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Abstract

The structure, dynamics and interactions of microbial communities have the lat-
est years been a hot topic in the scientific communities. Industries as diverse as
aquaculture, water treatment and healthcare would benefit to a major extent if
we could utilize a widened understanding of community assembly and interactions
to provide a microbial environment fitting our demands. Yet, the field of study-
ing community interactions and dynamics is young and immature. No solid and
well-tested theory or approach exist, encouraging further research into this topic.

The data for this project were OTU tables from three different lab-scale re-
actors experiments, created by 16S rDNA sequencing. ReBoot, a cross-sectional
algorithm, combined with an ensemble of similarity measures, was utilized to pro-
vide the co-occurrence and co-exclusion patterns of the microbial communities. In
addition, a time-series based approach was tired out; the generalized Lotka-Volterra
equation was fitted with the experimental data in order to determine whether the
dynamics of the communities could be reproduced.

The interactions inferred from the similarity measures through ReBoot were for
the most part positive. The similarity measures had the power to distinguish OTUs
being dominant under different selection regimes, even though the results from
ReBoot were not any better in this respect than the naive application of similarity
measures. The predicted interaction networks generally consisted of clusters of
closely related OTUs having positive interactions among themselves and negative
interactions to the other clusters. The observation was most likely an artifact of the
fact that closely related bacteria often have almost the same niche and therefore
appear in the same samples. For this reason, the co-occurrence patterns found,
most likely did not correspond to causal interactions.

It was shown that the datasets possessed temporal dynamics indicating deter-
ministic behavior and convergence toward a steady state. In addition, the algorithm
managed to predict the Lotka-Volterra coefficients accurately on a small artificial
test community. However, the Lotka-Volterra modeling gave no reasonable results
for the experimental data, as the cross-validation to obtain the tuning parameters
provided no optimum and the predicted time series did not resemble the real ones.
Too long time spans between sampling points, possibly combined with a too large
number of OTUs, is the most plausible reason for the failure.
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Sammendrag

De seneste årene har strukturen, sammensetningen og interaksjonene i mikrobielle
samfunn vært et hett tema i de vitenskapelig miljøene. En rekke næringer som
havbruk, vannbehandling og helse har mye å tjene dersom en utvidet forst̊aelse
av interaksjoner mellom mikrober kan gjøre oss i stand til å forme de mikrobielle
samfunnene til å bli gunstige for v̊are form̊al. Studiet av mikrobielle interaksjoner i
hele samfunn er et nytt og umodent fagfelt. Derfor finnes i dag ingen vel underbygd
og testet teori eller framgangsm̊ate, noe som fordrer videre forskning p̊a feltet.

For prosjektet ble det brukt OTU-tabeller fra tre forskjellige lab-skala reak-
torforsøk, generert ved sekvensering av 16S rDNA. ReBoot, en tversg̊aende algo-
ritme, kombinert med en samling av similaritetsm̊al, ble brukt for å finner mønstre
av sameksistens og gjensidig utelukkelse. I tillegg ble en tidsseriebasert fram-
gangsm̊ate prøvd ut, der forsøksdata ble tilpasset den generaliserte Lotka-Volterra-
likningen, for å se om dynamikken i samfunnene kunne reproduseres.

Interaksjonene som ble funnet gjennom ReBoot, var for det meste positive. Sim-
ilaritetsm̊alene klarte å strukturere OTUene som var dominerende under forskjel-
lige seleksjonsregimer selv om resultatene fra ReBoot ikke var noe bedre p̊a dette
omr̊adet enn direkte anvendelse av similaritetsm̊alene. De predikerte interaksjon-
snettverkene viste en struktur med klynger av nært beslektede OTUer med positive
interaksjoner mellom seg, og med negative interaksjoner mellom klyngene. Dette
funnet var mest sannsynlig en følge av at OTUene i hver klynge hadde samme
miljøpreferanser og forekom derfor i de samme prøvene. Av den grunn samsvarte
sannsynligvis ikke sameksistensmønsteret overens med den faktiske interaksjon-
sstrukturen i samfunnene.

Det ble vist at datasettene hadde tidsutviklinger som indikerte deterministisk
oppførsel og konvergens mot en stabil tilstand. Dessuten fungerte algoritmen godt
til å predikere Lotka-Volterra-koeffisientene til et lite, simulert samfunn. Imidler-
tid ga modelleringen med Lotka-Volterra ingen fornuftige resultater p̊a dataene fra
forsøkene. Blant ga kryss-validering ingen optimal verdi for tilpasningsparame-
trene, og de predikerte tidsseriene samsvarte ikke med de reelle tidsseriene fra
forsøkene. Sannsynligvis skyldtes problemene for lang tid mellom hver prøve, kan-
skje ogs̊a at antallet OTUer var for høyt.
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. . .
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[
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(matrix X is assumed to be square)
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• bin (x): The binary encoding x∗ of x, this is for each of the elements: x∗i ={
1 xi 6= 0

0 xi = 0
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• Tr (X): Trace of a quadratic matrixX (sum of elements on the main diagonal)
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• arg max
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value.

• ln (x): The natural logarithm

Reference to implementation

Whenever an implementation of a method by an R-package is used or discussed, it
is cited on the form:
package::function(options=’option’)
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Chapter 1

Introduction

During the recent years, modern high-throughput sequencing technology has en-
abled identification of entire microbial communities[1–3]. Doing so has the promise
of finding out how the microbial communities are affected by its environment. Fur-
thermore, this had also initiated an extensive research into how bacteria interact
with each other.

1.1 Types of interactions

Bacteria and other microorganisms do not live in isolation. They affect the life of
each other through interactions[1]. Interactions between organisms can be classified
according to their effect on each of the two actors. In this respect, we talk about
negative, neutral and positive interactions. For instance, if two microorganisms
cooperate and have a positive effect on each other, we call it mutulism. On the
other hand, competition, such as for food resources, provides an disadvantage for
both actors, so it is a negative interaction. An interaction need not be symmetric[4],
for instance often one species may benefit from the presence of the other, whereas
the other species has no advantage of this (commensalism). Also, interactions can
be context specific, there might be that bacteria are not interacting during lack of
nutrients, or attain a mutualistic cross-feeding behavior when nutrients are present.
See Figure 1.1 for a graphical overview of the different kinds of interactions.

1.2 Practical applications

Understanding of the interaction and interplay between microbes is essential for
studying community assembly processes. In turn, understanding how microbial
communities assemble provides great insight into the questions of which microor-
ganism are present under specific conditions and in which abundances. Microbial

1



Chapter 1. Introduction

Figure 1.1: Overview of the different kinds of interactions[1]

processes shape the ecosystem and the health of all living macroorganisms. Thus,
knowing how to utilize microbial interactions may have give us tools to manipu-
late environmental processes to our benefits or to provide good health for humans
and animals. The human gut microbiota is probably the most studied subfield of
microbial ecology up to present. The state of the gut of the host may influence the
health condition of the entire body[5] and a disbiotic gut may lead to diseases such
as inflammatory bowel disease[6], obesity[7] and allergy[8].

Among the same lines, more attention has been drawn to the microbes’ role
in survival and growth of larva of marine fish[9, 10]. Contrary to the traditional
viewpoint that infectious diseases are caused by specific pathogens, also non-specific
opportunistic bacteria may cause detrimental effects for the fish if the microbiota
surrounding the fish or residing inside the gut, is brought out of balance. This
includes poor growth, higher stress levels and increased mortality. Management to
provide healthy microbial community for the fish can thus make aquaculture more
profitable and more acceptable by the public. As a consequence, understanding how
microbes interplay with each other and their hosts is therefore a major concern in
the aquaculture industry.

2



1.3 Selection regimes

Table 1.1: Usual properties of r- and K-strategists. Adopted from [10–12]

Trait r-strategist K-strategist

Maximum growth
rate

High Low

Affinity for substrate Low High
Competative ability
at resource limita-
tions

Low High

Conditions favoring
selection

Pulse feeding,
abrupt change of
environment

Continues feeding,
stable environment

Stability of commu-
nity

Low, community
prone to collapse

High

rrn operon copies Many One or a few

1.3 Selection regimes

Andrew and Harris[11] first brought up the concept of r- and K-strategists to
explain life strategies of microbes, although these concepts originally were devel-
oped in macro-ecology. The terms r and K originate from the logistic equation for
population growth:

d N

d t
= Nr

(
1− N

K

)
, (1.1)

where N is the size of the population. According to this equation, coefficient r can
be interpreted as the maximum growth rate, whereas the coefficient K is referred to
as the carrying capacity. Even though the logistic equation is largely abandoned as
a quantitative mean as describing r- and K-selection[11], the underlying qualitative
description remains. An r-strategist is optimized for rapid growth when resources
are in surplus at the expense of being able to compete for resources in crowed
environments. Hence, r-strategists are most usually found in unstable communities
dominated by changes. On the other hand, K-strategists are adapted for growth
on limited resources, but rarely show high growth rates even when resources are
abundant. They tend to dominate stable environments and can live in higher
densities than the r-strategists. A summary of the common properties of K- and
r-strategists are shown in Table 1.1. As pointed out by Vadstein et al.[9, 10],
most common bacteria being know as detrimental for fish health are r-strategists.
Therefore, Vadstein et al.[9] states that K-selection in aquaculture systems might
be a good strategy for increasing viability and growth for fish at early life stages.
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Chapter 1. Introduction

1.4 How is the microbiome composition determined?

The 16S ribosomal RNA gene1 is the most common marker used in community
microbiome studies. It is universally distributed, has both variable and conserved
regions and follows (with a few exceptions) the phylogenetic linage. It has been
utilized for a long time for determining phylogeny of microorganisms in pure cul-
tures[13]. Furthermore, molecular techniques such as tRFLP and DGGE have been
used for fingerprinting entire communities. However, identifying the relative abun-
dance and identity of all microorganisms being present in communities has awaited
recent developments in sequencing technology[2].

After DNA extraction of the community, the S16 target sequence is amplified
using broad coverage primers, designed to amplify all bacteria equally. These ampli-
cons are then sequenced on a high throughput platform such as Ilumina miSeq[14].
After sequencing, the individual reads must be organized or clustered in a meaning-
ful way, based on the similarity of the reads. Traditionally, a similarity threshold
of 97% has been set for discriminating bacterial species. However, selecting a sim-
ilarity threshold for the smallest taxonomical unit to consider, is no trivial task.
No clear species boundaries exist for bacteria, and in some cases, a threshold of
99% is required to distinguish bacteria believed to be different species. In order
to mitigate the problem of fuzzy species boundaries, it is common to work with
Operational Taxonomical Units(OTUs) based on a custom, self-made criterion[15].
From to the number of reads for each OTU in a sample, the relative abundance
for each OTU is estimated, creating an abundance profile. Most often, studies of
microbial datasets involve many samples, in which case the number of reads or
relative abundances are aggregated into an OTU table.

1.5 Recent developments

Inferring microbial interactions from real 16S rDNA surveys is far from straight-
forward[1, 3, 16]. The available data are usually the relative abundances of mi-
crobes, sometimes combined with measurements of total cell count and other eco-
logical parameters. Among the most basic methods are the ones based on corre-
lations or dissimilarities. In addition, more refined methods specially adopted for
relative abundances[17] exist, in addition to regression[18] and probablistic graph
models[3]. Also, dynamical modelling has been attempted[19]. The latter approach
proved particularly useful as it enabled finding a mechanism which prevents the
growth of Clostridium difficile in the gut[20]. However, up to date we lack a co-
herent theory of microbial interactions and many of the proposed methods have
turned out to have critical shortcomings[16, 21]. Neither do we know much about
the structures and mechanisms shaping the microbial communities.

1For short we refer to this as 16S rDNA, referring to the fact that this is the DNA sequence
coding for the 16S rRNA
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1.6 Project aims

1.6 Project aims

Lab reactor experiments are easier to control and involve less complicating factors
than samples form natural ecosystems. This makes it easier to study the different
aspects of microbial dynamics and community assembly. We will use data from
three reactor experiments (see Section 2.1) as a basis for our study.

In order to gain insight into the nature and structure of the interaction patters
in bacterial communities, we will use two different approaches. The ReBoot method
introduced by Faust et al.[22] will be used to predict interactions from patterns of
co-occurrences and co-exclusions. By this method, we seek to answer the following
questions:

1. How are microbial communities structured?

2. Do our results correspond to real ecological interactions or are there con-
founding factors?

3. What is the most sound way of inferring ecological interactions?

As our data in part are time series of developing microbial communities, we also
attempt using a dynamic deterministic model suited to predict the microbial com-
munity. For this, we choose the generalized Lotka-Volterra (gLV) model. In this
context, we want to answer the following questions:

4. Do microbial communities follow a specific path based on external selection
pressure or are dynamics dominated by stochastic effects?

5. Can dynamics in microbial communities be described, explained, reproduced
and predicted?
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Chapter 2

Background and theory

2.1 Reactor experiments

All experiments used in this thesis were conducted by the Analysis and Control
of Microbial Systems Group (ACMS) at NTNU and are listed in Table 2.1 and
described in further detail below. The general outline for the experiments is as
follows:

Seawater with bacteria was used as inoculum for batch or chemostat reactors.
Samples were taken at specific days as described for the three experiments below.
For each sample, DNA was extracted using a standard kit and kept frozen until
the end of the experiment. The V3 and V4 regions of the 16S-RNA gene were
amplified by PCR with broad coverage primers. Thereafter, the PCR products
were labelled with unique (for each sample) barcodes by a second PCR reaction,
the samples were pooled and sent to sequencing on one Illumina MiSeq lane at the
Norwegian Sequencing center. The raw reads were processed by the USEARCH
pipeline[23], where reads with similarity higher than than 97% were clustered into
OTUs. Assignment of taxonomy to the OTUs was made comparing the represen-
tative sequence to the RDP reference dataset (version 16)[24]. The output of such
a workflow is an OTU table, showing the number of reads in each of the samples.
For more details on the experimental procedure or data processing, please consult
Gundersen[12] or Solberg[25].

We will briefly describe each of the experiments:

Seawater Batch reactor experiment over 24 days with seawater from surface and
90 meter depth, samples being taken on day 1, 2, 17 and 24. At the start of the
experiment, the reactors was subjected to r-selection after a nutrient pulse, while
the reactors were assumed to be K-selected the two last sampling days. Even
though the full results of the experiment has not yet been published, data from
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Chapter 2. Background and theory

Table 2.1: Experiments used in this thesis

Name used
in thesis

Number of
samples

Number of
reactors

Total number
of OTUs

Number of OTUs
when filtering at
10−4 mean abun-
dance

Seawater 16 4 1353 390
Biofilm 96 9 608 122
Selection-
switch

203 12 13021 165

this experiment are used in figure 5 in Vadstein el al.[9].

Biofilm Chemostat experiment over 12 weeks carried out as a part of the master
thesis of Erlend Hafsten[25]. The reactors had different numbers of biofilm carriers
(TR1: 136, TR2: 70, TR3: 0). Samples were taken from the water (W) and the
biofilm (C) at week 1,2, 4, 6, 8, 10 and 12. The target of the experiment was to
identify the interactions between biofilm and planctonic communities.

Selection-switch Master thesis of Madeleine Stenshorne Gundersen, in collab-
oration with Ian Morelan[12]. Chemostat experiment carried out over 50 days,
were samples from the water community were taken at day 1, 2, 4, 6, 8, 12, 16,
20, 24, 28, 29, 30, 32, 36, 40, 44 and 50. The reactors were divided into high (H)
and low (L) carrying capacity. Before day 29, one group of reactors was r-selected
(nutrient pulse) and the other group was K-selected (continious nutrient supply).
At the 29, the selection regimes were switched such that r-selected reactors be-
came K-selected and vice versa. The main goal of the experiment was to find out
whether selection could eliminate potential opportunistic r-strategists.

2.2 Nature of the data

The number of raw read counts from the sequencing platform does not correspond
to the cell count in the sample due to the PCR amplification. Indeed, the experi-
mental procedures have been designed to provide the same total number of reads
for all samples (normalization). Hence, the counts are only valid as indications
of the relative abundances within the same sample. For this reason, the data are
normalized to relative abundances before analysis. Further complications discussed
below might cause the estimate of the relative abundances to be inaccurate. We
will now list up known difficulties with 16S rDNA datasets:

1OTUs having a positive abundance in the relevant samples

8



2.2 Nature of the data

• Using relative abundances alone leads to unrecoverable loss of data and er-
roneous results, as discussed by Faust et al.[22] and Gloor et al.[26]. For
instance, in a community of only two OTUs, the two will be perfectly anti-
correlated, making it impossible to draw inferences about their interactions.
The best way of getting to know the absolute number of each OTU in each
sample is scaling by the total cell count determined by other methods such
as flow cytometry or q-PCR.

• The broad coverage primers are made to amplify the rDNA of all known
bacteria. Ideally, this should amplify the rDNA of each bacterium equally.
However, there will be bacteria where the universal primers do not match that
well, yielding a lower (or in the worst case no) PCR output than expected.
Note that this error should be consistent over all samples and experiments[27,
28].

• Bacteria have different numbers of Ribosomal RNA (rrn) operons contain-
ing the S16-RNA gene. Typically, slow-growing K-strategists have one such
operon, whereas r-strategists may have over ten rrn operons enabling them
to grow fast. Due to this fact, some bacteria are over-represented in the re-
sults [29]. As for the PCR selectivity, this is an error being consistent over
samples.

• Datasets of microbial communities are sparse. Only a few OTUs dominate
the data and are found in most samples. The majority of the OTUs are rare
and detected in a few samples only. As a result, the OTU tables are filled with
lots of zeros, which is an obstacle for further analysis. Even though an OTU
is registered as having zero abundance in a sample, it may not be completely
missing, but simply have an abundance below the detection limit[17].

• An OTU table typically contains hundreds or thousands of OTUs, often far
more than the number of samples. The so-called “curse of dimensionality”
reflect that data with so many dimensions are difficult to analyse by conven-
tional means, especially if few data points are provided.

• The results are prone to sequencing errors and incomplete taxonomy databases.
For instance, chimera occur when a read is composed on DNA from two dif-
ferent OTUs. The USEARCH pipeline have algorithms to remove those[30],
but some errors most certainly remain. Also, many OTUs, especially the
rare ones, cannot be determined on a fine taxonomical level. This can be due
to incomplete reference taxonomical databases or be artefacts of sequencing
errors.

• 16S rDNA microbial datasets contain many OTUs being rare. They may
result from sequencing errors, chimera, DNA contamination or simply be real
OTUs being present in the samples in low abundance. This may contribute
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Chapter 2. Background and theory

to a large number of OTUs, making it harder to catch the biological signal
and slows down computations. Therefore rare OTUs should be filtered out
prior to analysis[16, 31].

2.3 Ordinations

Data of microbial communities are multidimensional by nature. This poses a great
challenge: How can be perceive and interpret this many dimensions when living in
a world of only three space dimensions? The idea often being used in this setting is
to represent the data in a fewer number of dimensions while retaining as much as
possible of the underlying information. We will now introduce two such methods:
Principal Component Analysis (PCA) and Principal Coordinates Analysis (PCoA)

Definition

Given a matrix A︸︷︷︸
n×m

, the loadings for the first principal component w1 is the one

maximizing the variability ‖Aw1‖22 = (Aw1)
ᵀ

(Aw1) under the constraint ‖w1‖22 =
wᵀ

1w1 = 1. The entity z1 = Aw1 is then called the score vector for the first
principal component and serves as a first approximation of the variability between
the columns. Imagine that A contains the abundances of the OTUs with samples in
rows and OTUs in columns. Then the first principal component is an approximation
of the community structure represented by A in one dimension.

Further principal components can be extracted in sequence by finding the load-
ings explaining the most of the variability, while being orthogonal to the past
principal components, the details are beyond the scope for this thesis[32]. In prac-
tice, we plot the two first principal components. This corresponds to projecting
the n-dimensional space into the two-dimensional plane explaining as much of the
variability of the data as possible.

PCoA (Principal Coordiantes Analysis) use the same underlying idea as PCA,
but in this case, the PCA ordination is made from a matrix of similarities or
dissimilarities between the data points.

Proportion of variance explained

When investigating the structure of a dataset with PCA or PCoA, we often plot the
results in two dimensions. Hence, we want the first two principal components to
explain as much of the variability as possible. The proportion of variance explained
by principal component i with scores zi is[32]:

‖zi‖22
Tr (AᵀA)

(2.1)
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2.4 Similarity measures

By definition, the proportion of variance explained decreases monotonically with i.
The proportion of variance explained should be printed in the axes of a PCA plot
as this reflect of much of the overall structure in the data which is explained by
the plot. If the plot only explains a small fraction of the variability, the usefulness
of the plot should be taken into question.

2.4 Similarity measures

Definition

There does not exist any single definition on what a similarity measure is. The
given definition used in this thesis, is the our own operational definition:

Given two real vectors x and y of the same length n, an unsigned similarity
measure is defined as a function f : Rn × Rn → [0, 1], satisfying:

f (x,x) = 1 for all x 6= 0 (Any vector is totally similar to itself) (2.2)

f (x,y) = f (y,x) for all x,y (Similarity is a symmetric relation) (2.3)

f
(
σ (x) , σ (y)

)
= f (x,y) for all x,y

and any permutation σ (The ordering of data points does not matter) (2.4)

Here, 0 is interpreted as total dissimilarity and 1 is interpreted as total similarity.
Similarly, we can define a signed similarity measure as f : Rn × Rn → [−1, 1],

which satisfies the conditions above. Here, the interpretation of 1 is total similarity,
0 is non-similarity and -1 is negative similarity.

We can extend this definition to matrices, this is, given a matrix

X︸︷︷︸
n×m

=
[
x1 x2 . . . xm

]
, (2.5)

we define f (X) = S︸︷︷︸
m×m

as follows:

(S)ij = f
(
xi,xj

)
(2.6)

Equations (2.2) to (2.4) thus imply in respective order:

diag (S) = 1 if all columns vectors in X are non-zero (2.7)

Sᵀ = S (2.8)

f
(
σR (X)

)
= f (X) = S for any row permutation σR (2.9)

Comments:
As we will see, the concept of similarity measures in this thesis is a rather broad

one. For instance, this includes what is perceived in literature as correlations (for
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Chapter 2. Background and theory

instance Pearson and Spearman), and also what is considered normalized distances
(or dissimilarities), such as Bray-Curtis and Jaccard. These two are often described
with different terminology and might have other conventions, such as whether the
vectors are taken to be row or columns in the data matrix. For this project however,
we will neglect these differences and rather group the measures according to the
criteria listed below. Also, note that the triangle inequality: f (x,y) + f (y, z) ≥
f (x, z) is not a part of our criteria. Some of our similarity measures will obey this
inequality, whereas other will not.

Subtypes of similarity measures

We further provide our own operational classification of the different kinds of sim-
ilarity measures:

• Presence-absence: Given two vectors x and y, a presence-absence metric will
only consider which elements in x and y are non-zero. For the non-zero-
elements, the magnitude of the numbers does not matter. In our notation, it
means:

f
(
bin (x) ,bin (y)

)
= f (x,y) (2.10)

• Non-parametric: Such similarity measures are based on the ranking of the
elements in the individual vectors, but not their magnitude. Stated by for-
mulas, we obtain:

f
(
Rx, Ry

)
= f (x,y) (2.11)

Often, care should be taken when considering tied ranks, in which case cor-
rections often are made.

• Parametric: Given x,y, the metric is a continuous function of the two vectors
and hence, the magnitude of the elements matter. We thus get the defining
equation:

lim
x→x0
y→y0

f (x,y) = f (x0,y0) (2.12)

Robustness to noise and other considerations

We note that presense-absence metrics are very sensible to noise as the slightest
perturbation can change the result dramatically. This is indeed troublesome when
there is noise in the measurements or limited resolution, this is: Might the microbe
be missing from the sample or is it present and its abundance below the detec-
tion threshold? For situations where the species inventory is well-characterized,
presence-absence can useful, but for analysing microbial communities, we will not
pay them much attention.
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2.5 The ReBoot pipeline

Non-parametric measures can be said to be more robust to noise as small per-
turbations often do not change the ranks and hence the statistic. However, in cases
with many tied or close observations, especially relevant is the case with many ze-
ros, small perturbations might have a huge impact. Parametric measures might
be easier to deal with in this respect as they change continuously with the added
noise. However, the patterns they capture might often be narrower. For instance,
the Pearson correlations is parametric and measures linear relationship. However,
often we are more interested in general monotonous relationships, in which cases
the Spearman correlation is more suited[33].

Similarity measures used in this thesis

ff For this thesis, a selection of similarity measures were selected and used in the
analysis. These are listed in Table 2.2.

2.4.1 Adding of noise

In order to assess the stability of similarity measures with uncertain data, noise can
be added. OTU tables have a limited resolution (determined by the total number
of reads). Hence a zero in the dataset does not mean that the abundance of the
OTU necessary is zero. More often this is due to the fact that the OTU is present
below the detection level[1]. Thus, the rationale of adding noise has been to turn
down the significance of interactions being due to the sparsity and discreteness of
the data. Significant correlations found are less to be trusted if a little noise make
them disappear.

2.5 The ReBoot pipeline

The ReBoot (Permutation-Renormalization and Bootstrap) pipeline was originally
presented by Faust et al.[22] and is illustrated in Figure 2.1. The inputs to the
ReBoot algorithm is an OTU table and a similarity measure. Compared to taking
the raw correlations of the relative abundances, the ReBoot approach adds some
refinements:

• The similarity scores are found through bootstraping, making the method
more robust to spurious correlations in addition to estimating the standard
deviation of the estimate[45]

• It has a way of assigning the statistical significance to each interaction pairs.
This is done through comparison of the bootstrap distribution with the so-
called null distribution

2With negative numbers, this statistic can be negative, but we will not consider negative
abundances in this work
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Table 2.2: Similarity measures used in this thesis

Name Type Comments References
Pearson correla-
tion

Parametric,
signed

Measures linear corre-
lation

[34]

Spearman corre-
lation

Non-parametric,
signed

The Pearson correla-
tion between ranks

[33, 35]

Kendall’s tau Non-parametric,
signed

Based on the number
of inversions in ranks

[36]

Bray-Curtis Parametric, un-
signed

Commonly used in
ecology

[37, 38]

Jaccard index Presence-
absence, un-
signed

Calculated as intersec-
tion over union

[37, 38]

Generalized Jac-
card index

Parametric, un-
signed

Also called Ruzicka
similarity

[39]

nc.score Non-parametric,
signed

Based on patterns of
co-exclusion and co-
existence

[40]

Squared Eu-
clidean similarity

Parametric, un-
signed

Normalized Euclidean
distance

[41]

Mutual informa-
tion

Parametric, un-
signed

Based on information
theory, requires dis-
cretizing prior to calcu-
lation

[42, 43]

Cosine similarity Parametric, un-
signed2

Geometrically inter-
preted as the cosine of
the angle between the
two vectors

[37, 44]
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2.5 The ReBoot pipeline

Figure 2.1: Overview of the ReBoot approach[22]

2.5.1 Calculating correlations and null distribution by boot-
strapping and permuation

The samples from the dataset are drawn with replacement to form another dataset
having the same number of samples, but possibly with some of the original samples
repeated. From this bootstrap selection, the similarity measure computes all pair-
wise correlations and stores them in a matrix. This is repeated B times3, forming
a bootstrap distribution for each pairs of OTUs. The null distribution for each pair
of OTUs is created by permuting the abundances of one of the OTUs, finding the
correlation score between the OTUs and repeat the procedure N times4. In order
to compensate for the fact that permutation breaks the compositionality of the
data (samples do no longer sum to one), which may lead to spurious correlations,
the data are renormalized after permutation.

2.5.2 Comparing the two distributions

The null distribution can be interpreted as the correlation values to expect if there
was no association between the OTUs. This is compared to the bootstrap distri-
bution to see whether the association is by chance or not. Let X̄ij and Ȳij be
the means of the bootstrap and null distribution, respectively of the correlation
between OTU i and OTU j. Furthermore, let V̂ar

[
Xij

]
and V̂ar

[
yij
]

be their
respective sample variances. The observed z-statistic is then computed as:

zij =
X̄ij − Ȳij√

1
2

(
V̂ar

[
Xij

]
+ V̂ar

[
Yij
]) , (2.13)

3B is taken to be a number high enough to provide stability
4N is in practise taken to be equal to B
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which then is assumed to have a standard normal distribution5. According to the
normal distribution, the p-value is computed as

pij = 2 · Φ
(
−|zij |

)
, (2.14)

where Φ is the cumulative probability function of the standard normal distribution.
Note that this p-value only applies this pair of OTUs and does not take into ac-
count all the other possible associations between OTUs, in which case we encounter
the problem of multiple testing. To accommodate this, each computed p-value is
corrected by the Benjamini-Hochberg-Yekutieli procedure[46], producing q-values.

2.6 Network theory

A collection of nodes or vertices, connected by links or edges is called a network.
The concept of network is generic, so the nodes can be whatever entity we are
studying such as individual persons, computers, genes or microbial OTUs. Simi-
larly, the links can refer to any possible connection between the nodes, this may be
conversations between people, gene regulations or interaction between bacteria[47].

A subset of nodes in a graph having stronger interconnections among themselves
than the rest of the network, is called a community. A community may thus
correspond to a subgroup of nodes having something in common or are interacting
in a special way. There exist numerous formal definitions of what a community is,
as well as methods for detecting the communities. Hence, the result of a community
finding procedure depends on criteria and algorithms being used[47].

The walktrap community detection algorithm presented by Pons et al.[48] uses
random walks to provide a basis for aggregative community detection. The under-
lying idea is that short random walks starting from one node has a higher likelihood
of staying inside its community. From random walks of a fixed length t, the transi-
tion probabilities Pij (probability of ending up at node j given start at node i) are
estimated. These numbers are further used to calculate distances between nodes.
From these distances, Ward clustering is used, resulting in a hierarchical tree. Each
cut of this tree corresponds to a partitioning of the overall network. The partition
which maximizes the so-called modularity score is finally chosen as the partition
capturing the modularity the best.

5The presented formula is taken from the source code of ccrepe. We would consider the
formula

zij =
X̄ij − Ȳij√

1
B

V̂ar
[
Xij

]
+ 1

N
V̂ar

[
Yij

]
to the most statistically sound.
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2.7 The Lotka-Volterra modelling approach

2.7 The Lotka-Volterra modelling approach

2.7.1 Introduction

This approach is based on the generalized Lotka-Volterra[49] equation, being widely
used in ecology. Faust et al.[1] suggested using a gLV model for studying micro-
bial community dynamics, whereupon Buffie et al.[20] used it to predict and iden-
tify which bacteria inhibit the human pathogen Clostridium difficile. The equation
models the community as a system of differential equation. Imagine we have a
system of n OTUs, labelled x1, x2, . . . , xn. The system is then being modelled as:

d xi
d t

= xi

ai0 +

n∑
j=1

aijxj

 for i = 1, . . . , n. (2.15)

For n = 1, the equation reduces to the logistic equation. The coefficient ai0 can be
interpreted as the maximum growth rate of the OTU when it is alone, whereas the
coefficients aij are interpreted as the interaction between the OTUs. aii is called
the self interaction coefficient. Note that aij 6= aji in general (also if we exclude
the trivial case when i = 0 or j = 0), so unlike the ReBoot approach, we can model
asymmetrical effects between OTUs.

2.7.2 Creating linear systems

We will turn on how to find the coefficients from experimental data. Let us label
the time points of sampling t0, t1, . . . , tN for the rest of this section. For a system
with n OTUs, there are in total n (n+ 1) coefficients to be fitted. We will present
a method (with two variations) to reduce the inference problem to systems of
linear equations. The main inspiration for the procedure comes from Kloppers and
Greeff[50] and Stein et al.[19], where the latter adopts the procedure to microbial
data sets. The general idea is as follows:

For each OTU i, we express the differences in abundance of OTU i in two
consecutive timepoints in terms of the abundances of all other OTUs. Performed
over all consecutive pairs of timepoints, we obtain an equation system where the
coefficients affecting the presence of OTU i are the solutions. This procedure is
repeated for all OTUs to predict.

Integral method

The integral method is based on rewriting Equation (2.15) as:

xi (tk+1)− xi (tk) =

∫ tk+1

tk

d xi(t)

d t
dt =

∫ tk+1

tk

xi(t)

ai0 +

n∑
j=1

aijxj(t)

 dt.

(2.16)
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xi (tk+1) and xi (tk) are available from the data. The right side of the system is
approximated by the trapezoidal rule, hence:

xi (tk+1)− xi (tk) =

∫ tk+1

tk

xi(t)

ai0 +

n∑
j=1

aijxj(t)

 dt ≈

tk+1 − tk
2

xi (tk+1)

ai0 +

n∑
j=1

aijxj (tk+1)

+ xi (tk)

ai0 +

n∑
j=1

aijxj (tk)


 =

(tk+1 − tk)
(
xi (tk+1) + xi (tk)

)
2

· ai0 +

n∑
j=1

(tk+1 − tk)
(
xi (tk+1)xj (tk+1) + xi (tk)xj (tk)

)
2

· aij

(2.17)

Note that this applies for k = 0, 1, . . . , N − 1. Putting this together all for values
of k yields the linear system:

di,0
di,1

...
di,N−1


︸ ︷︷ ︸

di

=


x̄i,0 x̄i,0x̄1,0 . . . x̄i,0x̄n,0
x̄i,1 x̄i,1x̄1,1 . . . x̄i,1x̄n,1

...
x̄i,N−1 x̄i,N−1x̄1,N−1 . . . x̄i,N−1x̄n,N−1


︸ ︷︷ ︸

Xi

·


ai,0
ai,1

...
ai,n


︸ ︷︷ ︸

ai

, (2.18)

where di,k = xi (tk+1) − xi (tk), x̄i,k =
(tk+1−tk)

(
xi(tk+1)+xi(tk)

)
2 and x̄i,kx̄1,k =

(tk+1−tk)
(
xi(tk+1)xj(tk+1)+xi(tk)xj(tk)

)
2 .

Log-integral method

The log-integral method is a variation of the integral method, where Equation (2.15)
is divided by xi prior to integration. According to Kloppers and Greeff[50], this is
an improvement over the integral method:

ln
(
xi (tk+1)

)
− ln

(
xi (tk)

)
=

∫ tk+1

tk

1

xi(t)
· d xi(t)

d t
dt =

∫ tk+1

tk

ai0 +

n∑
j=1

aijxj(t)

 dt ≈

(tk+1 − tk) ai0 +

n∑
j=1

(tk+1 + tk)
(
xj (tk+1) + xj (tk)

)
2

aij ,

(2.19)
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2.7 The Lotka-Volterra modelling approach

which again can be converted into a linear system:
li,0
li,1
...

li,N−1


︸ ︷︷ ︸

li

=


t1 − t0 x̄1,0 . . . x̄n,0
t2 − t1 x̄1,1 . . . x̄n,1

...
tN − tN−1 x̄1,N−1 . . . x̄n,N−1


︸ ︷︷ ︸

X

·


ai,0
ai,1

...
ai,n


︸ ︷︷ ︸

ai

, (2.20)

where li,k = ln
(
xi (tk+1)

)
− ln

(
xi (tk)

)
and x̄k,j =

(tk+1+tk)
(
xj(tk+1)+xj(tk)

)
2 . No-

tice that the matrix X in Equation (2.20) does not depend on i.

2.7.3 Solving the linear systems

If the linear system inferred from the integral method or the log-integral method
has a number of unknowns being equal or less than the number of equations as
assumed by Kloppers and Greeff[50], the system

Xiai = di (2.21)

can be solved by the methods of least squares, this is(
Xᵀ
i Xi

)
ai = Xᵀ

i di, (2.22)

yielding the solution

ai =
(
Xᵀ
i Xi

)−1
Xᵀ
i di. (2.23)

For microbial datasets, we often get the problem that the number of OTUs (un-
knowns) is greater than the number of equations. In this case, we need another
approach. This is provided by Stein et al.[19] and is called Tikhonov or ridge reg-
ularization[51]. For each i, the optimal solution a∗i is the one minimizing the cost
function:

C (ai; λself, λinteraction) = ‖Xiai − di‖22 + λself · a2i,0 + λinteraction

n∑
j=1

a2i,j . (2.24)

The rationale behind this approach this to get a reasonable good fit to the data
(first term), while at the same time try to lower the magnitude of the growth rates
and interactions (second and third term respectively). The optimal solution has
the closed form:

a∗i = arg min
ai

C (ai; λself, λinteraction) =
(
XiX

ᵀ
i +Dλ

)−1
Xᵀ
i di, (2.25)
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Chapter 2. Background and theory

where Dλ = diag

λself, λinteraction, λinteraction, . . . , λinteraction︸ ︷︷ ︸
n times

.

The tuning parameters λself and λinteraction need to be estimated, which is done
through cross-validation[19].

2.7.4 Prediction of system

After tuning parameters have been found and used for inferring the coefficients,
the estimated coefficients can be inserted into Equation (2.15). Unfortunately, no
analytical solution exist unless n = 1. However, given the initial abundances, the
equation can be solved numerically as an initial value problem. The final result
is then a prediction of the dynamics of the microbial community given the initial
abundances.

2.7.5 Special considerations

As presented earlier, microbial datasets are often sparse with a lot of zero abun-
dances. For the integral method, we see from Equation (2.17) that a zero still
makes the equation valid. However, if both xi (tk) and xi (tk+1) are zero, the equa-
tion corresponding to these timesteps, reduces to the trivial equation where all
coefficients are zero, as well as the right side. This captures the intuitive idea that
we do not gain any information about an OTU having zero abundance.

For the log-integral method, the situation is slightly worse. The logarithm of
zero is undefined, so equations where xi (tk) or xi (tk+1) is zero must be thrown
away or the zero abundance be replaced with a small positive number.

According to Stein et al.[19], the approach assumes the data to be absolute
abundances. Hence, the relative abundances in the OTU table should be scaled by
measurements of total cell count through methods such as qPCR or flow cytometry.

2.8 Comparison of the two main approaches

Whereas both the ReBoot procedure and Lotka-Volterra approach both aim to
uncover the interactions of the OTUs, they do so in different ways. ReBoot is
a so-called cross-sectional approach where samples are pooled together, meaning
that they are all treated equally with respect to each other. The output of the
procedure is a list of correlations found to be significant, with their similarity score
and their q-value. Note that these similarity scores are symmetric, meaning that
the magnitude and sign of an interaction is equally strong for both OTUs taking
part in it. However, we know that many ecological interactions are asymmetric[52],
but the ReBoot procedure has no way of accounting for this fact. Moreover, the
results from ReBoot must largely be taken on faith, as we usually have no good way

20



2.8 Comparison of the two main approaches

of knowing whether the associations correspond to real ecological interactions. The
Lotka-Volterra approach on other hand, is a time series based method, meaning
that we have to feed the pipeline with some kind of time series in order to make
it work. On the other hand, cross-sectional methods such as ReBoot can deal
with any kind of microbial data. However, the Lotka-Volterra approach has some
benefits that the ReBoot has not. It deals with indirect effects more easily, allow
asymmetric interactions and since it produces coefficients in a differential equation
model, its results can easily be assessed by predicting time series and comparing it
to the reference.
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Chapter 3

Materials and methods

The starting point of the analysis was the OTU tables. For simplifying and struc-
turing the workflow, we created a custom R-packed named micInt. A graphical
summary of the overall workflow is shown in Figure 3.1

3.1 Preprocessing

3.1.1 Filtering and normalization

Prior to analysis, all data was filtered according to the overall mean abundance.
This is, all OTUs with mean abundance (over all samples) less than 10−4 were re-
moved. The choice of the number 10−4 was a result of trial and error experimenting
with different cutoffs. For the selection-switch experiment, absolute abundances
were estimated from the relative ones by multiplying with the bacterial density,
determined by flow cytometry. The relative abundances from each of the three
experiments were then renormalized after filtering by scaling the OTU abundances
per sample such that they summed to one, retaining the compositionality.

3.1.2 Subdivision prior to ReBoot pipeline and generation
of PCoA plots

The seawater experiment contains only 16 samples, so it was decided not to split
it up prior to the analysis. For the biofilm experiment, the data were grouped in
two different ways:

• By source of sample: Water (W) or biofilm carrier (C)

• By treatment: Treatment 1 (TR1) with 136 carriers per reactor, treatment
2 (TR2) with 70 carriers per reactor or treatment 3 (TR3) wih 0 biofilm
carriers per reactor
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OTU table
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Figure 3.1: Overview of the workflow in the thesis
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3.2 The pipeline generating and modifying similarity measures

As a result, the groupings were overlapping, meaning that all treatments have
both water and carrier samples, except TR3 where carrier samples were absent. In
theory, the samples could be further subdivided such that information about the
source and treatment was captured. However, as we need many samples to get
reasonable results, this was not done.

For the selection-switch experiment, the data were subdivided into each com-
bination of the present selection selection regime (r or K) and carrying capacity
(high (H) and low (L) ). The samples from day 1, 2, 29, 30 and 32 were filtered
away as these data represent transient dynamics (start of experiment and change of
selection regime), an observation being pointed out by Gundersen[12]. Also, failure
of filtering away the transient days, produced PCoA plots were the patterns were
less observable.

3.1.3 Generation of time series for time trajetory plots and
Lotka-Volterra pipeline

For the seawater experiment, the number of samples per reactor was way too
small and the samples too far apart in time to employ the Lotka-Volterra pipeline.
However, the other experiments did provide time series long and dense enough such
to try out the approach. Please note though that the biofilm experiment does not
provide absolute abundances, so the relative abundances were used instead.

For making the time trajectory plots, all time points were included and the
samples from the selection-switch experiment were grouped according to the ini-
tial selection regime1 and the nutrient concentration. The biofilm was subsetted
according to source of sample and by treatment, opposed to the subdivision con-
ducted in the ReBoot pipeline.

For further work on the Lotka-Volterra pipeline, the subdivision was done as
for the ReBoot pipeline. However, the biofilm experiment was still subdivided by
source of sample and treatment. After subdivision, the data from each reactor
served as a time series.

3.2 The pipeline generating and modifying simi-
larity measures

All of the basic similarity measures presented in Table 2.2 are implemented by
micInt:: similarity measures. Furthermore, some of the similarity measures
are modified by adding noise or by mean scaling. In those cases, we still used the
base similarity measure in addition to the modified one. See Table 3.1 for which
modifications were applied to which similarity measures.

1The selection regime for each reactors changes halfway in the experiment
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Table 3.1: Implementation and modification of similarity measures applied in thesis

Similarity
measure

Implementation Noise
added?

Mean
scaled?

Reason for not ap-
plying all modifica-
tions

Pearson
correlation

stats::cor(method=’pearson’) 3 7 Mean-scaling fac-
tor disappears in
calculation

Spearman
correlation

stats::cor(method=’spearman’) 3 7 Mean scaling
makes no difference
to non-parametric
measures

Kendall’s
tau

stats::cor(method=’kendall’) 3 7 Mean scaling
makes no difference
to non-parametric
measures

Bray-
Curtis

vegan::vegdist(method=’bray’) 3 3

Generalized
Jaccard in-
dex

vegan::designdist(method=

’1-J/(A+B-J)’,

terms=’minimum’)

3 3

nc.score ccrepe::nc.score 3 7 Mean scaling
makes no difference
to non-parametric
measures

Squared
Euclidean
similarity

vegan::designdist(method=

’((A+B-2*J)/P)/(1+(A+B-2*J)/P)’,

terms=’quadratic’)

3 7 Mean-scaling fac-
tor disappears in
calculation

Jaccard in-
dex

vegan::vegdist(method=’jaccard’,

binary=T)

7 7 For present-
absence measures,
adding noise does
not make sense,
neither does mean
scaling make any
difference

Mutual in-
formation

infotheo::mutinformation 3 7 Mean scaling
makes no difference
to non-parametric
measures

Cosine sim-
ilarity

vegan::designdist(method=

’J/sqrt(A*B)’,

terms=’quadratic’)

3 7 Mean-scaling fac-
tor disappears in
calculation
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3.2 The pipeline generating and modifying similarity measures

3.2.1 Addition of noise

We defined a level of noise as γ. Then, adhering to the notation in Section 2.4,
given a similarity measure f , we make a stochastic noisified similarity measure f∗

by defining:
f∗ (x,y) = f

(
x + εx,y + εy

)
, (3.1)

where εx and εy are independent and identically distributed stochastic vectors.
We use two different forms of noise:

• Normally distributed noise adding componentwise a random variable ε ∼
N
(
0, γ2

)
to the vector of abundances.

• Uniform noise adding componentwise a random variable ε ∼ Uniform (−γ,+γ)
to the vector of abundances.

In other words: The noise level γ is the standard deviation for the normally dis-
tributed noise and the range of the interval for the uniformly distributed noise. The
similarity measures with noise added will have the postfixes normal and uniform,
for normally and uniformly distributed noise, respectively.

For the implementation in micInt::noisify, there are two additional aspects
to the procedure which are worth to note:

• The definition in Equation (3.1) allows for the abundance to be negative
after adding noise. As we do not want to deal with negative abundances,
we solve the problem by taking the elementwise absolute value after adding
noise. Hence, we get a bounce-back effect when an OTU abundance falls
below zero.

• For the presence-absence similarity measures, adding noise makes no sense,
so adding of noise is skipped in these cases.

3.2.2 Mean scaling

The idea behind mean scaling is the fact that some similarity measures consider
OTUs being present at different abundances to be non-similar even though their
abundances are perfectly correlated. For example, consider OTU B to live from
secondary metabolites from OTU A. The abundance of OTU B is almost exactly
proportional to the abundance of OTU A, but the abundance of OTU B is one
order of magnitude lower due the low production and energy yield of the secondary
metabolite. There is an actual interaction between the two OTUs, but some simi-
larity measures may not reflect this.

In order to resolve this issue, we try to scale the abundance vectors by their
respective means, this is: Given a similarity measure f , we create a new one g by
defining:

g(x,y) = f
(
x/x̄,y/ȳ

)
, (3.2)

27



Chapter 3. Materials and methods

where x̄ and ȳ denote the means of the two abundance vectors. This procedure is
carried out by micInt::noisify.

Mean scaling only applies to some similarity measures. For absence-presence
and non-parametric measures, this approach makes no difference at all. Likewise,
certain parametric similarity measures such as cosine and Pearson have normaliza-
tion terms canceling the effect of mean scaling. As shown in Table 3.1, only Squared
Euclidean, Bray-Curtis and Generalized Jaccard index are applicable for the mean
scaling, in which case the mean scaling is indicated by the postfix mean scaled in
the name of the similarity measure.

3.2.3 Chaining

Addition of noise and mean scaling can be chained, obtaining measures which are
both noisified and mean scaled. As the noise is intended to refer to the original
data, addition of noise is done before performing mean scaling. However, the way
the measures are wrapped means that the functions to do so are called in the
opposite order. In order to get all variations of the similarity measures available in
micInt, one can type sim measures % > % mean scale % > % noisify.

3.3 ReBoot pipeline

The base ReBoot functionality is implemented in the R-package ccrepe[40] and
is available as a Cytoscape app[53]. The pipelined approach used in this thesis
consists of the following steps:

1. Filter and normalize dataset

2. Resample pairwise correlations by bootstrapping

3. Create null-distributions based on random permutations of the microbes

4. Compare resampling and null distribution

5. Find the correlations being significant above a certain threshold

6. Create tables and networks showing the interaction structure

Item 1 is already captured in Section 3.1.1, whereas Items 2 to 4 were already
implemented in ccrepe::ccrepe and are explained in Section 2.5. In between
these points, there are some implementational aspects to be mentioned:

• The analysis were conducted for all available similarity measures in parallel
(see table 3.1 for the available combinations), making the results from one
similarity measure independent from the others. By contrast, in Faust et.
al.[22], the association networks for the different similarity measures were
merged before the significance was calculated.

28



3.3 ReBoot pipeline

• Large parts of the analysis were conducted by the wrapper function micInt::

runAnalysis around ccrepe

• Renormalization of absolute abundances does not make sense. Therefore, the
original ccrepe package was modified, adding the option to turn renormal-
ization off. Disabling of renormalization was only used when analyzing the
absolute abundances from the selection-switch experiment. Even when the
renormalization was turned off, the bootstrapping was enabled.

• In order to dynamically account for the discreteness and uncertainty in the
OTU table X, the lowest non-zero entry xmin was extracted. This was further
used to determine the noise level γ to be added to the similarity measures:

γ = s · xmin, (3.3)

where s is called the magnitude factor and set to 10 for the all analysis
presented. In practice, xmin corresponded to an abundance of one read.
Given that each sample had 10000 to 100000 reads, the magnitude factor
of s = 10 ensured low levels of noise which should not have any major effect
on the OTUs having high abundance in the sample.

3.3.1 Creating interaction tables

All possible interactions were filtered by its q-value given a critical value qcrit.
Hence, the association between OTU i and OTU j was considered significant if
qij < qcrit. For our purposes, we set qcrit = 0.05, meaning that the expected num-
ber of false discoveries (false positive) to the total number of reported positives
is less than 0.05[46]. From the associations found to be significant, a table was
created. We commonly refer to these significant associations as significant inter-
actions. This does not mean that they actually reflect any casual interactions, nor
that we strongly believe that this is the case. Rather, it is a convenient naming.

3.3.2 Diagnostic plots

Three types of diagnostic plots were created from the interaction tables, all imple-
mented by micInt::autoplot.interaction table:

• A plot showing the number of significant interactions found for each OTU
versus its mean abundance. The rationale behind this plot is that rare OTUs
are expected to be listed with a smaller number of interactions than the
more common ones. This is due to the fact that the signal for a common
OTU is clearer and less influenced by noise, making its interactions more
significant. Hence, this plot is used as a diagnostic tool is order to investigate
this hypothesis.
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• An abundance-product plot. The abundance product is defined as the prod-
uct of the mean abundances of two OTUs (versions for median and maximum
abundances are implemented, but not used). For each significant interaction
being found, the abundance product to the two involved OTUs is plotted on
the y-axis, whereas the x-axis corresponds to the q-value. Again, the pur-
pose of the plot is to check whether the most interactions are between the
abundant OTUs, as we would expect.

• Plot showing the similarity score versus the q-value for each significant inter-
action. The rationale behind this plot is the fact that the relationship between
similarity score and the assigned significance is not necessary monotonous us-
ing the ReBoot approach.

3.3.3 Creation of networks

From the tables of interactions, networks were made for each similarity measure for
the 200 most significant interactions and plotted using the R-package igraph[54].
Also, for illustrational purposes, a network containing all significant interactions
was plotted. The links were colored according to the sign of the interaction.

In addition, a special network was made, consisting of the 200 most signif-
icant interactions using Spearman correlation with normally distributed noise.
Only the edges corresponding to positive interactions were initially added to a
network. Interaction clusters2 in this network were detected by the walktrap algo-
rithm (igraph::cluster walktrap(steps = 4))[48, 54] and labeled in the graph.
Later, the edges corresponding to negative interactions were added to the network.
Also, a phylogenetic tree being generated from the selection-switch experiment[12]
was pruned in order to only retain the OTUs being present in the network. This
phylogenetic tree was plotted using the package ape[55] and the interactions clus-
ters, in addition to the taxonomy of class level were labeled.

3.4 Creation of PCoA plots

Each available similarity measure (as listed in Table 3.1) was used on the fil-
tered OTU tables, creating a matrix of pairwise similarities between the OTUs3.
A PCoA ordination was created from this matrix using the build-in R-function
stats::prcomp and the result was plotted. In the same manner, PCoA ordination
plots were made from the similarity scores obtained from the ReBoot procedure, in
which case the matrix of the similarity scores were fed directly into stats::prcomp.

2This is the same as network communities, a different naming is used to avoid confusion with
microbial communities

3PCA or PCoA ordination plots of samples are common in microbial ecology, but the topic of
this section is PCoA plots of OTUs. This means that we transpose the OTU table compared to
the common situation.

30



3.4 Creation of PCoA plots

3.4.1 Special features included in the plots

In order to connect the OTU PCoA plots to the properties of the samples, we
introduce three novel concepts:

r-proportion

In the selection-switch and seawater experiments, the samples can be partitioned
into two groups; the samples which are under r-selection at sampling and the ones
that are uder K-selection at sampling. Let us assume we have in total N samples,
where nr and nK of them are under r- and K-selection respectively. We create
an heuristic of which OTUs thrive in the r-selected environments by defining the
r-proportion as the ratio of the OTU’s mean abundance in the r-selected samples
to its overall mean abundance. This is, the r-proportion of OTU i is given by:

πi =

1
nr

∑
j∈Ir

xi,j

1
N

N∑
j=1

xi,j

, (3.4)

where xi,j is the abundance of OTU i in sample j and Ir is the subset of the indices
1, 2, . . . , N which correspond to the r-selected samples.

πi always lie between zero (not present in the r-selected samples) and N
nr

(only
presents in the r-selected samples). Our assumption is that OTUs with large r-
proportion are likely r-strategists, whereas the OTUs with a low r-proportion are
more likely K-strategists.

Biofilm proportion

The biofilm experiment has samples from two sources; the biofilm on the carriers
and in the surrounding water. As a heuristic for bacteria specializing in colonizing
the biofilm, we introduce the biofilm proportion. This is defined the same way as
the r-proportion in Equation (3.4) with the only difference that biofilm samples are
considered r-selected samples and the water samples K-selected. According to this
definition, we believe that OTUs specializing in growing in the biofilm should have
a large biofilm proportion, whereas the OTUs specializing in growing in planctonic
environments should have a correspondingly low biofilm proportion.

Favorite treatment

The biofilm experiment has three different treatments. We want to include in the
plot where each OTU has the highest mean abundance. Hence, for each OTU i and
treatment j, we compute the mean abundance x̄i,j in this treatment. The favorite
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treatment is then the treatment where OTU i has the highest mean abundance,
this is:

fi = arg max
j

x̄i,j . (3.5)

3.5 Lotka-Volterra approach

3.5.1 Time trajectory plots

The time trajectory plots are PCoA ordinations of the Bray-Curtis similarities
between the samples (not the OTUs) based on the time series. The procedure is
implemented in micInt::plot trajectory. For each subsetting of the data, the
time trajectories from each reactor were plotted together. To compare trajectory
plots for different subsettings, an overall ordination was made from all time series
and the time trajectories for each subsetting superimposed on this ordination.

3.5.2 Generation of equation systems

The linear systems were created by the log-integral method as described in Sec-
tion 2.7.2, using micInt::integralSystem(kind=’log integral’). Equations
for the selection-switch experiment were created only for the absolute data, as we
do not think using relative abundances would add any additional value.

Equations corresponding to zero abundances on the left side of Equation (2.19)
were removed as replacing the zero abundance with a pseudo-count as done by
Freidman and Elm[17] was considered questionable in our opinion. The approach of
removing equation provides further complications, the matrix X in Equation (2.20)
is no longer the same for all OTUs. Had the matrix been the same for all OTUs
as in Stein et. al.[19], obtaining all coefficients would have been computationally
much faster.

Fitting the coefficients for a single time series only, provides too little informa-
tion given the large number of coefficients when many OTUs are present. Hence,
the data were multiplexed, where equations from the biological replicates (time
series run under identical conditions) were stacked on top of each other.

3.5.3 Generation of artificial time series

A community of two OTUs, named x and y, was defined according to the gLV
model:

d x

d t
= x

(
µx + axxx+ axyy

)
(3.6)

d y

d t
= y

(
µy + ayxx+ ayyy

)
, (3.7)
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where the coefficients were given by: µ =

[
µx
µy

]
=

[
2
1

]
and A =

[
axx axy
ayx ayy

]
=[

0.5 −1
1 −1

]
. The coefficients were at purpose selected in order to obtain a stable

focus at

[
x
y

]
=

[
2
3

]
. From these equations and parameters, simulations of time

series were run and samples were taken at regularly spaced time points. Thereafter,
the Lotka-Volterra approach was applied to estimate the parameters from the time
series. Each simulation ran from t = 0 to t = 10. The time between samplings
varied geometrically through 10−2, 10−1.8, 10−1.6, . . . , 100.2, 100.4, and the number
of time series being multiplexed was varied through 1 and 10. The simulations were
run on each combination of these parameters. Initial abundances for each time
series were picked uniformly and independently from the rectangle with corners[
0
0

]
and

[
4
6

]
, this is: From zero to the double of the steady state abundances. Due

to the fact that we in all cases had more equations than unknowns, we set both
regularization parameters to zero, meaning that the linear systems were solved by
least squares.

After the inferred coefficients µ̂ and Â were calculated, the mean of the absolute
componentwise errors for µ and A were reported and plotted:

dµ =

∣∣µ̂x − µx∣∣+
∣∣µ̂y − µy∣∣

2
(3.8)

dA =

∣∣âxx − axx∣∣+
∣∣âxy − axy∣∣+

∣∣âyx − ayx∣∣+
∣∣âyy − ayy∣∣

4
(3.9)

In order to obtain more stable estimates, the values of dµ and dµ were averaged
over 10 replicates.

3.5.4 Cross-validation

Cross-validation was performed according to Algorithm 1, implemented in micInt::

cv.LV. Leave-one-out cross-validation inspired by Hastie et. al.[56] was used, this
means that the number of folds was equal to the number of time series. Root mean
squared error (RMSE) was used to assess the cross-validation error. The cross-
validating of the parameters λself and λinteractions was done over a rectangular grid,
with geometrically progressing weights. For the selection-switch experiment, the
weights for λself were 10−3, 10−2.9, 10−2.8, . . . , 102.9, 103.0. All weight combinations
are shown in table 3.2.

In order to ensure that the chosen weight parameter values were reasonable, a
colorplot of the RMSE for each parameter value was created. In this manner, it can
for instance be detected if the parameter values lied on the boundary of the search
area, in which case the search area should be extended. If performed properly, the
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Table 3.2: Regularization weights used in Lotka-Volterra cross-validation

Experiment Tuning parameter Smallest weight Ratio Largest weight

Selection-switch λself 10−3 100.1 10−3

Selection-switch λinteraction 10−1 100.1 1010

Biofilm λself 10−3 100.05 10−3

Biofilm λinteraction 10−1 100.05 1010

optimal cross-validation colorplot should report the optimal weight combination as
a minimum well inside the plot.

3.5.5 Predicting the communities

After the coefficients were fitted, the equations were solved using the deSolve[57]
library implementing an lsoda solver. The initial value problem had the same
starting condition as one of the time series in the subdivision, this is the reference
time series. The predicted and reference time series were shown in a time trajectory
plot made from the all time series in the subdivision and the predicted time series.
Also, note that the time series to predict also was used in the fitting procedure,
which is in general a bad idea because this may lead to overfitting (the algorithm
does correctly reproduce the training data, but fails to predict test data not fed
into the fitting algorithm).
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3.5 Lotka-Volterra approach

Algorithm 1 K-fold cross validation to find regularization parameters

Require:
• List (wi) of length W : The regularization weights to consider

• List
(
sj
)

of length S: The different time series to consider, all containing
data of the same n OTUs

• Integer K: The number of folds

Create a sampling vector g by repeating the sequence 1, . . . ,K such that a vector
of S elements is obtained
Create fold vector f by sampling without replacement from g

Create arrays
(
MAEi

)
and

(
RMSEi

)
corresponding to mean absolute error

and root mean squared error, respectively for each of the parameter combinations
for i← 1 to W do

Create matrices RMSE and MAE of dimension K × n
Create regularization matrix Dλ from the regularization weights wi
for j ← 1 to K do

for k ← 1 to n do
Create X and d for OTU k by log-integral method, using observations

not in fold j (use time series sk if gk 6= j)

Create X̃ and d̃ for OTU k by log-integral method, using observations
in fold j (use time series sk if gk = j)

a∗ ← (XXᵀ +Dλ)
−1
Xᵀd

Let m be the number of rows in X and d
v← X̃a∗ − d̃
MAEj,k ← 1

m

∑n
l=1 |vl|

RMSEj,k ←
√

1
m

∑n
l=1 v

2
l

MAEi ← 1
K·n

∑K
j=1

∑n
k=1MAEj,k

RMSEi ←
√

1
K·n

∑K
j=1

∑n
k=1RMSE2

j,k

return MAE and RMSE
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Chapter 4

Results

In this chapter, we will present the results according to the following outline:

• Bacterial density graph for the selection-switch experiment

• Results from ReBoot procedure: Tables, diagnostic plots and networks

• PCoA plots of OTUs based on both raw abundances and ReBoot similarity
scores

• Results from Lotka-Volterra approach: Trajectory plots, inference accuracy
on a simulated community, cross-validation colorplots and predictions of time
series

4.1 Cell count in the selection-switch experiment

The selection-switch experiment is the only one where the bacterial density is de-
termined, by flow cytometry. Even though the cell count by ifself is not the primary
focus in this thesis, it is nevertheless useful to study as it helps explaining the dif-
ferences between absolute and relative abundances. From Figure 4.1, we see that
the bacterial density can change by a factor of two in less than a day, suggesting
that just using the relative abundances might give misleading conclusions about
the dynamics.
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Figure 4.1: Bacterial density during the selection-switch experiment (each line represents
a reactor), determined by flow cytometry. Notice the rapid changes in density after the
selection regime was switched at day 29.
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4.2 Interactions identified by ReBoot approach

4.2.1 Comparison of similarity measures

For each combination of dataset, subdivision and simililarity measure, we report
the number of significant correlations found and the proportion of them shown to be
negative. An example showing the results for the full selection-switch experiment
with absolute abundances is shown in Table 4.1. For subsets of the selection-switch
experiment with absolute abundances, the selection-switch experiment with relative
abundances and the other experiments, the results are reported in Appendix A.

We first observe that mean-scaled similarity measures did not give any signifi-
cant interactions. Because of this, we conclude that such similarity measures have
no or little power of inferring interactions, and we will not consider mean scaling
for the rest of this thesis. Also, the squared Euclidean similarity detected none or
only a few significant interactions, regardless of modifications. On the other hand,
the non-parametric measures (Spearman correlation, Kendall’s tau and nc.score)
gave more significant interactions than the other similarity measures in most cases.
However, most of the interactions found by the non-parametric similarity measures
disappeared when applying noise. This effect of noise was the most extreme on
the small seawater experiment and the subdivisions of the larger experiments. The
latter observation is as expected because larger datasets should give more robust
conclusions. The parametric similarity measures Bray-Curtis, cosine, generalized
Jaccard and Pearson yielded fewer interactions than the non-parametric similarity
measures, but these interactions were much more robust to noise. This observation
contradicts the former view that Spearman correlation is more robust than Pearson
correlation[58]. However, we have an explanation for this finding:

The microbial datasets have many zeros in them. As the non-parametric similar-
ity measures are based solely on the ranks of the observations, we think that shared
zeros (samples where both OTUs have zero abundance) will make the abundance
vectors seem more similar and this may lead to a high similarity score. Indeed, the
non-parametric similarity measures were the ones reporting the highest number of
significant interactions. Shared zeros causing abundance vectors to appear more
similar, is in general an undesired artifact. This is because we do not expect bac-
teria to be more similar due to features they do not share1. Adding noise to the
data would distort the pattern of common zeros. Also, in this case, the hypothe-
sis appears to be correct, as most significant interactions disappear after applying
noise. By the same argument we can explain why the parametric similarity mea-
sures reported fewer, but more robust interactions: Shared zeros does not make
the abundance vector more similar and adding low noise levels would have small
effects as parametric similarity measures respond continuously to its input.

Notice that any positive noise level γ would theoretically disrupt the pattern

1A stupid analogy could explain this reasoning: Both human and stones cannot fly, lack wings,
beaks and feathers, but this shared lack of features does not make humans more alike stones.
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of shared zeros. Testing the effect of noise was only done for a fixed noise level.
It would be interesting to assess how different levels of noise would decrease the
number of significant interactions. According to our hypothesis of shared zeros,
the reported number of significant interactions for the non-parametric similarity
measures would then drop instantly after adding noise, and then show a slower
decline at higher noise levels.

Another difference between the parametric and non-parametric similarity mea-
sures is the sign of the interactions. Generally, the Pearson correlation yielded a
lower proportion of negative interactions than the signed non-parametric similarity
measures. Also, when applying noise to non-parametric similarity measures, the
percentage of negative interactions decreased. The cosine similarity is in practice
unsigned for our purposes as all abundances are positive. We did not find any
major difference between the proportion of negative interactions in the biofilm and
water samples for the biofilm experiment. Also, for the selection-switch dataset
there was no consistent trend that r-selected reactors had more or less negative
interactions than the K-selected reactors.

To some degree, there were differences between absolute and relative abun-
dances. When replacing absolute abundances with relative ones for the selection-
switch experiment, we generally obtained more significant interactions for the para-
metric similarity measures, whereas the difference for the non-parametric similarity
measures was small. However, the inferred interactions from the absolute data were
more robust to noise. There was also a tendency to obtain more negative interac-
tions from relative data, but the difference was less visible.
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4.2 Interactions identified by ReBoot approach

Table 4.1: Performance of the different similarity measures on the overall absolute data
from the selection switch experiment

Name of similarity measure Signed Type of similarity
measure

Number of
significant
interactions

Proportion
of negative
interactions

bray curtis FALSE parametric 628
bray curtis normal FALSE parametric 561
bray curtis scaled FALSE parametric 0
bray curtis scaled normal FALSE parametric 0
bray curtis scaled uniform FALSE parametric 0
bray curtis uniform FALSE parametric 556
cosine TRUE parametric 519 0.00
cosine normal TRUE parametric 517 0.00
cosine uniform TRUE parametric 520 0.00
generalized jaccard index FALSE parametric 543
generalized jaccard index normal FALSE parametric 493
generalized jaccard index scaled FALSE parametric 0
generalized jaccard index scaled normal FALSE parametric 0
generalized jaccard index scaled uniform FALSE parametric 0
generalized jaccard index uniform FALSE parametric 503
jaccard index FALSE presence-absence 857
kendall TRUE non-parametric 3354 0.38
kendall normal TRUE non-parametric 1782 0.34
kendall uniform TRUE non-parametric 1772 0.34
mutual information FALSE non-parametric 2735
mutual information normal FALSE non-parametric 1097
mutual information uniform FALSE non-parametric 1091
nc score TRUE non-parametric 3348 0.38
nc score normal TRUE non-parametric 1753 0.33
nc score uniform TRUE non-parametric 1752 0.34
pearson TRUE parametric 527 0.20
pearson normal TRUE parametric 516 0.19
pearson uniform TRUE parametric 516 0.19
spearman TRUE non-parametric 3333 0.38
spearman normal TRUE non-parametric 1787 0.33
spearman uniform TRUE non-parametric 1791 0.34
squared euclidean FALSE parametric 0
squared euclidean normal FALSE parametric 0
squared euclidean scaled FALSE parametric 0
squared euclidean scaled normal FALSE parametric 0
squared euclidean scaled uniform FALSE parametric 0
squared euclidean uniform FALSE parametric 0
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Chapter 4. Results

For our further analysis, we selected the Pearson correlation, the Spearman
correlation, the cosine similarity and the Bray-Curtis similarity. In our experience,
these four similarity measures combined are for the most part representative for
the results of the other similarity measures.

4.2.2 Diagnostic plots

For the selected similarity measures, we made diagnostic plots showing:

• Abundance product versus q-value for each interaction. This is shown in
Figure 4.3 for the selection-switch experiment with absolute abundances. For
the other datasets, consult Appendix B.

• The number of interactions for each OTU versus its mean abundance. This is
shown in Figure 4.3 for the selection-switch experiment with absolute abun-
dances and in Appendix B for the other datasets.

• The similarity score versus q-value for each significant interaction. This is
found for in Figure 4.4 for the selection-switch experiment with absolute
abundances. For the other datasets, see Appendix B.

We note that for the biofilm and seawater experiments, there does not seem to
be a clear trend between mean overall abundance and the number of interactions
in which the OTU is involved. For the selection-switch experiment however, we ob-
served that the OTUs which are very rare, had few or none significant interactions.
For the more abundant OTUs, this pattern is missing. In the same manner, we
saw no clear evidence that a low q-value correlates with a high abundance product.
This applied to all dataset and similarity measures. One outlier in the abundance
product plot from the seawater experiment (Figure B.1) is worth to note. It has
both the highest abundance product and the lowest q-value. This interaction is
the one between the two dominant Vibrio OTUs present in the experiment. From
our discussion of signal-to-noise ratio in Section 3.3.2, our findings are unexpected.
These strange patterns might be an indication that the ReBoot pipeline treats
OTUs with low and high abundance almost equally. If so, this is an undesired
feature. OTUs with low abundance are more sensitive to noise and perturbations,
yielding more uncertain results. Hence, we may propose that the ReBoot algorithm
does not capture the real aspects of significance well enough. We could of course
use statistical methods to assess the patterns present in the abundance product
plots and the plots showing number of significant interactions. However, we think
such analysis would be little informative, as very weak associations could result in
statistically significant results without having any biological significance. We can
also observe from the abundance product plots that most significant interactions
have a q-value close to the cutoff of 0.05. This observation is as expected, as we
would assume interactions with low q-values to be rarer.
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Figure 4.2: Abundance product versus q-values for each significant interaction in the
selection-switch experiment with absolute data
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Chapter 4. Results
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Figure 4.3: Number of significant interactions versus overall mean abundance for each
OTU in the selection-switch experiment with absolute data
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4.2 Interactions identified by ReBoot approach
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Figure 4.4: Similarity scores versus q-values for each significant interaction in the
selection-switch experiment with absolute data. Red circles indicate positive interactions,
whereas blue triangles indicate negative interactions.
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Chapter 4. Results

For the most part, we would expect the correlations with the most extreme
(furthest away from zero) similarity scores to be regarded as the most significant.
However, due to the approach of assessing the significance from a pooled Z-test,
the association does not need to be monotonous. The Spearman correlation did
indeed provide almost an exact monotonous relationship between similarity scores
and q-values for the selection-switch experiment and the biofilm experiment. The
pattern was present, but weaker for the parametric Pearson, Bray-Curtis and co-
sine similarities on data from the selection-switch experiment and the biofilm ex-
periment. However, in the small seawater dataset, the correspondence between
similarity scores and q-values was poor for all similarity measures. The negative
interactions were generally not among the interactions having the lowest q-value
or highest absolute similarity score value. The only exception was the seawater
dataset with Spearman correlation, where there were negative interactions among
the most significant ones. Hence, it appears that the positive interactions are more
pronounced than the negative ones.

The Bray-Curtis and cosine similarities reported significant interactions having
similarity scores close to zero, whereas the Pearson and Spearman correlations gave
almost no interactions having a similarity score less then 0.2. We would not expect
a similarity score close to zero to correspond to any significant interaction, so this
finding is indeed strange. Comparing the diagnostic plots from the selection-switch
experiment with absolute and relative abundances, we can hardly see any difference.

Note the strange fact that some of the OTUs in Figure B.8 have mean abun-
dances less than 10−4. This is due to the fact that the filtering of OTUs at mean
abundance 10−4 was done prior to removing the samples from day 1, 2, 29, 30 and
32.
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4.2 Interactions identified by ReBoot approach
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Figure 4.5: Network from the selection-switch experiment with absolute abundances us-
ing Spearman correlation. All significant interaction are retained. Blue edges correspond
to positive interactions, whereas red edges correspond to negative interactions.

4.2.3 Networks of interactions

We created network of networks of the interactions from the ReBoot results. Keep-
ing as many edges as in Figure 4.5 resulted in a hairball difficult to interpret.
Subsequently, we restricted ourself to visualize only the 200 most significant edges
(ranked by q-value). In addition to our four selected similarity measures, we also
view the result of the noised versions of the similarity measures (with normally
distributed noise). This is to evaluate the robustness of the networks. For the
selection-switch experiment with absolute abundances, the results are shown in
Figure 4.6, while the other networks reside in Appendix C.

We first observe the general trend that the networks have clusters of positively
interacting OTUs, whereas negative interactions form preferentially between clus-
ters. Given the same data, the same OTU clusters are in many cases recognizable
across the similarity measures. Indeed, when taking the intersection (not shown)
of the networks in Figure 4.6, the resulting network has 49 edges. This observation
strengthen our findings that the similarity measures give consistent results. By vi-
sual inspections, none of the networks seem be result of uniformly random linkage
(Erdős-Rényi model,), small-world (Watt-Strogatz) or scale-free (Barabási-Albert).
Noise has a distorting effect on the networks, but the differences are for the most
part minor and the different parts of the networks are generally recognizable. The
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Chapter 4. Results
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Pearson correlation with normal noise
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Spearman correlation with normal noise
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Bray−Curtis similarity with normal noise
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Cosine similarity with normal noise
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Figure 4.6: Network of significant interactions for the selection-switch experiment with
absolute data. Blue edges correspond to positive interactions, whereas red edges corre-
spond to negative interactions.
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only major exception is when noise is applied to the Spearman correlation on the
seawater experiment, where almost all significant interactions disappear. For the
selection-switch experiment, the networks for the relative and absolute abundances
are quite similar for the Spearman correlation and Bray-Curtis similarity. For the
cosine similarity and Pearson correlation though, we observe that the networks cre-
ated with absolute data create (almost) disjoint clusters, whereas for the relative
data the two parts of the networks are more interconnected by negative interac-
tions. These differences are less visible in networks showing all significant edges
(not shown).

For the selection-switch experiment with absolute data, we detected two ma-
jor interaction clusters in the networks. In order to investigate these further, we
used the network provided by the Spearman similarity with normally distributed
noise, kept only the positive interactions, detected interaction clusters and finally
added the negative interactions. The result is shown in Figure 4.7. We found
community 1 and 5 to be the most prominent as they have positive interactions
within, but negative interactions across. We next created a phylogenetic tree of
the OTUs being present in the network, shown in Figure 4.8. From this, we notice
that the interaction clusters correspond quite well with the taxonomies. Accord-
ing to Gundersen[12], the phylogentic branches of most OTUs in community 1
(Alphaproteobacteria and Flavobacteria) are generally K-strategists, whereas the
Gammaproteobacteria OTUs dominating community 5 are for the most part r-
strategists.
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4.2.4 PCoA plots

To assess how the similarity measures structure the community, we present PCoA
ordinations of the OTUs. For this procedure, the full experiments were used, not
subdivisions. However for the selection-switch experiment, the samples taken at
day 1, 2, 29, 30 and 32 were still filtered away. If the samples taken at these
transient days not were removed, the OTUs dominating under r- and K-selection
do not separate well in the plots.

We first made the ordinations based on the pairwise similarity scores of the
filtered OTU table without applying the ReBoot procedure. The results are shown
in Figure 4.9 for absolute abundances from the selection-switch experiment and in
Appendix D for the other datasets.

Next, we compared these results with ordinations based on the similarity scores
from ReBoot. These are shown in figure Figure 4.10 for absolute abundances from
the selection-switch experiment. The rest of the plots are in Appendix D.

We would guess that the r- and K-strategists being present in the seawater
experiment and the selection-switch experiment would have different signatures,
allowing PCoA plots to distinguish them. Indeed, this is the case for both the sea-
water and selection-switch experiments. For the biofilm experiment, the separation
between bacteria mainly found on biofilm carriers and those mainly found in water
is not that easy to spot.

The choice of similarity measure did have an effect, the parametric Pearson
and cosine similarities had the greatest success of separating the points r- and
K-strategists, whereas the Bray-Curtis similarity was poorer to provide this sep-
aration. The generalized Jaccard index, the categorical Jaccard index, squared
Euclidean similarity and mutual information coefficient (plots are omitted in this
thesis) were even worse in this regard. For the biofilm experiment only the Pearson
and cosine similarities did suffice in providing a clear distinction between OTUs
dominating in water and on biofilm carriers. We also recognize several of the latter
similarity measures to give few or none significant interactions, suggesting they are
poor of capturing the structure resident in the data.

Notice that for the selection-switch experiment, the absolute and relative abun-
dances resulted in very similar plots. Likewise, there is hardly any large difference
between the ordination plots made with the ReBoot pipeline and those made with-
out it, even though points do shift a bit and the plots get rotated. However, for
the seawater experiment we may though see a slightly better separation between r-
and K-strategists applying the ReBoot results. This may be attributed to the fact
that the dataset is small and thus can benefit from the extra robustness provided
through bootstrapping.
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4.3 Population dynamics identified by Lotka-Volterra
modeling

4.3.1 Trajectory plots

We start by showing trajectory plots for the time series in order to get an impression
of how the communities evolve over time. For the selection-switch experiment, the
results for absolute abundances are shown in Figure 4.11. Consult Appendix E for
the rest of the plots.

For the biofilm experiment(Figure E.1), the water time series end up in some-
what the same location in the ordination plot, suggesting convergence towards a
more stable community. The same tendency can be spotted for the biofilm carriers
even though time series Carrier6 is diverging from this pattern. The selection-
switch experiment shows an even clearer sign of deterministic behavior, where the
independent time series follow trajectories close to each other under K-selection.
Moreover, communities under K-selection do converge to the same area in the or-
dination plots, regardless of the starting conditions. Under r-selection however,
the trajectories show greater variation and less consistency. However, we observe
a tendency for r-selected communities to stay in the same area in the plots. As for
the PCoA plots, diagnostic plots and interaction networks, the differences between
time series trajectories for relative data and absolute data seem to agree about the
main trends.
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rying capacity. The time series plotted are:
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and KRH3 (blue, long dashes).
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rying capacity. The time series plotted are:
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(d) r-selected community before day 29, K-
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Figure 4.11: Trajectory plots for the selection-switch experiment with absolute abun-
dances. The data are ordinated by PCoA using Bray-Curtis similarity. The text labels
on the points correspond to the day of sampling. All time series in the overall figure were
used to make the ordination. Later, the time series stemming from identical selection
regimes were superimposed on each individual subfigure.
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4.3.2 Simulated community

In order to assess the interference algorithm, we simulated an artificial community
of two OTUs as described in Section 3.5.3. It follows the gLV equations and

has the true parameters µ =

[
µx
µy

]
=

[
2
1

]
and A =

[
axx axy
ayx ayy

]
=

[
0.5 −1
1 −1

]
.

A sample phase plane plot is shown in Figure 4.12 and is included for the sole
purpose of giving the reader an impression of how the system behaves. Based
on the simulations, samples were taken and our inference algorithm was used to
estimate the gLV coefficients from the artificial data(see Section 3.5.3 for more
details). Finally, the estimated coefficients were compared to the real ones. The
results are shown in Figure 4.13.

Because the inference algorithms consider the difference in OTU abundances
between consecutive time points, more frequent sampling should increase the accu-
racy of the predictions. The observations from the plot agree with this expectation.
Having time between samples corresponding to approximately one order of mag-
nitude lower than the maximal growth rates turned out to perform decently (time
step 0.1, approximate absolute error 10−2), but with time steps ten times larger,
the accuracy was unreliable. Even though the integral and log-integral method
both provided reliable results at frequent sampling rates, the log-integral method
always yielded better results, agreeing with the statement made by Kloppers and
Greeff[50] that the log-integral method is an improvement over the integral method.

The effect of multiplexing time series had the opposite effect of what was ex-
pected, adding more data into the fitting decreased accuracy, an effect being most
pronounced at frequent sampling rates. This observation is strange given the fact
that more information is available with more time series. One possible explanation
is that with more data, numerical instability could be an issue.

57



Chapter 4. Results

0

2

4

0 1 2 3 4
Species x

S
pe

ci
es

 y

Time series
1
10
2
3
4
5
6
7
8
9

Figure 4.12: Sample phase-plane plot of simulated time series
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4.3.3 Cross-validation

Our real datasets contain more OTUs than samples, so we had to fit regularization
parameters in order to infer the Lotka-Volterra coefficients. This was done by cross-
validation as described in Section 3.5.4 and the results are summarized in colorplots.
For the selection-switch experiment, the results are shown in Figure 4.14, while they
are shown for the biofilm dataset in Appendix F. Also, a more stringent filtering of
OTUs at 10−3 mean abundance was done for the selection-switch experiment and
used as basis for another cross-validation colorplot, shown in Appendix F.

For the plots from the selection-switch experiment, the cross-validation error de-
creases with the increasing λinteraction, no matter how big it is. For the really large
values (108− 1010) of λinteraction, the variations in cross-validation error are never-
theless small. This applies both to the normal and stringent filtration. Hence, we
cannot find any minimum. For the biofilm experiment however, we find something
that resembles a minimum in most of the plots, but at the same time we observe
that the regularization parameters have minimal effect on the cross-validation er-
rors.
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present selection regime (in columns) and nutrient supply (in rows).
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4.3.4 Predicting the communities

After the regularization parameters were selected for each time series, the systems
were solved for each subdivision, obtaining the Lotka-Volterra coefficients. For each
subdivision (having its own fitted set of coefficients), one time series was used as
a reference for a predicted time series, having the same initial condition. For the
biofilm experiment, the predicted time series diverged (exploded toward infinity),
so they could not be shown. For the selection-switch experiment with ordinary
filtering, the trajectory plots of the predicted and reference time series are shown
in Figure 4.15. For the stringent filtering, consult Appendix G

We observe that the predicted time series do not resemble the actual time series
at all, even though the starting point is the same. We also notice that the pre-
dicted time series possess much less dynamics (are more stationary) than the actual
ones. This is indeed not strange given that optimal values of λinteraction selected
from the colorplots are very large. High values of the regularization parameters
shrink the coefficients, resulting in coefficients having a small magnitude[51]. Quite
the opposite seems to be the case for the biofilm experiment where the predicted
time series diverge. Note however that the Lotka-Volterra modeling approach was
never intended to be applied for relative abundances[19], and the predictions for
the biofilm dataset were not normalized to account for the sum-to-one constraint
present in the data.

The failure to find optimal tuning parameters and predicting the communities,
may come from various sources. From Section 4.3.2, we learn that our inference al-
gorithm should work for small systems of OTUs when the sampling rate is frequent
enough. However, our real datasets have samples further apart than recommended.
The generation time of bacteria grown in the lab might be as low as tens of minutes,
but the generation time of wild bacteria in nature remains largely unknown[59].
However, we might assume that the generation time for many bacteria in our exper-
iments is one day or less, given how rapidly the cell count in Figure 4.1 fluctuates.
Given the fact that the samples from the selection-switch experiment were gener-
ally taken four days apart (the sampling was denser at the start and right after
the selection switch), we thereby conclude that the time resolution was insufficient
in order to make any reasonable inferences. For the biofilm experiment, which was
in general sampled every two weeks, the situation is even worse. We also suspect
suspect that the high numbers of OTUs present in our datasets poses additional
challenge for our algorithms to predict the communities accurately, but we do not
have any simulations exploring this effect.
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Figure 4.15: Predicted (determined through inferred gLV coefficients, shown as red solid
line) and reference (actual, shown as blue dashed line) time series from the selection-switch
experiment with ordinary filtering at mean relative abundance 10−3. The time series are
shown in PCoA ordinations using Bray-Curtis similarity. The ordinations are based on
all time series of each subdivision.
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Discussion

Reviewing our results, we want to answer our research questions:

1. How are microbial communities structured?

2. Do our results correspond to real ecological interactions or are there con-
founding factors?

3. What is the most sound way of inferring ecological interactions?

4. Do microbial communities follow a specific path based on external selection
pressure or are dynamics dominated by stochastic effects?

5. Can dynamics in microbial communities be described, explained, reproduced
and predicted?

Finally, we will discuss how further work can be done in order to provide better
answers to the questions.

5.1 Interactions of microbial communities

If we were to interpret our results naively, our brief answer to Question 1 could be:
“Microbial communities are dominated by positive interactions within clusters of
related bacteria, with negative interactions between the clusters.” However, corre-
lation does not imply causality, as pointed out by Fisher and Mehta[18]: Closely
related bacteria may have similar environmental preferences (niches) and would
for that reason appear in high abundance in the same samples. Indeed, Dorman
et al.[4] warn that phylogenetic signals may give results resembling those of biotic
interactions. Competitive exclusion could eventually remove OTUs with the same
niche[60], but in our case it is likely that these processes occur at a far longer
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timescales than observed. Alternatively, the differences in fitness between OTUs
with the same niche might be too small to be of any importance, according to
Hubbel’s neutral theory[61, 62].

The counterintuitive diagnostic plots also provide a good reason to take the
results with a pinch of salt. Furthermore, the dominance of positive interactions is
contrary to literature as Coyte et al.[63] tell that a microbial community should be
dominated by negative interactions in order to be stable. In addition, Foster and
Bell[64] claim that negative interactions dominate seawater communities based on
studies of co-cultures. We hereby conclude that our results do not correspond to
causal interactions, but are merely artifacts of OTUs having the same environmen-
tal preferences, thus answering Question 2. According to the same line, a wiser
answer to Question 1 could be: “The co-occurence patterns are dominated by the
interaction clusters of OTUs, but the nature of the real interaction structure re-
mains unknown.” While the co-occurance pattern by itself can be useful to study,
we must acknowledge what it tells us and what it does not.

Based on our previous discussion, we have no other clear answer to Question 3
other than saying that our approach is not sound to infer ecological interactions. A
good method of inferring ecological interactions has to distinguish the co-occurrence
patterns from the underlying causal relationships. In literature ([1, 16, 26, 31]), it
is reported that compositional data may easily create spurious correlations. This is
the reason why methods (included ReBoot), aiming to mitigate this challenge, have
been developed. However, from our own results we have seen that replacing relative
abundances with absolute ones did only have minor effects on the disappointing
results. Therefore, microbial ecologists should be warned that distinguishing the
co-occurrence patterns from the real ecological interactions is still a challenge even
if the problem of compositionality is resolved.

Are there then better cross-sectional algorithms than ReBoot to find ecological
interactions? According to Weiss et al.[16], the ReBoot approach does not perform
particularly well compared to its competitors. In any case, no inference tool studied
by Weiss et al.[16] did perform particularly well on realistic data, suggesting the
need for even better methods. Hirano and Takemoto[21] argue that tools designed
to deal with compositional data, such as sparCC[17] and LSA[65], do not perform
any better than classical Pearson and Spearman correlation. From our own results,
we have seen that the refinements of the ReBoot approach did not provide more
structured PCoA plots than direct application of the similarity measures. In our
view, the more sophisticated methods of finding ecological interactions may work
well on some simulated datasets[16, 31], but not perform any better than the
simplest methods when faced with datasets having another structure[21].
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5.2 Dynamics of microbial communities

We realize that if the true answer to Question 4 is: “Microbial communities are
shaped entirely by stochastic effects”, then there is no hope to predict how a mi-
crobial community will develop. However, we found clear patterns of determinism
of the dynamics in our data, even though some stochastic effects were present.
Studies in literature have come of contradictory conclusions regarding the impor-
tance of stochastic effects[66]. Hence, it seems more reasonable to view the degree
of determinism as dependent of the community in question. Faust et al.[67] and
Dini-Andreote et al.[68] recognize this and provide computational frameworks to
measure and characterize the random effects.

Considering Question 5, we have gained a satisfying description of the dynamics,
considering the patterns in the time trajectories. However, understanding why
the time series develop the way they do, is a harder question. Some qualitative
explanations might be useful, but do not provide the full answer: Convergence to
almost the same state under the same selection pressure can be explained by the fact
that some bacteria are better to compete than others under the specific selective
pressure. Also, the observation that the K-selected reactors in the selection-switch
experiment showed more uniform and deterministic behavior than the r-selected
time series is no surprise as K-selected communties are believed to be more stable[9,
12]. The latter observation may also imply that K-selected communities are easier
to control as applying the necessary external environment will most likely make
the community converge towards the desired state.

A deeper understanding of what happens in the microbial communities is yet
beyond reach. We hoped that the Lotka-Volterra modeling should give us deeper
insight into how microbial communities evolve over time. However, this procedure
gave no sensible results. Therefore, considering Question 5, we did not succeed
in reproducing and predicting the dynamics of the microbial communities. As
commented in Section 4.3.4, the failure is likely due to low time resolution. We
acknowledge that Stein et al.[19] present predictions being qualitatively close to
the reference, even though the time between sampling is longer (one sample per
day) than we would recommend from our own simulations. Reasonable success of
predicting time series was also reported by Kloppers and Greeff[50]1. However,
Stein et al.[19] and Kloppers and Greeff[50] considered communities consisting of
far fewer entities than in our case. Hence, the high number of OTUs might have
been a more important cause for our failure than the time between sampling points.
Indeed, Bucci et al.[69] recommend that a study modeling N OTUs, should have

at least N2

2 data points. For the selection-switch experiment with filtering of OTUs
at 10−4 mean abundance, this could require 13 613 samples, 68 times the actual
number. Based on our discussion, we suggest that any lab-reactor experiment

1Note that this paper considered marked shares of companies and was in no way concerned
with microbial communities
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aiming to predict the Lotka-Volterra coefficients, should have more samples taken
closer in time, maybe once per hour. In order to realize this, novel methods of
automatic sampling must be developed and used.

5.3 Suggestions for further work

In our opinion, methods based on time series (such as the gLV equation) have
a larger potential to provide further insight into microbial processes than cross-
sectional methods such as ReBoot. Fisher and Mehta[18] and Bucci et al.[69] in
particular support this view. The reasons why we think this is the case are:

• Having the ability to predict time series provides an objective measure of how
good the algorithm is. For cross-sectional methods, there is more difficult to
find a good criterion for goodness of fit.

• Co-occurrence patterns may be caused by entirely different processes than the
interactions between microbes. Time series based methods may be hampered
by this challenge too. However, we think still this will be less of a problem
for time series as the external environment is usually more or less the same
between consecutive samples, whereas in cross-sectional analysis, all samples
pooled together are (usually) treated equally.

• Time series data are less prone to be affected by indirect interactions as
delayed effects are visible if the time resolution is small enough.

Continuing on a gLV-based approach is likely to require refinements. We have
already discussed the need for higher sampling rates, but we will also probably need
more sophisticated ways of finding the coefficients. Our current approach makes an
all-to-all model of the interactions. However, there might be likely that the inter-
action pattern might be explained by a more sparse interaction network, in which
case the results could be more accurate, robust to noise and easier to interpret.
LIMITS[18] (Learning Interactions from MIcrobial Time Series) uses an approach
similar to the log-integral method, but the way it solves the linear system is differ-
ent. Instead of solving the system by least squares, it uses sparse linear regression.
Among the same lines, MDSINE (Microbial Dynamical Systems INference Engine)
extends the work of Stein et al.[19], adding three more regularization methods:

• Maximum likelihood constrained ridge regression (MLCRR). This works as
the ridge regularization used in this thesis, but adds the a priori constraint
that all maximal growth rates are positive and self-interaction coefficients are
negative.

• Bayesian adaptive lasso (BAL). This is a special `1 regularization method
based on a Bayesian approach.

68



5.3 Suggestions for further work

• Bayesian variable selection (BVS). Here, the interactions are picked directly
in a sort of variable selection.

According to the paper, utilizing these refined algorithms, especially those based
on Bayesian approaches should give more precise predictions than the original
method presented by Stein et al.[19]. Neural network models have been used on
microbial datasets[70], but to our knowledge, such methods have so far only been
used to predict phenotypes of samples based on the microbial profile. Predicting
the dynamics of a microbiome by a neural network model would be interesting to
try as neural network algorithms work in completely different way than the gLV
approach. Recurrent neural networks are commonly used to reproduce and classify
temporal dynamics, so we suggest giving it a try in further work.

In this thesis, we have considered the OTUs to be discrete entities, but re-
member that they are distinguished at 97% similarity of the 16S rDNA marker
sequence, which may look like an arbitrary criterion. Therefore, it might be more
correct to think of a microbial community as a phylogenetic continuum rather
than a composition of discrete taxonomic units. Our findings support this view
as we found the co-occurrence patterns to match fairly well with the phylogenetic
identity. From this viewpoint, we can use the phylogeny as a predictor for the in-
teractions and instead treat each individual read as the smallest unit. Hierarchical
Modelling of Species Communities (HMSC)[71], being a Joint Species Distribution
Model(JSDM), takes into account the assumption that phylogenetically related
species should have similar traits and phenotypes. Moreover, this procedure can
easily incorporate external ecological data and even tell which factors are the most
important for the abundances of each species(variance partitioning). We believe
that such a procedure could make the predictions more robust and accurate as in-
formation is re-used across the OTU boundaries. Bjork et al.[72] has indeed tried
out a JSMD approach for analyzing microbial datasets, but the analysis were more
focused on the effect of the host, instead of the interactions between the microbes
themselves. However, adopting the existing HMSC framework to suit our needs to
predict microbial time series, is likely to require some effort.
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Chapter 6

Conclusion and outlook

The datasets studied in this thesis clearly showed certain interesting structures,
but our efforts to determine the underlying interactions largely failed. The ReBoot
approach did give a good insight into the co-occurrence patterns. This allowed us
for instance to separate the OTUs dominating in r- and K-selected environments.
However, phylogenetically closely related OTUs often appear together in clusters
with strong internal positive associations. We do not think this pattern correspond
to the real ecological interactions between the bacteria. Rather, we think they
appear together because they have the same niche and therefore are present in
the same samples, in which the community is shaped by external variables. Even
though the similarity measures provided had different characteristics, most of them
seem to agree on major aspects of the co-occurrence patterns. Among the same
lines, random noise and transforming absolute abundances to relative ones did
make detectable differences, but the main structures of the clustered association
networks were still retained.

Also, the temporal development of the time series showed interesting dynamics,
especially the K-selected reactors in the selection-switch dataset. Yet again, our
attempts of inferring Lotka-Volterra coefficients and predicting the system did not
succeed. While we know that the algorithm works on small artificial datasets with
rapid sampling rates, using the same approach gave no reasonable results on our
own real datasets. We attribute this disappointing discovery to the high number
of OTUs and poor time resolution.

Whereas some tools have turned out to provide valuable insight into the in-
teractions betweens microbes in specific studies, none of the current methods has
proved to provide reliable and accurate results for a large variety of simulated and
real world data. We believe that the most promising approaches for detecting mi-
crobial interactions depend on microbial time series. In this case, it will require
good datasets with frequent sampling.

If we would come to the point where we understood how microorganisms in-
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teract among themselves and with each other, and know how we as humans could
shape and control these interactions, the rewards would be large. Aquaculture
industry could provide a stable K-selected community, excluding pathogens and
opportunists. Doctors could more easily treat and prevent diseases related to mal-
functioning gut microbiota, included, but not restricted to, infections, allergy and
obesity. Process industry could have communities of microorganisms faithfully
carrying out the desired tasks in perfect concert, while being cost-efficient and
environmental friendly. However, understanding the functioning and dynamics of
microbial communities is still in its infancy and it will probably require much more
research to get a proper understanding of how microbes interact.
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Appendix A

Yields of the different
similarity measures

Here, we present the outcomes for the ReBoot procedure for the different similarity
measures as in Section 4.2.1. For the relative data from the selection-switch exper-
iment, the results are in Tables A.1 to A.5. For the selection-switch experiment,
the similar results for absolute data are shown in Tables 4.1 and A.6 to A.9. The
results from the seawater experiment are shown in Table A.10, while the results
from the biofilm experiment are shown in Tables A.11 to A.16.
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Appendix A. Yields of the different similarity measures

Table A.1: Performance of the different similarity measures using relative data from the
K H subset of the selection-switch experiment

Name of similarity measure Signed Type of similarity
measure

Number of
significant
interactions

Proportion
of negative
interactions

bray curtis FALSE parametric 103
bray curtis normal FALSE parametric 70
bray curtis scaled FALSE parametric 0
bray curtis scaled normal FALSE parametric 0
bray curtis scaled uniform FALSE parametric 1
bray curtis uniform FALSE parametric 74
cosine TRUE parametric 249 0.00
cosine normal TRUE parametric 204 0.00
cosine uniform TRUE parametric 199 0.00
generalized jaccard index FALSE parametric 64
generalized jaccard index normal FALSE parametric 51
generalized jaccard index scaled FALSE parametric 0
generalized jaccard index scaled normal FALSE parametric 0
generalized jaccard index scaled uniform FALSE parametric 1
generalized jaccard index uniform FALSE parametric 54
jaccard index FALSE presence-absence 66
kendall TRUE non-parametric 1421 0.38
kendall normal TRUE non-parametric 203 0.29
kendall uniform TRUE non-parametric 197 0.28
mutual information FALSE non-parametric 121
mutual information normal FALSE non-parametric 13
mutual information uniform FALSE non-parametric 16
nc score TRUE non-parametric 1238 0.35
nc score normal TRUE non-parametric 170 0.26
nc score uniform TRUE non-parametric 165 0.25
pearson TRUE parametric 236 0.02
pearson normal TRUE parametric 167 0.01
pearson uniform TRUE parametric 165 0.01
spearman TRUE non-parametric 1384 0.37
spearman normal TRUE non-parametric 251 0.29
spearman uniform TRUE non-parametric 243 0.28
squared euclidean FALSE parametric 0
squared euclidean normal FALSE parametric 0
squared euclidean scaled FALSE parametric 0
squared euclidean scaled normal FALSE parametric 0
squared euclidean scaled uniform FALSE parametric 0
squared euclidean uniform FALSE parametric 0
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Table A.2: Performance of the different similarity measures using relative data from the
K L subset of the selection-switch experiment

Name of similarity measure Signed Type of similarity
measure

Number of
significant
interactions

Proportion
of negative
interactions

bray curtis FALSE parametric 175
bray curtis normal FALSE parametric 142
bray curtis scaled FALSE parametric 0
bray curtis scaled normal FALSE parametric 0
bray curtis scaled uniform FALSE parametric 0
bray curtis uniform FALSE parametric 139
cosine TRUE parametric 447 0.00
cosine normal TRUE parametric 339 0.00
cosine uniform TRUE parametric 323 0.00
generalized jaccard index FALSE parametric 152
generalized jaccard index normal FALSE parametric 121
generalized jaccard index scaled FALSE parametric 0
generalized jaccard index scaled normal FALSE parametric 0
generalized jaccard index scaled uniform FALSE parametric 0
generalized jaccard index uniform FALSE parametric 127
jaccard index FALSE presence-absence 76
kendall TRUE non-parametric 1143 0.29
kendall normal TRUE non-parametric 173 0.23
kendall uniform TRUE non-parametric 181 0.24
mutual information FALSE non-parametric 175
mutual information normal FALSE non-parametric 35
mutual information uniform FALSE non-parametric 32
nc score TRUE non-parametric 1042 0.29
nc score normal TRUE non-parametric 161 0.24
nc score uniform TRUE non-parametric 147 0.23
pearson TRUE parametric 440 0.03
pearson normal TRUE parametric 278 0.03
pearson uniform TRUE parametric 274 0.03
spearman TRUE non-parametric 1189 0.30
spearman normal TRUE non-parametric 221 0.27
spearman uniform TRUE non-parametric 226 0.28
squared euclidean FALSE parametric 0
squared euclidean normal FALSE parametric 2
squared euclidean scaled FALSE parametric 0
squared euclidean scaled normal FALSE parametric 0
squared euclidean scaled uniform FALSE parametric 0
squared euclidean uniform FALSE parametric 2
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Appendix A. Yields of the different similarity measures

Table A.3: Performance of the different similarity measures on the overall relative data
from the selection switch experiment

Name of similarity measure Signed Type of similarity
measure

Number of
significant
interactions

Proportion
of negative
interactions

bray curtis FALSE parametric 525
bray curtis normal FALSE parametric 445
bray curtis scaled FALSE parametric 0
bray curtis scaled normal FALSE parametric 0
bray curtis scaled uniform FALSE parametric 0
bray curtis uniform FALSE parametric 438
cosine TRUE parametric 363 0.00
cosine normal TRUE parametric 328 0.00
cosine uniform TRUE parametric 340 0.00
generalized jaccard index FALSE parametric 460
generalized jaccard index normal FALSE parametric 381
generalized jaccard index scaled FALSE parametric 0
generalized jaccard index scaled normal FALSE parametric 0
generalized jaccard index scaled uniform FALSE parametric 0
generalized jaccard index uniform FALSE parametric 392
jaccard index FALSE presence-absence 870
kendall TRUE non-parametric 3272 0.40
kendall normal TRUE non-parametric 1398 0.41
kendall uniform TRUE non-parametric 1394 0.41
mutual information FALSE non-parametric 2610
mutual information normal FALSE non-parametric 849
mutual information uniform FALSE non-parametric 836
nc score TRUE non-parametric 3251 0.40
nc score normal TRUE non-parametric 1374 0.40
nc score uniform TRUE non-parametric 1396 0.41
pearson TRUE parametric 466 0.40
pearson normal TRUE parametric 399 0.42
pearson uniform TRUE parametric 418 0.41
spearman TRUE non-parametric 3269 0.40
spearman normal TRUE non-parametric 1417 0.40
spearman uniform TRUE non-parametric 1421 0.41
squared euclidean FALSE parametric 3
squared euclidean normal FALSE parametric 3
squared euclidean scaled FALSE parametric 0
squared euclidean scaled normal FALSE parametric 0
squared euclidean scaled uniform FALSE parametric 0
squared euclidean uniform FALSE parametric 3
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Table A.4: Performance of the different similarity measures using relative data from the
r H subset of the selection-switch experiment

Name of similarity measure Signed Type of similarity
measure

Number of
significant
interactions

Proportion
of negative
interactions

bray curtis FALSE parametric 17
bray curtis normal FALSE parametric 13
bray curtis scaled FALSE parametric 0
bray curtis scaled normal FALSE parametric 0
bray curtis scaled uniform FALSE parametric 0
bray curtis uniform FALSE parametric 14
cosine TRUE parametric 98 0.00
cosine normal TRUE parametric 102 0.00
cosine uniform TRUE parametric 94 0.00
generalized jaccard index FALSE parametric 10
generalized jaccard index normal FALSE parametric 13
generalized jaccard index scaled FALSE parametric 0
generalized jaccard index scaled normal FALSE parametric 0
generalized jaccard index scaled uniform FALSE parametric 0
generalized jaccard index uniform FALSE parametric 12
jaccard index FALSE presence-absence 121
kendall TRUE non-parametric 628 0.19
kendall normal TRUE non-parametric 56 0.07
kendall uniform TRUE non-parametric 55 0.07
mutual information FALSE non-parametric 63
mutual information normal FALSE non-parametric 7
mutual information uniform FALSE non-parametric 4
nc score TRUE non-parametric 546 0.16
nc score normal TRUE non-parametric 42 0.05
nc score uniform TRUE non-parametric 43 0.05
pearson TRUE parametric 79 0.00
pearson normal TRUE parametric 50 0.00
pearson uniform TRUE parametric 48 0.00
spearman TRUE non-parametric 615 0.20
spearman normal TRUE non-parametric 58 0.05
spearman uniform TRUE non-parametric 63 0.08
squared euclidean FALSE parametric 0
squared euclidean normal FALSE parametric 0
squared euclidean scaled FALSE parametric 0
squared euclidean scaled normal FALSE parametric 0
squared euclidean scaled uniform FALSE parametric 0
squared euclidean uniform FALSE parametric 0
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Appendix A. Yields of the different similarity measures

Table A.5: Performance of the different similarity measures using relative data from the
r L subset of the selection-switch experiment

Name of similarity measure Signed Type of similarity
measure

Number of
significant
interactions

Proportion
of negative
interactions

bray curtis FALSE parametric 40
bray curtis normal FALSE parametric 31
bray curtis scaled FALSE parametric 0
bray curtis scaled normal FALSE parametric 0
bray curtis scaled uniform FALSE parametric 0
bray curtis uniform FALSE parametric 30
cosine TRUE parametric 177 0.00
cosine normal TRUE parametric 143 0.00
cosine uniform TRUE parametric 152 0.00
generalized jaccard index FALSE parametric 27
generalized jaccard index normal FALSE parametric 26
generalized jaccard index scaled FALSE parametric 0
generalized jaccard index scaled normal FALSE parametric 0
generalized jaccard index scaled uniform FALSE parametric 0
generalized jaccard index uniform FALSE parametric 26
jaccard index FALSE presence-absence 45
kendall TRUE non-parametric 693 0.34
kendall normal TRUE non-parametric 96 0.22
kendall uniform TRUE non-parametric 94 0.19
mutual information FALSE non-parametric 44
mutual information normal FALSE non-parametric 6
mutual information uniform FALSE non-parametric 6
nc score TRUE non-parametric 580 0.32
nc score normal TRUE non-parametric 81 0.20
nc score uniform TRUE non-parametric 79 0.18
pearson TRUE parametric 158 0.09
pearson normal TRUE parametric 98 0.07
pearson uniform TRUE parametric 99 0.07
spearman TRUE non-parametric 700 0.35
spearman normal TRUE non-parametric 105 0.20
spearman uniform TRUE non-parametric 108 0.21
squared euclidean FALSE parametric 0
squared euclidean normal FALSE parametric 0
squared euclidean scaled FALSE parametric 0
squared euclidean scaled normal FALSE parametric 0
squared euclidean scaled uniform FALSE parametric 0
squared euclidean uniform FALSE parametric 0

VI



Table A.6: Performance of the different similarity measures using absolute data from
the K H subset of the selection-switch experiment

Name of similarity measure Signed Type of similarity
measure

Number of
significant
interactions

Proportion
of negative
interactions

bray curtis FALSE parametric 162
bray curtis normal FALSE parametric 131
bray curtis scaled FALSE parametric 0
bray curtis scaled normal FALSE parametric 0
bray curtis scaled uniform FALSE parametric 0
bray curtis uniform FALSE parametric 129
cosine TRUE parametric 340 0.00
cosine normal TRUE parametric 356 0.00
cosine uniform TRUE parametric 349 0.00
generalized jaccard index FALSE parametric 125
generalized jaccard index normal FALSE parametric 104
generalized jaccard index scaled FALSE parametric 0
generalized jaccard index scaled normal FALSE parametric 0
generalized jaccard index scaled uniform FALSE parametric 0
generalized jaccard index uniform FALSE parametric 104
jaccard index FALSE presence-absence 64
kendall TRUE non-parametric 1268 0.26
kendall normal TRUE non-parametric 594 0.11
kendall uniform TRUE non-parametric 607 0.11
mutual information FALSE non-parametric 160
mutual information normal FALSE non-parametric 93
mutual information uniform FALSE non-parametric 89
nc score TRUE non-parametric 1149 0.24
nc score normal TRUE non-parametric 558 0.10
nc score uniform TRUE non-parametric 551 0.10
pearson TRUE parametric 319 0.00
pearson normal TRUE parametric 316 0.00
pearson uniform TRUE parametric 312 0.00
spearman TRUE non-parametric 1236 0.25
spearman normal TRUE non-parametric 649 0.14
spearman uniform TRUE non-parametric 637 0.13
squared euclidean FALSE parametric 0
squared euclidean normal FALSE parametric 0
squared euclidean scaled FALSE parametric 0
squared euclidean scaled normal FALSE parametric 0
squared euclidean scaled uniform FALSE parametric 0
squared euclidean uniform FALSE parametric 0

VII



Appendix A. Yields of the different similarity measures

Table A.7: Performance of the different similarity measures using absolute data from
the K L subset of the selection-switch experiment

Name of similarity measure Signed Type of similarity
measure

Number of
significant
interactions

Proportion
of negative
interactions

bray curtis FALSE parametric 193
bray curtis normal FALSE parametric 139
bray curtis scaled FALSE parametric 0
bray curtis scaled normal FALSE parametric 0
bray curtis scaled uniform FALSE parametric 0
bray curtis uniform FALSE parametric 157
cosine TRUE parametric 434 0.00
cosine normal TRUE parametric 382 0.00
cosine uniform TRUE parametric 380 0.00
generalized jaccard index FALSE parametric 135
generalized jaccard index normal FALSE parametric 112
generalized jaccard index scaled FALSE parametric 0
generalized jaccard index scaled normal FALSE parametric 0
generalized jaccard index scaled uniform FALSE parametric 0
generalized jaccard index uniform FALSE parametric 113
jaccard index FALSE presence-absence 75
kendall TRUE non-parametric 1139 0.35
kendall normal TRUE non-parametric 251 0.27
kendall uniform TRUE non-parametric 269 0.28
mutual information FALSE non-parametric 156
mutual information normal FALSE non-parametric 26
mutual information uniform FALSE non-parametric 29
nc score TRUE non-parametric 1006 0.33
nc score normal TRUE non-parametric 221 0.24
nc score uniform TRUE non-parametric 210 0.25
pearson TRUE parametric 403 0.05
pearson normal TRUE parametric 330 0.06
pearson uniform TRUE parametric 315 0.05
spearman TRUE non-parametric 1069 0.35
spearman normal TRUE non-parametric 302 0.28
spearman uniform TRUE non-parametric 295 0.30
squared euclidean FALSE parametric 4
squared euclidean normal FALSE parametric 4
squared euclidean scaled FALSE parametric 0
squared euclidean scaled normal FALSE parametric 0
squared euclidean scaled uniform FALSE parametric 0
squared euclidean uniform FALSE parametric 4
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Table A.8: Performance of the different similarity measures using absolute data from
the r H subset of the selection-switch experiment

Name of similarity measure Signed Type of similarity
measure

Number of
significant
interactions

Proportion
of negative
interactions

bray curtis FALSE parametric 34
bray curtis normal FALSE parametric 22
bray curtis scaled FALSE parametric 0
bray curtis scaled normal FALSE parametric 0
bray curtis scaled uniform FALSE parametric 0
bray curtis uniform FALSE parametric 25
cosine TRUE parametric 144 0.00
cosine normal TRUE parametric 152 0.00
cosine uniform TRUE parametric 148 0.00
generalized jaccard index FALSE parametric 18
generalized jaccard index normal FALSE parametric 18
generalized jaccard index scaled FALSE parametric 0
generalized jaccard index scaled normal FALSE parametric 0
generalized jaccard index scaled uniform FALSE parametric 0
generalized jaccard index uniform FALSE parametric 18
jaccard index FALSE presence-absence 146
kendall TRUE non-parametric 637 0.18
kendall normal TRUE non-parametric 109 0.04
kendall uniform TRUE non-parametric 104 0.04
mutual information FALSE non-parametric 60
mutual information normal FALSE non-parametric 8
mutual information uniform FALSE non-parametric 10
nc score TRUE non-parametric 545 0.17
nc score normal TRUE non-parametric 86 0.03
nc score uniform TRUE non-parametric 89 0.03
pearson TRUE parametric 132 0.00
pearson normal TRUE parametric 114 0.00
pearson uniform TRUE parametric 109 0.00
spearman TRUE non-parametric 631 0.17
spearman normal TRUE non-parametric 109 0.04
spearman uniform TRUE non-parametric 113 0.04
squared euclidean FALSE parametric 0
squared euclidean normal FALSE parametric 0
squared euclidean scaled FALSE parametric 0
squared euclidean scaled normal FALSE parametric 0
squared euclidean scaled uniform FALSE parametric 0
squared euclidean uniform FALSE parametric 0
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Table A.9: Performance of the different similarity measures using absolute data from
the r L subset of the selection-switch experiment

Name of similarity measure Signed Type of similarity
measure

Number of
significant
interactions

Proportion
of negative
interactions

bray curtis FALSE parametric 59
bray curtis normal FALSE parametric 35
bray curtis scaled FALSE parametric 0
bray curtis scaled normal FALSE parametric 0
bray curtis scaled uniform FALSE parametric 0
bray curtis uniform FALSE parametric 37
cosine TRUE parametric 243 0.00
cosine normal TRUE parametric 227 0.00
cosine uniform TRUE parametric 236 0.00
generalized jaccard index FALSE parametric 45
generalized jaccard index normal FALSE parametric 29
generalized jaccard index scaled FALSE parametric 0
generalized jaccard index scaled normal FALSE parametric 0
generalized jaccard index scaled uniform FALSE parametric 0
generalized jaccard index uniform FALSE parametric 27
jaccard index FALSE presence-absence 48
kendall TRUE non-parametric 620 0.30
kendall normal TRUE non-parametric 154 0.16
kendall uniform TRUE non-parametric 158 0.16
mutual information FALSE non-parametric 61
mutual information normal FALSE non-parametric 20
mutual information uniform FALSE non-parametric 19
nc score TRUE non-parametric 504 0.28
nc score normal TRUE non-parametric 136 0.14
nc score uniform TRUE non-parametric 141 0.15
pearson TRUE parametric 214 0.02
pearson normal TRUE parametric 165 0.01
pearson uniform TRUE parametric 165 0.00
spearman TRUE non-parametric 621 0.30
spearman normal TRUE non-parametric 158 0.16
spearman uniform TRUE non-parametric 164 0.17
squared euclidean FALSE parametric 0
squared euclidean normal FALSE parametric 0
squared euclidean scaled FALSE parametric 0
squared euclidean scaled normal FALSE parametric 0
squared euclidean scaled uniform FALSE parametric 0
squared euclidean uniform FALSE parametric 0
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Table A.10: Performance of the different similarity measures using data from the sea-
water experiment

Name of similarity measure Signed Type of similarity
measure

Number of
significant
interactions

Proportion
of negative
interactions

bray curtis FALSE parametric 109
bray curtis normal FALSE parametric 76
bray curtis scaled FALSE parametric 0
bray curtis scaled normal FALSE parametric 0
bray curtis scaled uniform FALSE parametric 0
bray curtis uniform FALSE parametric 69
cosine TRUE parametric 592 0.00
cosine normal TRUE parametric 515 0.00
cosine uniform TRUE parametric 478 0.00
generalized jaccard index FALSE parametric 96
generalized jaccard index normal FALSE parametric 78
generalized jaccard index scaled FALSE parametric 0
generalized jaccard index scaled normal FALSE parametric 0
generalized jaccard index scaled uniform FALSE parametric 0
generalized jaccard index uniform FALSE parametric 87
jaccard index FALSE presence-absence 888
kendall TRUE non-parametric 4722 0.36
kendall normal TRUE non-parametric 10 0.00
kendall uniform TRUE non-parametric 10 0.10
mutual information FALSE non-parametric 49
mutual information normal FALSE non-parametric 0
mutual information uniform FALSE non-parametric 0
nc score TRUE non-parametric 3727 0.35
nc score normal TRUE non-parametric 2 0.00
nc score uniform TRUE non-parametric 2 0.00
pearson TRUE parametric 520 0.01
pearson normal TRUE parametric 277 0.00
pearson uniform TRUE parametric 260 0.00
spearman TRUE non-parametric 5410 0.35
spearman normal TRUE non-parametric 3 0.00
spearman uniform TRUE non-parametric 4 0.00
squared euclidean FALSE parametric 0
squared euclidean normal FALSE parametric 0
squared euclidean scaled FALSE parametric 0
squared euclidean scaled normal FALSE parametric 0
squared euclidean scaled uniform FALSE parametric 0
squared euclidean uniform FALSE parametric 0

XI



Appendix A. Yields of the different similarity measures

Table A.11: Performance of the different similarity measures using data from the C
subset of the biofilm experiment

Name of similarity measure Signed Type of similarity
measure

Number of
significant
interactions

Proportion
of negative
interactions

bray curtis FALSE parametric 72
bray curtis normal FALSE parametric 63
bray curtis scaled FALSE parametric 0
bray curtis scaled normal FALSE parametric 0
bray curtis scaled uniform FALSE parametric 0
bray curtis uniform FALSE parametric 65
cosine TRUE parametric 251 0.00
cosine normal TRUE parametric 242 0.00
cosine uniform TRUE parametric 245 0.00
generalized jaccard index FALSE parametric 49
generalized jaccard index normal FALSE parametric 45
generalized jaccard index scaled FALSE parametric 0
generalized jaccard index scaled normal FALSE parametric 0
generalized jaccard index scaled uniform FALSE parametric 0
generalized jaccard index uniform FALSE parametric 46
jaccard index FALSE presence-absence 127
kendall TRUE non-parametric 1358 0.34
kendall normal TRUE non-parametric 86 0.23
kendall uniform TRUE non-parametric 97 0.23
mutual information FALSE non-parametric 171
mutual information normal FALSE non-parametric 10
mutual information uniform FALSE non-parametric 11
nc score TRUE non-parametric 1229 0.33
nc score normal TRUE non-parametric 83 0.25
nc score uniform TRUE non-parametric 84 0.25
pearson TRUE parametric 238 0.11
pearson normal TRUE parametric 169 0.07
pearson uniform TRUE parametric 174 0.08
spearman TRUE non-parametric 1268 0.33
spearman normal TRUE non-parametric 126 0.25
spearman uniform TRUE non-parametric 127 0.25
squared euclidean FALSE parametric 0
squared euclidean normal FALSE parametric 0
squared euclidean scaled FALSE parametric 0
squared euclidean scaled normal FALSE parametric 0
squared euclidean scaled uniform FALSE parametric 0
squared euclidean uniform FALSE parametric 0

XII



Table A.12: Performance of the different similarity measures using data from the TR1
subset of the biofilm experiment

Name of similarity measure Signed Type of similarity
measure

Number of
significant
interactions

Proportion
of negative
interactions

bray curtis FALSE parametric 50
bray curtis normal FALSE parametric 48
bray curtis scaled FALSE parametric 0
bray curtis scaled normal FALSE parametric 0
bray curtis scaled uniform FALSE parametric 0
bray curtis uniform FALSE parametric 47
cosine TRUE parametric 197 0.00
cosine normal TRUE parametric 190 0.00
cosine uniform TRUE parametric 188 0.00
generalized jaccard index FALSE parametric 43
generalized jaccard index normal FALSE parametric 39
generalized jaccard index scaled FALSE parametric 0
generalized jaccard index scaled normal FALSE parametric 0
generalized jaccard index scaled uniform FALSE parametric 0
generalized jaccard index uniform FALSE parametric 39
jaccard index FALSE presence-absence 238
kendall TRUE non-parametric 1216 0.30
kendall normal TRUE non-parametric 168 0.13
kendall uniform TRUE non-parametric 171 0.14
mutual information FALSE non-parametric 272
mutual information normal FALSE non-parametric 26
mutual information uniform FALSE non-parametric 26
nc score TRUE non-parametric 1091 0.29
nc score normal TRUE non-parametric 134 0.13
nc score uniform TRUE non-parametric 136 0.13
pearson TRUE parametric 155 0.02
pearson normal TRUE parametric 126 0.02
pearson uniform TRUE parametric 129 0.02
spearman TRUE non-parametric 1257 0.30
spearman normal TRUE non-parametric 201 0.15
spearman uniform TRUE non-parametric 203 0.15
squared euclidean FALSE parametric 0
squared euclidean normal FALSE parametric 0
squared euclidean scaled FALSE parametric 0
squared euclidean scaled normal FALSE parametric 0
squared euclidean scaled uniform FALSE parametric 0
squared euclidean uniform FALSE parametric 0
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Table A.13: Performance of the different similarity measures using data from the TR2
subset of the biofilm experiment

Name of similarity measure Signed Type of similarity
measure

Number of
significant
interactions

Proportion
of negative
interactions

bray curtis FALSE parametric 42
bray curtis normal FALSE parametric 54
bray curtis scaled FALSE parametric 0
bray curtis scaled normal FALSE parametric 1
bray curtis scaled uniform FALSE parametric 0
bray curtis uniform FALSE parametric 50
cosine TRUE parametric 155 0.00
cosine normal TRUE parametric 161 0.00
cosine uniform TRUE parametric 162 0.00
generalized jaccard index FALSE parametric 27
generalized jaccard index normal FALSE parametric 41
generalized jaccard index scaled FALSE parametric 0
generalized jaccard index scaled normal FALSE parametric 0
generalized jaccard index scaled uniform FALSE parametric 0
generalized jaccard index uniform FALSE parametric 38
jaccard index FALSE presence-absence 180
kendall TRUE non-parametric 841 0.25
kendall normal TRUE non-parametric 84 0.06
kendall uniform TRUE non-parametric 88 0.06
mutual information FALSE non-parametric 161
mutual information normal FALSE non-parametric 10
mutual information uniform FALSE non-parametric 7
nc score TRUE non-parametric 730 0.24
nc score normal TRUE non-parametric 79 0.05
nc score uniform TRUE non-parametric 76 0.05
pearson TRUE parametric 127 0.00
pearson normal TRUE parametric 113 0.00
pearson uniform TRUE parametric 111 0.00
spearman TRUE non-parametric 816 0.24
spearman normal TRUE non-parametric 95 0.07
spearman uniform TRUE non-parametric 100 0.07
squared euclidean FALSE parametric 0
squared euclidean normal FALSE parametric 0
squared euclidean scaled FALSE parametric 0
squared euclidean scaled normal FALSE parametric 0
squared euclidean scaled uniform FALSE parametric 0
squared euclidean uniform FALSE parametric 0
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Table A.14: Performance of the different similarity measures using data from the TR3
subset of the biofilm experiment

Name of similarity measure Signed Type of similarity
measure

Number of
significant
interactions

Proportion
of negative
interactions

bray curtis FALSE parametric 21
bray curtis normal FALSE parametric 15
bray curtis scaled FALSE parametric 0
bray curtis scaled normal FALSE parametric 0
bray curtis scaled uniform FALSE parametric 0
bray curtis uniform FALSE parametric 12
cosine TRUE parametric 170 0.00
cosine normal TRUE parametric 153 0.00
cosine uniform TRUE parametric 141 0.00
generalized jaccard index FALSE parametric 23
generalized jaccard index normal FALSE parametric 22
generalized jaccard index scaled FALSE parametric 0
generalized jaccard index scaled normal FALSE parametric 0
generalized jaccard index scaled uniform FALSE parametric 0
generalized jaccard index uniform FALSE parametric 21
jaccard index FALSE presence-absence 80
kendall TRUE non-parametric 305 0.05
kendall normal TRUE non-parametric 40 0.07
kendall uniform TRUE non-parametric 43 0.07
mutual information FALSE non-parametric 0
mutual information normal FALSE non-parametric 0
mutual information uniform FALSE non-parametric 0
nc score TRUE non-parametric 193 0.02
nc score normal TRUE non-parametric 7 0.00
nc score uniform TRUE non-parametric 7 0.00
pearson TRUE parametric 128 0.06
pearson normal TRUE parametric 83 0.08
pearson uniform TRUE parametric 90 0.07
spearman TRUE non-parametric 308 0.05
spearman normal TRUE non-parametric 51 0.06
spearman uniform TRUE non-parametric 49 0.06
squared euclidean FALSE parametric 0
squared euclidean normal FALSE parametric 0
squared euclidean scaled FALSE parametric 0
squared euclidean scaled normal FALSE parametric 0
squared euclidean scaled uniform FALSE parametric 0
squared euclidean uniform FALSE parametric 0
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Table A.15: Performance of the different similarity measures using data from the W
subset of the biofilm experiment

Name of similarity measure Signed Type of similarity
measure

Number of
significant
interactions

Proportion
of negative
interactions

bray curtis FALSE parametric 58
bray curtis normal FALSE parametric 34
bray curtis scaled FALSE parametric 0
bray curtis scaled normal FALSE parametric 0
bray curtis scaled uniform FALSE parametric 0
bray curtis uniform FALSE parametric 35
cosine TRUE parametric 149 0.00
cosine normal TRUE parametric 143 0.00
cosine uniform TRUE parametric 149 0.00
generalized jaccard index FALSE parametric 35
generalized jaccard index normal FALSE parametric 28
generalized jaccard index scaled FALSE parametric 0
generalized jaccard index scaled normal FALSE parametric 0
generalized jaccard index scaled uniform FALSE parametric 0
generalized jaccard index uniform FALSE parametric 27
jaccard index FALSE presence-absence 304
kendall TRUE non-parametric 1129 0.14
kendall normal TRUE non-parametric 289 0.14
kendall uniform TRUE non-parametric 313 0.14
mutual information FALSE non-parametric 235
mutual information normal FALSE non-parametric 47
mutual information uniform FALSE non-parametric 60
nc score TRUE non-parametric 1021 0.13
nc score normal TRUE non-parametric 280 0.14
nc score uniform TRUE non-parametric 273 0.14
pearson TRUE parametric 128 0.07
pearson normal TRUE parametric 100 0.05
pearson uniform TRUE parametric 107 0.06
spearman TRUE non-parametric 1151 0.14
spearman normal TRUE non-parametric 333 0.14
spearman uniform TRUE non-parametric 327 0.15
squared euclidean FALSE parametric 0
squared euclidean normal FALSE parametric 0
squared euclidean scaled FALSE parametric 0
squared euclidean scaled normal FALSE parametric 0
squared euclidean scaled uniform FALSE parametric 0
squared euclidean uniform FALSE parametric 0
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Table A.16: Performance of the different similarity measures on the overall data from
the biofilm experiment

Name of similarity measure Signed Type of similarity
measure

Number of
significant
interactions

Proportion
of negative
interactions

bray curtis FALSE parametric 139
bray curtis normal FALSE parametric 120
bray curtis scaled FALSE parametric 0
bray curtis scaled normal FALSE parametric 0
bray curtis scaled uniform FALSE parametric 0
bray curtis uniform FALSE parametric 114
cosine TRUE parametric 256 0.00
cosine normal TRUE parametric 263 0.00
cosine uniform TRUE parametric 255 0.00
generalized jaccard index FALSE parametric 100
generalized jaccard index normal FALSE parametric 93
generalized jaccard index scaled FALSE parametric 0
generalized jaccard index scaled normal FALSE parametric 0
generalized jaccard index scaled uniform FALSE parametric 0
generalized jaccard index uniform FALSE parametric 92
jaccard index FALSE presence-absence 609
kendall TRUE non-parametric 2217 0.25
kendall normal TRUE non-parametric 638 0.20
kendall uniform TRUE non-parametric 668 0.20
mutual information FALSE non-parametric 1269
mutual information normal FALSE non-parametric 157
mutual information uniform FALSE non-parametric 158
nc score TRUE non-parametric 2138 0.24
nc score normal TRUE non-parametric 619 0.20
nc score uniform TRUE non-parametric 597 0.19
pearson TRUE parametric 256 0.11
pearson normal TRUE parametric 227 0.10
pearson uniform TRUE parametric 239 0.10
spearman TRUE non-parametric 2222 0.25
spearman normal TRUE non-parametric 681 0.20
spearman uniform TRUE non-parametric 688 0.20
squared euclidean FALSE parametric 1
squared euclidean normal FALSE parametric 0
squared euclidean scaled FALSE parametric 0
squared euclidean scaled normal FALSE parametric 0
squared euclidean scaled uniform FALSE parametric 0
squared euclidean uniform FALSE parametric 1
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Appendix B

Diagnostic plots

This is a continuation of Section 4.2.2, where the remaining diagnostic plots are
shown, see Table B.1 for the references to the tables.
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Appendix B. Diagnostic plots
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Figure B.1: Abundance product versus q-values for each significant interaction in the
seawater experiment
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Figure B.2: Number of significant interactions versus overall mean abundance for each
OTU in the seawater experiment
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Appendix B. Diagnostic plots
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Figure B.3: Similarity scores versus q-values for each significant interaction in the seawa-
ter experiment. Red circles indicate positive interactions, whereas blue triangles indicate
negative interactions.
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Figure B.4: Abundance product versus q-values for each significant interaction in the
biofilm experiment
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Appendix B. Diagnostic plots
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Figure B.5: Number of significant interactions versus overall mean abundance for each
OTU in the biofilm experiment
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Figure B.6: Similarity scores versus q-values for each significant interaction in the biofilm
experiment. Red circles indicate positive interactions, whereas blue triangles indicate
negative interactions.
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Appendix B. Diagnostic plots
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Figure B.7: Abundance product versus q-values for each significant interaction in the
selection-switch experiment with relative data
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Figure B.8: Number of significant interactions versus overall mean abundance for each
OTU in the selection-switch experiment with relative data
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Appendix B. Diagnostic plots
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Figure B.9: Similarity scores versus q-values for each significant interaction in the
selection-switch experiment with relative data. Red circles indicate positive interactions,
whereas blue triangles indicate negative interactions.
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Table B.1: Figure references for diagnostic plots

Dataset Abundance prod-
uct

Number of interac-
tions VS abundance

sim.score VS q-
values

Seawater B.1 B.2 B.3

Biofilm B.4 B.5 B.6

Selection-switch
with relative abun-
dances

B.7 B.8 B.9

Selection-switch
with absolute
abundances

4.2 4.3 4.4
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Appendix B. Diagnostic plots
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Appendix C

Interaction networks

This is an extension of Section 4.2.3, where networks of significant interactions
are plotted. For the seawater experiment, the networks are shown in Figure C.1,
while Figure C.2 shows the networks for the biofilm experiment. Networks from
the selection-switch experiment for relative data are shown in Figure C.3.
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Appendix C. Interaction networks
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Figure C.1: Network of significant interactions for the seawater experiment. Blue edges
correspond to positive interactions, whereas red edges correspond to negative interactions
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Spearman correlation with normal noise
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Bray−Curtis similarity with normal noise
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Cosine similarity with normal noise

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

OTU_51

OTU_26

OTU_30

OTU_141

OTU_128

OTU_589

OTU_10

OTU_91

OTU_47

OTU_74OTU_92
OTU_37

OTU_538

OTU_17

OTU_413

OTU_34

OTU_477
OTU_11

OTU_14

OTU_453
OTU_3

OTU_12

OTU_75

OTU_5
OTU_222

OTU_558

OTU_342

OTU_46

OTU_262

OTU_79
OTU_29

OTU_259

OTU_13

OTU_607

OTU_90

OTU_38

OTU_93

OTU_22

OTU_391

OTU_179

OTU_84

OTU_290

OTU_425

OTU_63

OTU_61

OTU_488

OTU_40

OTU_36

OTU_351

OTU_25

OTU_83

OTU_301

OTU_9

OTU_27

OTU_82

OTU_6

OTU_19

OTU_188

OTU_57

OTU_95

OTU_23

OTU_70

OTU_373

OTU_77OTU_21

OTU_154

OTU_67

OTU_50

OTU_28

OTU_2

OTU_44
OTU_80

OTU_55

OTU_60

OTU_35

OTU_73

OTU_418

OTU_484

OTU_54

OTU_52

OTU_208

OTU_49

OTU_42

OTU_53

OTU_72

OTU_78

OTU_76

OTU_66

OTU_1

OTU_114

OTU_48

OTU_291

OTU_94

OTU_31

OTU_18

OTU_86

OTU_87

OTU_85

OTU_400

Figure C.2: Network of significant interactions for the biofilm experiment. Blue edges
correspond to positive interactions, whereas red edges correspond to negative interactions
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Appendix C. Interaction networks
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Pearson correlation with normal noise
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Figure C.3: Network of significant interactions for the selection-switch experiment with
relative data. Blue edges correspond to positive interactions, whereas red edges correspond
to negative interactions
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Appendix D

PCoA plots

This is an extension of Section 4.2.4, where PCoA ordinations of the OTUs are
presented. Table D.1 contains the references to the figures.

Table D.1: Figure references for PCoA plots

Dataset Without ReBoot With ReBoot

Seawater D.1 D.4

Biofilm D.2 D.5

Selection-switch
with relative abun-
dances

D.3 D.6

Selection-switch
with absolute
abundances

4.9 4.10
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Appendix D. PCoA plots
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Figure D.1: PCoA ordination plots for the seawater experiment without using the
ReBoot pipeline. The r-proportion is explained in Section 3.4.1. The markers sizes
correspond of the overall mean relative abundance.
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Figure D.2: PCoA ordination plots for the biofilm experiment without using the ReBoot
pipeline. The favorite treatment and biofilm proportion are explained in Section 3.4.1.
The marker size is determined by the overall mean abundance.
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Appendix D. PCoA plots
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Figure D.3: PCoA ordination plots for the relative data from the selection-switch exper-
iment without using the ReBoot pipeline. The r-proportion is explained in Section 3.4.1.
In this plot, the taxonomies of the OTUs on class level are included.
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Figure D.4: PCoA ordination plots for the seawater experiment using the ReBoot
pipeline. The r-proportion is explained in Section 3.4.1. The markers sizes correspond of
the overall mean relative abundance.
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Appendix D. PCoA plots
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Figure D.5: PCoA ordination plots for the biofilm experiment using the ReBoot pipeline.
The favorite treatment and biofilm proportion are explained in Section 3.4.1. The marker
size is determined by the overall mean abundance.
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Figure D.6: PCoA ordination plots for the relative data from the selection-switch ex-
periment using the ReBoot pipeline. The r-proportion is explained in Section 3.4.1. In
this plot, the taxonomies of the OTUs on class level are included.
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Appendix E

Trajectory plots

This is an extension of Section 4.3.1, where time trajectory plots are presented. For
the biofilm experiment, the plots are shown in Figure E.1, while Figure E.2 shows
the trajectory plots from the selection-switch experiment with relative abundances.
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Appendix E. Trajectory plots
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(a) Treatment 1 with water samples. The time
series plotted are: Water1 (red, solid), Water2
(green, short dashes) and Water3 (blue, long
dashes).
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(b) Treatment 1 with samples from biofilm car-
riers.The time series plotted are.The time se-
ries plotted are: Carrier1 (red, solid), Carrier2
(green, short dashes) and Carrier3 (blue, long
dashes).
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(c) Treatment 2 with water samples. The time
series plotted are: Water4 (red, solid), Water5
(green, short dashes) and Water6 (blue, long
dashes).
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(d) Treatment 2 with samples from biofilm car-
riers. The time series plotted are: Carrier4 (red,
solid), Carrier5 (green, short dashes) and Car-
rier6 (blue, long dashes).
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(e) Treatment 3 with water samples. The time
series plotted are: Water7 (red, solid), Water8
(green, short dashes) and Water9 (blue, long
dashes).

Figure E.1: Trajectory plots for the biofilm experiment. The data are ordinated by
PCoA using Bray-Curtis similarity. The text labels on the points correspond to the week
of sampling. All time series in the overall figure were used to make the ordination. Later,
the time series stemming from identical selection regimes were superimposed on each
individual subfigure.
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(a) K-selected community before day 29, r-
selected community after day 29, with high car-
rying capacity. The time series plotted are:
KRH1 (red, solid), KRH2 (green, short dashes)
and KRH3 (blue, long dashes).
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(b) K-selected community before day 29, r-
selected community after day 29, with low carry-
ing capacity. The time series plotted are: KRL1
(red, solid), KRL2 (green, short dashes) and
KRL3 (blue, long dashes).
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(c) r-selected community before day 29, K-
selected community after day 29, with high car-
rying capacity. The time series plotted are:
RKH1 (red, solid), RKH2 (green, short dashes)
and RKH3 (blue, long dashes).
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(d) r-selected community before day 29, K-
selected community after day 29, with low carry-
ing capacity. The time series plotted are: RKL1
(red, solid), RKL2 (green, short dashes) and
RKL3 (blue, long dashes).

Figure E.2: Trajectory plots for the selection-switch experiment with relative abun-
dances. The data are ordinated by PCoA using Bray-Curtis similarity. The text labels
on the points correspond to the day of sampling. All time series in the overall figure were
used to make the ordination. Later, the time series stemming from identical selection
regimes were superimposed on each individual subfigure.
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Appendix E. Trajectory plots
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Appendix F

Cross-validation colorplots

This is a continuation of Section 4.3.3, presenting cross-validation colorplots for
the Lotka-Volterra pipeline. For the biofilm dataset, the results are shown in
Figure F.1. The cross-validation colorplot based on stringent filtering at mean
relative OTU abundance 10−3 of the selection-switch experiment is presented in
Figure F.2.
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Appendix F. Cross-validation colorplots
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Figure F.1: Cross-validation result for the biofilm experiment with ordinary filtering
at mean relative abundance 10−4. The color reported corresponds to base-10 logarithm
of the Root Mean Squared Error. The plots are shown for each possible combination of
source of sample (in columns) and treatment (in rows: TR1,TR2, TR3).
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Figure F.2: Cross-validation result for the selection-switch experiment with stringent
filtering at mean relative abundance 10−3. The color reported corresponds to base-10
logarithm of the Root Mean Squared Error. The plots are shown for each combination of
present selection regime (in columns) and nutrient supply (in rows).
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Appendix F. Cross-validation colorplots
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Appendix G

Time trajectory plot of
predicted time series

This is a continuation of Section 4.3.4, presenting time trajectory plots of predicted
time series. For the selection-switch experiment with stringent filtering, this is
shown in Figure G.1
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Appendix G. Time trajectory plot of predicted time series
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Figure G.1: Predicted (determined through inferred gLV coefficients, shown as red solid
line) and reference (actual, shown as blue dashed line) time series from the selection-
switch experiment with stringent filtering at mean relative abundance 10−3. The time
series are shown in PCoA ordinations using Bray-Curtis similarity. The ordinations are
based on all time series of each subdivision.
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