in Chapter 4. Like the experiments demonstrated in Chapter 5,
the results in this chapter are based on ten random samples from the given data set. The
significant wave height and wave peak period of these samples are shown in Table 5.1,
while the median, mean, maximum and minimum values of the sea states from the whole
data set are shown in Table 3.3.

Specifically, the parametric method for heave prediction introduced in Section 4.1 and
the non-parametric method for heave prediction introduced in Section 4.2 were tested with
both measured wave spectrum and model wave spectrum as inputs.

6.1 The Parametric Method
The parametric system identification method using an ARX model to describe the rig heave
motion, presented in Section 4.1, was tested with both measured wave spectra and model
spectra as the input spectrum.

Furthermore, the parametric method was validated as described in Section 4.1.6, us-
ing the MATLAB function compare to obtain magnitude and phase plots of the output
responses. The simulation and prediction errors are presented in box plots as specified in
Section 4.4.

Due to the specifications related to the System Identification Toolbox in MATLAB,
the prediction horizon inherit the time unit of the data set. Thus, the prediction horizons,
k = 1, 2, 5, 10, 20, will for the parametric method be in seconds.

Moreover, as introduced in Section 4.1.4, the simulated output is only based on in-
put data and initial conditions while the predicted output at some future point in time is
based on past and current values of input and output data, as well as initial conditions
(MathWorks, 2020d).
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The simulation and prediction errors are defined by Table 6.1

esim = yj − ŷs(j) (6.1a)
e1 = yj+1 − ŷj+1 (6.1b)
e2 = yj+2 − ŷj+2 (6.1c)
e5 = yj+5 − ŷj+5 (6.1d)
e10 = yj+10 − ŷj+10 (6.1e)
e10 = yj+20 − ŷj+20 (6.1f)

Where yj is the measured output response at sample time j, while ŷj+k for k =
1, 2, 5, 10, 20 is the k-step-ahead predicted output response based on Equation 4.11 and
ysim is the simulated output based on Equation 4.13.

6.1.1 Measured Wave Spectrum as Input
The given data set includes a 1D wave spectrum measured from a wave radar, see Section
3.2. The linear approximation of the measured wave spectrum with added noise was then
used as input spectrum to the ARX model, like the procedure presented in Section 4.1.3.

The heave simulation and prediction errors, defined by Equation 6.1, are illustrated
in Figure 6.1. As the prediction horizon increases, the NRMSE cost decreases, meaning
that the difference between the measured heave and the predicted heave increases as the
prediction horizon increases.

Notice the outliers at -0.0753 for esim, 0.7485 for e1 and at 0.1753 for e20. The former
is associated with sea state parameters of 8.8052m and 11.6364, which are above average
according to Table 3.3. Moreover, the outlier for e1 is associated with a significant wave
height of 3.4384m and a wave peak period of 9.1429s, which are far below average. The
latter outlier is associated with sea state parameters equal to 8.6725m and 16.0000s, which
in fact are far above average and the maximum value of the wave peak period, respectively.

Table 6.1 shows the median and the mean of the heave prediction errors. As described
in Section 4.4, 1 would be an indication of perfect fit and −∞ would indicate bad fit. A
zero value would imply that the predicted heave is no better at matching the measured
heave than a straight line.

Error Median Mean
esim 0.0055 -0.0025
e1 0.8106 0.8038
e2 0.6486 0.6417
e5 0.3565 0.3323
e10 0.1592 0.1531
e20 -0.0137 -0.0105

Table 6.1: The heave simulation and prediction errors defined by Equation 6.1. 1-step-ahead pre-
diction will in this example be in the timescale of 1 second due to the specifications of the System
Identification Toolbox in MATLAB (Ljung, 2014).
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Figure 6.1: The box plots of the simulation and prediction errors defined by Equation 6.1 for the ten
random samples form Table 5.1 for the parametric method with measured wave spectrum as input.
The median is marked as a red line and the upper and lower edges of the box represents the 75th and
the 25th percentile, respectively. Outliers are marked with red plus signs.

Furthermore, Figure 6.2 shows the magnitude and phase plots of the 1-step-ahead
predicted output response, sysARX, compared with the measured output response, vali-
dation1. For this particular example, the sea state parameters are 5.0935m and 9.8462s,
which are below average according to Table 3.3. The prediction error were 0.8389, 0.6924,
0.3788, 0.2107 and 0.0758, or above average as seen from Table 6.1.

Likewise, Figure 6.3 shows the associated magnitude and phase plots of the simulated
output compared with the measured output response. The simulation error was 0.0055 or
0.5536%.
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Figure 6.2: The 1-step-ahead predicted output response, sysARX, compared with the measured
output response, validation for the parametric method with measured wave spectrum as input. The
plot is generated with the MATLAB compare function and the percentage in the upper right corner
is the NRMSE fitness value where 100% is perfect fit. The prediction error is defined by 6.1.
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Figure 6.3: The simulated output response, sysARX, compared with the measured output response,
validation for the parametric method with measured wave spectrum as input. The plot is generated
with the MATLAB compare function and the percentage in the upper right corner is the NRMSE
fitness value where 100% is perfect fit. The simulation error is defined by 6.1.
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6.1.2 Model Wave Spectrum as Input

Moreover, if a measured wave spectrum is not available, sea state parameters can be used to
generate a model wave spectrum as discussed in Section 4.1.4. Therefore, the parametric
method was tested with a Torsethaugen model spectrum created with significant wave
height and wave peak period from the given data set. The input to the ARX model was
then generated based on a linear approximation of the model spectrum with added noise,
see Section 4.1.3.

Figure 6.4 shows the box plots of the heave simulation and prediction errors, defined
by Equation 6.1 and represented using a NRMSE cost function. Similarly to what is seen
in Section 6.1.1, the NRMSE cost decreases when the prediction horizon increases, illus-
trating that the difference between the measured heave and the predicted heave increases as
the prediction horizon increases. Again, notice the outliers at 0.0157, 0.0175 and -0.0203
for esim, 0.7585 for e1 and at -0.1719 for e20. The outliers at 0.0157 and -0.1719 are both
associated with sea state parameters of 8.6725m and 16.0000s, which according to Table
3.3 are above average and the maximum value, respectively.

Moreover, the outlier at 0.0175 has a significant wave height of 8.8544m and a wave
peak period of 16.0000s, which are above average and in fact the maximum value of the
wave peak period. Likewise, the outlier at -0.0203 is associated with sea state parameters
of 8.8052m and 11.6364s, which are both above average. Lastly, the outlier at 0.7585
is associated with sea state parameters of 3.4384m and 9.14929s, which are both below
average.

Table 6.2 shows the median and the mean of the heave prediction error. Again, as
explained in Section 4.4, 1 would be an indication of perfect fit and −∞ would indicate
bad fit. A zero value would imply that the predicted heave is no better at matching the
measure heave than a straight line.

Prediction error Median Mean
esim 0.0037 -0.0032
e1 0.8139 0.8043
e2 0.6589 0.6412
e5 0.3497 0.3294
e10 0.1623 0.1534
e20 -0.0022 -0.0112

Table 6.2: The heave simulation and prediction errors defined by Equation 6.1. 1-step-ahead pre-
diction will in this example be in the timescale of 1 second due to the specifications of the System
Identification Toolbox in MATLAB (Ljung, 2014).

Furthermore, like the example in the previous section, Figure 6.5 shows magnitude
and phase plots of the 1-step-ahead predicted output response, sysARX, compared with
the measured output response, validation1. Again, the sea state parameters are below
average, see Table 3.3, with a significant wave height of 5.0935m and a wave peak period
of 9.8462s. For this particular example the prediction errors were 0.8389, 0.6924, 0.3788,
0.2107 and 0.07162.

Moreover, Figure 6.6 shows the associated magnitude and phase plots of the simulated
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output response compared with the measured output response. The simulation error was
0.0062 or 0.6224%.
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Figure 6.4: The box plots of the simulation and prediction errors defined by Equation 6.1 for the ten
random samples form Table 5.1 for the parametric method with model wave spectrum as input. The
median is marked as a red line and the upper and lower edges of the box represents the 75th and the
25th percentile, respectively. Outliers are marked with red plus signs.
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Figure 6.5: The 1-step-ahead predicted output response, sysARX, compared with the measured
output response, validation for the parametric method with measured wave spectrum as input. The
plot is generated with the MATLAB compare function and the percentage in the upper right corner
is the NRMSE fitness value where 100% is perfect fit. The prediction error is defined by 6.1.
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Figure 6.6: The simulated output response, sysARX, compared with the measured output response,
validation for the parametric method with measured wave spectrum as input. The plot is generated
with the MATLAB compare function and the percentage in the upper right corner is the NRMSE
fitness value where 100% is perfect fit. The simulation error is defined by 6.1.
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6.2 The Non-Parametric Method
The non-parametric method was implemented as described in Section 4.2, with both mea-
sured wave spectra and model wave spectra as inputs. This method does not make any a
priori assumptions regarding the system which is why this method is also referred to as
non-parametric, see Section 2.1.3.

Identically to Chapter 5, the heave energy spectrum was estimated using overlapping
segments of the time-domain heave amplitude signal, also known as Welch’s technique.
Using the relationship established in Equation 4.15, the heave energy spectrum was pre-
dicted based on the estimated RAO and the measured wave spectrum.

Based on the results from Chapter 5, the non-parametric heave prediction method is
based on the average of the last four estimated RAOs. Furthermore, this predicted heave
spectrum is compared to the heave spectrum predicted based on only the last estimated
RAO.

The heave prediction errors are defined by

e1 = yj+1 − ŷj+1 (6.2a)
e2 = yj+2 − ŷj+2 (6.2b)
e5 = yj+5 − ŷj+5 (6.2c)
e10 = yj+10 − ŷj+10 (6.2d)

(6.2e)

Where yj+k is the heave energy spectrum based on measurements at sample time j + k
and ŷj+k is the predicted heave energy spectrum at sample time j + k for k = 1, 2, 5, 10,
defined by Equation 4.18. Here, the time unit of the prediction horizon k is 20 minutes
since the wave measurements are updated approximately every 20 minutes.

Moreover, the heave prediction errors are presented in terms of NRMSE and illustrated
with box plots, as described in Section 4.4.

6.2.1 Measured Wave Spectrum as Input
The given data set includes a 1D wave spectrum, see Section 3.2 and this section will
present the results from the heave prediction methodology based on Equation 4.15 with
the measured wave spectrum as input.

Average of 4 RAOs

First of all, Figure 6.7 shows the box plots for the the prediction errors defined in Equation
6.2 when the RAO is based on the average of the last four estimated RAOs. As previously
discovered, when the prediction horizon increases, the value of the NRMSE cost function
decreases, which implies that the difference between the measured and the predicted heave
increases as the prediction horizon increases.

Notice the outlier at -0.2218 for e2. Here, the significant wave height is 3.4384 m and
the wave peak period is 9.1429s, which according to Table 3.3 are below average.
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Moreover, Table 6.3 shows the median and the mean of the heave prediction errors
presented in Figure 6.7. As described in Section 4.4, a value of 1 would indicate a perfect
fit, while a NRMSE value ≈ −∞ would imply bad fit. A zero value indicates that the
predicted heave is no better at matching the measured heave than a straight line.

Figure 6.8 shows the 1-step-ahead predicted heave energy spectrum based on the aver-
age of the last four estimated RAOs compared with the measured heave energy spectrum.
For this particular example, the prediction errors e1, · · · , e10 are 0.7079, 0.7203, 0.4015
and 0.1987, respectively, which for the most part are above average, see Table 6.3. Here,
the sea state parameters are 6.5673m and 11.6364s, respectively. According to Table 3.3,
this sea state is slightly above average.

Further, Figure 6.9 shows the 1-step-ahead predicted heave energy spectrum based on
the average of the last four estimated RAOs compared with the measured heave energy
spectrum. Here, the prediction errors e1, · · · , e10 are 0.3895, -0.2217, 0.1532 and 0.2279,
respectively. As seen in Table 6.3, these values are far below average.

Furthermore, for this particular example the significant wave height is 3.4384 m and
the wave peak period is 9.1429s, which is the outlier associated with e2.

Prediction error Median Mean
e1 0.6318 0.6214
e2 0.4813 0.4243
e5 0.4141 0.3902
e10 0.3968 0.3756

Table 6.3: The heave prediction errors defined by Equation 6.2 when the RAO is estimated based
on Equation 4.17 for n = 4 and with measured wave spectra. The prediction horizon is 20 minutes
due to the specifications of the given data set, see Section 3.2.
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Figure 6.7: The box plots of the prediction errors defined by Equation 6.2 for the ten random
samples form Table 5.1 for the non-parametric method with measured wave spectrum as input. The
predicted heave is based on the estimated RAO defined by Equation 4.17 for n = 4. The median
is marked as a red line and the upper and lower edges of the box represents the 75th and the 25th
percentile, respectively. Outliers are marked with red plus signs.
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Figure 6.8: The 1-step-ahead predicted heave energy spectrum compared to the measured heave
energy spectrum when the RAO is estimated based on Equation 4.17 for n = 4. Here, the sea state
parameters were 6.5673m and 11.6364s, which are above average, see Table 3.3. The prediction
error, e1 was 0.7079, which is above average, see Table 6.3.
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Figure 6.9: The 1-step-ahead predicted heave energy spectrum compared to the measured heave
energy spectrum when the RAO is estimated based on Equation 4.17 for n = 4. Here, the sea state
parameters were 3.4384m and 9.1429s, which are below average, see Table 3.3. The prediction error,
e1 was 0.3895, which is below average, see Table 6.3. Notice that this example is associated with
the outlier for e2, see Figure 6.7.

Last RAO

Moreover, Figure 6.10 shows the box plots for the the prediction errors defined in Equation
6.2 when the RAO is estimated only based on the previous measurements, see Equation
4.16. Similarly to what is seen in Figure 6.7, when the prediction horizon increases, the
value of the NRMSE cost function decreases, which implies that the difference between
the measured and the predicted heave increases as the prediction horizon increases.

Notice the outliers at -0.4135 for e5 and at -0.8237 for e10. Here, the sea states asso-
ciated with the outliers are 5.0935m and 9.8462s and 6.2575m and 9.8462s, respectively.
According to Table 3.3, the former significant wave height is below average while the
latter is above. The wave peak period is below average.

Table 6.4 shows the median and the mean of the heave prediction errors presented in
Figure 6.7. Again, a value of 1 would indicate a perfect fit, while a NRMSE value ≈ −∞
would imply bad fit. A zero value indicates that the predicted heave is no better at matching
the measured heave than a straight line.

Figure 6.11 shows the 1-step-ahead predicted heave energy spectrum based on the
previously estimated RAO compared with the measured heave energy spectrum. For this
particular example, the heave prediction errors, e1, · · · , e10 are 0.6899, 0.5941, 0.3683 and
0.4047, respectively. As seen in Table 6.4, these values are above average. Furthermore,
the sea state parameters associated with this example are 8.8544m and 16.0000s, which
according to Table 3.3 are far above average. In fact, the wave peak period is the maximum
value of the wave peak period of the whole data set.

Furthermore, Figure 6.12 shows the 1-step-ahead predicted heave energy spectrum
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based on the previously estimated RAO compared with the measured heave energy spec-
trum. For this particular example, the heave prediction errors, e1, · · · , e10 are 0.2882,
0.0305, 0.1994 and -0.8236, respectively. As seen in Table 6.4, these values are below
average. The sea state parameters associated with this example are 6.2575m and 9.8462s,
which according to Table 3.3 are above average for the wave height and below average for
the peak period.

Prediction error Median Mean
e1 0.4880 0.4956
e2 0.4533 0.4001
e5 0.3303 0.3109
e10 0.3671 0.2621

Table 6.4: The heave prediction errors defined by Equation 6.2 when the RAO is estimated based
on Equation 4.16 and with measured wave spectra. The prediction horizon is 20 minutes due to the
specifications of the given data set, see Section 3.2.

1

0.3

0.4

0.5

0.6

0.7

Prediction Error e
1

1

0

0.1

0.2

0.3

0.4

0.5

0.6

Prediction Error e
2

1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Prediction Error e
5

1

-0.5

0

0.5

Prediction Error e
10

Box Plot for Prediction Errors Based on Last RAO

Figure 6.10: The box plots of the prediction errors defined by Equation 6.2 for the ten random
samples form Table 5.1 for the non-parametric method with measured wave spectrum as input. The
predicted heave is based on the estimated RAO defined by Equation 4.16. The median is marked
as a red line and the upper and lower edges of the box represents the 75th and the 25th percentile,
respectively. Outliers are marked with red plus signs.
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Figure 6.11: The 1-step-ahead predicted heave energy spectrum compared to the measured heave
energy spectrum when the RAO is estimated based on Equation 4.16. Here, the sea state parameters
were 8.8544m and 16.0000s, which are above average, see Table 3.3. The prediction error, e1 was
0.6899, which is above average, see Table 6.4.
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Figure 6.12: The 1-step-ahead predicted heave energy spectrum compared to the measured heave
energy spectrum when the RAO is estimated based on Equation 4.16. Here, the sea state parameters
were 6.2575m and 9.8462s, which are above and below average, see Table 3.3. The prediction error,
e1 was 0.2882, which is below average, see Table 6.4.
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6.2.2 Model Wave Spectrum as Input

Furthermore, the non-parametric method was also tested with a Torsethaugen model wave
spectrum, generated based on sea state parameters from the given data set, see Section
4.2.1, as input. Therefore, this section will present the results from the heave prediction
methodology based on Equation 4.15 with the Torsethaugen wave spectrum as input.

Average of 4 RAOs

First and foremost, Figure 6.13 shows the box plots for the heave prediction errors defined
by Equation 6.2 when the RAO is based on the average of the previous four estimates,
see Section 5.1 and Equation 4.17. As previously discovered, when the prediction horizon
increases, the value of the NRMSE cost function decreases, which implies that the dif-
ference between the measured and the predicted heave motion increases as the prediction
horizon increases.

Notice the outliers at -0.0507 for e1, -2.8023 and -5.9629 for e5 and at -5.1009 for
e10. From Table 6.5, these values are mostly far below average. Moreover, the outliers at
-0.0507, -5.9629 and -5.1009 are all associated with a significant wave height of 6.2575m
and 9.8462s, which according to Table 3.3 are above and below average, respectively. Ad-
ditionally, the outlier at -2.8023 is associated with sea state parameters equal to 8.8052m
and 11.6364s, which are above average.

Table 6.5 shows the median and the mean value for the heave prediction errors illus-
trated in Figure 6.13 and defined by Equation 6.2. Again, as described in Section 4.4, a
value of 1 would imply perfect fit, while −∞ would mean bad fit. A zero value indi-
cates that the predicted heave is no better at matching the measured heave than a straight
line. There is a considerable difference between the median and the mean value of the
prediction errors, particularly for e5 and e10.

Prediction error Median Mean
e1 0.5806 0.4818
e2 0.3947 0.2947
e5 0.3583 -0.5203
e10 0.2293 -0.3474

Table 6.5: The heave prediction errors defined by Equation 6.2 when the RAO is estimated based
on Equation 4.17 for n = 4 and with model wave spectra. The prediction horizon is 20 minutes due
to the specifications of the given data set, see Section 3.2.

Furthermore, Figure 6.14 shows the 1-step-ahead predicted heave energy spectrum
when the RAO is estimated based on the average of the last four estimated RAOs, com-
pared with the measured heave energy spectrum. For this particular example, the predic-
tion errors, e1, · · · , e10 are 0.6785, 0.7179, 0.3967 and 0.2001, respectively. As seen in
Table 6.5, these values are above average. The sea state parameters associated with this
example are 6.5673m and 11.6364s which are above average according to Table 3.3.

On the contrary, Figure 6.15 shows the 1-step-ahead predicted heave energy spectrum
when the RAO is estimated based on the average of the last fours RAOs, compared with the
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6.2 The Non-Parametric Method

measured heave energy spectrum. Here, the prediction errors are -0.0507, -0.0028, -5.9629
and -5.1009. These values are far below the average prediction error values shown in Table
6.5 and the associated sea state parameters are 6.2575m and 9.8462s, which according to
Table 3.3 are above and below average, respectively.
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Figure 6.13: The box plots of the prediction errors defined by Equation 6.2 for the ten random
samples form Table 5.1 for the non-parametric method with measured wave spectrum as input. The
predicted heave is based on the estimated RAO defined by Equation 4.17 for n = 4. The median
is marked as a red line and the upper and lower edges of the box represents the 75th and the 25th
percentile, respectively. Outliers are marked with red plus signs.
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Figure 6.14: The 1-step-ahead predicted heave energy spectrum compared to the model heave en-
ergy spectrum when the RAO is estimated based on Equation 4.17 for n = 4. Here, the sea state
parameters were 6.5673m and 11.6364s, which are above average, see Table 3.3. The prediction
error, e1 was 0.6785, which is above average, see Table 6.5.
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Figure 6.15: The 1-step-ahead predicted heave energy spectrum compared to the model heave en-
ergy spectrum when the RAO is estimated based on Equation 4.17 for n = 4. Here, the sea state
parameters were 6.2575m and 9.8462s, which are above and below average, see Table 3.3. The
prediction error, e1 was 0.3895, which is below average, see Table 6.5.

72



6.2 The Non-Parametric Method

Last RAO

Furthermore, Figure 6.16 shows the box plots of the heave prediction errors defined by
Equation 6.2, when the RAO is estimated based on the last measurements, see Equation
4.16. Notice the outliers at -0.9213 for e1, -2.4334 and -3.0744 for e5 and at -9.0349 for
e10. Again, the outliers for e1, e10 and the outlier at -3.0744 for e5 are all associated with
a significant wave height of 6.2575 m and a wave peak period of 9.8462s. The remaining
outlier is associated with sea state parameters of 8.8052m and 11.6364s. According to
Table 3.3, the former sea state has a significant wave height above average and a wave
peak period below average, while the latter is above average for both parameters.

Table 6.6 shows the median and the mean of the heave prediction errors illustrated in
Figure 6.16 defined by Equation 6.2. There is a significant difference between the median
and the mean for e5 and e10, particularly.

Prediction error Median Mean
e1 0.4691 0.3741
e2 0.3228 0.2163
e5 0.4184 -0.1892
e10 0.2372 -0.7608

Table 6.6: The heave prediction errors defined by Equation 6.2 when the RAO is estimated based
on Equation 4.16 and with model wave spectra. The prediction horizon is 20 minutes due to the
specifications of the given data set, see Section 3.2.

Furthermore, Figure 6.17 shows the 1-step-ahead predicted heave energy spectrum
when the RAO is estimated based on only the previous measurements, defined by Equation
4.16, compared with the measured heave energy spectrum. Here, the prediction errors,
e1, · · · , e10, are 0.6217, 0.7472, 0.4397 and 0.4716, respectively. Compared to Table 6.6,
these prediction error values are far above average. Additionally, this example has sea
state parameters of 5.0935m and 9.8462, which according to Table 3.3 are below average.

Similarly to Figure 6.17, Figure 6.18 shows the 1-step-ahead predicted heave energy
spectrum when the RAO is estimated based on only the previous measurements, compared
with the measured heave energy spectrum. Only for this particular example, the prediction
errors, e1, · · · , e10, are -0.9213, -0.7047, -3.0744 and -3.0349, respectively. As seen from
Table 6.6, these values are far below average and again, the associated sea state parameters
are 6.2575m and 9.8462s.
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Figure 6.16: The box plots of the prediction errors defined by Equation 6.2 for the ten random
samples form Table 5.1 for the non-parametric method with model wave spectrum as input. The
predicted heave is based on the estimated RAO defined by Equation 4.16. The median is marked
as a red line and the upper and lower edges of the box represents the 75th and the 25th percentile,
respectively. Outliers are marked with red plus signs.
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Figure 6.17: The 1-step-ahead predicted heave energy spectrum compared to the model heave en-
ergy spectrum when the RAO is estimated based on Equation 4.16. Here, the sea state parameters
were 5.0935m and 9.8462s, which are below average, see Table 3.3. The prediction error, e1 was
0.6217, which is above average, see Table 6.6.
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Figure 6.18: The 1-step-ahead predicted heave energy spectrum compared to the model heave en-
ergy spectrum when the RAO is estimated based on Equation 4.16. Here, the sea state parameters
were 6.2575m and 9.8462s, which are below average, see Table 3.3. The prediction error, e1 was
-0.9213, which is below average, see Table 6.6.
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Chapter 7
RAO Estimation and Heave
Prediction Based on Weather
Forecasts

As introduced in Section 3.1.2, the Norwegian Meteorological Institute operates a data
server which consists of ocean wave forecasts for Europe and the Arctic, which are updated
four times daily. The archive goes back to April 2015.

Hence, both the parametric and non-parametric methods are tested with a model wave
spectrum based on sea state parameters from weather forecasts as input, see Section 4.3.
Ten random samples from the given data set and thereby from the associated forecasts are
used to predict the heave energy spectrum from estimated RAOs.

The significant wave height and the wave peak period from the ten random samples
from given data are presented in Table 5.1. Moreover, the median, mean, maximum and
minimum values of the sea state parameters from the given data set are shown in Table
3.3. Additionally, Table 7.1 shows the significant wave height and the wave peak period
from the weather forecasts for the ten random samples.

Furthermore, Table 7.2 shows the difference between the sea state parameters from the
given data set, presented in Table 5.1, and the sea state parameters from the associated
weather forecasts, presented in Table 7.1. The differences, denoted as ∆Hs and ∆Tp, are
defined in Equation 7.1 and given with units meter and second, respectively.

∆Hs = Hsdata −Hsforecast (7.1a)
∆Tp = Tpdata − Tpforecast (7.1b)
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Significant Wave Height [m] Wave Peak Period [s]
6.0428 11.1677
7.2295 12.2845
8.8306 13.5129
8.9605 14.8542
8.5041 14.8642
5.7880 12.2845
4.1356 11.1677
3.5030 10.1525
3.1590 10.1525
2.6842 8.3905

Table 7.1: Significant wave height and the associated wave peak period of the ten random samples
from the weather forecasts. For comparison, the associated sea state parameters from the given data
set are shown in Table 5.1, while the median, mean, maximum and minimum value of the sea state
parameters from the given data set are presented in Table 3.3.

∆Hs [m] ∆Tp [s]
0.5245 0.4687
0.3205 -0.6481
0.0238 2.4871
-0.1553 -3.2178
0.1684 1.1358
0.4695 -2.4383
0.9579 -1.3215
0.4054 -0.3063
0.2794 -1.0096
0.6808 0.1428

Table 7.2: The difference between the significant wave heights from the given data set and the
significant wave height from the weather forecasts, ∆Hs, and the difference between the wave peak
periods from the given data set and the wave peak periods from the weather forecasts, ∆Tp, defined
by Equation 7.1.

7.1 The Parametric Method With Model Wave Spectrum
Based on Weather Forecasts

The parametric method was tested with model wave spectra based on weather forecasts
as inputs. The sea state parameters were extracted from the forecast files as described in
Section 4.3. Moreover, the input to the ARX model was generated as described in Section
4.1.3, with linear approximation of the Torsethaugen wave spectrum based on sea state
parameters from weather forecasts.

The parametric method was validated as described in Section 4.1.5, with magnitude
and phase plots from the MATLAB function compare. Additionally, the simulation and
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7.1 The Parametric Method With Model Wave Spectrum Based on Weather Forecasts

prediction errors are presented in terms of NRMSE as described in Section 4.4.
Figure 7.1 shows the box plots of the simulation and prediction errors, defined by

Equation 6.1. As described in Section 4.1.5, the simulated output only depends on the
measured input and initial conditions while the predicted output depends on current and
past measured input and output, in addition to initial conditions.

Furthermore, Table 7.3 shows the median and the mean of the simulation and predic-
tion errors illustrated in Figure 7.1. Here, the time unit of the prediction is seconds due to
the definition of the System Identification Toolbox in MATLAB (Ljung, 2014).

Error Median Mean
esim 0.0024 0.0027
e1 0.7989 0.8119
e2 0.6491 0.6512
e5 0.3404 0.3377
e10 0.1726 0.1754
e20 0.0363 0.0325

Table 7.3: The heave simulation and prediction errors defined by Equation 6.1 for model wave
spectra based on weather forecasts. Here, 1-step-ahead prediction will be in the timsecale of 1
second due to the specifications of the System Identification Toolbox in MATLAB (Ljung, 2014).

1

0

2

4

6

10
-3 Simulation Error

1

0.78

0.8

0.82

0.84

0.86

Prediction Error e
1

1

0.6

0.65

0.7

Prediction Error e
2

1

0.25

0.3

0.35

0.4

Prediction Error e
5

1

0.1

0.15

0.2

0.25

Prediction Error e
10

1

-0.02

0

0.02

0.04

0.06

0.08

Prediction Error e
20

Box Plot for Prediction Errors: Forecasts

Figure 7.1: The box plots of the simulation and prediction errors defined by Equation 6.1 for the
ten random samples form Table 7.1 for the parametric method with model wave spectrum based on
forecasts as input. The median is marked as a red line and the upper and lower edges of the box
represents the 75th and the 25th percentile, respectively. Outliers are marked with red plus signs.

Moreover, Figure 7.2 shows the magnitude and phase plots of the 1-step-ahead pre-
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dicted output response and the measured output response, while Figure 7.3 shows the
10-step-ahead predicted output response and the measured output response. For this par-
ticular example, the significant wave height and wave peak period from forecasts were
8.9605m and 14.8642s, while the sea states were measured to be 8.8052m and 11.6364s.
According to Table 3.3 both sea states are above average.

Furthermore, the prediction errors for this particular example were 0.8389, 0.7050,
0.4028, 0.2480 and 0.0269 and the simulation error was 0.0055. As seen in Table 7.3,
these values are mostly above average.
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Figure 7.2: The 1-step-ahead predicted output response, sysARX, compared with the measured
output response, validation for the parametric method with model wave spectrum based on weather
forecasts as input. The plot is generated with the MATLAB compare function and the percentage
in the upper right corner is the NRMSE fitness value where 100% is perfect fit. The prediction error
is defined by 6.1.
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Figure 7.3: The 10-step-ahead predicted output response, sysARX, compared with the measured
output response, validation for the parametric method with model wave spectrum based on weather
forecasts as input. The plot is generated with the MATLAB compare function and the percentage
in the upper right corner is the NRMSE fitness value where 100% is perfect fit. The prediction error
is defined by 6.1.

7.2 The Non-Parametric Method With Model Wave
Spectrum Based on Weather Forecasts

Moreover, the non-parametric method was tested with model wave spectra based on
weather forecasts as inputs. Like the parametric method, the sea state parameters were ex-
tracted from weather forecast files as described in Section 4.3. These sea state parameters
were then utilized to generate Torsethaugen wave spectra as described in section 4.2.1.

Thus, the heave energy spectrum was predicted based on Equation 4.15. Based on
the results from Chapter 5, the RAO was estimated both as an average of the last four esti-
mates, see Equation 4.17, and as Equation 4.16, i.e. only from the previous measurements.

Furthermore, the heave prediction errors, in terms of NRMSE as described in Section
4.4, were calculated for a prediction horizon, k, of 1, 2 and 3. The weather forecasts
from the Norwegian Meteorlogical Institute are updated every hour, hence the unit of the
prediction horizon is hour.

The prediction errors are now defined as

e1 = y1 − ŷ1 (7.2a)
e2 = y2 − ŷ2 (7.2b)
e3 = y3 − ŷ3 (7.2c)
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Where y is the heave energy spectrum from measurements using Welch’s technique as
previously discussed and ŷ is the predicted heave energy spectrum from weather forecasts
and the estimated RAOs.

7.2.1 Average of 4 RAOs
As mentioned initially, the RAO was estimated based on an average of the last four esti-
mates, defined in Equation 4.17.

Figure 7.4 shows the box plots of the heave prediction errors when the heave energy
spectrum was predicted based on the average of the last 4 estimated RAOs in addition to
the associated weather forecasts for the sea states.

Notice the outliers for prediction errors e1 and e2. Both are associated with the same
data sample where the significant wave height from the weather forecasts is 2.6842m and
the wave peak period is 8.3905s, while the sea states from the measured wave spectrum
are 3.3650m and 8.5333s, respectively. As shown in Table 3.3, the measured sea state
parameters are far below average.

Furthermore, Table 7.4 shows the median and the mean of the heave prediction errors
illustrated in Figure 7.4 and defined by Equation 7.2.

Prediction Error Median Mean
e1 0.4999 0.3669
e2 0.6542 -0.5830
e3 0.5424 0.5206

Table 7.4: The heave prediction errors defined by Equation 7.2 when the RAO is estimated based on
Equation 4.17 for n = 4 and with model wave spectra based on forecasts. The prediction horizon is
1 hour due to the specifications of the given data set, see Section 3.1.2.
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Figure 7.4: The box plots of the prediction errors defined by Equation 7.2 for the ten random
samples form Table 7.1 for the non-parametric method with model wave spectrum based on forecasts
as input. The predicted heave is based on the estimated RAO defined by Equation 4.17 for n = 4.
The median is marked as a red line and the upper and lower edges of the box represents the 75th and
the 25th percentile, respectively. Outliers are marked with red plus signs.

Moreover, Figure 7.5 shows the 1-, 2- and 3-step-ahead predicted heave energy spectra
compared with the measured heave energy spectrum at initial sample time. In other words,
the measured heave energy spectrum is from sample time j, while the 1-, 2- and 3-step-
ahead predicted heave energy spectrum are from sample time j + 1, j + 2 and j + 3,
respectively.

For this particular example, the prediction errors, e1, e2 and e3 were 0.6574, 0.6732
and 0.4270, respectively. As shown in Table 7.4, these prediction error values are mostly
above average.

The significant wave height and the wave peak period from the weather forecasts and
the given data set for this particular example where 7.2295m, 12.2845s and 7.5500m,
11.6364s, respectively. According to Table 3.3, the measured sea state parameters are
above average.

Furthermore, Figure 7.6 shows the estimated RAOs associated with the example in-
troduced above, for 1, 2 and 3 hours ahead, resulting from an average of the last four
estimated RAOs, see Equation 4.17.
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Figure 7.5: The 1-, 2- and 3-step-ahead predicted heave energy spectra from sample time j + 1,
j + 2 and j + 3, respectively, compared to the measured heave energy spectrum from sample time
j when the RAO is estimated based on Equation 4.17 for n = 4. The prediction errors, defined by
Equation 7.2, are 0.6574, 0.6732 and 0.4270, which are mostly above average, see Table 7.4.
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Figure 7.6: The 1-, 2- and 3-step-ahead estimated RAOs from sample time j + 1, j + 2 and j + 3,
respectively, compared to the estimated RAO at sample time j, based on Equation 4.17 for n = 4.
The prediction errors, defined by Equation 7.2, are 0.6574, 0.6732 and 0.4270, which are mostly
above average, see Table 7.4.
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Additionally, Figure 7.7 shows the 1-, 2- and 3-step-ahead predicted heave energy
spectra compared with the measured heave energy spectrum at the initial time. Here, the
prediction errors, e1, e2 and e3 are -1.1180, -11.5253 and 0.3200, respectively, which are
below average according to Table 7.4.

For this particular example, the significant wave height from the weather forecasts is
2.6842m, while the wave peak period is 8.3905s. The significant wave height from the
given data set is 3.3650m and the wave peak period is 8.5333s, which is below average as
seen in Table 3.3.

Moreover, Figure 7.8 shows the estimated RAOs, associated with the example intro-
duced above, for 1, 2 and 3 hours ahead calculated from the average of the last four esti-
mated RAOs as defined by Equation 4.17.
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Figure 7.7: The 1-, 2- and 3-step-ahead predicted heave energy spectra from sample time j + 1,
j + 2 and j + 3, respectively, compared to the measured heave energy spectrum from sample time
j when the RAO is estimated based on Equation 4.17 for n = 4. The prediction errors, defined by
Equation 7.2, are -1.1180, -11.5253 and 0.3200, which are below average, see Table 7.4.
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Figure 7.8: The 1-, 2- and 3-step-ahead estimated RAOs from sample time j + 1, j + 2 and j + 3,
respectively, compared to the estimated RAO at sample time j, based on Equation 4.17 for n = 4.
The prediction errors, defined by Equation 7.2, are -1.1180, -11.5253 and 0.3200, which are below
average, see Table 7.4.

7.2.2 Last RAO

Likewise, the RAO was estimated based on only the last measurements of heave and waves
as described by Equation 4.16.

Thus, Figure 7.9 shows the box plots of the heave prediction errors, defined by Equa-
tion 7.2, when the heave energy spectrum is predicted based on the RAO calculated from
the last heave measurement and the associated sea state forecasts.

Notice the outlier for the heave prediction error e2, which results from a significant
wave height at 3.5030m and a peak wave period at 10.1525s from the weather forecasts.
The measured sea state parameters, from Table 5.1, give a significant wave height of
3.9084m and a wave peak period of 9.8462s. As seen from Table 3.3, the measured sea
state parameters are below average.

Furthermore, Table 7.5 shows the median and the mean of the heave prediction errors
illustrated in Figure 7.9.

Prediction Error Median Mean
e1 0.6351 0.6060
e2 0.4920 0.2897
e3 0.2445 0.1538

Table 7.5: The heave prediction errors defined by Equation 7.2 when the RAO is estimated based
on Equation 4.16 for and with model wave spectra based on forecasts. The prediction horizon is 1
hour due to the specifications of the given data set, see Section 3.1.2.

86



7.2 The Non-Parametric Method With Model Wave Spectrum Based on Weather
Forecasts

1

0.4

0.5

0.6

0.7

Prediction Error e
1

1

-0.5

0

0.5

Prediction Error e
2

1

-0.2

0

0.2

0.4

Prediction Error e
3

Box Plot for Prediction Errors: Last RAO

Figure 7.9: The box plots of the prediction errors defined by Equation 7.2 for the ten random
samples form Table 7.1 for the non-parametric method with model wave spectrum based on forecasts
as input. The predicted heave is based on the estimated RAO defined by Equation 4.16. The median
is marked as a red line and the upper and lower edges of the box represents the 75th and the 25th
percentile, respectively. Outliers are marked with red plus signs.

Similarly to what is seen in the previous section, Figure 7.10 shows the predicted heave
energy spectra for 1-, 2- and 3-steps-ahead compared with the measured heave spectrum
at the initial sample time. Thus, the measured heave energy spectrum is from sample time
j, while the predicted heave energy spectra are from j + 1, j + 2 and j + 3, respectively.

For this particular example, the prediction errors, e1, e2 and e3 are 0.7411, 0.5496
and 0.4113, respectively, and above average according to Table 7.5. The significant wave
height from the weather forecasts is 6.0428m, while the wave peak period is 11.1677s.
Likewise, the significant wave height and the wave peak period from the given data set
are 6.5673m and 11.6364s, respectively. As shown in Table 3.3 these measured sea state
parameters are above average.

Furthermore, Figure 7.11 shows the estimated RAOs based on the last measurements
of heave amplitude and sea state parameters as defined by Equation 4.16.
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Figure 7.10: The 1-, 2- and 3-step-ahead predicted heave energy spectra from sample time j + 1,
j + 2 and j + 3, respectively, compared to the measured heave energy spectrum from sample time j
when the RAO is estimated based on Equation 4.16. The prediction errors, defined by Equation 7.2,
are 0.7411, 0.5496 and 0.4113, which are above average, see Table 7.5.
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Figure 7.11: The 1-, 2- and 3-step-ahead estimated RAOs from sample time j + 1, j + 2 and
j + 3, respectively, compared to the estimated RAO at sample time j, based on Equation 4.16. The
prediction errors, defined by Equation 7.2, are 0.7411, 0.5496 and 0.4113, which are above average,
see Table 7.5.
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Likewise, Figure 7.12 shows the 1-, 2- and 3-step-ahead predicted heave energy spectra
compared with the measured heave energy spectrum from the initial time sample. For this
particular example, the significant wave height from the weather forecasts is 2.6842m,
while the wave peak period is 8.3905s. The significant wave height from the given data set
is 3.3650m and the wave peak period is 8.5333s, which according to Table 3.3 are below
average for the measured sea state parameters.

Furthermore, the prediction errors, e1, e2 and e3 are 0.6097, -0.3504 and -0.3242,
respectively. As shown in Table 7.5, these values are mostly below average.

Finally, Figure 7.13 shows the estimated RAOs associated with the example above, for
1, 2 and 3 hours ahead, calculated from the previous measurements of heave amplitude
and sea state parameters as defined by Equation 4.16.
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Figure 7.12: The 1-, 2- and 3-step-ahead predicted heave energy spectra from sample time j + 1,
j + 2 and j + 3, respectively, compared to the measured heave energy spectrum from sample time j
when the RAO is estimated based on Equation 4.16. The prediction errors, defined by Equation 7.2,
are 0.6097, -0.3504 and -0.3242, which are mostly below average, see Table 7.5.
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Figure 7.13: The 1-, 2- and 3-step-ahead estimated RAOs from sample time j + 1, j + 2 and
j + 3, respectively, compared to the estimated RAO at sample time j, based on Equation 4.16. The
prediction errors, defined by Equation 7.2, are 0.6097, -0.3504 and -0.3242, which are mostly below
average, see Table 7.5.
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Chapter 8
Discussion and Conclusion

The objective of this MSc project is to design a methodology for RAO estimation and rig
heave prediction based on available data on the rig. Moreover, the estimated RAO and
predicted heave motion are indented to be a part of the downhole pressure calculations for
the well-simulator developed by Heavelock AS (Kvernland et al., 2019).

Therefore, this chapter will discuss the performance of the proposed RAO estimation
and rig heave prediction methods, as well as challenges related to the process of developing
the methodology and finally, conclude the report.

8.1 Accessing Data
An essential part of this project was to get an overview of the available data on the rig as
the format of the data limits the project. However, this task turned out to be challenging.
Rig motion and wave radar measurements can be sensitive data and not necessarily un-
complicated to share with a third party. However, it would probably be possible to install
an accelerometer together with the simulator on the rig and measure the heave amplitude.

Moreover, the sampling rate of the data is important. The wave peak period is typically
in the range of 5-15 seconds. Thus, the heave motion has to be measured at least every
second in order to capture the wave-induced motions.

Ideally, wave amplitude measurements were available such that the RAO estimation
and heave prediction methodology could be implemented in the time-domain. Having
access to both heave and wave amplitude measurements could possibly give more suit-
able information regarding the relation between ocean waves and rig heave motion and
the assumption of linearity could possibly be more accurate. However, wave amplitude
measurements were difficult to obtain. Therefore, this project was implemented in the
frequency-domain with wave spectra instead, even though information about the phasing
between waves and rig heave motion is lost.

Furthermore, wave amplitude measurements would require access to a measurement
buoy placed near the rig or a type of laser measurement unit located on the rig. More-
over, the ocean waves would be measured at some point in time before they reach the rig.
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Thus, the time delay between the wave measurements and the rig heave motion must be
accounted for.

Nevertheless, the ocean wave measurements that eventually were obtained for this
project were measured with a wave radar. Moreover, the rig heave amplitudes were mea-
sured with a MRU.

Additionally, the data server thredds.met.no, operated by the Norwegian Me-
teorological Institute, gives weather forecasts, including sea state parameters, four times
daily. Thus, these sea state parameters could be used to generate model wave spectra.
However, Table 7.2 indicates that the sea states from weather forecasts and the measured
sea states does not always match, specifically the wave peak period.

8.2 The Results
Furthermore, the given measurements of the heave amplitude has to be transformed to the
frequency-domain and presented as a energy spectrum. However, it is not trivial to ob-
tain an energy spectrum. Thus, certain assumptions about the shape of the heave energy
spectrum were made, introducing sources of error. Several energy spectrum estimation
techniques were tested, such as MATLAB’s periodogram. However, Welch’s tech-
nique gave better results.

Moreover, the model wave spectra are approximately zero for low frequencies, leading
to a nearly infinite RAO for low frequencies. Thus, the model wave spectra and thereby
the heave energy spectra, were generated based on a linearly spaced frequency vector from
0.0547Hz to 0.3125Hz, instead of from 0.0312Hz in which the measured wave spectra are
defined. This could be a reason for why the results are better for real wave spectra.

Additionally, Chapter 5 demonstrates that there are non-captured nonlinearities, i.e.
the RAO is not constant, which is why an average of several estimated RAOs are mostly
better at capturing the wave-heave relation than a RAO from only one set of input-output
data.

However, Chapter 7 indicates that when weather forecasts are used to generate the
model wave spectrum and the prediction horizon is in the time scale of hours, the RAO
should be estimated based on only the last measurements, i.e. Equation 4.16.

Furthermore, the results from Chapter 6 and 7 indicate that the non-parametric method-
ology has a better performance than the parametric approach. The latter was tested with
several models such as output error, but ARX had a better performance. Moreover, exper-
iments with the model order did not give any better results.

Lastly, the results illustrate the importance of sufficiently rich and good data. Specif-
ically, the data sample where the significant wave height is 6.2575m and the wave peak
period is 9.8462s stands out. The measured wave spectrum related to these sea state pa-
rameters is shown in blue in Figure 8.1. The shape of the spectrum differs significantly
from the shape of the wave spectrum associated with sea state parameters of 6.5673m and
11.6364s. As seen in Table 3.3, both significant wave heights are above average from the
data set while the first wave peak period is below average and the later is above.

Furthermore, Figure 8.2 shows the Torsethaugen model wave spectra associated with
these sea states. The blue model wave spectrum is not able to capture the form of the
measured wave spectrum. However, this could arise from an odd sea state.
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Figure 8.1: Measured 1D wave spectra with significant wave height,Hs, of 6.2575m and wave peak
period, Tp, of 9.8462s, in blue and Hs of 6.5673m and Tp of 11.6364s in red.
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Figure 8.2: Torsethaugen model wave spectra with significant wave height, Hs, of 6.2575m and
wave peak period, Tp, of 9.8462s, in blue and Hs of 6.5673m and Tp of 11.6364s in red. Compared
with Figure 8.1, the former model wave spectrum is particularly bad at modeling the real wave
spectrum.
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8.3 Conclusion
To conclude, the data available on the rig has been investigated and it is possible to obtain
measurements of rig heave amplitude with sampling frequency of 1s. Moreover, it is
possible to get access to wave radar measurements, involving not only sea state parameters
but 1D wave spectra as well.

Additionally, the data server thredds.met.no, operated by the Norwegian Meteo-
rological Institute, includes weather forecasts of sea state parameters, among others. The
forecasts are updated four times daily and contains forecasts 66 hours ahead and for the
past 6 hours.

Furthermore, a parametric and a non-parametric method are developed for RAO esti-
mation and rig heave prediction based on available data on the rig. The parametric method
models rig heave as a SISO mass-spring-damper system with an ARX model. The non-
parametric method is based on the relation established in Equation 2.38 where the heave
energy spectrum is related to the wave spectrum by the square of the RAO.

Moreover, simulations under ideal conditions show that the parametric method recre-
ates the simulated heave motion, which implies that the implementation is correct.

Additionally, quantified calculations of the performance of the methods indicate that
the non-parametric method overall performs better with real measurements than the para-
metric method.

Moreover, if wave measurements are inaccessible, sea state parameters from weather
forecasts services can generate wave spectra. Again, results indicate that the non-parametric
method performs better than the parametric method with weather forecast data as well.

Furthermore, if the RAO is not accessible through the manufacturer or software pro-
grams such as WAMIT, the proposed non-parametric method can be valuable for the in-
tended purpose as it introduces a procedure for heave predictions based on a given sea
state.

Nevertheless, it remains to be concluded whether the proposed method has potential
to improve the prediction of downhole pressure oscillations or not, as the integration with
Heavelock AS’s simulator remains.
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Chapter 9
Further Work

The objective of this project is to estimate the RAO and utilize this data-driven estimate to
predict the rig heave motion. Eventually, the intention is that the proposed methodology
can improve the simulator designed by Heavelock’s ability to predict of the downhole well
pressure.

Thus, this chapter will discuss some further improvements of the proposed methods,
as well as supplementary experiments.

9.1 Simulations
First of all, it would be interesting to generate a simulation case to test if the non-parametric
method actually improves the prediction of the downhole well pressure. Ideally, pressure
measurements from an actual drilling operation were available such that they would verify
the simulation results.

Moreover, the results from the current simulator should be compared with the non-
parametric RAO estimation and heave prediction method integrated with the simulator.
Only then, if the proposed method actually improves the downhole pressure prediction, it
could be concluded that the proposed methodology is good enough for its purpose.

If the integration of the non-parametric method with the simulator improves the down-
hole pressure predictions, then that indicates that a predefined RAO is more inaccurate
under the current conditions on the rig, being waves, wind, mooring, loads and so on,
than the RAO estimated with the proposed method based on real measurements from the
current conditions.

9.2 Extended Heave Model
However, it could also be interesting to investigate the possibility of a more complex heave
motion model. Instead of a simple SISO system, the heave motion could be described with
a nonlinear model.
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Moreover, the heave motion has been decoupled from the other motions in order to
preserve a linear relation to wave-induced motion. Thus, the model describing the heaving
motion of the rig could be extended to for instance a 3DOF model. This would of course
require that measurements of these motions are available.

96



Bibliography

Aarnes, O.J., Reistad, M., Breivik, Ø., Magnusson, A.K., Furevik, B., 2019. Validation
2D wave spectra - ECMWF. MET report .

Aarsnes, U.J.F., Aamo, O.M., Hauge, E., Pavlov, A., 2013. Limits of controller perfor-
mance in the heave disturbance attenuation problem. 2013 European Control Confer-
ence, ECC 2013 , 1071–1076doi:10.23919/ecc.2013.6669620.

Baghfalaki, M., Das, S.K., Das, S.N., 2012. Analytical model to determine response am-
plitude operator of a floating body for coupled roll and yaw motions and frequency-
based analysis. International Journal of Applied Mechanics 4. doi:10.1142/
S1758825112500445.

Behrens, A., 2013. mywave/WAM Documentation. URL: https://github.com/
mywave/WAM.
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Appendix A
System Identification

This section is based on Ljung (1999).

A.1 QR Factorization
QR factorization for an n× d matrix A is defined as

A = QR (A.1)

Where Q is n × n and orthonormal, that is QQT = I and R is upper triangular with
dimensions n× d.

This can be applied to the least-squares parameter estimation technique by introducing
the following matrices

YT =
[
yT (1) · · · yT (N)

]
, Y is Np× 1 (A.2a)

ΦT = [ϕ(1) · · ·ϕ(N)] , Φ is Np× d (A.2b)

Where p is the dimension of y. Then the least-squares criterion can be written as

VN (θ, ZN ) = |Y − Φθ|2 =

N∑
t=1

|y(t)− ϕT (t)θ|2 (A.3)

The norm is unaffected by any orthonormal transformation applied to the vector Y − Φθ.
Therefore, with Q being orthonormal with dimensions pN × pN , then

VN (θ, ZN ) = |Q(Y − Φθ)|2 (A.4)

Finally, by introducing QR factorization

QR =
[
Φ Y

]
(A.5)
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With

R =

R0

· · ·
0

 (A.6)

Here, R0 is an upper triangular (d+ 1)× (d+ 1) matrix, which can be decomposed as

R0 =

[
R1 R2

0 R3

]
, R1 is d× d, R2 is d× 1, R3 is scalar (A.7)

Which means that

VN (θ, ZN ) = |QT (Y − Φθ)|2 =

∣∣∣∣[R2

R3

]
−
[
R1θ

0

]∣∣∣∣2 = |R2 −R1θ|2 + |R3|2 (A.8)

Which is minimized for

R1θ̂N = R2, giving VN (θ, ZN ) = |R3|2 (A.9)

A.2 Parseval’s Relationship
Parseval’s relationship states that the energy of a signal can be decomposed into energy
contributions from different frequencies. In other words, Equation A.10 defines the rela-
tionship between the time- and frequency-domain of a signal.

N∑
k=1

|UN (2πk/N)|2 =

N∑
t=1

u(t)2 (A.10)

Where UN is the Fourier transform and |UN (2πk/N)|2 is the periodogram of the signal
u(t).
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Appendix B
Listings

B.1 Weather Forecasts

Listing B.1: Translation of coordinates to relative coordinates

1 function [posx,posy] = find_nearest_gridcell(lon,lat,...
2 lon_in,lat_in)
3 %
4 % This function finds the right grid number (posx, posy)
5 % according to the given lat/lon grid (a 2D matrix)
6 % PARAMETERS:
7 % lon: relative lontitude from forecasts
8 % lat: relative latitude from forecasts
9 % lon_in: actual longitude

10 % lon_in: actual latitude
11 % posx: x position in grid relating longitude to
12 % relative longitude
13 % posy: y position in grid relating latitude to
14 % relative latitude
15 %
16 % Written by: Ole Johan Aarnes, Scientist at the the
17 % Norwegian Institute of Meteorology
18 %
19

20 longitude=reshape(lon,size(lon,1)*size(lon,2),1);
21 latitude=reshape(lat,size(lat,1)*size(lat,2),1);
22

23 dt = delaunayTriangulation(longitude,latitude);
24 PI = nearestNeighbor(dt,[lon_in,lat_in]);
25

26 real_lon=longitude(PI);
27 real_lat=latitude(PI);
28

29 [posx,posy] = find(lon==longitude(PI) & lat==latitude(PI));
30 end
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Listing B.2: Extraction of the sea state parameter from weather forecast file

1 function [time,Hs,Tp] = getSignificantWaveHeight(filename,longitude,...
2 latitude,posix)
3 %
4 % This function extracts the sea state parameters Hs and Tp and the time
5 % from a NetCDF weather forecast file from thredds.met.no.
6 % PARAMETERS
7 % filename: name of the NetCDF file
8 % longitude: the lognitude in degrees
9 % latitude: the latitude in degrees

10 % posix: boolean variable which specifies the format of output time
11 % time: time which forecasts are valid for, either posix or dateTime
12 % Hs: vector with significant wave height values for the given lon/lat
13 % Tp: vector with wave peak period values for given lon/lat
14

15 % Read variables
16 latData = ncread(filename,’latitude’);
17 lonData = ncread(filename,’longitude’);
18 timeData = ncread(filename,’time’);
19

20 % Get data
21 if posix == true
22 time = datetime(timeData,’ConvertFrom’,’posixtime’);
23 else
24 time = timeData;
25 end
26

27 [posx,posy] = find_nearest_gridcell(lonData,latData,longitude,latitude);
28

29 Hs = squeeze(ncread(filename,’hs’,[posx posy 1],[1 1 inf]));
30 Tp = squeeze(ncread(filename,’tp’,[posx posy 1],[1 1 inf]));
31 end
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