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Abstract

Map matching refers to the process of using a sequence of position measurements
to estimate a connected route on a road network. Position measurements used
for map matching are typically obtained from a GPS device located in a vehicle
moving through the road network. The purpose of this thesis is to explore and
evaluate several different hidden Markov model (HMM) formulations that enable
map matching. These methods all require knowledge about the underlying road
network. This road network is used to create a state space where each state
represents a road segment.

It is ensured that the HMM-based map matching methods are consistent with
the assumptions of an HMM. The state estimate obtained from the Viterbi algorithm
can, therefore, be regarded as the "most probable road segment sequence." One
of the contributions of this thesis is to combine ideas from earlier works in a way
that is consistent with the assumptions of an HMM. Another contribution comes
through the introduction of a state space that, to the author’s knowledge, has not
been used before. This augmented state space formulation extends the state space
by incorporating additional elements that, among other things, include information
about the direction of travel. The use of the Baum-Welch algorithm is also believed
to be a significant contribution, seeing as it has not been applied to this specific
problem before.

The experiments presented in this thesis are conducted using data from simu-
lated traversal on real road networks. The primary goal is to assess the performance
of four distinct HMM-based methods. A simple benchmark method is also included
to provide context. The experiments are divided into three parts: a parameter
search used to identify good parameter choices for the transition probability and
emission probability, a part dedicated to the estimation of transition probabilities,
and a part dedicated to performance evaluation. The quality of the route estimates
is assessed using the Hausdorff distance because of its ability to quantify the degree
of correctness for the route estimates. The results of the experiments show that
one achieves substantial performance gains by moving from the simple to the
augmented state space. This is especially evident in the case with high sampling
frequency and low variance, where we observe a 90.7% decrease in Hausdorff
distance for the new augmented state space HMM approach when compared to
the approach with a simple state space.

iii





Sammendrag

Kartmatching refererer til prosessen der en sekvens med posisjonsmålinger brukes
til å estimere en sammenhengende rute på et veinettverk. Posisjonsmålinger som
brukes til kartmatching er typisk innhentet ved hjelp av en GPS-enhet som befinner
seg i et kjøretøy som beveger seg gjennom veinettverket. Formålet med denne
avhandlingen er å utforske og evaluere flere forskjellige "skjult Markov modell"-
formuleringer (SMM-formuleringer) som muliggjør kartmatching. Disse metodene
krever kjennskap til det underliggende veinettverket. Dette veinettverket blir brukt
til å konstruere et tilstandsrom hvor hver tilstand representerer et veisegment.

Det sørges for at de SMM-baserte kartmatching-metodene overholder anta-
gelsene i en SMM. Tilstandsestimatet man får fra Viterbi-algoritmen kan derfor
anses som "den mest sannsynlige sekvensen av veisegmenter". Ett av bidragene i
denne avhandlingen er kombineringen av idéer fra tidligere verker på en måte som
tilfredsstiller antagelsene i en SMM. Et annet bidrag kommer gjennom introduks-
jonen av et tilstandsrom som, så vidt forfatteren vet, ikke har blitt brukt før. Denne
utvidede tilstandsrom-formuleringen forstørrer tilstandsrommet ved å inkorporere
tilleggselementer som blant annet inneholder informasjon om bevegelsesretningen.
Bruken av Baum-Welch-algoritmen er også trolig et betydelig bidrag, siden den
ikke har blitt brukt til dette spesifikke problemet tidligere.

Eksperimentene som presenteres i denne avhandlingen er utført ved bruk av
data fra simulert bevegelse på reelle veinettverk. Hovedformålet er å evaluere
ytelsen til fire distinkte SMM-baserte metoder. En naiv sammenligningsmetode
er også inkludert for å tilføre kontekst. Eksperimentene er delt inn i tre deler: et
parametersøk som brukes til å identifisere gode parametervalg for overgangs- og
emisjonssannsynlighetene, en del dedikert til estimering av overgangssannsyn-
ligheter og en del dedikert til prestasjonsevaluering. Kvaliteten på ruteestimatene
blir vurdert ved hjelp av Hausdorff-avstanden på grunn av dens evne til å kvanti-
fisere ruteestimatets grad av korrekthet. Resultatene fra eksperimentene viser at
man oppnår en betydelig økning i prestasjon ved å gå fra det enkle til det utvidede
tilstandsrommet. Dette er spesielt tydelig i situasjonen med høy samplingsfrekvens
og lav varians, hvor man oppnår 90.7% reduksjon i Hausdorff-avstand når SMM-
tilnærmelsen med utvidet tilstandsrom sammenlignes med tilnærmelsen hvor det
enkle tilstandsrommet brukes.
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Chapter 1

Introduction

1.1 Motivation

Map matching can provide value to people and organizations by enabling them
to estimate travel routes using nothing but a GPS receiver. An estimated route
can be valuable by itself, as when used for tracking individual vehicles, or in a
group where the group is used to gain insights about the overall behaviour of some
population. One of the most compelling use cases relates to automatic taxation
of vehicular travel based on, for instance, distance travelled, areas visited, and
roads that are taken. Another application could be analysis of traffic flow in some
road network. Conducting an analysis of the behaviour of vehicles moving through
a road network is complicated without translating the measured positions into
actual routes. By using route estimates instead of measured positions, one makes it
easier to obtain information about traversal on the underlying network. An overall
view of the behaviour of vehicles on a specific road network could, for instance,
be valuable to decision-makers when planning for the future of the road network.

The author’s initial exposure to the problem of map matching was through
a representative of the Norwegian company DEFA 1. They had an interest in
improving the tracking and route estimation capabilities of their smartphone app.
This resulted in a project that explored the benefits of simple methods based on
hidden Markov models (HMMs) when compared to more naive methods. This
project was finalized prior to the summer of 2019. In late summer 2019 we came
into contact with The Institute of Transport Economics (TØI) 2, which is a "national
institution for transport research and development" in Norway. Even though there
are several data privacy issues that hampers the use of TØI’s position data in a MSc
thesis, they expressed an interest in learning more about map matching approaches
and how they could be applied to data in the possession of TØI. This served as an
affirmation that further exploration was of interest to researchers within TØI, and
likely other researchers at similar institutions as well, and that there was a genuine
use case for the capabilities provided by HMM-based map matching methods.

1https://www.defa.com/
2https://www.toi.no/

1



2 Øyvind Klåpbakken: Map matching using hidden Markov models

1.2 Previous work

The work presented in Newson and Krumm [1] is an influential and frequently
cited paper on map matching using HMMs. This paper presents how one can
create a map matching algorithm that enables integration of noisy measurements
and road network restrictions by formulating the problem as an HMM. The state
space is comprised of road segments that form connections between intersections.
Information about the layout and restrictions of the road network is introduced into
the model by defining transition probabilities that incorporate information about
the distance between various road segments. The transition probability is somewhat
involved, but the idea is that the distance travelled on the road network between
two measurements is close to the distance between the two measurements. The
noisy measurements are accounted for by assuming that the great circle distance
between a position measurement and road segment is normally distributed around
zero. This enables map matching using the Viterbi algorithm, with the output being
a sequence of road segments. The authors of the paper collected GPS data and
ground truth by driving a "known, planned route" with a GPS device located inside
the vehicle. The algorithm is shown to perform very well on this specific route and
was able to perfectly estimate the route travelled. It is worth noting that, although
the authors refer to the method as "using HMMs", the assumptions of an HMM is
violated by letting the transition probability depend on future observations. This
does in no way discredit their work, but it would be more precise to describe
the method as "based on the ideas of an HMM", or "inspired by HMMs". It also
has the effect of making the theoretical properties of an HMM invalid for this
method, which is an important note, seeing as the authors claim that the "goal
of the algorithm is to find the most probable path". This outcome can only be
guaranteed if the assumptions of the HMM hold.

The violation of the assumptions of an HMM by the method presented in
Newson and Krumm [1] is noted in Raymond et al. [2]. The paper proceeds by
introducing an HMM-based map matching algorithm that satisfies the assump-
tions of an HMM. This method uses the set of nodes in the graph representing
the road network as its state space. The measurements are assumed to be nor-
mally distributed around the "true" node, while the distance between subsequent
nodes is assumed to be exponentially distributed. The performance is shown to be
comparable to what is achieved in Newson and Krumm [1].

The earliest paper found on map matching using HMMs is Hummel [3]. The
HMM in this paper is, as in later work, constructed by using the road segments as
the state space. The emission probabilities are defined by assuming a zero-mean
normal distribution for the distance between an observation and the road segment
one is on. The paper also assumes that information about the heading of the
vehicle is present. This is incorporated into the model by assuming a zero-mean
normal distribution for the difference between the orientation of the road segment
and the heading of the vehicle. The transition probability is constructed so that,
when leaving a state, all directly connected states are equally likely to follow. All
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other states are assigned probability zero. A few additional extensions are also
suggested. This includes changing the state space to include a flag denoting the
travel direction, as well as a change to the transition probabilities that gives U-turns
a low probability. It is reported that an "error-free route estimate" is obtained for
real-world data, but there is no information about the exact methodology used for
evaluation.

Several other papers dedicated to this topic are focused on adaptations that
lower the computational cost of the methods. A notable example is Yang and
Gidófalvi [4], where candidate search is done using a combination of the k-nearest
neighbour algorithm and R-trees. The possible candidates are the individual seg-
ments of the road network. This is combined with the use of a hash table that gives
quick access to shortest paths. This, in addition to other changes and adaptions
such as penalization of backtracking, results in a method that is both efficient and
well-performing. We do, however, again note that the resulting method does not
satisfy the assumptions of an HMM since the transition probabilities depend on
future observations.

1.3 Overview

This section is an overview of what will be presented in the various chapters
of the thesis. Chapter 2 is a detailed presentation of the theory behind HMMs.
This includes material on the methods and techniques that make it possible to use
HMMs for map matching. The chapter starts by introducing the concept of a Markov
chain. We proceed by providing a general definition of an HMM. This includes the
introduction of an observation sequence and a hidden state sequence, along with
assumptions about the sequences and how they relate to each other. This is followed
by the introduction of the forward algorithm, the backward algorithm, the Viterbi
algorithm, and finally the expectation-maximization (EM) algorithm for HMMs
(also known as the Baum-Welch algorithm). The forward algorithm enables us to
compute the probability of a certain observation sequence (under the assumptions
of the HMM). The backward algorithm is used for computing quantities required for
the parameter estimation enabled by EM-algorithm. The Viterbi algorithm enables
us to obtain the maximum a posteriori (MAP) estimate of the state sequence of
the HMM. The last section of the chapter is devoted to issues related to scaling.
The issue of scaling becomes important during the implementation of the various
algorithms.

In Chapter 3, we will move from the general formulation of an HMM to the
specific formulation that allows us to do map matching. Defining the components
of the HMM requires that we have established the context the problem exists in.
This is done in the first part of the chapter, where we formally define the problem.
This does, among other things, include representing the road network as a graph
and defining the observation sequence as a sequence of points in some coordinate
system. Constructing a suitable HMM requires a state space that can somehow
represent the position of the object moving through the road network. One must
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also define transition probabilities, emission probabilities, and initial probabilities
that are consistent with and sensible for the specific state space. We will explore
two distinct state spaces. The first one has been used in previous work but does not
incorporate information about the travel direction. We, therefore, propose a new
state space formulation that incorporates travel direction by defining the states
such that information about a preceding location is included. This is followed by
an explanation of how the Baum-Welch algorithm can be applied to our problem
and how the resulting parameter estimates can be interpreted. We then present
how route estimates can be obtained from the state estimates found using the
Viterbi algorithm. The chapter is closed off with a discussion of how we evaluate
the performance of our method when the ground truth is known.

In Chapter 4, we introduce the set-up of our experiments. This includes a
discussion of the data sources and how we can use these to create a road network.
We proceed by giving a presentation of the route- and measurement simulation
procedure. This is followed by a relatively concise overview of the experiments
that will be conducted. The next sections present the experiments in detail. The
first section introduces the details of the parameter search. The purpose of the
parameter search is to find parameter values that maximize the performance of the
map matching methods. We move on to presenting how the Baum-Welch algorithm is
used for learning the transition probabilities of the model. The section is concluded
with a presentation of how the final performance evaluation is performed. The
chapter ends with a discussion of the software developed for this thesis. The code
presented here has been open-sourced and can be found on the author’s personal
GitHub profile 3. Parts of it has also been published as a package, and is available
under the name hmmpy on the Python Package Index (PyPI) 4.

Chapter 5 contains the results of the experiments presented in Chapter 4.
The results are discussed in Chapter 6 before the thesis is concluded with a final
summary of the thesis and a discussion of potential further work.

3https://github.com/klaapbakken
4https://pypi.org/project/hmmpy/



Chapter 2

Theory

2.1 Markov processes

Let X= {X i}Ni=1 be a finite sequence of random variables taking on values in the
space X . Such a sequence is often referred to as a stochastic process on X , with
X being known as the state space of the stochastic process. If the state space is
discrete we will refer to the stochastic process as a Markov chain [5]. A Markov
chain is a k-th order discrete-time Markov chain if the time between transitions is
fixed and the Markov property,

P (Xn = xn | Xn−1 = xn−1, . . . , X1 = x1)

= P (Xn = xn | Xn−1 = xn−1, . . . , Xn−k = xn−k) ,
(2.1)

holds for all n ∈N = {1, . . . , N}.
In the following sections we will exclusively be working with first-order Markov

chains. A Markov chain is said to time-homogeneous if, for all (x , y) ∈ X 2, we
have that P (Xn = x | Xn−1 = y) is independent of n. In this case the transition
probabilities will be denoted by a (y, x) = P (Xn = x | Xn−1 = y). We will assemble
these transition probabilities in a transition matrix A by associating each state with
an index from the index set I = {1, . . . , M}, where M = |X | is the cardinality of X .
We will let x (i) denote the state identified by index i ∈ I. The element in position
(i, j) of the transition matrix A is given by ai j = P

�

Xn = x ( j) | Xn−1 = x (i)
�

. In order
to fully describe the Markov chain we also require a probability distribution for the
initial state. This is known as the initial probability and will be denoted by either
π (x) = P (X1 = x) or πi = P

�

X1 = x (i)
�

, depending on the situation.
The probability of a realization of a Markov chain, denoted by x= {x i}Ni=1, is

given by

P (X= x) = π (x1)
N
∏

i=2

a (x i−1, x i) . (2.2)

5



6 Øyvind Klåpbakken: Map matching using hidden Markov models

X1 ∼ π

X2 ∼ a (X1, ·)

Z1 ∼ b (·, X1)

X3 ∼ a (X2, ·)

Z2 ∼ b (·, X2)

Z3 ∼ b (·, X3)

Figure 2.1: An illustration of an HMM. The graph shows both the latent variables
and the observations, along with information about the probability distribution
that they arise from.

2.2 Hidden Markov models

Let X = {X i}Ni=1 be a time-homogeneous Markov chain, as defined in Section 2.1. Let
Z= {Zi}Ni=1 be another sequence of random variables. In a hidden Markov model
(HMM) one assumes that, for each n ∈N , the random variable Zn has a distribution
that depends on the unobserved random variable Xn. These unobserved random
variables are often referred to as the hidden states or the latent variables. The
sequence Z will be referred to as the observations. We will for the remainder of this
chapter treat each Zn, n ∈N , as a discrete random variable. This does not affect the
forthcoming derivations in any significant way, seeing as the approach is similar for
a continuous state space. It is done purely to avoid notational inconvenience. The
random variable Zn is, given Xn, n ∈N , assumed to be conditionally independent
of all other variables, both hidden and observed [6] [7]. We have

P (Zn = z | X= X,Z1:n−1 = z1:n−1,Zn+1:N = zn+1:N ) =

P (Zn = z | Xn = xn) ,
(2.3)

where Zi: j , i ≤ j, i, j ∈ N denotes the subsequence {Zi , . . . , Z j} ⊆ Z. The relation
between the observed variables Z and the hidden states X is, for each n ∈N , given
by some conditional probability distribution

P (Zn = z | Xn = x) = b (z, x) . (2.4)

This conditional probability distribution is known as the emission probability of
the HMM. In the case of a continuous Zn, n ∈N , one would swap the probability
mass function defining b (z, x) for the appropriate probability density function. In
Figure 2.1 we show the various components of the HMM and how they fit together.
The probability of a realized observation sequence z when given the state sequence
x is the product of the conditional marginal distributions.

P (Z= z | X= x) =
N
∏

i=1

P (Zi = zi | X i = x i) =
N
∏

i=1

b (zi , x i) . (2.5)
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2.3 Forward algorithm

Consider an HMM as defined in Section 2.2. The probability of an arbitrary obser-
vation sequence z is given by

P (Z= z) =
∑

x∈X N

P (Z= z | X= x)P (X= x) . (2.6)

In general, evaluating this requires 2N ·M N calculations, which is computationally
infeasible for large values of M and N . It is therefore desirable to use an alternative
method for evaluating this probability, one that leverages the conditional inde-
pendence assumptions of the HMM. The preferred method is known as the forward
algorithm and allows us to evaluate the probability using only M2N calculations
[8]. This is done by computing only the required quantities for every time-step
using a recursive relation. We will now turn our attention to derivation of the
mentioned recursive relation.

By rewriting (2.6) using (2.5) and (2.2) we get

P (Z= z) =
∑

x∈X N

N
∏

i=1

b (zi , x i)P (X= x)

=
∑

x∈X N

�

π (x1) b (z1, x1)
N
∏

i=2

b (zi , x i) a (x i−1, x i)

�

.

(2.7)

The probability of being in state x at time n while having observed the sequence
z1:n up until that point is denoted by

αn(x) = P (Xn = x ,Z1:n = z1:n) . (2.8)

The definition of conditional probability [5] states that, for two random variables
X and Y ,

P (X = x , Y = y) = P (X = x | Y = y)P (Y = y) . (2.9)

Using this we can write α1(x) as

α1(x) = P (Z1 = z1 | X1 = x)P (X1 = x) = b (z1, x)π (x) . (2.10)

By conditioning on the event Xn = y , and subsequently applying the definition of
conditional probability, we get, for 1≤ n< N ,

αn+1(x) =
∑

y∈X
P (Z1:n+1 = z1:n+1, Xn = y, Xn+1 = x)

=
∑

y∈X
P (Zn+1 = zn+1 | Z1:n = z1:n, Xn = y, Xn+1 = x)

· P (Z1:n = z1:n, Xn = y, Xn+1 = x) .

(2.11)
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By utilizing the conditional independence of Zn+1 given Xn+1, the Markov property
(2.1), and the definition of conditional probability (2.9) we arrive at the recursive
relation between αn(x) and αn+1(x), given by

αn+1(x) =
∑

y∈X
P (Zn+1 = zn+1 | Xn+1 = x)

· P (Xn+1 = x | Xn = y,Z1:n = z1:n)

· P (Xn = y,Z1:n = z1:n)

= b (zn+1, x)
∑

y∈X
a (y, x)αn(y).

(2.12)

This results in Algorithm 1, which outlines the various steps that enable the
computation of αn(x (i))∀ (n, i) ∈ N × I. The probability of the event Z = z can

Algorithm 1: Forward algorithm for calculating αn(x (i)) for (n, i) ∈N×I.

for i = 1:M do
α1(x (i)) = b

�

z1, x (i)
�

π
�

x (i)
�

end for
for n = 1:N-1 do

for i = 1:M do
αn+1(x (i)) = b

�

zn, x (i)
�∑M

j=1 a
�

x ( j), x (i)
�

αn(x ( j))
end for

end for

now be computed by realizing that
∑

x∈X
αN (x) =

∑

x∈X
P (Z1:N = z1:N , XN = x)

=
∑

x∈X
P (Z1:N = z1:N | XN = x)P (XN = x)

= P (Z= z)

(2.13)

2.4 Backward algorithm

We will now introduce another method, known as the backward algorithm [8], that
enables computation of the quantity

βn(x) = P (Zn+1:N = zn+1:N | Xn = x) . (2.14)

The motivation for computing βn(x) will become clear in Section 2.6, where
we apply the expectation-maximization (EM) algorithm in order to learn the
parameters of the HMM. The backward algorithm is, like the forward algorithm,
based on a recursive relation for computing the desired quantity.
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In the following derivation we rely on two important results from basic prob-
ability theory. The first result is Bayes’ theorem [5],

P (X = x | Y = y) =
P (Y = y | X = x)P (X = x)

P (Y = y)
. (2.15)

The following result can be derived from the definition of conditional probability
(2.9).

P (X = x , Y = y | Z = z) = P (X = x | Y = y, Z = z)P (Y = y | Z = z) (2.16)

We now proceed to the derivation of the recursive relation.

βn(x) = P (Zn+1:N = zn+1:N | Xn = x)

=
P (Zn+1:N = zn+1:N , Xn = xn)

P (Xn = x)

=

∑

y∈X P (Zn+1 = zn+1,Zn+2:N = zn+2:N , Xn = x | Xn+1 = y)P (Xn+1 = y)

P (Xn = x)

=
∑

y∈X

�

P (Zn+1 = zn+1 | Zn+2:N = zn+2:N , Xn = x , Xn+1 = y)
P (Xn = x)

· P (Zn+2:N = zn+2:N , Xn = x | Xn+1 = y)P (Xn+1 = y)
�

=
∑

y∈X

�

b (zn+1, y)P (Zn+2:N = zn+2:N | Xn = x , Xn+1 = y)

·
P (Xn = x | Xn+1 = y)P (Xn+1 = y)

P (Xn = x)

�

=
∑

y∈X
b (zn+1, y)βn+1(y)a (x , y)

(2.17)

The path to this result is started by conditioning on Xn+1 = y and summing over
all y ∈ X . We proceed by repeatedly applying the laws of conditional probability
and then recalling that Zn+1 is independent of all other variables when Xn+1 is
given. The final step is a direct application of Bayes theorem.

This result gives rise to the backward algorithm, see Algorithm 2, which enables
us to compute βn(x (i)) for (n, i) ∈N × I.

2.5 Viterbi algorithm

One of the primary objectives when working with HMMs is the estimation of the
latent variables when given a sequence of observations. This is typically done by
finding the sequence of latent variables that maximizes the posterior probability
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Algorithm 2: Backward algorithm for calculating βn(x (i)) for (n, i) ∈
{1, . . . , N} × I

for i = 1:M do
βN (x (i)) = 1

end for
for n = N-1:-1:1 do

for i = 1:M do
βn(x (i)) =

∑M
j=1 b

�

zn+1, x ( j)
�

βn+1(x ( j))a
�

x (i), x ( j)
�

end for
end for
.

P (X= x | Z= z). The method of choice for accomplishing this is known as the Vi-
terbi algorithm [8] [9] [10]. We will refer to the resulting estimate as the maximum
a posteriori (MAP) estimate and denote it by

x? = argmax
x∈X N

P (X= x | Z= z) . (2.18)

We note that

x? = argmax
x∈X N

P (X= x,Z= z)
P (Z= z)

= arg max
x∈X N

P (X= x,Z= z) . (2.19)

There are also other ways of estimating the latent variables. One possible
approach is to, for each n ∈ N , choose the state x that maximizes b (zn, x). By
doing this one ignores the information about the probability of various state
transitions, and the MAP estimate is therefore usually preferred. This method can,
however, be useful for benchmarking and baseline estimates.

The Viterbi algorithm can be understood intuitively by thinking about movement
through a lattice, as seen in Figure 2.2. Let us say that we are in state x at time
n. There are now M possible candidates that we can move to for time n+ 1, with
all transitions having a specified transition probability. The lattice is constructed
by considering all possible transitions for all states at each time step. The Viterbi
algorithm works by utilizing how the most likely path to certain states evolves. Let
δn(x) be the probability of the most likely sequence of states ending in state x at
time n. In other words,

δn(x) = max
x1:n−1

P (X1:n−1 = x1:n−1, Xn = x ,Z1:n = z1:n) . (2.20)
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By using this we can find the recursive relation

δn+1(y) =max
x1:n

P (X1:n = x1:n,Z1:n = z1:n, Xn+1 = y, Zn+1 = zn+1)

=max
x
[P (Xn+1 = y, Zn+1 = zn+1 | Xn = x)

·max
x1:n−1

P (X1:n−1 = x1:n−1,Z1:n = z1:n, Xn = x)]

=max
x
[P (Zn+1 = zn+1 | Xn+1 = y)P (Xn+1 = y | Xn = x)δn(x)]

=max
x
[δn(x)a (x , y)] b (zn+1, y) .

(2.21)

We arrived at this relation by using (2.9) for the first step and (2.16) for the second
step.

The procedure can be started by realizing that δ1(x) = P (X1 = x , Z1 = z1) =
α1(x), as defined in Equation (2.8). To find the most likely state sequence, and
not just the probability of it, we introduce the quantity

ψn(x) = arg max
y

[δn−1(y)a (y, x)] . (2.22)

Calculating ψn(x)∀ x ∈ X at every time 2≤ n≤ N allows us to find the preceding
state when knowing the state that follows it. The last state in the state sequence
is the one that maximizes δN (x). One can then find the most likely path in its
entirety by evaluating ψn(x) at the various time steps. In Figure 2.2 we show
the lattice with dotted lines moving from left to right. These dotted lines indicate
that, at each time step, δn+1(x) is computed by considering all the transitions that
lead to state x . Upon reaching the last time-step, seen on the right in Figure 2.2,
one identifies the state x that maximizes δN (x). By using the quantities ψn(x),
(n, i) ∈N ×I, we can now backtrack to find the sequence of states that maximizes
P (X= x,Z= z). This is, as we recall, the MAP estimate x?. The backtracking is
indicated by the solid lines going from right to left in Figure 2.2.

This leads us to Algorithm 3, the Viterbi algorithm. This algorithm is not
numerically stable for large values of N . This is due to the fact that δn(x)a

�

x , x (i)
�

approaches zero as N increases, and the terms can therefore not be accurately
represented in computations. It is, however, straightforward to take the logarithm
of all the involved quantities and do all computations on a logarithmic scale
instead. This does not affect the correctness since log(x) is strictly increasing. The
alternative implementation is provided in Algorithm 4.

2.6 Expectation-maximization for HMMs

A procedure for estimating the unknown parameters of an HMM can be obtained
by using the expectation-maximization (EM) algorithm. The general formulation
of the EM algorithm involves finding an expression for the expected value of the
log-likelihood of the complete data when given the incomplete data and the current
parameter estimates. This is known as the E-step. The parameter estimates are
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n− 1

X (1)n−1

X (2)n−1

X (3)n−1

n

X (1)n

X (2)n

X (3)n

n+ 1

X (1)n+1

X (2)n+1

X (3)n+1

Figure 2.2: An illustration showing how the Viterbi algorithm computes the
required quantities by moving through a lattice. Forward movement is indicated
by dotted lines, while backtracking to find the MAP estimate is indicated by solid
lines.

Algorithm 3: Viterbi algorithm for calculating MAP estimate.

for i = 1:M do
δ1(x (i)) = b

�

z1, x (i)
�

π
�

x (i)
�

ψ1(x (i)) = 0
end for
for n = 1:N do

for i = 1:M do
δn(x (i)) =maxx

�

δn(x)a
�

x , x (i)
��

b
�

zn+1, x (i)
�

ψn(x (i)) = argmaxx δn−1(x)a
�

x , x (i)
�

end for
end for
for n = N-1:-1:1 do

x?n =ψn+1(x?n+1)
end for
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Algorithm 4: Numerically stable version of the Viterbi algorithm.

for i = 1:M do
log

�

δ1

�

x (i)
��

= log
�

b
�

z1, x (i)
��

+ log
�

π
�

x (i)
��

ψ1

�

x (i)
�

= 0
end for
for n = 1:N do

for i = 1:M do
log

�

δn

�

x (i)
��

=
maxx

�

log (δn (x)) + log
�

a
�

x , x (i)
���

+ log
�

b
�

zn+1, x (i)
��

ψn

�

x (i)
�

= arg maxx

�

log (δn−1 (x)) + log
�

a
�

x , x (i)
���

end for
end for
for n = N-1:-1:1 do

x?n =ψn+1

�

x?n+1

�

end for

then updated by finding the parameter values that maximize the expression found
in the E-step. This is known as the M-step. It can be shown that by repeatedly doing
the E-step and the M-step one will converge to a local maxima of the incomplete
likelihood [11]. The EM algorithm is, when applied to HMMs, often referred to as
the Baum-Welch algorithm [8] [12] [13]. The unknown parameters can, in the case
of an HMM, include the transition probabilities between the different states, the
initial probabilities, and the emission probabilities connecting the latent variables
to the observations. In the following we denote the collection of such unknown
parameters by λ.

The E-step involves finding an expression for the expected complete-data log-
likelihood with respect to the unobserved data when given the observed data
and the current parameter estimates. For a HMM it is very natural to use the
observations, Z= {Zi}Ni=1, as the observed data, while the unobserved data is the
state sequence, X = {X i}Ni=1. The resulting expression that has to be maximized
with respect to λ is

Q(λ,λ(i−1)) = E
�

log p(z,X;λ) | z,λ(i−1)
�

. (2.23)

This expression can be rewritten as

Q(λ,λ(i−1)) =
∑

x∈X N

log p(z,x;λ) · p(x | z;λ(i−1)), (2.24)

where p(z,x) and p(x | z) is shorthand for P (X= x,Z= z) and P (X= x | Z= z)
respectively. We specify the parameters in use whenever clarity regarding this is
required.

The M-step involves finding the value of λ that maximizes Q(λ,λ(i−1)) and



14 Øyvind Klåpbakken: Map matching using hidden Markov models

updating the parameter estimates to this value. In other words,

λ(i) = arg max
λ

Q(λ,λ(i−1)). (2.25)

We start off by finding an expression for p(z,x) in terms of already known quantities.
This can be done by remembering that the observations, at time n, only depend on
Xn. We also recall that Xn only depends on the previous state Xn−1. We combine
this with the definition of conditional probability in Equation (2.9) to end up with

p(z,x) = P (Z= z,X= x) = π (x1) a (x1, x2)
N
∏

i=2

a (x i−1, x i) b (zi , x i) . (2.26)

Taking the logarithm of this leaves us with

log p(z,x) = logπ (x1) +
N
∑

i=1

log b (zi , x i) +
N
∑

i=2

log a (x i−1, x i) . (2.27)

The next objective is to find the parameters λ(i) that maximize Q(λ,λ(i−1)) with
respect to λ. We note that, since

p(x | z;λ(i−1)) =
p(x,z;λ(i−1))
p(z;λ(i−1))

, (2.28)

we get

λ(i) = argmax
λ

∑

x∈X N

log p(z,x;λ)p(x | z,λ(i−1))

= argmax
λ

∑

x∈X N

log p(z,x)
p(x,z | λ(i−1))
p(z | λ(i−1))

= argmax
λ

∑

x∈X N

log p(z,x)p(x,z | λ(i−1))

= argmax
λ

Q̂(λ,λ(i−1)).

(2.29)

This can be done because p(z | λ(i−1)) is constant and does not depend on λ. In
order to maximize Q(λ,λ(i−1)) it is therefore sufficient to maximize Q̂(λ,λ(i−1)).
The resulting problem is a constrained optimization problem, with constraints en-
suring that the transition, emission and initial probabilities satisfy the requirements
of a probability distribution. The constraints related to the initial and transition
probabilities are

∑M
i=1π

�

x (i)
�

= 1 and
∑M

j=1 a
�

x (i), x ( j)
�

= 1∀ i ∈ I. The con-
straints related to the emission probabilities vary depending on the assumptions
of the HMM. In our case we will treat the emission probabilities as fixed, and can
therefore avoid the problem entirely.

Before we continue we want to find suitable expressions for two quantities
that will be required at a later stage in this section. The first quantity of interest is

P
�

Xn−1 = x (i), Xn = x ( j),Z1:N = z1:N

�

.
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This can be rewritten as

P
�

Xn = x (i), Xn+1 = x ( j),Z1:N = z1:N

�

= P
�

Zn+1 = zn+1,Zn+2:N = zn+2:N | Xn+1 = x ( j), Xn = x (i),Z1:n = z1:n

�

·P
�

Xn+1 = x ( j), Xn = x (i),Z1:n = z1:n

�

= P
�

Zn+1 = zn+1 | Xn+1 = x ( j), Xn = x (i),Z1:n = z1:n,Zn+2:N = zn+2:N

�

·P
�

Zn+2:N = zn+2:N | Xn+1 = x ( j), Xn = x (i),Z1:n = z1:n

�

·P
�

Xn+1 = x ( j) | Xn = x (i),Z1:n = z1:n

�

· P
�

Xn = x (i),Z1:n = z1:n

�

= b
�

zn+1, x ( j)
�

βn+1(x
( j))a

�

x (i), x ( j)
�

αn(x
(i)).

(2.30)

We will also develop a more suitable expression for

P
�

Z1:N = z1:N , Xn = x (i)
�

.

We get
P
�

Z1:N = z1:N , Xn = x (i)
�

= P
�

Z1:n = Z1:n,Zn+1:N = Zn+1:N , Xn = x (i)
�

= P
�

Zn+1:N = Zn+1:N | Z1:n = Z1:n, Xn = x (i)
�

·P
�

Z1:n = Z1:n, Xn = x (i)
�

= αn(x
(i))βn(x

(i)).

(2.31)

We now wish to develop expressions for estimating the transition probabilities
ai j and initial probabilities πi while keeping the emission probabilities fixed. Any
parameters associated with the emission probabilities are assumed to be fixed in a
way that satisfies whatever constraints they must maintain. We have

λ= (A,π) . (2.32)

The constraints that need to be satisfied are:

N
∑

j=1

ai j = 1, ∀i ∈ I, and (2.33)

N
∑

i=1

πi = 1. (2.34)

In order to maximize Q̂(λ,λ(i−1))while satisfying the constraints we use the method
of Lagrange multipliers [14]. A general formulation of the the Lagrangian function
L(x,θ ) is

L(x,θ ) = f (x)−
m
∑

i=1

θi gi(x), (2.35)

where f (x) is the function that we wish to maximize, m is the number of constraints,
and gi(x), i = 1, . . . , m comes from a constraint gi(x) = 0. By taking the derivative
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of L(x,θ ) with respect to its variables and setting it equal to zero we can find the
point x? that maximizes f while respecting the constraints [15].

The Lagrangian for our specific problem becomes

L(λ,θ ) = f (λ)−
N
∑

i=1

θi gi(λ)− θN+1h(λ), (2.36)

where

gi(λ) =
N
∑

j=1

ai j − 1, i ∈ I, (2.37)

h(λ) =
N
∑

i=1

πi − 1, (2.38)

and

f (λ) =
∑

x∈X N

�

logπ (x1) p(z,x;λ(i−1))

+
N
∑

i=1

log b (zi , x i) p(z,x;λ(i−1))

+
N
∑

i=2

log a (x i−1, x i) p(z,x;λ(i−1))
�

.

(2.39)

We proceed by taking the derivative of the Lagrangian with respect to the various
parameters of λ and setting them equal to zero.

∂L(λ,θ )
∂ ai j

=
∂ f (λ)
∂ ai j

− θi
∂ gi(λ)
∂ ai j

= 0 ∀ (i, j) ∈ I2 (2.40)

∂L(λ,θ )
∂ θi

=
∂ gi(λ)θi

∂ θi
= 0 ∀ i ∈ I (2.41)

∂L(λ,θ )
∂ πi

=
∂ f (λ)
∂ πi

+ θN+1
∂ h(λ)
∂ πi

= 0 ∀ i ∈ I (2.42)

∂L(λ,θ )
∂ θN+1

=
∂ θN+1h(λ)
∂ θN+1

= 0 ∀ i ∈ I (2.43)

The system shown in equations (2.40) through (2.43) must now be solved.
Our first move is to handle (2.40) and (2.41) in order to find update equations for
ai j. The continuation is to deal with (2.42) and (2.43) to find update equations
for πi . To start things off, we find that

∂ f (λ)
∂ ai j

=
∂

∂ ai j

∑

x∈X N

N
∑

n=2

log a (xn−1, xn) p(z,x;λ(i−1)). (2.44)
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Here, we take the sum of log a (xn−1, xn) for n = 1 . . . , N for each specific state
sequence and weight it by the probability of the corresponding state sequence. It is
in our case more suitable to sum over log ai j , (i, j) ∈ I2 for n = 1 . . . , N and weight
it by the probability that such a transition would occur at such a time. This is an
equivalent approach, seeing as we are still summing over all possible values of X.

∂ f (λ)
∂ ai j

=
M
∑

k=1

M
∑

l=1

N
∑

n=2

�

∂

∂ ai j
log a

�

x (l), x (k)
�

· P
�

Xn = x (l), Xn+1 = x (k),Z1:N = z1:N ;λ(i−1)
�

�

=
N
∑

n=2

�

∂

∂ ai j
log ai j

· P
�

Xn−1 = x (i), Xn = x ( j),Z1:N = z1:N ;λ(i−1)
�

�

=

∑N
n=2 P

�

Xn−1 = x (i), Xn = x ( j),Z1:N = z1:N ;λ(i−1)
�

ai j
.

(2.45)

In preparation for the next step we note that

θi
∂

∂ ai j
gi(λ) = θi . (2.46)

We now have

∂L(λ,θ )
∂ ai j

=

∑N
n=2 P

�

Xn−1 = x (i), Xn = x ( j),Z1:N = z1:N ;λ(i−1)
�

ai j
+ θi = 0

⇒ ai j =

∑N
n=2 P

�

Xn−1 = x (i), Xn = x ( j),Z1:N = z1:N ;λ(i−1)
�

θi
.

(2.47)

Continuing from Equation (2.41) we get

∂L(λ,θ )
∂ θi

=
∂ gi(λ)θi

∂ θi
=

M
∑

j=1

ai j − 1= 0

⇒ 1=
M
∑

j=1

∑N
n=2 P

�

Xn−1 = x (i), Xn = x ( j),Z1:N = z1:N ;λ(i−1)
�

θi

⇒ θi =
N
∑

n=2

M
∑

j=1

P
�

Xn−1 = x (i), Xn = x ( j),Z1:N = z1:N ;λ(i−1)
�

.

(2.48)



18 Øyvind Klåpbakken: Map matching using hidden Markov models

Combining (2.47) and (2.48) yields

ai j =

∑N
n=2 P

�

Xn−1 = x (i), Xn = x ( j),Z1:N = z1:N ;λ(i−1)
�

∑N
n=2

∑M
j=1 P

�

Xn−1 = x (i), Xn = x ( j),Z1:N = z1:N ;λ(i−1)
�

=

∑N
n=2 P

�

Xn−1 = x (i), Xn = x ( j),Z1:N = z1:N ;λ(i−1)
�

∑N
n=2 P

�

Xn−1 = x (i),Z1:N = z1:N ;λ(i−1)
�

.

(2.49)

In order to find update equations for the initial probabilities we start where
we left off in Equation (2.42) and get

∂ f (λ)
∂ πi

=
∂

∂ πi

∑

x∈X N

logπ(x1)P
�

Z1:N = z1:N ,X= x;λ(i−1)
�

=
N
∑

j=1

∂

∂ πi
logπ(x ( j))P

�

Z1:N = z1:N , X1 = x ( j);λ(i−1)
�

=
P
�

Z1:N = z1:N , X1 = x (i);λ(i−1)
�

πi
,

(2.50)

and

θN+1
∂ h(λ)
∂ πi

= θN+1. (2.51)

Moving on from Equation (2.43) we get

∂L(λ)
∂ θN+1

=
N
∑

j=1

π j − 1. (2.52)

The argument used to avoid summing over all sequences in Equation (2.50) is
similar to the one made before Equation (2.44). We are still "summing out" every
possible value of X, but this is now done by using groups of sequences with identical
initial state. By combining (2.50) and (2.51) we get

∂L(λ,θ )
∂ πi

=
P
�

Z1:N = z1:N , X1 = x (i);λ(i−1)
�

πi
+ θN+1 = 0

⇒ πi =
P
�

Z1:N = z1:N , X1 = x (i);λ(i−1)
�

θN+1
.

(2.53)

By moving on from Equation (2.43) we get

N
∑

j=1

π j = 1⇒ 1=
1
θN+1

N
∑

j=1

P
�

Z1:N = z1:N , X1 = x ( j);λ(i−1)
�

⇒ θN+1 =
N
∑

j=1

P
�

Z1:N = z1:N , X1 = x ( j);λ(i−1)
�

.

(2.54)



Chapter 2: Theory 19

Finally, by combining Equation (2.53) and (2.54) we arrive at

πi =
P
�

Z1:N = z1:N , X1 = x (i);λ(i−1)
�

∑N
j=1 P

�

Z1:N = z1:N , X1 = x ( j);λ(i−1)
�

=
P
�

Z1:N = z1:N , X1 = x (i);λ(i−1)
�

P
�

Z1:N = z1:N ;λ(i−1)
� .

(2.55)

In the literature, such as [8], it is common to express the update equations in terms
of the quantities ξn(i, j) and γn(i) defined as

γn(i) =
P
�

Z1:N = z1:N , Xn = x (i);λ(i−1)
�

P
�

Z1:N = z1:N ;λ(i−1)
� (2.56)

=
αn(x (i))βn(x (i))

∑M
j=1αn(x ( j))βn(x ( j))

, (2.57)

ξn(i, j) =
P
�

Xn = x (i), Xn+1 = x ( j),Z1:N = z1:N ;λ(i−1)
�

P (Z1:N = z1:N )
(2.58)

=
b
�

zn+1, x ( j)
�

βn+1(x ( j))a
�

x (i), x ( j)
�

αn(x (i))

P (Z1:N = z1:N )
. (2.59)

We arrived at this by remembering the expressions found in Equation (2.30) and
(2.31). By incorporating ξn(i, j) and γn(i) we get the following update equations:

ai j ←

∑N−1
n=1 ξn(i, j)
∑N−1

n=1 γn(i)
, and (2.60)

πi ← γ1(i). (2.61)

This leads us to Algorithm 5, known as the Baum-Welch algorithm.
In the case of multiple independent sequences of observations [16], denoted

by Z = (z1, . . . ,zD), we get that the likelihood takes the form

D
∏

d=1

p(zd ,xd) =
D
∏

d=1

π
�

x1,d

�

a
�

x1,d , x2,d

�

Nd
∏

i=2

a
�

x i−1,d , x i,d

�

b
�

zi,d , x i,d

�

. (2.62)

Here, D is the number of sequences. A single sequence of observations is denoted
by zd , d ∈ {1, . . . , D}. Each sequence zd ∈ Z is associated with a hidden state
sequence xd ∈ X Nd . These can be assembled in manner similar to Z , giving us
X = (x1, . . . ,xD). Nd denotes the number of observations in zd . A situation with
Z instead of z does not change the EM procedure in any significant way, except
introducing a sum over the various observation sequences in the log-likelihood. If
one were to use this log-likelihood instead of the one used in our derivations, one
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Algorithm 5: Baum-Welch algorithm, or EM algorithm for HMMs.

Compute αn(x (i)) using the forward algorithm
Compute βn(x (i)) using the backward algorithm
for n = 1:N do

for i = 1:M do

γn(i) =
αn(x (i))βn(x (i))

∑M
k=1 αn(x (k))βn(x (k))

for j = 1:M do

ξn(i, j) =
b(zn+1,x ( j))βn+1(x ( j))a(x (i),x ( j))αn(x (i))

∑M
k=1 αn(x (k))βn(x (k))

end for
end for

end for
for i = 1:M do

for j = 1:M do

ai j =
∑N−1

n=1 ξn(i, j)
∑N−1

n=1 γn(i)

end for
πi = γ1(i)

end for

would end up with the following update equations:

ai j ←

∑D
d=1

∑Nd−1
n=1 ξn,d(i, j)

∑D
d=1

∑Nd−1
n=1 γn,d(i)

, and (2.63)

πi ←

∑D
d=1 γ1,d(i)

D
. (2.64)

Here, ξn,d(i, j) and γn,d(i) is used to denote ξn(i, j) and γn(i) calculated using
the observation sequence zd . These update equations are known as Levinson’s
training equations [17]. Algorithm 5 can easily be adapted to this new situation by
adding a for-loop that iterates over all observation sequences in order to calculate
ξn,d(i, j) and γn,d(i). The update equations in Algorithm 5 would also be updated
to match Equation (2.63) and (2.64).

2.7 Scaling

If one were to implement the forward algorithm, the backward algorithm and the
EM algorithm exactly as presented in the previous sections one would likely run
into computational issues, especially for large N . This happens because the values
of αn(x) and βn(x) quickly become too small to be accurately represented on a
computer. It is therefore necessary to apply a scaling procedure [8].
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The scaling procedure presented here will ensure that all quantities in the
forward algorithm, backward algorithm and the Baum-Welch algorithm will take on
values that remain reasonably close to 1. This is achieved by swapping αn(x) in the
forward algorithm with the scaled values α̂n(x). The scaled values are computed
using

α̂n(x
(i)) =

∑M
j=1 α̂n−1(x ( j))a

�

x ( j), x (i)
�

b
�

zn, x ( j)
�

∑M
k=1

∑M
l=1 α̂n−1(x (l))a

�

x (l), x (k)
�

b
�

zn, x (l)
�
, (2.65)

for n≥ 2. The initial value α̂1(x) is

α̂1(x) =
b (z1, x)π (x)

∑M
i b

�

z1, x (i)
�

π
�

x (i)
�
. (2.66)

By induction one finds that

α̂n−1(x) =

�n−1
∏

t=1

ct

�

αn−1(x), (2.67)

where ct =
�

∑M
i=1αn(x (i))

�−1
. The scaled quantity can be rewritten as

α̂n(x
(i)) =

∑M
j=1αn−1

�

∏n−1
t=1 ct

�

(x ( j))a
�

x ( j), x (i)
�

b
�

zn, x ( j)
�

∑M
k=1

∑M
l=1αn−1

�

∏n−1
t=1 ct

�

(x (l))a
�

x (l), x (k)
�

b
�

zn, x (l)
�

. (2.68)

The values of βn(x) in the backward algorithm are swapped with the scaled values
β̂n(x), defined as

β̂n(x) = cnβn(x). (2.69)

We now note that

α̂n(x) =

� n
∏

t=1

ct

�

αn(x) = Cnαn(x) (2.70)

β̂n+1(x) =

� n
∏

t=n+1

ct

�

= Dn+1βn+1(x) (2.71)

By using the scaled quantities α̂n(x) and β̂n(x) in the EM algorithm we get

ai j =

∑M
n=1 b

�

zn+1, x ( j)
�

β̂n+1(x ( j))a
�

x (i), x ( j)
�

α̂n(x (i))
∑N−1

n=1

∑M
k=1 b

�

zn+1, x (k)
�

β̂n+1(x (k))a
�

x (i), x (k)
�

α̂n(x (i))

=

∑M
n=1 b

�

zn+1, x ( j)
�

Dn+1βn+1(x ( j))a
�

x (i), x ( j)
�

Cnαn(x (i))
∑N−1

n=1

∑M
k=1 b

�

zn+1, x (k)
�

Dn+1βn+1(x (k))a
�

x (i), x (k)
�

Cnαn(x (i))
.

(2.72)

Since CnDn+1 =
�

∏N
i=1 cn

�

is independent of n we get that the terms CnDn+1 in the
nominator and denominator cancel each other out. The update equation therefore
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evaluates to the same value regardless of whether the scaled quantities are used
or not.

When working exclusively with the scaled values α̂n(x) we can not evaluate
the probability P (Z= z) the same way as before. We can, however, use the fact
that

log P (Z= z) = −
N
∑

n=1

log cn. (2.73)

This is justified by

M
∑

i=1

α̂n(x
(i)) = CN

M
∑

i=1

αN (x
(i)) = CN P (Z= z) = 1

⇒ P (Z= z) =
1

CN

⇒ log P (Z= z) = −
N
∑

n=1

log cn.

(2.74)



Chapter 3

Methods

3.1 Problem formulation

The objective of this thesis is to explore and assess the viability of using HMMs for
map matching. Map matching refers to the estimation of an objects travel route by
using a sequence of measurements of the objects position at various times. These
measurements are, in real-world scenarios, typically GPS measurements. A travel
route is, at its core, exact information about how the position of the object evolves
throughout time. This definition is, however, not suitable for our purpose. We will
therefore think of a travel route as a sequence of connected edges in graph, where
the graph represents a road network. Each edge in the graph can be interpreted
as a straight line between its tail and its head. The edges vary in length and can
be combined in different ways to represent different kinds of road segments. A
sharp turn will be approximated by several short edges, while other types of road
segments, such as a freeway, may be accurately represented by fewer, longer edges.
When defining a travel route as a sequence of edges we must assume that the
travel does indeed happen on some sort of network. Such behaviour is exhibited
by cars and other similar vehicles. We will therefore, for the purpose of this thesis,
consider only the movement of such vehicles on an appropriate road network.

We will now provide a detailed presentation of the various components involved
in the problem. This is required to both define the problem in rigorous manner and
formulate an HMM that enables travel route estimation. We will also discuss the
observations and the assumptions we make about them. Following this, we will
define the HMM. The presentation of the HMM will be divided into three parts; the
state space, the transition and initial probabilities, and the emission probabilities.

3.2 Major components

3.2.1 Road network

It is natural to represent a road network as some variant of a graph. Both a directed
graph and an undirected graph can be suitable, depending on the situation. An

23
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undirected graph is the simplest way of representing a road network as a graph, but
makes it impossible to represent one-way streets. A more accurate representation
of a road network can be achieved by using a directed graph, seeing as this can
better represent the real-world situation. The graph is defined as

G = (N , E) , (3.1)

where N is the set of nodes and E is the set of edges. The edge set must consists
exclusively of directed edges, or exclusively of undirected edges. An undirected
edge e ∈ E will be denoted by e = {n1, n2}, with n1, n2 ∈ N . A directed edge
will be denoted by e = (n1, n2), with n1, n2 ∈ N . The notation Gu and Gd will be
used when it is necessary to specify whether a graph is respectively undirected or
directed. Similarly, the set of undirected or directed edges will be referred to using
the notation Eu and Ed .

We will now discuss the variety of ways in which we can think about the edges
and nodes. The first interpretation is to think of them simply as the components of
a graph that expresses how certain objects in a road network is related to each
other. This is, however, not sufficient for our purpose. It is crucial for the problem
we are trying to solve that we know the geographical location of the different
nodes. When letting the nodes represent nodes in space it is also natural to let the
edge represent some sort of curve. In a Euclidean plane it is sensible to let the edge
be described by a linear function fe(x) = ax + b, x− ≤ x ≤ x+, with x− and x+
being the x-coordinates of the nodes connected by the edge. When the points in
space are not located on a Euclidean plane, such as when the position is given by
longitude and latitude we think of the edges as the shortest path between the two
points. We rarely need to concern ourselves about the latter case though, seeing as
we can always project the points in a longitude-latitude coordinate system to a
UTM coordinate system [18], which is Euclidean.

3.2.2 Measurements

The position measurements we deal with in this thesis are assumed to come from
a GPS device that is somehow embedded or positioned in the travelling vehicle.
The position measurements are taken at regular, or close to regular, time intervals
and provide fairly accurate information about the position of the vehicle. The
position is typically reported using a point in some coordinate system, with a
longitude-latitude pair being the most common. We will, however, for the purpose
of this thesis, assume that the measured positions exist in a Euclidean plane. A
UTM coordinate system is consistent with this assumption, and the measurements
will therefore exclusively be represented in such a system. This is not a significant
restriction since there exists a variety of software solutions for projecting points and
other geometries from one coordinate system to another. Formally, the measured
positions are represented as points z= (zx , zy) ∈ R2.
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3.2.3 Hidden Markov model formulation

State space

The first state space variant is quite straightforward. We recall that the road network
can be represented as an undirected graph Gu = (N , Eu). By choosing to let the
state space be Xs = Eu we are able to estimate which edge the vehicle was on
when the corresponding measurement was made [3]. We will refer to this state
space variant as the simple state space.

The second state space variant is slightly more complex than the first variant.
The motivation behind this variant is to incorporate information about which edge
the vehicle was on directly before ending up on the edge on which the measurement
was made. Consider an edge e = (n1, n2) ∈ Ed . Let N(e) denote the set of all edges
ẽ = (ñ1, ñ2) ∈ Ed where ñ2 is equal to n1. N(e) is now the set of all directed edges
that has a head that coincides with the tail of e. We proceed by letting the set C(e)
be defined as

C(e) = {(e, ê)}ê∈N(e) . (3.2)

The state space Xa can now be defined as

Xa =
⋃

e∈Ed

C(e). (3.3)

This state space variant will be referred to as the augmented state space.
When using the augmented state space Xa it is useful to think of the state

(e, ê) as two distinct pieces of information. The edge e represents the edge one
is currently on, and is, therefore, the "current edge". The edge ê represents the
edge one entered e from, and becomes the "preceding edge". The edges ê and e
share a common node. This will be referred to as the shared node. The node n̂1
in ê = (n̂1, n̂2) will be known as the arrival node. This is done with the intention
of making it clear that this the earliest piece of information about the position of
the vehicle that is available from the state. The node n2 in e = (n1, n2) will, for
similar reasons, be known as the departure node. We will denote the arrival node,
shared node and departure node of a state x ∈ Xa by Ax , Sx and Dx respectively.
The state space, and how it relates to the road network, is illustrated in Figure 3.1.
The dotted lines in this figure represent the "preceding edge". The "current edge"
is given by a solid line. Each state is assigned a unique color, and consists of the
combination of a dotted line and a solid line. Note that there are six edges in the
original graph, but seven states in the state space. This happens because the edge
(n1, n2) can be entered from either (n4, n1) or (n5, n1).

Transition probabilities and initial probability

When defining the transition probabilities used in the HMM it is important to make
sure that transitions that would be unlikely to occur in a realistic scenario are also
considered unlikely under the chosen probability model. Our knowledge about
movement in the physical worlds tells us that movement over large distances in
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n1

n2

n5n3

n4

(a) An imagined road network rep-
resented as a directed graph.

n1

n2

n5n3

n4

(b) An illustration of the augmen-
ted state space Xa created using the
imagined road network.

Figure 3.1: An illustration of how an imagined road network, in the form of a
directed graph, can be used to create the augmented state space. Each of the
resulting states has a distinct color.

a short amount of time is very unlikely to occur. This preference for movement
over short distances can be incorporated into an HMM by using the transition
probability

a(x , y) = γe−γd(x ,y), (3.4)

where d(x , y) is a function that returns the distance between states x and y [2].
The exact definition of this distance function will depend on whether we are using
the simple or the augmented state space. In the case of the simple state space the
distance function will be defined to be the minimum distance that can be achieved
by moving from either node in x =

�

n(x)1 , n(x)2

�

to either node in y =
�

n(y)1 , n(y)2

�

.
The shortest path candidates is computed using Dijkstra’s shortest path algorithm
[19]. In order to define this properly, let SP(n1, n2) be a function that returns the
sequence of edges that corresponds to the shortest path between the two nodes
n1 ∈ N and n2 ∈ N . When computing the shortest path the edges are weighted
according to the length of the corresponding road segment in whatever coordinate
system we are working in. The notation L(e), e ∈ E, will be used denote this length.
Going forward, when referring to the length of an edge, we will be referring to this
length. The length of an edge sequence e = (e1, . . . , e−1), given by |e|, can now be
defined as

|e|=
∑

e∈e

L(e). (3.5)

We now get that |SP(n1, n2)| denotes the length of the shortest path between the
two nodes. The distance ds(x , y) can be defined as

ds(x , y) =min

�

�

�

�SP(n(x)1 , n(y)2 )
�

�

� ,
�

�

�SP(n(x)2 , n(y)2 )
�

�

� ,

�

�

�SP(n(x)1 , n(y)1 )
�

�

� ,
�

�

�SP(n(x)2 , n(y)1 )
�

�

�

�

.

(3.6)
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Figure 3.2: Two states, x = ((Sx , Dx), (Ax , Sx)) and y =
�

(Sy , Dy), (Ay , Sy)
�

,
shown with solid lines and green and pink colors respectively. Potential paths from
x to y shown with dotted lines.

The transition probability for the simple state space becomes

as(x , y) = γe−γds(x ,y). (3.7)

In the case of the augmented state space we will incorporate additional in-
formation that is available about the transition. When transitioning from a state
x = (ex , êx) ∈ Xa to a state y =

�

ey , êy

�

∈ Xa we know that the path between the
states starts at the departure node of x , Dx , moves to the arrival node of y , Ay , and
ends at the shared node of y , Sy . The distance between Dx and Ay is taken to be
the length of the shortest path between the two nodes. There are two exceptions,
though. If x = y there is no distance to travel. If êy , the "preceding edge" of y,
coincides with ex , the "current edge" of x , then the only movement that must be
made is from the shared node of y , Sy , to the departure node of y , Dy . We get the
distance function

da(x , y) =











0, x = y

L
��

Sy , Dy

��

, ex = êy
�

�SP
�

Dx , Ay

��

�+ L
��

Ay , Sy

��

+ L
��

Sy , Dy

��

, otherwise

. (3.8)

The length of the edge
�

(Sy , Dy)
�

is added to the distance because we know that the
departure happens from the departure node, and we know that vehicle will cross
this edge to get there. A visualization of how two states x and y can be connected
is shown in Figure 3.2. Note that the visualization contains more states than just x
and y, but we choose to only highlight these two. The transition probability for
the augmented state space becomes

aa(x , y) = γe−γda(x ,y). (3.9)

The initial probability must also be decided. For the simple state space Xs it
seems sensible to use a uniform distribution over all states. This will also be done
for the augmented state space, but there is a possibility that another alternative
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might be preferable. The reason that we might not want a uniform distribution over
all states in Xa is because it would make starting off at intersections more likely
than starting off at an edge with fewer connections. An alternative distribution
over the states that makes the sum of the initial probabilities for the states in C(e)
equal for all e ∈ Ed could therefore be considered. This change would, however,
be unlikely to produce any discernable difference in performance, and the simpler
option is therefore preferred. The initial probabilities become

πs(x) =
1
|Xs|

, (3.10)

and

πa(x) =
1
|Xa|

. (3.11)

We also want to investigate the effects of making a certain transitions illegal
by setting the corresponding transition probability to zero. Up until this point we
have used transition probabilities that make all transitions possible. The resulting
estimate can therefore not be interpreted as a route, and can only be viewed as
estimates of which edge the vehicle was at when the corresponding measurement
was made. This problem can be avoided by setting the transition probability
between unconnected states to zero. This ensures that subsequent states in the
MAP estimate are connected. The transition probability in this case becomes

ac(x , y) = γe−γda(x ,y)1(ex = êy ∨ x = y). (3.12)

The function 1(ex = êy ∨ x = y) evaluates to 1 if the "preceding" part of state y
coincides with the "current" part of state x , or if the states are identical. It evaluates
to 0 otherwise. When we speak of "a state x connected to a state y", we refer to
the ordered pair of states that make the function 1(ex = êy ∨ x = y) evaluate to 1.
The ordering is required because the function is not symmetric. When we speak
of "connected states" we refer to an ordered pair of states that make the function
evaluate to 1.

Emission probability

To complete our formulation of the HMM we must decide on a probability model
for the observations. A common assumption in the literature [1] [2] is that the
distance between the state, i.e. the edge, and the observation follows a half-normal
distribution with some scale parameter σp. The emission probability becomes

bs(z | x) =
p

2
q

πσ2
p

exp

�

−
||z− zx)||22

2σ2
p

�

, (3.13)

with zx denoting the point on edge x closest to the observation z, and ||·||2 denoting
the Euclidean norm. An illustration showing the distance between an observation
and two different edges is shown in Figure 3.3. The emission probability is in
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Figure 3.3: A plot showing the distances between an observation z and two edges
a and b.

essence identical when using the augmented state space, but the formulation
differs slightly due to the "expanded" state. With states on the form x = (e, ê) the
emission probability becomes

ba(z | x) =
p

2
q

πσ2
p

exp

�

−
||z− ze)||22

2σ2
p

�

. (3.14)

We recall that the assumptions of the HMM, presented in Section 2.2, states the
observations should be independent given the state. It is immediately clear that
position measurements are not unconditionally independent. We do, however,
believe that the states, being road segments, capture enough information about the
position of the vehicle to make the assumption about conditional independence
hold.

3.3 Learning model parameters

In Section 2.6 we introduced a method, the Baum-Welch algorithm, that enables
us to update the parameters of the HMM in a way that increases the expected
log-likelihood of the observed data. It is not obvious that increasing the expected
log-likelihood results in an increase in the performance of the method when
measured using suitable performance metrics, but we consider it to be worthwhile
to at least explore the possibility. The results from Section 2.6 can be applied directly
to our situation and used to learn the transition probabilities a(x , y) and initial
probabilities π(x). We do, however, make one notable change for the case where
only transitions between connected states are allowed. Since we have definite
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knowledge about the states that are not connected, we fix the transition probability
between these states to zero. This does not change anything about the Baum-Welch
algorithm, except that we now only update the transition probabilities between
states are connected. The update equations is as before, see Equation (2.49) and
(2.53), but is only applied for (i, j) ∈ I2 where x (i) is connected to x ( j) in the sense
discussed directly after Equation (3.12).

In the case of multiple independent measurement sequences we adapt the
Baum-Welch algorithm to work for this scenario. The necessary adaptions are
presented in Section 2.6.

3.4 Route estimation

After constructing a hidden Markov model using either of the possible formulations
introduced in Section 3.2.3, one can use the Viterbi algorithm, see Algorithm 4,
to obtain an estimate of the hidden state sequence. The hidden state sequence
is, however, only guaranteed to be immediately interpretable as a route estimate
if we set the probability for transitions between non-connected states to zero, as
discussed in Section 3.2.3. In order to obtain a route estimate from the output of
the other methods we need to connect the estimated edges in some way. Seeing as
there is no data about where the vehicle has travelled between two measurements,
it seems most sensible to assume that the vehicle has travelled the shortest path
between the edges [1]. The estimated travel route can then be obtained by finding
the shortest path between subsequent non-connected edges. When using the simple
state space we find the shortest path between the two edges by applying Dijkstra’s
shortest path algorithm to find the shortest path that can be obtained by going
from either node at the ends of one edge to either node at the ends of the other
edge. We recall that the length of a sequence of edges e is denoted by |e|. We define
the set of candidates for the shortest path between state x = (n(x)1 , n(x)2 ) ∈ Xs and

state y = (n(y)1 , n(y)2 ) ∈ Xs as

SPc(x , y) =
§

SP(n(x)1 , n(y)1 ), SP(n(x)1 , n(y)2 ),

SP(n(x)2 , n(y)1 ), SP(n(x)2 , n(y)2 )
ª

.
(3.15)

The shortest path between state x and state y can now be defined as

Cs(x , y) = argmin
e∈SPc(x ,y)

{|e|} . (3.16)

Before moving on we introduce an alternative way of writing the sequence s =
(s1, . . . , s−1). We allow for it to be written as

s= (s1,� (s2, . . . , s−2), s−1) . (3.17)
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This enables us to simplify the forthcoming definition of the route estimate. The
route estimate in the case of the simple state space becomes

x?c =
�

x?1,�Cs(x
?
1, x?2), . . . , x?n,�Cs(x

?
n, x?n+1), . . . , x?N

�

, (3.18)

with x? =
�

x?1, . . . , x?N
�

denoting the MAP estimate of the hidden states. Here, it is
important to remember that any x ∈ Xs is an edge and that x?c therefore is an edge
sequence.

Finding the shortest path between two states x and y in the augmented state
space Xa requires a bit more consideration. This problem is closely related to the
discussion preceding Equation (3.8). If the states are equal, then there is obviously
no need to find a connecting path. This is the case if the states are connected in
the sense defined in Section 3.2 as well. If the states are unconnected we create a
path between them by finding the shortest path that goes from Dx to Ay , and add
the final edge (Ay , Sy). We get

Ca(x , y) =

¨

;, x = y ∨ ex = êy
�

�SP(Dx , Ay), (Ay , Sy)
�

, otherwise
. (3.19)

With the individual state estimates written as x?n = (e
?
n, ên)we get the estimated

connected edge sequence

e?c =
�

e?1,�Ca(x
?
1, x?2), . . . , e?n,�Ca(x

?
n, x?n+1), . . . , e?N

�

. (3.20)

One of the primary motivations behind using HMMs for map matching is to
have a method that is more robust to noise than other alternatives. When given
measurements with zero noise it would yield perfect results to simply, for each
measurement, pick the edge closest to the measurement as the estimated edge. It
therefore makes sense to compare the HMM to such a method. This enables us to
see whether the impact of noise is less dramatic for the HMM-based approach than
it is for this benchmark method. This benchmark method is easily implemented
within the framework developed for the HMM approach. The elements of the
benchmark estimate ẽ= (ẽ1, . . . , ẽN ) is defined as

ẽn = arg min
e∈E

{||z(n) − z(n)e ||2}, (3.21)

with z(n)e denoting the point on edge e closest to the measurement z(n) ∈ Z.

3.5 Performance metrics

To be able to assess the performance of the various methods presented we need
to formulate metrics that is able to capture the methods ability to perform in a
way that actually solves the underlying problem. The first metric that is natural
to consider is the accuracy. If we have access to information about which edge
the vehicle was truly on when the measurement was made we can assess whether
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the estimated edge matches the true edge. It is, however, worth noting that the
accuracy is not the most robust metric in this case, seeing as it will not differentiate
between estimates that are "close" to the truth and estimates that are far off. We
recall that, depending on our choice of state space, the estimated hidden states
are either edges from the set of edges E, or a collection of two edges (e, ê) with
e ∈ E and ê ∈ N(e). We define the accuracy for estimates obtained using the HMM
with a simple state space Xs or the benchmark method as

As(x
?) =

∑N
i=11(x

?
i = x i)

N
, (3.22)

with x? =
�

x?1, . . . , x?N
�

denoting the estimated state sequence and x = (x1, . . . , xN )
denoting the sequence of edges the vehicle was truly on when the corresponding
measurements were made.

For the estimates obtained using the augmented state space we define the
accuracy of the MAP estimate x? =

�

x?1, . . . , x?N
�

=
�

(e?1, ê1), . . . , (e?N , êN )
�

as

Aa(x
?) =

∑N
i=11(e

?
i = ei)

N
, (3.23)

with e = (e1, . . . , eN ) being the true edge sequence. The accuracy is defined in this
way in order to make it possible compare methods regardless of whether they use
Aa(x?) or As(x?). It is only in our interest to evaluate the HMMs ability to correctly
estimate the hidden states if the hidden states happen to coincide with what we
actually want to estimate, namely the edges of the road network. That is why we
disregard êi , i = 1, . . . , N , when calculating Aa(x?).

The second metric that we will use is the Hausdorff distance, which is a metric
that is used for comparing point sets [20]. This is appropriate for our purpose,
since the travel route can be interpreted as a sequence of nodes, with the nodes
representing points in space. We will denote the position of a node n ∈ N by
p(n), and assume that p(n) ∈ R2∀n ∈ N . This interpretation makes it possible to
translate an estimated travel route to a point set. We define the directed Hausdorff
distance between a point set A and point set B as

Ĥ(A, B) =max
x∈A

§

min
y∈B
{||x , y||2}

ª

, (3.24)

where ||·||2 denotes the Euclidean distance. The Hausdorff distance is defined as

H(A, B) =max
�

Ĥ(A, B), Ĥ(B, A)
	

. (3.25)

An algorithm for efficient computation of the Hausdorff distance is given in [20].
We will now present a small example to illustrate how the Hausdorff distance

works. Consider a point set A⊂ R2 defined as

A= {(1,2), (2.5,3), (3, 4), (4, 5)} , (3.26)
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Ĥ(B,A)

x ∈ A

x ∈ B

Figure 3.4: Toy example showing two point sets and the directed Hausdorff
distance between the two sets.

and a point set B ⊂ R2 defined as

B = {(1,1.5), (2,1), (3,3), (4,4.5)} . (3.27)

The point sets are shown in Figure 3.4 together with two lines connecting the
Hausdorff pairs. There is one line corresponding to Ĥ(A, B) and one corresponding
to Ĥ(A, B). The Hausdorff distance is the length of the longest of the two lines,
which in this case is Ĥ(B, A). We end up with H(A, B) = Ĥ(B, A) =

p
2.

The estimated edge sequence is e?. An edge sequence can also be expressed
as a node sequence. The estimated node sequence will be denoted by n?. The
true node sequence will be denoted by n. We recall that a set of nodes can be
interpreted as a set of points in space. The corresponding point set is therefore

P? =
⋃

n?∈n?
p(n?). (3.28)

The true point set is
P =

⋃

n∈n
p(n). (3.29)

The Hausdorff distance between an estimated edge sequence and a true edge
sequence becomes H(P, P?), and can be interpreted as the longest possible distance
between the nodes in the estimated route and the nodes in the true route. A
downside of the Hausdorff distance is that, unlike the accuracy, it considers the
estimated route as a whole, and does not treat each estimated edge one-by-one. In
other words, the Hausdorff distance does not care about the ordering of estimated
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edges. We, therefore, use both metrics. This is done in order to provide information
about as many aspects of the methods performance as possible.



Chapter 4

Experiments

This chapter is devoted to giving a detailed presentation of the experiments, their
purpose and the framework that must be in place in order to conduct them. The
chapter starts by presenting the data and how they are used to create a road
network. The next section presents the simulation procedure that enables us to
simulate road network traversal and position measurement. Following this, we
present the set-up of our experiments. It consists of three main parts: Parameter
search, parameter estimation and performance evaluation. The chapter is con-
cluded with a section that presents the software that has been developed for this
thesis, and how it enables us to perform the experiments.

4.1 Data

In order to construct a graph representing the road network we need access to
a suitable data source. OpenStreetMap (OSM) 1 provides this, both in the form
of data dumps that can be loaded into a PostGIS 2 database, or through APIs
like Overpass 3. There are also other potential sources, such as NVDB (Nasjonal
vegdatabank) 4, which is a national database for road networks in Norway. The
underlying structure of the data available from these sources differ slightly, but
we will focus on the data available through OSM since this is what we use for our
experiments.

Data in OSM is organized as either nodes or ways. A node is a point in some
coordinate system, along with a unique node ID, and is usually associated with
a number of tags that tells us which type of real-world object it represents. A
way is an ordered collection of such nodes. It also has a unique ID, referred to as
the way ID. In a geographical information system (GIS), a node can be seen as
a geometry of type Point, while a way is a Linestring. A Point is a data structure
for representing the position of some point. A Linestring is a data structure that

1https://www.openstreetmap.org/
2https://postgis.net/
3https://wiki.openstreetmap.org/wiki/Overpass_API
4https://www.vegvesen.no/fag/teknologi/nasjonal+vegdatabank

35
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Node ID Geometry

0 POINT (0.549 0.715)
1 POINT (0.603 0.545)
2 POINT (0.424 0.646)
3 POINT (0.438 0.892)
4 POINT (0.964 0.383)

Table 4.1: Nodes in the toy example.

Way ID Nodes Geometry

0 [0, 1, 2, 3, 4] LINESTRING (0.549 0.715, 0.603 0.545, 0.424 0....

Table 4.2: Ways in the toy example.

contains an ordered set of points. The ordering of the points in a Linestring data
structure enables it to be interpreted as a string of straight lines, with each line
connecting two neighbouring points. A Linestring can therefore be thought of as a
piecewise linear curve. A way has, like a node, a set of tags that describe what it
represents. This enables us to find the ways that represent roads, and also tells us
whether they are one-way streets or not.

The set of nodes N required for the constructing the road network graph
G = (N , E) can now be obtained by identifying the ways that represent roads
— N is the union of all OSM nodes in the identified ways. The set of edges E is
constructed by breaking the identified ways into its individual pieces. If the graph
G should be directed we represent the individual pieces as 2-tuples containing the
unique nodes, with the first node being the tail of the edge and the second node
being the head. If we want an undirected graph it is sufficient to represent the
pieces as a set of two unique node IDs. The individual pieces can now be used to
create the edge set E of the graph G.

In Table 4.1 and 4.2 we show a simple toy example of the kind of data we
can get from OSM. We assume that the way in Table 4.2 represents a two-way
street. We are interested combining this with the data in Table 4.1 to construct
a road network graph. Table 4.3 shows how the data in Table 4.2 can be broken
down into edges. In Figure 4.1 we show the directed graph that represents the
road network constructed using data from the toy example. In Figure 4.2 we show
the layout of the nodes and edges in the graph.

0 1 2 3 4

Figure 4.1: Graph constructed using edges and nodes from the toy example.
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Edge ID Nodes Geometry

0 (0, 1) LINESTRING (0.549 0.715, 0.603 0.545)
1 (1, 2) LINESTRING (0.603 0.545, 0.424 0.646)
2 (2, 3) LINESTRING (0.424 0.646, 0.438 0.892)
3 (3, 4) LINESTRING (0.438 0.892, 0.964 0.383)
4 (4, 3) LINESTRING (0.964 0.383, 0.438 0.892)
5 (3, 2) LINESTRING (0.438 0.892, 0.424 0.646)
6 (2, 1) LINESTRING (0.424 0.646, 0.603 0.545)
7 (1, 0) LINESTRING (0.603 0.545, 0.549 0.715)

Table 4.3: Edges derived from nodes and ways in the toy example.
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Figure 4.2: Layout of nodes and edges in graph constructed using data from the
toy example.
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4.2 Simulation

Evaluating the performance of our methods using real-world data would require
position measurements that are labeled with the ground truth. One way of doing
this would be to take note of the route driven and find the corresponding edges in
OSM. This is a very cumbersome process and it is understandable that such data is
hard to come by. Perfect, or close to perfect, position measurements obtained with
high sampling frequency could have enabled us to create such sufficiently accurate
ground truth data, but these kinds of measurements have not been available to
the author. In order to enable performance evaluation even without access to
such data we simulate routes and the corresponding measurements. This enables
us to know the exact route that was travelled and the exact position where the
measurements were made. We will also know the conditions the measurements
were obtained under. These conditions will in our simulations be dictated by
the sampling frequency of the measurements, the speed of the vehicle and the
distribution of the measurement noise. This enables us the assess the performance
of our methods in a variety of different circumstances, but with the considerable
downside of not being able to claim that the results exactly reflect the performance
that one would obtain in a real-world situation. Route and measurement simulation
requires us to specify the circumstances under which the routes are simulated and
measurements are made. We must decide on

• The distribution of the measurements,
• The speed of the object travelling on the road network, v,
• The frequency at which the measurements are made, f , and
• The desired length of the route, dmin.

It seems sensible to assume that measurement follows a bivariate normal distribu-
tion centered in the true position. This requires us to specify the parameter σm
associated with the covariance matrix Σm = σ2

mI2. We also assume that, for each
(nu, nv) ∈ Ed , there exists a categorical distribution over all nodes nw ∈ N that
follow directly after nv. This categorical distribution determines how likely it is
that a vehicle that is currently on the edge (nu, nv) ∈ Ed continues by moving to a
node nw ∈ N that follows it. The collection of all these categorical distributions
can be thought of as the ground truth for the traffic flow of the road network.

The simulation procedure itself can be split into two parts. The first parts
relates to the simulation of the route, i.e. the sequence of nodes that is traversed
by the vehicle. The second part relates to simulation of the measurements that are
obtained when travelling the route. The route simulation procedure can be seen in
Algorithm 6. Before starting the simulation procedure we ensure that a collection
of categorical distribution like the one presented in the previous paragraph is in
place. This is intended to reflect the real-world situation where certain parts of the
road network are more congested than others, with vehicles flowing into one part
of the network at greater rate than other parts. At each node one samples the next
node from this categorical distribution. Naturally, only directly connected nodes are
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possible candidates. The probabilities associated with the various connected nodes
is decided ahead of time by sampling from a uniform distribution and dividing
each sample by the sum of all samples. We also ensure that a somewhat realistic
route is obtained by disallowing U-turns, unless the current node happens to be
a dead end. In order to make Algorithm 6 more easily digestible we assume that
the function ChooseNextNode handles the procedure of sampling from the correct
distribution when given the current node nu and the previous node nv . The function
EdgeLength computes the length of an edge e = (nu, nv) ∈ Ed .

Algorithm 6: Route simulation algorithm.

Require: Collection of categorical distributions
Require: Graph G = (N , E)
nseq← empty list
(nu, nv)← E.RandomChoice()
nseq.Insert(nu)
nseq.Insert(nv)
d ← EdgeLength((nu, nv))
while d ≤ dmin do

nw← ChooseNextNode(nv , nu)
nu← nv
nv ← nw
nseq.Insert(nv)
d ← d + EdgeLength((nu, nv))

end while
return nseq

The measurement simulation procedure is shown in Algorithm 7. The algorithm
moves along the sequence of linear segments that connect subsequent nodes until a
certain distance, given by v

f , has been traversed. When this happens one records the
current position p on the route and samples a measurement from a bivariate normal
distribution centered in p. The function Interpolate calculates the point along
an edge that is a certain distance away from the tail of the edge. The function
Sample2DNormal samples from a bivariate normal distribution with a specified
mean and covariance. The algorithm is simple in principle, but handling edge cases
makes it a bit more involved.

4.3 Experimental set-up

4.3.1 Overview

In this section, Section 4.3, we will present details about the experiments that are
conducted. The overall goal of the experiments is to evaluate the performance of
the methods presented section Chapter 3. The methods in question will be referred
to as
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Algorithm 7: Measurement simulation algorithm.

Require: Node sequence nseq
DistanceBetweenMeasurements← v

f

mseq← empty list
N ← nseq.Length()
RemainingSpace← 0
for i=2:N do

ni−1← nseq[i − 1]
ni ← nseq[i]
SpaceOnEdge← EdgeLength((ni−1, ni))
AvailableSpace= SpaceOnEdge
RequiredSpace← DistanceBetweenMeasurements−RemainingSpace
DistanceCovered← 0
while AvailableSpace ≥ RequiredSpace do
∆d ← DistanceCovered+RequiredSpace
p← Interpolate((ni−1, ni),∆d)
m← Sample2DNormal(p,Σm)
mseq.Insert(m)
DistanceCovered← DistanceCovered+∆d
AvailableSpace← AvailableSpace−RequiredSpace
RequiredSpace← DistanceBetweenMeasurements
RemainingSpace← 0

end while
RemainingSpace← RemainingSpace+AvailableSpace

end for
return mseq
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• the benchmark (BM) method,
• the simple (S) method,
• the augmented (A) method,
• the augmented and restricted (AR) method, and
• the augmented, trained and restricted (ATR) method.

The BM method uses the benchmark estimate defined in Equation (3.21). The S, A,
and AR methods are HMM-based methods, and is defined using the components
introduced in Section 3.2. An overview of the components used for three of these
methods is shown in Table 4.4. The ATR method is identical to the AR method, but

Method State space Transition probability Emission probability Initial probability
S Xs as(x , y) bs(z | x) πs(x)
A Xa aa(x , y) ba(z | x) πa(x)
AR Xa ac(x , y ba(z | x) πa(x)

Table 4.4: The HMM-based methods with fixed transition probabilities.

uses transition probabilities that are learned using the Baum-Welch algorithm. It is
therefore not "fixed" in the same sense as the other methods, but depends on the
data that is used to estimate the transition probabilities. The reason for including
the benchmark method in our experiments is to enable comparison between it and
the HMM-based methods.

The experiments presented in this thesis can be divided into three main parts.

• Searching for appropriate values of γ, introduced in Equation (3.4), and σp,
used in Equation (3.13) and (3.14).

• Estimating the transition probabilities using the Baum-Welch algorithm.
• Evaluating the performance of the methods when appropriate values of σp

and γ are chosen.

The one thing that will remain unchanged throughout all parts of the experiments
is the road network. The road network is restricted to only include the largest
(weakly, in the case of a directed graph) connected subgraph of the graph contained
within the bounding box given by

(xmin, ymin, xmax , ymax) = (10.415,63.417, 10.428,63.423). (4.1)

This bounding box is located within a residential area between the NTNU Trond-
heim campus "Gløshaugen" and the neighbourhood Tyholt, Trondheim. The res-
ulting graph, with nodes shown at their correct position in the UTM zone 32
coordinate system, is seen in Figure 4.3.

The details of the parameter search is presented in Section 4.3.2. The parameter
search is conducted for the S, A and AR methods. The parameter search consists
of the following steps.

1. Simulate a number of routes on the road network.
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Figure 4.3: The road network used in the experiments. Nodes shown as circles
with green edges. Edges shown as straight, black lines connecting the nodes.
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2. Simulate a number of measurement sequences for each route. Each measure-
ment belongs to a specific measurement group, which is uniquely identified
by the simulation parameters used for the group.

3. Compute route estimates for each of the measurement groups, one time for
each unique combination of the method parameters γ and σp.

4. Compute the Hausdorff distance and accuracy for each of the estimated
routes.

5. For each measurement group, identify the method parameters that lead to
the best performance.

The exact procedure used for the parameter estimation is presented in Sec-
tion 4.3.3. The purpose of the parameter estimation is to estimate the transition
probabilities used in the ATR method. It is done by first simulating a large number
of routes and measurements, and then repeatedly applying the Baum-Welch al-
gorithm until the increase in the mean log-likelihood of the measurement sequence
tapers off.

The set-up of the final performance evaluation is presented in Section 4.3.4.
The idea is similar to that of the parameter search. The difference is that we use a
larger number of routes and measurements, and only use methods with optimal
parameter choices. The optimal parameters were identified during the parameter
search. We now also include the ATR method, using the parameters learned in
Section 4.3.3. The objective of the performance evaluation is to quantify how the
methods perform under different circumstances, and hopefully enable us to arrive
at a conclusion about the viability of the different methods.

We now turn our attention to the details of the route and measurement simu-
lation procedure. When given a simulated route, as produced by Algorithm 6, one
can simulate a measurement sequence based on the route using Algorithm 7. The
route simulation requires us to specify the length of route, dmin and a categorical
distribution that dictates how the algorithm behaves when deciding between sev-
eral possibilities at a junction. The measurement simulation requires us to specify
the following parameters:

• The parameter σm of the measurement distribution around the true location
p, N2(p,σ2

m), and
• The distance between measurements, given by v

f .

The values shown in Table 4.5 are sensible values of the sampling frequency that
one might expect in to see in real-world scenarios. We choose to fix the speed at
30 kmh−1, giving us v = 8.33 ms−1.

f

High frequency 1
Low frequency 1

10

Table 4.5: The sampling frequencies used in the experiments.
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σm

High variance 3
Low variance 8

Table 4.6: The standard deviation of the individual components of the simulated
measurements used in the experiments.

Sensible values for σm are somewhat harder to pin down, seeing as we want
them to be at least somewhat similar to what one would observe in the real-
world. In order to gain knowledge about how GPS measurements behave in the
real world one can consult the Standard Positioning Service Performance Standard
released in 2008 (SPSPS08) [21]. The SPSPS08 specifies that the 95th percentile
of the distribution of observed user range error (URE) for signals in space (SIS)
should not exceed 7.8 metres. When assuming that the GPS measurement is
normally distributed around the true position we get that the distribution of the
Euclidean distance between the true position and the measurement follows a
Rayleigh distribution with scale parameter σm. This scale parameter is the same as
σm used in Σm = σ2

mI2. The value of the scale parameter that is required to meet
the requirement on the 95th percentile is σm ≈ 3, as shown in Figure 4.4a. This
requirement is specified for SIS, and we therefore assume that it is ambitious for
signals received in urban areas from within a moving vehicle. We will therefore
consider the value σm = 3 to be on the lower end of values that we can realistically
expect. Another accuracy requirement specified in SPSPS08 is that 99.94% of URE
should be less than 30 metres. This corresponds to a scale parameter σm ≈ 8, see
Figure 4.4b. The conditions this requirement should hold for is more lenient than
the previous one. Because of this, we assume that σm = 8 is among the higher
values we can realistically observe. The chosen values are shown in Table 4.6.

We will refer to each unique combination of the values in Table 4.5 and Table 4.6
as a "measurement group". The value of dmax could take on a wide variety of values,
but due to the limited size of our road network it seems sensible to keep the length
of each individual route somewhere between a few hundred metres and a couple
of kilometers. There is no reason to expect the value dmax to affect our results
directly, but we do expect the total number of measurements to have an impact on
the quality of the estimates obtained using the Baum-Welch algorithm.

4.3.2 Parameter search

In this subsection we will present the methodology used to assess how the choice
of σp and γ impact the performance of our methods under different circumstances.
The circumstances are dictated by the choice of simulation parameters σm and
f . We will use the results to identify which values of the method parameters
σp and γ are suitable for the different methods in different circumstances. It
will in some cases be hard to identify the optimal parameter choice, seeing as



Chapter 4: Experiments 45

1 2 3 4 5 6 7 8 9
y

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Rayleigh distribution σm = 3

PDF

q = 0.95

(a)

5 10 15 20 25 30
y

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Rayleigh distribution with σm = 8

PDF

q = 0.9994

(b)

Figure 4.4: Rayleigh distribution with two different choices of scale parameter
σm.

the two performance metrics only capture certain aspects of the quality of the
route estimate. It is also difficult to know the optimal "trade-off" between the
two metrics, i.e. knowing how much of an increase in Hausdorff distance one is
willing to tolerate if it also increases the accuracy by a certain amount. However,
we will in general consider the Hausdorff distance to be the most important of the
two metrics, seeing as we believe this metric to better capture the quality of the
estimate as a whole. For the unrestricted methods (S, A, and AR) one could obtain
a high accuracy, but still observe a route estimate that deviates significantly from
the true route. This can happen because the accuracy does not take into account
how "far away" the estimated state is from the true state. The Hausdorff distance,
on the other hand, does take into account how much the estimated route deviates
from the true route.

We take the opportunity to note that, in a real-world scenario, it would not
be possible to identify the "best performing" parameter choices without access to
the ground truth. We do, however, believe that good initial parameter choices can
be arrived at by combining knowledge about the data-generating process with
a qualitative inspection of estimates obtained with various parameter choices.
One could also combine this with insights obtained from experiments like those
presented here, or by performing new simulations where the simulations are more
similar to what one believes to be the real-life situation. We, therefore, think that
it is possible to identify good parameter choices even without access to ground
truth.

The first step in setting up the parameter search is the route simulation. We
simulate 15 distinct routes on the road network. Each route is simulated using
dmin = 1000 m. This ensures that each route is at least 1km long, and typically not
much longer. This is done using the procedure described in Algorithm 6. Three of
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Figure 4.5: A random selection of 3 out of the 15 simulated routes used in the
parameter search.

the resulting routes are shown in Figure 4.5. For each of the 15 routes we simulate
a number of measurement sequences. The measurements are simulated four times
for each route, each time with a unique combination of the simulation parameters
listed in Table 4.5 and 4.6. We will refer to a group of measurements that have
been simulated with identical simulation parameter choices as a measurement
group. Each measurement group will consist of 15 measurement sequences, one
for each route. A subset of each measurement group is shown together with its
corresponding route in Figure 4.6.

For each of the measurement sequences in each measurement group we es-
timate the route using the methods in Table 4.4, i.e, the S, A and AR methods.
There is one notable exception with regards to the AR method. The AR method
will not work for the measurement groups where the sampling frequency f is
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Figure 4.6: Subsets of each measurement group used in the parameter search,
shown together with their associated routes.
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σp 2 4 6 8 10

Table 4.7: The possible values of σp used in the emission probability.

γ 1
100

1
10

1
2

Table 4.8: The possible values of γ used in the transition probability.

equal to 1
10 . The reason for this is that, because the number of hidden states is

equal to the number of observations, the length of the hidden state sequence
will typically not be long enough to represent the traversed node sequence when
an observation is only added every 10th second. We will therefore only consider
the "simple" and the "augmented" HMM variants for measurement groups where
f = 1

10 . The benchmark method is also always included. There are no decisions to
make in regards to the benchmark method, but it is included to provide context
for the performance of the other methods. After obtaining the route estimates
we proceed by calculating the Hausdorff distance and accuracy for each of the
measurements sequences. Each of the methods require that that we fix the decay
parameter γ used in the corresponding transition probability, as well as the σp used
in the emission probability. It is not computationally feasible to run experiments
for a very dense grid of values, but using combinations of values presented in
Table 4.7 and 4.8 is expected to give significant insight into how the performance
depends on parameter choices. These combinations of values will be tested for all
the HMM-based methods that are used in this part of the experiment.

The values in Table 4.7 are chosen so that, for each measurement group, at least
one of the choices end up assigning a high probability density to distances (between
measurement and true edge) that seem likely for the specified measurement group.
There is no exact procedure for determining this, but knowing the parameters
of the measurement variances σm made it possible to reason about the range of
observed distances that would make sense. The half-normal distributions we get
for each of the five candidates of σp is shown in Figure 4.7. The same line of
reasoning is used for deciding on the values γ in the exponential distribution. Since
we know the distance between each measurement for the various measurements
groups we can identify values of γ that assign high probabilities to distances we
expect to observe in at least one of the measurement groups. Plots of the resulting
exponential distributions are shown in Figure 4.8.

4.3.3 Parameter estimation

The next part of our experiments is related to the estimation of the transition
probabilities using the Baum-Welch algorithm. This is a computationally expensive
method that requires considerable amounts of data before one can expect to see
results that reflect the true situation. It is considered beneficial to start off the Baum-
Welch algorithm with initial parameters as close to the true situation as possible.
There is, naturally, no sure way of determining whether the initial parameters are
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Figure 4.7: Half-normal distributions for the values of σp in Table 4.7.
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Figure 4.8: Exponential distribution for the values of γ shown in Table 4.8.

close to the truth, but we assume that the parameter values that are arrived at in
the parameter search, detailed in Section 4.3.2, are reasonable choices.

We choose to only apply the Baum-Welch algorithm to the "augmented and
restricted" HMM formulation. The reason for doing this is twofold; it limits the
scope of our experiments and the time required to run our experiments, and we
also believe that the resulting transition probabilities has the potential to provide
worthwhile insights about the behaviour of underlying system. We recall that
the "augmented and restricted" method fixes transition probabilities to zero for
transitions between unconnected states. This ensures that non-zero transition
probabilities for a given state can be interpreted as the probability that a vehicle
will make a specific "choice" when confronted with several options. The estimated
transition matrix Â can therefore, if the estimates are accurate, be interpreted
as estimate of the traffic flow on a road network. Such insights can likely not be
obtained through the use of an "unrestricted" formulation.

The amount of data used in Section 4.3.2 is too low for the purpose of parameter
estimation using the Baum-Welch algorithm. It is also undesirable to learn the
transition probabilities using the exact same data as we used when deciding on
initial parameters. This is because the initial parameters were chosen based on
how well they performed on the data used in the parameter search, but we wish
to assess whether the methods, including the method with estimated transition
probabilities, perform well on a new data set as well. We therefore simulate 50
new routes, with each route having dmin = 2500 m. We simulate measurements
using the high sampling frequency f = 1 combined with either of the values in
Table 4.6. We assign the measurements to different measurement groups, as we
did in Section 4.3.2. We do not consider measurements made with low sampling
frequency because, as mentioned earlier, the "augmented and restricted" variant
only works for situations with high sampling frequency. The two measurement
groups are visualized in Figure 4.9 and Figure 4.10. In these figures we see how
many observations has been collected at the various edges, as well an illustration
of all the measurements within the specific measurement group.

It is not entirely straightforward to evaluate the quality of the estimated trans-
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Figure 4.9: Overview of the measurement group associated with high sampling
frequency and high variance.
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Figure 4.10: Overview of the measurement group associated with high sampling
frequency and low variance.
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ition probabilities. It would be desirable to somehow assess how the estimated
transition matrix compares to the categorical distributions used to determine the
traffic flow on the road network. It has, however, been difficult to come up with a
method for doing this that we are confident is correct. It also has the downside
of being entirely unrealistic in a real-world scenario, seeing as the ground truth
about the traffic flow is not known. Instead, we choose to evaluate the estimates by
using information that could be available in real-world scenarios. This consists of
looking at how the probability of staying in the same state depends on the length
of the road segment. We know that the behaviour of both real-world and simulated
systems is such that a vehicle will remain on long road segment for a longer time
than it would on a short road segment (given that the speed of the vehicle remains
constant). It is therefore reasonable to expect higher "self-transition" probabilities
for longer road segments.

Another way of getting an idea about the quality of the estimated transition
probabilities is to look at the performance of the method that uses these transition
probabilities, namely the ATR method. This is done in Section 5.3.

4.3.4 Performance evaluation and comparison

The final part of our experiments concerns itself with performance evaluation. In
Section 4.3.2 we presented a procedure for identifying a combination of parameters
that yield performance that is, if not best, at least not decidedly worse than any of
the alternatives. We are, for simplicity, referring to the parameter combination that
we think is optimal as the "optimal parameter combination". In Section 4.3.2 we
took these parameters as initial parameters and used the Baum-Welch algorithm to
update the transition probabilities. Having done this, we now know the transition
probabilities that should be used in various scenarios (measurement groups) for
the distinct methods presented in this thesis. We now wish to evaluate the per-
formance of these methods when each of the methods is used with the optimal
parameter choice for the measurement group in question. Note that not all of
these methods can be used for all of the measurement groups. As mentioned in
Section 4.3.2, the "restricted" HMMs are not suitable for measurements made with
low sampling frequencies. We therefore only consider the BM, S and A methods for
these measurements groups. We use all the presented methods for the remaining
measurement groups.

The evaluation is done using the measurement groups introduced in Sec-
tion 4.3.3. Each of these measurement groups consists of 50 measurement se-
quences simulated on routes with dmin = 2500 m. In addition to the measurement
groups introduced in Section 4.3.3 we simulate two new groups with low sampling
frequency combined with either of the values in Table 4.6. The measurement
groups are shown in Figure 4.11 and 4.12. The number of routes is still 50, and the
value of dmin used for the route simulation is still dmin = 2500 m. We recall that
the transition probabilities in the case of the ATR method has been learned using
the measurement groups with high sampling frequency mentioned here. This is
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Figure 4.11: Overview of the measurement group associated with low sampling
frequency and high variance.

not an issue, since the Baum-Welch algorithm only requires observations, and is
not exposed to the ground truth in any way.

After estimating the state sequences and routes for each of the measurements in
each of the measurement groups we calculate both the accuracy and the Hausdorff
distance between the ground truth and the estimate. This allows us to compare
the different methods in a quantitative manner.

4.4 Implementation

4.4.1 Overview

Conducting the experiments presented in Section 4.3 requires implementations of
the algorithms presented in Chapter 2, the methods and techniques presented in
Chapter 3, and the simulation procedures presented in Section 4.2. This section
serves as a presentation of the software that has been developed to provide such
implementations. The range of problems that must be solved by the software is
quite diverse. The software has to be able to interact with OSM in some way. It also
has to enable us to use the data from OSM to construct a graph representation of
the road network. This must be used create the various state space representations
and define the transition-, emission-, and initial probabilities. We also require a
simulation procedure that lets us generate routes and measurements sequences. As
soon as all this is in place one can apply the techniques associated with the HMM,
such as the Viterbi algorithm and the Baum-Welch algorithm. This requires that all
of the functionality presented in Chapter 2 is implemented in a numerically stable
way.
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Figure 4.12: Overview of the measurement group associated with low sampling
frequency and low variance.

The functionality required to apply the map matching methods has been split
into two parts. The first part is the general HMM functionality. This has been
assembled into a software library named hmmpy (Hidden Markov Models in Python).
It enables the user to supply an arbitrary state space as well as functions that define
the transition-, emission- and initial probability. When an object is constructed with
these components as input one has immediate access to methods that implement
the Viterbi algorithm, the forward algorithm, the backward algorithm and the Baum-
Welch algorithm. The library also supports HMMs with discrete observation spaces
and Gaussian observations, even though this has not been needed for this thesis.
The library is open-sourced with an MIT license, available on GitHub and published
as a package to the Python Package Index (PyPI). It should be mentioned that the
library is still in its infancy, and it is possible that modifications and extensions will
be made after the finalization of this thesis. The library depends on NumPy, SciPy
and tqdm.

The second part is related to obtaining and organizing data from relevant
sources, keeping track of and ensuring consistency with regards to coordinate
systems, constructing the graph, defining the components of the HMM, keeping
track of and organizing observations, translating the output of the Viterbi algorithm
into route estimates, and more. This library is in a more fragile state than hmmpy,
and is therefore not published to PyPI. It is, however, available on GitHub 5 with
an open-source license, in case any of the functionality could either be of help
or serve as inspiration to someone working on a similar problem. The library
will be referred to as tmmpy (Toolkit for Map Matching in Python) to indicate its
relationship to hmmpy. The library has multiple dependencies. The most important

5https://github.com/klaapbakken/tmmpy
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ones are GeoPandas (and Pandas), NetworkX, Shapely and NumPy.

4.4.2 Hidden Markov models in Python

The Python package hmmpy implements three distinct classes that are intended to
be exposed to the user. The classes are:

• HiddenMarkovModel,
• DiscreteHiddenMarkovModel, and
• GaussianHiddenMarkovModel.

The classes differ in what they assume about the observations. The first class,
HiddenMarkovModel, supports any emission probability, but does as a consequence
not have any procedure in place for estimating parameters related to the emission
probability. This is not a problem for the situation considered in this thesis, but
could be an issue in other use cases. The two next classes solve this by assuming
either Gaussian distributions or discrete distributions for the observations. It is for
these distributions possible to derive update equations within the EM framework
presented in Section 2.6 [15]. This enables estimation of either the discrete emission
probabilities or the mean and covariance of the various states.

The input to the constructor method of these three classes varies slightly. All
three require that the state space is supplied as a list of states. They also require
functions that represent the transition probabilities and initial probabilities. The
supplied transition probability function should take two objects from the state space
and return the probability of transitioning from the first object to the second. The
initial probability function should return the initial probability of its only argument,
which should be a element from the list of supplied states. The final argument
depends on which object is being created. The object HiddenMarkovModel requires
a function that returns the emission probability of a certain observation when given
the observation and the state. The object GaussianHiddenMarkovModel requires a
NumPy array of the initial values of the mean and covariance for the various states.
The object DiscreteHiddenMarkovModel requires a list of "symbols", which is the
observation space, and a function that returns the probability of a supplied symbol
when given the state.

After an object has been instantiated one has access to methods such as decode,
which computes the MAP estimate using the Viterbi algorithm and returns the
estimated hidden state sequence. Another imporant method is reestimate, which
runs the Baum-Welch algorithm a given number of times in and updates the model
parameters at each iteration.

4.4.3 Toolkit for map matching in Python

The main idea behind tmmpy is to collect all functionality required for doing map
matching in a single library. This ranges from functionality bringing data from
different sources into the same format to leveraging the functionality of hmmpy for
map matching purposes. The classes in the library can be interpreted as parts of a
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larger pipeline. The first group of classes is the data source classes. These classes
all collect data from some source and converts it to a format expected by the other
classes in the library. At the time of publication there exists classes for interfacing
with a PostGIS database, the Overpass API of OSM and the NVDB API. The second
group of classes consists of the road network classes. The main purpose of these
classes is to represent the road network as a graph. There are two classes within
this group; one for representing the road network as an undirected graph and one
for representing the road network as a directed graph. The third group of classes
is the state space classes. These classes uses a road network object to construct a
state space. There are two classes in this group; one for the creating an augmented
state space, and one for creating the simple state space. The constructor for the
augmented state space class requires a directed graph object as input, while the
simple state space class requires an undirected graph object as input. Finally, there
is a single map matching class. This class accepts a state space object as input, as
well as arguments specifying the sort of HMM that should be constructed. The class
supports both state spaces, and has logic in place that ensures that suitable HMM
components are used. The HMM object from hmmpy is automatically constructed
when a map matching object is constructed. The map matching class also contains
some functionality for various post-processing tasks.

The previous paragraph presented the most essential parts of the library. In
addition to these there are a few miscellaneous classes and functions. Most of
these are not worth mentioning, but there are a few notable exceptions. The
first one is the simulation class. This class contains implementations of the route-
and measurement simulation algorithms presented in 4.2, and can be created
by passing a road network object to the class’s constructor. The final class that
deserves a mention is the observation class. It is suitable for representing sequences
of GPS measurements, and is used together with the map matching class to ensure
that the underlying HMM object receives observation sequences in the format it
expects.



Chapter 5

Results

This chapter is dedicated to reviewing the results of the experiments presented in
Chapter 4. We will present the results in the order they were introduced there. We
start off with the results of the parameter search, where we identify the optimal
value of the method parameters. We continue by exploring the effect of the para-
meter estimation conducted using the Baum-Welch algorithm. The last section is
a presentation of the the findings from the final performance evaluation, where
every method presented in this thesis is evaluated and compared.

5.1 Parameter search

Overview

In this section we will present the results of the experiments detailed in Sec-
tion 4.3.2. We will consider how the performance of the various methods depend
on the parameter choices, and, for each of the methods, determine the most suit-
able parameter choices for each of the measurement groups. Before we proceed
with a quantitative analysis of the estimates we perform a visual inspection of the
estimates obtained for the selection of routes shown in Figure 4.5. The estimates
are obtained using the AR method with measurements from the measurement
group with high sampling frequency and low variance. This is the measurement
group in which we expect to observe the best performance. We use the method
parameters σp = 4 and γ= 1

10 . The measurements are shown in Figure 4.6b. The
resulting estimates are shown in Figure 5.1. These estimates seem to be of high
quality, but a visual inspection like this does not give us the full picture, seeing
as it does not tell us anything about the ordering of estimated states. A thorough
understanding of the performance of the methods can only be achieved through a
quantitative analysis. The remainder of Section 5.1 is devoted to this.
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Figure 5.1: Routes estimated using the AR method with σp = 4 and γ = 1
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high sampling frequency and low variance measurements.
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Figure 5.2: Mean accuracy and mean Hausdorff distance for the various parameter
choices in the measurement group with high sampling frequency and high variance.

High sampling frequency and high variance

We start off by considering the measurement group with high sampling frequency
and high variance. We recall that there are 15 measurements in each measurement
group, with each measurement in a group corresponding to a unique route. Our
interest lies in determining which combination of the parameter choices in Table 4.7
and 4.8 yield the best performance. A plot showing the mean accuracy for each
of the unique parameter combinations is shown in Figure 5.2a. The performance
of the benchmark method is shown using a dashed black line. We immediately
observe that each of the HMM-based methods outperform the benchmark method
when appropriate parameters are chosen. We present a similar plot, but with mean
Hausdorff distance instead of mean accuracy, in Figure 5.2b. A summary of the
best performing parameter combinations is shown in Table 5.1. Each entry in the
table corresponds to a parameter combination that either maximized the mean
accuracy or minimized the mean Hausdorff distance for one of the methods.

We now observe that, while the simple method is able to obtain a higher
accuracy than the benchmark method, it is not able to outperform the benchmark
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Method σp γ Mean accuracy Mean distance

Benchmark - - 0.628 71.208
Simple 4.000 0.500 0.681 71.755
Simple 10.000 0.010 0.640 69.626
Augmented 4.000 0.500 0.694 10.945
Augmented 4.000 0.500 0.694 10.945
Augmented and restricted 6.000 0.100 0.680 13.863
Augmented and restricted 8.000 0.100 0.667 13.185

Table 5.1: The best performing parameter combinations in terms of either mean
accuracy or mean Hausdorff distance. The measurement group has high sampling
frequency and high variance.

Method σp γ

S 4 0.5
A 4 0.5
AR 8 0.1

Table 5.2: Optimal parameters for the various methods when applied to measure-
ment sequences obtained using high sampling frequency and high variance.

method (by any substantial margin) when it comes to mean Hausdorff distance.
We identify the parameter combination σp = 4 and γ= 1

2 as the best performing
parameter combination for the simple method, since it leads to considerably higher
accuracy than any other choice. We typically consider mean Hausdorff distance
to be the most important of the two metrics, but in this case there is no clear
relation between the parameters and the mean Hausdorff distance observed, and
we therefore claim that the combination which maximizes the accuracy is the best
performing. The parameters that maximize the performance of the augmented
method is clearly also σp = 4 and γ = 1

2 , since this maximizes both accuracy
and Hausdorff distance. Determining which parameters yield best performance
for the augmented and restricted method comes to down deciding which metric
one considers to be more important, and how much much of a decrease one
can tolerate in one metric if there is an increase in another metric. We choose
σp = 8 and γ = 1

10 as the best performing parameter combination because of
its mean lower Hausdorff distance. The choice between σp = 6 and σp = 8 is
close to being arbitrary, seeing as the number of routes is quite low (15) and the
difference between the two choices yield results that are hard to differentiate in
terms of quality. A full overview of the parameters identified as optimal are shown
in Table 5.2.
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Figure 5.3: Mean accuracy and mean Hausdorff distance for the various parameter
choices in the measurement group with high sampling frequency and low variance.

High sampling frequency and low variance

We move on to the measurement group with high sampling frequency and low
variance. The mean accuracy for the various methods is given in Figure 5.3a.
The mean Hausdorff distance is given in Figure 5.3b. The summary table, with
entries selected in the same way as for the previous measurement group, is seen
in Table 5.3. We immediately note that the accuracy is, overall, much better than
the case with high variance. This is no surprise, but worth mentioning. We also
note that mean Hausdorff distance has dropped by a considerable amount.

From Table 5.3 we see that, for the simple method, there is no parameter
combination that is better than all others across the board. We prefer a lower
mean Hausdorff distance and therefore conclude that the choice of σp = 4 and
γ= 1

2 is better. It is somewhat curious that the optimal value of σp is 4 for both
this case, where the measurement variance is low, and for the previous case,
where the measurement variance was high. It does, however, make sense that γ
remains the same, seeing as the sampling frequency, and thus the distance between
measurements, remains the same. For the augmented method the mean Hausdorff
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Method σp γ Mean accuracy Mean distance

Benchmark - - 0.807 57.087
Simple 2.000 0.500 0.834 54.057
Simple 4.000 0.500 0.803 46.255
Augmented 2.000 0.100 0.833 13.095
Augmented 4.000 0.100 0.819 3.224
Augmented and restricted 2.000 0.100 0.761 10.842
Augmented and restricted 4.000 0.100 0.749 7.139

Table 5.3: The best performing parameter combinations in terms of either mean
accuracy or mean Hausdorff distance. The measurement group has high sampling
frequency and low variance.

Method σp γ

S 4 0.5
A 4 0.1
AR 4 0.1

Table 5.4: Optimal parameters for the various methods when applied to measure-
ment sequences obtained using high sampling frequency and low variance.

distance is remarkably low for σp = 4 and γ = 1
10 . This parameter choice is clearly

the best, seeing as the parameter choices that lead to a slightly higher accuracy
gives us a significant increase in mean Hausdorff distance. For the augmented and
restricted method we see a slight decrease in overall performance compared to the
augmented method, but σp = 4 and γ = 1

10 are still the superior parameter choices.
A full overview of the parameters identified as optimal are shown in Table 5.4.

Low sampling frequency and high variance

We now turn our attention to the measurement group where measurements are
made with low sampling frequency and high variance. We recall that the augmented
and restricted method is not viable for this group, and is therefore not considered.
The mean accuracy and Hausdorff distance for the various parameter choices is
shown in Figure 5.4a and 5.4b. The summary of the best-performing parameter
choices, chosen in the same way as before, is shown in Table 5.5.

We note that, while the accuracy is lower than the case with high sampling
frequency and high variance, we have a clear reduction in mean Hausdorff distance
for both the benchmark method and the simple method. These methods seem to
benefit from the decrease in sampling frequency. The optimal parameter choice
for the simple method is σp = 4 and γ = 1

10 . The optimal value of γ is reduced
when compared to the high sampling frequency case. This makes sense, seeing
as the distance between measurements has been increased considerably. For the
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Figure 5.4: Mean accuracy and mean Hausdorff distance for the various parameter
choices in the measurement group with low sampling frequency and high variance.

Method σp γ Mean accuracy Mean distance

Benchmark - - 0.600 42.070
Simple 4.000 0.100 0.621 34.563
Simple 4.000 0.100 0.621 34.563
Augmented 8.000 0.010 0.610 28.153
Augmented 10.000 0.010 0.605 27.513

Table 5.5: The best performing parameter combinations in terms of either mean
accuracy or mean Hausdorff distance. The measurement group has low sampling
frequency and high variance.
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Method σp γ

S 4 0.1
A 8 0.01

Table 5.6: Optimal parameters for the various methods when applied to measure-
ment sequences obtained using low sampling frequency and high variance.

Method σp γ Mean accuracy Mean distance

Benchmark - - 0.723 34.009
Simple 6.000 0.010 0.769 34.806
Simple 10.000 0.010 0.728 29.995
Augmented 6.000 0.010 0.779 19.905
Augmented 8.000 0.010 0.759 19.502

Table 5.7: The best performing parameter combinations in terms of either mean
accuracy or mean Hausdorff distance. The measurement group has low sampling
frequency and low variance.

augmented method we observe that the decrease in sampling frequency had a
negative impact, resulting in both higher mean Hausdorff distance and lower
accuracy. The parameter choices γ = 1

100 and σp = 8 yields the lowest distance
without sacrificing much in terms of accuracy, and are therefore considered to be
the optimal choices. A full overview of the parameters identified as optimal are
shown in Table 5.6.

Low sampling frequency and low variance

Finally, we consider the measurement group with low sampling frequency and low
variance. The mean accuracy for the different variations are shown in Figure 5.5a,
while the distance is shown in Figure 5.4a. The overview is shown in Table 5.7.

In this situation we see that the Hausdorff distance is minimized for the simple
method when σp = 10 and γ = 1

100 , while σp = 6 and γ = 1
100 maximizes the

accuracy. Due to the fact that σp = 10 is a lot higher than what we would expect
(based on the other measurement groups and our knowledge of the data-generating
process), and that the trade-off in accuracy for this parameter choice is rather high,
we claim that σp = 6 and γ = 1

100 is the optimal parameter choice. We choose
the same set of parameters for the augmented method since this maximizes the
accuracy without changing the Hausdorff distance by any significant amount. A
full overview of the parameters identified as optimal are shown in Table 5.8.
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Figure 5.5: Mean accuracy and mean Hausdorff distance for the various parameter
choices in the measurement group with low sampling frequency and low variance.

Method σp γ

S 6 0.01
A 6 0.01

Table 5.8: Optimal parameters for the various methods when applied to measure-
ment sequences obtained using low sampling frequency and low variance.
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Figure 5.6: Evolution of the mean log-likelihood of the observation sequences
over 3 iterations of the Baum-Welch algorithm.

5.2 Parameter estimation

In Section 4.3.2 we identified σp = 8 and γ = 1
10 as optimal parameters for

the ATR method when both the sampling frequency and variance is high. The
parameter choices σp = 4 and γ = 1

10 are considered optimal for the same method
when the sampling frequency is high and variance is low. By applying the Baum-
Welch algorithm to the mentioned measurement groups we observe that the mean
log-likelihood of the observation sequences evolves as shown in Figure 5.6. The
Baum-Welch algorithm (and more generally, the EM algorithm) guarantees an
increase in the expected log-likelihood of an observation sequence. In the plots we
can see that this results in an increase in the mean log-likelihood. The increase
is considerable after the first iteration of the algorithm, but the increase tapers
off for the second and third iteration. This likely indicates that the Baum-Welch
algorithm has found a local maximum for the expected log-likelihood.

In order to get an idea about the effect of applying the Baum-Welch algorithm
we take a look at the "self-transition" probabilities. The rationale for doing this
is explained in Section 4.3.3. The initial and estimated transition probabilities
are shown in Figure 5.7. We can see quite clearly that the estimated probabilities
tend to 1 as the length of the edge increases. This indicates that the Baum-Welch
algorithm has been able to learn how long the vehicles stay in the various states.

Another way of getting insights into the effect of applying the Baum-Welch
algorithm is to compare the performance of the method with estimated transition
probabilities to that of the competing methods. This is combined with the overall
performance evaluation and presented in section Section 5.3.
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Figure 5.7: Relation between "self-transition" probability and edge length.

5.3 Performance evaluation and comparison

Overview

Now that we have identified sensible values for the parameters involved in the
various methods and estimated the transition probabilities for the ATR method
using the Baum-Welch algorithm, it is time to compare the various methods in
order to gain insights into whether the extra effort and time involved in using the
augmented state space, as well as estimating the transition probabilities using the
Baum-Welch algorithm, yield any performance gains. We will apply each of the
methods, with optimal parameter choices, to each of the measurement groups
and evaluate the performance by looking at the distribution of the accuracy and
Hausdorff distance obtained for the different measurement sequences. We will
be presenting histograms and kernel density estimates to better visualize the
distribution of the accuracy and Hausdorff distances observed. The kernel density
estimates uses a Gaussian kernel, with bandwidth selection done using Scott’s rule
[22]. The bandwidth of the histograms is determined using the Freedman-Diaconis
rule [23].

High sampling frequency and high variance

We start off by considering the group of measurements simulated with high
sampling frequency and high variance. In Figure 5.8a we show histograms of
the accuracy obtained using the different methods. Here, we see a very clear dif-
ference between the methods using the simple state space and the methods using
the augmented state space. In fact, it is the only measurement group where we
observe significant differences in the accuracy across methods. An even clearer
performance advantage for the methods using the augmented state space can be
seen in the histograms of the Hausdorff distance in Figure 5.8b. The information
displayed in Table 5.9 confirms what we have already seen, namely that using the
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augmented state space, along with any changes made to take advantage of this
state space formulation, leads to superior performance compared to the use of the
simple state space.

It is also worth noting that using the simple method provides no benefits over
the benchmark method. In addition, we observe that using the ATR method leads
to a slight increase in mean accuracy and a slight decrease in mean Hausdorff
distance. The performance gain is, however, not large enough to enable us to
make any claims about it being a "better method". It is hard to argue that the
ATR method is worse, though, and this is significant in itself, seeing as the ATR
method uses transition probabilities that we suspect reflect the traffic flow of the
road network better than the alternatives. Overall, the "augmented" methods (A,
AR, ATR) all perform very similarly. The most interesting thing with regards to
these methods, except their superior performance compared to the simple state,
is how the Hausdorff distance of the "restricted" methods (AR and ATR) is more
spread out. We expect the "restricted" methods to be more "rigid", and this could
be an indication of this. The methods might be less affected by noise, but are also
incapable of moving through many states in a short time in order to reach a certain
position.

Kernel density estimates for the various methods are shown in Figure 5.9.
These serve only to confirm what has been already established — that using the
augmented state space provides very clear benefits, but any additional extensions
and variations provide only minor benefits, if any, in terms of pure performance.

Method Mean accuracy Mean Hausdorff distance

A 0.783 16.393
AR 0.768 15.962
ATR 0.787 15.918
BM 0.693 78.704
S 0.730 76.099

Table 5.9: Mean accuracy and Hausdorff distance obtained for the various methods
when applied to measurements made with high sampling frequency and high
variance.

High sampling frequency and low variance

We move on to the measurement group with high sampling frequency and low
variance. The associated accuracy histograms are shown in Figure 5.10a. The
histograms of the Hausdorff distance are shown in Figure 5.10b. The mean accuracy
and mean Hausdorff distance for this measurement group are shown in Table 5.10.
Here, as before, one observes a clear difference between the "augmented" methods
(A, AR, ATR) and the other methods, while using the S method still provides no
benefit over the BM method. We also note that the mean accuracy is virtually
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Figure 5.8: Histograms of accuracy and Hausdorff distance for the various methods
when applied to measurements from the measurement group with high sampling
frequency and high variance.
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Figure 5.9: Kernel density estimates of accuracy and Hausdorff distance for the
various methods when applied to measurements from the measurement group
with high sampling frequency and high variance.

identical for all methods in this measurement group, while the difference in mean
Hausdorff distance is even more pronounced than before, at least for the A method.
This is very interesting, and also displays the advantage of including the Hausdorff
distance as a performance metric. It is clear that the A method is superior in this
situation, with both lower spread and lower mean for the Hausdorff distance.
Moving on, we observe that the reduction in variance increases accuracy and
decreases Hausdorff distance across the board. We note that the A method seems
to better utilize the decrease in variance compared to the other "augmented"
methods (AR and ATR). Disallowing connections between unconnected states does
not seem to be beneficial here, and using estimated transition probabilities does not
seem to fix the problem. We still observe a large spread in the Hausdorff distance
for the "restricted" methods (AR, ATR) when compared to the A method, which
strengthens our belief that the method has a more "rigid" behaviour.

Low sampling frequency and high variance

We now move on the measurement group with low sampling frequency and high
variance. We will present the same plots as earlier, but we now only consider the
"unrestricted" (BM, S, A) methods, since these are the only ones that are applicable
in this scenario. The histograms showing the accuracy and Hausdorff distance
can be seen in Figure 5.12a and 5.12b respectively. The mean of the performance
metrics are shown in Table 5.11. The benefit provided by using the augmented
state space has diminished considerably compared to the case with high sampling
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Figure 5.10: Histograms of accuracy and Hausdorff distance for the various
methods when applied to measurements from the measurement group with high
sampling frequency and low variance.
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Method Mean accuracy Mean Hausdorff distance

A 0.870 5.674
AR 0.870 9.718
ATR 0.873 10.002
BM 0.872 62.874
S 0.861 61.818

Table 5.10: Mean accuracy and Hausdorff distance obtained for the various meth-
ods when applied to measurements made with high sampling frequency and low
variance.

frequency. The A method is still quite clearly a superior method, but the difference
is not as pronounced as it is in the case with high sampling frequency. We also
observe that the simple method is finally showing itself as a better option than the
benchmark method, and is closer, in terms of Hausdorff distance, to the augmented
method than it is to the benchmark method.

Method Mean accuracy Mean Hausdorff distance

A 0.690 36.798
BM 0.683 51.626
S 0.680 41.657

Table 5.11: Mean accuracy and Hausdorff distance obtained for the various meth-
ods when applied to measurements made with low sampling frequency and high
variance.

Low sampling frequency and low variance

For the final case, we consider measurements made with low sampling frequency
and low variance. The histograms are shown in Figure 5.14, the kernel density
estimates in Figure 5.15, and the mean of the performance metrics for the various
methods in Table 5.12. Here, we observe similar tendencies as seen in the previous
case. The benefit provided by the augmented method is clear, but not nearly as large
as in the case with high sampling frequency. The performance of the S method is
approaching that of the A method, with the accuracy being equal across the board.
It is striking that the simple method performs a lot better in this situation, with
low sampling frequency, than it does in the situation with high sampling frequency.
This was seen in the other measurement group with low sampling frequency as
well. One would, at least intuitively, expect more information to translate to better
route estimates, but this is clearly not the case for the simple method.

The decrease in measurement variance has increased the accuracy overall, but
no method has significantly better accuracy than the others. Again, the Hausdorff
distance provides valuable insights that are not visible at all by looking the accuracy.
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Figure 5.11: Kernel density estimates of accuracy and Hausdorff distance for the
various methods when applied to measurements from the measurement group
with high sampling frequency and low variance.
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Figure 5.12: Histograms of accuracy and Hausdorff distance for the various
methods when applied to measurements from the measurement group with low
sampling frequency and high variance.
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Figure 5.13: Kernel density estimates of accuracy and Hausdorff distance for the
various methods when applied to measurements from the measurement group
with low sampling frequency and high variance.
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Figure 5.14: Histograms of accuracy and Hausdorff distance for the various
methods when applied to measurements from the measurement group with low
sampling frequency and low variance.
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Method Mean accuracy Mean Hausdorff distance

A 0.846 27.286
BM 0.845 41.919
S 0.834 33.357

Table 5.12: Mean accuracy and Hausdorff distance obtained for the various meth-
ods when applied to measurements made with low sampling frequency and low
variance.
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Figure 5.15: Kernel density estimates of accuracy and Hausdorff distance for the
various methods when applied to measurements from the measurement group
with low sampling frequency and low variance.





Chapter 6

Discussion and conclusion

6.1 Discussion

The purpose of this thesis has been to introduce and explore HMMs with the
intention of arriving at one or several HMM formulations that can enable high
quality map matching. The HMM formulations require that we assume something
about the distribution of the distance travelled between each measurement. It also
requires assumptions about the distance between the measurement and the road
segment one is currently on. We are, however, limited by the requirements of the
HMM. One would ideally represent the position of a vehicle on a road network
as a point in space that could take on any value in a subset of R2. This is not
possible within an HMM since the state space must be discrete. Furthermore, it
is beneficial (for computational reasons) to have a state space that is as small as
possible. The fact that "being in a position" is represented as being in some state
from a discrete state space has the consequence of making the "distance between
measurements" that we must make assumptions about a coarse, and somewhat
unpredictable, approximation of the actual distance travelled by the vehicle. The
accuracy of this approximation is, in our case, related to the length of the edges in
the road network graph. These edges do not have a fixed lengths, and can, at least
in theory, vary by several orders of magnitude. It is therefore hard to accurately
translate what we know about the actual movement (which is typically given by
time between measurements and the speed limit) into an assumption about the
"distance between measurements" used in our model. Since the details of the road
network representation is expected to have considerable impact on the distribution
of the "distances" it seems sensible to experiment with a variety of assumptions
and choose the assumption that maximize our performance.

A similar issue is encountered when it comes to the distance between the
measurement and the road segment. We do not know exactly what the distribution
of this quantity looks like, and the knowledge that is available about measurement
error is related to the distance between the true position and the measured pos-
ition. The most sensible course of action in this scenario was, again, to conduct
experiments to test a limited set of assumptions to find the assumption that gives
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us the best performance.
During the parameter search we observe that there are significant variations in

performance for the various parameter choices. We note that it is challenging to
decide which parameter choices are optimal, seeing as we have not found a single
metric that is able to quantify the quality of all aspects of the route estimate in a
sensible manner. The accuracy does not take into account the whole route, but
only evaluates whether the estimated states at the various measurements times
are identical to the state we are in when the measurement is made. By using
the accuracy we have no way of reliably assessing the "similarity" between the
estimated route and the true route. We are restricted to checking whether the
endpoints of a path between an estimated state at time n−1 and an estimated state
at time n match, but can not check whether the path that connect the estimated
states matches the true path.

In order to compare the entirety of the estimated route to the true route we
employ the Hausdorff distance. This enables us to compare entire routes, but
we miss out on information about the ordering of the estimated states. It is also
somewhat misleading to judge the quality of a HMM-based method by using a
metric that takes into account how the estimated states are "glued" together —
especially when the estimated states are glued together using an approach as
naive as choosing the shortest path. The metric is very suitable for evaluating a
general map matching method, but it is not necessarily fair to use it to evaluate
the underlying HMM — signs of bad performance could just as well be because of
"bad glueing". This concern is alleviated, at least to a certain degree, when using
the "augmented and restricted" method, since this method removes the need for
"glueing" unconnected states together.

The choice of parameters is straightforward only in the case when one unique
parameter combination both maximizes accuracy and minimizes Hausdorff dis-
tance. This only happens in a handful of scenarios. In other cases we must either
choose which metric is most important, or decide how much we can accept in a
trade-off between the two metrics. This is hard to do well in a consistent manner.
Another challenging situation appears when what appears to be the best parameter
choice is unexpected, such as when σp = 10 minimizes the Hausdorff distance in
the case with low sampling frequency and low variance. This value is not in line
with our expectation, seeing as we know the measurement standard deviance to
be σm = 3, and also not in line with what was observed in the other low variance
group. While we did not expect that σp and σm would be equal, it was surprising
to see a discrepancy as large as the one seen here. One explanation for this could be
that there is large discrepancy between our "model world" and the actual scenario.
We end up choosing σp = 6 as a better alternative in this specific situation, and
do so by primarily appealing to the higher accuracy, but we are also influenced by
the fact that this choice is more in line with our expectations. We are not entirely
confident about this choice.

The difficulty of determining optimal parameters leads to a scenario where the
final performance evaluation is conducted using methods where the parameter
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choices might, in some cases, be sub-optimal. It is therefore hard to make definitive
claims about the viability of the various methods. Certain observations are, however,
so clear that we do not think better parameter choices would have changed the
final outcome significantly. Some of these clear observations are:

• The superior performance of the HMM-based methods using the augmented
state space,

• The "augmented" method’s ability to benefit from low measurement variance,
and

• The "simple" method’s inability to benefit from high sampling frequency.

It is also worth discussing the performance of the AR method. This method
avoids the issue of having to "glue" estimated states together while maintaining
performance similar to the other methods using the augmented state space, at
least in the high variance case. Another upside of this method is the increased
interpretability of the transition probabilities — the transition probabilities repres-
ent the probability that a certain directly connected edge is chosen, regardless of
whether a measurement is made at this directly connected edge. The downside is
that the sampling frequency must be high enough to ensure that there are enough
transitions to "keep up with" the true route. This can be especially problematic
in scenarios where the route consists of a lot of very short edges. The form of
the transition probabilities in the AR method is not only useful because of the
increased interpretability — it might also make the transition probabilities easier
improve. It is not incomprehensible that the traffic flow of a road network could
be estimated using some other method. This could then be translated to transition
probabilities for the AR method, and hopefully increase its performance.

The interpretation of the transition probabilities of the ATR method as estimates
of the "flow" between connected road segments ensures that there is some, although
possibly small, value to using the Baum-Welch algorithm in the context explored in
this thesis. It can enable us to obtain insight about the traffic flow without having
access to ground truth data, given that the data consists of enough observations.
The plot shown in Figure 5.7 indicates that the Baum-Welch algorithm is able to
learn some of the behaviour exhibited by the system. Having said this, it must be
admitted that the ATR method did not yield results that were as good as one could
have hoped. It did not outperform the other "augmented" methods, which would
have been required for us to claim that it had learned something useful about the
system. This, combined with the difficulty of evaluating what it had "learned" in
a manner we trusted to be correct, left us ensure about how much value it could
actually provide.

6.2 Summary

In this thesis we have presented theory and experiments relating to various HMM-
based map matching methods, and introduced ideas and concepts that hopefully
can be of interest to researchers and practitioners who are engaged in this topic.
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The thesis starts off with a thorough review of the theory behind HMMs. We
continue by explaining the map matching problem and the context it exists in.
By combining the theory of the HMM with our understanding of the problem we
arrive at methods that can be used to do map matching. This involves defining the
state space by using parts of the road network, creating transition probabilities
that lets us utilize knowledge about the restrictions of the road network, and
using emission probabilities that enable us to account for the noisy nature of
the position measurements. Various methods are presented, with the augmented
state space introduced in this thesis being a central component to most of them.
Several possible transition probabilities are used, with those estimated using the
Baum-Welch algorithm perhaps being the most notable, seeing as this approach
has not been taken before.

We conduct multiple experiments to evaluate the performance of the methods
and assess the viability of using the Baum-Welch algorithm in this context. The
performance is measured using the Hausdorff distance and the accuracy, which are
two metrics that capture different facets of the performance of the methods. The
purpose of the first experiment is to determine sensible and well-performing values
for the parameters used in the emission and transition probabilities. This is done
by assessing how the parameter choices impact the performance of our method
when applied to simulated position measurements obtained during simulated road
network traversal. The measurement simulation in this experiment is conducted
under four different circumstances, with the circumstances dictated by the sampling
frequency and variance of the simulated position measurements. The second
experiment uses data created in a similar fashion to estimate transition probabilities
using the Baum-Welch algorithm. An inspection of the resulting estimates show
signs that the estimated transition probabilities reflect at least certain aspects of
the true situation. The performance of all presented methods, including the one
with estimated transition probabilities, is evaluated in the final experiment. This
experiment is similar to the parameter search in the first experiment, but with
more data, and now only using parameter choices that have been identified as
optimal. These experiments enable to us to draw certain conclusions.

• The state space introduced in this thesis contributes to a significant perform-
ance increase when compared to benchmark methods and the HMM-based
method using a simple state space. This is especially true in situations with
high sampling frequency. When comparing the simple method to the aug-
mented method in the case with high sampling frequency and high variance
we observe a 5.3% increase in accuracy and a 78.5% decrease in Hausdorff
distance. This can be seen in Table 5.9. In the case of high sampling fre-
quency and low variance we observe a 0.9% increase in accuracy and a
90.7% decrease in Hausdorff distance, as seen in Table 5.10.
• The method that uses estimated transition probabilities displays performance

that is only slightly worse than the best competing method. Its performance
is, under one specific set of circumstances, identical to the best competing
method.
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• The simplest of the HMM-based methods performs worse with high sampling
frequency, with the other HMM-based methods showing an increase in
performance.

• Measurement variance has a high impact on both accuracy and Hausdorff
distance for all methods.

The second point in the preceding list is significant because of the potentially
increased interpretability of this method. There are signs suggesting that the
estimated transition probabilities can reflect the traffic flow on the road network,
and there might be situations where such an interpretation is desirable, and worth
sacrificing low to moderate amounts of performance for.

6.3 Further work

It would be interesting to see a more focused effort at analyzing the viability of
using the Baum-Welch algorithm for learning transition probabilities. One issue
that could be explored is whether the Baum-Welch algorithm is able to reduce
the error observed when missing data is encountered. Data missing at random
can easily be dealt with within an HMM framework. In this case the only way to
evaluate the probability of various paths is through the transition probabilities.
If the estimated transition probabilities are closer to the truth than the initial
estimates then one would expect to see that the estimated transition probabilities
make the method more robust when faced with missing data.

It could also be interesting to train a HMM with Gaussian emissions. This was
briefly explored during initial work with this thesis, but it proved challenging for
a variety of reasons. One of the challenges were related to determining sensible
initial values for the mean and the covariance for each state. Attempting the learn
the mean and covariance also increases the total number of parameters by a lot,
and would likely require more data. This would result in a substantial increase in
the runtime of the Baum-Welch algorithm. This would add to an already significant
computational cost, and would likely not be feasible without a more efficient
implementation. It is possible, although not necessarily likely, that given solid
initial values and real-world data, a trained Gaussian HMM would be able to
represent both the traffic flow and the specifics about measurements made in
different regions of the road network. The traffic flow would be encoded in the
transition matrix, while details about the measurements would be captured by the
mean and covariance of the various states. It is possible that edges located in a
high-density urban region could, for instance, be found to have higher variance
than a region with less obstruction for the GPS signal.

It would, if given large amounts of real-world data, be interesting to incorporate
supervised learning algorithms in an effort to create more intelligent map matching
methods. The Input-Output HMM (IOHMM) presented in [24] could for instance
enable the variance of the measurements to be based on external features such as
satellite imagery, WiFi and cellular signals, and the features of the road network.
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It is also worth mentioning that using the exact methodology presented in this
thesis is probably not advisable for large scale real-world problems. This thesis is
focused on presenting the various techniques in a thorough manner, making sure
that the methods are mathematically sound and consistent with the assumptions
made. A more efficient implementation of the methods used in this thesis would
likely require that one constructs a state space consisting only of states that are
somewhat likely to be a part of the route estimate. One could also consider using
a sequence of edges as a state instead of a single edge. This would make the state
space smaller, but would also make the states a worse approximation of a "position".
This would, among other things, have an impact on the accuracy of the "distance"
d(x , y) used in the transition probabilities, and would likely have an impact on
the performance of the method. It would also make it harder to justify that the
measurements are conditionally independent given the state.

In previous work, as well as real-world applications, it has been quite common
to violate the assumptions of the HMM when formulating the transition probability.
One could make such adaptions to the methods presented here as well, and the
resulting methods might end up performing well. Such an approach has, however,
not been considered to be suitable for this thesis.
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