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Abstract

This thesis presents novel methods, equipment, and a mathematical model
for the study of bacteriophage plaque development on bacterial lawns in semi-
solid agar. The Cellfiebooth system, which I developed and first presented
in my previous report "Fluorescence Imaging of the Pre-Visible Stage of
Bacteriophage Plaque Formation" [1] is used as the method for measuring
plaque development. The system is based on determining the distribution
of DNA released by phage-induced bacterial lysis. The developed model
is a reaction-diffusion model and considers the diffusion of both nutrient
and phage, while focusing on the shape and growth of plaques in bacterial
lawns. Comparing the experimental and theoretical results, it was found
that the diffusion of nutrient from within the plaque is a vital driver for
the late expansion of plaques. It was also found that the bacterial host
can change growth strategy during the experiment, and that this will have
severe consequences for plaque morphology. In addition, a new protocol was
developed for determining the burst size, lysis time and standard deviation
in the lysis time of a phage strain, all in a single experiment. I hope that the
presented advances in the continuous measurement and modelling of viral
plaque development, can be useful for readers aspiring to progress in the
field of phage therapy.
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Sammendrag

I denne masteroppgaven presenteres nye metoder, utstyr og en matema-
tisk modell for undersøkelse av utviklingen av bakteriofagplakk i semisolid
agar fylt med bakterier. Cellfiebooth-systemet, opprinnelig utviklet og in-
trodusert i prosjektoppgaven «Fluorescence Imaging of the Pre-Visible Stage
of Bacteriophage Plaque Formation» [1], anvendes for å måle dannelsen av
plakk. Systemet er basert på måling av DNA-distribusjon som følge av
bakteriolyse indusert av bakteriofager. Den utviklede reaksjon- og diffusjon-
smodellen forholder seg til diffusjonen av både næring og bakteriofager, og
tar høyde for plakkens form og vekst. Gjennom komparasjon av eksperi-
mentelle og teoretiske resultater, stadfestes det at diffusjon av næring fra
plakkens innside er en vital driver for sen plakkekspansjon. Det blir også
etablert at bakterieverter kan endre vekststrategi underveis i eksperimenters
forløp, og at dette da vil ha alvorlige konsekvenser for plakkens morfologi.
I tillegg utvikles en ny protokoll for bestemmelse av antall nye virus fra
en infeksjon, tidsrommet mellom infeksjon og lysis, samt standardavvik for
tidsrommet mellom infeksjon og lysis—alt i ett eksperiment. Jeg håper de
presenterte utviklingene innen kontinuerlig måling og modellering av viral
plakkutvikling kan være nyttig for lesere med som har fremgang innen bak-
teriofagterapi som hensikt.
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1 Introduction

A little bit of history and a lot of discovery

During the austral summer of 1996-1997, an Australian research team trav-
elled to the Antarctic[2]. There they sought out the lakes Fryxell, Hoare,
and Joyce and retrieved water and ice samples at different depths. Thelakes,
placed at roughly 77o6 south, are covered by ice all year, and multi-cellular
organisms are virtually absent[2]. With sub-zero temperatures all year long,
and virtually no sunlight penetrating the 4 to 5 meter thick layer of ice, one
would expect there to be few, if any, viruses and microbes present. Stagger-
ingly, the samples from the ice and waters of these lakes showed otherwise.
The research team discovered an abundance of viruses! Even their deep-
est samples, at 35m, contained over a million viruses per millilitre, with an
average virus to bacteria ratio of 52.7.

The Naica mine is located 112 km south east of Chihuahua city in northern
Mexico[3]. While it is one of the most important silver and lead deposits
in the world, it is probably most famous for the Cave of the Crystals. This
cave is connected to the mine at a depth of 300 meters, and the ceiling,
wall and floor are completely draped with clear translucent gypsum crystals.
The cave contains some of the largest natural crystals in the world, and only
a handful researchers have been allowed to enter since its discovery.[3, 4].
One of the privileged researchers having been permitted access to the cave,
is the geologist Juan Manuel García-Ruiz and his team. What they found
was that the cave was formed by volcanoes, 26 million years ago[3, 4]. The
volcanic magma kept the cave steady at a high temperature of 54◦C over
hundreds of thousands of years. As it turns out, these conditions provided
ideal environment for the slow growing crystals to reach the ginormous size
that earned them the status as the world largest natural grown crystal.

Another group of researchers allowed to visit the exclusive cave, was Curtis
Suttle and his team[5, 6]. While they must have been impressed by the
crystals in the cave, they had little professional interest in them. Instead,
they retrieved a water sample and brought it back home to their lab. Suttle’s
work is mainly in virology, and he was curious to see if there were organisms
sturdy enough to survive in the harsh conditions of the cave. As the cave
has been biologically cut off from the outside world for millions of year, you
would think Suttle and his team were on a wild goose chase. They did not
find any geese, but their findings certainly revealed life. The samples revealed
200 million viruses in each drop of water collected from the cave[4–6].

We find viruses almost wherever we look for them; in acidic hot springs, in
antarctic lakes and in the deep sea[7, 8]. Even when we look in familiar, less
known locations like human lunges–where it has been assumed we would not
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find viruses–new ones are discovered.

In 2009, Dana Wilner, a biologist at San Diego State University, wished to
look for viruses in the lungs of patients with cystic fibrosis. The occasion
for this inquiry was that microbes and viruses had earlier been implicated
in chronic pulmonary diseases[9]. She had five patients with cystic fibrosis
and five healthy individuals (i.e. the control group) cough up sputum in
cups. She brought the generously contributed sputum back to her lab, and
placed the samples under a microscope. Looking through the microscope
lens, she was met by surprising sights. All her samples were brimming with
viruses. On average there were 175 different species of viruses per sample,
90% of which were completely unknown. After this study, the severely erro-
neous assumption that lungs of healthy individuals are sterile, was abruptly
debunked.

We live on a planet of viruses.

Carl Zimmer

It is difficult to overstate the extent to which viruses are an integral part of
our life on earth. Wherever we have found life, we have found viruses[1, 4, 8].
It is estimated that the ocean contains 1 · 1031 virus particles, making them
the most abundant biological entity in water[4, 8]. As astronomical as these
numbers may sound, it has since been implied they are an underestimation,
as the techniques commonly used to measure the amount of viruses in sea-
water often miss RNA viruses. These are estimated to represent between
38% - 63% of the total amount of viruses in the sea[10]. If you are reading
this thesis on the toilet, you probably inhale between 500 and 6000 viruses
for every breath you take (assuming you are an average-quantity breather
inhaling half a litre of air per breath)[11]. I would advice you not to let these
numbers make you nervous, as hyperventilating certainly will not lower the
number of viruses joining the lively virion party going down in your lungs.

We are not familiar with the origin of viruses. One of the three main hypoth-
esis today’s virologists are working with, is the "Virus First" Hypothesis[12].
As the name insinuates, this hypothesis suggests that viruses predate all
other lifeforms on earth[12, 13]. Today it is common knowledge that viruses
are everywhere around (as well as inside of) us, and have been God knows
how long. In a historically sense however, we have not been aware of them
for long[14]. Yes, humans have probably been more and less uncomfortably
aware of the effects and consequences of viral presence, but without the con-
ceptualisation of such a thing as a virus. Viruses were first discovered late in
the 19th century [15], and the often smaller bacteria specific viruses called
bacteriophages or phages for short, were first discovered or identified by Félix
Hubert d’Herelle in 1917[16].
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d’Herelle was going about his business cultivating bacteria in Petri dishes,
when zones of clearing in the otherwise opaque bacterial lawn piqued his
interest. When these zones of clearing (now termed plaques) turned out
to be bacteria specific viruses, the discovery entirely shifted the course of
his career. He goes on to discover that the phages work as an antimicro-
bial agent, and that they are an astonishing thousand times more effective
than the antimicrobial agents available [17]. d’Herelle develops the concept
of phage therapy. By taking advantage of the high selectivity of phages,
d’Herelle is able to administer phages therapeutically to cure bacterial infec-
tions. Amazingly, the phages would destroy the pathogenic bacteria, while
remaining completely innocuous to the human host cells[17]. The same cer-
tainly cannot be said of the other antimicrobial agents that were available
at that time. The technique worked, and for a time d’Herelle experienced
both commercial and political success. d’Herelle was however a controversial
character within the scientific community. He was very outspoken about his
"heretical" theories which considered phages to be a common guest in all
creatures and the underling reason to how we spontaneously recover from
diseases. Even going so far as to claim bad hygiene being the cure for dis-
eases caused by bad hygiene, citing that the lowest cholera mortality in India
was found in Campbell Hospital, which was a hospital for poor people[17].
As phage therapy became popular within the soviet union, his technique
experienced the effect of "soviet taint" in the west, and "d’Herelles Cure"
became "Stalin’s Cure". [17, 18]. These factors, along with the rise of an-
tibiotics, forced his research into complete obscurity. It almost goes without
saying that antibiotics went on to claim the position as the cure-all wonder
drug for all your microbial complications [17, 19, 20].

Unfortunately, due to the surge of antibiotic-resistant bacteria in recent time,
antibiotics have begun to loose their previous "super-potency"[21]. Because
of this, phages are experiencing a rising relevance in the medical field[22].

Where we stand today

New findings suggest that phages are even more complex than we have
thought. For instance, a 2017 Israeli study originally looking at quorum sens-
ing in bacteria during bacteriophage infection, stumbled upon a six amino
acid long peptide; a signal molecule produced by the phage[23, 24]. As it
turns out, this signal molecule has the function of coordinating when the
virus will utilise the lysogenic pathway and lie dormant in the host-DNA, as
well as when it will use the lytic pathway and break out of the host. These
findings demonstrate phages having a "social life", and solidify our under-
standing of phages as a more complex biological system, rather than simple
cellular machines. As of today, there are 12,000 complete phage genomes on
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GeneBank [dec. 2019]. Comparing those numbers to the tens of millions of
different species of phages believed to exist out there, no wonder a researcher
can spit on their microscope and discover species never seen before[9, 25].

There is much to learn about what is going on at the ultramicroscopic level.
There is reason to believe that better understanding the interactions between
phages and bacteria will be a crucial element to the scientific comprehension
of our ecology and environment. As I have touched upon, the implications of
this research are especially great for the medical field. Eager to contribute,
I will start my study of the interaction between bacteria and bacteriophages
by following d’Herelles footsteps. Like d’Herelle, my studies are commenced
by studying plaques, however with 100 years of technological and scientific
advancement in my toolbox.

Phages and their ability to form plaques were first discovered over a hundred
years ago by d’Herelle[26]. Today, the morphology of plaques is used as basis
for selection of phages in therapeutic use[27]. However, research into how
these plaques form has been lacking. The mathematical models presented
have not been empirically tested, most observations being anecdotal[28]. Nei-
ther is there much, if any, work done continuously measuring plaque forma-
tion. Attempting to reduce this lack of knowledge, I have done just that.
This thesis presents my methods and findings. Using a novel technique
I developed and presented in my report "Fluorescence imaging of
the pre-visible stage of bacteriophage plaque formation", I contin-
uously measure plaque formation. I will also attempt to explain
the dynamic between the bacterial hosts, phages and the available
nutrient. Aiding the explanation, I will be using a self-developed
mathematical model[1].

4



Figure 1: Infected bacterial cells filled with capsomeres and phage
DNA. Illustration by Ingemund Skålnes through personal communica-
tions. December 25th, 2019.

2 Theory

2.1 Virus, phages and their propagation

Viruses are small infectious agent that are not able to replicate indepen-
dently[29, 30]. They are obligate intracellular parasites, and rely on entering
a suitable living cell (i.e. host) to carry out their replication cycle through
the process termed infection[29, 31]. Viruses do possess their own genetic
information, making them independent from their host organisms[29]. In
its extracellular form– virus particle or virion–the virus is a microscopic
particle containing nucleic acids wrapped in proteins and sometimes other
macromolecules, depending on virus type. In this extracellular form, the
virus is metabolically inert; a state where no respiration or biosynthesis oc-
curs. This translates to the virus particle’s incapability to (i) elude threats
or danger, (ii) repair itself when damaged, and (iii) replicate itself. It is
unable to do anything that requires energy, and simply "floats around" in
its environment. When the virus particle comes into contact with a viable
host, it will latch on to the surface of the host and inject the viral genome
into the host, effectively infecting it[29, 32].
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Viruses can be classified by the host they infect as well as by their genome
[29, 33]. A virus that infects bacteria is called a bacteriophage–or phage for
short–from the greek word phagein; "to eat".

2.1.1 Phages

A briefer version of the following introduction to bacteriphages was first
presented in my report "Fluorescence imaging of the pre-visible stage of
bacteriophage plaque formation"[1]. Phages–like all other viruses–are obli-
gate intracellular parasites. Just like other viruses then, phages have no way
of replicating until contact with a host cell has occurred. In order to suc-
cessfully replicate, a phage needs to infect a host, effectively "hijacking" its
cellular machinery and coercing it into production of viral components [34].
Although phages are dependent on their host cells, they still have various
possible life cycles. The most common of these alternative life cycles being
the lytic and the lysogenic life cycles[35].

The steps of the lytic life cycle is show in figure 2. The protein cape com-
monly referred to as capsomere is shown in red. Shown in green is the viral
DNA, and the grey represents the bacterial host cell. The first step of in-
fection is the attachment phase, which is the most common basis for host
specificity[29]. The virion has one or more proteins on the outside that in-
teracts with specific cell surfaces called receptors. The receptors are normal
surface components of the bacteria such as proteins, carbohydrates, lipids or
complexes of these. These receptors carry out normal functions for the cell,
e.g. the receptor for the phage T1, which serves as an iron-uptake protein
for he host cell[29]. Step two is the penetration step. The attachment of the
virion causes a change in both the host and phage respective surfaces that
results in penetration. As a minimum, the viral genome needs to enter the
host cell, while some phages are dependent on some enzymes to enter as well
to be able to carry out the viral replication[29]. Step three begins once the
virus and eventual necessary enzymes have entered the cell. The replication
process is initiated by the synthesising of the viral genome and proteins. The
viral proteins can be grouped into two broad categories. The first category is
the early proteins, which are synthesised soon after injection and are neces-
sary for the replication of virus nucleic acids. The second broad category is
late proteins, which include the protein coat of the virion. The early proteins
are typically enzymes, while the late proteins are structural components syn-
thesised in much larger amounts. The time between the penetration and the
first complete virion is called the eclipse period and is characterised by the
lack of presence of any infecting agents[29, 36]. Step four is characterised
by assembly of the viral coating and packing of DNA. This often happens
spontaneously through electrostatics, Van der Waals, and hydrogen bonding
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Figure 2: The lytic cycle of a phage. Bacteria, DNA and virus not
drawn to scale. By Ingemund Skålnes through personal communications.
25 December 2019.
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interactions between the different viral sub-units [37]. The last step, step
five, is the release of virions. The virus produces enzymes called lysozymes
that break up the bacterial surface and release the newly formed virions into
the environment[29, 38].

The lysogenic life cycle involves the viral genome being inserted into the
bacterial chromosome (or into the bacterial cell as a plasmid) by infecting
the host. By inserting itself as a genetic element into the bacterial cell, the
phage is able to lay dormant for thousands of host generations, with the
viral genome being replicated along with the hosts[29]. Phage genome in
this state is termed prophage[29, 39]. Phages in this state can affect the host
by expressing genes either introduced by the phage or genes not usually ex-
pressed by the host, effectively altering the phenotype of the host[40]. This is
a process termed lysogenic conversion. With the exception of lysogenic con-
version, the prophage lies dormant until it is induced[39]. Upon induction,
the prophage proceeds on a typically lytic pathway; rapidly producing new
virions and releasing the produced progeny through lysing the cell wall of the
host. While many a phage follows either the lytic or the lysogenic life cycle,
the temperate phages are able to "select" either of the two when infecting
a host[39]. They will not be relevant for this thesis, but an introduction to
phage theory should at least mention the lesser known life cycles pseudolyso-
genicy and chronic infection life cycle. These are generally unexplored and
rather controversial concepts in phage biology as per today. [41–43].

Since their grande entrée into scientific conceptualisation, phages and phage
derived proteins have become an important tool in molecular laboratories
all over the world[29]. In many ways, the study of phages can be said to
have formed the backbone of molecular biology[44]. To exemplify; phages
were an integral part of demonstrating DNA as genetic material and proving
Darwins natural selection. Also, phage-derived enzymes are extensively used
for common laboratory protocols [29, 44–46].

2.1.2 Plaques

In virology one often encounters the need to quantify the number of infectious
virions within a solution[29, 47]. This is commonly done by performing a
double agar overlay plaque assay. Even though it dates 100 years back
to d’Herelles first observation of phages, the technique is still considered
one of the most effective ways of achieving direct quantification of infectious
virions[26, 47]. The standard plaque assay protocol is ubiquitous enough that
it can be found in introductory microbiology textbooks like Brock’s "Biology
of Microorganisms"[29]. The protocol is performed by having three parts
molten nutrient agar mixed with one part bacterial broth in the exponential
phase, and a phage sample diluted to contain between one and three hundred
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plaque forming units (PFU). This mixture is mixed properly using a vortex,
and poured over a Petri dish with agar. The agar plate with the mixture
is left to incubate overnight. The bacteria are immobilised in the agar,
while the smaller phages are free to spread as they proliferate. This results
in see-through spots (i.e. plaques) in the otherwise opaque bacterial lawn,
where phages have lysed and annihilated all surrounding bacteria. These
plaques are then either counted or isolated, depending on the intention. The
morphology of these plaques are also used to assess the efficiency of phages
when selecting viral strains for phage therapy[48].

2.2 Bacteria, Escherichia coli, and growth

In section 2.1, I elaborated on how bacteriophages depend on their hosts to
carry out their life cycles. Studying these bacteria specific viruses without
introducing and making certain efforts to understand their hosts, would leave
us with an incomplete impression.

Escherichia coli (shortened to E. coli) is a gram negative, rod-shaped bac-
terium that belongs to the Enterobacteriaceae family [29, 49]. Members of
this genus are near universal inhabitants of the intestinal tract of humans
and other warm-blooded animals[29]. The E. coli bacteria are well charac-
terised, facultative anaerobe, and fast growing in a wide range of media[29,
49]. Owing to these attributes, they have been extensively utilised as a model
in research and teaching since the 1940s[49]. Different strains of E. coli are
used for different purposes, e.g. the DH5α, for cloning and BL21 for recom-
binant protein expression[49–51]. Their specific use is due to their genotypes.
BL21, among other properties, lacks common proteases which would degrade
the proteins BL21 is made to produce, and DH5α lacks endonucleases that
would degrade transformed genes [51]. While growing optimally at 37 ◦C, the
E. coli grows at a wide range of temperature, and is found to be proliferating
at temperatures as high as 53 ◦C[49, 52].

Bacteria, such as E. coli, reproduce through binary fission. This means that
a single cell divides into two identical daughter cells[29]. Under favourable
conditions, the bacteria can reproduce with a generation time of 20 min-
utes[49]. Knowing this, we can derive a simple model for the growth rate
shown in equation 1, where N is the concentration of bacteria, N0 is the
starting concentration of bacteria and tg is the number of generation times
passed.

N = N0 · 2tg (1)

Equation 1 shows us that the growth of bacteria is exponential, doubling
every generation time[53]. This model is only accurate for optimal growth
when the bacteria are not limited by temperature, nutrients, space, or com-
petition. In 1949, Jaques Monod presented his equation, dubbed the Monod
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Figure 3: The different phases of bacterial growth. The lower curve
shows the log bacterial density, while the upper curve shows the growth
rate at the same stages. Figure originally published in Monods 1949
paper[53].

equation, which related the bacterial growth rate to the nutrient concentra-
tion[53]. This equation has the same form as the Michaelis-Menten equa-
tion, which models enzyme kinetics. While the Michaelis-Menten equation
is based on theoretical assumptions, the Monod equation is based on empir-
ical data, which he presents in his paper. The Monod equation is show in
equation 2, where µ is the growth rate, µmax is the maximal growth rate, S
is the substrate concentration, and KS is the half velocity constant, which
is the value of S when µ

µmax
= 0.5.

µ = µmax
S

KS + S
(2)

Figure 3, from Monods 1949 paper displays the typical phases of growth for a
bacterial culture growing in a batch in a lab setting where the environment is
ideal and controlled, and the only thing limiting the bacteria is nutrient and
space. The Monod paper divides the life of cultures into six different phases,
while most modern microbiology textbooks divide it into four phases[29, 53,
54]. Phase 1 and 2 are the lag phase and acceleration phase, respectively, and
are usually treated as just the lag phase[29]. Here the bacteria is inoculated
into the media and spends time biosynthesising the appropriate enzymes or
repairs, if the cells have been damaged. The next phase (phase 3) is the
exponential phase. Here the bacteria grows exponentially, dividing at the
maximal rate allowed by their genetics and environment. The exponential
phase is the only phase modelled by the term given in equation 1. Phase
4 and 5 are the retardation phase and stationary phase, usually treated as
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Figure 4: Growth rate of M. tuberculosis in Dubos’ medium, as a
function of glucose concentration. Figure originally published in Monods
1949 paper[53].

just the stationary phase. Here the exponential growth ceases due either
to lack of limiting substrates or to accumulation of growth limiting waste
products[29].

The Monod equation allows us to reliably model the life of bacterial cultures
from the exponential phase till stationary, by encompassing the access of
limiting substrates. In the beginning when the limiting substrate S is con-
siderably larger than KS , we can approximate KS + S ≈ S and the fraction
S

KS+S
becomes S

S which is 1, and the term in equation 2; becomes µ = µmax.
Under these conditions the growth rate is equal the max growth rate. The
growth rate of a bacteria is plotted as a function of its limiting substrate in
figure 4. The solid line is the Monod equation while the dots are experimen-
tally measured growth rates. The figure shows the growth rate converging
towards a maximum growth rate as the concentration of limiting substrate
is increased.

2.3 Modelling

2.3.1 Is it useful?

Modelling is not some complex, purely scientific action. In fact it is some-
thing each and every one of us does every day. If you held the door for
someone today, you modelled how this gesture would play out. You gazed
back at the person behind you and modelled how the other person would
reach and enter said door. Your eyes quickly registered the information
needed to measure the distance between the door and the other person, as
well as the speed at which this person was moving. You then did some quick
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modelling in your mind resulting in an estimate of the different ways it could
play out if you held the door or not. Maybe holding the door would seem
like a nice gesture, or maybe the other person was so far away that holding
the door would force the other person into an awkward half-sprint, half-walk
motion, making the whole gesture a testament to the dysfunctional social
dynamic between the two of you. The model does not give you a definitive
answer to your door-holding dilemma. What it does give you is an esti-
mate of the consequences. The estimation gives you more data for your door
holding parameter, and hopefully allows you to at least maintain your social
equilibrium. Perhaps contrary to layman conceptualisations of modelling as
a complex, "scientific" endeavour, modelling in order to predict and control
ones circumstances is a constant action of the human mind; continuous and
inevitable.

Mathematical modelling is used extensively in natural science and engineer-
ing[55, 56]. In this type of modelling, we mimic reality by using the language
of mathematics[57]. These models can be composed by a set of linear, alge-
braic, or differential equations[55]. The models are constructed on the basis
of practical observations and our current understanding of how these practi-
cal observations came to be[56]. A model’s purpose is to mimic a process or
phenomenon, and the value of a model is measured by how much perceived
insight is gained into the phenomenon. This makes the creation of a model an
iterative process, as a model is created, evaluated and changed[58]. However,
this does not imply that the purpose or aim of all models is perfect mimick-
ing of reality. "All models are wrong, but some are useful". This aphorism
is generally attributed to the statistician George Box, who repeated it in
his many articles and books[59, 60]. To understand this aphorism, we can
consider a simple example. The ideal gas law, shown in equation 3, was first
stated by Émile Clapeyron in 1834[61, 62]. Here V is volume, P the pressure,
n the number of moles of gas, and R the ideal gas constant.

V =
nRT
P

(3)

The law shows how volume, pressure and temperature affect each other in an
ideal gas. There is no such thing as an ideal gas in nature, and we will never
have a gas that behaves exactly according to the law. This makes the model
"wrong". That does not mean that the law is not useful. It is in fact very
useful, as it provides an accurate estimate under the right conditions, and
provides valuable insight into the physical behaviour of gasses. As G. Box
himself writes in a 1979 article: "For such a model there is no need to ask the
question ’Is the model true?’. If ’truth’ is to be the ’whole truth’ the answer
must be ’No’. The only question of interest is ’Is the model illuminating and
useful?’"[63].

Other examples of (more or less "true") mathematical models are Newton’s
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laws of motion, Faraday’s law of electromagnetic induction, Maxwell equa-
tions in electromagnetism and - most relevant to this thesis - the reaction-
diffusion model.[55, 64–66].

2.3.2 Reaction-diffusion models

In his seminal paper, Alan Turing theoretically demonstrated a system of
reacting and diffusing chemicals spontaneously forming a spatial pattern[66,
67]. To explore this emergence, Turing considered a system of two chemicals;
one being an activator and the other an inhibitor. The activator would stim-
ulate the production of the inhibitor, and the inhibitor depleted or stopped
the production of the activator. He showed that a system with an inhibitor
with greater diffusion than the activator would result in diffusion-driven
instability. As diffusion is commonly considered an homogenising process,
processes of diffusion-driven instability can seem counter-intuitive [67]. To
better understand diffusion-driven instability, we can consider a simple auto-
catalytic process of A +B −−→ 2B as explained by Maini et al. (1997) [67].
An unstirred reactor filled with chemical A and no B would obviously gain
no reaction. If the reactor was seeded with chemical B, but B is immobilised
while A is able to diffuse, the reaction would only occur where B was seeded.
Eventually, the reaction would consume all chemical A and the reactor would
be left with spots consisting of a high concentration of B[67]. If, however,
there was a supply of A across the domain in addition to a decay step for
B to limit its growth, it would be possible to achieve a balance between
supply and diffusion for A. This could balance the decay of B in the spots,
and provide a steady-state, long-lived pattern, with high concentrations of
A in between the spots and high concentration of B in the spots. The exact
pattern of spots would still be highly dependent on where the initial seeding
occurs. Turing makes two predictions. The first prediction is that this struc-
ture will develop spontaneously even from an initially close to homogeneous
distribution of A and B, provided that A diffuses faster than B. The second
prediction he makes is that the final pattern will not necessarily depend on
the initial disturbance if B has a non-zero diffusivity–the spots adjusting
their position to the demands of the local “supply and demand" occurring
due to diffusion and reaction.

∂u

∂t
= Du

∂2u

∂t
+ Ru (4)

The general reaction-diffusion equation is shown in equation 4. Here the
term ∂u

∂t represents the change in concentration of component u over time,
Du

∂2u
∂x2

represents the spatial diffusion of component u, and Ru represents
the net rate of formation and consumption of the same component[68].
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Figure 5: Turing patterns generated by numerically solving the
FitzHugh–Nagumo equation. Generated in python. Source code un-
der MIT License[69].

14



Turing suggested that reaction-diffusion systems could be the basis of many
biological phenomena, such as the patterns of a "dappling" (horse with spots
on their coat), phyllotaxis (leaf arrangement), and gastrulation (early embry-
onic development)[66, 67, 70]. I made Figure 5 by modifying a python code
that numerically solves the FitzHugh-Nagumo equation; a reaction-diffusion
system[69]. The figure shows how a stable Turing pattern emerges over time,
and one can see the pattern on the figure bearing resemblance to the coat of
a cheetah, leopard or jaguar.

While reaction-diffusion systems may seem like a viable explanation for the
emergence of biological patterns, they have in many cases (e.g. the seg-
mentation of body parts in Drosphilia Melongaster [fruit fly]), been found
not to be the underlying force[67, 71]. To quote Maini et al. (1997) "...
although RD theory provides a very elegant mechanism for segmentation,
nature appears to have chosen a much less elegant way of doing it!". Rele-
vantly, reaction-diffusion systems do seem to be the underlying cause is in
the formation and enlargement of viral plaques.

2.3.3 Viral reaction and diffusion

The first reaction-diffusion system describing plaque formation and enlarge-
ment was introduced by Yin and McCaskill (1992) [72, 73]. Their incentive
for developing this model was derivation of a formula for the radial expan-
sion of plaques. This work was a continuation on work initiated by Koch
in 1964. Using heuristic arguments, Koch suggested that that the radial
expansion of plaques could be described by the equation c = a(DL )

1
2 , where

c is the radial propagation velocity of the expanding plaque, D is the viral
diffusivity through the mixed medium, L is the lysis time for the phage and
a is a constant[72, 74].

The system Yin and McCaskill developed had three components: the host
bacteria (B), free virus particles (V), and the infected bacteria (I). The model
is governed by three reactions: the adsorption of phages with the rate con-
stant k1, the desorption of phages k−1, and the burst rate of infected bacteria.
Y represents the yield of virus particles, and is a constant. How the reactions
and components in the model relate to each other is shown in equation 5.

V +B
k1−−→
k−1

I
k2−−→ Y ·V (5)

An alternative reaction diffusion model was later derived by Ortega-Cejas et.
al, which incorporates a time delay to better mimic the lysis time effect[75].
What these models have in common is the importance the viral adsorption
rate (k1) is given in the model. As of today, there are few empirical tests
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of the models[76, 77]. The empirical test that have been performed find
the models failing to capture qualitative aspects of the experimental results
found[28].

2.4 Numerical analysis

A lot of theory in this thesis has been dedicated to differential equations and
their solutions, without elaborating how these equations are solved. While
most equations encountered during primary education are analytically solv-
able with an absolute and finite solution, this most certainly is not true for
all equations[78]. As an example, consider the following problem: professor
Yin has 2 apples, professor Abedon has 3 apples, how many apples do they
have amongst one another? This problem is analytically solvable. We know
the answer is exactly five: five apples is the answer for the stated problem.
In science and engineering on the other hand, we often encounter equations
to which it is impossible to find the absolute solution using the analytical
tools available[78]. In such cases, we have to settle with an approximate
solution, often acquired through numerical analysis.

Euler’s method is an example of a method for numerical analysis. The
method is a first-order numerical procedure for solving ordinary differential
equations (ODEs) with a given initial value[78]. This method yields approx-
imate solution values at variables with equal distance. Euler’s method is
summed up in equation 6. It is based on the assumption of local linearity
and approximates the solutions for an ODE by starting from a known ini-
tial value y(x0), then approximating the next value step-wise with each step
having an x-value h larger than the last.

y(x+ h) ≈ y(x) + h · y′(x+ h) (6)

The following example is borrowed from the book "Advanced engineering
mathematics"[78], and shows how the ODE in equation 7 can be solved
given the real solution being y = ex − x− 1.

y′ = y + xy(0) = 0 (7)

Table 1 shows equation 7 solved using step-size h = 0.2. n shows the number
of iterations, xn the x value used, yn the approximated solution and y(xn) the
real solution. The error column shows the difference between the solutions
found through Euler’s method and the real solution. The approximated
solution and real solutions are plotted in figure 6.

Errors in numerical methods are related to the step-size h. The smaller h is,
the smaller the error. This also leads to a larger number of steps that need to
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Table 1: Euler’s method for y′ = x+ y for x from 0 to 1 with step-size
h = 0.2

n xn yn y(xn) error
0 0 0.000 0.000 0.000
1 0.2 0.000 0.021 0.021
2 0.4 0.040 0.092 0.052
3 0.6 0.128 0.222 0.094
4 0.8 0.274 0.426 0.152
5 1 0.488 0.718 0.230

Figure 6: The results from table 1

be calculated[79]. There are alternative algorithms rendering a lower error
with the same step-size as Euler’s, even still the maximum step-size with a
stable solution will always be dependent on the numerical stability of the
system of equations.

A system of equations is numerically unstable when the numerical solutions
change drastically but the exact solution does not. Numerical instability
can be avoided by using a smaller step-size or alternative methods. If an
equation includes terms that can yield rapid variation in the solution, it is
considered to be a stiff equation[79],

δt <
(δx)2

2 ·D
(8)

Various methods have been developed to analyse the stability of a numerical
system[80]. Widely used is the Von Neumann stability analysis, which is
based on the decomposition of the errors into Fourier series[80, 81]. The
Von Neumann stability analysis for diffusion is shown in equation 8, where
δtis the step size for time, δx is the spatial step size and D is the diffusion
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constant. The analysis tell us that the step size in time (δt) must be smaller
than the square of the spatial step size (δx) divided by the diffusion constant
times two.

2.5 Why is everything normally distributed?

Calculus is an incomparable tool for analysing and working with the sort
of determinism one frequently comes across in engineering, science and eco-
nomics[82, 83]. The all-encompassing importance of calculus can be exem-
plified by noticing how preposterous may seem the need to add a citation to
the previous statement. While most of us could probably agree on the great-
ness of calculus, it does however fall short when we encounter the need to
deal with the randomness (or stochasticity) of natural phenomena. And ran-
domness does appear a lot in nature. The variations found in the weight of
eggs, the number of protein molecules produced from a single mRNA before
it is degraded, and the size of deer antlers are some examples of stochasticity
appearing in nature[82–85]. To deal with this randomness, we need tools
from statistics and probability.

Even though the examples mentioned above seem somewhat random (pun
intended), we can still safely predict something about the outcome. We know
the likelihood of a chicken laying an egg weighing 50 grams and laying an
egg weighing 2 kilograms, is not equal. This brings us to the concept of
probability. Probability is defined as a value between 0 and 1 that denotes
the likelihood of an event occurring[82, 83]. In the classical example of a
coin flip, the possible outcomes ( sample space) are either heads or tails, and
the two possible outcomes are equally likely with a 0.5 probability for each
outcome[82, 83].

Returning to the example of the weight of chicken eggs, we notice that listing
the probability for all outcomes becomes impossible, as the sample space of
all possible weights of an egg is not discreet (with a set of only particular
possible values), but continuous (with a set of numbers within a range). This
is where we turn to probability distributions1. A probability distribution
is a mathematical function that provides the probabilities of occurrence of
different possible outcomes in an experiment.

2.5.1 Normal distribution

We know from C. J. Adams’ 1998 paper "A model relating egg weight and
distribution to age of hen and season" that the weight of a chicken egg follows

1Note that probability densities also exist for discreet functions. In the case of a single
coin toss it would be a histogram with two equally large bars.
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a normal distribution, and that the average weight of a chicken egg is about
50 grams with a standard deviation of 0.8 grams[86]. The density function
for a normal distribution is shown in equation 9, where µ is the mean of the
distribution, and σ is the standard deviation plotted in figure 9.

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (9)

From the graph in figure 9, we see that the mean is the most frequent value,
50 % of the measurements will lie above and 50 % will lie below[82, 83, 87].
The normal distribution is symmetrical around the mean, and the frequency
decreases at a varying, but predictable rate as one moves away from the
middle value. An example of this symmetry is the probability of a sample
being between µ and µ + σ is equal to the probability of the sample being
between µ− σ and µ. We also see that 68% of samples will be within range
of the mean ± the standard deviation. From the egg example, this would
translate to the probability of a randomly chosen egg to weigh within the
range [49.2, 50.8] to be 68%.

Figure 7: Probability density for normal distribution. "Standard de-
viation diagram" by Dan Kernler CC BY 4.0[88].

2.5.2 Gamma distribution

The gamma distribution is a continuous distribution function with two pos-
itive shape parameters[82, 89]. The two shape parameters for the gamma
distribution are shape parameter; α and the rate parameter; β. The proba-
bility density function for gamma distribution is given in equation 10. The
mean of a gamma distribution is α

β and the variance is α
β2 [82].
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Figure 8: Gamma distribution for different shape parameters. Figure
was generated in python, by me.

f(x;α, β) =
βα ·xα−1e(−β ·x)

Γ(k)
x > 0, α, β > 0 (10)

In contrast to the normal distribution, we see from figure 8 that the gamma
distribution is skewed and asymmetric. The gamma distribution is often
used as the probability model for waiting times[82, 90]. An example of this
is in "life testing", where time until death is the random variable, which
frequently has a gamma distribution[90]. The gamma distribution has also
been frequently used in biology. It can been used to predict the probability of
developing cancer as you age, the amount of pollen found in air, and a wide
range of molecular mechanisms relevant for gene switching and transcription
initiation[84, 91, 92].

2.5.3 Central limit theorem

While there is a vast amount of different probability distributions, the normal
distribution shows up the most, and its importance can hardly be overstated
[83, 93]. Large parts of statistics theory is based on the assumption that
observed quantities are normally distributed[83, p. 871]. This is due to the
central limit theorem. The central limit theorem states that when a large
number of independent and identically distributed random variables with
finite mean and variances is added up–after suitable scaling–the distribution
of the resulting quantity is approximately normally distributed. Errors in ex-
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perimental measurements are often the sum of many small factors, as clearly
illustrated by Catherine A. Peters’ example of an experimentalist measuring
temperature; "... the manufacturer of a thermometer may not have cali-
brated it very well so the temperature markings do not exactly match the
corresponding level of mercury. There may be impurities in the mercury so
that it does not expand and contract in a reproducible fashion. The experi-
mentalist’s line of sight causes parallax error in reading the markings. The
temperature varies slightly over the time period of the measurement. The
temperature varies spatially in the region where the experimentalist would
like to record the temperature. Collectively, these errors add up to generate
the imprecision in an experimental measurement."[94].

In biology, outcomes like height, weight, or litter size are often emerged prop-
erties from the sum of many small-scale processes, so, because of the central
limit theorem, the distribution of these properities typically approaches the
normal curve[83, 93]. The wide spread use of the central limit theorem in
biological research can be illustrated by how the theorem has been used in
calculating microbial risk assessment for food borne illnesses, in the study of
restriction sites in genomes, as well as in the study of polygenic trait values
over a pedigree [95–97].
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3 Method

3.1 Bacterial and viral strains

The E. coli strains DH5α and BL21 were selected due to their high growth
rate, and because they are susceptible hosts for the phages that happened
to available in the laboratory I had daily access to during the research pe-
riod. The phage strain used was U-phage, and was gifted by the PhageAge
project2. The U-phage has a host range that includes both BL21 and DH5α.

3.2 Cellfiebooth

3.2.1 Protocol

In this thesis, I have utilised the self-developed Cellfiebooth system first
presented in my report "Fluorescence imaging of the pre-visible stage of
bacteriophage plaque formation". It was used to experimentally measure
viral plaque development in bacterial lawn[1]. The fundamental principle
of the system is measurement phage-induced cell lysis as a function of free
DNA in the agar, which is stained by a fluorescent dye. This is achieved by
the experimental setup shown in figure 9.

Creating the Cellfiebooth system, I built on the established protocol for
plaque assay described in section 2.1.2. I constructed a device that mea-
sured the concentration of dead bacteria in the Petri dish, and developed the
software needed to run the experiments and analyze the results. As most
growth media contains components that are auto-fluorescent, the nutrient
media used is a modified M9 minimal media (protocol given in Appendix
A). The soft agar overlay contains 3x the working solution of the fluorescent
dye GelGreen, which is the concentration the manufacturer recommends to
achieve the strongest fluorescence[98]. The GelGreen dye is fluorescent when
it creates a dimer with DNA. As it is a large molecule, it will not enter bac-
terial cells or phage particles, and only affects the DNA freely available in
the solution from the lysis of phages. To photograph this fluorescence, the
Cellfiebooth is isolated from ambient or disturbing light[1, 98]. The inside
of the Cellfiebooth is painted black, all openings are fitted with black tape,
and the camera opening is covered by a cardboard box, as shown in figure 9b
(4). The light source, shown in figure 9a (1), is fitted with a shortpass light
filter with 538 nm cut on that inhibits light with a wavelength lower than
538 nm from passing through it. The camera, shown in figure 9a (3), is fitted
with a longpass light filter with a 530 nm cut off. The longpass filter hinders

2I have been a part of the PhageAge project in various roles since it started as an
iGEM team in 2017.
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(a) Door open. (b) Door closed and camera covered.

Figure 9: Picture of the Cellfiebooth hardware with light-source on.
The camera (1) is on top of the cupboard and the lens is sticking in and
focusing on the Petri dish (2). The light source (3) is under faced up,
but not directly against the camera. A cardboard box (4) covers the
camera under an experimental run to avoid light pollution.

light with a wavelength higher than 530 nm from passing through the filter.
Together, these two filters hinders most to all light coming directly from
the light source from being registered by the camera. The DNA - GelGreen
dimers in the Petri dish, which emit light at a wavelength of between 500 to
600 nm, provide the only light in the system that penetrates the filter at the
top and is registered by the camera.

The following is a list of the required supplies, and the protocol for perform-
ing the experiment:

• Heater

• Cellfiebooth

• 13 mL centrifuge tubes

• Diluted phage sample

• GelGreen

• Vortex

1. Two 13 mL centrifuge tubes are added 3 mL M9 soft agar and 1.2
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µL GelGreen x10 000. The solution is thoroughly mixed and kept at
50 ◦Cwith a heat block for a few minutes to dissolve all precipitated
GelGreen.

2. The tubes are removed from the heat block and are added 1 mL bac-
terial broth in exponential phase, and 100 µL diluted phage sample.
The solution is again thoroughly mixed.

3. The solution is poured over a Petri dish filled with M9 agar and left to
settle (30 to 60 seconds)

4. One Petri dish is placed in the Cellfiebooth where it will be measured
for fluorescence at steady intervals over a predetermined time period
(usually every 5 minutes for 48 to 90 hours), while the other is kept as
a biological replicate.

For further details on the protocol, hardware and software related to the
Cellfiebooth, see my report "Fluorescence imaging of the pre-visible stage of
bacteriophage plaque formation" [1].

3.2.2 Test for bacterial fluorescence

GelGreen reacting fluorescent with bacteria was tested for by cultivating a
bacteria in M9 soft agar on a Petri dish where half the Petri dish contained
GelGreen, while the other half is without. This was achieved by cutting
a plastic rectangle out of an empty plastic Petri dish. The rectangle was
soaked in 70% ethanol solution and dried off before it was placed upright
in the middle of Petri dish filled with M9 - agar. The rectangle was pushed
into the agar-gel to avoid sloppy agar from flowing and contaminating the
GelGreen-free side of the Petri dish. Two 13 mL centrifuge tubes were filled
with 1.5 mL sloppy M9 and 0.5 mL DH5α strain of E. coli in exponential
phase. One of the tubes was filled with 0.6 µL 10 000X GelGreen. Both
tubes were then vortexed and poured onto their respective side of the Petri
dish. Pictures were then captured in the Cellfiebooth, and then again 19
hours later when the bacterial lawn had appeared.

3.2.3 Changes to the Cellfiebooth system

Some improvements have been made to the Cellfiebooth system since the
initial version presented in the report[1]. These modifications were imple-
mented both as general efforts toward optimising the precision of the system,
and as an improvement-motivated reaction to the outcome of the experiment
described in Section 3.2.2. The Canon EOS 500D camera was replaced by
a Nikon d750. In the independent audio and image quality measurements
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DxOmark, the Nikon camera performs 1.48 times better on the overall score
and 4.45 times better in low light, marking a considerable improvement[99,
100].

The light filter fitted to the camera has been changed from a filter with 495
cut on to 530 nm cut on. This in order to block out light that scattered as the
light from the light-source hit the bacterial lawn. This is more thoroughly
elaborated upon i section 5.3.1 as this experiment revealed that the bacterial
lawn is visible in the Cellfiebooth due to light scattering.

In addition to these changes, I detected and fixed some minor bugs in the
Cellfiebooth software.

3.3 Characterisation of growth rate of bacteria immobilised
in soft agar

Accurate measures of the growth rate of the E. coli strains BL21 and DH5α
in M9 soft agar is required for the model. These values were acquired ex-
perimentally. Since the initial bacterial concentration can vary, I studied
the bacterial growth for different initial bacterial concentration. The Cell-
fiebooth is kept at 21 ◦C, but the multiplate reader used has 28 ◦C as the
lowest stable temperature, so the bacteria were studied at 28 ◦C.

M9 broth was inoculated with BL21 and incubated at 37 ◦C for 6-7 hours.
The broth was then diluted in a four-step two-fold dilution, using M9 broth.
For each dilution the absorbance was measured at 600nm (OD600), and 0.5
mL broth was extracted and mixed with 1.5 mL M9 soft agar. This mixture
has the same concentration of agar as the soft agar overlay used in the
Cellfiebooth. Each dilution of bacterial broth mixed with soft agar was then
poured into wells in a 96 well-plate and placed in a microplate reader (tecan
infinite m200 pro) where the OD600 is measured in 5 minute intervals over
40 hours, and the temperature is kept at a constant 28 ◦C.

The maximal growth rate µmax, nutrient yield γ, and half velocity constant
Km were found separately for both bacterial strains by fitting a model that
follows the Monod kinetics, using the Microsoft Excel solver function. A
model in which bacterial concentration and nutrient content was equal to
the seeding point in the experimental setup was created for each dilution.
A screenshot from my work before the model fitting was done is used as
an example in figure 10. Here the columns "Raw sample" and "Dilution 1"
are experimental results, while columns "Model raw", "Nutrients", "Model
1" and "Nutrients 1" are theoretical results. The models for the different
dilutions all follow Monod kinetics with the same µmax, γ, and Km , as seen
in the "variables" cells E11 to G11 in the figure. The discrepancies between
the models and experimental results were calculated for each time point and
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Figure 10: Example of experimental data evaluating against a model
in a spreadsheet.

summed (cells B13-B17). The square sum of all the differences sums was
used as objective function (cell B18).

The boundaries are shown in the box E13 to G18. The lower and upper
boundaries for the yield constant were set by calculating a theoretical yield
for each run. The theoretical yield is based on an assumption that all nutrient
in the mix was used to grow bacteria. This theoretical yield was calculated
in box A3 to G5, where the total change in OD600 was found (OD yield) and
the theoretical yield constant YXS [OD600

g ] was calculated. The upper bound
was set to be 1.2 ·max ytheory and the lower bound was set to be 0.8 ·min y.
The lower limits for Km and µmax are set to be 1 · 10−10 as a way to keep
the variables non-zero. The upper limit for µmax is set to 0.5 since a higher
growth rate would make the model unstable and a higher a higher growth
rate would not fit the results. The solver method used was GRG-nonlinear,
using multistart with a population size of 100.
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3.4 Characterisation of viral burst size and lysis time

This protocol for characterising burst size and eclipse time was developed
by Nikolay Martyushenko and me. It is based on continuously measuring
bacterial concentration in series of solutions with different concentrations of
phage particles, where the highest concentrations are at least equal parts
phage particles and bacterial cells. Phage sample was amplified by adding
100 µL raw phage sample to 3 mL bacterial broth in exponential phase and
incubated for a couple of hours until the solution was transparent. An eight-
step two-fold serial dilution was made from the amplified phage sample. The
core idea behind the method is that the values pertaining to bursts have to
be periodic with respect to phage dilution, since a dilution by the burst size
should yield an equal change in bacterial concentration, just translated by
the lysis time. This is illustrated in figure 11, where the red and blue lines
show the rate of change in bacteria. The two solutions have equal initial
bacterial concentration, but the initial phage concentration in the solution
represented by the blue line is the initial phage concentration of red line
diluted by the burst size of the phage. In the red line we see that there are
two cycles of infections, while the blue line has three cycles. As a result of
this, after the first infection cycle for the blue line, the phage concentration
is equal to the initial phage concentration for the red line, and the following
infection cycles will behave equal to the infection cycles to the red.

The variance for lysis time was found by fitting a gamma distribution to the
negative peak in the rate of change in bacterial concentration. This was only
done for the first infection cycle, as interference from both the first and third
infection cycle affects the shape of the second infection cycle.

For this experiment to work, the span of different dilutions need to include
phage concentration that give one, two and three infection cycles.

BL21 and DH5α were inoculated separately in M9 broth, and incubated until
they reached an exponential growth phase. The OD600 was measured. 500
µL bacterial broth was mixed with 1.5 mL M9 soft agar and 100 µL phage
sample from the first dilution step. The ratio between soft agar and bacterial
broth is the same as in the Cellfiebooth. This is to mimic the environment
the phage and host experience there. This solution was mixed and added in
wells on a 96 well microplate. This was done for all phage dilutions and both
bacteria. The 96 well microplate was then placed in a tecan infinite m200
pro, where the OD600 was measured with steady intervals over 16 hours.

The change in OD600 was found by identifying the numerical differentiation
of the data. The lysis time was then determined by calculating the time
between the first and second negative peak for change in OD600, for dilutions
with two infection cycles. The burst size was found by first calculating the
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Figure 11: Example figure of how burst size is determined. The sketch
shows the rate of change in bacterial concentration with regards to time.
The two lines correspond to bacterial solutions inoculated with phages,
where the bacterial concentrations are initially equal. The initial phage
concentration in the blue line is the initial phage concentration in the
red line diluted by a factor of the burst size of the phage inoculated.
The letters A, B, C, and D correspond to the area beneath the graphs.
The ratio between A and B are equal to C and D.

area under the graph for each negative peak and then comparing the ratio
between the first and second, and the second and third infection cycle for
each dilution. The technique builds on the assumption that two bacteria and
phage solutions–where the phage concentration in one is equal to the other
diluted with the burst size of the phage–will behave almost equally. The
exception being that the solution with diluted phage concentration will have
an offset of one lysis time. Here the ratio between the area under the first
and second infection cycle in the original solution behaves just like the ratio
between the area under the second and third infection cycle in the diluted
solution. By finding the ratio between the infection cycles for all dilutions
and plotting them, we can extrapolate the burst size from finding the offset
between the two lines where the ratio is close to 1, as it will be the most
precise here.

The standard deviation to the lysis time was found by fitting a gamma distri-
bution to the first negative peak in rate of change in bacterial concentration.
The standard deviation of this gamma distribution is equal to the standard
deviation of the lysis time of the phage. As the phages are thoroughly mixed
when they are first introduced to the bacteria, we can assume that the time
of infection for the first infection cycle is equal for all bacteria and phages. As
the following infection cycles are initiated by the previous cycles, standard
deviation of the following infection cycles will not yield a good approximation
of the standard deviation for the lysis time.
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3.5 Mathematical model

The model used to explore the emergent properties of phage-host in this
thesis is a diffusion-reaction model. A simplified map over this model is
shown in figure 12, where we see a summary of what is happening in the
model. Bacteria grow by mitosis; where a cell splits into two equal parts. As
a consequence, the influx rate of new bacteria is dependent on the amount of
bacteria already present in the model, which is why the influx of bacteria is
shown as an arrow from itself. When a bacteria and a phage meet, both are
removed from the model and become an infected bacterium. This infected
bacteria will then burst through lysis and release new phage and free DNA
to the system.

Figure 12: Simplified state map over the model.

The complete model does however include a few more components, and the
complete state map is shown in figure 13. Here, nutrition is introduced
as a new element, diffusion is introduced as a new effect, and the infected
bacteria state is split up into multiple stages. These alterations all affect the
model, but the introduction of diffusion is the greatest conceptual change. To
understand the model, we can imagine a grid where each cell has to consider
their own state map individually. Through diffusion, the neighbouring cells
will now affect each other, by nutrients and phage freely diffusing from cells
with higher concentration to cells with lower concentration.

Consider an arbitrary cell at the position (i, j). If the concentration of
phage is higher in cell (i,j-1) and the concentration of nutrition is lower in
cell (i+1, j), then some phage particles will flow over from cell (i, j-1) to
(i, j) and nutrition will flow from (i, j) to (i+1, j). Now, the reaction in
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(i, j) will be affected by a lower nutrition concentration and a higher phage
concentration.

Figure 13: Complete state map over the model.

The infection of a bacterium is split into multiple stages. This is done to
properly mimic the effects happening in real life. An infected bacteria would
never release immediately after an infection. The biosynthesis of a phage
takes time, and the lysis of infected bacteria is controlled by the phages. The
rate of which the infected bacteria moves through each stage of infection is
decided by the concentration of infected cells at the given stage multiplied
with a rate constant kI and the Monod equation.

The model is governed by the partial differential equations presented in equa-
tion 11 to equation 15. The states, like B(x,y,t) for bacteria, are written with
a capital letter for short and the nabla notation (∇) represents the gradient
∇ = ( ∂

∂x + ∂
∂y ). DN and DP are the diffusion constants for nutrient and

phage respectively.
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∂B

∂t
=
(
µmax

N

Ks +N

)
·B − αBP (11)

∂N

∂t
= −γ

( N

Ks +N

)
·
(
µmax ·B + ki ·

n∑
i=1

Ii

)
+DN ·∇N (12)

∂P

∂t
= β · In · kI ·

N

N +Ks
− αBP +DP ·∇P (13)

∂I

∂t
:


∂I1
∂t = α ·B ·P − I1 · kI · N

N+Ks
∂I2
∂t = I1 · kI · N

N+Ks
− I2 · kI · N

N+Ks

...

İn = In−1 · kI · N
N+Ks

− In · kI · N
N+Ks

(14)

∂DDNA

∂t
= In · kI ·

N

N +Ks
(15)

Every capitalised variable is a component from the state map in figure 13
with the exception of the diffusion constants DN and DP . As this is quite a
large and extensive model, a step-wise rendition of each expression explaining
the origin and effect of each term will be most beneficial way to explain
the model and the root of each expression. Equation 11 determines the
change in bacterial concentration. Equation 16 shows how the equation
takes different affects into account. The bacterial growth is governed by
the existing bacterial concentration multiplied with Monod equation, where
µmax is maximum growth rate, N is the nutrient concentration, and Ks is the
half velocity constant[53]. Loss of bacteria is governed by the loss of bacteria
due to infection. Here α is the adsorption rate and represents the chance
of infection, P is the concentration of phages and B is the concentration of
bacteria.

∂B

∂t
=

(
µmax

N

KM +N

)
·B︸ ︷︷ ︸

Bacterial growth,
governed by the Monod
equation

− α ·B ·P︸ ︷︷ ︸
Loss of
bacteria due
to infection

(16)

Change in nutrient concentration is governed by two effects, as shown in
equation 17. The first term is the effect of both infected and uninfected
bacteria consuming nutrients. The Monod equation is multiplied with the
bacterial growth rate and γ, where γ is the yield constant that represents
how many grams of nutrients are consumed for each gram of new bacteria.
These growth kinetic constants are assumed to be the same for infected and
uninfected bacteria. The second is diffusion of nutrients, as nutrients in the
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agar are glucose and casamino acids, which are small enough to diffuse freely
in the agar.

∂N

∂t
= − γ ·

( N

Ks +N

)
·
(
µmax ·B + kI ·

n∑
i=1

Ii

)
︸ ︷︷ ︸
Nutrient consumed by infected and uninfected
bacteria

+ DN∇N︸ ︷︷ ︸
Diffusion of
nutrients

(17)

The change in phage concentration is governed by three different terms, as
shown in equation 18. The first term is the influx of new phages to the
system by infected bacteria bursting. This term is similar to the last term
in İn representing the number of infected bacteria leaving the last stage and
bursting multiplied with β, which is a constant that constitutes the burst
size of an infected bacteria. The next term represents the loss of phages
due to infection where α is the adsorption rate and represents the chance
of infection, multiplied with the concentration of bacteria and phage. The
last term constitutes the diffusion of phages, and is the diffusion constant
for phages, multiplied with the phage concentration and the gradient.

∂P

∂t
= β · In · kI ·

N

N +Km︸ ︷︷ ︸
Bursting of infected
bacteria

− αBP︸ ︷︷ ︸
Loss of
phage
from
infection

+ DP∇P︸ ︷︷ ︸
Diffusion
of phages

(18)

The change in concentration of infected bacteria differs from the other equa-
tions, as it is governed by a series of equations, instead of one equation. The
infection is split into several stages, which the infected bacteria need to go
through before it bursts and releases phages into the system. This segmenta-
tion of the infection stage is done as a way to incorporate the lysis time into
the model. Each stage of infection follows a gamma distribution. When the
number of infection stages is sufficiently high, the summed distribution of all
infected bacteria stages becomes a normal distribution due to the Central
Limit Theorem. The rate constant kI and the number of infection stages n
is calculated from the variance and mean lysis time of the phage used. From
the theory about gamma distributions we know that the mean is µ = α

β and
the variance is σ2 = α

β2 . Inserting the rate constant kI for the rate parameter
β and the number of stages n for the shape parameter α we can algebraically
manipulate the equations for mean and variance to arrive at the expressions
for n and kI showed in equation 19 and 20. With these expressions, finding
the fitting rate and number of stages becomes a question of finding the mean
lysis time and variance of this lysis time. This is found through my own
experimental work which is described in section 3.4.
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kI =
µT
σ2T

(19) n =
µ2T
σ2T

(20)

The first stage in the collection of equations for infected bacteria consists of
two terms, where the first constitutes the influx of stage 1 infected bacteria.
This term is the concentration of phage particles multiplied by the concen-
tration of susceptible bacteria as well as the constant α, which represents the
chance of infection. The second term is the rate of which the infected bac-
teria moves through stages. This is rate is decided by a rate constant kI as
well as the Monod equation. The Monod equation is included as the infected
bacteria is dependent on absorbing nutrition to produce phage-particles.

∂I1
∂t

= α ·B ·P︸ ︷︷ ︸
Bacteria
becoming
infected

− I1 · kI ·
N

N +Ks︸ ︷︷ ︸
Infected bacteria
moving to the next
stage of infection

(21)

The second infection stage until the last follow the equation shown in equa-
tion 22. The first term constitutes the influx of infected bacteria from the
previous stage, and the second term constitutes the out flux of infected bac-
teria to the next stage or bursting for the last stage.

∂Ii
∂t

= Ii−1 · kI ·
N

N +Ks︸ ︷︷ ︸
Infected bacteria
moving to the next
stage of infection

− Ii · kI ·
N

N +Ks︸ ︷︷ ︸
Infected bacteria
moving to the next
stage of infection

(22)

Change in the amount of DNA in the system is governed by a single term, as
shown in equation 23. This term represents the lysis of bacteria by phages.

∂DDNA

∂t
= + In · kI ·

N

N +Ks︸ ︷︷ ︸
DNA released
from lysis of
infected bacteria

(23)

The model was solved using Eulers method in python. An adaptive time-step
was not used as the model consists of stiff equations. The stiffness is due to
the rapid change The step size for time (dt) was set using equation 24, which
is the Von Neuman stability analysis done for diffusion in two dimensions
multiplied by 0.8. The step size is multiplied by 0.8 to make sure the step
size is low enough to avoid numerical instability.
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δt =
δx2

4 ·D
· 0.8 (24)

The constants used in the model and their origin is summed up in Table
2. The diffusion constants and absorption rate are retrieved from literature,
while the rest is found through experimental results. These will be further
discussed in the result and discussion sections.

Table 2: Overview of all constants used in the model and where they
come from.

Symbol Bl21 unit source
Bacterial growth rate µmax 1.99 · 10−1 h−1 This thesis
Half velocity constant Km 2.12 · 10−3 g/gDW This thesis
Nutrial yield γ 2.32 · 10−2 g/gDW This thesis
Burst size µT 95± 5 phage · cell−1 This thesis
Lysis time µT 42± 2 min This thesis
STD - lysis time σT 6.2± .2 h−1 This thesis

DH5a
Bacterial growth rate µmax 1.34 · 10−1 h−1 This thesis
Half velocity constant Km 2.30 · 10−3 g/gDW This thesis
Nutrial yield γ 1.90 · 10−2 g/gDW This thesis
Burst size β 85± 5 phage · cell−1 This thesis
Lysis time µT 78± 4 min This thesis
STD - lysis time σT 17± 2 h−1 This thesis

Common
Rate const. for inf. stages ki 6 · 10−9 phage−1 · cell−1 ·mL−1 · h−1 [46]
Diffusion constant for nutrition DN 2.16 · 10−2 cm2 · h−1 [101]
Diffusion constant for phage DP 4.32 · 10−5 cm2 · h−1 [102]
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4 Results and analysis

I commence the following chapter by introducing my lab results concerning
the characterisation of bacterial and phage strain used in this thesis, as the
values found through these experiments are used in my model. Following
that, I present the results related to the characterisation of the Cellfiebooth
system, as the results from this characterisation is relevant to the interpreta-
tion of the results from Cellfiebooth. Wrapping up the chapter, I present the
results form the Cellfiebooth alongside the modelling, as these are of mutual
relevance to one another.

4.1 Characterisation of growth rate

The experimental data are shown for four different dilutions in figure 14 and
15. The data were fitted to a bacterial growth model that follows Monod
kinetics. The theoretical results are presented alongside the three first dilu-
tions in figure 16 and 17. The experimental data are shown as dots, while the
theoretical data are shown as dashed lines. As described in section 3.3, this
experiment was carried out by mixing the bacterial broth with molten soft
agar and pouring it into the wells in a multiplate. Due to the temperature
changes caused by warm, soft agar being cooled down in the multiplate; dew
formed on the lid of the multiplate. This caused substantial noise in the first
five data points, leading to the exclusion of these measurements from the
model fitting. The excluded data points constitute only the first half hour
of the experiment. The dew subsided after the first half hour,and the rest of
the data show clear trends with little noise.

The model was fitted to the experimental data for the raw bacteria sample
and the first two dilutions. The decision not to include all the dilutions in
the model fitting, came from discovering that the model proved to fit the
higher dilutions much better than the smaller ones. Including the smaller
dilutions would have yielded a worse overall result, rather than a good fit for
the higher start concentrations and a worse fit for the lower concentrations.
The bad fit is probably a consequence of limitations to the equipment used
for experimental measurements. The multiplate reader is simply not precise
enough to measure the low bacterial concentration in the early stages of the
run, whence bacterial seeding concentration is low.

The experimental data for the growth curve for BL21, shown in figure 15,
are considerably more varied than the same data for DH5α. This is because
the experiment was done on two separate occasions, with four replicates for
each run, and the data presented is the average plus the variance. All the
experimental data for the growth of DH5α, on the other hand, was measured
in a single experiment where each dilution had eight replicates. Both display
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Figure 14: Growth of DH5a. Scatter plot showing the average of
the bacterial concentration given in OD600 for different initial bacterial
concentrations. The results appear as lines due to the high amount
of data points. The experiment was done with ten replicates for each
dilutions and the graphs show the average of the dilutions. Error bars
are not included as the largest standard deviation was 0.029.

Figure 15: Growth of BL21. Scatter plot showing the average bacte-
rial concentration given in OD600 for different initial bacterial concen-
trations. Error bars are given for every tenth data point. The results
appear as lines due to the high amount of data points
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expected behaviour. BL21 grows a bit faster and reaches a higher end OD600
than DH5α, which corresponds with the literature[103]. The growth curve of
DH5α shown in figure 14 displays interesting results, as the end concentration
for Dil 1/8 is higher than the end concentration of Dil 1/4. My expectation
would be to find the pattern of higher start dilution giving higher end dilution
to apply here, as it does in the BL21 experiment. There is no obvious cause
or explanation to this phenomena, but the difference in end concentration is
not too large, and it may simply be a result of human error.

The growth kinetic constants found are presented in table 3. Km and γ are
given in gram nutrient per gram bacterial dry weight.

BL21 DH5a unit
µmax 1.99 · 10−1 1.34 · 10−1 h−1

Km 2.12 · 10−3 2.30 · 10−3 g/gDW
γ 2.32 · 10−2 1.90 · 10−2 g/gDW

Table 3: Growth constants found for each bacteria. The variance to
the experimental data is shown in table 4

The Table 4 shows the variance, R2, between the experimental data and the-
oretical data that uses the found kinetic growth constants and equal starting
conditions. Both theoretical and experimental data for all dilutions can be
found in Appendix B.

BL21 DH5a
Raw 0.983 0.991
Dilution 1 0.992 0.983
Dilution 2 0.996 0.978
Dilution 3 0.997 0.950
Dilution 4 0.997 0.928

Table 4: The variance, R2, between the model and experimental data
for each dilution.
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Figure 16: Comparison of experimental data with mathematical
model. E. coli strain BL21 in sloppy agar with different start con-
centrations.

Figure 17: Comparison of experimental data with mathematical
model. E. coli strain DH5α in sloppy agar with different start con-
centrations.
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4.2 Burst size and eclipse time

I carried out the experiment as described in section 3.4 for both DH5α and
BL21. The multiplate contained eight biological replicates for all dilutions.
The temperature was set to 28 ◦C throughout the experiment. The graphs
in figure 18 and 19 show the change in OD600 for each run. As described
in section 3.4, the different concentrations were made in a two-fold serial
dilution, and each dilution is named after the concentration of phages in
relation to the raw dilution. For example, "Dil 1/16" contains 1/16 of the
phages in "Raw". The dilution series made was used for both bacterial
strains. This means the concentration in "Dil 1/4" in the DH5α experiment
contained the same amount of phage particles as "Dil 1/4" in the BL21
experiment at the point of seeding. As the starting bacterial solution was
not entirely identical, the results are not comparable on all levels.

From the graphs in figure 18 and 19, we see that the introduction of phages
result in a decline in measured OD600. This is due to the phage lysing
the infected bacteria. The measurements are taken at steady intervals over
16 hours. All concentrations of phages end in a constant OD600 that does
not change beyond what is shown, while the control containing no phage
particles continuous to growth as expected. This suggests that all bacterial
cells present are lysed by the phages. As it turns out; the lower the initial
phage concentration - the longer it takes before OD600 reach a steady state.
This is as expected, as the phages will need time to proliferate if the amount
of phages present is not sufficient to infect all bacteria.

Figure 20 shows a graph of the rate of change in OD600 over time, for all
equal number dilutions. Odd numbered dilutions show the same trends and
can be found in the appendix 80. The change in OD600 over time represents
the rate of which bacteria grow and die. The data for DH5α was treated
with five point moving average to filter out noise. This was not necessary
for the data for BL21. In "Raw", where the bacteria is introduced to the
highest concentration of phage particles, we can only observe a single peak.
This suggests that the number of phages present were equal or higher than
the number of bacteria in the mix, and all bacteria were infected and lysed
at the same time with a normally distributed variation. "Dil 1/4" shows a
weak second peak, while "Dil 1/16" shows two distinct peaks before reaching
zero. This suggests that the initial concentration of phages did not infect all
bacteria present. However, as the infected bacteria were lysed and released
a new wave of phage particles to the solution, the rest of the bacteria were
infected and subsequently lysed. The trend continues and "Dil 1/64" and
lower seem to have three waves of infection or more. The same trend was
observed for BL21 and in the odd numbered dilution. The lower amount of
data noise in BL21 seems to stem from the BL21 experiment having a higher
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Figure 18: Cell concentration measured in OD600 for DH5α introduced
to different concentrations of the phage. The lines represent the average
from an experiment conducted with seven replicates. The largest vari-
ance was 0.077. The early values, especially for the control, are affected
by dew in the machine.
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Figure 19: Cell concentration measured in OD600 for BL21 was intro-
duced to different concentrations of the phage. The lines are the average
from the experiment done with seven replicates. Largest variance was
0.033. The early values are affected by dew in the machine.
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Figure 20: Change in OD600 over time for DH5a introduced to different
concentrations of phages. Data is filtered with five point average. Every
other dilution is shown. The dilutions not included follow the same
pattern as displayed and can be found in appendix C

initial concentration of bacterial cells at the beginning of the experiment.
The lysis time was found by calculating the time between the negative peaks
for the dilutions where both peaks are prominent. This was "Dil 1/4", "Dil
1/8", and "Dil 1/16" for BL21, and dilution "Dil 1/8", "Dil 1/16", and "Dil
1/32" for DH5α. The results are presented in table 7. The standard variation
in lysis time was found by fitting a gamma distribution to the first negative
peak in rate of change in bacterial concentration (first infection cycle) for
the three dilutions with the highest initial phage concentration. Figure 22
and 23 show the gamma distribution and the negative peaks they are fitted
to, and table 6 shows the variance in R2 between the experimental results
and the found gamma distribution.

The growth of control bacteria is stable throughout the period of interest.
As mentioned in section 3.4, the core idea behind the method is that values
pertaining to bursts have to be periodic with respect to phage dilution. This
is because a dilution by the burst size should yield similar infection cycles
translated by the lysis time.

The ratio between the area under the negative peaks in figure 21 and 20 are
presented in table 5. The distance between the lines reveals the burst size
the phage obtains for each bacterial strain, and the values are most accurate
when the ratio is close to one. The burst size was extrapolated from these
values, and the results are presented in Table 7.
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Figure 21: Change in OD600 over time for BL21 introduced to different
concentrations of phages.

Table 5: Ratio between the areas under first and second infection cycle
and second and third infection cycle. The values are not displayed when
one of the infection cycles were not present, or not strong enough to be
measured.

BL21 DH5α
First Second First Second

Ratio and second and third and second and third
1 10.85 - - -
2 4.37 - 10.75 -
4 0.78 - 3.89 13.05
8 0.12 - 1.15 7.82
16 - 12.19 0.27 9.91
32 - 8.55 -0.02 9.64
64 - 2.46 - 4.17
128 - 0.92 - 1.24
256 - - - 0.56
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Figure 22: The gamma distribution fitted to the first negative peaks
for BL21 introduced different concentrations of phage. This was done
to find the deviation in lysis time and the results are shown in table 6

Figure 23: The gamma distribution fitted to the first negative peaks
for DH5α introduced different concentrations of phage. This was done
to find the deviation in lysis time and the results are shown in table 6.
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Table 6: The standard deviation in lysis time for the phage in DH5α
and BL21. Standard deviation in phage lysis time was identified by
fitting the gamma distribution to the first negative peak, which is shown
in figure 23 and 22. The R2 for the fitted gamma distribution.

BL21 DH5α
σT R2 σT R2

Raw 6.29 0.972 18.7 0.985
Dil 1/2 6.00 0.938 16.0 0.979
Dil 1/4 6.04 0.931 16.0 0.925
Average 6.1± 0.2 17± 2

Table 7: Burst size and lysis time for the phage in relation to the two
different hosts.

BL21 DH5α unit
Burst size 85± 5 95± 5 phage · cell−1

Lysis time 42± 2 78± 4 min
Standard deviation in lysis time 6.1± 0.2 17± 2 min
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4.3 Test for bacterial fluorescence

From analysing the results generated with Cellfiebooth, I observed the bacte-
rial lawn becoming more visible as time progressed. This effect is illustrated
in Figure 24, where two Cellfiebooth measurements from different time points
in the same run are placed side by side. As previously elaborated, the Cell-
fiebooth system is based on the fluorescent dye GelGreen being activated by
creating a dimer with DNA flowing in the agar. The DNA is present in the
system due to bacteria being lysed by phages. I arrived at two hypotheses
aiming to account for why the bacteria appear in the measurements.

1. GelGreen creates a dimer with bacteria making them fluorescent and
visible in the system, albeit not as prominent as plaques.

2. Some light is able to make it all the way through from the light source
to the camera. As the light source is not positioned directly against
the camera, it will not appear until it is refracted by the bacterial lawn.

To test these hypotheses, I grew a bacterial lawn on a Petri dish filled with
M9 agar, applying Gelgreen only to half of the bacterial lawn. The re-
sults from this experiment are presented in figure 25. The left side is with
GelGreen, while the right side is without. The first image was captured im-
mediately after preparing the Petri dish, while the second was captured 19
hours later, when the bacterial lawn had appeared.

The average pixel value of the boxes in Figure 25 are presented in Table 8.
The boxes are 600 times 600 pixels in size, which corresponds to roughly 69
mm2 on the Petri dish. The pixel values given by Cellfiebooth are in 16-bit
and contain only the green channel. This translates to none being completely
dark and 65535 being completely green. Figure 25 is converted to grayscale
for greater visibility. The results show that the presence of GelGreen in the

(a) At 30 hours (b) At 40 hours

Figure 24: Cellfiebooth results at different time points. The number
in the series is given in the left corner of the image.

46



soft agar overlay will result in a lower visibility of the bacterial lawn, which
suggest that the observed effect is not caused by a fluorescence of GelGreen;
the reason we see the bacterial lawn in the Cellfiebooth being light scattering.
This has a couple of notable implications for the Cellfiebooth system as a
whole. Firstly: analysing the experimental results, one must be aware of the
fact that the source of the measured light intensity can be either fluorescence
by free DNA or bacterial scattering, or both. Secondly: when analysing the
experimental data, bacterial growth curve can be found by selecting an area
of bacterial lawn that is unaffected by plaques throughout the experiment,
and observe how the measured light intensity from this spot changes with
time.

Start End
A - with GelGreen 321 900
B - without GelGreen 418 1338

Table 8: Average pixel value for the different boxes in Figure 25.

(a) Image captured in the beginning. (b) Image captured 19 hours later.

Figure 25: Both images were captured and processed with Cell-
fiebooth. The light intensity has been scaled by a factor of 40 to make
the effect visible to the naked eye. The left side is with GelGreen and
the right side is without.
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4.4 Cellfiebooth and model results

Five experimental runs are selected from the ≈100 conducted experiments,
of which many are "failed" experiments. Two are of the selected runs were
done with BL21, three with DH5α. The initial bacterial concentration of
run 1.3 was not measured, but is included for interesting results that relate
very much to the results in run 1.1 and run 1.2. The same phage strain is
used for all selected experimental runs, and the initial phage concentration
is not included. Phage concentration can however be calculated by counting
the number of plaques on each Petri dish, and is left as an exercise for the
curious reader. Note that experiment 1.1 was performed without the im-
provements to the Cellfiebooth mentioned in section 3.2.3. The temperature
in the Cellfiebooth was measured to be 21 ◦C for all selected (and excluded)
experiments.

Presentation of each experiment is initiated by showing six heat maps of the
Petri dish during the experimental run. The heat maps range over time,
from when the plaques first appear as faint dots to the point of development
cessation. The last heat map shows boxes that encapsulate the plaques I
studied closer and modelled. Subsequently, six heat maps of one of the chosen
plaques over time are presented. Following that, intriguing results from the
model are presented. The modelling results are presented by showing six
surface plots per page. Each page show a time point in the model compared
to the identical time point in the experimental results. The plot order for
each page is the same, with the first plot being the experimental results,
the following plots DNA, phage, bacteria, infected bacteria, and nutrient
concentration in the model at the chosen time point.

Table 9: Overview of the experimental runs included in the thesis.

Name Bacteria Start OD600
1.1 DH5α 0.086
1.2 DH5α 0.333
1.3 DH5α not recorded
2.1 BL21 0.808

4.4.1 Experimental run 1.1 with DH5α

The data were captured with the old camera and light filter. 700 images
were captured with six minutes between each photograph in the run. The
six photographs presented in figure 27 range from photo 150 to 549, where
photo 150 is the first photo where traces of the plaques can be observed and
at 549 the plaques have stopped expanding. A number of plaques appear
in the Petri dish, and two sections were studied closer and modelled. These
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sections are shown as box A and box B in figure 27f. We see a clear tilt
in the surface plots of the later data of the experimental results (which can
be observed in figure 33a). This has to do with the placement of the light
source, as it is not directly beneath the Petri dish, but placed at an angle.

The graph in figure 26 shows the change in light intensity measured in a
patch of bacterial lawn not affected by plaques. While it does not render an
exact reading of the bacterial concentration, it does give us a good estimate
of the growth curve of the bacteria. This growth curve is very similar to
what we would expect, as it follows a typical Monod kinetics curve.

Figure 26: Change in light intensity over time in the bacterial lawn in
experiment 1.1.
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(a) 15 hours (b) 22 hours, 54 min

(c) 30 hours, 54 min (d) 38 hours, 54 min

(e) 46 hours, 54 min (f) 54 hours, 54 min

Figure 27: DH5α with initial OD600 = 0.086. The number in the series
is given in the left corner of the image. There are six minutes between
each number. Data were captured before the improvements mentioned
in 3.2.3 A fungus started growing at the bottom of the Petri dish. The
plaques in box A and B are studied. closer
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(a) 16 hours. (b) 23 hours, 48 min.

(c) 31 hours, 36 min. (d) 39 hours, 24 min.

(e) 47 hours, 12 min. (f) 55 hours, 48 min.

Figure 28: Closer look at the data from box b in figure 27 presented
in a grayscale heatmap. The data were treated with a Gaussian filter
with sigma = 5.
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(a) Experimental results. (b) Model - DNA concentrations.

(c) Model - Phage concentration. (d) Model - Bacteria concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 29: Experimental data in box B at 16 hours, compared to the
model.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration. (d) Model - bacterial concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 30: Experimental data in box B at 23 hours, 48 min compared
to the model.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration. (d) Model - Bacterial concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 31: Experimental data in box B at 31 hours, 36 min compared
to the model.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration. (d) Model - Bacterial concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 32: Experimental data in box B at 39 hours, 24 min compared
to the model.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration. (d) Model - Bacterial concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 33: Experimental data in box B at 47 hours, 12 min compared
to the model.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration. (d) Model - Bacterial concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 34: Experimental data in box B at 55 hours, 48 min compared
to the model.
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Figure 35: Radial profile of plaque in box B in the experimental result
found by calculating the radial average.

A couple of immediate observations can be done by studying the results
presented in figure 29 to 34 related the experimental results and the theo-
retical results from the model. The experimental results, which is supposed
to measure the concentration of free DNA in the petri dish, and the models
level of free DNA do indeed look alike. Both have a distinct hemisphere and
both have notches. The hemisphere is an emergent property of the bacteria
growing at the same time as the plaque expands. Since the Cellfiebooth mea-
sures the fluorescence of free DNA, the measurements are directly related to
the concentration of lysed bacteria. In the early stages of plaque expansion,
the immediate bacterial concentration is low and thus the amount of DNA
released into the petri dish is low as well. As the plaque expands over time
through cycles of infection and diffusion of phages, the bacterial concentra-
tion rises and there are more bacteria to lyse and thus more DNA is released.
Another interesting observation is that the bacteria surrounding plaques are
thriving and outgrowing the bacteria further from the plaques. This is due
to diffusion of nutrient. There are no bacteria left alive in the middle of the
plaques, and therefore no one left to consume the nutrient. The surrounding
bacteria consume the nutrient immediately available to them, which causes
a lower concentration i so the nutrient naturally diffuse from places of high
concentration to the surrounding places of low concentration, which is out-
side the plaques where the bacteria has consumed nutrients. Due to this
dynamic, the bacteria thrive by "living on the edge" of the plaques. The
phage concentration has a similar shape as the DNA, but the edge of the
hemisphere is shaped inwards. This is due to the diffusion of phages. The
infected bacteria have a shape of hollowed out cylinder.
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Figure 36: Radial profile for the theoretical results.

The notches observed in the experimental results are most likely data noise.
The experimental data is treated with a Gaussian filter with sigma = 5. A
higher sigma or more precise measuring device would likely eliminate these
notches. The notches in the model can be seen on the edges in infected
bacteria, phage and DNA concentrations. These notches are a result of the
spatial step-sizes being too large. A lower step-size would eliminate these
notches, but also rise the modelling time exponentially.

Another thing we can see from the experimental results is that the "base"
level of light intensity rises as time progresses. This can be observed in all
plaques found through the Cellfiebooth. We would expect this rise in the
bacterial lawn, but the centre of the plaque, where there is no growth, rises
as well. This is most likely a general light noise due to the light scattering
from the bacteria. I believe this because I found the rise of light intensity
in the plaque and bacterial lawn to behave linearly. This linearity, show in
equation 25, was taken into account when I calculated the radial profile of
the plaque, shown in figure 35, and in all following radial profiles of plaques
found experimentally.

xplaque = xbacterial · 0.6468 (25)

The radial profile of the experimental results, in figure 35, corresponds well
with the radial profile of the theoretical results shown in figure 36. The
DNA concentration in the model can be read as number of bacteria lysed
by phages, while the experimental values are light intensity from free DNA
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fluorescing and bacterial scattering, so the values are not completely com-
parable, but how they change are. The shape of the curve, the relative end
point and the end size of the plaques are very similar. Both plaques end up
having a radius of roughly 3 mm. The early peaks in the experimental data
are further along than the peaks in the theoretical data, but it is hard to say
if it is bacterial scattering that is causing these early peaks or if all peaks
are due to fluorescence of free DNA.
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(a) 16 hours (b) 23 hours, 48 min

(c) 31 hours, 36 min (d) 39 hours, 24 min

(e) 47 hours, 12 min (f) 55 hours

Figure 37: Closer look at the data from box A in figure 27 presented
in a grayscale heatmap. The data were treated with a Gaussian filter
with sigma = 5.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration (d) Model - Bacteria concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 38: Experimental data in box A at 16 hours, compared to the
model.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration (d) Model - Bacteria concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 39: Experimental data in box A at 23 hours and 48 min, com-
pared to the model.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration (d) Model - Bacteria concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 40: Experimental data in box A at 31 hours and 36 min, com-
pared to the model.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration (d) Model - Bacteria concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 41: Experimental data in box A at 39 hours 24 min, compared
to the model.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration (d) Model - Bacteria concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 42: Experimental data in box A at 46 hours and 36 min, com-
pared to the model.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration (d) Model - Bacteria concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 43: Experimental data in box A at 55 hours, compared to the
model.
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The plaques were first modelled by having the seeding points for the two
different phages the same distance from each other as the distance from
the centre to the two plaques in the experimental run. This did not yield
the desired results as the two plaques never met in the model. Instead the
distance between the seeding points were halved. This did yield the desired
result, but the model can not be read as literally as the previous one could
be. The biggest difference is that the timing for when the plaques meet is not
relevant, while the general behaviour, dynamic, and phenomena that occurs
is still highly relevant.

The effects related to the diffusion of nutrient that we observed in the model
of box B are even more prevalent in the model of box A. This makes sense as
we are dealing with two expanding plaques in close vicinity of each other. As
the plaques expand, the bacteria between the plaques will thrive and grow
faster than other bacteria. This is because the bacteria will have a greater
access to nutrient, since it will experience an influx of nutrient diffusing from
the plaques on both side as well as the the nutrient that is already immedi-
ately available. As the plaques start to merge, the bacteria in the emergent
"valley" have two sources where nutrient diffuse from. Now it is the bacteria
in these valleys that outgrow the rest of the surrounding bacteria. Again due
their greater access to nutrients. Due to this, we can see a line between the
intersectional points where the plaques overlap, which contains an higher
concentration of DNA, because it used to contain a higher concentration
of bacteria at the time the phages reached the point. I believe this effect
is the reason why many merging plaques don’t seem to merge completely,
but rather look like two bubbles pressed together without merging or burst-
ing. The emergence of this bubble pressing effect is apparent in both the
experimental results in figure 37, and the model in figure 43b.
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4.4.2 Experimental run 1.2 with DH5α

These data were generated with the Cellfiebooth improvements described
in section 3.2.3. 1000 images were captured with six minutes between each
photograph in the run. The six photographs presented in figure 45 range
from photo 90 to 900, where photo 90 is the first photo in which traces of
the plaques can be observed. At 900 the plaques have stopped expanding.
A number of plaques appear in the Petri dish, and two sections were studied
closer and modelled. These sections are shown as box C and box D in figure
45f.

The graph in figure 44 illustrates the change in light intensity measured in a
patch of bacterial lawn not affected by the plaques. This gives us an estimate
of the growth curve of the bacteria. This growth deviates slightly from the
typical Monod kinetics. The bacteria seem to slow down after about 30
hours, before they speed up again, reaching approximately previous growth
rate. This sort of growth behaviour is typical for microorganisms that change
the main carbon source during growth. The only carbon sources available
in the Petri dish are glucose and casamino acids, but the concentration of
these nutrients should be equal throughout the Petri dish. The only thing
differing this experimental run from run 1.1 in section 4.4.1, is the initial
bacterial concentration.

Figure 44: Change in light intensity over time in the bacterial lawn in
experiment 1.2.
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(a) 9 hours (b) 25 hours, 12 min

(c) 51 hours, 24 min (d) 57 hours, 36 min

(e) 73 hours, 48 min (f) 90 hours

Figure 45: DH5α with initial OD600 = 0.333. The number in the
series is given in the left corner of the image. Six minutes between each
number. The plaques in box C and D are studied closer
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(a) 9 (b) 25 hours, 12 min

(c) 41 hours, 24 min (d) 57 hours, 36 min

(e) 73 hours, 48 min (f) 90 hours

Figure 46: Closer look at the data from box C in figure 45 presented
in a grayscale heatmap. The data were treated with a Gaussian filter
with sigma = 5.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration (d) Model - Bacteria concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 47: Experimental data in box C at 9 hours, compared to the
model.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration (d) Model - Bacteria concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 48: Experimental data in box C at 25 hours and 12 min, com-
pared to the model.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration (d) Model - Bacteria concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 49: Experimental data in box C at 41 hours and 24 min, com-
pared to the model.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration (d) Model - Bacteria concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 50: Experimental data in box C at 57 hours and 36 min, com-
pared to the model.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration (d) Model - Bacteria concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 51: Experimental data in box C at 73 hours and 48 min, com-
pared to the model.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration (d) Model - Bacteria concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 52: Experimental data in box C at 90 hours, compared to the
model.
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The difference in initial bacterial concentration and the growth curve seem
to have a huge impact on the plaque morphology. After about 40 hours the
plaque formed a prominent ring, and a weaker ring started expanding beyond
this ring. The formation of the prominent inner ring corresponds with the
time of change in growth behaviour for the bacteria. It seems like something
caused a change in the bacterial behaviour and this had a huge impact on
the plaque morphology. The measurements from the bacterial lawn showed
that the bacteria grew for considerably longer than expected. I would expect
a discrepancy between the growth curve in the Cellfiebooth and the model as
the bacterial growth rate used in the model is from measurements in bacteria
growing in 28 ◦C, while the Cellfiebooth was kept at a steady 21 ◦C. This
would cause the bacteria to grow slower, which again results in a longer
period of time before the bacteria reaches a stationary growth phase. The
discrepancy between the model and the experimental are, however, even
larger than expected. The experimental results, shown in figure 44, show
that the bacteria does not reach a stationary phase before 60 hours into the
experiment. While the model predicted that even infected bacteria close to
the plaque stopped maturing after 25 hours, which is shown in figure 55.
The radial profile of the plaque is show in figure 53, and the radial profile
predicted by the model is shown in figure 54. The experimental plaque radius
ends up at ≈ 4.5 mm, while the plaque radius in the model ends up at ≈
1.5 mm. I would also ask the reader to note the difference between this run
and the previous run. The only parameter changed between this run and
the previous one is that the initial bacterial concentration is ≈ 3.8x higher in
this run. Yet the plaques continue to expand for 90 hours when the previous
expanded for 55 horus, the end radius is ≈1.5 mm larger, which is a 50 %
increase, and the plaque morphology is completley different, with a double
ring where the previous had a single ring. What is going on here?

My hypothesis is that the bacteria is experiencing an influx of nutrients
diffusing from the solid agar beneath the soft agar overlay. This vertical
diffusion would affect all bacteria in the soft agar overlay equally and could
explain the problems the model has had with predicting the progression in
bacterial growth and plaque expansion. As already mentioned, the bacterial
growth curve from figure 44 resembles that of a bacteria that changes growth
tactic. I believe that the immediate available nutrient in the Petri dish starts
to be exhausted about 40 hours inn, which causes the bacteria to initiate
starvation related defence mechanisms. Diffusion is driven by change in
concentration. And as the nutrient concentration at this point in time is
considerably lower in the overlaying soft agar compared to the underlying
agar, the nutrient will start to slowly diffuse upwards to the bacterial lawn.
This influx of nutrient let the bacteria continue to grow, but is still so low
that the bacteria will continue to be in "starvation" mode.

Many of the proteins related to the structure of E. coli DNA are highly de-
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Figure 53: Radial profile of plaque in box C in the experimental result
found by calculating the radial average. The radial profile for image nr.
414 show a clear double peak, and the following images show a saddle
point where the first local maximum was measured.

pendent on the growth phase[104]. As the structure of the bacterial DNA
changes, the affinity of GelGreen to create a dimer to this DNA could very
well change as well. This would explain the double ring phenomena observed
in this experimental run.We could look at the experimental result in figure
51a as some sort of historical document for the experiment. The light inten-
sity corresponds to the number of bacteria infected and lysed by the phage.
Moving radially outward from the centre of the plaque the intensity rises
exponentially until we reach the inner ring, which shows the threshold where
the available nutrient concentration was low enough to cause a starvation
response in the bacteria. Moving outwards from this threshold again we
the measured light intensity corresponds to the amount of lysed bacteria in
starvation mode.
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Figure 54: Radial profile of plaque in box C in the theoretical result.
The model predicts that the plaque stops expanding completely after 25
hours, and little to no change happens past this point.

Figure 55: Radial profile of the infected bacteria in box C in the
theoretical result. The model predicts that the bacteria continues to
be infected, but as new phages are not produced and the amount of
phages decrease for each bacteria that is infected the rate of expansion
in infected bacteria decreases as well.
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(a) 9 hours (b) 25 hours, 12 min

(c) 41 hours, 24 min (d) 57 hours, 36 min

(e) 73 hours, 48 min (f) 90 hours

Figure 56: Closer look at the data from box D in figure 45 presented
in a grayscale heatmap. The data were treated with a Gaussian filter
with sigma = 5.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration (d) Model - Bacteria concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 57: Experimental data in box D at 9 hours, compared to the
model.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration (d) Model - Bacteria concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 58: Experimental data in box D at 25 hours and 12 min, com-
pared to the model.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration (d) Model - Bacteria concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 59: Experimental data in box D at 41 hours and 24 min, com-
pared to the model.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration (d) Model - Bacteria concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 60: Experimental data in box D at 57 hours and 36 min, com-
pared to the model.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration (d) Model - Bacteria concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 61: Experimental data in box D at 73 hours and 48 min, com-
pared to the model.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration (d) Model - Bacteria concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 62: Experimental data in box D at 90 hours, compared to the
model.
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The experimental plaques show three plaques merging, and not just two. The
two first plaques merge between the first presented time points. I consider
this merging to be so early that it is reasonable to only consider the two
plaques that meet around 25 hours inn when modelling.

Similar to box A, the plaques in the model never met when the phage seeding
point was placed as far apart as the plaques found experimentally. Therefore
the distance was halved and the results should not be read as literally as when
a single plaque is considered.

The double plaques show many of the same characteristics that are already
seen in box A, B, and C. The plaques merge and leave a line between the
intersectional points. The bacteria close to the plaques experience better
growth conditions due to a influx of nutrient from the centre of the plaque.
Just like box C the infected bacteria continuous to expand when the second
ring begins to form. The model of box C showed that all nutrient in the
model was consumed around 57 hours in. This was not the case in box D,
as there were still nutrient diffusing 74 hours in. This is due to the two
plaques merging leave two nutrient peaks in close proximity to each other.
The nutrient peaks experience a lower diffusion pressure from the front where
the other nutrient peak is located, which amounts to lower total diffusion
from the peaks.
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4.4.3 Experimental run 1.3 with DH5α

This experimental run was recorded after the above-mentioned improvements
to the Cellfiebooth. Unfortunately the initial bacterial concentration was not
recorded, which is why the plaques in this run are not modelled. The plaques
in this run display an interesting variation in morphology: the two plaques
that merge into each other to the left end up with a double ring, while the
plaques that do not merge with others only have the one ring.

When trying to determine the bacterial growth curve in the experiment, I
found that the growth curve was not equal for the whole Petri dish. Four
points, X, Y, Z, and W, are presented in the graph in figure 63. The location
of these points is shown in figure 64f. These points show two distinctly
different growth rates. All growth rates follow the same trend until 40 hours
in, where point X and Y deviate from Z and W. Point X and Y are close to
the merging plaques that display a double ring. These points have a similar
growth curve to run 1.2, where all plaques have a double ring. Point Z and
W on the other hand are closer to the plaques that do not merge, and display
a single ring. These points have a growth curve similar to run 1.1, where all
plaques have a single ring.

The findings above support the hypothesis that plaque morphology is related
to the bacterial growth curve. It is however difficult to pinpoint exactly what
caused this change in bacterial growth rate in this particular experimental
run. My efforts to recreate this run have not been fruitful, and none of my
other runs showed double and single ringed plaques in the same Petri dish.
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Figure 63: Change in light intensity over time in different parts of the
bacterial lawn in experiment 1.3. The graph show local variations in the
bacterial growth curve.
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(a) 12 hours min. (b) 24 hours, 36 min

(c) 37 hours, 12 min (d) 49 hours, 48 min

(e) 62 hours, 24 min (f) 75 hours

Figure 64: DH5α with unknown initial bacterial concentration. The
number in the series is given in the left corner of the image. Six minutes
between each number. The two plaques that merge create a double ring
while the plaques that are seemingly unaffected by neighbouring plaques
do not.
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4.4.4 Experimental run 2.1 with BL21

The data were captured with the Cellfiebooth improvements described in
section 3.2.3. 1000 images were captured with six minute intervals. The six
photographs presented in figure 45 range from photo 120 to 750, where photo
120 is the first photo where traces of the plaques can be observed. At 750
the plaques have stopped expanding. A number of plaques appeare in the
Petri dish, and one section was studied closer and modelled. This section is
shown as box E in figure 66f.

While this is the only run with the E. coli strain BL21 presented in this
thesis, I performed multiple experiments of this kind. These experiments
were all conducted with an OD600 in the range 0.7 to 0.95, and all had
similar results. None of the experiments performed with BL21 had plaques
that visibly merged.

The graphs in figure 65 show the bacterial growth curve in the run. Look-
ing back on the bacterial growth curve of the previous experimental runs
I presented, we observe that run 1.1 stopped at around 40 hours in, while
1.2 and 1.3 stopped at 60 hours in. Dissimilarly, this run continued to grow
even after 100 hours. The growth curve resembles the one for experimental
run 1.2, where the plaques had double rings. This curve seems to have a
steady growth for 30 hours before the growth rate changes to a lower rate
and steadily declines. At the end of the experiment–100 hours in–the growth
rate was still declining.
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Figure 65: Change in light intensity over time in the bacterial lawn in
experiment 2.1.
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(a) 5 hours (b) 19 hours

(c) 33 hours (d) 47 hours

(e) 61 hours (f) 75 hours

Figure 66: BL21 with initial OD600 = 0.808. The number in the
series is given in the left corner of the image. Six minutes between each
number. Data captured before the improvements mentioned in 3.2.3.
Box E is studied closer.
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(a) 16 hours (b) 23 hours, 48 min

(c) 31 hours, 36 min (d) 39 hours, 24 min

(e) 47 hours, 12 min (f) 55 hours

Figure 67: Closer look at the data from box E in figure 66 presented
in a grayscale heatmap. The data were treated with a Gaussian filter
with sigma = 5.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration (d) Model - Bacteria concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 68: Experimental data in box E at 5 hours, compared to the
model.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration (d) Model - Bacteria concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 69: Experimental data in box E at 19 hours, compared to the
model.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration (d) Model - Bacteria concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 70: Experimental data in box E at 33 hours, compared to the
model.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration (d) Model - Bacteria concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 71: Experimental data in box E at 47 hours, compared to the
model.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration (d) Model - Bacteria concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 72: Experimental data in box E at 61 hours, compared to the
model.
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(a) Experimental result. (b) Model - DNA concentration.

(c) Model - Phage concentration (d) Model - Bacteria concentration.

(e) Model - Infected bac. concentration. (f) Model - Nutrient concentration.

Figure 73: Experimental data in box E at 75 hours, compared to the
model.
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Just like the previous runs with high initial bacterial concentration, the
model predicts that the nutrient in the system run out early, with no nutrient
left 33 hours in. What differs this experimental run from the runs performed
with high concentration of DH5α is the fact that there is that the plaques
create a single ring despite a high initial bacterial concentration.

The radial profile of the plaque is shown in figure 74. This graph shows
that the plaque morphology is quite different in this run compared to the
ones earlier presented. The plaque seems to reach a peak at ≈1.25 mm 33
hours into the experiment. While the ring expands, this peak continues to
be prominent throughout the experiment. Looking back to the growth rate
curve in figure 65, the bacterial growth rate changed after about 40 hours.
This shift coincides somewhat with when the peak in the plaque appears.

In section 4.4.2 I presented a hypothesis regarding how the diffusion of nutri-
ent from the lower agar layer could affect the growth curve. Building on this,
it seems like the bacteria ran out of nutrient in its immediate vicinity around
40 hours into the experiment. After this the bacteria continued to grow on
the nutrient coming from the underlying agar layer. It seems reasonable to
assume that the nutrient run out around 40 hours in, considering the high
initial bacterial growth rate and the fact that BL21 has a higher bacterial
growth rate than DH5α. While the overlaying agar is pipetted and is always
3 mL soft agar + 1 mL bacterial broth, the underlying agar is poured by
hand and can vary from Petri dish to Petri dish. Due to this, it is reasonable
that the "second growth" driven by nutrient diffusion from underlying agar
has a varying time span from experimental run to experimental run.

Figure 74: Radial profile of plaque in box E in the experimental result
found by calculating the radial average.
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Figure 75: Radial profile of plaque in box in the theoretical result.
The model predicts that the plaque stops expanding completely after 20
hours, and little to no change happens past this point.
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5 Discussion

5.1 Burst size and lysis time

The burst sizes found were 95 for DH5α and 85 for BL21. From the literature
we see that the burst size varies for both host and phage, and that E. coli
phages like the lambda phage have a burst size about 150 phages per cell[29,
105, 106]. This infers that the burst sizes found seem reasonable, comparing
to other E. coli phages. I did not originally expect the burst size to be
different for the different strains of E. coli, considering the same phage strain
was used. The difference is not large, and is likely a result of the different
growth rate the two strains have in the M9 growth media. This hypothesis
is supported by the paper "Effect of bacterial growth rate on bacteriophage
population growth rate", in which the burst size of phage T4 was investigated
in a series of different E. coli hosts with growth rate ranging from 0.06 to
0.98h−1. They found the increase in growth rate correlating linearly with
the burst size, from 8 phages per cell to 89 phages per cell [107].

While the uncertainty of the burst size could have been decreased by repeat-
ing the experiment and acquiring more data for the range of interest, the
results give me a sufficiently narrow range for my purposes.

The lysis time for the phage was found to be very different between the host
strains, with the bacterial strain BL21 yielding almost half the lysis time of
DH5α. Again this is something that could be traced back to the difference
in growth rate for the two bacterial strains, since the phage is dependent on
the bacterial metabolism to proliferate, and the lysis itself is thought to be
controlled by the accumulation of proteins[107]. The same factor limiting
the growth rate of the bacteria is most likely also limiting the speed of phage
production. Both determined lysis times were well within the range of what
would be considered "normal" lysis times for a lytic phage preying on the E.
coli [107].

I consider the protocol Martyushenko and I developed to be effective as it
provided the burst time, lysis time and the standard deviation in the lysis
time for a phage-host coupling, all in a single experiment. I also consider
the protocol easier to perform than alternative protocols such as the widely
used one-step growth curve[108]. The one-step growth curve requires the
experimentalist to frequently perform actions with a precise timing over a
couple of hours. In contrast, our protocol only requires the experimentalist
to pour all the replicates of one phage dilution into the wells in the multiplate
quickly, preventing the agar from hardening while pouring. The agar can be
replaced with nutrient broth, which would eliminate this challenge. Neither
can the one-step growth curve protocol be used to determine the standard
deviation for the lysis time.
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5.2 Characterisation of growth rate

My intentions for this experiment were to find the growth rate for the E. coli
strains BL21 and DH5α in the Cellfiebooth. To achieve this, I needed to grow
the bacteria in an environment that permitted continuous measurement and
could serve as an accurate representation of the environment in the soft agar
overlay used in the Cellfiebooth. I chose to use a multiplate reader with a 96-
well plate to investigate this, as this would allow me to do multiple accurate
measurements for many different starting concentrations at the same time.
The reader had the disadvantage of being equipped only with a heater but
no cooler. Due to this inconvenience, all measurements were taken at 28 ◦C,
which was the lowest temperature the machine could keep stable. E. coli
grows slower as the temperature gets lower, and the max growth rate µmax
was found most likely to be higher than the one in the Cellfiebooth, where
the temperature was kept at 21 ◦C[109].

The growth rate was found by fitting a model that followed Monod growth
kinetics to the experimental data. While I had the growth data for multiple
dilutions (5 for BL21 and 7 for DH5α), I only considered the three dilutions
with the highest starting bacterial cell concentration. A series of assumptions
follow when fitting a simple model to experimental data, and the smaller
dilutions were not included in the model fitting. This was to escape the
cases for which these assumptions no longer hold.

The model related to the bacterial growth is built on the assumption that
the OD600 can be directly translated to bacterial cell concentration by mul-
tiplying the OD600 number with a constant. While this assumption seems
to hold for the concentrations included in the results, it does not hold for
lower concentrations. These were excluded here, but can be found in ap-
pendix B. When the bacterial concentration is low enough, the scattering
from nutrients and agar has a greater effect on OD600 than scattering from
bacteria, and we get what may appear to be a long lag phase, but is most
likely the time the bacteria needs to reach a concentration where it makes
a visible impact on the OD600 measurements. A possible solution for this
could be to subtract the OD600 contributed by the agar and nutrient alone,
but that would not solve the problem of the bacterial results. Supported by
the literature[110], the bacterial growth rate was assumed to be independent
of the initial bacterial concentration.

From Table 4 and observing the graphs in figure 16 and 17, the Monod
kinetics with the growth constants determined gave a good approximation
for the growth that happens in the agar overlay. The two strains are known to
have different growth characteristics, and the follow the same pattern seen in
other growth characterisations done for these strains[106]. The strain BL21
is often used for protein expression since it is deficient in proteases Lon and
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OmpT[111]. This protease deficiency could be the reason behind both the
higher growth rate and higher maximum value for OD600.

The results in section 4.3 suggest the visibility of the bacterial lawn in the
Cellfiebooth data being due to light scattering. As OD600 measurements
are based on light scattering as well, one could fit the model to the light
intensity data for bacterial lawn unaffected by phages in the Cellfiebooth.
This would yield a growth rate for the bacteria growing in the environment
of interest. Pursuing this would require one to acquire precise calibration
data in order to convert the light intensity values from the Cellfiebooth to
cell concentration.

5.3 Cellfiebooth and model results

In general the Cellfiebooth and model performed well. The Cellfiebooth
provided valuable insights into plaque development as well as the bacterial
growth curves throughout the experimental run. The model was able to
accurately predict the shape of the plaques as they appeared in the Cell-
fiebooth. In cases where the bacterial growth curve followed Monod kinetics
throughout the experimental run, such as run 1.1, it was able to recreate the
plaques at a very high precision. Considering no model fitting was performed
on the mathematical model, this strongly suggests that the model considers
all the major phenomena that affect the formation of viral plaques.

5.3.1 Cellfiebooth

As already described in section 4.3, the results related to the tests for bac-
terial fluorescence in the Cellfiebooth showed that the GelGreen-half of the
Petri dish was less visible in the data than the control side. This was the
case preceding as well as succeeding the appearance of a bacterial lawn. This
strongly suggests that GelGreen is not the reason for the observed effect, and
that the appearance of the bacterial lawn is most likely due to scattering from
the light reaching the bacteria. I originally expected the light filters fitted on
the light source and camera to block all light. To the naked eye, this seemed
to be the case when observing the two filters together, and is demonstrated
in appendix D. The light source is visible in the Cellfiebooth results when
placed directly under the camera. The effect can be observed in figure 82 in
appendix D. This shows that the two filters together are not able to hinder
all light from the light source. Most likely a small amount of light is not
stopped by both filters, and due to the long exposure time (100 seconds)
used in the Cellfiebooth camera, this small amount of light makes an impact
on the measured data. This implies that we should not interpret the mea-
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sured light intensity in the Cellfiebooth as being solely from DNA, but also
bacterial scattering.

These results may appear less than amazing at first sight, as the Cellfiebooth
was built to measure only the fluorescence from the free DNA, as an indicator
for the concentration of bacteria lysed by phages. However, the discovery
that the Cellfiebooth also measures the light scattered by bacteria gives the
researcher more valuable information to work with. Measuring an area that
is not affected by plaque expansion gives me the shape of the bacterial growth
curve throughout the experimental run, and is considered valuable insight
into the host behaviour. While the plaques were affected by the scattered
light, this effect was found to be linear, and therefore easy to account for
when analysing the results. Although the measuring of bacterial scattering
was first assumed an obstruction of my Cellfiebooth results, it turns out to
be an advantage–an unintended upgrade/expansion of Cellfiebooth.

The Cellfiebooth system can be described as "general". It worked just as
well for the E. coli strain BL21 as for DH5α. While this thesis only considers
a single phage strain, the U-phage, the Cellfiebooth system worked just as
well for all other phage strains I tried, such as the Ubl21 and De2[1]. I
see no reason the use of Cellfiebooth could not be expanded to other hosts
and phages. As long as the host is able to grow on gel with non-fluorescent
nutrients, it can be studied using my system.

5.3.2 Model

The model was solved using Euler’s method with a constant step-size. This
method was chosen because model had a stiff equation set and was multi-
dimensional, with every time step represented by a large matrix. Established
solvers available for python, like the solve_ivp function from the SciPy pack-
age, take in 1D arrays and check for instability by comparing the change to
the average of the whole array. If I were to use this type of solver to solve the
model, I would need to flatten the matrix and restructure it for every step.
While this is doable, this means that the solver does not check for the type
of local instability that can occur in reaction-diffusion models of the kind I
have developed and used in this thesis. For example, if the nutrient matrix is
suddenly unstable and yielding unreasonable results, the solver would not be
able to detect this. The solver does not consider the instability locally, but
rather averages all values in the model at the calculated time-step and checks
if the average varies considerably from the average of the last time-step. Due
to the large amount of values calculated for each time-step, the instability
in a variable would not make big enough of an impact on the average value
for it to be detectable as an instability, at least not before the instability
propagated to the point of no return.
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One of the biggest advantages of using an established solver would be that
they offer dynamic step-sizes. From the Van Neumann stability analysis,
we see that the step-sizes used in solving these equations need to be under
a certain numerical threshold. As the solvers are incapable of effectively
detecting instability in the system, one would have to force the solver to use
steps that are lower than the threshold given by the Van Neumann analysis,
effectively not utilising the dynamic step-size.

Without dynamic step-sizes there is little to gain time-wise from using the
established solvers. I found it more practical to implement a simple forward
Euler’s method with a constant step-size to solve the equations set. There is
little difference in the amount of time used for each iteration, and I achieved
better control over what was happening during the calculations than I would
using an established solver.

I did encounter some conflicts between my experimental and theoretical
setup, most notably the model was not able to recreate the double rings
phenomena observed in run 1.2 and 1.3. When presenting the results in sec-
tion 4.4, I hypothesised that there are two phenomena affecting the plaque
expansion I had not considered when developing the model. These are (i)
the diffusion of nutrient from the underlying agar into the soft agar over-
lay, and (ii) the bacteria changing growth strategy during the experimental
run. Both strategies could be incorporated into the model, but the question
remains: would that be useful?

Incorporating the diffusion from the underlying agar up to the overlying soft
agar would make the model a great deal more complicated. It would have
to consider diffusion in three dimensions, instead of the two-dimensional
diffusion considered now. The amount of agar in each Petri dish in the
experimental runs would have to be standardised. I would also have to asses
whether it is safe to presume the diffusion constants to be equal for both
agar layers, or if the soft agar having half the agar concentration of the
underlying agar would warrant different diffusion constants for the different
layers. Having different diffusion constants for the different layers would add
another layer of calculations to the model.

A more complex model is not intrinsically a worse model. The model I
developed in this thesis is already too complex for algebraically deriving
simple terms for effects, like the speed of plaque radius expansion 3. The
problem lies in that adding an extra dimension to the diffusion would slow
down the calculations immensely. Each modelled "box" presented in this
thesis took over two hours to solve numerically. Adding another dimension
for diffusion would cause an exponential increase in time required to solve

3I am not claiming it is impossible per se–it might be doable for someone at a mathe-
matician’s skill level.
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the model, hence making the model impractical to work with.

Another aspect to consider is that adding to a model does not automatically
make it more precise. If the diffusion in the two layers needs to be considered
differently, it could prove challenging to find sufficiently precise values for the
diffusion in different agar layers. Not only should the diffusion constants be
reasonable, but the ratio between the diffusion constants in the upper and
lower layer needs to be reasonable as well. If not, the error could cascade
and yield unrealistic predictions of the plaque formation and dynamics.

My suggested solution to this obstacle would be to remove the underlying
agar from the experimental protocol. The underlying agar is an artefact from
the original plaque assay protocol the Cellfiebooth protocol is based on. I
also suggest the underlying agar not be included in any plaque assay unless
there is explicit reason to do so, such as the plaque not appearing without
the underlying agar. In my laboratory the agar is poured into the Petri dish
by hand, and my observation is that the amount of agar effectively poured
into Petri dishes varies greatly from person to person, and even between
Petri dishes poured by the same person. These kinds of variations renders
it challenging to compare the plaque morphology found. Notably, this is the
case not only between different laboratories but also between different Petri
dishes within the same laboratory.

The plaque morphology is often used as a basis for selection of phages for
therapeutic use[48, 112]. My findings suggest that initial bacterial concentra-
tion, bacterial growth rate and diffusion largely affect the plaque morphology.
If these are not considered, the plaque morphologies found in one lab will be
incomparable to morphologies observed in another.

Exceptions are plaque assays performed with the intention of finding new
phages.The underlying agar can aid in discovering a broader range of phages,
e.g. lysogenic phages that only express the lytic pathway when the bacteria
has changed its growth strategy to accommodate the lower influx of nutri-
ent. My main sentiment is that an experimentalist should always be mindful
about how different parts of a protocol affects the results. Following a pro-
tocol uncritically can yield undesirable results.

As mentioned in both the results in section 3.2 and earlier in this subsection,
the results found using the Cellfiebooth show a pattern when experimental
runs with high initial bacterial concentration experience a change in growth
rate during the experimental run. While eliminating the underlying agar
could hinder this phenomenon from reappearing, I still believe it should be
considered to include the effect of the host changing growth strategy under
the experimental run. The underlying agar is not the only repository of
nutrient in a bacterial lawn containing plaques. Nutrient from the plaque
centres will still diffuse out to the bacterial lawn, and I believe that this
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effect, perhaps not as prominent, will make the second plaque ring appear
in experimental runs with high initial bacterial concentration. I’m not sure
what the most practical way to incorporate this would be, but in a perfect
world, I would find what nutrient concentrations and environmental thresh-
olds trigger this alternative growth strategy. I would characterise the growth
kinetics for the bacteria under this alternative growth strategy. Then I would
determine the burst size and lysis time for the phage infecting the bacteria
under this growth strategy. Incorporating all this into the model could tell
me if it was a change of growth strategy that caused the second ring, or if
this hypothesis is a dead end. Nonetheless, this alternative model would be
useful in the sense that it could provide me with answers.

I have spent many paragraphs examining the model and deliberating possible
changes. But it should be clear that this model performed extremely well
under "normal" conditions. I consider normal conditions to be when the
bacterial growth rate follows Monod kinetics. This was the case in run 1.1
which displayed a bacterial growth curve typical to bacteria following Monod
kinetics. Not only was the model able to accurately predict the shape and
development of single plaques over time, but it also predicted most to all
effects observed in the Cellfiebooth from two plaques merging. All these
results suggest that the effects considered by the model are important for the
development of plaques. The model also provides a reasonable explanation
for the slowdown of plaque development.

5.3.3 Cellfiebooth and model in relation to previously experimen-
tal and theoretical attempts to characterise the formation
of plaques

There are many differences between the model I developed, and compara-
ble models published by other authors. The McCaskill-Yin model that was
later revised by You and Yin is, as mentioned in section 2.3.3, is the first
published reaction diffusion model for modelling plaque expansion in an bac-
terial lawn[113]. The model was made with the purpose of finding a term
for the velocity of radial expansion in plaques. The model is a lot simpler
then the one I derived, as they do not take available nutrition, growth of
bacteria, or the time delay for bacterial lysis into account. They conclude
that the rate of plaque enlargement is highly dependent on the adsorption
rate, and they note that plaque enlargement slows down as the host-lawn
reaches its growth limit and attribute this effect to hindered diffusion, which
they incorporate into the model. These conclusions go against my findings,
hindered diffusion was never considered in my model, but I achieved a slow
down in plaque expansion that followed the experimental results greatly by
coupling the rate of of which infected bacteria mature to the bacterial growth
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with Monod kinetics. Changes in the adsorption rate has not been explored
in this thesis, as the parameter is challenging to adjust experimentally. But
I have been able to achieve a great variation in plaque morphology using a
single phage strain. I believe it is safe to assume that the phage has the
same adsorption rate and diffusion constant for both of the strains of E. coli
used in this thesis, which strongly suggest that it is wrong to assume plaque
formation is solely dependent on these two parameters.

In year 2000, Yih and Yin published a paper where they measured the prop-
agation of a T7 plaque in agar[114]. They did this by photographing a
plaque forming in a Petri dish every hour over a 24 hour period and found
that the T7 phage expands radially with a speed of 0.059 mm/h. While
they seemingly forgot to mention how the model Yin published the previous
year played into this, they did mention that the plaque spreads in two stages.
They mention that the radial expansion of the plaque reaches its "top speed"
in the first stage, which consist of the first ten hours of the experiment, while
it slows down in the second stage, which is the rest of the experiment. They
note that T7 grows poorly on stationary hosts, and that it is surprising
that the plaque expands at all in the second phase. They speculate that
the second growth stage is due to the bacteria "cannibalizing" on the lysed
bacteria remains. I did not consider the release of nutrient by lysed bacteria
in the model, and I don’t think it would be a considerable effect either, as
phages would exhaust the infected cells for available relevant nutrients, and
the neighbouring infected bacteria would require the exact same type of nu-
trients. In my model, this effect of plaque expanding after the bacteria has
reached a stationary phase is explained by the diffusion of nutrients. I do,
however believe that the way this effect is incorporated in my model could
be improved. It has been showed that environmental effects that decrease
the productivity of the host bacteria also decrease the productivity of viral
infection and burst sizes[115–117]. While this supports my way of coupling
the maturation of infected bacteria to the bacterial growth rate, it does infer
that the assumption of a constant burst rate does not hold when the bacteria
is in a stressed condition like starvation. This could be incorporated with
either having different bacterial growth behaviours and viral burst sizes for
starvation conditions, or finding a way to couple the burst size and number
of infection stages to the bacterial growth rate. This would complicate the
model and while it could make the model more realistic, I don’t know if this
sort of complication would improve the model enough to be worth it. To
repeat George Box’ aphorism "all models are wrong, some are useful", and
complicating the model could make it less useful.

In 2002, Fort, et al [76], published their paper "Time-delayed spread of
Viruses in growing plaques" that emphasised the importance of incorporat-
ing a time delay between the infection of a phage and the lysis of the infected
bacteria. This was done by including the lysis time with a Dirac delta dis-
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tribution, removing the infected bacteria from the model and adding phages
after a time constant after the removal, effectively assuming all infected bac-
teria would have a constant and equal lysis time. I don’t need to convince the
reader that a constant lysis time is an assumption that will yield unrealistic
predictions, because Fort, et al did just that in their 2006 paper[118]. Here
they go in great lengths to argue for the use of a normally distributed lysis
time, and why this would make the model more realistic. As mentioned in
section 3.5, the way I incorporate the maturation of infected bacteria yield a
lysis time which follows a gamma distribution, that tends towards a normal
distribution under certain conditions.

Haseltine et al published their paper "Image-Guided Modeling of Virus
Growth and Spread" in 2008, and the paper is focused on the spread of
vesicular stomatitis virus in baby hamster kidney cells[119]. The paper con-
sist of both photographing plaque expansion and modelling. The images are
captured by staining plaques at different time points with fluorescent dye
and photographing the plaques [120]. The experimental setup is quite differ-
ent from mine, as their technique requires them to induce cellular arrest in
the host cells which does not let them follow the same plaque through mat-
uration. Instead they have to compare different plaques arrested at different
time-points. I argue that my experimental setup achieves a much greater
insight into the plaque formation and general host-virus dynamic as it gives
us images of the same plaque over time at steady intervals.

While the model presented by Haseltine et al. builds on the previous men-
tioned reaction diffusion models, there are some considerable conceptual
changes. The model is focused on explaining the infection dynamics ob-
served in their images instead of focusing on explaining the velocity of plaque
expansion like previous models have. Forces like host growth, limiting sub-
strate and the maturation of infected host are considered in the model. The
diffusion of nutrient are not considered, and the growth of host cells follow a
constant rate multiplied by the concentration of nutrient and host cells. As
I have little experience with cultivation of baby hamster cells I do not know
if these modelling choices were done to mimic reality or as a simplification.
But I know from my experience with developing my model and examining
the experimental data that these simplifications would be detrimental to my
model, as it would result in the loss of one of my most important discover-
ies which is the importance of nutrient diffusion in plaque formation. The
model they presented takes the infection of already infected bacteria into
account, which is something I did not consider when I developed my model.
Some viruses change the structure of their host, so that an infected host will
not adsorb more of the same type of virus, in an phenomena called super-
infection exclusion [23, 121]. But I have not explored if the phage used in
this thesis is capable of superinfection exclusion. Including superinfection to
the model would likely cause the plaque expansion to slow down, as phages
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would be "consumed" by infected bacteria instead of diffusion further to
reach uninfected bacteria.

From the models found through my literature search, it was Haseltine model
that was most similar to the one I developed, despite the model being fo-
cused on mimicking viral spread in baby hamster kidney cells. This suggests
that both my model and my related findings are relevant beyond the scope
of phages. These findings could help explain not only the spread of viruses in
bacterial population but in plant-, animal-, and human-cells as well. All the
models I have mentioned are expressed in terms of radial coordinates, which
includes an assumption of radial symmetry in the plaques. The advantage
of this is that the model only considers a single spatial dimension, which
makes it faster to solve numerically. It also makes it easier to algebraically
manipulate the model to find expressions for the speed of radial expansion.
The drawback is that the models are not able to adequately mimic merg-
ing plaques, like my model does, which considers two spatial dimensions in
Cartesian coordinates. The Haseltine model was developed further in a paper
published in 2014, but this development was in the direction of incorporating
interferons and the immunoresponse of baby hamster cells in relation to viral
infections[122]. This made the model too distinct from the one developed in
this thesis for any productive comparison to be made.

5.3.4 Run 1.3

The double circles displayed in the merging plaques in experimental run 1.3
are a curious case. At first I suspected a contamination from another phage,
but soon realised that this was very unlikely. The plaques show a very similar
morphology before the merge, and I have yet to experience an infection from
another phage. A mutation also seems highly unlikely as that would imply
that two phage particles got the exact same mutation, and coincidentally
ended up next to each other. I also suspected the double ring being a result
of diffusion of nutrients from the centre of the plaque out to the surrounding
infected and uninfected bacteria. Since there are two merging plaques, the
out-flux of nutrient from the plaque centres would be higher here than for
single plaques. Perhaps there was a threshold for nutrient flux, and when
the out flux is larger than this threshold, the infected bacteria is able mature
and this is what causes the double ring? The discovery of local variations
in bacterial growth rate suggests otherwise. The results from Cellfiebooth
suggest that the double ring is expressed whenever the bacterial growth rate
follows a growth curve that suggests the bacteria changes growth strategy
during the run. This was found in the agar, but patches of bacteria lawn
following the alternative growth curve were found far from the the merging
plaques. I believe the local variation of growth rate caused the double ring
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in the merging plaque, rather than the of the merging plaque causing local
variation in growth curve. I suspect this difference of plaque morphology to
be the result of human error in some way. Perhaps the agar or soft agar
was poured in a way that left the agar hardening in a somewhat tilted state.
Naturally this would cause one of the sides to end up with more agar or soft
agar than the other. This would certainly distribute the diffusion of nutrient
from the agar unevenly in the Petri dish. Which could again result in local
variation of growth rate.
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6 Conclusion

The aim of the research presented in this thesis was to explore the devel-
opment of viral plaques as well as different factors that cause plaques to
emerge from phages proliferating on a bacterial lawn. To do this, I utilised
and improved the self-developed Cellfiebooth, first presented in my report
"Fluorescence imaging of the pre-visible stage of bacteriophage plaque for-
mation". I used this system to measure the distribution of free DNA on a
Petri dish over time, which was used as an indicator of bacteria lysed by
phages. In addition to this, I developed a mathematical model that predicts
the formation of plaques, and used this to find that the diffusion of nutrient
from within the plaque is a vital driver for the late expansion of plaques.

The Cellfiebooth is a "general" system as it worked well for all the phage
and bacterial strains tested. The fluorescent dye used in the Cellfiebooth
system does not disturb bacterial growth, and the system is able to measure
the formation and expansion of every plaque throughout the course of its
development. I performed 10 measurements each hour for the duration of
all experiments. This provided us with deep insights into the formation of
plaques, as it did not simply show the end result of a formed plaque, but
how plaques develop and change over time. The Cellfiebooth also revealed
how bacteria can change growth strategy during the experiment, and that
this has a severe consequence on the morphology of plaques. These findings
provided us with improved understanding of how plaques are formed and
even served as a warning that parameters which are not always considered
or taken for granted, can have drastic effects on the experimental results.

Without fitting any of the model parameters to the experimental results from
the Cellfiebooth, the model I developed and presented in this thesis is able
to reproduce the shape of both single plaques and multiple merging plaques.
The model thus provides insight into how plaques develop over time, and
explains many phenomena observed in the Cellfiebooth system. Comparing
and analysing the results from the Cellfiebooth and the model, I found that
many phenomena observed in the Cellfiebooth, most importantly how the
plaques are able to expand even after most bacteria have reached a stationary
phase, are largely driven by the diffusion of nutrients. This nutrient diffusion
is driven by the difference of nutrient concentration between areas where the
phages have lysed all bacteria, and areas unaffected by phages. Essentially
this involves the diffusion of nutrient from the centre of plaques out to the
newly infected as well as still uninfected bacteria. This enables them to
continue to divide and grow when the bacteria on the dish have exhausted all
surrounding nutrients and reached the stationary phase. This phenomenon
also explains why the greatest bacterial concentrations are attained in areas
between closely spaced plaques, which benefit the most from the diffusion
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effects. The effect of a plaque expanding after the bacteria has reached a
stationary phase has been previously speculated, by Yih and Yin, to be due
to the bacteria surrounding the plaques "cannibalizing" on the lysed bacteria
remains[114]. Previous models, such as the Yin-McCaskil model and Fort et
al model assumed that the late slow down of plaque expansion was caused
by hindered diffusion by the high concentration of bacteria[76, 113]. Unlike
my model– the models considering the late slow down of plaque expansion
to be caused by bacterial hindrance were not able to accurately predict the
experimental results[77, 123].

In addition to this, I, together with Nikolay Martyushenko, developed a
new protocol for using a multiplate reader to determine the burst size, lysis
time and standard deviation of the lysis time of a phage strain in a single
experiment. The new protocol, compared to established protocols like the
one step growth curve, is easier to perform and provides more insight into
the phage dynamics.

The implications for establishing and improving the methods for measuring
viral plaque development are many. Perhaps most notable are the implica-
tions this research can have for the further development of phage therapy as
an alternative to antibiotics. Today the selection of phages for therapeutic
use is often based on plaque morphology[48, 112]. Progress in this field of
research has the potential to significantly alter–if not revolutionise–the way
bacterial infections are treated. As phage therapy is bacteria specific, the
vast list of side effects associated with full-body antibiotics could be ren-
dered irrelevant. This further implicates that the predicted harmful and
fatal ramifications of the dangerous proliferation of the antibiotic-resistant
bacteria.
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A Protocol for making M9 broth

The following protocols were first printed in my report "Fluorescence imaging
of the pre-visible stage of bacteriophage plaque formation".

A.1 M9 5x stock

Following reagents are added to a 2-litre flask:

• 30 g Na2 HPO4

• 15 g KH2 PO4

• 2.5 g NaCl

• 1 L High quality distilled water

Once the ingredients are added, stir with heating until all everything is
dissolved. Make sure the cap is loosened and autoclave at 15 psi, 121 Co for
20 minutes.

A.2 M9 1x working solutions

Following reagents are added aseptically to make 1 litre 1x working solution:

• 200 mL M9 salt (sterile 5x)

• 200 µL MgSO4 (sterile 1 M)

• 50 mL Glucose (sterile 100 % w/v solution)

• 50 mL Casamino (sterile 10 % w/v solution)

• 699.8 mL High quality distilled water

For agar and soft agar; the agar is dissolved and autoclaved in the high
quality distilled water before the other reagents are added. The temperature
of the agar should be kept at 50 ◦Cor over until it is poured to keep it from
hardening too early. To achieve this, I recommended to heat the 5x M9 salt
before mixing it in with the agar solution.
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Figure 76: Growth curve for E. coli BL21. The dashed line shows the
modelled growth for the same seeding OD. All models have the same
constants related to growth kinetics.

B Characterisation of growth rate - additional data
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Figure 77: Growth curve for E. coli DH5α. The dashed line shows the
modelled growth for the same seeding OD. All models have the same
constants related to growth kinetics.

C Burst size and lysis time - additional data

The graphs in figure 78 and 79 show the odd number dilutions
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Figure 78: Rate of change in OD600 over time for BL21 introduced to
different concentrations of phages. Odd number dilutions.

Figure 79: Rate of change in OD600 over time for DH5a introduced to
different concentrations of phages. Data filtered with 5 point average.
Odd number dilutions.
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Figure 80: Change in OD when the E. coli strain DH5α is introduced
to different concentrations of the UP phage.
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D Observed effects from Cellfiebooth regarding mea-
surement of light

Figure 81 and 82 are from my report "Fluorescence imaging of the pre-visible
stage of bacteriophage plaque formation"[1]. Figure 81 shows how the two
filters together stop all light visible to the naked eye. Reflection of my
hand photographing the effect can be observed where the two filters overlap.
Figure 82 show how the light source is visible in the Cellfiebooth when it is
placed directly under the camera. The lightsource can be observed in the
middle of the Petri dish as a square brighter than the rest of the photograph.
Reflection of the LED lights appear in the lower left corner of the image inside
the Petri dish as bright circles.

Figure 81: 515 nm longpass filter on top of 465 nm shortpass filter
with LED lights on behind.
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Figure 82: Light source directly under Petri dish in Cellfiebooth.
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