
Monocular Visual Odometry for
Underwater Navigation

Erlend Nodeland Eriksen

Supervisor:

Annette Stahl

In cooperation with Blueye Robotics AS,
with supervisor:

Johannes Schrimpf

Norwegian University of Science and Technology

TTK4900 – Master thesis, Cybernetics and Robotics

Trondheim, January 2020

Abstract

In this thesis we propose a visual odometry algorithm for underwater navigation using a monocular
camera. We cover the main mathematical concepts needed in order to estimate camera motion from
consecutive images, as well as techniques that increase the accuracy of the motion estimates and
reduce the computational burden of obtaining them. We then describe how to implement the proposed
algorithm using these concepts and techniques. Finally, we evaluate the performance of the proposed
algorithm on selected underwater video sequences, and we discuss what could be done in order to
improve its robustness and computational performance further.

Abstrakt

I denne masteroppgaven foresl̊ar vi en visuell odometri algorime for undervannsnavigasjon ved hjelp
av et monokulært kamera. Vi dekker de matematiske konseptene som trengs for å estimere kamera
bevegelse fra p̊afølgende bilder, i tillegg til teknikker som øker nøyaktigheten til bevegelses-estimatene
og som reduserer den beregningsmessige byrden for å finne dem. Deretter beskriver vi hvordan man
kan implementere den foresl̊atte algoritmen ved hjelp av disse konseptene og teknikkene. Til slutt
evaluerer vi ytelsen til algoritmen p̊a utvalgte video serier, og vi diskuterer hva som kan gjøres for å
forbedre robustheten og beregningsytelsen dens ytterligere.

2

Contents

1 Introduction 8
1.1 Motivation . 8
1.2 Aim of Study . 8
1.3 Contribution . 9
1.4 Outline . 9

2 Literature Review 10
2.1 Evolution of Visual Odometry Methods . 10
2.2 Taxonomy of Visual Odometry Methods . 10

2.2.1 Sparse and Dense Methods . 10
2.2.2 Indirect Methods . 11
2.2.3 Direct Methods . 11

2.3 Underwater Visual Odometry Methods . 12

3 Theory 13
3.1 Feature Detection . 13

3.1.1 FAST . 13
3.1.2 FAST-Score / Non-Maximum Suppression . 13

3.2 3D Geometry . 14
3.2.1 Position . 14
3.2.2 Translation . 14
3.2.3 3D Rotation Representation . 14
3.2.4 Homogenous Coordinates . 16
3.2.5 Skew-Symmetric Matrices . 16

3.3 Lie Groups and Lie Algebras . 17
3.3.1 Lie Group Definition . 17
3.3.2 Lie Algebra Definition . 18
3.3.3 Lie Algebra derived from a Lie Group . 18
3.3.4 SO(3) . 18
3.3.5 so(3) . 19
3.3.6 Map from so(3) to SO(3) . 19
3.3.7 Derivative of SO(3) rotation . 21
3.3.8 SE(3) . 22
3.3.9 se(3) . 23
3.3.10 Map from se(3) to SE(3) . 24
3.3.11 Derivative of SE(3) transformation . 25

3.4 Image Formation and Camera Mathematics . 26
3.4.1 Image Formation . 26
3.4.2 Underwater Image Distortion . 27

3

3.4.3 Pinhole Camera Model . 28
3.5 Lucas Kanade . 30

3.5.1 Gauss Newton . 30
3.5.2 Inverse Compositional Gauss-Newton . 32
3.5.3 Choice of Warp Parameter . 33
3.5.4 Sampling of Warped Image . 33
3.5.5 Outlier Suppression . 33
3.5.6 Bayesian derivation of Lucas Kanade . 35

3.6 Motion Prior . 36
3.6.1 Motion Prior in Forward Additive Gauss-Newton 37
3.6.2 Motion Prior In Inverse Compositional Gauss-Newton 38
3.6.3 Choice of Motion Prior . 40
3.6.4 Initialization of Gauss-Newton . 43

3.7 Bitplanes . 43
3.7.1 Bitplane Definition . 43
3.7.2 Lucas-Kanade with Bitplanes . 44

3.8 Parallell Computation . 46
3.8.1 Vectorization . 46
3.8.2 GPGPU . 46

4 Implementation 47
4.1 Multi-Scale Image Pyramid . 47
4.2 Feature Detection . 48
4.3 Image Depth Estimation . 50
4.4 6DoF Image Alignment . 50

4.4.1 Gauss Newton . 51
4.4.2 Iteratively Re-weighted Residuals . 53
4.4.3 Motion Prior . 53

4.5 Initialization . 53
4.6 Visualization . 54

5 Results and Evaluation 55
5.1 Trajectory Estimation . 55
5.2 Analysis of Residuals . 58

5.2.1 Image Alignment Failure Scenario . 61
5.3 Feature Detection Tuning . 63

6 Conclusion and Further Work 64

4

List of Acronyms

CMOS = Complementary Metal–Oxide–Semiconductor

CPU = Central Processing Unit

DoF = Degrees of Freedom

DSP = Digital Signal Processor

EKF = Extended Kalman Filter

FPGA = Field-Programmable Gate Array

GPGPU = General Purpose Graphics Processing Unit

GPU = Graphics Processing Unit

IMU = Inertial Measurement Unit

KLT = Kanade-Lucas-Tomasi

LBP = Local Binary Patterns

MAD = Median Absolute Deviation

SIMD = Single Instruction, Multiple Data

SLAM = Simultaneous Localization And Mapping

SSD = Sum of Squared Differences

VO = Visual Odometry

5

List of Figures

3.1 FAST in action. The Red boxes are the 16 test pixels surrounding the candidate p in
the middle. The light blue half circle marks a subset of adjacent test pixels which all
have larger intensity than p. 14

3.2 Illustration of the axis-angle and rotation vector representations of rotation 15
3.3 A conceptualized representation of the spaces R3, g = so(3), and G = SO(3). The

line representation of R3 and the Lie algebra g highlights the fact that they are vector
spaces and are thus linear under addition and scalar multiplication, as opposed to the
Lie group, G, which is a differentiable manifold, and thus merely resembles a vector
space locally. 21

3.4 CMOS image sensor . 26
3.5 Illustration of how light is scattered and absorbed underwater on its way to the camera. 28
3.6 Geometric illustration of the pinhole model. 29
3.7 Illustration of the Huber loss of the residuals. The blue graph represents the quadratic

residual r2
x used in ordinary least squares, while the green graph represents the Huber

loss ρh(rx). 35
3.8 Visualization of the bitplanes for an image. The number of each bitplane corresponds

to the bit number in phi I from listing 3.1. 44

4.1 A five-level multi-scale image pyramid . 47
4.2 FAST corners detected at multiple levels with cross-scale non-maximum suppression.

The circles correspond to the circles made by the test pixels, with the center being
the corner pixel. FAST corners detected at lower resolution have larger circles because
pixels correspond to larger geometries at lower resolution. The different sized circles
have different colors so they are easier to disinguish. 48

4.3 FAST corners detected at multiple levels. The white rectangles are the areas used for
cross scale non-maximal suppression. Note that there is at most one corner in each
rectangle. 49

4.4 Visualization of the estimated transformation of aligned image patches (red) and the
matches of candidate patches with, as of yet, unknown depth (blue). The visualization
is from the execution of the implemented algorithm on the first Harbor sequence in the
Aqualoc dataset[19]. 54

5.1 Trajectory estimates for the dock side series captured on the Blueye Pioneer underwater
drone. 56

5.2 Screenshot from https://youtu.be/oUHgMTFfRXk showing the progress of the proposed
algorithm on the ”dock side” series. The blue and red dots correspond respectively to
the image patches for which we are trying to find the depth / camera distance, and the
image patches which are already being used for 6DoF image alignment. 57

6

https://youtu.be/oUHgMTFfRXk

5.3 Raw image residuals. The x-axis represents the size of the pertubation from the con-
verged se(3) pose estimate. 59

5.4 Bitplane residuals. The x-axis represents the size of the pertubation from the converged
se(3) pose estimate. 60

5.5 A frame from the dock side series which is in the middle of an illumination change
generated by the initial exposure change in the camera. 61

5.6 Residuals for one of the translation dimensions in the raw image alignment failure sce-
nario. The x-axis represents the size of the pertubation from the converged se(3) pose
estimate. 62

5.7 Trajectory estimates for ”Harbor” sequence number 1 in the Aqualoc dataset[19]. 63

7

Chapter 1: Introduction

This chapter will describe the context of the thesis.

Section 1.1 gives the reason for why the subject matter of the thesis was chosen to be what it is. It sets
up the problem that we want to solve. In section 1.2 we describe the goals that we want to accomplish
throughout the thesis. Section 1.3 describes the main innovation that has been done. Section 1.4 gives
an overview of the thesis.

1.1 Motivation

Visual odometry has been explored extensively for over water applications like UAV navigation. How-
ever, many popular visual odometry algorithms have poor performance underwater[50] because of light
attenuation effects, marine snow etc. In addition to this, many popular VO algorithms make use of
computationally intensive operations like descriptor based feature matching or dense image alignment,
requiring the use of powerful computing resources.

As is mentioned in section 2.3, most of the existing underwater VO algorithms make use of stereo
cameras. This disqualifies them for use on platforms that only feature a monocular camera.

On the subject of monocular cameras, the last few years have seen a growth in the market for under-
water drones, which are camera equipped ROVs that are smaller, cheaper and easier to use than more
traditional ROVs. These drones do not have the same abundance in sensors and computing power
that large research and industry ROVs have, so they need to consider VO solutions that require less
resources, both in terms of sensors and computing power. They rarely have support for stereo cameras,
and they could benefit from visual odometry in for instance marine inspection, which is a common use
case.

All this considered, we see the need for a monocular VO algorithm which is robust against the problems
introduced by underwater scenes as well as being computationally simple.

1.2 Aim of Study

We present a monocular visual odometry algorithm based on alignment of image and descriptor patches.
The algorithm is a combination of the frontend of the semi-direct VO algorithm SVO[10], with the
added modification of aligning geometrically differentiable descriptors called bitplanes[2]. The output
of the algorithm is a live pose estimate and a trajectory which is up to scale, meaning that the scale
of the trajectory is not part of the estimate.

Throughout the thesis, we will endeavour to explain and show experimentally how the proposed algo-
rithm is robust to problems introduced by underwater scenes. We will also show failure scenarios and
how the algorithm can be improved.

8

We limit the scope of the thesis by focusing on the theory and choices made for the front-end of the VO
algorithm, ie. the image alignment and the steps leading up to it. We leave the backend, or mapping
part of the algorithm mostly untouched. Note that this choice is solely for the purpose of limiting the
scope of the thesis, and it doesn’t mean there are no choices for the backend that affect the underwater
performance of the algorithm.

1.3 Contribution

The addition of bitplanes to the SVO frontend represents the main moment of innovation in the
proposed algorithm. The computational and conceptual simplicity of sparse image alignment implicitly
satisifies one of the requirements stated in the motivation section. Robustness to underwater distortion
effects is the other requirement, and as we will demonstrate, it is satisfied to some degree by the use
of bitplanes for image alignment.

For evaluation, the proposed algorithm is implemented in the C++ programming language for GNU/Linux
based operating systems. The C++ library Eigen is used for linear algebra operations, along with the
Eigen compatible Lie group implementation called Sophus. The FAST implementation from Edward
Rostens[44][45] computer vision library libCVD is used for corner detection.

Online visualization is done using OpenGL, and image capture is done using the V4l2 driver along
with libjpeg-turbo for image decoding, unless hardware decoding is available. In addition, the popular
video streaming framework GStreamer is used for remote visualization when executing on embedded
platforms. GNU Octave, which is a clone of the Matlab programming language, is used for offline
plotting and analysis.

1.4 Outline

Relevant literature is presented in chapter 2. We also give a brief overview of different approaches to
visual odometry.

Chapter 3 covers the theoretical background for the methods used in the proposed algorithm. Most
of the chapter is dedicated to explaining the tools and concepts needed in order to use non-linear
optimization to find camera motion.

Chapter 4 goes through each step of the proposed algorithm. The expressions for the partial derivatives
needed for image-alignment are derived in section 4.4.1.

Chapter 5 evaluates the performance of the proposed algorithm. We show plots of trajectory estimates
and residuals generated from small pertubations in the motion estimate.

Chapter 6 concludes the thesis. It sums up the work done and the discoveries that have been made.

9

Chapter 2: Literature Review

In this chapter we review relevant existing literature.

In section 2.1 we discuss the main highlights of the evolution of visual odometry. In section 2.2 we
give an overview of the main ways of distinguishing visual odometry methods. Section 2.3 sums up
the brief evolution of visual odometry methods specifically taylored to underwater environments.

2.1 Evolution of Visual Odometry Methods

Early computer based visual odometry methods typically made use of corner detection algorithms
like the Harris corner detector[25]. After detection, the corners were typically tracked in consecutive
frames with algorithms like KLT[48].

Later methods used robust feature descriptors like SURF[5] and ORB[46] in order to find feature
correspondences.

In order to estimate the pose of the camera, early methods often used filtering as in EKF-SLAM[38].
Later, more and more methods, including ORB-SLAM[39] and PTAM[28], have been using bundle
adjustment, also called ”smoothing”, instead of filtering.

PTAM[28] also introduced a separation and decoupling of a frontend and backend in visual odometry
methods, where the frontend is responsible for feature tracking and motion estimation while the back-
end is responsible for depth estimation or for refining the feature map and pose. The backend runs in
a separate thread from the frontend and is decoupled from hard real time contraints. This separation
has proven useful, and is employed in multiple popular methods today, like SVO[10].

While early visual odometry methods were mostly indirect, meaning that they extract features like
corners or lines from the images, there have been multiple ”direct” methods in recent years, like
DTAM[40], that operate directly on the image intensities themselves.

2.2 Taxonomy of Visual Odometry Methods

2.2.1 Sparse and Dense Methods

Visual odometry methods are divided into sparse and dense methods.

Dense methods use all of the image in their computations. These methods have high computational
cost because of the large amount of data, and they typically need massively parallell implementations
in order to run in real time. Dense methods can potentially be used for dense reconstruction of scenes.

Sparse methods only consider parts of the image, reducing the computational cost. Sparse methods
usually tries to find parts of the image that are easy to track.

10

2.2.2 Indirect Methods

Indirect methods extract interest points called features from salient image regions, discarding the rest
of the image. The features are locations in the image with a high intensity gradient, typically corners
or lines.

The idea behind this approach is that the features will contain most of the valuable information in
the image since they typically have a more distinct look compared to the image regions that are not
detected as features. Thus a set of features form a consise representation of image regions that are
easy to find again in consequtive frames in order to determine the camera motion.

The first step in indirect methods is feature detection, for which there exists a number of algorithms
including FAST[44]. Next a lot of indirect methods will compute a feature descriptor, like for instance
BRIEF[6], for each detected feature. These descriptors are typically binary vectors that encode a
description of the image region around the feature that is supposed to be invariant to conditions like
change in lighting as well as rotation in some cases.

When a second frame is received, indirect methods will try to find the location of the features extraced
in the last frame in the new frame. This can either be done through optical flow like in KLT track-
ing[48], or through feature correspondences using feature descriptors. Finding feature correspondences
is a difficult process, and outlier rejection methods like RANSAC[21] are needed to handle false cor-
respondences. After feature correspondences are found, the motion can be calculated using epipolar
geometry.

It is also possible to find the motion through minimizing the sum of squared differences (SSD) of the
reprojection error of the feature matches. The reprojection error of matching pair of feature observa-
tions, where the newest observation was observed in the newest frame and the previous observation
was observed in a previous frame, is the geometric error corresponding to the distance between the
newest observation and the previous observation projected into the newest frame. This is shown in
equation (2.2.1), where θ is a parameterization of the motion between the images, yi is the newest
observation of a feature, xi is a previous observation of the same feature, w is the reprojection function
from equation (3.4.10), and d is the distance between the feature xi and the camera.

E(p) =
∑
i

||yi − w(xi,θ, d)||2 (2.2.1)

2.2.3 Direct Methods

Direct methods operate directly on the image intensities without going through the feature extraction
process of indirect methods. Therefore they typically process information that indirect methods dis-
card, like low gradient image regions. This can potentially help increase the accuracy of the visual
odometry, but it also means that direct methods usually process more data than indirect methods,
increasing the computational cost of the algorithms.

In order to find the motion between a reference image (or alternatively a patch in the reference image
referred to as a template) and the current image, direct methods usually minimize the ”photometric
error” between the images. The photometric error is defined as the sum of squared differences between
an image I and a template image T transformated by a warp. It is shown in equation (2.2.2), where
T and I are the image functions respectively for the reference and the current image, w is the warp
function, θ is a parameterization of the motion between the images, and x is an image location in T .

E(θ) =
∑
x

[
I(ω(x,θ))− T (x)

]2
(2.2.2)

11

To reduce the amount of information to process, sparse direct methods only process the image regions
that are salient according to some metric. For instance Chistensen and Hebert[9] extracts edges from
a canny[7] edge detector. Also, SVO[10] extracts image regions using FAST[44][45] and processes the
sparse image patches around the features directly afterwards, so it could fit into this category. However
SVO is instead described as semi-direct because after the direct image alignment step, it proceeds to
do indirect bundle adjustment.

Some direct methods don’t use raw image intensities[1]. In place of the image intensities, they use dif-
ferent kinds of geometrically differentiable binary descriptors. We discuss such a method in section 3.7.

2.3 Underwater Visual Odometry Methods

The use of visual odometry for underwater navigation has been researched to an increasing degree in the
last few years as an alternative to expensive EKF based solutions that combine inertial measurement
units, Doppler Velocity Logs and sonars. Many methods target accurate mapping of sea-floors or caves
since this is demanded by industry and since cameras potentially offer more information than sonars
and at lower cost.

When it comes to underwater navigation, sonar based methods have traditionally been preferred
because they do not suffer from the visual degradation observed in underwater images. However,
the information from sonars are difficult to analyze compared to images, and at close range, sonar is
inaccurate[43].

Eusice et al.[16] were among the first to experiment with underwater visual odometry, using an indirect
approach in conjunction with inertial sensors. Their approach was soon extended to be used on stereo
cameras[26]. Several stereo camera based methods were developed[33]. In general, the difficulties
introduced by underwater vision lead most VO-methods to opt for stereo cameras, leaving the literature
for monocular solutions relatively sparse up until recently.

As for more recent research, Weidner et al.[50] found that state of the art methods commonly used
in the air do not perform satisfactory under water. They instead used stereo cameras and strategic
illumination to solve some of the problems introduced by turbid water.

Interestingly, Nawaf et al.[37] use a neural network in their indirect VO-algorithm in order to estimate
the uncertainty in their pose estimate since this is complicated to model in an underwater context due
to water degradation. Silveira et al.[47] also make use of neural networks. They use them in an attempt
to mimic biological perception by having sensor data and position estimates map into neurons.

Ozog et al.[42] performs SLAM around a ship hull by assuming the hull surface to be locally planar.
This assumption is also used for hull inspection in Kim and Eustice[27], in conjunction with an odome-
try approach which switches between a homography and an epipolar geometry based model, depending
on the hull geometry.

Direct VO methods typically suffer more from the distortion and degradation effects experienced
underwater because they operate on direct light intensities[36]. This is likely why there are few direct
VO methods developed especially for underwater use.

Ferrera et al.[20] indicated that optical flow based tracking performs better than descriptor based
methods underwater. The optical flow algorithm they used was the KLT (Kanade-Lucas-Tomasi)
feature tracker, which is direct in nature even though it is commonly used in indirect methods.

12

Chapter 3: Theory

In this chapter we present the main theoretical background needed in order to understand the proposed
solution to the monocular visual odometry problem for underwater scenes.

3.1 Feature Detection

Feature detection is the process of extracting salient image locations from an image. A good feature
detection algorithm will find features that are easy to track in subsequent image frames because they
stand out in contrast to their surroundings.

Feature detection is also referred to interchangeably as corner detection because corners usually make
decent features.

3.1.1 FAST

The FAST feature detection algorithm[44][45] is popular because of its computational efficiency and
theoretical simplicity.

FAST considers a set of 16 ”test” pixels forming a circle around a feature candidate, as illustrated in
figure 3.1. The basic principle is to check if there is a subset of at least N adjacent pixels from this set
that have consistently larger or lower intensity than the candidate pixel. If such a subset is found, the
candidate is chosen as a corner. N is typically set to be around 12 in the basic version of the algorithm.
Also, a pixel intensity is considered lower or higher than the candidate pixel intensity only if it differs
by more than a chosen threshold.

When choosing N=12, it is possible to use a high speed test to exclude non-corners. This test only
considers 4 evenly spaced test pixels among the circle, for instance pixel 1, 5, 9 and 13 in figure 3.1.
In order for the candidate to be chosen a corner, at least 3 of the 4 evenly distributed test pixels need
to have consistently higher or lower intensity than the candidate. If this is not the case, the candidate
can be dropped without further evaluaion of the test pixels.

Unfortunately, the high speed test can not easily be generalized to choices of N which are less than
12. Also, the choice of evenly distributed pixels and the order of their evaluation are probably going
to be suboptimal in real applications, since they are chosen arbitrarily. To address these issues, the
developers of FAST introduced a machine learning approach[45] in order to at all times evaluate the
test pixels that give the most information about whether the candidate is a corner or not.

3.1.2 FAST-Score / Non-Maximum Suppression

In order to avoid having multiple overlapping or very close features, it is usual to remove all but the
best features in local neighbourhoods.

13

Figure 3.1: FAST in action. The Red boxes are the 16 test pixels surrounding the candidate p in the
middle. The light blue half circle marks a subset of adjacent test pixels which all have larger intensity
than p.

Whether a feature is good or bad is judged based on its FAST-score. The FAST-score can be defined
in multiple ways, but it is common to set it to the sum of absolute differences between the intensities
of the test pixels and the candidate.

3.2 3D Geometry

This section defines a mathematical representation of posisitions and motion as well as corresponding
operations needed in our visual odometry approach.

3.2.1 Position

We define a position in 3d space by three real numbers, each equal to the position along each of our
coordinate systems axes:

x =

xy
z

 (3.2.1)

3.2.2 Translation

Translation is defined as element-wise addition:

x+ t =

x+ tx
y + ty
z + tz

 (3.2.2)

3.2.3 3D Rotation Representation

Three-dimensional Rotations can be parametrized in multiple ways. Notable representations are Euler
angles, quaternions, angle-axis and rotation matrices[13]. In this thesis we will focus on Lie represen-
tations[14][4] of rotation and transformation as described in section 3.3.

14

Euler Angles

Euler angles is a compact way of representing a rotation. They consist of three angles. Rotation by
euler angles is performed by consecutively rotating around each of the principal axis by each of the
angles. This rotation can be performed by mapping each euler angle rotation to a rotation matrix
using basic trigonometry. The order in which the angles are to be applied needs to be specified.

Calculations involving euler angles suffer from a problem called gimbal lock. This means that if we
represent our estimate of consecutive camera orientations with euler angles and our camera rotates
through a singularity of the euler angle representation, the estimate will loose a degree of freedom.

Angle-Axis / Rotation Vector

The angle-axis representation represents 3D-rotations using two quantities: The unit vector a indicates
the direction of the axis of rotation, and the angle θ indicates the magnitude of the rotation around a.

The representation is predicated on Eulers rotation throrem, which says that any sequence of rotations
around multiple axis is equivalent to a single rotation around a fixed axis. Eulers rotaton theorem can
be used to take three rotations around the three principal axis, and compose them so we get a single
rotation around the axis given by a.

We can multiply angle and axis to represent the rotation using only one quantity, called the rotation
vector: ω = ωa. This representation is equivalent to the so(3) representation which we will discuss in
section 3.3.5.

Figure 3.2: Illustration of the axis-angle and rotation vector representations of rotation

Rotation Matrix

A 3D rotation matrix is a three by three orthogonal matrix with unitary determinant.

The orthogonal requirement means that the set of columns and the set of rows in a rotation matrix
each consist of orthonormal vectors, meaning that they are vectors that are both orthogonal to each
other and that all have an absolute size of one.

15

The unitary determinant requirement disqualifies reflections, which are orthogonal matrices with de-
terminant −1. Reflections are transformations that reflect sets of points through a plane, failing to
preserve the relative orientation of the points.

The 3D rotation matrix representation is equivalent to the SO(3) representation, which we define in
section 3.3.4.

3.2.4 Homogenous Coordinates

Homogenous coordinates are also called projective coordinates because they are useful in situations
where coordinates loose one degree of freedom through projection.

For a 3d point x = [x, y, z]T we define the homogenous representation x̃ of x by adding another
coordinate equal to one:

x =

xy
z

⇒ x̃ =

x
y
z
1

 (3.2.3)

Vector geometry works similarly for homogenous coordinates as for ordinary coordinates. However, in
homogenous coordinates we define the equivalence relation given by equation (3.2.4):

x̃ ∼ ỹ ⇔ x̃ = λỹ (3.2.4)

This means that all points that differ only by a scale factor λ in homogenous coordinates are considered
equal. This leads naturally to a conversion process from homogenous to normal coordinates where we
divide by the last homogenous coordinate before removing it:

x̃ =

x̃
ỹ
z̃
w̃

 ∼ 1

w̃

x̃
ỹ
z̃
w̃

 =

x̃/w̃
ỹ/w̃
z̃/w̃

1

⇒ x =

x̃/w̃ỹ/w̃
z̃/w̃

 (3.2.5)

3.2.5 Skew-Symmetric Matrices

Skew-symmetric matrices are matrices A for which AT = −A. They are implicitly square matrices from
this requirement. For a 3d vector x we can define a skew-symmetric matrix [x]× ∈ R3x3 parametrized
by x:

x =

xy
z

⇒ [x]× =

 0 −z y
z 0 −x
−y x 0

 (3.2.6)

The skew-symmetric matrix can be used in order to turn the vector cross product into matrix-vector
multiplication:

x× y = [x]×y (3.2.7)

We can also calculate the skew-symmetric matrix parametrized by the cross product of two vectors
x,y ∈ R3 in terms of the skew-symmetric matrices [x]×, [y]×:

16

[x× y]× = [x]×[y]× − [y]×[x]× (3.2.8)

This expression is referred to as the commutator of [x]× and [y]×.

It is possible to reduce the cube of a skew-symmetric matrix:

[x]3× = −(xTx) · [x]× (3.2.9)

This means that skew-symmetric matrices with arbitrary odd and even exponents, 2i + 1, 2i + 2 ∈ N
can be reduced as follows:

[x]2i+1
× = −(1)iθ2i[x]× (3.2.10)

[x]2i+2
× = −(1)iθ2i[x]2i× (3.2.11)

Where θ is given by equation (3.2.12):

θ =
√
xTx (3.2.12)

If x has size one, xTx = 1, then we can reduce the square of a skew-symmetric matrix:

[x]2× = xxT − I, xTx = 1 (3.2.13)

3.3 Lie Groups and Lie Algebras

3.3.1 Lie Group Definition

Lie groups[14][4] are groups that are also smooth differential manifolds. The group requirement means
that they consist of a set, G paired with a operator, • which together obey the four axioms for group
theory given x, y, z ∈ G:

Closure:
x • y ∈ G (3.3.1)

Associativity:
(x • y) • z = x • (y • z) (3.3.2)

Identity:
∃e∀x : x • e = e • x = x (3.3.3)

Inverse:
∀x∃x−1 : x • x−1 = x−1 • x = e (3.3.4)

As for the smooth differential manifold requirement for Lie Groups, this means that they locally
resemble a vector space enough to allow one to do calculus using a differential structure which is
globally consistent over the manifold.

17

3.3.2 Lie Algebra Definition

A Lie Algebra is a vector space g with a non-associative operation [·, ·] : g × g → g that satisfies the
following axioms for x,y, z ∈ g and a, b ∈ F, where F is the field of g:

Bilinearity:

[ax+ by, z] = a[x, z] + b[y, z] (3.3.5)

[z, ax+ by] = a[z,x] + b[z,y] (3.3.6)

Alternativity:
[x,x] = 0 (3.3.7)

The Jacobi Identity:
[x, [y, z]] + [z, [x,y]] + [y, [z,x]] = 0 (3.3.8)

A notable property arising from these axioms is anticommutativity:

Anticommutativity:
[x,y] = −[y,x] (3.3.9)

For this thesis, we will be using the field of real numbers, F = R.

3.3.3 Lie Algebra derived from a Lie Group

The Lie group-Lie algebra correspondence allows us to study Lie Groups in terms of Lie algebras,
which is advantageous since Lie algebras are linear, unlike Lie groups. The correspondance relies on
Lie’s third theorem[15], the homomorphisms theorem and the subgroups-subalgebras theorem[35].

For a given Lie Group G we can define its corresponding Lie Algebra g as the tangent space around
the identity, e of G. This tangent space is by definition the space of possible differential pertubations
around e, and it can be parametrized using the basis elements G1, ..., Gk, where k are the degrees of
freedom of G. These elements are called the generators of g, and with them we can write the element
[x] ∈ g as a linear combination:

[x] =

k∑
i=1

xiGi, x = [x1, ..., xk]T ∈ g (3.3.10)

There are multiple corresponding pairs of Lie groups and Lie algebras that are useful in visual odometry,
including SO(3) with so(3), SE(3) with se(3), and SIM(3) with sim(3). For the rest of the thesis, we
will limit ourselves to SO(3) with so(3) and SE(3) with se(3).

3.3.4 SO(3)

We define the group SO(3) as the set of 3D rotation matrices composed over matrix multiplication.
Rotation matrices are matrices C ∈ R3×3 that follow the following axioms given the identity matrix I:

Orthogonality:
CTC = CCT = I (3.3.11)

Unitary determinant:
|C| = 1 (3.3.12)

18

Under this definition we can show that SO(3) satisfies all the Lie axioms from equation (3.3.1)-(3.3.4).
Closure of SO(3) follows from Eulers rotation theorem, which says a compounding of rotations can be
replaced by a single rotation. Associativity follows from the matrix multiplication rules, although we
will omit the derivation here. As for the existence of an identity and inverse element, we can derive
this directly from equation (3.3.11) by setting e = I, x = C and C−1 = CT .

3.3.5 so(3)

We define the set of the Lie algebra so(3) as the set of skew-symmetric matrices [ω]×, ω ∈ R3,
where [·]× is the skew-symmetric matrix parameterization given in section 3.2.5. Then we define the
operation [·, ·]× : so(3), so(3) → so(3) by using the skew-symmetric representation of cross-products
from equation (3.2.8):

[[ω1]×, [ω2]×]× = [ω1 × ω2]× = [ω1]×[ω2]× − [ω2]×[ω1]× (3.3.13)

Since the skew symmetric matrix representation [·]× is a unique parameterization so that [ω1]× =
[ω2]× ⇔ ω1 = ω2, this means that our Lie algebra bracket operator given in (3.3.13) inherits the
properties of the cross-product [ω1,ω2] = ω1 × ω2. It follows that the axioms from equations (3.3.5)-
(3.3.2) are satisfied since they are all basic properties of the cross product.

Since so(3) is a Lie algebra, it is by definition a tangent space at the identity of its corresponding Lie
group. The corresponding Lie group of so(3) is SO(3), which is evident if we observe the derivatives
of rotation around each axis at the identity matrix I ∈ SO(3), which are given by G1, G2, G3 in
equation (3.3.14).

G1 =

0 0 0
0 0 −1
0 1 0

 , G2 =

 0 0 1
0 0 0
−1 0 0

 , G3 =

0 −1 0
1 0 0
0 0 0

 (3.3.14)

By definition G1, G2, G3 span the tangent space of SO(3) at the identity matrix, and from the definition
of the skew-symmetric matrix given in section 3.2.5 we see that they also span the set of skew-symmetric
matrices, ie. so(3). This means that so(3) is the tangent space of SO(3) at the identity matrix, and it
is thus the Lie Algebra associated with SO(3). The matrices G1, G2, G3 are generators of the vector
space so(3), which means that we can represent all elements [ω]× ∈ so(3) as linear combinations of
ω ∈ R3 and G1, G2, G3 as in equation (3.3.10):

[ω]× = ω1G1 + ω2G2 + ω3G3 (3.3.15)

Sometimes we write ω ∈ so(3) for ease of notation. Here the parameters ω1, ω2, ω3 are viewed as a
representation of the skew-symmetric matrix [ω]×.

3.3.6 Map from so(3) to SO(3)

The map between elements in so(3) and elements in SO(3) is given by matrix exponentiation, as
defined in equation (3.3.16):

exp(A) = I +A+
1

2!
A2 +

1

3!
A3 + ... =

∞∑
i=0

1

i!
Ai, A ∈ Rn×n (3.3.16)

In order to see why the exponential map relates elements in so(3) to elements in SO(3), it is useful to
derive and analyze a closed form expression. Using the cube reduction of skew-symmentric matrices

19

from equation (3.2.10) and the Taylor expansion of sine and cosine, we arrive at the Rodrigues formula
for skew-symmetric matrix exponentiation:

exp([ω]×) = I + [ω]× +
1

2!
[ω]2× +

1

3!
[ω]3× + ... (3.3.17)

= I +

∞∑
i=0

([ω]2i+1
×

(2i+ 1)!
+

[ω]2i+2
×

(2i+ 2)!

)
(3.3.18)

= I +
(∞∑

i=0

(−1)iω2i

(2i+ 1)!

)
[ω]× +

(∞∑
i=0

(−1)iω2i

(2i+ 2)!

)
[ω]2× (3.3.19)

= I +
(

1− ω2

3!
+
ω4

5!
− ...

)
[ω]× +

(1

2!
− ω2

4!
+
ω4

6!
− ...

)
[ω]2× (3.3.20)

= I +
(sin(ω)

ω

)
[ω]× +

(1− cos(ω)

ω2

)
[ω]2×, ω =

√
ωTω (3.3.21)

It is possible to show that the rotation represented by exp([ω]×) is a rotation by ω =
√
ωTω radians

around the axis given by ω. In fact Rodrigues formula is used when rotating by a rotation vector, as
defined in section 3.2.3, so so(3) elements are equivalent to rotation vectors. Rodrigues formula shows
that any [ω]× = [ωa]× ∈ so(3) generates a valid rotation exp([ω]×) ∈ SO(3).

Rodrigues formula also shows that we will get the same exponential exp([ω]×) for any (
√
ωTω +

2πn)ω, n ∈ Z because of the trigonometric functions. Thus the exponential map from so(3) to SO(3)
is non-injective, meaning that we can generate some element in SO(3) from multiple elements in se(3).
If we limit the rotation angle, |ω| < π of the elements in so(3), then we can guarantee that they will
all generate different rotations through the exponential map, making the map injective.

Now, in order to show that the exponential map is a complete bijection between so(3) and SO(3), it
is necessary to show that every rotation in SO(3) can be generated by an element in so(3). In order
to do this, we should find the inverse of the exponential map.

Inverse of Rodrigues Formula

We represent the element ω in its angle-axis form by putting ω = ωa, aTa = 1. We can then use the
sqew square-reduction formula (3.2.13) to obtain a different form of the Rodrigues formula which is
more suited for inverting:

exp([ω]×) = exp([ωa]×) = cosωI + (1− cosω)aaT + sinω[a]× (3.3.22)

The trace, tr(·) of a matrix is the sum of its diagonal elements. By evaluating the trace of the rotation
matrix, we obtain a closed form expression for the angle, ω given by the rotation matrix, C = exp([ω]×:

tr(C) = tr(cosωI + (1− cosω)aaT + sinω[a]×) (3.3.23)

= cosω · tr(I) + (1− cosω) · tr(aaT) + sinω · tr([a]×) (3.3.24)

= cosω · 3 + (1− cosω) · 1 + sinω · 0 (3.3.25)

= 2 cosω + 1 (3.3.26)

⇒ ω = cos−1
(tr(C)− 1

2

)
+ 2πn, n ∈ Z (3.3.27)

20

Here we choose n so that |ω| < π. We must also make sure that we pick the right sign for ω, since
cos−ω = cosω. In practice, we pick a sign and then see if we get the correct rotation C when going
the other way after having obtained the solution ω. If we get the wrong rotation, exp([ω]×) 6= C, we
switch the sign of ω.

In order to obtain the vector a, we observe that a rotation of a vector around its own axis changes
nothing: Ca = a. This means that a is an eigenvector of C with eigenvalue 1, and we can solve

the corresponding eigenproblem to find a. We can use the formula log(C) =
ω

2 sinω
· (C − CT), for

which we will omit derivation, and pick the skew symmetric parameters ω from the resulting matrix
according to the definition of the skew symmetric matrix (3.2.6).

Using the method above, we are able to find a corresponding element ω = ωa ∈ so(3) for any rotation
C ∈ SO(3), and together with the injective formulation of the Rodrigues formula, we have therefore
shown that the exponential map is a bijective map between so(3) and SO(3).

Figure 3.3: A conceptualized representation of the spaces R3, g = so(3), and G = SO(3). The line
representation of R3 and the Lie algebra g highlights the fact that they are vector spaces and are thus
linear under addition and scalar multiplication, as opposed to the Lie group, G, which is a differentiable
manifold, and thus merely resembles a vector space locally.

3.3.7 Derivative of SO(3) rotation

It is also interesting to calculate the derivative of a rotation y = C ·x, x ∈ R3 with respect to the Lie
algebra element [ω]× ∈ so(3), exp([ω]×) = C. We do this by modeling the infinitesimal pertubation
from the rotation C as a rotation exp([∆ω]×), pertubated through composure. Here ∆ω ∈ R3 is an
infinitesimal pertubation from ω ∈ R3. We also use the fact that the derivatives, ∂ exp([ω]×) / ∂ωi, i =
1, 2, 3 at ω = 0 are the generators G1, G2, G3 of so(3) as given in equation (3.3.14).

21

y = C · x = exp([ω]×) · x (3.3.28)

⇒ ∂y

∂ω
=

∂

∂∆ω

∣∣∣∣
∆ω=0

(
exp([∆ω]×) · C

)
· x (3.3.29)

=
∂

∂∆ω

∣∣∣∣
∆ω=0

(
exp([∆ω]×)

)
· (C · x) (3.3.30)

=
∂

∂∆ω

∣∣∣∣
∆ω=0

(
exp([∆ω]×)

)
· y (3.3.31)

= (G1y|G2y|G3y) (3.3.32)

= −[y]× (3.3.33)

=

 0 y3 −y2

−y3 0 y1

y2 −y1 0

 (3.3.34)

So the derivative of y = C · x, C = exp([ω]×) with respect to ω is −[y]×.

3.3.8 SE(3)

We define the Euclidean group E(3) as the set of transformations of a Euclidean space E3 (for instance
R3) that preserve the Euclidean distance between elements. Such transformations are called isometries,
and they consist of all translations, rotations and reflections on E3 as well as any composition of these.
We then define the special Euclidean group SE(3) as the set of direct isometries on E3, meaning the
set of isometries that preserve orientation. Direct isometries are different from general, or indirect
isometries in that they consist only of translations and rotations, and not reflections. Using the
Euclidean space given by the set homogenous points x̃, x ∈ R3 as described in section 3.2.4, we can
represent elements T ∈ SE(3) as matrices T ∈ R4x4 given by equation (3.3.35).

T =

[
C t
0 1

]
, C ∈ SO(3), t ∈ R3 (3.3.35)

The upper left 3 × 3 sub-matrix of T is an element C ∈ SO(3), representing the rotation part of the
transformation. The vector t ∈ R3 represents the translation part of the transformation.

In order to apply the transformation T to a vector x = [x, y, z]T given by its homogenous representation
x̃ = [x, y, z, 1]T , we use matrix-vector multiplication:

ỹ = T · x̃ =

[
C t
0 1

]
·

x
y
z
1

 (3.3.36)

The result of this multiplication is a homogenous representation ỹ of the transformed point y ∈ R3.
The fourth parameter of the homogenous representation of x̃ is left untouched by the transformation
because the bottom row of T is identical to the bottom row of I4. This means that by setting this
fourth parameter to 1 and applying equation (3.2.5), we can immediately extract the coordinates of
the transformed vector y as the first three coordinates of ỹ:

22

ỹ = T · x̃ =

ỹ1

ỹ2

ỹ3

1

⇒ y =

ỹ1

ỹ2

ỹ3

 (3.3.37)

Like SO(3), the group operation for SE(3) is composure implemented through matrix multiplication:

T1 · T2 =

[
C1 t1
0 1

]
·
[
C2 t2
0 1

]
=

[
C1C2 C1t2 + t1

0 1

]
(3.3.38)

We show that SE(3) satisfies all the Lie axioms from equation (3.3.1)-(3.3.4). Closure follows directly
from the concept of transformations: Since all compositions of translation and rotation is an element
of SE(3), we can’t possibly compose two transformations T1, T2 ∈ SE(3) such that T1 · T2 /∈ SE(3).
We can also observe that the expression at the right in equation (3.3.38) satisfies the definition (3.3.35)
and is thus an element of SE(3). Associativity follows from multiplying the matrices obtained from
direct substition into section 3.3.1, although we will omit the derivation here. The inverse element for
SE(3) is given by equation (3.3.39):

T =

[
C t
0 1

]
⇒ T−1 =

[
CT −CT t
0 1

]
(3.3.39)

We can check this by calculating T · T−1:

T · T−1 =

[
C t
0 1

]
·
[
CT −CT t
0 1

]
= I4 (3.3.40)

Where we have used the orthogonality property (3.3.11) of SO(3), CCT = CTC = I3. The result is
the identity matrix I4, which serves as the identity element for SE(3), fulfilling the last requirement
for SE(3) to be a Lie group.

3.3.9 se(3)

se(3) is the lie algebra of SE(3), and it is given by its generators G1, ..., G6:

G1 =

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , G2 =

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , G3 =

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , (3.3.41)

G4 =

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 , G5 =

0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 , G6 =

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 (3.3.42)

The matrices G4, G5, G6 are the differential rotations, and they are therefore similar to the generators
in so(3). G1, G2, G3 are the differential translations. Together they generate the matrices ξ∧ as defined
in equation (3.3.43):

ξ∧ ≡ ξ1G1 + ...+ ξ6G6 ∈ se(3) (3.3.43)

23

The coordinates ξ1, ..., ξ6 of ξ is sometimes reffered to as the ”twist” coordinates of its corresponding
SE(3) transformation T . If we divide ξ into the translational and rotational coordinates, u,ω, we get
an expression which is easier to work with:

ξ =

[
u
ω

]
∈ R6, u,ω ∈ R3 (3.3.44)

⇒ ξ∧ = u1G1 + u2G2 + u3G3 + ω1G4 + ω2G5 + ω3G6 (3.3.45)

=

[
[ω]× u

0 0

]
=

0 −ω3 ω2 u1

ω3 0 −ω1 u2

−ω2 ω1 0 u3

0 0 0 0

 (3.3.46)

This matrix expression, together with the same bracket operator given in equation (3.3.13), can be
used to show that se(3) fills the requirements (3.3.5)-(3.3.2) for being a lie algebra. We will omit the
proofs here though. For ease of notation, we write ξ ∈ se(3).

As in so(3), the commutator [A,B] = AB −BA is used as the lie bracket for se(3).

3.3.10 Map from se(3) to SE(3)

As in SO(3) and so(3), the map from se(3) to SE(3) is given by matrix exponentiation. We derive
a closed form expression with the same techniques used in the derivation of the Rodrigues formula,
equation (3.3.21):

exp(ξ∧) = exp
([

[ω]× u
0 0

])
(3.3.47)

= I +
([[ω]× u

0 0

])
+

1

2!

([[ω]2× [ω]×u
0 0

])
+

1

3!

([[ω]3× [ω]2×u
0 0

])
+ ... (3.3.48)

=

[
exp([ω]×) V u

0 1

]
, V = I +

1

2!
[ω]× +

1

3!
[ω]2× + ... (3.3.49)

Here the top left sub-matrix, exp([ω]×) is given by Rodrigues formula (3.3.21).

The matrix V is called the left jacobian of SO(3), and it appears in multiple situations when dealing
with lie groups. We derive a closed form expression for V :

V =

∞∑
i=0

1

i+ 1

(
[ω]×

)i
(3.3.50)

= I +

∞∑
i=0

([ω]2i+1
×

(2i+ 2)!
+

[ω]2i+2
×

(2i+ 3)!

)
(3.3.51)

= I +
(∞∑

i=0

(−1)iω2i

(2i+ 2)!

)
[ω]× +

(∞∑
i=0

(−1)iω2i

(2i+ 3)!

)
[ω]2× (3.3.52)

= I +
(1

2!
− ω2

4!
+
ω4

6!
+ ...

)
[ω]× +

(1

3!
− ω2

5!
+
ω4

7!
+ ...

)
[ω]2× (3.3.53)

= I +
(1− cosω

ω2

)
[ω]× +

(ω − sinω

ω3

)
[ω]2×, ω =

√
ωTω (3.3.54)

24

The inverse, V −1 is given by:

V −1 = I − 1

2
[ω]× +

1

ω2

(
1− ω

2

sinω

1− cosω

)
[ω]2× (3.3.55)

In order to obtain the logarithm, log(T) ∈ se(3), T ∈ SE(3), we can use the SO(3) logarithm described

in section 3.3.6 on the upper left sub-matrix C of T =

[
C t
0 1

]
, and then calculate the translation part

u of the twist coordinates according to u = V −1t.

Positive definiteness of V V T

Another useful property for V is that V V T is positive definite, meaning that xTV V Tx > 0 for all
x 6= 0. We can show this by defining γ and a according to equation (3.3.56) and then expanding the
expression:

γ = 2
1− cosω

ω2
> 0, a =

ω

ω
(3.3.56)

xTV V Tx = xT (γI + (1− γ)aaT)xT = xT (aaT − γ[a×][a×])xT (3.3.57)

= xTaaTxT + γ([a×]x)T ([a×]x) (3.3.58)

= (aTx)T (aTx) + 2γ([a×]x)T ([a×]x) > 0 (3.3.59)

The last inequality holds because γ as defined in equation (3.3.56) is strictly positive, while the other
terms in equation (3.3.59) are positive semi-definite.

Since V is invertible, we also have:

(V −1)T (V −1) > 0 (3.3.60)

3.3.11 Derivative of SE(3) transformation

We obtain the derivative of a SE(3) transformation.

A transformation T acts on a three-dimensional vector x according to:

y = (C|t) ·
([
x
1

])
= Cx+ t, T =

[
C t
0 1

]
= exp(ξ∧) (3.3.61)

By the same argument as in equation (3.3.28), we obtain the result:

∂y

∂ξ
= (G1y | G2y | G3y | G4y | G5y | G6y) = (I | − [y]×) (3.3.62)

=

1 0 0 0 y3 −y2

0 1 0 −y3 0 y1

0 0 1 y2 −y1 0

 (3.3.63)

25

3.4 Image Formation and Camera Mathematics

Here, we formulate a mathematical model for image formation. We also explain the major error
sources affecting the image both from the environment and from the image formation process. Lastly,
we describe geometry relating images taken from different perspectives.

3.4.1 Image Formation

We define a monochrome image mathematically as a map from image locations to image intensities:

I : Ω→ R, Ω ⊂ R2 (3.4.1)

I(x), x ∈ Ω (3.4.2)

In practice, images are often captured using CMOS or CCD image sensors. These sensors perform
quantization by dividing their image sensor area into small light-sensitive patches called pixels. The
pixels are exposed for a given time period, called the exposure time. The intensity registered at
a certain pixel is the cumulative amount of light hitting the pixel during the exposure time. This
intensity is also quantized. It is common to use one byte to encode each intensity value, making the
intensities take the form of integers from 0 to 255.

Figure 3.4: CMOS image sensor

At what time the pixel intensities get exposed is dependent on the shutter type. With global shutter,
all pixels are activated at the same time, making global shutter cameras a good choice for visual
odometry applications. Rolling shutter cameras on the other hand read the pixels row by row over
a short time period. If there is relative motion between the camera and the scene during this time
period, it can cause distortions in the image. Some odometry algorithms take this phenomenon into

26

account by adding a time parameter t ∈ R to the image map, representing the time of exposure for a
specific pixel[30]:

I : Ω× R→ R, Ω ⊂ R2 (3.4.3)

I(x, t), x ∈ Ω, t ∈ R (3.4.4)

3.4.2 Underwater Image Distortion

When trying to track scenes in underwater images, we should be aware of certain distortion effects
that reduce the visibility of the scene.

Veiling Light / Backscatter

When an underwater scene is illuminated, some of the light will reach the water between the underwater
camera and the scene it tries to capture, and a portion of the light will be scattered towards the camera.
This light is called veiling light since it appears to come from the scene, but is really just the color of
the water and small particles like micro-organisms and algae contained in the water.

The veiling light appears like a haze, reducing the contrast in the scene.

Veiling light is also called backscatter. It can be produced by artificial light sources, like LED lights
as well as natural light sources, like the sun.

Light Attenuation

Heavy light scattering and absorption leads to poor light attenuation in water. This means that
every meter, a portion of the light travelling from an underwater structure towards the camera will be
scattered away or absorbed. The structures visibility and saliency is therefore reduced exponentially
with larger viewing distances.

Light attenuatoin and veiling light can be compensated for to some degree using dehazing algo-
rithms[23]. The performance of this kind of algorithm can potentially be increased by image depth
estimates, since both the veiling light and the attenuation increases with the distance that the light
passes before reaching the camera.

Marine Snow

Marine snow often appear n underwater images as small spots with high light intensity. It mostly
consists of organic material falling towards the upper layers of the water column. If the illumination
source of the scene is close to the camera and with the same direction (like for instance a built in
camera flash), then marine snow close to the lens will be lit up, and it will appear bright white.

Too much marine snow can potentially represent a large challenge for odometry applications, since it
will be hard to see enough of the structure we wish to track. An odometry algorithm may even start
tracking the snow instead of the structure, which would lead the position estimate of the algorithm to
drift with the water.

Some algorithms use explicit modeling of marine snow to remove it from underwater images.[17][29]

27

Figure 3.5: Illustration of how light is scattered and absorbed underwater on its way to the camera.

Occlusion

Some underwater scenes are dynamic due to fauna. For instance if an underwater scene is actively
illuminated, then fish may be attracted to the light source, crowding the scene. Occlusions make it
difficult to track stationary points consistently over long periods of time.

Some underwater VO methods consider retracking mechanisms that allow them to recover KLT feature
tracking of features that gets occluded for a short time period[20].

3.4.3 Pinhole Camera Model

We present the pinhole projection model of a camera and define functions for deprojecting something
observed in one camera view and projecting it into another camera view.

Projection

A camera projection model defines how 3d points in a scene is projected onto the two-dimensional
image surface of an image sensor. The pinhole model is best described through the intrinsic camera
matrix K given by equation (3.4.5):

K =

fx 0 cx
0 fy cy
0 0 1

 (3.4.5)

K is parametrized by four variables, all given in pixels. fx and fy are the focal lengths in x and
y direction, and cx and cy are the coordinates of the image center. These parameters are called
”intrinsic” parameters, meaning that they contain information that is internal to the camera system.
They can thus be estimated through calculations using the geometry of the camera system, although
the practical way of estimating the parameters is through a calibration process using the pinhole model
in combination with images of a known scene, like a chess board pattern or similar.

28

The projection x = [x1, x2]T (in pixels) of a 3d point p = [px, py, pz]T onto an image sensor is given
by equation (3.4.6):

x1

x2

1

 =
1

pz
Kp =

1

pz

fx 0 cx
0 fy cy
0 0 1

pxpy
pz

 (3.4.6)

Later, we will refer to this projection through the function π:

π(p) = x =

[
x1

x2

]
(3.4.7)

Where x1, x2 are obtained from equation (3.4.6).

Figure 3.6: Geometric illustration of the pinhole model.

Deprojection

Using the same model, deprojection is given by:

1

pz

px
py
pz
1

 = K−1

[
x
1

]
=

1/fx 0 −cx/fx
0 1/fy −cy/fy
0 0 1

x1

x2

1

 (3.4.8)

In order to resolve the scale of x in equation (3.4.8) we need to know the depth d since this information
is lost in the projection y. We define the deprojection function π−1:

p =

pxpy
pz

 = π−1(x, d) (3.4.9)

29

Where the depth d is used to resolve the scale ambiguity in equation (3.4.8) using the identity pz = d.

We also write π−1(x) = π−1(x, d), as a shorthand where we assume that the depth d is implicitly
accounted for.

Reprojection

The functions π,π−1 encode the intrinsics of our camera model, unless we want to include extra
intrinsic models like lens distortion and the vignetting effect[51]. In order to reproject an image
location from one image to another, we need to also consider extrinsic camera parameters, i.e. the
relative pose T ∈ SE(3) betweeen the two cameras. For a pose representation θ, we parametrize T by
T (θ). We can then define the warp function w for an image location x = [x1, x2]T :

y =

[
y1

y2

]
= w(x,θ, d) = π(T (θ)π−1(x)) (3.4.10)

For a shorter expression, we use the notation w(x,θ) = w(x,θ, d), where we assume that the image
depth d is implicitly given along with x.

For ease of notation, we assume that all three dimensional vectors that are transformed by a transforma-
tion matrix are implicitly converted to their homogenous representation according to equation (3.2.3).
Conversely, we also assume that the homogenous vector output from the transformation T in equa-
tion (3.4.10) is implicitly dehomogenized according to equation (3.2.5).

3.5 Lucas Kanade

The Lucas Kanade problem[3] is to minimize the photometric error E, which is the sum of squared
differences between a template T and an image I transformated by a warp, with respect to the param-
eterization of the warp. This is captured in equation (3.5.1), where T and I are the image functions
respectively for the template and the current image, w is the warp function from equation (3.4.10), θ
is the chosen parameterization of the warp, and {x} denotes selected image locations in T .

θ = arg min
θ

E(θ) = arg min
θ

∑
x

[
I(w(x,θ))− T (x)

]2
(3.5.1)

This is a non-linear optimization problem, as a result of the image functions I and T being as good
as guaranteed to be non-linear when representing photos. More specifically, it is a non-linear least
squares problem, of which there are multiple optimization strategies. We consider the Gauss-Newton
algorithm.

3.5.1 Gauss Newton

One of the more popular strategies for solving the non-linear least squares problem is called Gauss-
Newton. In Gauss-Newton, the residuals of the photometric error are linearized at each iteration of
the algorithm, using a first order taylor expansion as shown in equation (3.5.2):

E(θ,∆θ) =
∑
x

[
I(w(x,θ + ∆θ))− T (x)

]2

=
∑
x

[
I(w(x,θ)) +∇I ∂w

∂θ
∆θ − T (x)

]2
(3.5.2)

30

Where we have written
∂w(x,θ)

∂θ
=
∂w

∂θ
for ease of notation.

We differentiate the linearized error function with respect to the parameter update ∆θ:

∂E

∂∆θ
= 2

∑
x

[
∇I ∂w

∂θ

]T ∑
x

[
I(w(x,θ)) +∇I ∂w

∂θ
∆θ − T (x)

]
(3.5.3)

Then we set this expression to zero and solve for ∆θ in equation (3.5.4), effectively finding the
stationary point for the linear-residual photomeric error function at the current iteration.

∂E

∂∆θ
= 0

⇒
∑
x

[
∇I ∂w

∂θ

]T [
∇I ∂w

∂θ

]
∆θ =

∑
x

[
∇I ∂w

∂θ

]T ∑
x

[
I(w(x,θ))− T (x)

]
(3.5.4)

This stationary point ∆θ represents the parameter update that we expect to minimize the error
function E(θ+ ∆θ) the most, given the linearization around θ. Thus θ should be updated according
to equation (3.5.5) before moving to the next iteration.

θ ← θ + ∆θ (3.5.5)

The equations 3.5.4 and 3.5.5 are the normal equations for an iteration of the standard Gauss-Newton
based Lucas Kanade algorithm. The algorithm should keep iterating until the update ∆θ is sufficiently
low, giving a final solution w(θ) for the warp between the current image I and the template T .

We can write equation (3.5.4) as:

JTJ∆θ = −JT r(θ) (3.5.6)

with the total jacobian J and the total residual function r given by:

J =
∑
x

[
∇I ∂w

∂θ

]
, (3.5.7)

r(θ) =
∑
x

[
I(w(x,θ))− T (x)

]
(3.5.8)

The solution is given by:

∆θ = −(JTJ)−1JT r(θ) (3.5.9)

In order to solve equation (3.5.9), J and JTJ need to be evaluated at each iteration because they

depend on ∇I(w(x,θ)) and
∂w

∂θ
, which both depend on the parameterization θ, which changes on

each iteration. We can reduce the computational burden of the algorithm significantly if we are able
to relax this requirement and only evaluate the SSD of the residuals, r(θ) at each iteration before
solving equation (3.5.9). Fortunately this is possible through the use of the inverse compositional
Gauss-Newton algorithm as detailed in section 3.5.2 and [3]. From now on, we refer to the algorithm
described above as the forward additive Gauss-Newton, to differentate it from the inverse compositional
Gauss-Newton.

31

3.5.2 Inverse Compositional Gauss-Newton

The inverse compositional Gauss-Newton algorithm switches the roles of the template and image
around so that the pertubation ∆θ is applied to T . It also formulates the update in terms of compo-
sition of warps instead of addition of warp parameters.

The inverse compositional photometric error is given by:

E(θ,∆θ) =
∑
x

[
T (w(x,∆θ))− I(w(x,θ))

]2
(3.5.10)

As in section 3.5.1, we linearize the residuals along the pertubation ∆θ from the current warp param-
eter θ:

E(θ,∆θ) =
∑
x

[
T (x) +∇T ∂w

∂θ

∣∣∣∣
θ=0

∆θ − I(w(x,θ))
]2

(3.5.11)

We differentiate equation (3.5.11) and set it to zero, ending up with equation (3.5.12):

JTJ∆θ = −JT r(θ) (3.5.12)

with

J =
∑
x

[
∇T ∂w

∂θ

∣∣∣∣
θ=0

]
, (3.5.13)

r(θ) =
∑
x

[
T (x)− I(w(x,θ))

]
(3.5.14)

The inverse compositional Gauss-Newton is completed by the inverse compositional update given by
equation (3.5.15):

w(x,θ))← w(x,θ) ◦ w(x,∆θ)−1 (3.5.15)

Where the ◦ operator denotes composition:

w(x,θ)) ◦ w(x,∆θ)−1 ≡ w(w(x,∆θ)−1,θ)) (3.5.16)

We see from equation (3.5.12) and (3.5.13) that there are two changes from equation (3.5.6) and (3.5.7).

The first change is that
∂w(x,θ)

∂θ
has been switched to

∂w(x,θ)

∂θ

∣∣∣∣
θ=0

in the expression for the Jacobian

J . The second change is that we have switched the role of T and I so that we evaluate ∇T (x) instead
of ∇I(x,θ). This means that J and JTJ do not depend on θ, and we can precompute them before
the first iteration of Gauss-Newton, based on the template T .

32

3.5.3 Choice of Warp Parameter

The warp w(x,θ) in Lucas-Kanade (3.5.1) can be parametrized in different ways. The choice of
parametrization determines what kind of information you end up with after solving the problem. The
canonical Lucas-Kanade problem simply puts:

w(x,θ) = x+ θ, x,θ ∈ R2 (3.5.17)

Here θ represents the offset in pixels between the two image regions, which is referred to as optical
flow.

Direct VO methods rely on estimating the 6DoF pose between the images, so they parametrize the
warp using some kind of pose representation. For instance we can use the se(3) pose representation as
per section 3.3.9:

w(x,θ) = π(exp(θ)π−1(x)), x ∈ R2, θ ∈ se(3) (3.5.18)

Where π is the projection function as defined in equation (3.4.7), π−1 is the deprojection function,
and where x represents the image coordinates of an image location. Here θ takes the form of a six
dimensional vector which parametrizes the se(3) space like ξ in equation (3.3.44).

3.5.4 Sampling of Warped Image

Aside from the inverse compositional Gauss-Newton algorithm (3.5.2), additional computational ef-
ficiency can be gained by ignoring the warping of the image I when calculating the residual r in
equation (3.5.12). Instead of warping the entire image around the pixels x, we assume small motion
θ and use the photo consistency assumption. This allows us to evaluate the non-template part of the
residuals by simply sampling the original image I at the image location specified by w(x,θ).

Bi-linear sampling is commonly used for its simplicity. For GPGPU-based Lucas-Kanade implemen-
tations there are fast, built-in mechanisms for sampling textures on GPUs.

3.5.5 Outlier Suppression

The least squares based optimization algorithms presented so far have an important problem when
used on real data. Abnormally large residual values heavily influence the solution because of the
quadratic nature of the residuals in Lucas-Kanade (3.5.1). These kind of residuals are outliers caused
by observations that can’t be accounted for in our simplified model, like occlusion, moving objects or
unaccounted image distortion.

In general, there are two strategies for dealing with outliers. The first is to model the effects causing the
outliers and estimate their parameters so they can be removed from the problem. For example, in the
case of underwater odometry, it is possible to detect and remove marine snow from the image[17][29].

The second possibility is to incorporate a mathematical kind of outlier suppression directly into the
error function. In order to reduce the contribution of outliers, the quadratic term from equation (3.5.1)
is replaced with a robust cost expression given by multiplication with the weighting function ω:

θ = arg min
θ

E(θ) = arg min
θ

∑
x

ω(rx(θ))rx(θ)2 (3.5.19)

Where we have substituted rx(θ) = I(ω(x, θ))− T (x). The minimizer of the error is given by setting
the derivative of equation (3.5.19) to zero:

33

∂E(θ)

∂θ
=
∑
x

∂rx(θ)

∂θ
ω(rx(θ))rx(θ) = 0 (3.5.20)

This expression is similar to the minimizer of the normal non-weighted error function:

∂
∑
x rx(θ)2

∂θ
=
∑
x

∂rx(θ)

∂θ
rx(θ) = 0 (3.5.21)

The only difference between equation (3.5.20) and equation (3.5.21) is the extra factor ω(rx(θ)). This
means that if we choose ω(rx(θ)) so that it is convex around the zero point at rx(θ) = 0, then the
minimizer for the weighted error function will be equivalent to the minimizer for the non-weighted
error function.

For the iterative formulation, we treat the weights as constant scaling factors for the residuals in our
Gauss-Newton formulation. We denote the constant weight factors as ωx = ω(rx(θ)). The weights ωx
need to be recalculated after each iteration. We can incorporate the weights through a diagonal matrix
W with the weights ωx along the diagonal. Since the weight matrix W is treated as constant for a
given iteration, it is straight forward to derive the normal equation corresponding to equation (3.5.6):

JTWJ∆θ = −JTWr(θ) (3.5.22)

Multiple weight functions are discussed in the literature. We consider the Huber loss function, which
suppresses the contributions of outliers by making the error function linear in residuals that are larger
than a limit h. The Huber weights are given by ωh(x):

ωh(rx) =

1

2
if |rx| ≤ h

h

|rx|
− h2

2r2
x

if |rx| > h
(3.5.23)

The complete Huber loss function ρh is the product of the weights and the squared residuals r2
x:

ρh(rx) = ωh(rx)r2
x =

1

2
r2
x if |rx| ≤ h

h|rx| −
1

2
h2 if |rx| > h

(3.5.24)

The huber loss function is both continuous and derivative, as can be seen in figure 3.7. It is convex
around rx = 0, so it doesn’t introduce change the local minimum of the error function.

In order to choose a good value for h, we need to have a good scale estimate of the inlier residuals. Of
course, we don’t know which residuals are inliers or outliers, so we need to filter them.

We can calculate a robust estimate of the standard deviation of inlier residuals by using the MAD
scale estimator:

σMAD({rx}) = k ·median({rx}), k =
1

Q(3/4)
≈ 1.4826 (3.5.25)

Where Q denotes the inverse cumulative function for normal distributions.

We now choose h = 1.345σMAD({rx}), where 1.345 is a tuning constant tuned to produce 95% efficiency
when there are no outliers and still offer protection when there are outliers[22].

34

Figure 3.7: Illustration of the Huber loss of the residuals. The blue graph represents the quadratic
residual r2

x used in ordinary least squares, while the green graph represents the Huber loss ρh(rx).

3.5.6 Bayesian derivation of Lucas Kanade

The non-linear Lucas-Kanade problem was derived from photometric error minimization initially in
section 3.5. Here, we derive it from a Bayesian perspective instead. This will help us to reason about
how we can incorporate various prior information into our model.

We first formulate the problem as a Maximum a Posteriori (MAP) problem, where we maximize the

posteriori probability of the parameters, θ given the observations f̂ = [f̂1, ...f̂n]:

θMAP = arg max
θ

p(θ|f̂) (3.5.26)

We apply Bayes rule to equation (3.5.26) and obtain:

θMAP = arg max
θ

p(f̂ |θ)p(θ)

p(f̂)
(3.5.27)

Since p(f̂) does no depend on θ, we can drop it from the problem. Assuming no prior information
about the parameters θ, we set p(θ) to the uniform distribution:

θMAP = arg max
θ

p(f̂ |θ) (3.5.28)

For now we assume all observations f̂i are independent with identical distribution, which means we
can rewrite their total probability distribution f̂ as the product of each observation:

35

θMAP = arg max
θ

n∏
i

p(f̂i|θ) (3.5.29)

Then we switch to minimizing the negative log-likelihood, reducing multiplicative terms to sums and
potential terms to multiplicative terms:

θMAP = arg min
θ

n∑
i

− log(p(f̂i|θ)) (3.5.30)

We now assume that p(f̂i) has a normal distribution with mean equal to f(xi,θ) and standard deviation

σ. The function f(xi,θ) reflects the fact that an obervation f̂i depends on what we observe, which in

the case of visual odometry is typically landmarks, represented by xi. However, f̂i also depends on the
parameters θ that we are trying to estimate. If not, f̂i wouldn’t tell us anything about the parameters,
and the observations would be a waste.

The normal distribution assumption gives a new expression for our problem:

θMAP = arg min
θ

n∑
i

1

2σ2

(
f̂i − f(xi,θ)

)2

= arg min
θ

n∑
i

1

2σ2

(
ri(θ)

)2

(3.5.31)

The variance factor
1

2σ2
doesn’t affect the solution, so it can be dropped. By comparing the resulting

problem to equation (3.5.1), we can see that it is equivalent to the Lucas Kanade problem derived
from photometric error minimization, which means that our Bayesian derivation is complete.

3.6 Motion Prior

The trajectory of the camera pose parameter θ has restrictions related to the physics of the camera
or the camera platform. Information about these physics can therefore be used to gain information
about the solution of Lucas-Kanade, leading to a more efficient Gauss Newton implementation. We
refer to this information as a ”motion prior”.

Going back to equation (3.5.27) we keep the MAP problem structure by assiming a non-uniform
distribution p(θ), indicating that we have some information about what we expect the solution θ to
look like, ie. the motion prior.

θMAP = arg max
θ

p(f̂ |θ)p(θ) (3.6.1)

Equation (3.5.29) now becomes:

θMAP = arg max
θ

(n∏
i

p(f̂i|θ)
)
p(θ) (3.6.2)

And equation (3.5.30) becomes:

θMAP = arg min
θ

(n∑
i

−log(p(f̂i|θ))
)
− log(p(θ)) (3.6.3)

36

We assume that p(θ) is distributed according to the normal distribution, with our motion prior encoded
into the mean θmp and the covariance matrix Σ0:

θMAP = arg min
θ

(n∑
i

1

2σ2

(
ri(θ)

)2)
+

1

2
(θ − θmp)T Σ−1

0 (θ − θmp) (3.6.4)

Finally, we write equation (3.6.4) more concisely and subsitute the relative covariance Σ =
1

σ2
Σ0:

θMAP = arg min
θ

(n∑
i

(
ri(θ)

)2)
+ (θ − θmp)T Σ−1(θ − θmp) (3.6.5)

The choice of Σ depends on the nature of the motion prior. However, regardless of the choice it is
important to make Σ−1 positive definite, so that xT Σ−1x > 0 for all x 6= 0. This guarantees that the
motion prior term in the cost function given by equation (3.6.5) is positive, and adding terms that are
not positive to a non-linear cost function can reduce the convexity of the problem.

3.6.1 Motion Prior in Forward Additive Gauss-Newton

We derive the iterative solution to the MAP problem (3.6.5) using the forward additive Gauss-Newton
method. In order to formulate the iterative Gauss-Newton problem, we substitute θ = θk +∆θ, which
is derived from the forward additive normal equation (3.5.5):

∆θ = arg min
∆θ

(n∑
i

(
ri(θk + ∆θ)

)2)
+ (θk + ∆θ − θmp)T Σ−1(θk + ∆θ − θmp) (3.6.6)

= arg min
∆θ

(n∑
i

(
ri(θk + ∆θ)

)2)
+ (∆θ − (θmp − θk))T Σ−1(∆θ − (θmp − θk)) (3.6.7)

To find the minimizer of the problem, we first linearize the residuals:

∆θ = arg min
∆θ

(n∑
i

(
ri(θk) + Ji(θk)∆θ

)2)
+ (∆θ − (θmp − θk))T Σ−1(∆θ − (θmp − θk)) (3.6.8)

Where Ji is the jacobian of the residual:

Ji(θk) =
∂ri
∂θ

∣∣∣∣
θ=θk

(3.6.9)

To obtain the first normal equation for the Gauss Newton algorithm, we differentiate equation (3.6.8),
set it to zero and rearrange:

2
(n∑

i

Ji(θk)T
)(n∑

i

(
ri(θk) + Ji(θk)∆θ

))
+ 2Σ−1(∆θ − (θmp − θk)) = 0 (3.6.10)

⇒
(
J(θk)TJ(θk) + Σ−1

)
∆θ = −J(θk)Tr(θk) + Σ−1(θmp − θk) (3.6.11)

37

Where J and r are defined according to:

J =

n∑
i

Ji, r =

n∑
i

ri (3.6.12)

In the first normal equation (3.6.11), we have now shown how to include a motion prior into the forward
additive Gauss-Newton algorithm.

The second normal equation is the forward additive update:

θk ← θk + ∆θ (3.6.13)

3.6.2 Motion Prior In Inverse Compositional Gauss-Newton

When deriving the iterative, forward additive Gauss-Newton algorithm in section 3.6.1, we substituted
the forward additive update θ = θk + ∆θ directly into equation (3.6.5). It is not as straight forward
to derive the inverse compositional algorithm.

The inverse compositional update equation is given by:

w(x,θ)← w(x,θ) ◦ w(x,∆θ)−1 (3.6.14)

However, in contrast to the forward additive algorithm, the inverse compositional error function is not
obtained by simply inserting the update equation into the residual expression. Instead it splits up the
motion update and the current motion estimate and applies them respectively to the template and the
current image term in the residuals as per equation (3.5.10).

This is readily replicated for the photometric error part of equation (3.6.5). However, the motion
prior term can’t be formulated in the same way. We need to make a substitution based on the inverse
compositional update in equation (3.6.14), as we did in the forward additive derivation. The candidate
substitution is given by:

θ = wθ(x, w(x,θk) ◦ w(x,∆θ)−1) (3.6.15)

Where wθ denotes the inverse of w in the θ field, so that we have:

wθ(x, w(x,θ)) = θ (3.6.16)

The expression (3.6.15) is difficult to handle, so we approximate it using an expression which is similar
to the one in equation (3.6.6):

wθ(x, w(x,θk) ◦ w−1(x,∆θ)) ≈ θk −∆θ (3.6.17)

We substitute into the motion prior term in equation (3.6.5):

(θk −∆θ − θmp)T Σ−1(θk −∆θ − θmp) (3.6.18)

= (∆θ − (θk − θmp))T Σ−1(∆θ − (θk − θmp)) (3.6.19)

38

The stationary point of the inverse compositional error function with the additional motion prior term
is given by:

(
J(θk)TJ(θk) + Σ−1

)
∆θ = −J(θk)Tr(θk) + Σ−1(θk − θmp) (3.6.20)

Which has identical motion prior terms as in equation (3.6.11), except that θmp and θk have switched
place.

Inverse Compositional Motion Prior Error

The error introduced by the approximation in equation (3.6.17) makes it so that the incorporation
of the motion prior in the inverse compositional Gauss-Newton algorithm doesn’t exactly penalize
divergence of the motion estimate from the motion prior, but rather of an approximation of what we
expect the motion estimate to be at the end of each iteration.

The nature of the error depends on the warp parametrization. As an example, we investigate the error
using the lie warp parametrization:

w(x,θ) = π(exp(θ)π−1(x)), x ∈ R2, θ ∈ se(3) (3.6.21)

Using this warp parametrization, the approximation (3.6.17) simplifies to:

log(exp(θ∧k) exp(−∆θ∧)) ≈ θ∧k −∆θ∧ (3.6.22)

Where the log function refers to the map from SE(3) to se(3) which was derived in section 3.3.10.

This approximation is only fulfilled if the matrices θ∧k and −∆θ∧ commute. In general, equa-
tion (3.6.22) approximates the Baker–Campbell–Hausdorff formula:

X,Y ∈ Rnxn ⇒

log(exp(X) exp(Y)) = X + Y +
1

2

[
X,Y

]
+

1

12

[
X,
[
X,Y

]]
− 1

12

[
Y,
[
X,Y

]]
+ ... (3.6.23)

The error between the approximation (3.6.22), which assumes log(exp(X) exp(Y)) = X + Y , and the
Baker-Campbell-Hausdorff formula consists of the increasing orders of commutators of X and Y :

e(X,Y) =
1

2

[
X,Y

]
+

1

12

[
X,
[
X,Y

]]
− 1

12

[
Y,
[
X,Y

]]
+ ... (3.6.24)

We should get an idea of how large this error can be. We define the matrix norm || · ||:

∣∣∣∣X∣∣∣∣ = max
||v||6=0

∣∣∣∣Xv∣∣∣∣∣∣∣∣v∣∣∣∣ (3.6.25)

Then the commutator norm is limited by:

∣∣∣∣[X,Y]∣∣∣∣ =
∣∣∣∣XY − Y X∣∣∣∣ ≤ 2

∣∣∣∣X∣∣∣∣ · ∣∣∣∣Y ∣∣∣∣ (3.6.26)

Inserting X = θ∧k and Y = −∆θ∧ into the error function (3.6.24), we get:

39

e(θ∧k ,−∆θ∧) =
1

2

[
θ∧k ,−∆θ∧

]
+

1

12

[
θ∧k ,

[
θ∧k ,−∆θ∧

]]
− 1

12

[
−∆θ∧,

[
θ∧k ,−∆θ∧

]]
+ ... (3.6.27)

Taking the norm of both sides and applying equation (3.6.26), we get:

e(θ∧k ,−∆θ∧) ≤
∣∣∣∣θ∧k ∣∣∣∣ · ∣∣∣∣∆θ∧∣∣∣∣+

1

3

∣∣∣∣θ∧k ∣∣∣∣2 · ∣∣∣∣∆θ∧∣∣∣∣− 1

3

∣∣∣∣θ∧k ∣∣∣∣ · ∣∣∣∣∆θ∧∣∣∣∣2 + ... (3.6.28)

=
∣∣∣∣∆θ∧∣∣∣∣ · ∣∣∣∣θ∧k ∣∣∣∣ · (1 +

1

3

∣∣∣∣θ∧k ∣∣∣∣− 1

3

∣∣∣∣∆θ∧∣∣∣∣+ ...
)

(3.6.29)

This expression gives us an idea of the size of the error. Especially, for small steps ∆θ∧ the error will
be negligible, e(θ∧k ,−∆θ∧)�

∣∣∣∣θ∧k −∆θ∧
∣∣∣∣.

3.6.3 Choice of Motion Prior

No Motion

A simple choice of motion prior is to set θmp ≡ 0. This reflects the insight that the velocity of a camera
is constrained, and we should avoid considering solutions to the problem that involves unrealistically
large changes in the camera pose.

The matrix Σ−1 in equation (3.6.11) can in this case be chosen as a scalar or diagonal matrix. The en-
tries of Σ−1 should be tuned so that the motion prior has a reasonable impact on the total photometric
error.

No Acceleration / Inertia Based

Alternatively, we can use the pose between the last image pair as the motion prior, θmp ≡ θk−1 (given
that the parameters we are currently trying to find is the pose θk between the current image pair).
This corresponds to a inertia based, constant velocity model, where we only want to consider solutons
that don’t imply an unrealistically large change in the translational and rotational velocities.

Again, Σ−1 can be chosen as a diagonal matrix, where the entries represent the inertia of each motion
parameter. If an actual inertial model is available for the camera or whatever inertial system the
camera is mounted on, then this can be used instead. However most implementations prefer the
simpler diagonal matrix or even a scalar matrix, with tunable entries.

Sensor Based

A third choice of motion prior is to use measurements from sensors like gyro sensors, accelerometers
and water pressure / depth sensors. A challenge with this choice is that we need a precise inter-sensor
calibration in terms of time synchronization and the relative pose between the sensors and the camera.
Given that these requirements are fulfilled, we discuss the incorporation of sensor data from different
sensors into our motion prior model.

In order to discuss sensor based motion priors we need to decide on the motion parametrization. We
choose the se(3) motion parametrization from equation (3.5.18).

40

Gyro Sensor

Gyro sensors measure angular rates in three dimensions (ϕx, ϕy, ϕz). These rates can be composed
and accumulated over the time period (tk − tk−1) between two frame captures in order to obtain a
rotation vector representing the rotation of the camera platform between the two frames. Conversion
between the axis of the gyro sensor and the camera is needed.

The rotation vector with accumulated gyro measurements is equivalent to a so(3) rotation, so it serves
as a motion prior to the rotational part of a se(3) pose representation. We denote the gyro based
motion prior as ωmp:

ωmp = Rϕ
cam

∫ tk

tk−1

ϕx(t)
ϕy(t)
ϕz(t)

 dt (3.6.30)

Where Rϕ
cam is the rotation between the gyro sensors axis and the camera axis. tk is the capture time of

the current frame and tk−1 is the capture time of the previous frame, given that we are trying to solve
the image alignment problem for the current and the previous frame. ϕx(t) is the gyro measurement
of the rotational drift around the x-axis of the gyro sensor, etc.

In order to discuss the covariance matrix Σ for the sensor based motion prior, we split it into two three
by three covariance matrices:

Σ =

[
Σu 03×3

03×3 Σω

]
(3.6.31)

Here Σu is the (auto-)covariance matrix of the translational part of the motion prior and Σω is the
(auto-)covariance of the rotational part of the motion prior. We have assumed the cross-covariance
matrices between the rotational and translational estimates to be zero, which we will see is an approx-
imation.

Since the correspondence between the integrated gyro measurements and the rotation representation
of the motion prior is the identity map, this means that Σω simply can be chosen as a diagonal or
scalar matrix. If we want to create the motion prior only based on gyro measurements, we can ignore
the translational part of the motion prior by choosing Σu to be a scalar matrix with large uncertainty.

Pressure / Depth Sensor

Pressure sensors measure the water depth of the camera platform. For a given image alignment
problem with frames taken at tk and tk−1, we can use the difference in depth estimates dp in order
to get a motion prior for the translational part of the se(3) pose between the frames. However, the
incorporation is not as direct as it was for the gyro sensor.

First, we need to rotate the depth vector dp = [0, 0, dp] along the rotation RNED
cam between the world

coordinate system (North East Down) and the camera axis. Assuming small acceleration, we can use
an accelerometer to estimate the direction of gravity, and then use this to resolve the two degrees of
freedom that are needed in order to convert the depth vector into the coordinate system of the camera.
The third degree of freedom, given by rotation in the North-East plane is not needed since the depth
vector goes along the up-down axis in the world coordinate system. We call the resulting rotation
estimate Rworld

cam .

After rotating dp by Rworld
cam , we multiply it with the inverse of the left jacobian V of SO(3) in order

to obtain the translational part of the se(3) motion prior as per section 3.3.10. The left jacobian V of
SO(3) is given in equation (3.3.50), and its inverse V −1 is given in equation (3.3.55).

41

We need an so(3) estimate for the rotation between the frames in order to calculate V . This can be ex-
tracted from the rotational part ωk−1 of the previous pose estimate θk−1, or in case gyro measurements
are available, we can use the gyro based rotational motion prior ωmp from equation (3.6.30).

We denote the translational part of the depth based motion prior as ump:

ump = V −1Rworld
cam dp = V −1Rworld

cam

 0
0
dp

 , (3.6.32)

V −1 = I − 1

2
[ωmp]× +

1

ω2
mp

(
1− ωmp

2

sinωmp

1− cosωmp

)
[ωmp]2×, ωmp =

√
ωT

mpωmp (3.6.33)

Where ωmp is the motion prior of the rotational part of the pose, obtained from accumulated gyro
measurements or from the previous rotation estimate ωk−1.

To represent the fact that we know only the depth dp in the translational vector [0, 0, dp], we use the
uncertainty matrix Σp encoding large uncertainties along the translational axis that are not estimated
and a relatively low uncertainty in the water depth, or up down, direction:

Σp =

1000 0 0
0 1000 0
0 0 .02

 (3.6.34)

The entries should be tuned so that the confidence in the depth measurements is reasonably represented
when the motion prior is incorporated into the photometric error cost function.

In order to obtain Σu, we need to transform the uncertainty matrix Σp using the derivative of the map
from equation (3.6.32):

Σu =
(∂ump

∂dp

)
Σp

(∂ump

∂dp

)T
(3.6.35)

=
(
V −1Rworld

cam

)
Σp

(
V −1Rworld

cam

)T
(3.6.36)

Note that Σu is invertible because all of its matrix factors are invertible. Apart from V −1, Rworld
cam

is invertible since it is a rotation matrix, and Σp is invertible since it is a diagonal matrix with non-
zero trace. Together with a trivially invertible scalar matrix Σω, this means we can insert the inverted
complete motion prior covariance matrix Σ−1 from equation (3.6.31) into the normal equation (3.6.11),
together with the motion prior θmp = [ump,ωmp]T .

We can also show that Σu is positive definite, making Σ−1 also positive definite. The important
observations to make is that (V −1)T (V −1) is positive definite, according to equation (3.3.60), and
that (Rworld

cam)(Rworld
cam)T = I is also positive definite. Together with the diagonal and positive definite

Σp, this is enough to show that Σu is positive definite. The positive definiteness of Σ−1 is important
because it guarantees that the motion prior term in the cost function given by equation (3.6.5) is
positive, and adding terms that are not positive to a non-linear cost function can reduce the convexity
of the problem.

Since we used the rotational motion prior in order to calculate V in equation (3.6.33), the assumption
of zero cross-covariance which was made in equation (3.6.31) is merely an approximation. If the uncer-
tainty in the rotational motion prior is low enough, we can still discount the cross-covariances. If not,
then the full cross-covariance matrices must be derived and calculated analogous to equation (3.6.35).

42

3.6.4 Initialization of Gauss-Newton

At the first iteration of Gauss-Newton we have the choice of what the initial value of the pose estimate
should be. This choice can be made using the same motion information which is encoded in the motion
prior discussed in the previous sections.

A good choice will initialize the estimate close to the final solution, which is the relative pose between
the two frames considered in the image alignment problem. This will increase the chances that the
algorithm starts in a convex area around the solution, which again increases the chances of converging
to the correct solution. A good initial estimate will also lead to faster convergence.

The choice of initialization point usually comes down to the same choice as that of motion prior (3.6.3).
Using the notation from equation (3.6.11), we can either put θk ≡ 0, starting at zero motion. Or we
can put θk ≡ θk−1, starting at the pose between the previous two frames. Alternatively, we can use
sensor-data like gyro, accelerometer and water pressure measurements in order to find out what we
expect the solution to be.

3.7 Bitplanes

Bitplanes[1] are a type of geometrically differentiable feature descriptors. They can be used in Lucas-
Kanade in order to gain the same kind of robustness to illumination changes, inaccuracies in camera
parameters etc. that indirect VO methods have.

3.7.1 Bitplane Definition

The bitplane descriptor is the canonical LBP (Local Binary Patterns) descriptor[41]. For a given pixel,
its bitplane descriptor is found by comparing its intensity with those of the eight neighbouring pixels.
The descriptor is then given by an 8-bit number θ where the individual bits are mapped to the eight
intensity checks / inequalities for each of the neighbours:

φ(I,x) =

8∑
i=1

2i−1
[
I(x+ ∆xi) < I(x)

]
(3.7.1)

Where {∆x)i} is the set of the eight relative coordinate displacements between a pixel and its im-
mediate neighbours. The exact order of the displacements {∆x)i}, ie. if we go cock-wise or counter
clock-wise through the neighbours etc, is inconsequential and can be chosen arbitrarily[1]. The choice
of binary comparison operator ({>,≥, <,≤} is also arbitrary.

The C/C++ code for computing the bitplane descriptor is given in listing (3.1).

Listing 3.1: Bitplane Descriptor Implementation

1 phi_I[x] =

2 ((I[x - stride - 1] < I[x] ? 1 : 0) << 0) |

3 ((I[x - stride] < I[x] ? 1 : 0) << 1) |

4 ((I[x - stride + 1] < I[x] ? 1 : 0) << 2) |

5 ((I[x - 1] < I[x] ? 1 : 0) << 3) |

6 ((I[x + 1] < I[x] ? 1 : 0) << 4) |

7 ((I[x + stride - 1] < I[x] ? 1 : 0) << 5) |

8 ((I[x + stride] < I[x] ? 1 : 0) << 6) |

9 ((I[x + stride + 1] < I[x] ? 1 : 0) << 7) ;

A bitplane representation is obtained by evaluating the bitplane descriptor for each pixel in an image
and then store the descriptors in an array with similar placement to the original pixels. If the intensities

43

(a) Bitplane 0 (b) Bitplane 1 (c) Bitplane 2

(d) Bitplane 3 (e) Raw Image (f) Bitplane 4

(g) Bitplane 5 (h) Bitplane 6 (i) Bitplane 7

Figure 3.8: Visualization of the bitplanes for an image.
The number of each bitplane corresponds to the bit number in phi I from listing 3.1.

of the original image are represented with 8-bit integers, the bitplane representation will take the same
amount of memory as the image, and the descriptor (3.1) will be a direct map between the memory
of the image and its resulting bitmap representation. In fact the listing (3.1) is in practice an image
transform referred to as the census transform, and it can be implemented efficiently using parallell
computation (3.8.1).

The bitplane representation also supports more complicated descriptors with longer words. This may
improve the robustness of the image alignment further, at the cost of a less time and memory efficient
implementation.

The bitplane representation can be thought of as a composition of eight different images, called bit-
planes, with only one bit per pixel, corresponding to one of the intensity inequalities. In figure 3.8 we
have calculated the bitplanes for an image. The bitplanes in figure 3.8 are arranged so that the pixel
displacement of each bitplane corresponds to its placement in relation to the raw image. Note how
each bitplane is basically an image derivative in the direction that goes away from the center of the
raw image and through the center of the bitplane.

3.7.2 Lucas-Kanade with Bitplanes

Instead of operating on direct image intensities as in the original Lucas-Kanade based image alignment
schemes presented in section 3.5, we can align bitplane representations of the original images:

θ = arg min
θ

∑
x

[
φ(I, w(x,θ))− φ(T,x)

]2
(3.7.2)

44

However using the normal subtraction operator (−) in equation (3.7.2) does not make sense. The most
significant bits of the descriptors φ(I, w(x,θ)) and φ(T,x) will contribute exponentially more to the
difference than the least significant bits, which is unreasonable since the order of the bits is arbitrary.

Instead we consider the Hamming distance operator δhamming:

δhamming(φ1, φ2) =

8∑
i=1

[φ1 � 2i−1

2i−1
⊕ φ2 � 2i−1

2i−1

]
(3.7.3)

Where � denotes the bitwise AND operator and ⊕ denotes bitwise XOR.

The term
φ1 � 2i−1

2i−1
is the ith bit in φ1, and we denote it as φ1i to get a simpler exression:

δhamming(φ1, φ2) =

8∑
i=1

[
φ1i ⊕ φ2i

]
(3.7.4)

We can also write the Hamming distance as a sum of l2-norms:

δhamming(φ1, φ2) =

8∑
i=1

√
(φ1i − φ2i)2 =

8∑
i=1

∣∣∣∣∣∣∣∣φ1i − φ2i

∣∣∣∣∣∣∣∣
2

(3.7.5)

Since the terms (φ1i − φ2i) are all either 1, 0 or −1, we can drop the square-root:

δhamming(φ1, φ2) =

8∑
i=1

(φ1i − φ2i)
2 (3.7.6)

If we now take the terms (φ1i − φ2i) to be the residuals in Lucas-Kanade, we can rewrite the image
alignment problem in terms of the hamming distance. In equation (3.7.8) we denote the ith bit of
φ(I,x) as φi(I,x):

θ = arg min
θ

∑
x

[
δhamming

(
φ(I, w(x,θ)), φ(T,x)

)]
(3.7.7)

= arg min
θ

∑
x

8∑
i=1

[
φi(I, w(x,θ))− φi(T,x)

]2
(3.7.8)

This problem can be solved using multi-channel Gauss-Newton, where the eight bits of the bitplane
descriptors are the eight channels. The solution is the usual Gauss-Newton update:

∆θ = −(JTJ)−1JT r(θ), (3.7.9)

with

J =
∑
x

8∑
i=1

[
∇wφi(I, w(x,θ))

∂w(x,θ)

∂θ

]
, (3.7.10)

r(θ) =
∑
x

8∑
i=1

[
φi(I, w(x,θ))− φi(T,x)

]
(3.7.11)

45

And the forward additional update:

θ ← θ + ∆θ (3.7.12)

Extension to inverse compositional Gauss-Newton is analogous to section 3.5.2.

3.8 Parallell Computation

Visual odometry techniques are by nature limited in performance by the amount of data they are able
to process. In recent years it has not been possible to simply rely on the ever increasing single threaded
cpu performance to handle increasing amounts of data. Instead more and more VO methods rely on
parallell, or SIMD (Single Instruction, Multiple Data) computation.

3.8.1 Vectorization

Vectorization is a type of SIMD computing which allows computer programs to perform common in-
structions, like for instance arithmetic and logical operations, on multiple contiguous data elements
simultaneously. It is implemented through special instruction sets, some of them with accompanying
compiler intrinsics so that developers can make explicit use of the instructions without writing assem-
bly code. When the relevant option flags are given to the compiler it may also perform automatic
vectorization, so that SIMD instructions are inserted in suitable places.

Examples of instruction sets for vectorization are SSE2 for x86 processors and ARM NEON for ARM.
These two instruction sets in particular have a large amount of similar operations to the point where
you can define a partial one-to-one dictionary and translate betweeen the compiler intrinsics, allowing
developers to write somewhat portable, explicit vectorized code.

3.8.2 GPGPU

GPGPU (General Purpose Graphics Processing Unit) is the use of a GPU for tasks that are tradi-
tionally handled by the CPU. GPUs are normally used to handle graphics processing, like for instance
rendering and applying after effects on a scene in a computer game. However, their design makes them
useful for different problems, as long as they are efficiently formulated as a SIMD problem.

GPGPU can be implemented through the use of traditional graphics libraries like OpenGL or Vulkan.
However, there is software specifically meant for GPGPU which eases development and provides better
code optimization. Popular GPGPU software modules includes Cuda, which is very popular among
scientists for its performance and functionality but only works on NVIDIA GPUs, and OpenCL, which
works on GPUs from a wide range of different vendors and also targets other kinds of computing units,
like DSPs and FPGAs.

46

Chapter 4: Implementation

In this chapter we describe the proposed visual odometry approach. The goal of the algorithm is
to estimate in real time the 6DoF pose, or egomotion, of a camera in relation to the environment or
structure captured by the camera. Since the algorithm only relies on monocular vision, the translational
part of the resulting pose estimate is up to scale, meaning that we don’t estimate its scale.

We will describe the algorithm by going through the consequtive steps that newly captured images go
through before they cause an update to the estimated camera pose.

4.1 Multi-Scale Image Pyramid

On receiving a new image, a pyramid representation of the image is created. The first level of the
pyramid consists of the original image or a downscaled version of it. Then each of the subsequent
levels is a half-sampled version of the previous level.

The multi-scale pyramid is created in order to be used for feature detection and image alignment.

Bi-linear subsampling is chosen for its computational simplicity compared to more complex sampling
techniques like Gaussian blur. Computational efficiency is gained using explicit vectorization (3.8.1).

We choose a 4-level pyramid with level 1 having a resolution of 640x360 pixels and level 4 having a
resolution of 80x45 pixels.

We also compute a corresponding pyramid using the bitplane representation from section 3.7. For each
level of the bitplane pyramid we compute the bitplane representation of the corresponding level of the
raw image pyramid.

Figure 4.1: A five-level multi-scale image pyramid

47

4.2 Feature Detection

FAST as described in section 3.1 is used for feature detection because of its computational efficiency.
Additional efficiency is again gained with vectorization (3.8.1).

The features define image regions that are subsequently tracked and used for image alignment. Image
regions where we already have a depth estimate, or where we are currently trying to find the depth
are not considered in the search for FAST corners.

In order to choose the most useful among overlapping or close features, we use non-maximal suppression
based on a FAST score (3.1.2).

Features are detected at all levels of the image pyramid (4.1) so that we find corners with multiple
scales. Features detected at lower resolutions correspond to corners that appeas large in the image,
while features detected at higher resolutions correspond to small corners. Additional non-maximal
suppression is done across scales in fixed rectangular image areas, so that we end up with at most one
detected feature in each area.

In figure 4.2 we see multi-scale FAST features with non-maximal suppression. The test pixels corre-
spond to the circles in the figure, highlighting the fact that FAST corners detected at larger resolutions
correspond to larger image features. In figure 4.3 we have also drawn the areas used for non-maximal
suppression.

Figure 4.2: FAST corners detected at multiple levels with cross-scale non-maximum suppression. The
circles correspond to the circles made by the test pixels, with the center being the corner pixel. FAST
corners detected at lower resolution have larger circles because pixels correspond to larger geometries
at lower resolution. The different sized circles have different colors so they are easier to disinguish.

48

Figure 4.3: FAST corners detected at multiple levels. The white rectangles are the areas used for cross
scale non-maximal suppression. Note that there is at most one corner in each rectangle.

49

4.3 Image Depth Estimation

Image depth refers to the distance between the camera and the features observed in the images taken
by the camera. It is not to be confused with the water depth, which is the distance from the water
surface to the camera. Image depth estimation is done in the VO backend, and it will only be discussed
briefly because of this thesis focus on the VO frontend.

Depth estimation in monocular VO applications is often done using epipolar geometry. Given two
images and a relative pose between them as estimated by a VO frontend, ie. using image alignment
or similar, as well as an image region with matches in both images, we can estimate the depth of the
image region using epipolar geometry.

In order to match image patches we use Lucas Kanade based optical flow.

The depth estimates generated from the epipolar matches of the same image region in consecutive
frames are often noisy and they need to be filtered. For the approach described in this thesis we have
opted for the bayesian inference filter described in Vogiatzis and Hernandez[49]. When enough epipolar
matches in consecutive frames have been found for a given image region, the filters depth estimate will
converge, and it is at this point that we begin to consider the image region for image alignment.

4.4 6DoF Image Alignment

Image alignment is needed in order to align a newly captured image with the last image so we can
estimate the motion between them. This is the core of the implemented VO algorithm.

For a given pair of consecutive images we assume that we have a set of tracked image locations {x} in
the old image for which the depth d has been found according to section 4.3. We align the images by
solving the Lucas-Kanade problem (3.5).

We parametrize the warp in the same way as in equation (3.5.18), so that we get the full 6DoF pose
between the images as output. When the solution has converged, we use the same 6DoF pose in order
to transform the image locations {x} that were used for image alignment into the newest frame.

When solving the Lucas Kanade problem, we first solve the problem using the lowest resolution of the
pyramid representation of each image. Then we move on to the next level of the pyramid, with twice
the resolution, and we initialize the problem using the solution from the previous level. We stop when
we have found the solution for the level with the highest resolution in the pyramid.

The reason for solving Lucas-Kanade at each consecutive level like this is because low resolution images
typically give a more convex optimization problem which is easier to solve. This is shown later on
in section 5.2. The solutions found at the lower resolution levels will only be rough estimates, but
they will be useful in order to provide good initializations to the less convex problems at the higher
resolutions. A good initialization will often lead to correct convergence even of a highly non-convex
problem, since the initial estimate will be close to a convex valley around the correct solution.

At the lowest resolution levels, we opt for aligning bitplane representations instead of raw images as
per section 3.7.2 in order to get an initial pose estimate which is robust to illumination changes etc.
The higher resolution levels are aligned using normal image alignment. Later on, in section 5.2.1 we
show why aligning bitplanes at the lower resolutions yields robustness against lighting changes and
weakly textured scenes.

Section (4.4.1) will describe the Gauss-Newton implementation used for image alignment. The bitplane
alignment of the lower resolution levels uses the same implementation with the modifications described
in section 3.7.2.

50

4.4.1 Gauss Newton

We employ the inverse compositional Gauss-Newton algorithm from section 3.5.2.

We define patches of four by four pixels around each image location x in the previous image frame.
The combination of these patches is chosen as the template T , while the newly captured image is
chosen as I (at the current pyramid level). For each image location x in the template, we enumerate
the 16 pixels in its patch according to:

xi =

[
xi1
xi2

]
, i = 1, ..., 16 (4.4.1)

We also define the patch map Φ:

Φi(x) = xi (4.4.2)

We choose the Lie algebra / rotation vector parameterization from equation (3.5.18):

w(x, ξ) = π(exp(ξ∧)π−1(x)) (4.4.3)

Where ξ is the parameterization of the current pose estimate between the last and current frame,
ξ∧ ∈ se(3), and where π is the projection function defined in equation (3.4.7).

We use the inverse compositional normal equations to solve the Lucas-Kanade problem:

JTJ∆ξ = −JT r(ξ), (4.4.4)

exp(ξ∧)← exp(ξ∧) exp(−∆ξ∧) (4.4.5)

Where we have substituted our pose parametrization into equation (4.4.5).

We define the residuals of our Lucas Kanade problem in terms of image patches and the se(3)
parametrization:

r(ξ) =
∑
x

16∑
i=0

[
T (xi)− I(Φi(π(exp(ξ∧)π−1(x))))

]
(4.4.6)

Note that we iterate through the patches Φ of each image location. The jacobian takes a similar form:

J =
∑
x

16∑
i=0

[
∇T (xi)

∂π(exp(ξ∧)π−1(x))

∂ξ

∣∣∣∣
ξ=0

]
(4.4.7)

We investiate the structure of the Jacobian by applying the chain rule to J :

J =
∑
x

16∑
i=0

[
∇T (y)

∣∣∣∣
y=Φi(π(exp(0∧)π−1(x)))

· ∂π(q)

∂q

∣∣∣∣
q=exp(0∧)π−1(x)

· ∂(exp(ξ∧)π−1(x))

∂ξ

∣∣∣∣
ξ=0

]
(4.4.8)

51

We substitute p = π−1(x), with p = [px, py, pz]T , and we proceed to expand the factors in equa-
tion (4.4.8) one by one, beginning at the right:

∂(exp(ξ∧)p)

∂ξ

∣∣∣∣
ξ=0

= (I | − [exp(ξ∧)p]×)

∣∣∣∣
ξ=0

= (I | − [exp(0∧)p]×) = (I | − [p]×)

=

1 0 0 0 pz −py
0 1 0 −pz 0 px
0 0 1 py −px 0

 (4.4.9)

Where we have used equation (3.3.62) to obtain the derivative of a transformation with respect to its
Lie algebra representation.

The derivative of the projection function π is given by:

∂π(q)

∂q

∣∣∣∣
q=exp(0∧)p

=
∂π(q)

∂q

∣∣∣∣
q=p

=

fx
pz

0 −fxpx
p2
z

0
fy
pz

−fypy
p2
z

 (4.4.10)

Finally, the image gradient ∇T is given by:

∇T (y)

∣∣∣∣
y=Φi(π(exp(0∧)π−1(x)))

= ∇T (y)

∣∣∣∣
y=xi

= [Tix, Tiy], (4.4.11)

Tix =
∂T (xi)

∂xi1
, Tiy =

∂T (xi)

∂xi2

We multiply the vector (4.4.11) and the matrices (4.4.10) and (4.4.9) to get the full jacobian:

J =
∑
x

16∑
i=0

Tixfx
pz

Tiyfy
pz

−Tix
fxpx
p2
z

− Tiy
fypy
p2
z

−Tiyfy − py
Tixfxpx + Tiyfypy

p2
z

Tixfx − px
Tixfxpx + Tiyfypy

p2
z

Tiyfypx
pz

− Tixfxpy
pz

T

(4.4.12)

52

4.4.2 Iteratively Re-weighted Residuals

We use the Huber loss function from section 3.5.5 to suppress outliers in the residuals rx(ξ) = T (x)−
I(π(exp(ξ∧)x)). We put W = diag([ωh

x]), where the weight elements ωh
x are calculated according to

the huber weight function from equation (3.5.23), ωh
x = ωh(rx(ξ)). We choose h = 1.345σMAD({rx}),

where σMAD is the MAD scale estimator from equation (3.5.25).

We incorporate the diagonal weight matrix W in the normal equation equation (4.4.4) according to
equation (3.5.22):

JTWJ∆ξ = −JTWr(ξ) (4.4.13)

We recalculate W after each iteration of Gauss Newton. Unfortunately, this means that the computa-
tional efficiency gained from using the inverse compositional Gauss Newton formulation to precompute
the Hessian approximation JTJ , is now lost since we can’t precompute W . However, the inverse com-
positional formulation still helps since we at least are able to precompute the Jacobian J .

4.4.3 Motion Prior

We add discrete time indices k to equation (4.4.5), where k is the index of the current frame:

exp(ξ∧k)← exp(ξ∧k) exp(−∆ξ∧) (4.4.14)

Then we choose the inertia based motion prior from section 3.6.3, which consists of the pose estimated
from the previous frame pair, ξk−1. Using this motion prior, solutions which deviate too far from the
pose estimated from the previous image pair will be penalized. We modify the iteratively re-weighted
normal equation (4.4.13) to include the motion prior:

(
JTWJ + Σ−1

)
∆ξ = −JTWr(ξk) + Σ−1(ξ∧k − ξ∧k−1) (4.4.15)

We set Σ−1 to be a scalar matrix:

Σ−1 ≡ λI =

λ 0 0 0 0 0
0 λ 0 0 0 0
0 0 λ 0 0 0
0 0 0 λ 0 0
0 0 0 0 λ 0
0 0 0 0 0 λ

 (4.4.16)

Where the tuning parameter λ decides the relative contribution of the motion prior term to the
photometric error.

4.5 Initialization

Before image alignment can be done, an initial estimate of the image depth in the scene must be done.
This estimate is done according to Faugeras et al.[18]. We use the first two image frames and assume
the scene is piecewise planar in order to estimate a homography that we then can extract the initial
motion from. We use this motion estimate to triangulate the depths of the initial image patches.

The depth estimates do not include scale due to the monocular nature of the algorithm. Thus the
scale for the rest of the depth estimates that the algorithm produces, as well as the trajectory, are
decided by what scale we decide on in these first two views.

53

4.6 Visualization

The progress of the proposed algorithm can be visualized in multiple ways. For instance, in chapter 5
we discuss trajectory and residual plots, which provide valuable information about the algorithms
progress. Figure (4.4) shows a visualization that highlights the movement of the aligned image patches
(red) as well as the candidate patches (blue) that do not have a converged depth estimate yet, as per
section 4.3.

Figure 4.4: Visualization of the estimated transformation of aligned image patches (red) and the
matches of candidate patches with, as of yet, unknown depth (blue). The visualization is from the
execution of the implemented algorithm on the first Harbor sequence in the Aqualoc dataset[19].

54

Chapter 5: Results and Evaluation

In this chapter we showcase the functionality of the implemented algorithm as well as limitations and
failure scenarios. We justify the use of multi-resolution image-alignment as well as bitplane alignment
at the lower resolutions.

5.1 Trajectory Estimation

Only a few datasets for testing the trajectory estimation performance of underwater VO algorithms
have been made available, including Aqualoc[19], the ACFR (Australian Centre for Field Robotics)
Marine Robotics dataset and the Underwater caves sonar and vision data set[34].

Custom datasets were created using the Blueye Pioneer underwater drone. A third-party photogram-
metry software called Agisoft Metashape was used in order to generate high precision trajectory esti-
mates using the videos and sensor data captured from the drone. This kind of software benefits from
being able to use the entire video at once, as well as not having to satify real time constraints. The
estimates generated in Agisoft Metashape will serve as our ground truth when evaluating the proposed
algorithms trajectory estimates.

We refer to one of the custom datasets generated from data gathered by the Blueye Pioneer as the
dock side series. It consists of a three minute long video of the side of a dock, filmed around 4 meters
below the surface. The plots in figure 5.1 show the estimated trajectory using the proposed algorithm,
as well as the estimate calculated in Agisoft Metashape.

From figure 5.1a we see that the water depth estimates for the dock side series are fairly consistent.
However, observing the complete trajectory in figure 5.1b, we see that the proposed algorithm drifts a
little with time.

A video showing the progress of the proposed algorithm on the dock side sequence is available at
https://youtu.be/oUHgMTFfRXk. The video shows the estimated trajectory of the camera as well as
the video sequence itself.

The video sequence is overlayed with blue and red dots, as seen in the screenshot in figure 5.2. The
blue spots indicate the position of candidate patches which are tracked using optical flow in order to
estimate their depth in a bayesian inference filter as per section 4.3. The red spots correspond to the
image patches that are being used for 6DoF image alignment as per section 4.4.

By comparing the live trajectory from the video with the apparant movement of the camera, it seems
like the algorithm occasionally mistakes a part of the rotational movement for translation. This
explains why the water depth estimates in figure 5.1a are more accurate than the xy coordinates in
figure 5.1b, because the camera was mostly rotated in the xy-plane and not in the up-down / water
depth direction.

55

https://youtu.be/oUHgMTFfRXk

(a) Estimated water depth from the dock side series, depth being reative to the initial depth of the camera.

(b) Estimated camera trajectory from the dock side series

Figure 5.1: Trajectory estimates for the dock side series captured on the Blueye Pioneer underwater
drone.

56

Figure 5.2: Screenshot from https://youtu.be/oUHgMTFfRXk showing the progress of the proposed
algorithm on the ”dock side” series. The blue and red dots correspond respectively to the image
patches for which we are trying to find the depth / camera distance, and the image patches which are
already being used for 6DoF image alignment.

57

https://youtu.be/oUHgMTFfRXk

5.2 Analysis of Residuals

Figure (5.3) shows residuals for the implemented raw image alignment (4.4). It is apparant that the
higher levels, which correspond to lower resolutions, have larger convex valleys around the converged
estimate than the lower levels, which correspond to higher resolutions.

The corresponding bitplane based residuals are shown in figure 5.4. They have the same basic valley
form as their raw image based counterparts, but they are narrower and less smooth, providing an
image alignment problem which is more difficult to solve.

58

(a) Rotation residuals, level 1 (b) Translation residuals, level 1

(c) Rotation residuals, level 2 (d) Translation residuals, level 2

(e) Rotation residuals, level 3 (f) Translation residuals, level 3

(g) Rotation residuals, level 4 (h) Translation residuals, level 4

Figure 5.3: Raw image residuals.
The x-axis represents the size of the pertubation from the converged se(3) pose estimate.

59

(a) Rotation residuals, level 1 (b) Translation residuals, level 1

(c) Rotation residuals, level 2 (d) Translation residuals, level 2

(e) Rotation residuals, level 3 (f) Translation residuals, level 3

(g) Rotation residuals, level 4 (h) Translation residuals, level 4

Figure 5.4: Bitplane residuals.
The x-axis represents the size of the pertubation from the converged se(3) pose estimate.

60

5.2.1 Image Alignment Failure Scenario

The proposed algorithm aligns bitplane representations of the lower resolution multi-resolution pyramid
levels as described in section 4.4. The reason for this choice is the failure of the image alignment
operation in certain scenarios, which we will investigate here.

We pick a challenging frame in the dock side series gathered on the Blueye Pioneer drone. The frame
is depicted in figure 5.5. It is in the middle of a camera exposure change, so the intensity over the
entire image changes dramatically from frame to frame. We have calculated both the bitplane and
raw image based residuals for the frame, while only using raw image based alignment for choosing the
solution at all resolution levels.

Figure 5.5: A frame from the dock side series which is in the middle of an illumination change generated
by the initial exposure change in the camera.

From the raw image residuals on the left in figure 5.6 we see that there are two local minimas. One
is at zero pertubation. This is the solution which the raw image based alignment has settled on. The
other minima is at around -2. This turns out to be the correct solution, which means that the raw
image alignment has failed significantly.

Comparing the raw image residuals with the bitplane based residuals at the right in figure 5.6, we see
that the bitbplane residuals have a more clear minima. Especially on the lower resolution levels (level
3 and 4) the bitplane residuals make it much clearer what the correct solution is.

This is an extreme scenario, and it was chosen in order to highlight the robustness of bitplane based
image alignment. Less extreme instances of the same issue were also observed consistently through
the ”Harbor” sequences in the Aqualoc dataset[19] due to the weakly textured seabed.

We found that for a four or five level multi-resolution pyramid, using bitplane alignment at the lowest
two or three resolutions gave the most robust image alignment.

61

(a) Raw image residuals, level 1 (b) Bitplane residuals, level 1

(c) Raw image residuals, level 2 (d) Bitplane residuals, level 2

(e) Raw image residuals, level 3 (f) Bitplane residuals, level 3

(g) Raw image residuals, level 4 (h) Bitplane residuals, level 4

Figure 5.6: Residuals for one of the translation dimensions in the raw image alignment failure scenario.
The x-axis represents the size of the pertubation from the converged se(3) pose estimate.

62

5.3 Feature Detection Tuning

Feature detection is used in the proposed algorithm to split images into sparse regions. This comes with
an element of uncertainty around how many features will be detected at each frame, and it becomes
problematic in scenes with low texture.

This is evident in the first of the ”Harbor” sequences in the Aqualoc dataset. A largely monotone
seafloor makes it difficult to extract high quality features. Halfway through the sequence, the lack of
features leads to divergence in the proposed algorithm.

In order to overcome the challenges of the sequence we remove the FAST-score threshold for the
feature detection (section 4.2) and consider all feature candidates that are local maximas in terms of
FAST-score. This gives us the trajectory estimate in figure 5.7. Here there is no divergence.

Figure 5.7: Trajectory estimates for ”Harbor” sequence number 1 in the Aqualoc dataset[19].

63

Chapter 6: Conclusion and Further
Work

Through this thesis we have described the theoretical background and implementation of a monocular
visual odometry algorithm for real time underwater navigation. We have also evaluated the algorithms
functionality and performance, and we have given justification for the design choices.

We found that the computationally efficient, sparse image alignment from Forster et al.[10] could
be extended with bitplane alignment in order to gain illumination invariance and robustness to low-
textured environments. Based on the residual plots, we found it best to use bitplane alignment for low
resolution levels and raw image alignment for high resolution levels.

We also found that the FAST score detection threshold was better to be disposed with in certain
scenarios in order to at least find some features in weakly textured areas.

In order to reduce the drift in trajectory estimate as observed in section 5.1, we could consider extending
the visual odometry algorithm, at the cost of higher complexity. One extension would be to incorporate
IMU and pressure sensor measurements and use the sensor based motion prior from section 3.6.3. This
could however lead to instability if there are calibration issues and the measurements don’t converge
to a common consensus.

Another possibility would be to introduce keyframes, which are special frames kept in memory for
multiple consecutive frames after they are first captured. New frames would be aligned with the
previous keyframe instead of the previous frame, and the pose estimate would then hopefully drift
slower due to the less frequent update rate of the reference frame. This would also come at the cost of
a more challenging image alignment problem because the photo-consistency assumption would be less
valid at higher perspective differences.

A more elaborate extension would be to implement bundle adjustment, aligning observations from
multiple keyframes at once and refining their depth estimates along with the camera pose in one large
optimization problem[8]. Bundle adjustment is considered state of the art for the purpose of reducing
drift, especially scale drift, in monocular VO algorithms.

In section 5.3 we found that the FAST-score threshold normally used in feature detection can lead
to divergence in low textured underwater sequences because of the lack of features. By removing the
FAST-score threshold we guaranteed that enough features are considered for tracking.

This feature detection scheme is in practice similar to the way Alismail et al.[2] subsample pixels using
a bitplane based saliency measure. By using bitplanes instead of FAST-features for feature detection,
the computational burden of computing FAST-features could be avoided, and the overall complexity
of the algorithms implementation would be reduced.

Other loss functions than the Huber loss implemented in section 4.4.2 could be investigated. In
general, Huber loss is a t-distributon based loss function which exhibits relatively conservative outlier

64

suppression. We could design a custom t-distribution with more aggressive outlier suppression[11].
This could help to further reduce the effect of underwater-related image distortion.

The proposed algorithms implicit protection against marine snow could be expanded with explicit
marine snow removal algorithms like Farhad et al.[17] or Koziarski et al.[29]. This is an example of
the first strategy for dealing with outliers discussed in section 3.5.5. It could be extended into a more
complete image enhancement stage where effects related to light attenuation and water photography in
general are compensated for[32]. Interestingly, since light attenuation depends on the distance between
scene and camera, as mentioned in section 3.4.2, image depth information can potentially be shared
betweeen the proposed visual odometry algorithm and the image enhancement algorithm in order to
compensate more efficiently for light attenuation.

Finally, although some of the design choices of the proposed algorithm are implicitly beneficial with
respect to computational performance, further measures like GPGPU computation or similar could
be considered in order to improve real-time performance on embedded devices. Device specific con-
siderations should be taken because of the wide range of resources that are available on different
devices.

65

Bibliography

[1] Hatem Alismail, Brett Browning, and Simon Lucey. “Bit-Planes: Dense Subpixel Alignment of
Binary Descriptors”. In: CoRR abs/1602.00307 (2016). arXiv: 1602.00307. url: http://arxiv.
org/abs/1602.00307.

[2] Hatem Alismail, Brett Browning, and Simon Lucey. “Direct Visual Odometry using Bit-Planes”.
In: CoRR abs/1604.00990 (2016). arXiv: 1604.00990. url: http://arxiv.org/abs/1604.
00990.

[3] Simon Baker and Iain Matthews. “Lucas-Kanade 20 Years On: A Unifying Framework”. In:
International Journal of Computer Vision 56.3 (Mar. 2004), pp. 221–255.

[4] Timothy D. Barfoot. State Estimation for Robotics. Cambridge University Press, 2017. doi:
10.1017/9781316671528.

[5] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. “SURF: Speeded Up Robust Features”. In:
Proceedings of the 9th European Conference on Computer Vision - Volume Part I. ECCV’06.
Graz, Austria: Springer-Verlag, 2006, pp. 404–417. doi: 10.1007/11744023_32. url: http:
//dx.doi.org/10.1007/11744023_32.

[6] Michael Calonder et al. “BRIEF: Binary Robust Independent Elementary Features”. In: ECCV.
2010.

[7] J. Canny. “A Computational Approach to Edge Detection”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence PAMI-8.6 (Nov. 1986), pp. 679–698. doi: 10.1109/TPAMI.
1986.4767851.

[8] Yu Chen, Yisong Chen, and Guoping Wang. Bundle Adjustment Revisited. 2019. arXiv: 1912.
03858 [cs.CV].

[9] Kevin Christensen and Martial Hebert. “Edge-Direct Visual Odometry”. In: CoRR abs/1906.04838
(2019). arXiv: 1906.04838. url: http://arxiv.org/abs/1906.04838.

[10] Davide Scaramuzza Christian Forster Matia Pizzoli. SVO: Fast Semi-Direct Monocular Visual
Odometry. https://www.ifi.uzh.ch/dam/jcr:e9b12a61-5dc8-48d2-a5f6-bd8ab49d1986/
ICRA14_Forster.pdf. 2014.

[11] Mahmut Kutlukaya Christian Hennig. SOME THOUGHTS ABOUT THE DESIGN OF LOSS-
FUNCTIONS. http://www.homepages.ucl.ac.uk/~ucakche/papers/henniglossfu.pdf.
2006.

[12] Oliver Demetz, David Hafner, and Joachim Weickert. “The Complete Rank Transform: A Tool
for Accurate and Morphologically Invariant Matching of Structures”. In: Jan. 2013. doi: 10.
5244/C.27.50.

[13] James Diebel. “Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors”.
In: Matrix 58 (Jan. 2006).

[14] Ethan Eade. Lie Groups for 2D and 3D Transformations. http://ethaneade.com/lie.pdf.
2017.

[15] Johannes Ebert. VAN EST’S EXPOSITION OF CARTAN’S PROOF OF LIE’STHIRD THEO-
REM, EXPLAINED BY JOHANNES EBERT. https://ivv5hpp.uni-muenster.de/u/jeber_
02/talks/lieIII.pdf. 2016.

66

https://arxiv.org/abs/1602.00307
http://arxiv.org/abs/1602.00307
http://arxiv.org/abs/1602.00307
https://arxiv.org/abs/1604.00990
http://arxiv.org/abs/1604.00990
http://arxiv.org/abs/1604.00990
https://doi.org/10.1017/9781316671528
https://doi.org/10.1007/11744023_32
http://dx.doi.org/10.1007/11744023_32
http://dx.doi.org/10.1007/11744023_32
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/TPAMI.1986.4767851
https://arxiv.org/abs/1912.03858
https://arxiv.org/abs/1912.03858
https://arxiv.org/abs/1906.04838
http://arxiv.org/abs/1906.04838
https://www.ifi.uzh.ch/dam/jcr:e9b12a61-5dc8-48d2-a5f6-bd8ab49d1986/ICRA14_Forster.pdf
https://www.ifi.uzh.ch/dam/jcr:e9b12a61-5dc8-48d2-a5f6-bd8ab49d1986/ICRA14_Forster.pdf
http://www.homepages.ucl.ac.uk/~ucakche/papers/henniglossfu.pdf
https://doi.org/10.5244/C.27.50
https://doi.org/10.5244/C.27.50
http://ethaneade.com/lie.pdf
https://ivv5hpp.uni-muenster.de/u/jeber_02/talks/lieIII.pdf
https://ivv5hpp.uni-muenster.de/u/jeber_02/talks/lieIII.pdf

[16] R. M. Eustice, O. Pizarro, and H. Singh. “Visually Augmented Navigation for Autonomous
Underwater Vehicles”. In: IEEE Journal of Oceanic Engineering 33.2 (Apr. 2008), pp. 103–122.
issn: 2373-7786. doi: 10.1109/JOE.2008.923547.

[17] Fahimeh Farhadifard. “Marine Snow Detection and Removal : Underwater Image Restoration
using Background Modeling”. In: 2017.

[18] Olivier Faugeras and F. Lustman. “Motion and Structure from Motion in a Piecewise Planar En-
vironment”. In: International Journal of Pattern Recognition and Artificial Intelligence - IJPRAI
02 (Sept. 1988). doi: 10.1142/S0218001488000285.

[19] Maxime Ferrera et al. “AQUALOC: An Underwater Dataset for Visual-Inertial-Pressure Local-
ization”. In: arXiv e-prints, arXiv:1910.14532 (Oct. 2019), arXiv:1910.14532. arXiv: 1910.14532
[cs.CV].

[20] Maxime Ferrera et al. “Real-time Monocular Visual Odometry for Turbid and Dynamic Un-
derwater Environments”. In: CoRR abs/1806.05842 (2018). arXiv: 1806.05842. url: http:

//arxiv.org/abs/1806.05842.
[21] Martin A. Fischler and Robert C. Bolles. “Random Sample Consensus: A Paradigm for Model

Fitting with Applications to Image Analysis and Automated Cartography”. In: Commun. ACM
24.6 (June 1981), pp. 381–395. issn: 0001-0782. doi: 10.1145/358669.358692. url: http:
//doi.acm.org/10.1145/358669.358692.

[22] John Fox and Sanford Weisberg. Robust Regression. http://users.stat.umn.edu/~sandy/
courses/8053/handouts/robust.pdf. 2013.

[23] Adrian Galdran et al. “Automatic Red-Channel underwater image restoration”. In: Journal of
Visual Communication and Image Representation 26 (Nov. 2014). doi: 10.1016/j.jvcir.2014.
11.006.

[24] Guillermo Gallego and Anthony Yezzi. A compact formula for the derivative of a 3-D rotation
inexponential coordinates. https://arxiv.org/pdf/1312.0788. 2014.

[25] Chris Harris and Mike Stephens. “A combined corner and edge detector”. In: In Proc. of Fourth
Alvey Vision Conference. 1988, pp. 147–151.

[26] Matthew Johnson-Roberson et al. “Generation and visualization of large-scale three-dimensional
reconstructions from underwater robotic surveys”. In: Journal of Field Robotics 27.1 (2010),
pp. 21–51. doi: 10.1002/rob.20324. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1002/rob.20324. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20324.

[27] A. Kim and R. Eustice. “Pose-graph visual SLAM with geometric model selection for autonomous
underwater ship hull inspection”. In: 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems. Oct. 2009, pp. 1559–1565. doi: 10.1109/IROS.2009.5354132.

[28] Georg Klein and David W. Murray. “Parallel Tracking and Mapping for Small AR Workspaces”.
In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality (2007),
pp. 225–234.

[29] Micha l Koziarski and Boguslaw Cyganek. “Marine Snow Removal Using a Fully Convolutional 3D
Neural Network Combined with an Adaptive Median Filter: ICPR 2018 International Workshops,
CVAUI, IWCF, and MIPPSNA, Beijing, China, August 20-24, 2018, Revised Selected Papers”.
In: Jan. 2019, pp. 16–25. isbn: 978-3-030-05791-6. doi: 10.1007/978-3-030-05792-3_2.

[30] Chang-Ryeol Lee and Kuk-Jin Yoon. “Monocular Visual Odometry with a Rolling Shutter Cam-
era”. In: CoRR abs/1704.07163 (2017). arXiv: 1704.07163. url: http://arxiv.org/abs/
1704.07163.

[31] Anthony M.Bloch and Arieh Iserlesy. Commutators of Skew-symmetric Matrices. http://www.
damtp.cam.ac.uk/user/na/NA_papers/NA2004_04.pdf. 2004.

[32] Priyanka Madhumatke. “Underwater Image Enhancement Techniques: A Review”. In: Inter-
national Journal for Research in Applied Science and Engineering Technology V (Aug. 2017),
pp. 1574–1580. doi: 10.22214/ijraset.2017.8223.

[33] I. Mahon et al. “Efficient View-Based SLAM Using Visual Loop Closures”. In: Trans. Rob. 24.5
(Oct. 2008), pp. 1002–1014. issn: 1552-3098. doi: 10.1109/TRO.2008.2004888. url: https:
//doi.org/10.1109/TRO.2008.2004888.

67

https://doi.org/10.1109/JOE.2008.923547
https://doi.org/10.1142/S0218001488000285
https://arxiv.org/abs/1910.14532
https://arxiv.org/abs/1910.14532
https://arxiv.org/abs/1806.05842
http://arxiv.org/abs/1806.05842
http://arxiv.org/abs/1806.05842
https://doi.org/10.1145/358669.358692
http://doi.acm.org/10.1145/358669.358692
http://doi.acm.org/10.1145/358669.358692
http://users.stat.umn.edu/~sandy/courses/8053/handouts/robust.pdf
http://users.stat.umn.edu/~sandy/courses/8053/handouts/robust.pdf
https://doi.org/10.1016/j.jvcir.2014.11.006
https://doi.org/10.1016/j.jvcir.2014.11.006
https://arxiv.org/pdf/1312.0788
https://doi.org/10.1002/rob.20324
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20324
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20324
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20324
https://doi.org/10.1109/IROS.2009.5354132
https://doi.org/10.1007/978-3-030-05792-3_2
https://arxiv.org/abs/1704.07163
http://arxiv.org/abs/1704.07163
http://arxiv.org/abs/1704.07163
http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2004_04.pdf
http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2004_04.pdf
https://doi.org/10.22214/ijraset.2017.8223
https://doi.org/10.1109/TRO.2008.2004888
https://doi.org/10.1109/TRO.2008.2004888
https://doi.org/10.1109/TRO.2008.2004888

[34] Angelos Mallios et al. “Underwater caves sonar data set”. In: The International Journal of
Robotics Research 36 (Oct. 2017), p. 027836491773283. doi: 10.1177/0278364917732838.

[35] Holly Mandel. WHAT DOES A LIE ALGEBRA KNOW ABOUT A LIE GROUP? http://

math.uchicago.edu/~may/REU2016/REUPapers/Mandel.pdf. 2016.
[36] et al. Mohamad Motasem Nawaf. Experimental Comparison of Open Source Visual-Inertial-

Based StateEstimation Algorithms in the Underwater Domain. https://afrl.cse.sc.edu/
afrl/publications/public_html/papers/IROS19_0500_FI.pdf. 2019.

[37] et al. Mohamad Motasem Nawaf. Underwater Photogrammetry and Visual Odometry. https:
//res.mdpi.com/bookfiles/edition/786/article/807/Underwater_Photogrammetry_and_

Visual_Odometry.pdf?v=0. 2018.
[38] Philippe Moutarlier and Raja Chatila. “An Experimental System for Incremental Environment

Modelling by an Autonomous Mobile Robot”. In: The First International Symposium on Exper-
imental Robotics I. Berlin, Heidelberg: Springer-Verlag, 1990, pp. 327–346. isbn: 3-540-52182-8.
url: http://dl.acm.org/citation.cfm?id=645621.661279.

[39] Raul Mur-Artal, J. M. M. Montiel, and Juan D. Tardós. “ORB-SLAM: a Versatile and Accurate
Monocular SLAM System”. In: CoRR abs/1502.00956 (2015). arXiv: 1502.00956. url: http:
//arxiv.org/abs/1502.00956.

[40] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. “DTAM: Dense tracking and mapping in
real-time”. In: 2011 International Conference on Computer Vision. Nov. 2011, pp. 2320–2327.
doi: 10.1109/ICCV.2011.6126513.

[41] Timo Ojala, Matti Pietikäinen, and David Harwood. “A comparative study of texture measures
with classification based on featured distributions”. In: Pattern Recognition 29.1 (1996), pp. 51–
59. issn: 0031-3203. doi: https://doi.org/10.1016/0031-3203(95)00067-4. url: http:
//www.sciencedirect.com/science/article/pii/0031320395000674.

[42] Paul Ozog et al. “Long-term Mapping Techniques for Ship Hull Inspection and Surveillance
Using an Autonomous Underwater Vehicle”. In: J. Field Robot. 33.3 (May 2016), pp. 265–289.
issn: 1556-4959. doi: 10.1002/rob.21582. url: https://doi.org/10.1002/rob.21582.

[43] N. Palomeras et al. “AUV homing and docking for remote operations”. In: Ocean Engineering
154 (2018), pp. 106–120. issn: 0029-8018. doi: https://doi.org/10.1016/j.oceaneng.2018.
01.114. url: http://www.sciencedirect.com/science/article/pii/S0029801818301367.

[44] Edward Rosten and Tom Drummond. “Fusing points and lines for high performance tracking.” In:
IEEE International Conference on Computer Vision. Vol. 2. Oct. 2005, pp. 1508–1511. doi: 10.
1109/ICCV.2005.104. url: http://www.edwardrosten.com/work/rosten_2005_tracking.
pdf.

[45] Edward Rosten and Tom Drummond. “Machine learning for high-speed corner detection”. In:
European Conference on Computer Vision. Vol. 1. May 2006, pp. 430–443. doi: 10 . 1007 /

11744023_34. url: http://www.edwardrosten.com/work/rosten_2006_machine.pdf.
[46] Ethan Rublee et al. “ORB: An Efficient Alternative to SIFT or SURF”. In: Proceedings of the

2011 International Conference on Computer Vision. ICCV ’11. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 2564–2571. isbn: 978-1-4577-1101-5. doi: 10.1109/ICCV.2011.
6126544. url: http://dx.doi.org/10.1109/ICCV.2011.6126544.

[47] Luan Silveira et al. “An Open-source Bio-inspired Solution to Underwater SLAM”. In: vol. 48.
Dec. 2015. doi: 10.1016/j.ifacol.2015.06.035.

[48] Carlo Tomasi and Takeo Kanade. Detection and Tracking of Point Features. Tech. rep. Interna-
tional Journal of Computer Vision, 1991.

[49] George Vogiatzis and Carlos Hernández. “Video-based, real-time multi-view stereo”. In: Im-
age and Vision Computing (2012). issn: 0262-8856. doi: https://doi.org/10.1016/j.

imavis . 2012 . 08 . 001. url: http : / / www . sciencedirect . com / science / article / pii /

S0262885612001254.
[50] N. Weidner et al. “Underwater cave mapping using stereo vision”. In: 2017 IEEE International

Conference on Robotics and Automation (ICRA). May 2017, pp. 5709–5715. doi: 10.1109/

ICRA.2017.7989672.

68

https://doi.org/10.1177/0278364917732838
http://math.uchicago.edu/~may/REU2016/REUPapers/Mandel.pdf
http://math.uchicago.edu/~may/REU2016/REUPapers/Mandel.pdf
https://afrl.cse.sc.edu/afrl/publications/public_html/papers/IROS19_0500_FI.pdf
https://afrl.cse.sc.edu/afrl/publications/public_html/papers/IROS19_0500_FI.pdf
https://res.mdpi.com/bookfiles/edition/786/article/807/Underwater_Photogrammetry_and_Visual_Odometry.pdf?v=0
https://res.mdpi.com/bookfiles/edition/786/article/807/Underwater_Photogrammetry_and_Visual_Odometry.pdf?v=0
https://res.mdpi.com/bookfiles/edition/786/article/807/Underwater_Photogrammetry_and_Visual_Odometry.pdf?v=0
http://dl.acm.org/citation.cfm?id=645621.661279
https://arxiv.org/abs/1502.00956
http://arxiv.org/abs/1502.00956
http://arxiv.org/abs/1502.00956
https://doi.org/10.1109/ICCV.2011.6126513
https://doi.org/https://doi.org/10.1016/0031-3203(95)00067-4
http://www.sciencedirect.com/science/article/pii/0031320395000674
http://www.sciencedirect.com/science/article/pii/0031320395000674
https://doi.org/10.1002/rob.21582
https://doi.org/10.1002/rob.21582
https://doi.org/https://doi.org/10.1016/j.oceaneng.2018.01.114
https://doi.org/https://doi.org/10.1016/j.oceaneng.2018.01.114
http://www.sciencedirect.com/science/article/pii/S0029801818301367
https://doi.org/10.1109/ICCV.2005.104
https://doi.org/10.1109/ICCV.2005.104
http://www.edwardrosten.com/work/rosten_2005_tracking.pdf
http://www.edwardrosten.com/work/rosten_2005_tracking.pdf
https://doi.org/10.1007/11744023_34
https://doi.org/10.1007/11744023_34
http://www.edwardrosten.com/work/rosten_2006_machine.pdf
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
http://dx.doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1016/j.ifacol.2015.06.035
https://doi.org/https://doi.org/10.1016/j.imavis.2012.08.001
https://doi.org/https://doi.org/10.1016/j.imavis.2012.08.001
http://www.sciencedirect.com/science/article/pii/S0262885612001254
http://www.sciencedirect.com/science/article/pii/S0262885612001254
https://doi.org/10.1109/ICRA.2017.7989672
https://doi.org/10.1109/ICRA.2017.7989672

[51] Y. Zheng et al. “Single-Image Vignetting Correction”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 31.12 (Dec. 2009), pp. 2243–2256. issn: 1939-3539. doi: 10.1109/
TPAMI.2008.263.

69

https://doi.org/10.1109/TPAMI.2008.263
https://doi.org/10.1109/TPAMI.2008.263

	Introduction
	Motivation
	Aim of Study
	Contribution
	Outline

	Literature Review
	Evolution of Visual Odometry Methods
	Taxonomy of Visual Odometry Methods
	Sparse and Dense Methods
	Indirect Methods
	Direct Methods

	Underwater Visual Odometry Methods

	Theory
	Feature Detection
	FAST
	FAST-Score / Non-Maximum Suppression

	3D Geometry
	Position
	Translation
	3D Rotation Representation
	Homogenous Coordinates
	Skew-Symmetric Matrices

	Lie Groups and Lie Algebras
	Lie Group Definition
	Lie Algebra Definition
	Lie Algebra derived from a Lie Group
	SO(3)
	so(3)
	Map from so(3) to SO(3)
	Derivative of SO(3) rotation
	SE(3)
	se(3)
	Map from se(3) to SE(3)
	Derivative of SE(3) transformation

	Image Formation and Camera Mathematics
	Image Formation
	Underwater Image Distortion
	Pinhole Camera Model

	Lucas Kanade
	Gauss Newton
	Inverse Compositional Gauss-Newton
	Choice of Warp Parameter
	Sampling of Warped Image
	Outlier Suppression
	Bayesian derivation of Lucas Kanade

	Motion Prior
	Motion Prior in Forward Additive Gauss-Newton
	Motion Prior In Inverse Compositional Gauss-Newton
	Choice of Motion Prior
	Initialization of Gauss-Newton

	Bitplanes
	Bitplane Definition
	Lucas-Kanade with Bitplanes

	Parallell Computation
	Vectorization
	GPGPU

	Implementation
	Multi-Scale Image Pyramid
	Feature Detection
	Image Depth Estimation
	6DoF Image Alignment
	Gauss Newton
	Iteratively Re-weighted Residuals
	Motion Prior

	Initialization
	Visualization

	Results and Evaluation
	Trajectory Estimation
	Analysis of Residuals
	Image Alignment Failure Scenario

	Feature Detection Tuning

	Conclusion and Further Work

