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Introduction

This thesis presents and discusses optimization models for various aspects of
supply chain management. It focuses on the challenges imposed by uncertain
information about the future and dynamics in the decision-making process. A
dynamic decision-making process is characterized by a sequence of decisions, such
that later decisions depend both on the previous ones and any additional informa-
tion that becomes known in between making the two decisions (see e. g. Edwards
1962). In order to capture this dynamic structure and to model the uncertainty
present in the problem, the models are formulated as two-stage stochastic pro-
gramming problems (Kall & Wallace 1994, Birge & Loveaux 1997).

The research in this thesis has been financed by the Norwegian Research Coun-
cil through the SMARTLOG-project. In SMARTLOG, NTNU, SINTEF, and
Marintek worked together with partners from the Norwegian industry to enhance
the competitiveness by creating knowledge and improving the understanding of
how to design, develop, and control dynamic value chains.

The thesis consists of two parts. The first part is this introduction. Relevant
aspects of dynamic decision-making are discussed in Section 1.1. A short overview
over the field of quantitative supply chain management is given in Section 1.2.
The existing literature on selected fields of supply chain optimization is presented
in Section 1.3. I also indicate how this thesis contributes to the existing literature.
A summary over the papers included in this thesis can be found in Section 1.4.
Part 2 consists of the aforementioned four papers.

1.1 Dynamics of the Decision-Making Process

In a dynamic environment, decisions are made at different points in time. Later
decisions are based on the consequences of decisions made earlier and relevant
information that becomes known in between the two decisions. The information
that becomes available can be the realization of some random variable, e. g.
demand, according to a given probability distribution (Edwards 1962). Two-
stage and particularly multi-stage stochastic programming (see e. g. Birge &
Loveaux 1997) try to capture these dynamics by modeling the different points
in time when decisions have to be taken and the information available at that
time as stages. In a deterministic setting, this stage structure has no meaning as
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Introduction

no additional information becomes available. It only represents the sequence in
which the decisions have to be made.

This thesis focuses on two questions that are a direct result of the sequential
nature of the decision-making process. The first one is how decisions made at
different points in time relate to each other. This also includes the economic
consequences of the decisions to be made, e. g. should one forgo short-term
profit opportunities in favour of some long-term profit goals. In Section 1.1,
I give some motivation for the use of long-run and short-run cost functions to
examine the relationship between strategic and operational decisions in a setting
where uncertainty is revealed in between the decisions.

The second question is how to cope with the uncertainty in the decision-making
process. It is a key characteristic of a dynamic decision-making process that
new information, predictable or not, may become available in between making
decisions (Edwards 1962). A short introduction on how to use flexibility to handle
this uncertainty about the future inherent in the decision-making process is given
in Section 1.1.

Combining Long-term And Short-term Decisions

Ever since Anthony (1965) published his framework for managerial decisions, it
has become common to consider decisions as part of a hierarchical system. Higher
level decisions constrain lower level decisions, whose feedback in turn is used to
evaluate the quality of the higher level decisions (Bitran & Tirupati 1993). A
simple example of such a hierarchical system is the problem of investing in pro-
duction equipment (e. g. a facility or number of machines) that has to be operated
in order to satisfy future customer demand. Clearly, this problem consists of two
decisions, made one after the other: the first one is how much capacity to invest
in and the second one of how many units to produce to satisfy the demand. The
horizon for the decisions and the data on which the two decisions are based on are
different, though. While the investment decision has a planning horizon related
to the lifetime of the equipment invested in, the production decision is related to
observed demand and may actually change from day to day. In the following I
show, how the long-run total cost function and the short-run total cost function
depend on each other and how they can be combined to link long-term decisions
to short-term decisions.

According to microeconomic theory, a firm will choose the combination of input
factors that allows production of the desired output at minimum costs. The
minimum cost combinations of input factors for given levels of production results
in the long-run total cost curve (see e. g. Mathis & Koscianski (2002) or Perloff
(2004)). To illustrate this, consider a product with two input factors, for example
capital and labour. The three isoquants in Figure 1.1 are the technologically

2



1.1 Dynamics of the Decision-Making Process

efficient combinations of the two input factors to produce the quantities Q1,
Q2, and Q3 respectively. The economically efficient combinations of capital and
labour to produce these quantities are given by the points P1, P2, and P3, where
the isocost curves C1, C2, and C3 are tangents to the corresponding isoquants
(assuming linear costs for the components). These minimal cost combinations
constitute the long-run expansion path. Thus, in order to produce Q2 in the
long-run, one would choose the combination of capital and labour as given by P2.

Q1

Q2

Q3

C1

C2

C3

Long-run expansion path

Short-run
expansion path

P1

P2

P3

C
ap

it
al

C
ap

it
al

LabourLabour

Figure 1.1: Long-run and short-run expansion paths

In the short-run, it is no longer possible to vary all input factors. Consider
capital (e. g. the investment in a number of machines) as the fixed input in
the example above. The decision-maker has implemented the combination of
capital and labour as given by P2. Demand however, is varying and the quantity
produced deviates from Q2 in order to meet demand. The output can only be
increased or decreased by adjusting the factor labour, creating the short-run
expansion path in Figure 1.1. One can see from this figure that the costs for
producing quantities Q1 and Q3 on the short-run expansion path are higher than
the costs for the same quantities on the long-run expansion path.

Both the long-run expansion path and the short-run expansion path trans-
late into total cost functions. The typical S-shape of long-run total cost curves
results from a long-run marginal cost function that is decreasing and then in-
creasing in the production interval. The resulting long-run total cost curve then
exhibits economies of scale as the average cost function is decreasing. This type
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Introduction

of marginal cost function can for example be found in the meat producing indus-
try (Kern 1994). In the natural monopoly case, the marginal cost approaches the
average cost from below without crossing it. Usually, diseconomies of scale will
eventually lead to a situation where average costs start rising.

For each investment in a set of machines, a short-run cost function is assigned,
which is tangent to the long-run cost function at that capacity. The short-run
total costs represent the costs of operating the machines, e. g. to satisfy uncer-
tain demand. These cost functions are convex under the assumptions that the
marginal returns of the variable input factors are diminishing. The relationship
between long-run total costs and short-run costs is depicted in Figure 1.2.

Long-run total costs
Short-run total cost functions

co
st

co
st

quantityquantity

Figure 1.2: Long-run and short-run total facility cost function

In a stochastic setting, where investments in machines have to be made before
demand is known, the connection between the long-run costs and short-run costs
is as follows: The first-stage decision is to decide upon how many machines to in-
vest in. This decision is based on the long-run total cost function and thereby im-
plicitly decides the second-stage short-run cost function. Once the machines are
installed, production is assigned in order to satisfy demand in the second-stage.
The second-stage cost function is then the short-run total cost function, i. e. a
deviation of the production level from the installed machine/labour-capacity is
more costly than the long-run total costs. The short-run costs are not needed in
the deterministic case: demand is known and there is no need to deviate from
the long-run cost function.
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1.1 Dynamics of the Decision-Making Process

Using Flexibility To Handle Uncertainty

Uncertainty is widely recognized as one of the most important challenges in supply
chain management. Supply chains need to react to changes in the supply of
raw materials, demand for finished products, their prices, production costs and
capacities. This uncertainty affects the planning and decision-making processes
on all levels of the supply chain. Flexibility is frequently suggested as one way of
coping with variations.

Upton (1994) defines flexibility as ”the ability to change or react with little
penalty in time, effort, cost or performance.” To illustrate how flexibility can be
used to handle uncertainty, consider the following simple example inspired by
Wallace (1998). Assume that a company has to decide whether to produce a cer-
tain component itself or buy it from a supplier. The decision has to be made while
the finished product is still developed, i. e. before demand for the component
is known. The company believes that future demand for the finished product,
and thus also for the component, is either low, average or high. Examining the
total costs of producing the component inhouse for each of the possible demand
scenarios and comparing it to the costs of outsourcing production reveals that it
is always cheaper to produce inhouse than to outsource (see Figure 1.3).

0
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al
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C

os
ts

low average high

Demand ScenarioDemand Scenario

Outsourcing production
Inhouse production

Figure 1.3: Costs of inhouse production vs. outsourcing

Based on these numbers, it seems natural to decide for inhouse production.
The remaining question is then how much capacity to invest in. Assume that
the company installs capacity for the average demand scenario. As this decision
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Introduction

is made before true demand is known, they examine the expected costs of this
solution. The dashed line in Figure 1.3 shows how the costs change if a demand
scenario other than the average one is realized. They also analyze the expected
costs of outsourcing production based on the solution for average demand (see the
solid line in Figure 1.3 for the changes in outsourcing costs), and find that out-
sourcing, in expectation, is actually cheaper than inhouse production. The reason
for this is that outsourcing production is the more flexible decision. Variations
in demand can be handled at a lower cost than inhouse production.

The example above is very simple. Its main purpose is not to perfectly de-
scribe a real-world situation, but to illustrate how flexibility can be used to deal
with uncertainty in the decision-making process. Here, deciding to outsource
production, the company pays a premium for acquiring flexibility: the costs of
outsourcing are higher than those of inhouse production for any given scenario.
The company will however benefit from the decision in case demand deviates
from the given demand scenario.

It is important observation that flexibility usually does not come for free, flexi-
ble decisions are more expensive than the inflexible ones. There are many different
types of flexibility that can be used in a supply chain. Examples include volume
flexibility, i. e. excess capacity, and the possibility to change delivery amounts
and times, also known as delivery flexibility (Sabri & Beamon 2000). A common
feature of all types of flexibility is however that it has to be designed into the
supply chain and the necessary investments have to be justified by the potential
benefits (Bertrand 2003).

In order to value flexibility correctly, it is important to explicitly consider the
uncertainty present in the decision-making problem. In a deterministic setting,
flexibility will not be needed and it has no value. Flexible decisions can have
a large value in a stochastic setting due to the costs of correcting bad decisions
once the uncertainty is revealed. Stochastic programming can explicitly value
flexible decisions (see e. g. Christiansen & Wallace 1998, Fleten, Jørgensen &
Wallace 1998), it models the sequential structure of a dynamic decision process
and accounts for the fact that information is becoming available over time.

1.2 Quantitative Supply Chain Management

The field of Supply Chain Management has attracted a lot of interest from the
research community over the past 15-20 years, (see e.g. the reviews by Lambert
& Cooper 2000, Ganeshan, Jack, Magazine & Stephens 1999 or Thomas & Griffin
1996). Early motivation for the concept of supply chain management however,
can already be found in the work by Clark & Scarf (1960), who develop optimal
policies for multi-echelon inventory systems. Another early example is the paper
by Geoffrion & Graves (1974), that is among the first to use an optimization-based

6



1.3 Existing Literature and Research Contribution

approach for designing a multi-commodity distribution system. Since then, Op-
erations Research has been applied to many areas of supply chain management.
The handbooks by de Kok & Graves (2003) and Graves, Rinnooy Kan & Zipkin
(1993) provide a good overview over possible applications.

The research in quantitative supply chain management can be distinguished
in two approaches, based on who manages the supply chain: The first approach
assumes a dominant member, managing the whole supply chain as a single entity,
whereas the second approach focuses on cooperation and coordination of activities
between agents, e. g. using contracts and/or incentive schemes (see the discussion
in e. g. Ganeshan et al. 1999, Tomasgard & Høeg 2005). The research in the field
of Operations Research usually follows the first approach, see e.g. the models
for distribution and inventory planning (Simchi-Levi, Kaminsky & Simchi-Levi
2007), production planning and inventory management (Clark & Scarf 1960, Hax
& Candea 1984) or also the more recent models on supply chain design (see e.g.
Santoso, Ahmed, Goetschalckx & Shapiro 2005). Ernst & Powell (1998) follow
the second approach, discussing the use of incentives to coordinate the activities
of a manufacturer and a retailer. The use of contracts and pricing scheme to
coordinate a supply chain is described in Lariviere (1999), Tsay (1999) or Cachon
& Lariviere (2005). See Cachon (2003) for a more detailed discussion on the use
of contracts in supply chain coordination. Cachon & Netessine (2004) review
game theory approaches to supply chain management.

This thesis takes the first approach, modeling the whole supply chain as con-
trolled by a single, centralized decision-maker. Following the taxonomy by Gane-
shan et al. (1999), the thesis can be classified as research using quantitative
models to address supply chain management. The first three papers included
here belong to the research on competitive strategy, dealing with decisions on
the design of the supply chain and location of plants. The fourth paper is part
of the research on operational efficiency, particularly the category on production,
planning and scheduling.

1.3 Existing Literature and Research Contribution

In this section, I give a short introduction to some of the research literature
relevant for this thesis and indicate how this thesis extends the existing literature.
A more detailed overview over the specific research literature can be found in each
of the individual papers. The papers will discussed in the next section.

First, I will discuss the literature on facility location, before moving on to the
literature on supply chain design. An overview over literature on operational
supply chain planning completes this section.

7



Introduction

Facility Location

Facility location models address the problem of locating facilities in order to
satisfy customer demand. The objective is usually to minimize the total costs,
i. e. the sum of the costs of opening a facility plus the costs of satisfying customer
demand from these facilities. These problems have been studied extensively since
the 1950s. See Baumol & Wolfe (1958) or Cooper (1963) for some early examples
on how to formulate and solve capacitated facility location problems. A good
survey of research with focus on solution methods can be found in Labbé &
Louveaux (1997). Snyder (2006) and Louveaux (1993) provide overviews over
the literature on facility location under uncertainty.

In both the standard uncapacitated and capacitated facility location problem,
the costs of opening a facility are just fixed setup costs (see e. g. Hax & Candea
1984). In combination with linear variable costs (i. e. constant marginal costs),
this approach models economies of scale by simply distributing the fixed costs over
a greater amount of units produced. In the real-world however, both facility costs
and marginal costs often depend on the size of the facility (Haldi & Whitcomb
1967, Norman 1979, Kern 1994). Even diseconomies of scale, increasing average
costs caused by increasing marginal costs, are common (Baumol, Panzar & Willig
1982, Mathis & Koscianski 2002).

Economies of scale and also diseconomies of scale have been represented using
a staircase cost function in deterministic facility location problems (FLSC), see
for example Holmberg (1984, 1994), Holmberg & Ling (1997) or Harkness &
ReVelle (2002). The modular capacitated plant location model (MCPL) can
be interpreted as a generalization of the FLSC, see e. g. Correia & Captivo
(2003) or Correia & Captivo (2006). Both Holmberg & Ling (1997), Harkness &
ReVelle (2002), Correia & Captivo (2003) and Correia & Captivo (2006) have used
Lagrangean relaxation to solve the facility location problem. Other examples of
deterministic models are Soland (1974), who develops an algorithm for a facility
location problem with concave facility costs and concave transportation costs.
Domschke & Voß (1990) consider a multi-product facility location model with
concave production costs.

Even though a considerable number of researchers has studied facility loca-
tion problems under uncertainty, few have examined the case of economies of
scale. Balachandran & Jain (1976) explicitly address both uncertain demand
and economies of scale. They present a formulation for a facility location model
with a general, piecewise linear facility cost function and uncertain demand.

Papers 1 and 2 consider an application where the facility costs exhibit economies
of scale. The cost curve has a typical S-shape, often found in long-run cost curves.
Paper 1 considers the case of deterministic demand, whereas Paper 2 presents
a model formulation for uncertainty in both demand and costs. We develop a
solution method in each of the papers based on a piecewise linear approximation

8



1.3 Existing Literature and Research Contribution

of the facility cost function and Lagrangean relaxation. The solution methods
are applied to a case from the Norwegian meat industry and we can show that
they are capable of solving large-scale real-world applications.

The main contributions of paper 1 are the development of an efficient solution
method for facility location problem with piecewise linear facility costs and its
application to a case from the Norwegian meat industry. Paper 2 extends the
setting of the first paper, including uncertainty in demand and costs. It also shows
how long-run and short-run cost functions can be used in a two-stage stochastic
programming model to link the first-stage and the second-stage decisions.

Supply Chain Design

The field of supply chain design has received a lot of attention from the Operations
Research community. Starting with the paper by Geoffrion & Graves (1974)
on the design of a multicommodity distribution system, numerous optimization-
based approaches for supply chain design have been proposed. The reviews by
Melo, Nickel & Saldanha-da-Gamad (2009), Vidal & Goetschalckx (1997) and
Geoffrion & Powers (1995) provide a good overview over the different approaches.

Notable applications of supply chain design models include, amongst others,
Arntzen, Brown, Harrison & Trafton (1995) who describe supply chain optimiza-
tion for Digital Equipment Corporation. Camm, Chorman, Dill, Evans, Sweeney
& Wegryn (1997) present the efforts to restructure the product-sourcing and
distribution of Procter & Gamble’s operations in North America. A model for
redesigning the supply chain of Elkem’s silicon division, at the time the world’s
largest producer of silicon metal and ferrosilicon, can be found in Ulstein, Chris-
tiansen, Grønhaug, Magnussen & Solomon (2006).

These applications follow the traditional approach of assuming that all input
data, e. g. costs of raw materials and production or market prices for finished
products, for the supply chain design problem is known with certainty. Given a
planning horizon of several years, this assumption is not very likely to hold. An
early example of research acknowledging this fact is the paper by Eppen, Martin
& Schrage (1989). They develop a capacity planning model for General Motors
using a scenario approach for uncertain demand. It has however not been before
the end of the 1990s that researchers started to focus on supply chain design
under uncertainty. MirHassani, Lucas, Mitra, Messina & Poojari (2000) discuss
a supply chain design problem under uncertain demand. In order to solve the
problem, they discuss the use of scenario analysis and Benders decomposition in
a parallel implementation. A similar capacity planning problem is considered by
Lucas, MirHassani, Mitra & Poojari (2001). They develop a solution method
based on Lagrangean relaxation and scenario analysis. Alonso-Ayuso, Escud-
ero, Gaŕın, Ortuño & Pérez (2003) present a supply chain planning model with
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Introduction

binary first-stage decisions and continuous second-stage decisions. They solve
the problem using an algorithmic approach based on Branch-and-Fix. Santoso
et al. (2005) solve a supply chain design problem with uncertain demand using
a solution method combining Sample Average Approximation (SAA) and Ben-
ders decomposition. They also present computational results from a real-world
application.

Paper 3 presents an application from the Norwegian meat industry. We formu-
late and solve a large-scale supply chain design problem with uncertain demand.
Main focus of the analysis is how the level of detail in modeling the operations of
the supply chain affects the strategic design decisions. We explicitly distinguish
between long-term uncertainty, e. g. uncertainty in the total demand level, and
short-term uncertainty, e. g. weekly variations in demand. In order to properly
represent short-term uncertainty, operational decisions have to be modeled in
detail in the second-stage. The paper shows that detailed operational decisions
in the second stage can affect strategic decisions, requiring more capacity than
aggregate decisions in the second stage.

Operational Supply Chain Planning

One of the first papers on supply chain planning is the one by Clark & Scarf
(1960), developing optimal policies for multi-echelon inventory systems. The
field of operational supply chain planning however, covers more than just in-
ventory management. Production planning and scheduling, lotsizing, inventory
management, and transportation are all important topics for the operational level
of supply chain planning. The reviews by Drexl & Kimms (1997), Bhatnagar,
Chandra & Goyal (1993) and Goyal & Gunasekaran (1990) on lot-sizing and
scheduling, multi-plant coordination, and multi-stage production-inventory sys-
tems, respectively, provide an overview over relevant literature for operational
planning.

The focus here is on production planning in a supply chain setting. A recent
example for an application in this area is the paper by Denton, Forrest & Milne
(2006), presenting an application of supply chain optimization at IBM’s semi-
conductor business. They use a mixed-integer programming model for planning
production, inventory, as well as internal and external shipments. Bredström,
Lundgren, Rönnqvist, Carlsson & Mason (2004) develop a supply chain planning
model for the pulp mill industry. The model includes all levels of the supply
chain starting with the harvesting of trees, transportation of trees to the pulp
mills, production scheduling at the mills, and distribution of pulp from the mills
to the customers. These examples follow the traditional deterministic approach
to operational planning. Uncertainty, even though an important factor in many
supply chains, has not been considered. One of the first papers on operational

10
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supply chain management under uncertainty is the one by Escudero, Galindo,
Garćıa, Gómez & Sabau (1999). They develop a modeling framework for in-
dustrial production based on manufacturing, assembly, and distribution. Other
examples of operational supply chain planning under uncertainty include Alonso-
Ayuso, Escudero & Ortuño (2005) and Tomasgard & Høeg (2005). Alonso-Ayuso
et al. (2005) formulate several models for production planning, machine selection
and assignment, as well as scheduling and sequencing under uncertainty. Tomas-
gard & Høeg (2005) examine the supply chain in the Norwegian meat industry
and develop a linear two-stage stochastic programming model for operational
planning.

A topic closely related to the presence of uncertainty is flexibility. Determinis-
tic models do not need flexible decisions and will never choose a flexible decision
unless is comes for free. It is well understood that stochastic programming mod-
els are able to value, and hence favour, flexible decisions (see e.g. Christiansen &
Wallace 1998, Fleten et al. 1998). There is however very little discussion about
whether or not flexible operational decisions are needed if the supply chain itself
is flexible and decisions can be revised. Paper 4 examines the need for operational
decision flexibility, studying the results from both deterministic and stochastic
planning models for different levels of flexibility in the supply chain. To my
knowledge, it is the first paper that discusses the need and the value of deci-
sion flexibility for a production system with various degrees of flexibility already
inherent in the supply chain.

1.4 Papers

The papers have been submitted to different scientific journals, having different
layouts and requiring different referencing styles. For collecting the papers in this
thesis, I standardized the layout and formatting of references. The content of the
papers has not been modified.

Paper 1: Location of Slaughterhouses Under Economies of
Scale

We present a method for modeling economies of scale in uncapacitated facility
location problems. The non-convex, non-concave objective function is approxi-
mated by a piecewise linear function. Using Lagrangean relaxation, the problem
becomes separable in locations and we solve the resulting subproblems using a
method originally developed for solving continuous knapsack problems. We apply
the solution method to a case from the Norwegian meat industry and show that
it is suitable for solving real-world problems.
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Introduction

The modeling of the problem as well as the development and implementation of
the solution method was mainly done by the other three authors. My contribution
was in making the code platform-independent, generating the case data, and
performing the calculations. I also wrote some parts of the paper.

Co-authors: John van den Broek, Leen Stougie, and Asgeir Tomasgard.

The paper is published as Van den Broek, J., Schütz, P., Stougie, L. & Tomas-
gard, A. (2006), ‘Location of slaughterhouses under economies of scale’, European
Journal of Operational Research 175(2), 740–750.

Paper 2: Stochastic Facility Location with General Long-Run
Costs and Convex Short-Run Costs

This paper can be seen as a natural extension to Paper 1, introducing stochas-
ticity in both costs and demand into the problem. The problem is formulated
as a two-stage stochastic programming model. The first-stage and second-stage
cost functions are derived from the microeconomic long-run and short-run cost
functions respectively. We extend the solution method developed in the first pa-
per for the case of uncertainty in both costs and demand. We allow for general
first-stage cost functions, the second-stage costs however have to be convex. The
solution method is successfully tested for real-world problem from the Norwegian
meat industry.

I have formulated the model, implemented the solution method, and written large
parts of the paper. In addition, I had an equal part in developing the solution
method for the stochastic problem.

Co-authors: Leen Stougie and Asgeir Tomasgard.

The paper is published as Schütz, P., Stougie, L. & Tomasgard, A. (2008),
‘Stochastic facility location with general long-run costs and convex short-run
costs’, Computers & Operations Research 35(9), 2988–3000.

Paper 3: Supply Chain Design under Uncertainty using Sample
Average Approximation and Dual Decomposition

This paper takes a supply chain perspective and studies how operating the sup-
ply chain affects the design decisions. We formulate the design problem as a
two-stage stochastic programming problem with demand as the uncertain fac-
tor. To examine the effect of the operational decisions, we distinguish between
long-term and short-term uncertainty. The results from using real-world data
from the Norwegian meat industry show, that short-term variations in demand
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should be considered when designing the supply chain. To solve the different
problem instances, we develop a solution method that combines Sample Average
Approximation with Dual Decomposition.

I have formulated the model, implemented the solution method, and written large
parts of the paper. In addition, I had an equal part in developing the solution
method.

Co-authors: Asgeir Tomasgard and Shabbir Ahmed.

The paper is accepted for publication as Schütz, P., Tomasgard A. & Ahmed, S.
(2008), ‘Supply chain design under uncertainty using sample average approxima-
tion and dual decomposition’, European Journal of Operational Research, forth-
coming.

Paper 4: The Impact of Flexibility on Operational Supply Chain
Planning

We discuss the value of operational decision flexibility, storage flexibility, deliv-
ery flexibility, and volume flexibility in operational supply chain planning under
uncertain demand. Comparing a stochastic approach to the expected value ap-
proach and planning using perfect information, we study the impact of the dif-
ferent flexibility types on the annual operational results in the value chain. The
results of our analysis show that operational decision flexibility becomes more im-
portant as flexibility inherent in the supply chain is reduced. This paper provides
useful insights in the relationship between uncertainty and the value of flexibility.

I formulated and implemented the model. I also wrote large parts of the paper.

Co-author: Asgeir Tomasgard.

The paper is accepted for publication as Schütz, P. & Tomasgard A. (2009),
‘The Impact of Flexibility on Operational Supply Chain Planning’, International
Journal of Production Economics, forthcoming.
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Kern, C. (1994), Optimale Größe von Schlachtbetrieben unter ausschließlicher
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Paper 1

Location of Slaughterhouses Under
Economies of Scale

Abstract:
The facility location problem described in this paper comes from an indus-
trial application in the slaughterhouse industry of Norway. Investigations
show that the slaughterhouse industry experiences economies of scale in the
production facilities. We examine a location-allocation problem focusing on
the location of slaughterhouses, their size and the allocation of animals in
the different farming districts to these slaughterhouses. The model is gen-
eral and has applications within other industries that experience economies
of scale.
We present an approach based on linearization of the facility costs and
Lagrangean relaxation. We also develop a greedy heuristic to find upper
bounds. We use the method to solve a problem instance for the Norwegian
Meat Co-operative and compare our results to previous results achieved us-
ing standard branch-and-bound in commercial software.

Keywords: Location, Integer Programming, Non-linear Programming, Branch
and Bound, Economies of scale

2.1 Introduction

In this paper we investigate a facility location problem with linear transporta-
tion costs and economies of scale in the operation of facilities. The problem arose
at the Norwegian Meat Co-operative when they did a strategic restructuring of
their business in year 2000. When this work started there were 25 cattle slaugh-
terhouses in the company. Our task was to investigate the saving potential of
reducing this number and investing in capacity in the remaining facilities in order
to profit from economies of scale. As this was part of a long term strategic analy-
sis, we were asked to consider all municipalities in Norway as possible locations of
slaughterhouses without giving preference to existing slaughterhouses: the meat
co-operative wished to know the saving potential between today’s solution and
the ideal solution if they were free to build up their structure from scratch. They
were also interested in finding out if there are many alternative solutions with
about the same cost as the optimal solution. Our results have been used in a
strategic restructuring of the network of slaughterhouses for cattle in Norway.
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The Norwegian Meat Co-operative is owned by a majority (37000) of the Nor-
wegian farmers. The annual turnover is about 1200 million Euro. The market
share for the company in Norway was in 2000 about 76% for slaughtering. Be-
cause the company is organized as a co-operative, it cannot refuse a request from
one of its members for slaughtering animals. It is free to choose which slaughter-
house should serve the request. However, there exists an animal welfare restric-
tion, forbidding animals to be on transport in a truck for more than 8 hours. The
aim of the study was to suggest the optimal size and location of slaughterhouses
and an allocation of animals to the slaughterhouses, given today’s geographical
distribution of the animal population.

The company faces a trade off between the number of slaughterhouses it owns
and its transportation costs. The problem is an uncapacitated facility location
problem. Fundamental parameters of such a problem are the costs of operating
and owning the facilities and the unit transportation cost between customers and
the facilities. The objective is to minimize total costs.

In the standard uncapacitated facility location problem (see e.g. Hax & Candea
1984), facility costs are just fixed set-up costs. In our case the facilities have cost
functions with economies of scale: unit slaughtering costs are decreasing as the
number of animals allocated to the slaughterhouse increases (see for example
Mathis & Koscianski 2002, for a definition). The total cost curve of each of the
slaughterhouses has a typical S-shape, often found in long run cost curves, see
Figure 2.2: the function is concave in the first part, when marginal costs are
decreasing, and convex towards the end, when marginal costs are increasing. At
all points the marginal costs are lower than the average costs, leading to economies
of scale. The transportation costs are best described by a cost function that is
linear in the distance between the farmers and the slaughterhouses. As a result,
the objective function is non-linear, non-convex and non-concave.

There is an extensive research literature on facility location problems. Such
models have been used since the 50’s and early 60’s (see for example Baumol &
Wolfe 1958, Cooper 1963), but recent advances in optimization technology and
the integration into information systems with decent user interfaces have made
their dissemination wider. In location theory it is useful to separate the literature
into two classes: Firstly we have optimization problems where the purpose is to
minimize the cost or maximize the profit of locating a set of facilities under
constraints like capacities, number of facilities, distance to customers and so on.
A good survey of research with focus on solution methods can be found in Labbé
& Louveaux (1997). Secondly, we have models where location is modelled for
competitive companies in the tradition of Hotelling. An overview of such models
with different market assumptions and objectives can be found in Eiselt, Laporte
& Thisse (1993) and Eiselt & Laporte (2000).
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2.1 Introduction

Our paper is within the first class. In structure the problem resembles the
facility location problem with staircase costs (FLSC), see for example Holmberg
(1984, 1985, 1994), Holmberg, Rönnqvist & Yuan (1999), or Harkness & ReV-
elle (2002), or the modular capacitated plant location problem (MCPL), see for
example Correia & Captivo (2003) or Correia & Captivo (2004). Our problem
diverges from these by having a continuous and differentiable objective function.
However, the solution strategy that we employed to tackle the problem brings us
within the framework of these papers, still exploiting the continuity, as we will
explain later in this section.

The problem of the Norwegian Meat Co-operative was first investigated in
Borgen, Schea, Rømo & Tomasgard (2000) in 2000. The problem instance has
435 possible locations and 435 demand points. In Borgen et al. (2000) it was
formulated as a mixed integer program with a piecewise linear objective, and a
standard branch-and-bound method was used in the solution procedure (using
xpress-mp). It was not possible to solve the problem to optimality due to the size
of the branching tree and weak lower bounds from the LP-relaxation. In fact,
the best results in Borgen et al. (2000) were obtained when using the commercial
software in combination with a simple heuristic which reduced the number of
possible locations to 45. Even this reduced problem instance was only solved
within 10% of optimality in 12 hours. Comparing this solution value with the best
lower bound found on the original problem showed a gap of 27%. The purpose
of the paper we present here is twofold. Firstly, we reduced the gap between the
lower bound and the upper bound on the problem instance mentioned above and
thereby find a good enough solution to the real life problem. Secondly, we find a
more efficient solution method in terms of the time spent.

The poor performance of the approach in Borgen et al. (2000) is due to the
piecewise linear approximation of the total cost curve in the facilities, which leads
to a weak LP-relaxation, as the authors indeed mention. We therefore propose
decomposing the problem using Lagrangean relaxation. The relaxation makes
the problem separable in the facilities, and we use an efficient algorithm based
on a solution method for continuous knapsack to solve the subproblems.

The technique of Lagrangean relaxation together with a heuristic to turn the
Lagrangean relaxation solutions into feasible solutions for the original problem
has been successfully applied already in the past on ordinary capacitated and
uncapacitated facility location problems. We refer to the celebrated paper by
Cornuejols, Fisher & Nemhauser (1977) and for other examples to Holmberg
et al. (1999), Shetty (1990) or Nemhauser & Wolsey (1988). The piecewise linear
relaxation brings the problem within the framework of staircase costs or modular
costs mentioned above. The continuity of the objective function allows us to
use another model for representing the choice of the capacities of the facilities
than those used in Holmberg & Ling (1997) and in Correia & Captivo (2003).
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In Holmberg & Ling (1997) Lagrangean relaxation on different constraints is
employed, in fact leading to a rather weak relaxation as noticed also in Correia
& Captivo (2003). Our Lagrangean relaxation resembles the one in Correia &
Captivo (2003). For deriving a feasible solution from infeasible optimal solutions
of the Lagrangean relaxations, we have another method than the one in the
latter paper. Our method always produces a feasible solution, whereas the one
in Correia & Captivo (2003) may fail to do so. Implementing this method (which
we did in 2001, indeed independently from Correia & Captivo (2003)), led to
satisfactory results for the Norwegian Meat Co-operative. We managed to reach
a solution which is provably within 1% of optimal in 95 minutes of computing
time on a PC.

In Section 2.2 we give a detailed description of the problem we have solved for
the Norwegian Meat Co-operative. We formulate the problem as a mixed integer
program in Section 2.3. In Section 2.4 we present the Lagrangean relaxation,
efficient solution of the subproblems, and a simple heuristic to generate feasible
solutions from the infeasible solution of the Lagrangean relaxation. In Section 2.5
we show computational results. Apart from the results on the practical problem,
we show additional computational tests on variations of the problem instance.

2.2 The Problem Data

In this section we describe in detail the cost components of the problem and
specify how we incorporate them in our model. We used unit cost data for
slaughterhouses based on a German study (Kern 1994). The costs include fixed
costs (capital cost, personal, insurance) and variable costs (energy, personal, wa-
ter, cleaning, repairs, classification, material, waste management). The average
cost function, cf. Figure 2.1, is close to convex and monotonically decreasing with
volume, representing a situation with economies of scale. In Figure 2.2 the total
cost curve of a facility is depicted. These functions are equal for all facilities. We
approximate each of them by a piecewise linear function.

The transportation time is defined as the total duration from loading the first
animal on the truck, until the last animal has left the truck at the slaughterhouse.
It can be split in two parts:

� The collecting time: the time consumed while collecting the animals within
the municipality, including driving time, stopping time and expected wait-
ing time at the slaughterhouse before the truck is unloaded;

� The travelling time: the time of going from the municipality centre of the
region where the animals are located to the municipality centre where the
slaughterhouse is located.
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Figure 2.1: Unit cost curve for slaughterhouses as a function of volume.
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Figure 2.2: Total cost curve for slaughterhouses as a function of volume.
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The collection time is approximated by the average time of filling up the car on a
collection round-trip. As there was no indication of differences between the differ-
ent regions we assumed equal velocity of the cars in all regions and no differences
in collecting times or costs based on regions. The transportation operator is paid
by the travelling distance, and has additional payment linear in the number of
animals on the truck. Thus, the transportation costs are linear in the distance to
the slaughterhouse and linear in the number of animals transported in the truck.

The choice between different car types is included in the model through pre-
processing. We include a large car and a medium sized car in our analysis. It
turns out that with our available cost data, large cars are always preferred to
small cars, if feasible. The increased cost in driving from the slaughterhouse to
the municipality and back is more than outweighed by the benefit of increasing
the number of animals transported per trip. Still, the range of the large cars
is limited. A larger car has to pick up more animals and thereby the collecting
time increases. The 8 hour rule must be satisfied. This means that within
some radius around a slaughterhouse the transportation costs are lower due to
the ability to use larger trucks. Outside this range smaller cars must be used
and the transportation costs increase slightly. We assume that cars pick up
animals from one municipality only, and for each combination of slaughterhouse
and demand municipality the best car size is found by preprocessing. This is
reflected in the transportation cost and time matrices. In Norway there are 435
municipalities, hence the travel cost matrix and the travel time matrix will both
have 4352 elements defining the cost and the time needed to go between each pair
of municipality centres.

2.3 The Mathematical Programming Model

In this section the problem is formulated as a mixed integer linear programming
problem. The model resembles the model for the uncapacitated facility location
problem (see e.g Nemhauser & Wolsey 1988). The main difference is in the defi-
nition of the facility costs, as mentioned in the previous section. We approximate
these by piecewise-linear non-convex, non-concave functions, modelled in a stan-
dard way by special ordered sets of type 2 (Williams 1999): using an ordered
set of continuous variables, one for each breakpoint of the function, with value
between 0 and 1. In a feasible solution at most two variables corresponding to
neighbouring breakpoints have positive values adding up to 1. They specify a
slaughterhouse volume as the convex combination of the two breakpoint volumes.

Let n be the number of points (municipalities) in the problem. We denote by K
the number of breakpoints in the facility cost functions, by f1, . . . , fK the break-
point volumes, and by p1, . . . , pK the unit slaughter costs at the breakpoints. The
decision variables employed for representing the function in the special ordered
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sets are yj1, . . . , yjK for a facility at location j, j = 1, . . . , n. We define f1 = 0.
In this way yj1 = 1 signifies that no facility is located at point j. To make sure
that the fixed cost of installing a facility is represented, f2 is chosen small. Hence
p2 becomes high as the fixed costs are shared only by these few units. Let yj ,
j = 1, . . . , n, be the K-dimensional vectors made up by all yjk, k = 1, . . . ,K. We
refer to Williams (1999) for a precise formulation of the constraints to represent
a special ordered set of type 2. We represent the feasible set of values for yj by
Yj , j = 1, . . . , n. Let di denote the supply (number of animals to be slaughtered)
in point i, and w the average weight of one unit of supply (one animal). By tij we
denote the unit transportation cost from point i to point j. We define parameters
aij as aij = 1 if the transportation time from i to j is less than 8 hours (including
the collecting time), and aij = 0, otherwise. We use the decision variables xij to
denote the number of supply units transported from point i to point j. Although
by its definition xij should be integer we allow it to take any non-negative real
value, as we will discuss after giving the model. We call the following model MIP:

min
∑n
i=1

∑n
j=1 tijxij +

∑n
j=1

∑K
k=1 fkpkyjk

s.t.
∑n
j=1 xij = di, i = 1, . . . , n, (2.1)

∑K
k=1 yjkfk = w

∑n
i=1 xij , j = 1, . . . , n, (2.2)

0 ≤ xij ≤ aijdi, i, j = 1, . . . , n, (2.3)
yj ∈ Yj , j = 1, . . . , n, (2.4)
xij ∈ R, i, j = 1, . . . , n. (2.5)

In the objective the term
∑K
k=1 fkpkyjk is the slaughter costs at location j. The

restrictions (1) enforce all supply from point i to be allocated to a facility. Re-
strictions (2) define the total volume allocated to the facilities. They also prohibit
allocation to points without a facility. Restrictions (3) prohibit transportation on
infeasible links. Restrictions (4) have been explained above. According to restric-
tions (5) x may take continuous values. This choice in the model is justified by
the fact that, for any given y, the remaining problem is a bipartite transportation
problem. Hence, if di, i = 1, . . . , n, are integer and the breakpoints are integer
multiples of w, then x will take integer values in any optimal solution.

There are no explicit binary variables in the model to indicate where facilities
are to be located. This information is obtained from the values of the x-variables
directly: no facility is located at point j if and only if xij = 0 for all i. The
information can also be derived from the values of the y-variables: no facility is
located at point j if and only if yj1 = 1.
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2.4 Lagrangean Relaxation

We define the Lagrangean relaxation by relaxing the supply constraints (1) in
MIP. Introducing the vector λ = (λ1, . . . , λn) of multipliers gives the Lagrangean
subproblem:

LR(λ) = min
n∑

i=1

n∑

j=1

tijxij +
n∑

j=1

K∑

k=1

fkpkyjk +
n∑

i=1

λi(di −
n∑

j=1

xij)

s.t.
∑K
k=1 yjkfk = w

∑n
i=1 xij , j = 1, . . . , n,

0 ≤ xij ≤ aijdi, i, j = 1, . . . , n,
yj ∈ Yj , j = 1, . . . , n,
xij ∈ R, i, j = 1, . . . , n.

We rewrite the objective function as

min
n∑

j=1

(
n∑

i=1

tijxij +
K∑

k=1

fkpkyjk −
n∑

i=1

λixij) +
n∑

i=1

λidi.

Given λ, the last term is a constant, and therefore the objective is separable in
j. We define LR(λ) =

∑n
j=1 gj(λ) +

∑n
i=1 λidi with gj(λ) the optimal value of

the Lagrangean subproblem for location j:

gj(λ) = min
∑n
i=1 (tij − λi)xij +

∑K
k=1 fkpkyjk

s.t.
∑K
k=1 yjkfk = w

∑n
i=1 xij ,

0 ≤ xij ≤ aijdi, i = 1, ..., n,
yj ∈ Yj ,
xij ∈ R, i = 1, . . . , n.

Solving The Subproblem

We describe how the subproblem for each location j can be solved. The total
slaughter cost is strictly monotonically increasing in the total weight. The unit
increase in cost between the breakpoints k and k + 1 is denoted by αk. We
define the breakpoints of the cost function in terms of the number of animals as
Fk = fk/w, k = 1, . . . ,K, and we define FK+1 = ∞. These breakpoints may
be fractional values, even if they are defined as a number of animals. The total
slaughter costs in gj(λ) at slaughterhouse j in these terms is then

∑K
k=1 wFkpkyjk.

The slope of the linear segment of the cost function between breakpoint k and
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k + 1 is denoted by αk: i.e., αk = w(Fk+1pk+1−Fkpk)
Fk+1−Fk

, k = 1, . . . ,K − 1, and
αK = wpK .

Let us consider the subproblem for location j. Related to this location we
define another K subproblems, one for each k = 1, . . . ,K. For each i = 1, . . . , n
let qik = tij − λi + wαk be the extra cost for bringing one more animal from
location i to location j. For k = 1, . . . ,K define

gjk(λ) = min
∑n
i=1 qikxij

s.t. Fk ≤
∑n
i=1 xij ≤ Fk+1,

0 ≤ xij ≤ aijdi, i = 1, ..., n,
xij ∈ R, i = 1, ..., n.

Thus, gj(λ) = mink gjk(λ), j = 1, . . . , n. To find gjk(λ) a method similar to
the one for solving continuous knapsack problems is applied (Martello & Toth
1990). That method has to be adapted for the lower bounds on total capacity.

We order the points i in order of increasing qik: q1k ≤ . . . ≤ qnk. Start setting
xij ’s equal to their maximum value aijdi in that order until for some order index
(i1) for the first time

∑i1
l=1 aljdl ≥ Fk. If q(i1)k < 0 set x(i1)j = a(i1)jd(i1).

Otherwise set x(i1)j = dFke −
∑i1−1
l=1 aljdl. In the latter case xlj = 0 for all l =

i1+1, . . . , n and the optimal solution is found. In the former case continue until for
some index (i2)j for the first time either q(i2)k ≥ 0, in which case we set x(i2)j = 0,
or
∑i2
l=1 aljdl > Fk+1, in which case we set x(i2)j = bFk+1c −

∑i2−1
l=1 aljdl. In

both cases set xlj = 0, for all l = i2 + 1, . . . , n. Non-existence of an index (i1)
means that

∑n
i=1 aijdi < Fk. In that case the problem is infeasible and we set

gjk(λ) =∞.

The Lagrangean Dual

The best lower bound on the optimal solution value of the original problem will
be found by solving the Lagrangean dual problem (LD):

max
λ

LR(λ).

We do so using sub-gradient optimization (e.g. see Nemhauser & Wolsey 1988).
The sub-gradient optimization routine that we have used is standard and often
used for facility location problems. For example, it can be found in Holmberg
et al. (1999).

The partial derivative of LR is given by

δi =
∂LR(λ)
∂λi

= di −
n∑

j=1

xij(λ),
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Initialise: Choose values for ε1 > 0, ε2 > 0, V , V1 and η0.
Set UB equal to the value of some approximate solution. Set LB← −∞.
Set v ← 1, v1 ← 1, choose starting point λ(1), and set η = η0.
Iterate: Until v = V ,

1. Determine LR(λ(v)).
If LR(λ(v)) > LB, set LB← LR(λ(v)) and v1 ← 0;
Else, set v1 ← v1 + 1. If v1 = V1 set η ← η

2
and set v1 ← 0;

2. Derive a feasible solution xG from x(λ(v)), yielding value G(v). If
G(v) ≤UB, set UB← G(v), x∗ ← xG and set η ← η0. If UB−LB< 1,
stop: UB is the optimal solution value.

3. Calculate the gradient s(v) = ∇LR(λ(v)), set step length t(v) =

η
UB−LR(λ(v))

||s(v)||2
, and λ(v+1) ← λ(v) + t(v)s(v).

4. If ||s(v)|| ≤ ε1 or ||λ(v+1) − λ(v)|| ≤ ε2, stop;
Else, set v ← v + 1.

Output: LB;UB;x∗.

Figure 2.3: Subgradient algorithm.

with xij(λ) the optimal solution of the Lagrangean relaxation with multipliers
λ. Hence, the gradient of LR is given by ∇LR(λ) = (δ1, . . . , δn). For sake of
completeness we present the subgradient algorithm in Figure 2.3 in pseudo-code.
The algorithm involves determination of an upper bound on the optimal solution,
the description of which is given below.

For given λ, LR(λ) yields a lower bound on the optimal solution value, but in
general the optimal solution of the Lagrangean relaxation is not a feasible solution
to MIP. In Step 2 in the algorithm we use a heuristic to find an upper bound G(v)

by finding a feasible solution to MIP based on the solution of the Lagrangean
relaxation in iteration v. In the next section we present this heuristic.

An Approximate Solution Based On Lagrangean Relaxation

In general the optimal solution of the Lagrangean relaxation is not feasible to
MIP. Here we show how to turn an optimal solution xij(λ) of the Lagrangean
relaxation, given λ, into a feasible solution of MIP:

1. We start by setting x1
ij = di if xij(λ) > 0, ∀i, j. We also introduce artificial

variables z1
j , which get value 1 if there exists an i such that x1

ij = di, and
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0 otherwise. (These variables indicate if a facility is located at point j or
not.)

2. If for i there are indices j such that x1
ij = di, then from among those j

choose the one with minimum tij , index j∗ say, and set x2
ij∗ = di and

x2
ij = 0, ∀j 6= j∗.

3. If for i, x1
ij = 0 ∀j and there exists indices j for which z1

j = 1 and aij = 1,
then choose from the latter the one with minimum tij , index j0 say, and
set x2

ij0 = di and x2
ij = 0, ∀j 6= j0.

4. If for i, x1
ij = 0, ∀j and no index j exists for which z1

j = 1 and aij = 1,
then set x2

ij = 0, ∀j.

5. Set z2
j = 0 if and only if x2

ij = 0, ∀i. Otherwise set z2
j = 1.

6. We finish by greedily locating facilities for the set of I = {i | x2
ij = 0, ∀j}:

For every j with z2
j = 0 determine Ij = {i ∈ I | aij = 1}. Choose the set

Ij′ with highest cardinality (ties are broken arbitrarily), locate a facility
in the corresponding point j′, i.e., change z2

j′ = 0 into z2
j′ = 1 and reset

x2
ij′ = aij′di, ∀i ∈ Ij′ . Repeat this step as long as the set I is not empty.

Given this approximate solution, a set of facilities is opened (those with z2
j = 1),

and supply is allocated as suggested by x2
ij ,∀i, j. At iteration v in the algorithm

from Figure 2.3 we denote this solution value by G(v) and define G = minv G(v).
This solution can be improved by fixing the locations of the facilities installed

according to z2 and using a general purpose branch-and-bound code to get the
best possible allocation given these locations, yielding a solution value denoted
by GS .

2.5 The Computational Results

We present here the most important results from solving the problem instance
with 435 location points and 435 demand points. In addition to the original
problem instance, we ran the algorithm with several related cases. A case is de-
scribed by a combination of scenarios for demand (D) and transportation costs
(C). The dataset (D,C) = (0, 0) represents the original problem instance. The
demand scenarios D = 1 . . . 10 are generated randomly from a multivariate nor-
mal distribution with expectation equal to the original animal population and
without correlation between the different regions. The cost scenarios consider an
increase in transportation costs of 20% and 40% as well as a decrease of 20% and
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40% with respect to the original cost data. The results from the calculations are
shown in Table 2.1 below. The costs are given in NOK 1000. The gap is defined
as UB(GS)−LB

UB(GS) .
In the computational experiments we use 6 breakpoints to approximate the fa-

cility cost curve. The points given in (tons/year, kr/kilo) are (rounded from the
nearest multiple of w, the average weight of an animal): (0, 0), (1, 8000), (1000, 8.03),
(3000, 4.07), (9000, 2.18), (40000, 1.10). The number and the values of the break-
points have been chosen in direct consultation with the Norwegian Meat Co-
operative, already by Borgen et al. (2000). Choosing the same ones also facil-
itates comparison to the first attempt to tackle the slaughterhouse problem in
Borgen et al. (2000).

To set parameters in the algorithm, we performed some first test runs, which
indicated that the best choice for η0 was around 2, and for both ε1 and ε2 it was
1.0 10−20. We set the maximum number of iterations to V = 25000. Test runs
showed that the initial values for the dual multipliers did not have much influence
on the performance. We used V1 = 225 to limit the number of iterations without
improvement, and report the best results in Table 2.1.

Table 2.1: Computational results
Dataset LB UB(G) UB(GS) Runtime Gap (%)
D C
0 0 241467 244162 243787 1:33:55 1.0%
0 +20% 259672 262013 261918 1:32:00 0.9%
0 +40% 277727 280067 279975 1:31:21 0.8%
0 -20% 222826 228464 226375 1:34:32 1.6%
0 -40% 204036 209641 207998 1:33:16 1.9%
1 0 238487 238595 238571 1:31:49 0.0%
2 0 234211 246894 242547 1:30:54 3.4%
3 0 244099 252300 250484 1:32:59 2.5%
4 0 241412 252578 248077 1:32:24 2.7%
5 0 243834 247560 247176 1:31:45 1.2%
6 0 230981 246829 243451 1:20:25 5.1%
7 0 248278 258753 256339 1:26:23 3.1%
8 0 244406 254396 252288 1:33:35 3.1%
9 0 243119 254074 250583 1:30:43 3.0%
10 0 245017 250707 249476 1:33:46 1.8%

The best results from the previous attempt to solve the original problem in-
stance in Borgen et al. (2000) was a solution with 11 slaughterhouses, a solution
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value of 258101 and an optimality gap of 27%. The best lower bound found for
the original problem instance using our approach is 241467. The best feasible
solution value(G) found by the 6-step method described in Section 2.4 is 244162.
The best solution found after improvement as described at the end of Section 2.4
has value GS = 243787. Hence, within running times of approximately 95 min-
utes the gap can be reduced to around 1%. Compared to previous results, our
method shows substantial improvements both in running time, lower bound and
upper bound.

Equally important is the effect on the solution itself. The method is able to re-
duce the optimal number of slaughterhouses from 11 to 9 for all problem instances
based on the original animal population1 (D = 0-instances). The best feasible
solutions for demand scenarios D = 1, 5, 10 have 9 slaughterhouses, whereas the
method finds solutions with 10 slaughterhouses for the remaining datasets.

The transportation costs account for 37.8% of the total costs in the original
problem instance. A raise in the costs of transportation of 40% results in a share
of about 45% of the total costs. Decreasing the transportation costs by 40 %
reduces the share to approximately 27% of the total costs. We also analyzed
the impact of changing the transportation costs when it comes to the sizes and
locations of slaughterhouses. This is shown in Table 2.2 where the best solutions
are given in terms of the chosen locations and their size. Locations are numbered
from 1 to 435 and the sizes of the slaughterhouses are given in tons. The level
of the transportation costs has only a small influence on the geographical loca-
tion of the slaughterhouses and the allocation of animals is also changing only
slightly. Solving the transportation problem given the locations from the original
problem instance, but with the alternative transportation costs, results in similar
solutions in terms of costs. All our analyses show that there are many alternative
solutions with almost the same cost level. What matters seems to be the number
of slaughterhouses, which should be as low as possible.

2.6 Conclusions

We have shown how to model economies of scale in uncapacitated facility loca-
tion problems. Our problem instance is motivated from an application where the
purpose is to decide location and size of a set of slaughterhouses. Still the formu-

1In fact, the best solution also has a tenth slaughterhouse, where only a single animal was
allocated. This comes from the fact that the animal is located on a remote island. The
facility cost of installing a single animal facility is about 2 million kroner in the model. Still
this is lower than the alternative cost of shifting the whole slaughterhouse structure along
the cost to bring this animal within the 8 hour limit for transportation to the closest facility.
In practice, of course, this is solved by a local barbecue.
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2.6 Conclusions

lation is general and can be viewed as an extension of the classical uncapacitated
problem.

When the non-convex and non-concave objective function is approximated by
a piecewise linear function using specially ordered sets, we seem to get a weak
LP-formulation. By using Lagrangean relaxation we are able to improve the lower
bound. Also by implementing a simple greedy heuristic we manage to find fea-
sible solutions from the infeasible Lagrangean solutions. The use of Lagrangean
relaxation reduces solution time for the problem and improves the quality of the
solutions dramatically.

There is reason to believe that the approach shown in this paper will perform
even better if the bounds are used in a branch-and-bound scheme. However, our
main interest was to solve this real life problem close to optimality to make the
company happy. This happened far before the gap was reduced to 1.0%, and
results from this research have been important input in the restructuring process
of the company.

The various runs also showed that a lot of different solutions exist to the
problem with little difference in solution values, but with different locations in
the solution.
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Paper 2

Stochastic Facility Location with General
Long-Run Costs and Convex Short-Run
Costs

Abstract:
This paper addresses the problem of minimizing the expected cost of locat-
ing a number of single product facilities and allocating uncertain customer
demand to these facilities. The total costs consist of two components: firstly
linear transportation cost and secondly the costs of investing in a facility as
well as maintaining and operating it. These facility costs are general and
non-linear in shape and could express both changing economies of scale and
diseconomies of scale. We formulate the problem as a two-stage stochastic
programming model where both demand and short-run costs may be uncer-
tain at the investment time. We use a solution method based on Lagrangean
relaxation, and show computational results for a slaughterhouse location case
from the Norwegian meat industry.

Keywords:Facility location, Stochastic programming, Lagrangean relaxation,
Economies of scale

3.1 Introduction

Mathematical programming approaches to model and solve facility location mod-
els have been extensively studied since the 1950’s (Baumol & Wolfe 1958, Cooper
1963). In this paper we deal with two issues that have been analyzed separately to
some degree, but rarely in combination: non-linear facility costs and stochasticity
in costs and demand. From a model perspective our work is a generalization of
an early paper by Balachandran & Jain (1976) addressing both these issues. Our
work may also be seen as a natural extension of Van den Broek, Schütz, Stougie
& Tomasgard (2006) where we look at the deterministic variant of the model.

Before we move on to a description of the structure of the paper, we will give a
short overview of relevant literature. Traditionally, the facility costs are treated
as fixed set-up costs and linear variable costs (see e. g. Kuehn & Hamburger 1963,
Hax & Candea 1984, Louveaux 1993). This is a situation where marginal costs
are constant and the economies of scale come from sharing the fixed cost on more
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units. In real-world applications however, both the fixed part of facility costs and
the marginal costs often depend on the size of the facility (Haldi & Whitcomb
1967, Norman 1979, Kern 1994). Usually the degree to which economies of scale
are experienced changes with volume and even diseconomies of scale are common
(see e. g. Baumol, Panzar & Willig 1982, Mathis & Koscianski 2002).

Changing economies of scale and diseconomies of scale have been represented
by means of a deterministic facility location problem with staircase costs (FLSC),
see for example Holmberg (1984, 1994),

Holmberg & Ling (1997) or Harkness & ReVelle (2002). The modular capac-
itated plant location model (MCPL) can be interpreted as a generalization of
the FLSC, see e. g. Correia & Captivo (2003) or Correia & Captivo (2006).
Other deterministic approaches are Soland (1974) which develops an algorithm
for a facility location problem with facility costs that are concave in the amount
produced and transportation costs that are concave in the amount shipped and
Domschke & Voß (1990) with a multi-product facility location model with con-
cave production costs. Van den Broek et al. (2006) present an application from
the Norwegian meat industry.

Good overviews over the literature on facility location under uncertainty can
be found in the reviews by Louveaux (1993) and Snyder (2006). Some exam-
ples are listed here: Louveaux & Peeters (1992) present a two-stage stochastic
programming problem with uncertainty in demand, selling prices, as well as in
production and transportation costs, while Laporte, Louveaux & van Hamme
(1994) include also establishment of transportation channels between a facility
and customers. In Eppen, Martin & Schrage (1989) a two-stage formulation for
capacity expansion is presented, and a multi-stage capacity expansion problem
under uncertain demand is presented by Ahmed, King & Parija (2003).

In our two-stage approach we model the first stage decision as a design capacity
interval rather than a fixed point. Inside this interval the variable cost in the
second stage is linear and equal to the long-run cost. Volumes outside this interval
may be produced subject to a piecewise linear short-term cost function in the
second stage. Hence our approach can be seen as a hybrid between the capacitated
and uncapacitated problem.

We decompose the problem using Lagrangean relaxation (Geoffrion 1974, Shapiro
1979). Relaxing the demand constraints makes the problem separable in the fa-
cilities and we apply an efficient algorithm based on a solution method for the
continuous knapsack problem to solve the subproblems. Some earlier examples
where Lagrangean relaxation has been used in combination with a heuristic to
solve deterministic facility location problems are Cornuejols, Fisher & Nemhauser
(1977), Shetty (1990), Beasley (1993), or Holmberg, Rönnqvist & Yuan (1999).
Lagrangean relaxation has also been used for solving the deterministic FLSP
and the MCPL, see e. g. Holmberg & Ling (1997), Harkness & ReVelle (2002),
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Correia & Captivo (2003) and Correia & Captivo (2006). Our algorithm for the
stochastic model is a modification of the one used by Van den Broek et al. (2006)
for the deterministic version of our problem formulation. The solution method
we choose allows for solving problems of sizes met in real life cases.

In Section 3.2 we provide the stochastic programming formulation for a facility
location problem with a non-linear, non-convex, non-concave objective function,
uncertain short-run costs and uncertain demand. Our solution method is pre-
sented in Section 3.3. A full-size real life case from the Norwegian meat industry
is described in Section 3.4. Computational results for this problem are shown in
Section 3.5. We present conclusions in Section 3.6.

3.2 The Mathematical Programming Model

We provide a two-stage stochastic programming formulation for a facility location
problem with non-convex non-concave facility costs, linear transportation costs
and uncertain demand. We approximate both the first-stage facility cost function
and the second-stage facility cost function by piecewise linear functions. The
cost functions that are underlying the first-stage and second-stage decisions are
the long-run and the short-run cost function, respectively (see e. g. Mathis &
Koscianski (2002) or Perloff (2004)). The typical S-shape of long-run total cost
curves results from a long-run marginal cost function that is decreasing and then
increasing in the production interval. The resulting long-run total cost curve then
exhibits economies of scale as long as the average cost function is decreasing.

In the short-run, costs are higher than the costs for the same quantities on the
long-run function. To each installed capacity, a short-run cost function is assigned
which is tangent to the long-run cost function at that capacity. The short-run
total costs represent the costs of operating a facility given the installed capacity.
These short run cost functions are convex under the assumption that the marginal
returns of the variable input factors are diminishing. The relationship between
long-run total costs and short-run costs is depicted in Figure 3.1.

We approximate the first-stage facility cost function by K linepieces, k =
1, . . . ,K. The breakpoint volumes are given as F1, . . . , FK+1, with P1, . . . , PK+1

being the corresponding total per unit costs of production. F1 and P1 are both
0. The first-stage decision is to determine the designed capacity interval for the
facilities. The designed capacity is described by the lower and upper capacity
limit of the chosen linepiece k on the first-stage facility cost function. After
the facilities are opened, production is assigned to the open facilities in order to
satisfy demand in the second-stage.

There is one second-stage cost function for each linepiece k in the first stage.
Each of these short-run cost functions consists of B line-segments, thus having
B + 1 breakpoints. We denote the breakpoint volumes of this function by Qkb.
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Figure 3.1: Approximated first-stage and second-stage facility cost function

The total costs at each breakpoint are given by Ckb. The slope of a linepiece
of the second stage cost function is given as ukb. We define Qkb̂ = Fk and
Qk(b̂+1) = Fk+1. Note that Ckb̂ = PkFk, and Ck(b̂+1) = Pk+1Fk+1, because
at the designed facility capacity interval decided by the first-stage investment
decision, the short-run cost curve is tangent to the long-run curve.

In the following we assume that all facilities have the same cost function. This
is not a necessary assumption for the modelling and decomposition approach we
have chosen, but we have not tested the quality of the heuristic used to find upper
bounds in cases where they are different.

A Two-stage Recourse Formulation

We introduce the following notation for the two-stage stochastic programming
problem:

� Sets

I Set of customer locations.
J Set of possible facility locations.
S Set of scenarios.
K Set of linepieces of the first-stage cost function.
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B Set of breakpoints of the second-stage facility cost function.

� Indices and superscripts

i Customer location.
j Possible facility location.
s Scenario.
k Linepiece of the first-stage cost function.
b Breakpoint of the second-stage facility cost function.

� Parameters, constants, and coefficients

Tij Cost of serving one unit of demand at customer location i from
facility location j.

Lij 1 if demand at customer location i can be served from facility
location j, 0 otherwise.

Qkb Production volume at breakpoint b of the second-stage facility
cost function given linepiece k of the first-stage cost function.

Cskb Costs at breakpoint b in scenario s of the second-stage facility
cost function given linepiece k of the first-stage cost function.

Ds
i Demand at customer location i in scenario s.

ps Probability of scenario s.

� Decision variables

yjk 1 if linepiece k is chosen as a first-stage capacity decision at
facility location j, 0 otherwise.

xsij Amount of customer demand at location i satisfied from facility
location j in scenario s.

µsjkb Weight of breakpoint b for linepiece k at location j in scenario s.

We also define an artificial breakpoint of the facility cost function F0 = 0 and
P0 = 0, such that choosing line piece k = 0 means that no facility is opened (We
already defined that F1 = 0 and P1 = 0).

With this notation we get the following formulation for our two-stage stochastic
facility location problem:

min
∑

s∈S
psQs(y) (3.1)

subject to
∑

k∈K
yjk = 1, ∀j ∈ J , (3.2)

yjk ∈ {0, 1}, ∀j ∈ J , k ∈ K. (3.3)
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The second-stage problem is given as

Qs(y) = min
∑

i∈I

∑

j∈J
Tijx

s
ij +

∑

j∈J

∑

k∈K

∑

b∈B
Cskbµ

s
jkb (3.4)

subject to

∑

j∈J
xsij = Ds

i , ∀i ∈ I, s ∈ S, (3.5)

xsij ≤ LijDs
i , ∀i ∈ I, j ∈ J , s ∈ S, (3.6)

∑

i∈I
xsij =

∑

k∈K

∑

b∈B
Qkbµ

s
jkb, ∀j ∈ J , s ∈ S, (3.7)

∑

b∈B
µsjkb = yjk, ∀j ∈ J , k ∈ K, s ∈ S, (3.8)

xsij ≥ 0, ∀i ∈ I, j ∈ J , s ∈ S, (3.9)

µsjkb ≥ 0, ∀j ∈ J , k ∈ K, b ∈ B, s ∈ S. (3.10)

Restrictions (3.2) ensure that only one capacity interval is chosen for each loca-
tion in the first stage. The objective function of the second-stage problem (3.4) is
given as the sum of transportation and production costs. Constraints (3.5) force
all demand at location i to be assigned. Constraints (3.6) only allow assignment
of demand to locations where the demand can be satisfied. Constraints (3.7)
and (3.8) ensure that demand is allocated to open facilities only. Restrictions
(3.8) also link the correct second-stage cost function to the first-stage decision.
(3.9)-(3.10) are the non-negativity constraints.

In this formulation we allow for uncertainty both in the right hand side in the
demand and in the objective in the short-run facility costs. The decomposition
approach we choose and the following sections also support both these uncertain-
ties. The heuristic used to find upper bounds in Section 3.3 is also general in this
respect, though better suited for the situation were only demand is uncertain.
The presented case in Section 3.4 has only demand uncertainty.

3.3 Lagrangean Relaxation

We define λ as the vector of Lagrangean multipliers associated with demand
constraints (3.5), relax these constraints and get the following Lagrangean sub-
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problem:

LR(λ) = min
∑

s∈S
ps


∑

i∈I

∑

j∈J
(Tij − λsi )xsij+

∑

j∈J

∑

k∈K

∑

b∈B
Cskbµ

s
jkb +

∑

i∈I
λsiD

s
i




subject to (3.2)-(3.3) and (3.6)-(3.10).
For a given λ,

∑
s∈S

∑
i∈I p

sλsiD
s
i is constant. The problem is therefore sepa-

rable in j. We write LR(λ) =
∑
j∈J gj(λ)+

∑
s∈S

∑
i∈I p

sλsiD
s
i with gj(λ) being

the optimal value of the Lagrangean subproblem for each location j:

gj(λ) = min
∑

s∈S
ps

[∑

i∈I
(Tij − λsi )xsij +

∑

k∈K

∑

b∈B
Cskbµ

s
jkb

]
(3.11)

subject to
∑

k∈K
yjk = 1, (3.12)

xsij ≤ LijDs
i , ∀i ∈ I, s ∈ S, (3.13)

∑

i∈I
xsij =

∑

k∈K

∑

b∈B
Qkbµ

s
jkb, ∀s ∈ S, (3.14)

∑

b∈B
µsjkb = yjk, ∀k ∈ K, s ∈ S, (3.15)

yjk ∈ {0, 1}, ∀k ∈ K, (3.16)
xsij ≥ 0, ∀i ∈ I, s ∈ S, (3.17)

µsjkb ≥ 0, ∀k ∈ K, b ∈ B, s ∈ S. (3.18)

Solving the Subproblem

The first-stage decision is to choose the designed capacity of the facility to open
at location j, which corresponds to choosing a linepiece k of the piecewise linear
long-run facility cost function. Once the linepiece k is chosen, the second-stage
facility cost function is convex piecewise linear with B linepieces, having strictly
increasing slopes ukb. The slope is given as ukb = Ck(b+1)−Ckb

Qk(b+1)−Qkb
.

When considering the problem (3.11)-(3.18) for each linepiece k ∈ K separately,
gj(λ) becomes separable in scenarios.
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The subproblem gsjk(λ) for a given location j, linepiece k and scenario s is:

gsjk(λ) = min
∑

i∈I
(Tij − λsi )xsij +

∑

b∈B
Cskbµ

s
jkb (3.19)

subject to

xsij ≤ LijDs
i , ∀i ∈ I, (3.20)

∑

i∈I
xsij =

∑

b∈B
Qkbµ

s
jkb, (3.21)

∑

b∈B
µsjkb = 1, (3.22)

xsij ≥ 0, ∀i ∈ I, (3.23)

µsjkb ≥ 0, ∀b ∈ B. (3.24)

Problem (3.19)-(3.24) is of the same type as the Lagrangean subproblem for
a given facility solved in Van den Broek et al. (2006) for deterministic facility
location problems with a general objective. Their subproblem is a continuous
knapsack problem with lower and upper capacity bounds and a linear objective,
while we have a continuous piecewise linear objective with B segments in (3.19).
Still we can adapt the method described by Martello & Toth (1990) for solving
continuous knapsack problems with linear objective function to the algorithm to
find gsjk(λ) as described in Figure 3.2.

In the initialization of the algorithm, the customer locations i are first sorted
according to increasing marginal costs of serving one additional unit of demand.
When we start out, we are at the first linepiece of the short run cost function
(b = 1). The marginal cost of serving another unit of demand in the facility is
equal to the slope of the linepiece, uk1. Then the marginal cost for the first units
allocated to facility j from region i may be expressed as Tij − λsi + usk1.

At Step 1 the customers are allocated to the facility at location j in this order.
This continues until either all customers are allocated (a), or the marginal cost
of all remaining potential customer regions i, Tij − λsi + uskb become positive,
i.e. the objective function can no longer be improved by serving customers using
facility j (b). In case the upper breakpoint of the linepiece is reached (c), only
part of the demand for this unit will be met and the rest will met using the next
linepiece of the second-stage cost function.

In Step 2 we calculate the objective function of the knapsack problem. The
first element of the sum is the value of the customers served within the capacity
of the previous linepiece, the next element is the value of all customers locations
we decided to serve on the current linepiece. The third element corrects the
objective function value in case the demand of the last customer on the previous
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Initialize: Set gs0jk := 0, b := 1, and i0 := 1.
Define qsi := Tij − λsi + usk1, ∀i.
Sort the locations i in order of increasing qsi : q

s
1 ≤ · · · ≤ qsn.

Repeat: Until b > B,

1. Set xsij := LijD
s
i , i = 1, . . . , n, until either

(a) xsij = LijD
s
i , ∀i,

or for the first time for some index (ib),

(b) qib > 0, or

(c)
ib∑

m=1

xsmj > Qk(b+1).

If (a): Set b := B and ib := n. The solution is optimal.
If (b): Set xsmj := 0, m = ib, . . . , n and b = B. The solution is optimal.
If (c): Set xsibj := Qk(b+1) −

∑ib−1
m=1 x

s
mj .

2. Calculate gsbjk = g
s(b−1)
jk +

ib∑

m=ib−1

qsmx
s
mj − qsib−1

(
Qkb −

ib−1−1∑

m=1

xsmj

)

3. If b < B: update qsm := Tmj − λsm + uk(b+1), m = ib, . . . , n. The sequence
of locations i is not changed.

4. Set b := b+ 1.

Calculate: gsjk(λ) = gsBjk + Csk1

Output: gsjk(λ) is the solution to (3.19)-(3.24).

Figure 3.2: Solution algorithm for knapsack problem
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linepiece spans across the two linepieces. In Step 3, we update the costs of serving
additional customers, as we are moving to a new linepiece with slope ub+1 of the
second-stage facility cost function, Step 4. This is the main modification of the
original algorithm in Martello & Toth (1990). It comes from the fact that in our
case the capacity limit is not strict, rather the unit cost changes whenever we
move from of one of the linepieces of the second-stage cost function to another
(see Figure 3.1). This update works because the cost update never changes the
ordering of customer regions i, just the cost level. The continuous knapsack is
still filled up using the units with lower unit cost first and we serve only the
customers with negative unit cost.

When the solution is optimal or the overall capacity limit of the facility has
been reached, the fixed costs are added to the objective function.

Now gjk(λ) =
∑
s∈S p

sgsjk(λ), and subproblem (3.11)-(3.18) is solved by gj(λ) =
mink gjk(λ). The computational complexity of this procedure is O(|I| · |K| · |S|).

Calculating an Upper Bound

In order to find the best lower bound on the optimal solution value of the original
problem, one has to solve the Lagrangean dual problem (LD):

LD = max
λ

LR(λ).

We solve LD by a sub-gradient optimization method, which is commonly used
for discrete problems. An early reference is Held, Wolfe & Crowder (1974). The
procedure we use is a straightforward implementation identical to the one found
in Holmberg et al. (1999).

Given λ, LR(λ) yields a lower bound on the optimal solution value, but the
optimal solution of the Lagrangean relaxation is in general not a feasible solution
to the original problem. We use a heuristic to find an upper bound UB(v) in each
dual iteration v by constructing a feasible solution for the original problem. The
heuristic for finding a feasible solution is presented in Figure 3.3. It starts from
the optimal solution of the Lagrangean relaxation, by installation of facilities
at locations j, which have yjk(λ) = 1 for k ≥ 1, and allocation of demand for
each scenario, given by xsij(λ). If not all demand is satisfied and there is no more
capacity available subject to the short-run capacity limit Qk(B+1)(see Figure 3.1),
the heuristic first tries to expand capacity of open facilities. If this does not
create enough total capacity then eventually the heuristic resorts to opening new
facilities. The rules used for expanding and opening facilities are described in
detail below. We introduce additional notation: MCj for the maximum capacity
available at location j and UCsj for the capacity used at location j in scenario s
in the solution under construction. In the following we use y,MC, xs and UCs
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Initialize:
Set UB(v) := 0, xsij := 0, yjk := yjk(λ), MCj :=

∑
k yjkQk(B+1), and

UCsj := 0, ∀i ∈ I, j ∈ J , k ∈ K, s ∈ S.

1. Define Is1 :=
{
i | xsij(λ) > 0

}
, s ∈ S.

For each scenario s: if Is1 6= ∅, do
AssignToExisting(s, Is1 , xs,MC,UCs).

2. Define Is2 :=
{
i | ∑j x

s
ij < Ds

i

}
, ∀s and I2 =

⋃
s Is2 .

3. While I2 6= ∅ do:

a) For each scenario s, if Is2 6= ∅,
do AssignToExisting(s, Is2 , xs,MC,UCs).

b) Update Is2 and I2.
If I2 6= ∅:

i. Define J1 :=
{
j | ∑k>0 yjk = 1, UCsj = MCj

}
.

ii. Do ExpandExisting(I2,J1, x,MC,UC).

end If.

c) Update Is2 and I2.

d) If I2 6= ∅: set J2 := {j | yj0 = 1}
i. Do OpenNew(I2,J2, y, x,MC,UC).

ii. Update Is2 and I2.

end If.

end While.

4. Calculate

UB(v) =
∑

s∈S
ps


∑

i∈I

∑

j∈J
Tijx

s
ij+

∑

j∈J

∑

k∈K

B∑

b=1

yjkγ
s
kb

(
Cskb + ukb

(∑

i∈I
xsij −Qkb

))


with γskb = 1, if Qkb <
∑
i∈I
∑
j∈J x

s
ij ≤ Qk(b+1), 0 otherwise.

Output: UB(v) is the cost of a feasible solution to problem (3.1)-(3.10).

Figure 3.3: Heuristic for upper bound
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to denote the vectors of all yj ,MCj , x
s
ij and UCsj , respectively, and x and UC to

denote the vectors of all xs and UCs.
The subroutine AssignToExisting takes a set of customer locations I and tries

to assign the demand of these customers to existing facilities. For each customer
i ∈ I, the subroutine first determines the facility j that can satisfy demand at
location i at lowest cost Tij . It then assigns as much customer demand as possible
to facility j. A detailed description of AssignToExisting is given in Figure 3.4.

AssignToExisting(Input:s, Is, xs,MC,UCs; Output: xs, UCs)
While Is 6= ∅:

1. Choose i ∈ Is.

2. Define J :=
{
j | ∑k>0 yjk = 1, UCsj < MCj , Lij = 1

}
.

3. While J 6= ∅ do:

a) Choose the location j∗ with lowest transportation cost Tij .

b) Set xsij∗ := xsij∗ + min
{
MCj∗ − UCsj∗ ;Ds

i −
∑
j x

s
ij

}
.

c) Update UCsj∗ := UCsj∗ + min
{
MCj∗ − UCsj∗ ;Ds

i −
∑
j x

s
ij

}
.

d) If
∑
j x

s
ij = Ds

i : do Is := Is \ {i} else
J := J \ {j∗}.

end While.

4. Is := Is \ {i}.

end While.

Figure 3.4: Subroutine AssignToExisting

The subroutine ExpandExisting takes as input parameters the set I of cus-
tomers with unsatisfied demand and the set J of facilities that have no more
capacity available. It then determines the facility j ∈ J that can serve most of
the customers in I, expands this facility, and assigns as much customer demand
as possible to it. This subroutine is shown in Figure 3.5.

The subroutine OpenNew, described in detail in Figure 3.6, has as input the
set I of customer locations with unsatisfied demand and the set J of locations
without facility. It determines the location j

′ ∈ J that can satisfy most customer
demand and assigns this demand to location j

′
.

The subroutine then installs a maximum capacity at this facility such that
the expected capacity usage is smaller than the installed capacity. If the used
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ExpandExisting(Input: I2,J1, x,MC,UC; Output: x, UC)
While J1 6= ∅ do

1. For each j ∈ J1 define I2j := {i ∈ I | Lij = 1}.

2. Choose the set I2j′ with highest cardinality.

3. If I2j′ 6= ∅ do:

a) Expand the facility at location j
′
, i. e. set yj′k := 0 and yj′ (k+1) := 1.

b) Update MCj′ :=
∑
kQk(B+1)yj′k.

c) For each i ∈ I2j′ and for each scenario s do:

i. Set xs
ij′

:= xs
ij′

+ min
{
MCj′ − UCsj′ ;D

s
i −

∑
j x

s
ij

}
.

ii. Update UCs
j′

:= UCs
j′

+ min
{
MCj′ − UCsj′ ;D

s
i −

∑
j x

s
ij

}
.

iii. If
∑
j′ x

s
ij′

= Ds
i , ∀s do: I2 := I2 \ {i} else J1 := J1 \

{
j
′
}

.

end For.

Else set J1 := ∅.
end If.

end While.

Figure 3.5: Subroutine ExpandExisting
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capacity exceeds the maximum capacity in one of the scenarios, we reset the
allocation of demand and exit the subroutine. In case the newly opened facility
is not enough to provide a feasible solution, step 3 of the heuristic is repeated
with the new facility included. The heuristic returns a feasible solution, yjk and
xsjk, and a solution value UB(v).

OpenNew(Input: I2,J2, y, x,MC,UC; Output: y, x, UC)
While J2 6= ∅ do

1. For each j ∈ J2 determine I2j := {i ∈ I2 | Lij = 1}.

2. Choose the set I2j′ with highest cardinality.

3. If I2j′ 6= ∅ do:
For each i ∈ I2j′ and for each scenario s:

a) Set xs
ij′

:= Ds
i −

∑
j x

s
ij .

b) Update UCs
j′

:= UCs
j′

+ xs
ij′
, ∀s.

end For.

4. Choose k such that k is the smallest number for which
E(UCj′ ) < MCj′ = Qk(B+1). Do yj′k := 1 and J2 := J2 \ {j

′}.

5. If ∃s′ ∈ S with UCs
′

j′
> MCj′ : set xs

′

ij := 0, UCs
′

j := 0, ∀i, j, J2 := ∅.

end While.

Figure 3.6: Subroutine OpenNew

When the locations are fixed, the resulting problem is a linear stochastic
transportation problem. To improve the solution, every 100 iterations we use
XpressMP to solve the stochastic transportation problem resulting from the open
facilities in that iteration’s heuristic solution. We also do this whenever a new
best solution is found by the heuristic. The version of the algorithm where we do
not try to improve the heuristic solution using XpressMP, only gives marginally
worse results in empirical computational studies.

3.4 Case Description

In this section we present a case from the Norwegian meat industry regarding
the location of slaughterhouses for cattle. The data used are the same as for
the deterministic model in Van den Broek et al. (2006) and a more detailed
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description of the case may be found there. We will here give a brief description
of the case for completeness and also describe how we generate and test scenarios.
Computational results for this stochastic model are presented in the next section.
There are 435 possible locations for facilities, corresponding to municipalities in
Norway. The facility cost function is equal for all facilities and represent the
first-stage costs. It is depicted as the solid line in Figure 3.7 and is based based
on a German study (Kern 1994).

Total slaughterhouse cost
Total slaughterhouse cost (approximated)

0

10000

20000

30000

40000

50000

co
st

(1
00

0
N

O
K

)
co

st
(1

00
0

N
O

K
)

0 10000 20000 30000 40000

volume (tons)volume (tons)

Figure 3.7: Total facility costs for slaughterhouses as function of the volume.

We approximate the first-stage facility cost function by 6 linepieces. The break-
points are given in (tons/year,NOK/kilo) and chosen as: (0, 0), (1.3, 6153.85),
(1000, 8.03), (5000, 3.43), (9000, 2.18), (17500, 1.34), and (40000, 1.1). The piece-
wise linear function used to approximate the total cost function is the dashed
line in Figure 3.7. In this case the short-run cost functions are assumed to be
deterministic. The second-stage facility cost function is represented by a con-
vex piecewise linear function with 3 linepieces. The second linepiece corresponds
to the linepiece chosen in the first stage (yjk = 1) and has a per unit cost of
uk2 = Pk+1Fk+1−PkFk

Fk+1−Fk
, see Figure 3.1. The per unit cost of the first linepiece is

given as uk1 = 0.75 ·min
{
uk1, u(k−1)1

}
and on the last linepiece it is defined as
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uk3 = uk2 + u(k+1)2 for k < 6 and uk3 = 5 · uk2 for k = 6. In addition the upper
limit on the capacity usage is set to Qk3 = 1.2 · Fk+1.

Two important elements are transportation time and transportation costs.
Transportation costs consist of two components. Firstly, there is the driving
cost from the slaughterhouse to the region (municipalities) where animals are to
be picked up and back to the slaughterhouse (travelling cost). Secondly, there is
the cost of collecting animals in the region (collecting cost). For approximating
these costs, Borgen, Schea, Rømo & Tomasgard (2000) estimated, based on em-
pirical data from the Norwegian Meat Cooperative, the average distance driven,
the average number of stops at farms, and the average time per stop. Based on
this the transportation costs are linear in the distance to the slaughterhouse and
linear in the number of animals transported in the truck.

Due to legal restrictions no more than 8 hours may pass since the first an-
imal is loaded onto the truck, until the last animal has left the truck at the
slaughterhouse.

This time is approximated in our model by the time to drive from the collection
region to the slaughterhouse (travel time) plus the average time of filling up the
truck on a collection round-trip (collecting time). For a large car the collection
round-trip takes approx. 3.75 hours, limiting the maximum travel time to 4.25
hours. This is an approximation as the range of the car is based on the assumption
that trucks will be filled up. The approximation may be improved by including
smaller car types as well, allowing them to drive a longer distance (as they will on
average pick up fewer animals). In the case presented here we also use a second
car type with smaller capacity, higher costs and wider range. The collection time
for the small car is approx. 3 hours, allowing a maximum travel time of 5 hours.
Allocation of animal municipalities to slaughterhouse municipalities which do not
satisfy the 8 hour rule is eliminated using the binary parameter Lij which is set to
0 for infeasible combinations (in our data this is about 82% of the combinations).

We aggregate demand per year in the same 435 municipalities that are candi-
dates for locations. Demand is here described as a farmer’s demand to deliver
animals to a slaughterhouse. We generate 3 groups of demand data sets drawn
from a multivariate normal distribution with expectation equal to the original an-
imal population of year 1999. The first group of data sets assumes that demand
is varying on a national level, i. e. the demand in all municipalities is perfectly
correlated. The second group considers regional demand variations. The mu-
nicipalities are grouped into 4 regions (Northern Norway, Mid-Norway, Western
Norway, and Southern Norway). Demand is perfectly correlated within a region,
but uncorrelated between the different regions. The last data sets assume no
correlation in demand between the different municipalities. For each of the three
groups we consider 2 test problems,the first with a standard deviation equal to
50% of the expected demand, whereas the other has a standard deviation equal

58



3.5 Computational Results

to 20% of the expected value. We then generate two problem instances for each
testproblem, one with with 100 scenarios and one with 10 scenarios. To avoid
unrealisic scenarios, any demand outcome in a municipality is restricted to be at
most 2 times the expected demand in that municipality (higher outcomes are set
to this limit). Also, negative demand outcomes are set to 0.

3.5 Computational Results

All calculations were carried out on a PC running a Linux kernel 2.6.11 with
a 3GHz Intel Xeon processor and 6GB RAM. XpressMP 2004D was used as
commercial solver whenever stochastic LP’s were solved. Test runs indicated
that the initial value for the Lagrangean multipliers has almost no influence on
the results. The maximum number of iterations is set to V = 3000. Problem
instances are described as a combination of the correlation level ((N)ational,
(R)egional, or (U)ncorrelated), standard deviation σ of the demand dataset (50%
or 20% of the expected demand), and the number of scenarios S. The initial step
size parameter, η0, and the number of iterations without improvement before
reducing the step size parameter η, V1, were adjusted for each problem instance
in order to produce reasonable results. The total costs are given in NOK 1000.
Results are given in Table 3.1. The gap between lower bound given by the
approximation of the Lagrangean dual and the upper bound given by the best
solution found is defined as UB−LB

LB . We also show the expected value of the
deterministic solution (EVDS) for each problem instance. This is the expected
value of the second-stage solution when using the first-stage solution from the
deterministic (year 1999) instance as input. A value of +∞ here means that the
second stage was infeasible for the deterministic first-stage solution.

For comparison, when we solve the deterministic problem using the algorithm
described in section 3.3, this results in a lower bound of NOK 233.2 million and
a best feasible solution with cost NOK 241.8 million after 3000 iterations with
a computation time of 38 minutes and 5 seconds. The optimality gap is 3.56%.
Our method solves the stochastic problem instances within 10% of optimality in
3000 iterations for all but two instances and often the gap is around 7%. This is
acceptable for practical purposes when solving large real life problem instances
which was the target of our investigation. If better accuracy is required our
approach may be integrated in a branch-and-bound scheme. If a time speed up
is needed the algorithm is suitable for parallelization. The time used to find
the solution in the current implementation increases linearly in the number of
scenarios and in the number of iterations.

In the deterministic model, the facility costs account for approximately two
thirds of the expected total costs. This ratio between facility costs and trans-
portation costs appears to be the same for the stochastic problem instances.
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We would like to test the quality of the solutions obtained for the different prob-
lem instances and their robustness regarding the scenario representation. There-
fore for each test problem we generated 10 new datasets for demand with 1000
scenarios each. We then tested how well the first-stage decisions of the determin-
istic problem, the 10-scenario instance and the 100-scenario instance performed
for each of these 1000-scenario instances by solving the resulting stochastic trans-
portation problems. The comparison can be found in Table 3.2 where we present
the average objective function values for each of these first stage decisions over
the new 1000 scenario sets. A value of +∞ means that the solution is infeasible
for at least one of the 10 instances with 1000 scenarios.

Firstly, in Table 3.2 we see that the solutions obtained from the original prob-
lem instances with 100 scenarios are feasible for all new datasets. The solution
from the deterministic problem is feasible for only two test problems. This is not
surprising as we got the same result in Table 3.1 when we tried it as a solution
for the 10 and 100 scenario instances. It is interesting to note that also the 10-
scenario first-stage solutions become infeasible when we increase the size of the
scenario trees, except for two of the test problems.

This leads us into a discussion of how well the stochastic models represent
the real life decision problem. Clearly the number of scenarios used to represent
uncertainty is important here. The cases with completely correlated and partly
correlated demand have 1 and 4 stochastic variables respectively. Then the first-
stage solutions based on 100 scenarios seems sound. The scenarios they are
based on give a good enough description of the underlying uncertainty, as the
first stage solution is also feasible and good for all the 1000-scenario instances.
The 10-scenario solutions do not achieve this same robustness regarding changes
in the scenario representation of the test problems.

If we look at the results for the uncorrelated cases in Table 3.2, we see that
the deterministic solution is better than all the other solutions except for one.
The reason is probably that when demand is uncorrelated, high demand in one
municipality is more likely to be canceled out by low demand in another munic-
ipality within the same slaughterhouse operating region. The demand variance
in a slaughterhouse region will in general be smaller than in the correlated cases.
In our particular case the situation with uncorrelated demand therefore at first
seems to be easier to solve as it can be argued that the deterministic solution
is a good heuristic choice for the first stage solution. This is not true. In fact
if one increases the number of scenarios used to represent uncertainty, also in
the uncorrelated case we will see combinations where demand in different regions
does not cancel out. In general the number of scenarios required to get a good
representation of the uncertainty increases both with higher standard deviations
for variables and when the variables are uncorrelated. The uncorrelated problem
instances have 100 scenarios to represent 435 stochastic variables which is too
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little to give a good enough description of the underlying uncertainty. We will in
the uncorrelated case in general need more scenarios to capture situations with
demand peaks in several municipalities within a slaughterhouse region. Results
from the correlated cases suggest that the expected value solution will often lead
to infeasibility in the second stage in such scenarios. One could argue though,
that if one accepts a moderate probability of infeasibility, the solution from the
deterministic problem may be a good heuristic for the uncorrelated cases.

3.6 Conclusions

We have shown how to model and solve a facility location problem with a general
piecewise linear objective for situations with changing economies of scale or dis-
economies of scale, uncertain costs and uncertain demand. By means of a greedy
heuristic, we generate feasible solutions from the solution of the Lagrangean sub-
problem. Based on sub-gradient optimization we solve the Lagrangean dual and
achieve acceptable optimality gaps for real-life problems. For many practical sit-
uations, like the case we investigated for the Norwegian Meat Cooperative, the
suggested Lagrangean relaxation and greedy approach presented here provide
good enough solutions to be valuable as decision support in strategic processes.

These models have been used by the Norwegian Meat Cooperative in cooper-
ation with the authors since 2000 in their strategic restructuring. The purpose
of the work has been to reduce the number of slaughterhouses for cattle from
an original number of 25 to utilize economies of scale. In the stochastic solu-
tions presented here the typical number of slaughterhouses included is around
11. At the time of writing in 2006, the Norwegian Meat Cooperative operates 16
slaughterhouses for cattle. The analysis and the models have given the company
an indication for the saving potential and also the number of slaughterhouses
needed to satisfy the 8 hour rule. The models have provided information that
many alternative solutions exist with approximately the same objective value,
indicating that the number of slaughterhouses is maybe more important than the
exact location. The stochastic model and results presented here has provided
the insight that not all of these solutions are equally robust when it comes to
demand variations and that solutions that are good on expectation, are not nec-
essarily good or even feasible in individual scenarios. It shows the importance
of solving the stochastic models and including enough scenarios, recognizing the
variability in demand and correlations. The solutions provided are better than
the ones we get from the deterministic problem both in terms of expected costs
and robustness against shortfall situations when demand is stochastic.
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Paper 3

Supply Chain Design under Uncertainty
using Sample Average Approximation and
Dual Decomposition

Abstract:
We present a supply chain design problem modeled as a sequence of split-
ting and combining processes. We formulate the problem as a two-stage
stochastic program. The first-stage decisions are strategic location decisions,
whereas the second-stage consists of operational decisions. The objective is
to minimize the sum of investment costs and expected costs of operating the
supply chain. In particular the model emphasizes the importance of opera-
tional flexibility when making strategic decisions. For that reason short-term
uncertainty is considered as well as long-term uncertainty. The real-world
case used to illustrate the model is from the Norwegian meat industry. We
solve the problem by Sample Average Approximation in combination with
Dual Decomposition. Computational results are presented for different sam-
ple sizes and different levels of data aggregation in the second stage.

Keywords: Supply chain design, Stochastic programming, Sample average ap-
proximation, Dual decomposition

4.1 Introduction

Supply Chain Management includes design of, planning for and operation of a
network of suppliers, production facilities, warehouses, and distribution centers
in order to satisfy customer demand. Strategic decisions regarding the design
of supply chains affect the ability to efficiently serve customer demand. The
design decisions should therefore not be taken without considering the effect on
the operational decisions (Lee & Billington 1992). In this paper we examine the
impact different modeling choices of the supply chain operations have on the
strategic decisions regarding its design and structure.

The importance of supply chain design was recognized already in the early
1970’s (see e.g. Geoffrion & Graves 1974). The early models however assume
the parameters that influence the design decisions to be deterministic. For long
planning horizons this assumption is unlikely to hold. Demands, prices for raw
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materials, components and finished products, locations of markets, etc. are usu-
ally highly uncertain over the lifetime of the supply chain and thus require a
supply chain that is robust and flexible enough to cope with the challenges of a
changing environment. These challenges lead to an increased interest in stochas-
tic programming models over the past 10-15 years.

Traditionally, the research literature focused on the facility location component
of supply chain management. Schütz, Stougie & Tomasgard (2008) is a recent ex-
ample of the facility location approach with uncertain demand, non-convex, non-
concave first-stage costs and convex second-stage costs. For a broader overview
over stochastic facility location, we refer to the reviews by Louveaux (1993) and
Snyder (2006).

We consider a model which covers several levels of the supply chain in contrast
to the classical one level facility location models or location-allocation models.
In this class of models, there is less literature on stochastic models. MirHassani,
Lucas, Mitra, Messina & Poojari (2000) present a solution method for a supply
chain design problem under uncertain demand that is based on scenario analysis.
They also discuss the use of Benders decomposition in a parallel implementa-
tion. Lucas, MirHassani, Mitra & Poojari (2001) consider a similar capacity
planning problem, but develop a solution method based on Lagrangean relax-
ation and scenario analysis. In Alonso-Ayuso, Escudero, Gaŕın, Ortuño & Pérez
(2003), a supply chain planning model is presented with binary first-stage deci-
sions and continuous second-stage decisions. They use an algorithmic approach
based on Branch-and-Fix to solve their problem. Alonso-Ayuso, Escudero &
Ortuño (2005) present several models for supply chain design and production
planning and scheduling. Different formulations for the problems are discussed.
They also provide computational experience for the supply chain design prob-
lem. Santoso, Ahmed, Goetschalckx & Shapiro (2005) consider a supply chain
design problem and a solution method based on Sample Average Approximation
(SAA) and Benders decomposition. Computational results from a real-world case
are also presented. Our paper extends this literature both in terms of solution
method and model scope, as explained below.

Our case is from the Norwegian meat industry, based on cooperation with
Nortura (www.nortura.no) and studies the effect on the strategic decisions of
including the operation of the supply chain under uncertain and highly variable
demand. The case is based on work carried out in 2005 and 2006 in restruc-
turing their production network. In Tomasgard & Høeg (2005), the operational
aspects of the same supply chain are modeled, but no computational results are
presented. That paper does not look into strategic decisions regarding locations
and capacities; the supply chain structure is fixed. Schütz et al. (2008) present a
stochastic one level facility location model for the same supply chain. There, the
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operational part is aggregated into a single time period and the model handles
only a single commodity and only the first part of the supply chain.

The main contribution of this paper is to model and solve a stochastic multi-
commodity supply chain design problem with a detailed description of operational
consequences from the strategic decisions. It has the same level of detail on the
operational side as Tomasgard & Høeg (2005) and handles in addition strategic
decisions regarding location and capacities at every level in the supply chain.
Because demand in the meat industry can exhibit huge variations over short
periods, the supply chain is not only subject to long-term demand uncertainty,
but also considerable short-term demand uncertainty. The long-term uncertainty
covers trends and the development of national demand for meat products over
a longer time horizon, whereas the short-term uncertainty deals with weekly
demand variations. We study in this paper alternative models where the level of
detail used to describe the operational decisions varies and discuss the impact on
the strategic decisions. To our knowledge, our paper is the first one to examine
whether or not the level of aggregation in the second stage affects the first-stage
solution in supply chain design models. Our analysis also examines how the use of
a stochastic model influences the decisions as compared to a deterministic model.

Modeling operational decisions in the second stage increases the model size
considerably. For our model we can only solve problem instances with three or
four scenarios when using a single processor computer with 6 GB of memory. To
solve the model we combine Sample Average Approximation (SAA) (Kleywegt,
Shapiro & de Mello 2001) with dual decomposition (Carøe & Schultz 1999). A
second contribution of the paper is therefore to investigate how the approach of
combining SAA with dual decomposition scales when distributed processing on
a higher number of processors is used to increase the number of scenarios in the
formulation. We also examine if increasing the number of scenarios have effect
on the quality of the first-stage solution.

In Section 4.2, we present a supply chain model for the Norwegian meat in-
dustry. The scenario generation procedure and the different cases for uncertain
demand are discussed in Section 4.3. In Section 4.4, we then give a generalized
two-stage stochastic programming formulation for a supply chain design problem
where the supply chain is modeled as a sequence of splitting and combing pro-
cesses. The solution scheme is presented in Section 4.5. Computational results
and an analysis of these results follow in Section 4.6. We conclude in Section 4.7.

4.2 The Supply Chain

The levels and the material flows of the supply chain used in our case are depicted
in Figure 4.1. Slaughtering takes livestock as input and produces carcasses and
intestines. It is followed by a two-step cutting process where the carcasses are split
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into smaller parts. The fourth level is processing where the intermediate products
from the previous levels are blended into finished products like sausages, ground
meat, etc. The finished products are then shipped to the distribution centers
where customer demand is satisfied. Intermediate products are sold to external
customers or shipped to all downstream facilities that process or sell the product.
Finished products are only sent to distribution centers.

Livestock

Slaughtering

ext. sales

Cutting
Level 0

ext. sales

Level 1

ext. sales

Processing Distribution

Finished products

Figure 4.1: Material flow in the supply chain of the Norwegian Meat Cooperative

For both the cutting and the processing levels several recipes may be chosen
in order to process or produce a given product. Which recipes to use at the
processing level depends on the availability of the different intermediate products
which in turn depends on the recipes chosen at the cutting level and eventually
on the supplied livestock. A more detailed description of the supply chain and
the different processes can be found in Tomasgard & Høeg (2002, 2005).

The part of Nortura’s supply chain that we consider consists of 17 slaughter-
houses, 18 plants at the cutting level, 9 processing facilities, and 9 distribution
centers. The task is to redesign the processing level of the supply chain. Internal
studies in Nortura revealed overcapacities in processing that have to be reduced.
Thus, the first-stage decisions are to determine which of the existing 9 facilities
should keep its processing unit in order to satisfy uncertain future demand. We
look at 13 possibilities for locating different production equipment at the process-
ing facilities. In the second-stage, we operate the production network in order
to satisfy customer demand for 103 finished products. As input we use seven
different animal types. For each of the animal types we have one recipe for the
production of intestines at the slaughtering level. The carcasses are split into
intermediate products at the first cutting level. We can choose among 35 recipes.
At the second cutting level, we have a set of 87 recipes to choose from. With
these recipes, both from the slaughtering and the cutting level, we produce 72
different intermediate products. All of the intermediate products can be used for

74



4.2 The Supply Chain

further processing or can be sold to external customers. At the processing level,
we can choose from 169 recipes to produce 103 finished products.

The objective is to minimize the sum of annualized fixed facility costs and the
expected annual operating costs of the supply chain. The first-stage costs are
the fixed facility costs. These costs include capital cost, personnel and insurance,
amongst others. We use annualized fixed costs in order to be able to compare
them with the operating costs in the second stage. For our problem instances, the
second-stage costs cover the variable costs of one year operating the production
network. The operating costs include production, transportation, and shortfall
costs. Production costs cover both direct and indirect costs like ingredients,
packaging, personnel, and energy. The transportation costs are given by contracts
between Nortura and the different transportation companies. They depend both
on origin and destination as well as the pallet type used for transporting the
products.

Our supply chain has as a set of facilities or plants which are possible locations
for different production processes. The production processes can be different
production lines, technologies or production phases. A production process is
either a splitting processes or a combining process. Combining processes are
common in manufacturing and assembling and often described by means of a
Bill of Material (BoM). The BoM lists which and how many input products pi
are needed to produce one unit of output product po (see Figure 4.2a). The
splitting processes are described in a similar manner. The process industry (e.g.
the chemical and petroleum industry) uses a so-called reversed Bill of Material
(rBoM) that defines in which output products po a unit of input product pi
can be split (see Figure 4.2b). The meat processing industry can be seen as
an example of a supply chain consisting of subsequent splitting and combining
processes (see e.g. Tomasgard & Høeg 2002, 2005). Our formulation allows for
choosing from different BoMs for the same process. In our model, each BoM is
assigned to the production of one specific output product in one specific process.
Correspondingly each rBoM is assigned to the processing of one specific input
product. For each location in our supply chain model we will have a set of
possible production processes and for each process, a set of possible products.

pi

BoM

po

(a) Combining process

pi

rBoM

po

(b) Splitting process

Figure 4.2: Combining and splitting processes
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4.3 Modeling Uncertainty

Here we describe the modeling of short-term and long-term uncertainty, the tem-
poral structure of the second-stage and the different demand cases.

Short-term vs. Long-term Uncertainty

One of the main purposes of our analysis is to examine the importance of modeling
the short-term operations and corresponding demand uncertainty when making
strategic decisions. There can be high variations in weekly demand for meat
products over the year. The products we consider in our problem instances
belong to three different product groups. Weekly demand per product group is
shown in Figure 4.3. We see that demand per product group changes by as much
as 50% within 1-2 weeks, demand for a single product as used in our problem
may exhibit even greater variations.
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Figure 4.3: Weekly demand for three different product groups in 2004

We refer to weekly changes in demand as short-term variations. Some of the
variations are due to seasonal changes in the demand pattern, but also daily
variations, for example due to weather, can have a significant impact on demand.
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These short-term variations are neglected when demand is aggregated in longer
time periods (or even a single period) in the second stage. The term long-term
uncertainty is used to describe changes in the total level of demand over a longer
time horizon like 5-10 years. This uncertainty is for example the market share of
the company, the total market size or trends in demand for meat products.

In order to study the effect of short-term uncertainty and operational decisions
on the strategic decisions, we have to generate scenarios for the short-term de-
mand. We then combine these scenarios with scenarios for changes in the total
demand level, i.e. the long-term uncertainty. The methods used to generate the
demand scenarios are described below.

Short-term supply chain planning is based on demand forecasts. To capture
the short-term uncertainty we use a methodology that combines forecasting and
scenario-generation (Nowak & Tomasgard 2007). We will briefly describe the
steps for the short-term scenario generation here:

1. For each product, we parametrize an autoregressive process of Nth order,
AR(N)-process, on historical data (see e.g. Hamilton 1994). For our prob-
lem instances, we use an AR(1)-process.

2. We then find the distribution of the historical prediction error for each
product. We assume that the error term for a given product is i.i.d. between
different time periods. The historically observed prediction errors then give
us a multivariate discrete distribution for all the products’ error terms.

3. On this empirical distribution, we perform a principal component analysis.
For the P products we get P principal components and sort them by the
share of variance they explain for the error distribution.

4. We calculate the first 4 moments of the empirical distribution of these
principal components and choose the K principal components explaining
the highest part of variance as stochastic in the further scenario generation
process. For the P −K remaining components we use their expected value.

5. We then generate S scenarios for the K stochastic principal components
using a moment matching procedure ensuring that the first 4 moments in
the scenarios are the same as in the historical distribution. The scenarios
are equally likely. The method used here is a modified version of the method
developed by Høyland, Kaut & Wallace (2003).

6. The scenarios for the principal components are then transformed back into
scenarios for the prediction error.

7. Finally, we combine the forecasting method with the scenario tree for the
prediction error to get demand scenarios rather than pure prediction error
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scenarios. This procedure is illustrated in detail in Figure 4.4: Using a
deterministic AR(N)-process as forecasting method, predicted demand in
period t + 1 is given by the formula x̂t+1 = α +

∑N
i=1 βixt+1−i. In our

case, we add a realization of the error term εst+1 as represented in the
scenario tree to the first prediction. Thus, the first prediction x̂st+1 =
α+

∑N
i=1 βixt+1−i + εst+1 is based on historical data and the error scenario

εst+1. When demand for several periods is predicted, the prediction may be
based on both historical demand, predicted demand, and the error scenarios
as shown in Figure 4.4.
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Figure 4.4: Combining forecasting and scenario generation

The advantage of this method is that correlations between stochastic variables
are taken care of through principal component analysis. Also, the principal com-
ponent analysis makes it possible to reduce the number of stochastic variables
used. In our case by using 150 principal components for 821 stochastic variables
we still explain 93% of the variance in the multivariate error distribution.

For the long-term uncertainty we choose a different approach. For reasons of
simplification, we model a possible change in long-term demand level without
differentiating between the different demand regions. We also assume that an
increase in total demand and a decrease in total demand are equally likely. We use
a uniform distribution to describe the demand level, with todays demand as the
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expectation. The scenarios for long-term uncertainty are generated by sampling
a factor from a uniform distribution on [0.5;1.5]. By multiplying this factor with
the demand in any demand scenario we model a change in the long-term demand
level. Alternatively, a long-term trend, for example a general increase or decrease
in demand level, would be easy to model by changing the interval.

Demand Uncertainty

To properly catch all weekly demand variations, one would have to model the
second-stage with 52 time periods. However, due to restrictions in both solution
time and model size, this is not practical. We have to reduce the number of time
periods in the second-stage by aggregating them while ensuring that we capture
the effect of short-term demand variations.

Demand in the Norwegian meat market follows typical seasonal patterns: dur-
ing the summer months, demand for barbecue products increases and both Easter
and Christmas have distinct demand patterns. We therefore split the year in four
seasons, each three months long. Usually, there is no correlation in demand be-
tween different seasons. We aggregate the first two months of each season into
one period and model the last month of each season with a weekly time resolution
(four weeks). This way, we capture the weekly demand variations around Easter,
early and late summer, and Christmas in detail.

We describe here the problem instances based on three criteria: long-term
uncertainty, short-term uncertainty, and aggregation.

STU The first problem instance we use is only taking short-term uncertainty
into consideration. We choose to generate 200 scenarios for each of the
4-week periods using the scenario generation method described above. As
we assume no temporal correlation between the different quarters, we can
use any combination of these scenarios, resulting in a total of 2004 pos-
sible demand scenarios. Demand in the cumulated two-month periods is
represented by its expected value. No long-term uncertainty is modeled.

LTU The second case only takes long-term uncertainty into account. We use
expected weekly demand to represent the demand variations over the year.
This demand data is then multiplied with a random factor drawn from a
uniform distribution on [0.5;1.5] to model the long-term changes in demand
level. The scenarios may be viewed as possible demand realization at a
point in the future where all scenarios are equally likely. Alternatively the
scenarios may be viewed as realizations of yearly demand over a set of years.
No short-term uncertainty is modeled.

LSTU The third case is a combination of long-term and short-term uncertainty.
We use the scenario tree from STU and multiply each scenario with a
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random factor that is uniformly distributed on [0.5;1.5]. This way, we
capture both effects.

For each of these non-aggregated cases, we define a corresponding aggregated
problem instances. In these aggregated problem instances (ASTU, ALTU, and
ALSTU), we replace the 20-period second stage problem by a single period prob-
lem. All demand, supply, and capacities are cumulated.

4.4 Optimization Model

Let us introduce the following notation for our two-stage stochastic programming
formulation:

� Sets

Fc Set of possible facility locations for combining processes.
Fs Set of possible facility locations for splitting processes.
W Set of possible warehouse locations.
L Set of all possible locations, L = Fc ∪ Fs ∪W.
C Set of customer locations.
U(j) Set of upstream locations able to send products to location j,

j ∈ L ∪ C.
D(j) Set of downstream locations able to receive products from

location j, j ∈ L.
Oc(j) Set of combining processes that can be performed at location j,

j ∈ Fc.
Os(j) Set of splitting processes that can be performed at location j,

j ∈ Fs.
O(j) Set of all processes that can be performed at location j,

j ∈ L, O(j) = Oc(j) ∪ Os(j).
O Set of all processes, O =

⋃
j∈LO(j).

P Set of products.
Pi(o) Set of input products for process o, o ∈ O.
Po(o) Set of output products of process o, o ∈ O.
B(o, p) Set of (reversed) bills of materials that can be used for

processing product p in process o, o ∈ O, p ∈ P.
S Set of scenarios.
T Set of time periods.

� Indices and superscripts

o Process index, j ∈ L, o ∈ O(j).
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b Bill of materials index, o ∈ O, p ∈ P, b ∈ B(o, p).
j, k Location indices, j, k ∈ L ∪ C.
p, q Product indices, p, q ∈ P.
s Scenario index, s ∈ S.
t Time period index, t ∈ T .

� Parameters, constants, and coefficients

Abpo,pi
Yield of product po in case one unit pi is processed with reversed
bill of materials b, o ∈ Os, pi ∈ Pi(o), po ∈ Po(o), b ∈ B(o, pi).

Bbpo,pi
Amount of product pi needed to produce one unit po using bill of
materials b, o ∈ Oc, pi ∈ Pi(o), po ∈ Po(o), b ∈ B(o, pi).

Cosjt Capacity of process o at location j in scenario s at time t,
j ∈ Fc ∪ Fs, o ∈ O, s ∈ S, t ∈ T .

Dps
jt Demand for product p at customer location j in scenario s at

time t, j ∈ C, p ∈ P, s ∈ S, t ∈ T .
F oj Fixed cost of locating process o at location j, j ∈ Fc ∪ Fs, o ∈ O.
Hps
jt Penalty for not satisfying one unit of demand of product p at

customer location j in scenario s at time t,
j ∈ C, p ∈ P, s ∈ S, t ∈ T .

P psjbt Cost of processing one unit of product p at location j using
(reversed) bill of material b in scenario s time t,
j ∈ Fc ∪ Fs, o ∈ O(j), p ∈ P, b ∈ B(o, p), s ∈ S, t ∈ T .

Spsjt Supply of product p at location j in scenario s at time t,
j ∈ Fc ∪ Fs, p ∈ P, s ∈ S, t ∈ T .

T psjkt Cost of transporting one unit of product p from location j to
location k in scenario s at time t, j ∈ L, k ∈ D(j), p ∈ P,
s ∈ S, t ∈ T .

ipsj0 Initial inventory of product p in scenario s at location j,
j ∈ W, p ∈ P, s ∈ S.

ps Probability of scenario s, s ∈ S.

� Decision variables

vpsjt Inventory of product p at location j in scenario s at period t,
j ∈ W, p ∈ P, s ∈ S, t ∈ T .

wpsjkt Amount of product p transported from location j to location k

in scenario s at time t, j ∈ L, k ∈ D(j), p ∈ P, s ∈ S, t ∈ T .
xpsjbt Amount of product p processed/produced at location j using

bill of material b in scenario s at time t, j ∈ Fc ∪ Fs, o ∈ O(j),
p ∈ P, b ∈ B(o, p), s ∈ S, t ∈ T .
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yoj 1 if process o is located at facility location j, 0 otherwise,
j ∈ Fc ∪ Fc, o ∈ O(j).

zpsjt Unsatisfied demand for product p at customer location j in
scenario s ∈ S in period t, j ∈ C, p ∈ P, s ∈ S, t ∈ T .

We now model our supply chain as two-stage stochastic program with recourse.
For reasons of simplicity, we denote the set of feasible combinations of first-stage
decisions yoj by Y . The uncertain parameters in this formulation are the costs,
supply, capacity, and demand. By ξ, we denote the vector of these parameters.
For our problem we have ξ = (P, T,H, S,C,D), where ξs is a given realization of
the uncertain parameters.

min
∑

j∈L

∑

o∈O(j)

F oj y
o
j +

∑

s∈S
psQ(y, ξs) (4.1)

subject to
y ∈ Y ⊆ {0, 1}|L|·|O| (4.2)

with Q(y, ξs) being the solution of the following second-stage problem:

Q(y, ξs) = min
∑

j∈L

∑

p∈P

∑

o∈O(j)

∑

b∈B(o,p)

∑

t∈T
P psjbtx

ps
jbt+

∑

p∈P

∑

j∈L

∑

k∈D(j)

∑

t∈T
T psjktw

ps
jkt +

∑

p∈P

∑

j∈C

∑

t∈T
Hps
jt z

ps
jt (4.3)

subject to

Spsjt +
∑

k∈U(j)

wpskjt =
∑

o∈Os(j)

∑

b∈B(o,p)

xpsjbt

j ∈ Fs, p ∈
⋃
o∈Os(j) Pi(o), t ∈ T , (4.4)

∑

o∈Os(j)

∑

q∈Pi(o)

∑

b∈B(o,q)

Abp,q · xqsjbt =
∑

k∈D(j)

wpsjkt

j ∈ Fs, p ∈
⋃
o∈Os(j) Po(o), t ∈ T , (4.5)

∑

p∈Pi(o)

∑

b∈B(o,p)

xpsjbt ≤ Cosjt · yoj

j ∈ Fs, o ∈ Os(j), t ∈ T , (4.6)

Spsjt +
∑

k∈U(j)

wpskjt =
∑

o∈Oc(j)

∑

q∈Po(o)

∑

b∈B(o,q)

Bbq,p · xqsjbt

j ∈ Fc, p ∈
⋃
o∈Oc(j) Pi(o), t ∈ T , (4.7)
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∑

o∈Oc(j)

∑

b∈B(o,p)

xpsjbt =
∑

k∈D(j)

wpsjkt

j ∈ Fc, p ∈
⋃
o∈Oc(j) Po(o), t ∈ T , (4.8)

∑

p∈Po(o)

∑

b∈B(o,p)

xpsjbt ≤ Cosjt · yoj

j ∈ Fc, o ∈ Oc(j), t ∈ T , (4.9)

vpsjt−1 +
∑

k∈U(j)

wpskjt = vpsjt +
∑

k∈D(j)

wpsjkt

j ∈ W, p ∈ P, t ∈ T , (4.10)
∑

k∈U(j)

wpskjt + zpsjt = Dps
jt

j ∈ C, p ∈ P, t ∈ T , (4.11)
v, w, x, z ≥ 0 (4.12)

The objective function (4.1) is the sum of the first-stage costs and the expected
second-stage costs. The first-stage costs represent the costs of installing a given
process at location j. The objective function of the second stage (4.3) consists of
three parts: firstly, the production costs, secondly, the transportation costs, and
thirdly, the shortfall penalty for unsatisfied demand. Restriction (4.2) defines the
feasible set for the binary first-stage variables. Constraints (4.4)-(4.6) describe
the splitting processes. Constraints (4.4) ensure that the external supply and
all products transported into the splitting node are processed. Restrictions (4.5)
force all produced products to be transported to a downstream node. Restrictions
(4.6) limit production to the available capacity in the splitting node. Constraints
(4.7)-(4.9) describe combining processes in a similar way. Constraints (4.7) ensure
that all products needed in the combining process are supplied at the combining
node. Constraints (4.8) make sure all produced products are transported to
downstream nodes and restrictions (4.9) take care of the capacity restrictions in
the combining nodes. Restrictions (4.10) are the mass balance constraints for
the inventory. With equations (4.11), we make sure that the sum of all products
transported into a demand node and shortfall is equal to customer demand.
Constraints (4.12) are the non-negativity constraints, the indices are omitted.

4.5 Solution Scheme

For the model (4.1)-(4.12) off-the-shelf solvers can typically solve instances with
3-4 scenarios (the amount of memory is in our experience the limit). A typical
problem instance in a practical case would have thousands of scenarios. We
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handle this using Sample Average Approximation (Kleywegt et al. 2001) and
dual decomposition (Carøe & Schultz 1999). These procedures are described in
the following subsections.

Sample Average Approximation

We use Sample Average Approximation (SAA) to reduce the size of problem
(4.1)-(4.12) by repeatedly solving it with a smaller set of scenarios. We gen-
erate random samples with N < |S| realizations of the uncertain parameters
and approximate the expected recourse costs by the sample average function
1
N

∑N
n=1Q(y, ξn). The problem (4.1)-(4.12) is then approximated by the follow-

ing SAA problem:

min
y∈Y



ĝ(y) :=

∑

j∈L

∑

o∈O(j)

F oj y
o
j +

1
N

N∑

n=1

Q(y, ξn)



 . (4.13)

The optimal solution of (4.13), ŷN , and the optimal value, vN , converge with
probability one to an optimal solution of the original problem (4.1)-(4.12) as the
sample size increases (Kleywegt et al. 2001). Assuming that the SAA is solved to
an optimality gap δ ≥ 0, we can estimate the sample size N needed to guarantee
an ε-optimal solution to the true problem with a probability of at least 1− α as

N ≥ 3σ2
max

(ε− δ)2
(|L||O|(log 2)− logα) , (4.14)

with ε ≥ δ and α ∈ (0, 1) .
In (4.14), σ2

max is related to the variability of Q(y∗, ξ) at the optimal solution
y∗ (see Kleywegt et al. 2001, for details). One would in practice choose N taking
into account the trade-off between the quality of the solution obtained for the
SAA problem and the computational effort needed to solve it. Solving the SAA
problem (4.13) with independent samples repeatedly can be more efficient than
increasing the sample size N . This procedure can be found in Santoso et al.
(2005), but we include it here for the sake of completeness:

1. Generate M independent samples of size N and solve the corresponding
SAA

min
y∈Y



ĝ(y) :=

∑

j∈L

∑

o∈O(j)

F oj y
o
j +

1
N

∑

n

Q(y, ξn)



 .

We denote the optimal objective function value by vmN and the optimal
solution by ŷmN ,m = 1 . . .M .
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2. Compute the average of all optimal objective function values from the SAA
problems, v̄N,M and its variance, σ2

v̄N,M
:

v̄N,M =
1
M

M∑

m=1

vmN and σ2
v̄N,M

=
1

(M − 1)M

M∑

m=1

(vmN − v̄N,M )2.

The average objective function value v̄N,M provides a statistical lower bound
on the optimal objective function value for the original problem (4.1)-(4.12)
(Norkin, Pflug & Ruszczyński 1998, Mak, Morton & Wood 1999).

3. Pick a feasible first-stage solution ȳ ∈ Y for problem (4.1)-(4.12), e.g. one
of the solutions ŷmN . With that solution, estimate the objective function
value of the original problem using a reference sample N ′ as

g̃N ′(ȳ) :=
∑

j∈L

∑

o∈O(j)

F oj ȳ
o
j +

1
N ′

N ′∑

n=1

Q(y, ξn).

The estimator g̃N ′(ȳ) serves as an upper bound on the optimal objective
function value.

The reference sample N ′ is generated independently of the samples used in
the SAA problems. Since the first-stage solution is fixed, one can choose
a greater number of scenarios for N ′ than for N as this step only involves
the solution of N ′ independent second-stage problems (4.3)-(4.12).
We can estimate the variance of g̃N ′(ȳ) as follows:

σ2
N ′(ȳ) =

1
(N ′ − 1)N ′

N ′∑

n=1


∑

j∈L

∑

o∈O(j)

F oj ȳ
o
j +Q(y, ξn)− g̃N ′(ȳ)




2

.

4. Compute the estimators for the optimality gap and its variance. Using the
estimators calculated in steps 2 and 3, we get

gapN,M,N ′(ȳ) = g̃N ′(ȳ)− v̄N,M and σ2
gap = σ2

N ′(ȳ) + σ2
v̄N,M

.

The confidence interval for the optimality gap is then calculated as

g̃N ′(ȳ)− v̄N,M + zα

(
σ2
N ′(ȳ) + σ2

v̄N,M

)1/2

with zα := Φ−1(1− α), where Φ(z) is the cumulative distribution function
of the standard normal distribution.
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Dual Decomposition and Lagrangean Relaxation

Step (1) of the SAA algorithm outlined above involves solving a two-stage stochas-
tic mixed-integer problem (4.13) with N scenarios. Even though the number of
scenarios in this problem is considerably lower than in the original problem (4.1)-
(4.12), it is still a large problem. To solve each of the SAA problems, we decom-
pose the problem in scenarios (see e.g. Carøe & Schultz 1999). In order to do
this, we introduce first-stage variables y1, . . . , yn for each scenario n = 1, . . . , N
and add non-anticipativity constraints y1 = · · · = yn to the problem (Rockafellar
& Wets 1991). For each j ∈ L, o ∈ O(j), we implement the non-anticipativity
constraints by the equation

∑N
n=1K

nyonj = 0 where K1 = 1−N and Kn = 1 for
n = 2, . . . , N .

We define λ as the vector of Lagrangean multipliers associated with the non-
anticipativity constraints and relax these. The resulting Lagrangean relaxation
is

LR(λ) = min
y∈Y





1
N

N∑

n=1


∑

j∈L

∑

o∈O(j)

(
F oj y

on
j + λojK

nyonj
)

+Q(yn, ξn)





 , (4.15)

with Q(yn, ξn) being the solution to the second-stage problem (4.3)-(4.12) given
realization n of the random parameters. Note that problem (4.15) is separable
in scenarios.

We find the best lower bound for our problem by solving the Lagrangean dual

LD = max
λ

LR(λ).

To solve LD, we use cutting planes (Kelley 1961) in a bundle method with box
constraints (see e.g. Lemaréchal 1986). Let k denote the superscript for the
current iteration and let ∇k =

∑N
n=1K

nynk be the subgradient of (4.15) with
respect to λk in iteration k. Further, define Lk = LR(λk)−λk ·∇k as the value of
(4.15) without the Lagrangean penalty term. By ∆ we denote the allowed change
in the Lagrangean multiplier. The Lagrangean multipliers are then updated
solving the following linear problem:

max
λk+1,φ

φ (4.16)

subject to

∀i = 1, . . . , k : φ ≤ Li +∇i · λk+1 (4.17)

λk+1 ≤ λk + ∆ (4.18)

λk+1 ≥ λk −∆ (4.19)

φ ∈ R, λk+1 ∈ R|L|·|O| (4.20)
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The Langrangean multipliers are optimal once φ is no longer changing. To speed
up the process of finding the optimal Lagrangean multipliers, we solve the single-
scenario subproblems only with an optimality gap γ ≥ 0 in the first iterations. We
then reduce γ while we proceed with the iterative procedure and eventually solve
all the subproblems to optimality. The idea behind this is that the solutions from
the first iterations provide an initial search direction, whereas we need a better
accuracy in the later iterations to determine the optimal value of the multipliers.

The solution yk produced in iteration k is in general not feasible for the SAA
problem (4.13) as the non-anticipativity constraints may be violated. Step (3)
of the SAA procedure requires a feasible solution for the original problem (4.1)-
(4.12), so we use a simple heuristic to turn the infeasible Lagrangean solution
into a feasible, but possibly not optimal solution. We generate a feasible solution
by fixing the binary first-stage variables at 1, if they are 1 in more than 50%
of the optimal single-scenario solutions and 0 otherwise. This heuristic may
produce feasible solutions far away from the optimal solution, thus increasing
the necessary number of iterations. However, it finds good enough solutions for
our problem instances. Once the first-stage variables are fixed, we solve the
second-stage problem (4.3)-(4.12) for each scenario and get an upper bound on
the optimal objective function value.

Quality of the Solutions

We choose not to solve the Lagrangean subproblems to optimality during the first
iterations. During these iterations, we may not get a lower bound on the optimal
objective function value. In fact, the calculated lower bound may actually be
above the optimal objective function value of the SAA problem. It may also
be bigger than the upper bound from a feasible solution. However, we can still
guarantee the quality of the feasible solution found.

If we solve all Lagrangean subproblems with an relative optimality gap γ ≥ 0
and stop the SAA procedure once the relative gap between upper and lower
bound estimator is less or equal to ε ≥ 0, then the feasible solution providing
the upper bound is a (ε+ γ + εγ)-optimal solution to the original SAA problem
(4.13).
Let LRγ be a the γ-optimal upper bound on the solution of the Lagrangean
relaxation LR(λ) (4.15). With vN being the optimal objective function value of
(4.13) and g̃N ′(ȳ) being an upper bound provided by the feasible solution ȳ, we
get the following 3 cases:

1. LRγ ≤ vN ≤ g̃N ′(ȳ): LRγ is a lower bound for vN , i. e. the solution ȳ
providing g̃N ′(ȳ) is ε-optimal for the SAA problem.
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2. vN ≤ LRγ ≤ g̃N ′(ȳ): LRγ overestimates vN , but not by more than γ.
The difference between LRγ and g̃N ′(ȳ) does not exceed ε, thus the feasible
solution ȳ is (ε+ γ + εγ)-optimal for the SAA problem.

3. vN ≤ g̃N ′(ȳ) ≤ LRγ : The difference between vN and LRγ is at most γ.
This means, that ȳ is a γ-optimal solution for the SAA problem.

4.6 Computational Results

The calculations were carried out on a Linux cluster, running kernel 2.6.9 with
each node consisting of two 1.6 GHz Dual-Core Intel Xeon 5110 processors and 8
GB RAM. The solution scheme is implemented in C++ using the library functions
of the Message Passing Interface (MPI) for distributed processing and Xpress
2006 runtime libraries as solver for the SAA problems. Xpress 2006 is also used
to solve the linear program updating the Lagrangean multipliers.

Problem Instances

We choose to solve all cases using M = 20 SAA problems. For the SAA problems,
we use sample sizes of N = 20, 40, and 60 scenarios. Dual decomposition is com-
bined with a simple heuristic as described in Section 4.5 for the non-aggregated
cases. The heuristic is used every 5 iterations to generate a feasible solution to
the SAA problem. We stop once the objective function value is within 5% of the
lower bound estimator. The best feasible solution of each SAA is then stored as
a candidate solution for valuation in the reference sample. For the aggregated
cases, each SAA problem is solved to optimality, so we store the optimal solutions
for evaluation in the reference sample. The size of the reference sample is set to
N ′ = 1000 scenarios.

Due to the size of the non-aggregated cases (STU, LTU, and LSTU), we use one
processor core per single-scenario subproblem. The single-scenario subproblems
have approx. 740000 variables and 165000 constraints. The aggregated problems
(ASTU, ALTU, and ALSTU) are much smaller in size, so we can solve stochas-
tic two-stage problems with 60 scenarios without having to decompose them.
The aggregated problems with 60 scenarios have approx. 2825000 variables and
926000 constraints.

Solving the reference sample with a given first-stage solution provides a statis-
tical upper bound on the optimal objective function value of the original problem.
For the aggregated problem instances, the statistical lower bound is provided by
the average of the M optimal objective function values of the SAA problems.

For the disaggregated problem instances, we normally get an optimality gap of
less than 5% after 5-10 iterations when using a γ-optimal solution of LR(λ) to
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calculate the estimator for the lower bound on the SAA problem. As γ > 0 during
these iterations, we cannot guarantee that this estimator is a true lower bound on
the optimal objective function value of the SAA problem (see Subsections 4.5 and
4.5). To provide a valid lower bound on the SAA problem and a valid estimate
for the optimality gap, we recalculate the lower bound estimator after the SAA
procedure is completed using the lower bound on the objective function value
of the Lagrangean relaxation. Test runs indicated that this procedure provides
good enough solutions considerably faster than using the lower bound on LR(λ)
directly or solving LR(λ) to optimality.

The statistical lower and upper bounds are shown in Table 4.1. We compare
the results of the different problem instances with the solution to the expected
value problem (EVP), i. e. the solution to the problem where the uncertain
parameters are replaced by their expected value. We compute the upper bound
provided by the EEV (see e.g. Birge & Loveaux 1997), the expected value of the
EVP solution, by finding the expected value of implementing the EVP first-stage
solution for the different cases. For each disaggregated case, we also give the
upper bound when using the solution from the corresponding aggregated case
(ASTU, ALTU, and ALSTU).

Firstly, we note that the feasible solutions from the SAA problems give an
upper bound that is approx. 16% lower than the EEV. The value of the stochastic
solution (VSS, see Birge & Loveaux 1997) is at least 180 mill NOK. Secondly,
using the first-stage solution from the corresponding aggregated case as a solution
for the disaggregated case works better than the solution from the EVP. However,
the solutions for the aggregated case still give expected results that are approx. 50
mill. NOK worse than the best solutions from the disaggregated cases. Thirdly,
the estimator for the lower bound is increasing in the number of scenarios while
its variance is decreasing.

In Table 4.2, we present the estimator for the optimality gap as well as the
upper and lower limit of the 90%-confidence interval for the best solution from
solving the SAA problems with the different sample sizes. The estimator for the
optimality gap is calculated by subtracting the lower bound (the SAA procedure)
from the upper bound (the reference sample). The optimality gap for the EEV
and the aggregated cases is calculated using the best lower bound from the SAA
problems.

The confidence interval for the optimality gap is getting narrower as we increase
the number of scenarios in the SAA problem. This is mainly due to a smaller
variance of the lower bound. Thus, increasing the number of scenarios, we can
give a better guarantee with respect to how close we are to the optimal solution.
The results for the optimality gap indicate that the solutions produced by our
scheme are good enough to be used in a practical application.
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Table 4.1: Statistical lower and upper bounds of the SAA problems for M = 20
and N ′ = 1000.

Lower bound Upper boundCase N
average σLB average σUB

STU 20 1182829 2784 1218230 1871
40 1185931 2835 1217120 1947
60 1186206 1920 1225730 1946

EEV 1484790 1939
ASTU 1269570 1950

LTU 20 1288111 37107 1384230 28545
40 1331218 28018 1349840 28158
60 1306378 25971 1381640 29665

EEV 1630180 30180
ALTU 1439330 30175

LSTU 20 1334359 44236 1327400 28671
40 1310124 25211 1340130 28927
60 1314995 22901 1382570 28540

EEV 1569500 30660
ALSTU 1383140 30595

ASTU 20 1118160 2396 1119390 1653
40 1119700 2149 1116760 1657
60 1119530 1496 1116250 1653

EEV 1393740 1670
ALTU 20 1268770 47003 1298210 27811

40 1244490 42382 1301490 28011
60 1277340 24330 1305560 27699

EEV 1513600 28456
ALSTU 20 1226480 31067 1235240 28100

40 1249040 35042 1251810 27826
60 1251200 27647 1246130 28574

EEV 1443540 28875
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Table 4.2: Estimated optimality gap and confidence interval with M = 20 and
N ′ = 1000.

Estimated optimality gap 90% Confidence Interval
Case N

[1000 NOK] % σgap min % max %
STU 20 35401 2.99 3354 30573 2.58 40230 3.40

40 31189 2.63 3439 26239 2.21 36139 3.05
60 39524 3.33 2734 35589 3.00 43459 3.66

EEV 298584 25.17 2728 294657 24.84 302512 25.50
ASTU 93364 7.03 2737 79425 6.70 87304 7.36

LTU 20 96119 7.46 46817 28725 2.23 163513 12.69
40 18622 1.40 39722 -38559 -2.90 75804 5.69
60 75363 5.76 39428 18504 1.42 109162 8.36

EEV 298962 22.46 41181 239682 18.00 358243 26.91
ALTU 108112 8.12 41177 48837 3.67 167388 12.57

LSTU 20 -6959 -0.52 52715 -82843 -6.21 68926 5.17
40 30006 2.29 38371 -25231 -1.93 85243 6.51
60 67575 5.14 36592 14899 1.13 120251 9.14

EEV 235141 17.62 53822 157662 11.82 312620 23.43
ALSTU 48731 3.66 53785 -28645 -2.15 126207 9.46

ASTU 20 1230 0.11 2911 -2960 -0.26 5420 0.48
40 -2940 -0.26 2714 -6847 -0.61 967 0.09
60 -3280 -0.29 2229 -6489 -0.58 -71 -0.01

EEV 274040 24.47 2721 270123 24.12 277957 24.82
ALTU 20 29440 2.32 54614 -49179 -3.88 108059 8.52

40 57000 4.58 50802 -16131 -1.30 130131 10.46
60 28220 2.21 36867 -24851 -1.95 81291 6.36

EEV 236260 18.50 37439 182366 14.28 290154 22.72
ALSTU 20 8760 0.71 41890 -51543 -4.20 69063 5.63

40 2770 0.22 44746 -61643 -4.94 67183 5.38
60 -5070 -0.41 39635 -62125 -4.97 51985 4.15

EEV 192340 15.37 39852 134972 10.79 249708 19.96
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The average CPU-time per processor core for solving a single scenario in the
SAA problem varies between 34 min (STU, N = 60) and 62 min (LTU, N = 60).
For cases STU and LSTU the CPU-time is slightly decreasing in the number of
scenarios, whereas it is slightly increasing for case LTU. The CPU-time for the
aggregated cases is increasing in the number of scenarios per SAA problem. This
is not surprising, as these problems are not decomposed. The CPU-time required
for these problems increases for case ASTU from 46 min (N = 20) to 206 min
(N = 60), for case ALTU from 32 min (N = 20) to 148 min (N = 60), and
from 36 min (N = 20) to 166 min (N = 60) for case ALSTU. Evaluating a given
candidate solution in the reference sample requires approximately 150 min for
the disaggregated cases when using 20 processor cores. The candidate solutions
of the aggregated cases need 10-15min of CPU-time.

Solution Properties

When we compare the stochastic solutions to the expected value solution, we
see that the solutions from the SAA problems open facilities with more capacity
than the EVP solutions. The solutions of the disaggregated problem instances
also install more capacity than the solutions of the aggregated cases. Case LTU
is an exception, as the best solution from the SAA problems installs less capacity
for ground meat than both the EVP solution and the ALTU solution. In Table
4.3, we show the amount of capacity installed per product group for the solution
providing the lowest upper bound for each case.

Table 4.3: Installed capacities for the different product groups

Installed Capacity (tons/year)Case
Ground Meat Sausages Cold Cuts

EVP 18216 14065 11381
STU 23100 23041 11381
LTU 17600 23041 11381
LSTU 18216 33645 11381
AEVP 18216 10604 7920
ASTU 18216 14168 7920
ALTU 18216 14168 7920
ALSTU 18216 14168 7920

Opening facilities with more capacity incurs higher fixed costs. The total costs
of operating the value chain however are lower for the stochastic solutions that
install more capacity. The additional capacity provides a flexibility in the second
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stage that reduces the expected second-stage costs by more than the first-stage
costs increase.

One of the purposes of solving several samples in the SAA approach is to find
good candidates for first-stage solutions to be tested in the reference sample. The
solution scheme produces 19 candidate solutions for case STU with N = 20 and
N = 40. When we solve this case with N = 60, we get 18 candidate solutions. For
case LTU, the number of candidate solutions produced by our heuristic decreases
from 20 for N = 20 to 7 when N = 60. Case LSTU with combined long-term
and short-term uncertainty is solved with 20 candidate solutions for N = 20,
15 candidate solutions for N = 40, and 20 candidate solutions for N = 60.
The upper bounds from these candidate solutions do not vary a lot, indicating
rather flat objective functions. The solution from the expected value problem
however performs poorly in all cases. The aggregated cases are all solved to
optimality and produce a single solution over all samples. The optimal solution
of the aggregated cases is the same for all problem instances, independent of the
number of scenarios or the type of uncertainty modeled.

4.7 Conclusions

In this paper, we have presented a supply chain design problem from the Norwe-
gian meat industry. The mathematical formulation of the problem can be applied
to any supply chain that consists of subsequent levels of splitting and combining
processes. It is also possible to adapt the model for supply chains that consist
only of splitting processes (e.g. the processing industry) or combining processes
(e.g. manufacturing and assembly-based industries). We model both detailed
operations of the supply chain and aggregated operations in the second-stage of
the problem and examine the effect of this modeling choice on the first stage
decisions. Due to the size of the non-aggregated problem instances, we use Sam-
ple Average Approximation in combination with dual decomposition to solve our
problem. Comparing the results from both types of second-stage models to their
corresponding expected value problem, we see that the first-stage decisions from
the stochastic problems result in considerably lower costs than the solution of
the EVP. We also note that the first-stage solutions from the aggregated problem
instances have higher expected costs than those from the disaggregated problem
instances in the disaggregated datasets, though not as high as the EVP solution.

The results also show that our solution scheme produces good first-stage solu-
tions already for small sample sizes in the SAA problem. Increasing the sample
size improves the lower bound on the optimal objective function value, thus im-
proving the quality guarantee on the optimality gap. Due to the distributed
processing of the solution scheme, we can increase the size of the SAA problems
by using more processors. For our problem instances, we see that increasing the
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number of scenarios in the SAA problems even reduces the total CPU-time, as
the bigger problems produce fewer candidate solutions that have to be evaluated
in the reference sample.

Even though we get good solutions for our problem instances, it might be
worthwhile to investigate if a more sophisticated heuristic for finding feasible
solutions produces even better results. We also need to reduce the runtime further
in order to include more product families and add more facilities to the supply
chain design decisions.

For the end-user in the meat industry, variations of this model have been used
in the strategy process to examine structural decisions. A traditional supply chain
model would not give the same insight as it lacks the operational detail. As the
results show: high variations at the operational level will influence the strategic
decisions. This cannot be captured properly in aggregated models. In addition,
even when it comes to pure operational models, we do not know any alternative
model that handles a combination of splitting processes and combining processes.
This is essential in the meat industry, in order to capture the value creation of
the cutting stage and the processing stage. Finally, one of the main advantages
for Nortura in practical use has been the ability to examine a set of supply chain
configurations that are almost equally good. This way, Nortura is more flexible
with respect to the future design of the supply chain, knowing that the chosen
design might not be optimal, but also that it will not be far away.
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Paper 4

The Impact of Flexibility on Operational
Supply Chain Planning

Abstract:
We study in this paper the effects of volume flexibility, delivery flexibil-
ity and operational decision flexibility in operational supply chain planning
under uncertain demand. We use a rolling schedule to plan supply chain
operations for a whole year. The planning horizon is 4 weeks with determin-
istic demand in the first week and predicted for the following 3 weeks. Using
a case from the Norwegian meat industry, we compare the annual operating
results of using a two-stage stochastic programming model to the determin-
istic expected value problem in order to discuss the impact of flexibility in
the supply chain.

Supply chain planning, Flexibility, Stochastic programming, Demand forecasting

5.1 Introduction

Flexibility and robustness are terms often used in connection with companies
that have to cope with uncertainty. Robust decisions are unaffected by uncertain
events, whereas flexible decisions can be adapted to the new situation. Sabri
& Beamon (2000) define two types of flexibility in supply chain management:
the first one is volume flexibility or excess capacity. This flexibility allows for
increasing or decreasing production according to realized demand. The second
type is delivery flexibility, i. e. the ability to change both delivered amount and
delivery date. Backlogging demand is a typical example exploiting this type
of flexibility, postponing the delivery date. In comparison, volume flexibility is
the supply chain’s ability to handle different volumes (for example depending on
strategic factors like installed capacities) and delivery flexibility is the ability to
handle demand as a flexible instead of a fixed entity. These two types of flexibility
are usually designed into the supply chain and are decided upon at a strategic
level.

In addition, we discuss a third type of flexibility which we denote operational
decision flexibility and a fourth type, storage flexibility. Operational decision
flexibility is used to describe flexibility in the supply chain operations: e. g. the

99



Paper 4 The Impact of Flexibility on Operational Supply Chain Planning

assignment of jobs to machines is changed due to a breakdown, a different bill
of material has to be used to produce the finished product, production volumes
are assigned to another production facility to exploit economies of scale. These
changes to the original production plan usually increase the production costs, but
might be necessary to satisfy customer demand. Operational decision flexibility
can also be used to exploit market opportunities, e. g. peaks in demand or high
prices for finished products.

Storage flexibility is the ability to transfer raw material or finished products in
time. Inventory held “just-in-case” to accommodate sudden peaks in demand or
bottlenecks in production capacity is one way of using this flexibility (it might
not be the most economic though). We can also utilize storage flexibility to
balance seasonal variations in supply and demand. For example, we can increase
the inventory of certain raw materials in times of cheap supply to reduce the
procurement costs at periods with high prices for the raw materials. Storage
flexibility is effectively limited by a product’s shelf life. We will discuss the
relations between these types of flexibility and the effects of uncertainty.

It is well known that flexibility only has a value in the presence of uncertainty
and that stochastic programming is able to explicitly value flexible decisions (see
e. g. Christiansen & Wallace 1998, Fleten, Jørgensen & Wallace 1998). There is
however little discussion about which types of flexibility have a value and under
which circumstances. Schütz, Tomasgard & Ahmed (2008) for example, point
out the value of volume flexibility in a supply chain design problem from the
Norwegian meat industry. They compare the design decisions of the deterministic
expected value problem to the two-stage stochastic programming problem. The
results show that using volume flexibility reduces the costs of operating the supply
chain by more than what is required to install the additional capacity. It is the
purpose of this paper to create insights in the relationship between uncertainty
and flexibility. We also discuss the conditions under which flexibility has a value.

The traditional approach to operational supply chain planning has been to
use deterministic optimization (see e. g. Hax & Candea 1984, Bitran & Tirupati
1993). Escudero (1994) for example formulates and solves a deterministic lin-
ear model for production and inventory planning in a multi-commodity supply
chain. More production-inventory models are discussed in the review by Goyal &
Gunasekaran (1990). Deterministic optimization however cannot value flexibility
correctly as the assumption of perfect foresight does not require flexible solutions.

The fact that deterministic models have problems capturing the real-world
dynamics together with the availability of sophisticated solution algorithms and
increased computational power, have lead to stochastic optimization becoming
more popular. Escudero, Galindo, Garćıa, Gómez & Sabau (1999), Alonso-
Ayuso, Escudero & Ortuño (2005), and Tomasgard & Høeg (2005) propose
stochastic programming models for operational supply chain planning. Escudero
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et al. (1999) propose a modeling framework for a supply chain with uncertainty
in product demand, component supply cost, and delivery time. Alonso-Ayuso
et al. (2005) formulate a multi-stage stochastic problem with significant deliv-
ery lead time. They consider product demand, production and supply costs, as
well as available resource capacity as uncertain. The fraction of total unsatisfied
demand that is lost is uncertain as well. Tomasgard & Høeg (2005) present a
linear two-stage stochastic programming model for the supply chain found in the
Norwegian meat industry.

Flexibility is often present in real-world supply chains, either as volume flex-
ibility (excess capacity), delivery flexibility, or operational flexibility (i. e.the
possibility of using different bills of materials in the production process). The
papers mentioned above mainly provide models and solution methods, but do
not explicitly discuss the issue of flexibility. To study the impact of flexibility
inherent in the supply chain on the value of flexible operational decisions, we
simulate the planning process for a whole year. We use a rolling schedule for
weekly planning with a planning horizon of 4 weeks (see e. g. Baker & Peterson
1979). Based on real-world data from the Norwegian meat industry, we compare
the annual operating results of four different planning models: a model with a
deterministic demand forecast, one with a stochastic demand forecast, a model
using perfect demand information with a rolling schedule and one with perfect
demand information for the complete year in a single model. We use the results
to examine the value of operational decision flexibility.

The traditional measures for comparing deterministic optimization models to
stochastic ones are the expected value of perfect information (EVPI) and the value
of the stochastic solution (VSS) (Birge & Loveaux 1997). As we use real demand
to evaluate our decisions, instead of a set of demand scenarios, we cannot use
these measures directly. The planning problem with perfect demand information
for the complete year serves as our benchmark. Comparing the operational results
from the other models to this one, we can actually calculate ex-post the value
of perfect information. As we re-optimize the planning problem each week using
a rolling schedule, we are only interested in the actual profits of implementing
the first-stage decisions. In contrast to the VSS, we only consider the realized
profits of both the stochastic planning model and the deterministic expected
value problem. The value of the recourse function is not part our analysis. The
difference in realized operational results is better described by the term ”value
of stochastic planning”. Here, we refer to the difference in accumulated profits
realized in the first week of each of the 52 planning problems.

We first describe the case from the Norwegian meat industry, i. e. the supply
chain and the planning problem, in Section 5.2. The mathematical formulation
for the two-stage stochastic programming problem is given in Appendix 5.A.
The forecasting and scenario generation methods are presented in Section 5.3.
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Computational results and the discussion of the impact of flexibility on these
follow in Section 5.4. We conclude in Section 5.5.

5.2 The Supply Chain Planning Problem

We consider a planning problem for a supply chain from the Norwegian meat
industry. The task is to balance supply and demand on a weekly basis, ensuring
that the right raw materials are available at the right production facilities in
order to satisfy demand. The planning horizon is four weeks. Demand for the
first week is known with certainty, whereas planning of production and material
flow for the remaining three weeks is based on predicted demand. Decisions are
implemented as rolling schedules (see e. g. Baker & Peterson 1979).

The two-stage stochastic programming formulation is based on the work by
Schütz et al. (2008) and adapted to the operational planning problem. The
complete formulation is given in Appendix 5.A.

The Supply Chain

The supply chain we consider consists of 17 slaughterhouses, 16 cutting plants,
14 processing facilities, and 7 distribution centers. The material flow within the
supply chain is depicted in Figure 5.1.

Livestock

Slaughtering Cutting

ext. sales ext. sales

Processing Distribution

Finished products

Figure 5.1: Material flow in the supply chain of the Norwegian Meat Cooperative

Livestock is delivered to the slaughterhouses which produce carcasses and in-
testines. These products are sent to downstream facilities: carcasses to the cut-
ting plants and intestines to the processing facilities. The cutting plants produce
intermediate products that are shipped to the processing plants. The process-
ing plants transform the intermediate products into finished products, which are
shipped to the distribution centers that satisfy customer demand. Intermediate
products from the slaughterhouses and the cutting plants can be sold to exter-

102



5.2 The Supply Chain Planning Problem

nal customers as well. See Tomasgard & Høeg (2002, 2005) for a more detailed
description of the supply chain.

Product Data

We consider a set of 100 end-customer products, belonging to five different prod-
uct groups (ground meat, convenience food, sausages, cold cuts, as well as steak
and fillet). The products we have chosen represent approx. 50% of total sales.
The supply of livestock is reduced to 50%, i. e. the amount of total sales repre-
sented by products in the dataset. We can choose among 125 recipes to produce
these products. The recipes need 34 different intermediate products that are
produced from six different types of livestock using one of 322 cutting patterns.

We test our model using two different time series for these products. The first
time series is real demand data of 2004 (see Figure 5.2). Demand in this figure is
aggregated into product groups, while the computations in this paper are based
on single products. Still we see that demand is quite volatile for some groups.
Demand for a single product may within 1-2 weeks change by far more than the
100% we observe in Figure 5.2. Other groups exhibit a relatively stable demand
most of the year.
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Figure 5.2: Real demand data for the different product groups in 2004

The second time series uses artificial demand. We apply the moment-matching
method by Høyland, Kaut & Wallace (2003) to generate a discrete approximation
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of the demand distribution for each product. The first two moments and the
correlation correspond to real demand, but the third and the fourth moments
are those of a normal distribution. We the use 52 of the datapoints as time
series for weekly demand of each product. The aggregated time series for the
different product groups are shown in Figure 5.3. Most of the peaks of the
real demand time series are removed, but also the periods with relatively stable
demand disappear. Using the datasets with artificial data, we can study the
model’s behavior without the distinctive demand pattern from the meat industry.
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Figure 5.3: Artificial demand data for the different product groups

The planning process is based on forecasting demand. We use an an autoregres-
sive process of 3rd order, AR(3)-process (see e. g. Hamilton 1994) as prediction
model for both real and artificial demand. For the real demand time series, we
perform an out-of-sample analysis as well as an in-sample analysis. For the out-of-
sample analysis, we parameterize an AR(3)-process based on demand data from
2003. The in-sample analysis used 2004 demand data to estimate the parameters
of the AR(3)-process. The prediction model of the in-sample analysis is overopti-
mistic with respect to the quality of the prediction, as we use data only available
ex-post. We can however eliminate the risk of the AR(3)-process being wrong
due to changes in the underlying stochastic process. For the artificial demand
data, we perform only an out-of-sample analysis. The different combinations are
summarized in Table 5.1.
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Table 5.1: Summary of the different prediction models.

Dataset AR(3)-parameter estimated for Model tested against
03 2003 demand data 2004 demand data
04 2004 demand data 2004 demand data
AD artificial data artificial data (out-of-sample)

5.3 Demand Forecasts and Scenario Generation

Short-term supply chain planning is usually based on a combination of demand
forecasts and already known demand. As historical sales data is easily available in
most companies, time series analysis is commonly used to predict future demand.
To model the short-term uncertainty, we use a methodology developed by Nowak
& Tomasgard (2007) that combines forecasting and scenario generation. We
present the main idea here.

Using an autoregressive process of Nth order, AR(N)-process , we can write
demand in the next period as

xt+1 = α+
N∑

i=1

βi · xt+1−i + εt+1,

where xτ are the historical demand observations and εt+1 is the prediction error.
Assuming that all uncertainty of future demand is assigned to the prediction

error ε, we can split the forecast into a perfectly predictable part and the predic-
tion error. Predicted demand for the next period can be rewritten as

x̂t+1 (ω) = α+
N∑

i=1

βi · xt+1−i + εt+1 (ω) ,

with ω being a realization of the uncertain events affecting future demand.
We then generate scenarios for the prediction error and create a scenario tree

for future demand. This methodology is independent of the forecasting method
and can therefore be applied to any method. A more detailed description of the
scenario generation procedure can be found in Schütz et al. (2008). We include
it here as well for the sake of completeness.

1. For each product, we parametrize an AR(N)-process on historical data.

2. We determine the distribution of the historical prediction error for each
product. We assume that the error term for a given product is i.i.d. between
different time periods. Thus, we get a multivariate discrete distribution for
all the products’ error terms.
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3. We then perform a principal component analysis on this empirical predic-
tion error distribution. The P principal components for the P products are
sorted by the share of variance they explain for the error distribution.

4. We calculate the first 4 moments of the empirical distribution of the K
principal components explaining the highest part of variance. For the P−K
remaining components we use their expected value.

5. We then generate S scenarios for the K stochastic principal components
using a moment matching procedure ensuring that the first 4 moments in
the scenarios are the same as in the historical distribution. The method
used here is a modified version of the method developed by Høyland et al.
(2003).

6. The scenarios for the principal components are then transformed back into
scenarios for the prediction error.

7. Finally, we combine the forecasting method with the scenario tree for the
prediction error to get demand scenarios rather than pure prediction error
scenarios. This procedure is illustrated in detail in Figure 5.4: Using a
deterministic AR(N)-process as forecasting method, predicted demand in
period t + 1 is given by the formula x̂t+1 = α +

∑N
i=1 βixt+1−i. In our

case, we add a realization of the error term εst+1 as represented in the
scenario tree to the first prediction. Thus, the first prediction x̂st+1 =
α+

∑N
i=1 βixt+1−i + εst+1 is based on historical data and the error scenario

εst+1. When predicting demand for several periods, the prediction may be
based on both historical demand, predicted demand, and the error scenarios
as shown in Figure 5.4.

The correlations between the stochastic variables, i. e. the prediction errors,
are taken care of through the principal component analysis. Using principal
component analysis, we can also reduce the number of stochastic variables as
only the most important principal components (those explaining most of the
variance) will be considered in the moment-matching procedure.

For our problem instances, we use the 25 products with highest revenues as
stochastic, i. e. we generate a scenario tree for the stochastic prediction error
using the method described above. The other products are considered to be
deterministic, i. e. their prediction error is 0. We generate 50 scenarios for 20
principal components. With these principal components, we explain 62% of the
variance for the dataset based on real demand data and 72% of the variance for
the dataset based on artificial demand data. The number of scenarios should be
higher in order to give a better description of the demand uncertainty, but we
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Figure 5.4: Combining forecasting and scenario generation

are limited by the amount of available memory of the computers used to solve
the problem instances.

We generate one scenario tree for the prediction error and use the same sce-
narios for all runs of the planning model. These prediction error scenarios, εst+1,
are only added to the first demand forecast, x̂st+1 (see Figure 5.4), in each opti-
mization run. Predicted demand in the final scenario tree changes as the demand
realizations used in the forecasting procedure are updated every time the plan-
ning horizon is rolled forward. It would have been possible to generate new
scenarios for the prediction error before each new optimization run. In this case,
the parameters of the AR(N)-process should be updated according to the new
information as well.

5.4 Computational Results

The calculations were carried out on a computer with two 1.6 GHz Dual-Core
Intel Xeon 5110 processors and 8 GB RAM, running Linux kernel 2.6.9. Xpress-
MP 2007 is used to solve all planning problems.
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Datasets and Problem Instances

We tested our model with 3 different datasets. Two of these datasets are based
on real demand data and tested against 2004 demand: the first set is using an
AR(3)-process parameterized on demand data from 2003 and the second set where
the prediction parameters are estimated based on demand data from 2004. The
remaining set is based on artificial demand data. It would have been desirable
to test the datasets against more real-world demand time series than just the
one from 2004. This would have provided a broader basis for the discussion
of the results presented in the next section. Unfortunately, we were not able
to retrieve more demand data for the products in our datasets. An alternative
would have been to generate synthetic time series and test the datasets against
these. However, generating a synthetic time series reflecting the true behaviour
of real-world demand is rather difficult. The results from the synthetic time series
might not be comparable to real-world results.

We define 12 problem instances for each of the three parameter set/time series-
combinations. These problem instances are characterized by the cutting capacity,
the handling of unsatisfied demand, and the shortfall costs. We examine the effect
of reducing the cutting capacity from 100% to 75% and eventually to 50%. We
choose the cutting level of the supply chain to study this effect as the it affects
the ability to use and build inventory for certain raw materials. The handling
of unsatisfied demand is modeled either as lost sales (LS) or as backlog (BL).
Backlog introduces the possibility of moving delivery into periods with higher
prices or a more suitable supply of raw materials. We penalize unsatisfied demand
not at all or using shortfall costs equal to 25% of the market price.

We compare the results of 4 different problem types for each problem instance.
The first problem type is the two-stage stochastic programming problem with
50 scenarios for the prediction error. The second problem type is the expected
value problem (i. e. the prediction error is 0). The third and the fourth problem
type use perfect demand information. Problem types 1-3 are implemented with
a planning horizon of 4 weeks using rolling schedules to plan production for the
whole year. The last problem type models the whole year in a single problem
with a planning horizon of 56 weeks (the same period as for the problem types
with rolling schedules). The sizes of the different problem types are summarized
in Table 5.2.

Results

We present the results of our calculations per problem instance. The problem
instances are identified by the time series the forecasting method is parameter-
ized on, the capacity available at the cutting level, the handling of unsatisfied
demand, and the shortfall costs. Problem instance 03 100 LS 0 for example, uses
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Table 5.2: Model size of the different problem types.

Problem type Variables Constraints
Stochastic problem, 50 scenarios (stoch) 3.6 million 1.9 million
Expected value problem (ev) 98000 50000
Perfect information, rolling schedule (pir) 98000 50000
Perfect information, 1 year (pi) 1.3 million 694000

a forecasting method parameterized on 2003 demand data, has 100% cutting ca-
pacity available, models unsatisfied demand as lost sales, and has no shortfall
costs. Problem instance AD 75 BL 25 denotes the instance with the forecasting
method being parameterized on artificial data, 75% cutting capacity, backlog and
a shortfall penalty equal to 25% of the market price.

For each problem instance, we compare the results of the four problem types
described in the previous section. The results from the 1-year planning problem
under perfect information are the benchmark for the other problem types, i. e.
the stochastic problem, the expected value problem, and the planning problem
under perfect information using rolling schedules. The results presented in this
section are best suited to show the effects discussed below. We observe the same
effects for all problem instances, although not all of them are as clear as the ones
shown here. The complete results are given in Appendix 5.B.

Let us look at the operating results first, i. e. revenues–production costs–
transportation costs–inventory costs. The shortfall penalty is not included here.
Figure 5.5 shows the results for the different problem instances for the dataset
based on parameterizing the forecasting method with demand data from 2003.
We present the results of each problem instance relative to the corresponding
benchmark. Therefore, we can only compare the results of the different problem
types for a given problem instance. The bars cannot be used to compare the
absolute operating profits of different problem instances.

To examine whether a stochastic planning approach is better than a deter-
ministic approach, we compare the accumulated operational results. At a first
glance, we see that the differences between the stochastic problems and the ex-
pected value problems are small, often less than 0.5%. For most of the problem
instances, the stochastic approach performs slightly better than the deterministic
expected value approach. Looking at the results of the dataset based on artificial
data, we observe basically the same results (see Appendix 5.B). This raises the
question why the accumulated profits are that similar, despite the fact that de-
mand is highly volatile. We will explore this issue in the following, in particular
discussing the value of flexibility.
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Firstly, comparing the absolute operating results for the dataset based on the
parameterization on 2003 demand data (Figure 5.6), we see that the differences
in absolute results when going from full cutting capacity to 75% cutting capacity
are quite small. This behaviour is a sign of existing volume flexibility, i. e. excess
capacity, in the system. This is again illustrated when comparing to the instances
with 50% capacity where abolute income drops substantially as volume flexibility
is gone.

Secondly, when comparing the relative values of Figure 5.5, there is a clear
trend that the 50% capacity cases are closer to the benchmark. For all problem in-
stances we observe that the inventory costs of the benchmark are 2-5 times higher
than for the other problem types due to tactical inventory build-up. We also ob-
serve considerably higher sales revenues for the benchmark problems. From this
we conclude that a planning horizon of 4 weeks is not long enough to plan tactical
inventory build-up for future peaks in demand. Neither of the short term models
with 4 week horizon are able to fully utilize storage flexibility. When volume flex-
ibility is sufficiently low (like in the 50% cases), the value of the storage flexibility
is reduced in the benchmark and the short-term models get closer in value.
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Figure 5.6: Absolute operating results of different problem instances based on
real demand data
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Thirdly, we observe that the stochastic problem increases its advantage over the
expected value problem when cutting capacity is reduced to 75% of the original
capacity. The reduction in volume flexibility requires a higher degree of opera-
tional decision flexibility, thus favouring the stochastic solutions. In one case for
example (03 100 BL 0 and 03 75 BL 0), the expected value problem outperforms
the stochastic problem by more than 2% at full cutting capacity. With only 75%
cutting capacity available, the stochastic problem achieves a higher operating
profit than the expected value problem. When further reducing cutting capacity
to 50% of the original capacity, we remove basically all volume flexibility, and
as a consequence, there is hardly any difference in annual operating results of
the stochastic problems and the expected value problem (see Figure 5.7). The
reduced cutting capacity seriously limits the ability to exploit operational deci-
sion flexibility in order to satisfy customer demand and build tactical inventories.
This is an interesting observation as it seems that even the deterministic model is
able to take advantage of a situation with high volume flexibility, when the vol-
ume flexibility is decreased the stochastic model does better. It is worth noting
that when the volume flexibility completely disappears, the operational decision
flexibility has no value again and the deterministic model suffices.
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Figure 5.7: The value of stochastic planning for different amounts of volume
flexibility

Finally, delivery flexibility is defined as the ability to change delivery dates.
This type of flexibility is modeled as backlog in our problem formulation. Pe-
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nalizing unsatisfied demand with 25% of the market price removes much of this
flexibility. Again we see a distinct advantage for the stochastic approach when
moving from a situation with free, supply chain inherent delivery flexibility (e. g.
no shortfall penalty, 03 100 BL 0) to a situation where the usage of delivery
flexibility is costly (e. g. shortfall penalty equal to 25% of the market price,
03 100 BL 25). We observe that full delivery flexibility is needed for the stochas-
tic model to utilize the operational decision flexibility when reducing volume
flexibility (see Figure 5.7). In case both volume and delivery flexibility are lim-
ited, the stochastic model’s ability to exploit operational flexibility is limited as
well, and the value of a stochastic model decreases (relative to the deterministic).
Interestingly, in the presence of delivery flexibility, both the stochastic and the
expected value planning problems outperform deterministic planning based on
perfect information for the next four weeks.

The costs are dominated by the production costs, accounting for approximately
94% of the total costs. Transportation costs stand for 5% of the total costs, with
the remaining 1% being the inventory costs. When comparing the total costs of
the different problem instances (see Figure 5.8 for problem instances based on
real demand), we see that most of the real world instances vary slightly around
99% of the corresponding benchmark costs. It is also worth noting that some of
the stochastic problems achieve higher operating results than the corresponding
expected value problem, even though they incur higher costs. The problem in-
stances based on artificial data exhibit a greater variability in total costs, but we
observe similar results (see Appendix 5.B).

5.5 Conclusions

We have discussed the value of different types of flexibility in operational supply
chain planning subject to uncertain demand. Even though it is well understood
that flexibility only has a value in an uncertain environment, there has been little
discussion about the value of different types of flexibility. We distinguish between
flexibility already inherent in the supply chain (for example volume flexibility
based on excess capacity) and flexibility from operational decisions (like choosing
a bill of material). Based on real-world data from the Norwegian meat industry,
we study the impact of volume flexibility, delivery flexibility, storage flexibility
and operational decision flexibility on the operational profits of a supply chain.
Our findings should be applicable to other industries as well.

The results of our analysis show that – given sufficient flexibility in the supply
chain – a deterministic approach to supply chain planning may result in equally
good (or better) results as a stochastic planning model. The main reason behind
this is that flexibility already present in the production system can be used by
both the deterministic and the stochastic models. Take for example volume
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Figure 5.8: Costs of the different problem instances based on the 2003 parame-
terization relative to their benchmark
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5.A Appendix: The Model Formulation

flexibility: given large excess capacity (and the absence of production lead time),
volume flexibility can be used for make-to-order production. In that case, there is
no need for flexible operational decisions and as such the stochastic model cannot
provide additional value. Reducing volume flexibility, make-to-order is no longer
possible and operational decision flexibility becomes more important. Flexible
decisions now have a value as production plans may have to be changed in order
to be able to satisfy demand. Once volume flexibility is removed, operational
decision flexibility has little value as one has to focus on satisfying the most
profitable orders first.

We observe a similar effect for delivery flexibility as well: if a lot of delivery
flexibility is present in the supply chain, we can easily move demand to another
time period. Thus we are able to manage bottlenecks in production and supply of
raw materials by smoothing demand. Reducing delivery flexibility, we need flex-
ible decisions to cope with peaks in demand. Once we remove delivery flexibility,
we are no longer able to exploit operational decision flexibility.

The different types of flexibility are connected to each other. Their value
depends on the presence of other types of flexibility and also on the planning
horizon: when the planning horizon is long enough to value the build-up of tacti-
cal inventories (as in the benchmark problems), storage flexibility gets important
as well, but the value is reduced if volume flexibility is too low to utilize it.

As a general conclusion, one should study the flexibility already inherent in
the supply chain. If a lot of volume and delivery flexibility is present in the
supply chain, operational decision flexibility usually has less value. Redesigning
the supply chain, reducing both volume and delivery flexibility (which are expen-
sive), can actually reduce its total costs. This implies using operational decision
flexibility and storage flexibility instead. In this case, a stochastic model might
be required for operational planning as it will provide flexible decisions. Hence,
this can be viewed as transferring flexibility from the strategic level (capacities
and delivery agreements) to the operational level (operations and storage).

This paper provides some initial insight in the relationship between uncertainty
and the need for flexibility. More research is required to further increase the
understanding of the value of different types of flexibility and the conditions
under which this flexibility is valuable.

5.A Appendix: The Model Formulation

Modeling the Supply Chain

We model the supply chain as a sequence of production processes rather than a
network of production facilities. The production process can be different produc-
tion lines, technologies, or production phases. We distinguish between combining
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processes and splitting processes. Combining process are common in manufac-
turing and assembling and often described using a Bill of Material (BoM). The
BoM lists the type and number of input products pi required to produce one out-
put product po (see Figure 5.9a). Splitting processes are described similar: The
process industry uses a so-called reversed Bill of Material (rBoM) that defines in
which output products po one unit of input product pi can be split (see Figure
5.9b). The representation of the supply chain and the mathematical formulation
are based on Schütz et al. (2008). The main differences in the model formulation
lie in the objective function and the non-anticipativity constraints due to the
focus on operational decisions.

pi

BoM

po

(a) Combining process

pi

rBoM

po

(b) Splitting process

Figure 5.9: Splitting and combining processes

If a facility houses several production processes, we include multiple nodes,
one for each process, for this facility in our supply chain network. This increases
the size of the network, but enables us to properly model the material flow in
the network. An example of a supply chain consisting of three nodes with two
production facilities, two splitting processes, and one combining process is shown
in Figure 5.10.

Facility 1

Facility 2

C

S

S

C

S – Splitting Process

– Combining Process

Figure 5.10: Example for a simple supply chain with 2 facilities and 3 processes
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Our formulation allows us to choose from different BoMs for a given production
process. Each BoM is assigned to the production of a given product using a spec-
ified production process. Correspondingly, each rBoM is assigned to processing
one specific input product.

Mathematical Formulation

The operational supply chain planning problem is formulated as a two-stage
stochastic programming problem (see e. g. Kall & Wallace 1994, Birge & Loveaux
1997). The objective is to maximize the expected profits over the planning hori-
zon. The main focus in terms of decisions is on production levels, inventory
build-up, and material flow between the facilities at the different levels of the
supply chain.

Let us introduce the following notation for our problem formulation:

� Sets

Fc Set of possible facility locations for combining processes.
Fs Set of possible facility locations for splitting processes.
W Set of possible warehouse locations.
L Set of all possible locations, L = Fc ∪ Fs ∪W.
C Set of customer locations.
U(j) Set of upstream locations able to send products to location j,

j ∈ L ∪ C.
D(j) Set of downstream locations able to receive products from

location j, j ∈ L.
Oc(j) Set of combining processes that can be performed at location j,

j ∈ Fc.
Os(j) Set of splitting processes that can be performed at location j,

j ∈ Fs.
O(j) Set of all processes that can be performed at location j,

O(j) = Oc(j) ∪ Os(j).
O Set of all processes, O =

⋃
j∈LO(j).

B(o) Set of (reversed) bills of materials that can be used for process o,
o ∈ O.

P Set of products.
Pi(o) Set of input products for process o, o ∈ O.
Po(o) Set of output products of process o, o ∈ O.
N Set of event nodes in the scenario tree.
S Set of scenarios.
T Set of time periods.

117



Paper 4 The Impact of Flexibility on Operational Supply Chain Planning

� Indices and superscripts

b Bill of materials index, b ∈ B(o), o ∈ O.
j, k Location indices, j, k ∈ L ∪ C.
o Process index, o ∈ O(j), j ∈ L.
p, q Product indices, p ∈ P.
n Event node index, n ∈ N .
s Scenario superscript, s ∈ S.
t Time period index, t ∈ T .

� Parameters, constants, and coefficients

Abpo,pi
Yield of product po ∈ Po(o) in case one unit pi ∈ Pi(o) is
processed with reversed bill of materials b ∈ B(o), o ∈ Os.

Bbpo,pi
Amount of product pi ∈ Pi(o) needed to produce one unit
po ∈ Po(o) using bill of materials b ∈ B(o), o ∈ Oc.

Cojt Capacity of process o at location j at time t.
Dps
jt Demand for product p at customer location j in scenario s

at time t.
Hp
jt Shortfall penalty for one unit of demand of product p at

customer location j at time t.
Ipjt Cost of holding one unit inventory of product p at facility j

in period t.
P pjbt Cost of processing one unit of product p at location j using

(reversed) bill of material b at time t.
Spjt Supply of product p at location j at time t.
Rpjt Revenue of selling one unit of product p at location j at time t.
T pjkt Cost of transporting one unit of product p from location j to

location k at time t.
ipsj0 Initial inventory of product p at location j in scenario s.
zpsj0 Initial backlog of product p at location j in scenario s.
πs Probability of scenario s.

� Decision variables

ipsjt Inventory of product p at location j in scenario s at period t.
wpsjkt Amount of product p transported from location j to location k in

scenario s at time t.
xpsjbt Amount of product p processed/produced at location j using bill

of material b in scenario s at time t.
zpsjt Shortfall for product p at customer location j

in scenario s in period t.
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We now give a mathematical formulation of our supply chain design problem
under uncertainty. Unsatisfied demand is modeled as lost sales:

max
∑

s∈S

∑

t∈T
πs


∑

p∈P

∑

j∈C

∑

k∈U(j)

Rpjtw
ps
kjt −

∑

j∈L

∑

p∈P

∑

o∈O(j)

∑

b∈B(o)

P pjbtx
ps
jbt−

∑

p∈P

∑

j∈L

∑

k∈D(j)

T pjktw
ps
jkt −

∑

p∈P

∑

j∈L
Ipjti

ps
jt −

∑

p∈P

∑

j∈C
Hp
jtz

ps
jt


 (5.1)

subject to

Spjt +
∑

k∈U(j)

wpskjt =
∑

o∈Os(j)

∑

b∈B(o)

xpsjbt

j ∈ Fs, p ∈
⋃
o∈Os(j) Pi(o), s ∈ S, t ∈ T , (5.2)

∑

o∈Os(j)

∑

q∈Pi(o)

∑

b∈B(o)

Abp,q · xqsjbt =
∑

k∈D(j)

wpsjkt

j ∈ Fs, p ∈
⋃
o∈Os(j) Po(o), s ∈ S, t ∈ T , (5.3)

∑

p∈Pi(o)

∑

b∈B(o)

xpsjbt ≤ Cojt

j ∈ Fs, o ∈ Os(j), s ∈ S, t ∈ T , (5.4)

Spjt +
∑

k∈U(j)

wpskjt =
∑

o∈Oc(j)

∑

q∈Po(o)

∑

b∈B(o)

Bbq,p · xqsjbt

j ∈ Fc, p ∈
⋃
o∈Oc(j) Pi(o), s ∈ S, t ∈ T , (5.5)

∑

o∈Oc(j)

∑

b∈B(o)

xpsjbt =
∑

k∈D(j)

wpsjkt

j ∈ Fc, p ∈
⋃
o∈Oc(j) Po(o), s ∈ S, t ∈ T , (5.6)

∑

p∈Po(o)

∑

b∈B(o)

xpsjbt ≤ Cojt

j ∈ Fc, o ∈ Oc(j), s ∈ S, t ∈ T , (5.7)

ipsjt−1 +
∑

k∈U(j)

wpskjt = ipsjt +
∑

k∈D(j)

wpsjkt

j ∈ W, p ∈ P, s ∈ S, t ∈ T , (5.8)
∑

k∈U(j)

wpskjt + zpsjt = Dps
jt

j ∈ C, p ∈ P, s ∈ S, t ∈ T , (5.9)
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1
|S(n)|

∑

s′∈S(n)

(
ips
′

jt , w
ps′

jkt, x
ps′

jbt , z
ps′

jt

)
=
(
ipsjt , w

ps
jkt, x

ps
jbt, z

ps
jt

)

n ∈ N , s ∈ S(n), t ∈ T (n), (5.10)
i, w, x, z ≥ 0, (5.11)

with S(n) being the scenarios passing through event node n and T (n) being the
time period of node n.

The objective function (5.1) consists of five parts: first the revenues from
satisfying demand at the customer nodes, second the production costs, third
the transportation costs, fourth the inventory costs, and fifth is the shortfall
penalty for not satisfying customer demand. Restrictions (5.2)-(5.4) describe
the splitting process, and constraints (5.5)-(5.7) describe the processing stage of
the supply chain. The first restriction ensures that all required input is either
transported into the node or externally supplied. The second restriction forces all
produced products to be transported to downstream nodes. The last constraint
in each group takes care of the capacity restrictions. The mass balance for the
inventory is given by (5.8). Equations (5.9) makes sure that the sum of products
transported into a customer node and shortfall equals demand. We introduce non-
anticipativity constraints (5.10) (see Rockafellar & Wets 1991) for each event node
in the scenario tree where uncertainty is resolved. The final constraints (5.11)
are the non-negativity constraints, the indices are omitted.

To backlog demand, we modify constraint (5.9) by adding unsatisfied demand
of the previous period to the demand on the right hand side:

∑

k∈U(j)

wpskjt + zpsjt = Dps
jt + zpsjt−1 j ∈ C, p ∈ P, s ∈ S, t ∈ T . (5.12)

5.B Appendix: Results for all Problem Instances

Tables (5.5)-(5.4) contain the results for all problem instances and problem types.
The instance-ID indicates first the dataset used to parameterize the forecasting
method, then comes the percentage of the cutting capacity used, followed by
the handling of unsatisfied demand and the shortfall penalty. The problem type
denotes the expected value problem (ev), the two-stage stochastic programming
problem (stoch), the perfect information using rolling schedules (pir), and the
benchmark problem using perfect information for the whole planning period (pi).
Results are given in mill. NOK.
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Table 5.3: Computational results for the dataset based on parameterizing the forecast-
ing method on 2003 demand data

Problem Problem Prod. Transp. Inv. Shortfall
instance type

Revenues
costs costs costs penalty

Profit

03 100 BL 0 ev 4511 857 48 5 0 3599
03 100 BL 0 stoch 4418 856 46 5 0 3510
03 100 BL 0 pir 4457 857 49 2 0 3548
03 100 BL 0 pi 4746 856 48 10 0 3830
03 100 BL 25 ev 4479 861 51 2 2249 1313
03 100 BL 25 stoch 4480 862 51 2 2233 1330
03 100 BL 25 pir 4453 859 50 2 2452 1088
03 100 BL 25 pi 4622 861 51 5 2127 1577
03 100 LS 0 ev 4347 849 47 3 0 3446
03 100 LS 0 stoch 4349 850 47 3 0 3447
03 100 LS 0 pir 4358 847 47 2 0 3461
03 100 LS 0 pi 4472 853 47 6 0 3566
03 100 LS 25 ev 4348 852 48 3 111 3331
03 100 LS 25 stoch 4350 852 48 3 111 3333
03 100 LS 25 pir 4359 850 48 2 106 3350
03 100 LS 25 pi 4473 854 48 6 83 3481
03 75 BL 0 ev 4492 851 51 5 0 3583
03 75 BL 0 stoch 4500 852 51 5 0 3591
03 75 BL 0 pir 4429 850 52 2 0 3524
03 75 BL 0 pi 4744 854 51 11 0 3826
03 75 BL 25 ev 4462 853 54 3 2378 1172
03 75 BL 25 stoch 4466 854 54 3 2352 1202
03 75 BL 25 pir 4426 852 53 2 2610 908
03 75 BL 25 pi 4619 856 53 5 2165 1537
03 75 LS 0 ev 4288 832 48 3 0 3404
03 75 LS 0 stoch 4320 837 49 3 0 3429
03 75 LS 0 pir 4303 831 48 2 0 3420
03 75 LS 0 pi 4458 851 49 6 0 3550
03 75 LS 25 ev 4289 834 49 3 126 3275
03 75 LS 25 stoch 4292 834 49 3 126 3277
03 75 LS 25 pir 4304 834 50 2 121 3296
03 75 LS 25 pi 4459 853 51 7 84 3463
03 50 BL 0 ev 3977 753 45 2 0 3174
03 50 BL 0 stoch 3981 754 45 2 0 3179
03 50 BL 0 pir 3935 752 45 1 0 3136
03 50 BL 0 pi 4175 752 45 7 0 3368
03 50 BL 25 ev 3949 756 48 2 5532 -2389
03 50 BL 25 stoch 3950 756 48 2 5527 -2383
03 50 BL 25 pir 3923 754 47 1 5692 -2572
03 50 BL 25 pi 4116 761 47 3 5433 -2130
03 50 LS 0 ev 3837 743 42 2 0 3048
03 50 LS 0 stoch 3835 742 42 2 0 3047
03 50 LS 0 pir 3859 744 43 1 0 3070
03 50 LS 0 pi 3920 747 44 3 0 3125
03 50 LS 25 ev 3836 744 44 2 235 2809
03 50 LS 25 stoch 3835 744 44 2 235 2807
03 50 LS 25 pir 3860 746 45 1 229 2838
03 50 LS 25 pi 3921 748 46 4 210 2911
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Table 5.4: Computational results for the dataset based on parameterizing the forecast-
ing method on 2004 demand data

Problem Problem Prod. Transp. Inv. Shortfall
instance type

Revenues
costs costs costs penalty

Profit

04 100 BL 0 ev 4513 858 48 5 0 3601
04 100 BL 0 stoch 4520 857 48 5 0 3608
04 100 BL 0 pir 4457 857 49 2 0 3548
04 100 BL 0 pi 4746 856 48 10 0 3830
04 100 BL 25 ev 4481 862 51 3 2226 1338
04 100 BL 25 stoch 4483 862 51 3 2212 1354
04 100 BL 25 pir 4453 859 50 2 2452 1088
04 100 BL 25 pi 4622 861 51 5 2127 1577
04 100 LS 0 ev 4337 851 47 4 0 3433
04 100 LS 0 stoch 4337 852 47 4 0 3433
04 100 LS 0 pir 4358 847 47 2 0 3461
04 100 LS 0 pi 4472 853 47 6 0 3566
04 100 LS 25 ev 4336 854 48 4 116 3312
04 100 LS 25 stoch 4338 855 48 4 115 3313
04 100 LS 25 pir 4359 850 48 2 106 3350
04 100 LS 25 pi 4473 854 48 6 83 3481
04 75 BL 0 ev 4497 852 51 5 0 3588
04 75 BL 0 stoch 4506 852 51 5 0 3596
04 75 BL 0 pir 4429 850 52 2 0 3524
04 75 BL 0 pi 4744 854 51 11 0 3826
04 75 BL 25 ev 4462 854 54 3 2366 1184
04 75 BL 25 stoch 4465 854 54 3 2341 1211
04 75 BL 25 pir 4426 852 53 2 2610 908
04 75 BL 25 pi 4619 856 53 5 2165 1537
04 75 LS 0 ev 4278 833 48 4 0 3391
04 75 LS 0 stoch 4280 836 49 4 0 3390
04 75 LS 0 pir 4303 831 48 2 0 3420
04 75 LS 0 pi 4458 851 49 6 0 3550
04 75 LS 25 ev 4279 836 49 4 130 3258
04 75 LS 25 stoch 4281 838 50 5 129 3257
04 75 LS 25 pir 4304 834 50 2 121 3296
04 75 LS 25 pi 4459 853 51 7 84 3463
04 50 BL 0 ev 3979 753 45 2 0 3177
04 50 BL 0 stoch 3983 753 45 2 0 3181
04 50 BL 0 pir 3935 752 45 1 0 3136
04 50 BL 0 pi 4175 752 45 7 0 3368
04 50 BL 25 ev 3950 756 48 2 5520 -2376
04 50 BL 25 stoch 3950 756 48 2 5513 -2369
04 50 BL 25 pir 3923 754 47 1 5692 -2572
04 50 BL 25 pi 4116 761 47 3 5433 -2130
04 50 LS 0 ev 3785 738 42 3 0 3001
04 50 LS 0 stoch 3787 738 42 3 0 3003
04 50 LS 0 pir 3859 744 43 1 0 3070
04 50 LS 0 pi 3920 747 44 3 0 3125
04 50 LS 25 ev 3785 739 44 3 248 2749
04 50 LS 25 stoch 3788 740 44 3 247 2753
04 50 LS 25 pir 3860 746 45 1 229 2838
04 50 LS 25 pi 3921 748 46 4 210 2911
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Table 5.5: Computational results for the dataset based on artificial data
Problem Problem Prod. Transp. Inv. Shortfall
instance type

Revenues
costs costs costs penalty

Profit

AD 100 BL 0 ev 4805 892 55 6 0 3851
AD 100 BL 0 stoch 4807 892 54 6 0 3854
AD 100 BL 0 pir 4744 891 55 2 0 3794
AD 100 BL 0 pi 5042 891 55 11 0 4083
AD 100 BL 25 ev 4771 896 57 3 2359 1453
AD 100 BL 25 stoch 4772 896 57 3 2354 1460
AD 100 BL 25 pir 4740 894 57 2 2584 1203
AD 100 BL 25 pi 4912 896 57 5 2285 1668
AD 100 LS 0 ev 4619 894 54 5 0 3664
AD 100 LS 0 stoch 4620 895 54 5 0 3664
AD 100 LS 0 pir 4653 886 54 2 0 3710
AD 100 LS 0 pi 4780 890 54 6 0 3828
AD 100 LS 25 ev 4619 897 55 5 126 3534
AD 100 LS 25 stoch 4634 904 55 6 125 3542
AD 100 LS 25 pir 4655 890 55 2 113 3593
AD 100 LS 25 pi 4782 891 54 7 88 3739
AD 75 BL 0 ev 4788 886 58 6 0 3837
AD 75 BL 0 stoch 4793 886 58 6 0 3841
AD 75 BL 0 pir 4710 882 58 1 0 3767
AD 75 BL 0 pi 5035 888 58 12 0 4075
AD 75 BL 25 ev 4748 884 60 3 2595 1204
AD 75 BL 25 stoch 4754 885 60 3 2551 1253
AD 75 BL 25 pir 4707 883 60 2 2835 925
AD 75 BL 25 pi 4912 886 60 6 2370 1587
AD 75 LS 0 ev 4544 872 56 5 0 3610
AD 75 LS 0 stoch 4545 875 56 6 0 3606
AD 75 LS 0 pir 4590 865 55 1 0 3666
AD 75 LS 0 pi 4772 886 58 8 0 3819
AD 75 LS 25 ev 4542 874 57 6 146 3457
AD 75 LS 25 stoch 4542 877 57 6 146 3454
AD 75 LS 25 pir 4591 868 57 1 130 3534
AD 75 LS 25 pi 4773 887 58 8 89 3728
AD 50 BL 0 ev 4139 768 49 2 0 3318
AD 50 BL 0 stoch 4141 769 49 2 0 3320
AD 50 BL 0 pir 4095 768 49 1 0 3276
AD 50 BL 0 pi 4335 768 49 6 0 3510
AD 50 BL 25 ev 4109 770 51 2 6746 -3461
AD 50 BL 25 stoch 4110 770 51 2 6744 -3458
AD 50 BL 25 pir 4083 769 51 1 6854 -3593
AD 50 BL 25 pi 4272 777 51 3 6677 -3237
AD 50 LS 0 ev 3964 756 47 3 0 3156
AD 50 LS 0 stoch 3965 757 46 3 0 3157
AD 50 LS 0 pir 4037 761 48 1 0 3227
AD 50 LS 0 pi 4094 765 48 3 0 3275
AD 50 LS 25 ev 3963 758 48 3 283 2868
AD 50 LS 25 stoch 3963 758 48 3 283 2868
AD 50 LS 25 pir 4038 762 49 1 264 2959
AD 50 LS 25 pi 4094 766 50 4 247 3025
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