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Introduction

Spatial models are becoming increasingly important in a wide variety of

applications, such as epidemiology (Lawson, 2018), image processing (Hurn

et al., 2003) and geoscience (Tarantola, 2005; Hansen et al., 2006). The

objective is to predict a variable of interest in a spatial domain where exact

observations of the variable of interest are not available. The observations

are not necessarily made as a set of univariate independent realizations of

the underlying variable but as weighted aggregates across space in addition

to a measurement error. The class of problems to be studied has vari-

ous names depending on the field of application, including inverse models

(Tarantola, 2005) and switching state-space models (Frühwirth-Schnatter,

2006). A probabilistic approach appears to be well suited to describe the

variable of interest, as it provides not only a point prediction but also the

full probabilistic specification for the variable of interest.

Formally, we operate in a Bayesian inversion framework, where the ul-

timate objective is to assess the posterior probability density of the spatial

variable given a set of measurements. The variable of interest is assigned

a prior probability density, and a likelihood function relates the variable

to the observations. According to Bayes’ theorem, the posterior density is

proportional to the product of the likelihood function and the prior density.

The prior and likelihood models are defined from a set of model parameters

based on parametric classes of models, which we, in this thesis, consider to
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be fixed and known.

We focus on the assessment of spatial variables that arise from the char-

acterization of a three-dimensional oil and gas reservoir. During the explo-

ration and development phase of a reservoir, measurements of the subsurface

are combined with geophysical and geological knowledge about the area of

interest to predict the occurrence of hydrocarbons, such as oil and gas, in

the subsurface. In the exploration phase, well observations are typically

sparsely distributed in space, if they exist, and seismic measurements are

heavily blurred images of the subsurface in the vertical direction. The lat-

ter is a result of the convolution of the reflection coefficients that occurs

when the seismic waves propagate through the subsurface. The likelihood

function is defined from a set of geophysical relations describing wave prop-

agation in the subsurface, relating the model variables to the observations.

We consider a so-called Gauss-linear likelihood model, where the measure-

ments are assumed to be a linear translation of the underlying variable with

a Gaussian error term.

Ideally, in a Bayesian framework, we seek an analytic expression for the

posterior density of interest. However, such expressions are generally not

available in closed form in reservoir characterization. If the likelihood model

is Gauss-linear and the prior model is a Gaussian density, the posterior is

Gaussian with analytic expressions for the mean vector and covariance ma-

trix. This is because the Gaussian density is fully specified from the first

two moments and is closed under linear combinations, marginalization and

2
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conditioning. We refer to, for example, Cressie (1993) for an introduction

to Gaussian random fields. A popular choice for interpolation of the spatial

variable is kriging (Matheron, 1963). However, in high-dimensional prob-

lems, kriging is not necessarily feasible due to storage and memory limi-

tations. Alternative approaches include techniques based on the Fourier

transformation (Buland et al., 2003) or Gaussian Markov random field ap-

proximations (Rue and Held, 2005).

In geostatistical applications, the assumption of a Gauss-linear likeli-

hood model discussed above is often adequate. The Gaussian prior model

assumption, however, does not need to be satisfactory to represent prior

knowledge of the variable of interest. In this thesis, we discuss a class of

prior models that have marginal densities that are multimodal and skewed,

namely, Gaussian mixture densities. Alternative models not discussed here

include copula models (Bárdossy and Li, 2008), generalized linear modeling

approaches (Diggle et al., 1998), uniform transformation models (De Oliveira

et al., 1997) and selection Gaussian random fields (Omre and Rimstad, 2018)

The Gaussian mixture density is defined by a discrete latent variable

and a set of conditional Gaussian densities and is a specific case of a finite

mixture model (Titterington et al., 1985). In principle, any density can be

approximated with a desired accuracy using a finite mixture model with the

appropriate number of mixing components (Ferguson, 1973). Depending on

the application, the latent variable may have an intuitive physical interpre-

tation or may be a pure nuisance variable. In both cases, a mixture model

3
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is well suited for classification of the underlying variable. One alternative

is to model the latent discrete variable in the Gaussian mixture model by

using a Markov random field model (Besag, 1974; Kindermann et al., 1980;

Tjelmeland and Besag, 1998; Hurn et al., 2003). Other alternatives, such

as pluri-Gaussian random fields (Matheron et al., 1987), the Markov mesh

model (Abend et al., 1965) and multiple-point statistics (Caers, 2001; Stre-

belle, 2002; Ortiz and Deutsch, 2004), exist.

The continuous-valued variables of interest in reservoir characterization,

i.e., elastic attributes such as pressure wave velocity and petrophysical prop-

erties such as water saturation, often appear as multimodal or skewed due

to the presence of various lithology or fluid classes of the subsurface (Grana

and Della Rossa, 2010; Rimstad et al., 2012). A Gaussian mixture prior

density appears to be well suited to model this behavior.

The prior and likelihood models are defined from a set of model parame-

ters that have to be chosen. If the latent discrete random field is condition-

ally independent, parameter estimates of the mixing proportions are typi-

cally obtained by the expectation-maximization algorithm (Dempster et al.,

1977) or by clustering methods (Hastie et al., 2009). For a one-dimensional

convolved hidden Markov model, Lindberg and Omre (2015) assessed the

vertical transition matrix. Two- and three-dimensional parameter inference

for the discrete Markov random field model with an arbitrary neighborhood

system is in practice restricted by the computationally intractable normal-

izing constant. In contrast, the normalizing constant for the Markov mesh

4
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model is computationally tractable, which makes a Bayesian approach fea-

sible (Luo and Tjelmeland, 2017). Bolin et al. (2019) considered parameter

estimation for a latent Gaussian mixture density using a likelihood-based

method. Rimstad and Omre (2010), Lindberg and Omre (2014) and Skau-

vold et al. (2016) considered estimation of the likelihood model parameters

with applications in reservoir characterization.

The ultimate objective is to assess the posterior model for the variables

of interest given the observations. Numerical methods based on sampling

or optimization of the posterior are often applied to assess the posterior

density of interest. We focus on Markov chain Monte Carlo methods to

assess the posterior density of interest. See, e.g., Gilks et al. (1995) for an

introduction to Markov chain Monte Carlo methods. These methods are

often tailored for a specific problem, and they often require manual tuning

to obtain a satisfactory convergence rate.

We have outlined some of the challenges of reservoir characterization,

such as the choice of the likelihood and prior model. The objective of

this thesis is to construct a class of computationally feasible models in

a Bayesian spatial inversion framework for the joint characterization of

lithology and fluid classes, petrophysical properties and elastic attributes in

three-dimensional reservoir characterization. This thesis mainly discusses

the choice of the prior model and efficient sampling methods to assess the

posterior density for the spatial variables of interest. In the following, we de-

scribe the Bayesian inversion framework and introduce the necessary model

5
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variables and parameters. The introduction serves as a motivation and

overview of the thesis and outlines the class of models discussed in this

thesis.

Notation

Unless otherwise specified, the variables to be discussed are defined on a

discretized volume L = {xyt : x = 1, . . . , nx, y = 1, . . . , ny, t = 1, . . . , nt}.
Let v ∈ L denote a grid cell and let n = nxnynt. We consider a discretized

spatial variable {zv : v ∈ L} represented by the vector z, where each zv ∈
Ωz, and denote z \ zv for all v ∈ L by z−v. We denote the collection of grid

cells along a vertical profile at horizontal position xy by Lxy·. Furthermore,

let p(·)denote an arbitrary probability density/mass function.

Inverse problems

In an inverse framework, the objective is to characterize an unobservable

variable z given a set of measurements y that are related to z (Tarantola,

2005; Hansen et al., 2006). The measurements y in general represent a

nonlinear transformation of the underlying variable z, which we cannot

observe directly, with an associated measurement error. In compact vector

notation, the forward model is often expressed as

[
y | z

]
= F(z) + ε, (1)

6
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where F(·) is the forward operator and ε is assumed to be a Gaussian

error term. If F(·) is a linear operator, we refer to the model as a Gauss-

linear model, since Equation (1) is linear in the conditioning variable and

includes a Gaussian error term. The forward operator may represent a

physical model, for example, the wave equation. The unobserved variable z

is often assessed based on the observations y by optimizing a misfit criterion

including a regularizing factor or by using a Bayesian inversion framework

where z is assigned a prior density.

Inverse problems may be formulated as optimization problems, for ex-

ample, minimization of the squared error. These inverse problems are often

ill posed, and the objective function needs to be regularized by adding a

penalty term

z̃ = argmin
z
‖y −F(z)‖+ λ‖z− z0‖. (2)

Here, z0 is a prior guess on a reasonable solution, and the scalar λ is a

regularization factor. The most common norm in Equation (2) is the L2-

norm; however, other norms may also be considered. The objective function

in Equation (2) is often assessed by iterative methods such as steepest de-

scent or conjugate gradient methods (Nocedal and Wright, 2006), genetic

algorithms (Goldberg, 1989; Sen and Stoffa, 1996) or simulated annealing

(Kirkpatrick et al., 1983). Note that only a point prediction z̃ is obtained.

We focus on the Bayesian framework, since it provides the full posterior

probability density function, not only a point prediction z̃. In a Bayesian

7
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framework, the objective is to assess the posterior density

p
(
z | y

)
∝ p
(
y | z

)
p(z), (3)

where p
(
y | z

)
is the likelihood function and p(z) is the prior density. Note

that the prior p(z) regularizes the solution. Assessment of the posterior

density is computationally challenging and often requires approximations

and/or simulation-based techniques. As our problem is formulated in a

Bayesian inversion setting where the main focus is on high-dimensional vari-

able prediction and not low-dimensional model parameter inference, assign-

ing an informative prior may be a necessity to obtain the solution of the

inverse problem. Such prior knowledge may be available from geological

experience based on comparable areas and/or physical models.

For a Gauss-linear likelihood function and a Gaussian prior, an analytic

expression for the posterior density is available. The choice of a Gauss-linear

likelihood function and a Gaussian prior model is motivated by the fact that

the Gaussian density is closed under linear transformations, marginalization

and conditioning. In geostatistical applications, the Gauss-linear likelihood

assumption is often adequate; however, prior knowledge of the underlying

random field z need not be adequately described by a Gaussian prior density

due to multimodality and skewness. Predictions based on the Gaussian prior

tend to be too smooth and cause a regression towards the global mean.

We focus on a specific class of prior models that satisfies the multi-

modality and skewness properties, namely, the Gaussian mixture density.

8



i
i

“Doktorgrad” — 2020/5/18 — 13:53 — page 11 — #15 i
i

i
i

i
i

We introduce a discrete-valued latent variable s associated with z. The la-

tent variable s, where each sv ∈ Ωs = {1, . . . , L} for v ∈ L, acts as a mode

indicator or discrete switching state space variable (Frühwirth-Schnatter,

2006) for
[
z | s

]
. Note that the model parameters describing the condi-

tional density p
(
z | s

)
depend on the corresponding value of s. One of the

most common models is the Gaussian mixture density

p(z)=
∑

s∈Ωns

p
(
z | s

)
p(s), (4)

where p
(
z | s

)
is a Gaussian density with mean and covariance given by

the corresponding value of s. Traditionally, the Gaussian mixture prior

density is assumed not to have any spatial structure of s, e.g., conditional

independence p(s) =
∏n
i=1 p(si). We relax this assumption and consider a

spatial model p(s) to impose spatial structure.

Markov chain Monte Carlo simulation

The posterior density of interest defined in Equation (3) is often not ana-

lytically tractable, and stochastic simulation methods have to be applied.

Simulation-based assessment is often performed by constructing a Markov

chain with a stationary or equilibrium distribution equal to the target den-

sity p
(
z | y

)
. A popular way to choose such a Markov chain is by the use

of the Markov chain Monte Carlo Metropolis-Hastings algorithm. We refer

to Gilks et al. (1995) for an introduction to simulation techniques. The

9
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following description defines the algorithm.

First, initialize z1 with p
(
z1 | y

)
> 0. Then, for i = 2 and until conver-

gence, the following two steps are carried out at each iteration i:

Proposal step : Propose z according to the proposal density q(·)

z ∼ q(z | zi−1). (5)

Accept/reject step : Set zi = z with probability

α = min

{
1,

p
(
y | z

)
p(z)

p
(
y | zi−1

)
p
(
zi−1

)× q(zi−1 | z)

q(z | zi−1)

}
(6)

and zi = zi−1 else.

After convergence and thinning, an ensemble of approximately indepen-

dent realizations z1, . . . , zB is generated from the posterior density p
(
z | y

)
.

Based on these realizations, a set of summary statistics is computed. For

a continuous-valued z, the most common choices of summary statistics in-

clude the expected value and the standard deviation. However, since we

are interested in multimodal and skewed densities, we also consider the

marginal maximum posterior (MMAP) predictor,

ẑ =

{
ẑv = argmax

zv∈Ωz

p
(
zv | y

)
; v ∈ L

}
, (7)

which is often referred to as the (marginal) mode. For a discrete-valued z,

we consider the MMAP predictor

p̂ =



p̂v = argmax

l∈Ωz

1

B

B∑

i=1

1
(
ziv = l

)
; v ∈ L



 . (8)

10
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The main challenge in a Markov chain Monte Carlo algorithm is to spec-

ify a proposal density q(·) in Equation (5) such that the Markov chain

converges within a given computational budget. The naïve approach is to

propose based on the prior model p(z); however, an unsatisfactory accep-

tance rate and poor mixing can be expected in high-dimensional problems

with spatial coupling in the prior and likelihood models. A similar conclu-

sion is also valid for a Gibbs update (Gilks et al., 1995), where the elements

of z are updated one at a time conditional on every other element, e.g.,

zj ∼ q(zj | zi−1
−j ) and z =

(
zi−1

1 , . . . , zi−1
j−1, zj , z

i−1
j+1, . . . , z

i−1
n

)
. There exists a

vast literature on various algorithms to overcome these convergence prob-

lems in various applications, such as delayed rejection (Trias et al., 2009)

or Hamiltonian/hybrid methods (Neal, 2012; Betancourt, 2017).

Reservoir characterization

We now discuss inverse problems that arise from problems in reservoir char-

acterization. In an exploration phase, it is important to characterize reser-

voir variables of the subsurface to construct initial models for the proportion

of hydrocarbons and fluid flow in the subsurface. Quantitative interpreta-

tion (Avseth et al., 2005) has become the industry standard for quantifying

reservoir variables over the last decades. These models are used in a deci-

sion theory framework to decide whether a reservoir is to be developed for

commercial use.

11
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We focus on characterizing the subsurface discretized on the three-

dimensional cube L and represent the subsurface by three variables. Let

κ denote the lithology/fluid classes of the subsurface. The lithology/fluid

classes may also be referred to as facies or ‘rock types’. For each grid cell

v ∈ L, we assume κv ∈ Ωκ = {1, . . . , L}; that is, κv takes one out of

L categorical values, for example shale, gas sandstone or brine sandstone.

Next, let r denote the petrophysical properties, such as the porosity φ, the

clay volume/proportion c or the water saturation sw of the subsurface. The

petrophysical properties are generally constrained to be on the unit inter-

val; that is, rv ∈ Ωr = [0, 1] for each v ∈ L. We consider a one-to-one

transformation of r with support on R to avoid restricted support; however,

we refer to petrophysical properties as r for ease of discussion. Finally, let

m denote the elastic attributes of the subsurface, where mv ∈ Ωm = [0,∞)

for each mv ∈ L. The elastic material properties are generally described by

the pressure wave velocity vp, the shear wave velocity vs and the density

ρ of the subsurface. Alternative parametrizations exist, for example, by a

combination of the above-mentioned parameters such as the P-impedance

ρvp, the S-impedance ρvs or the Poisson ratio vp/vs. In practice, we con-

sider the logarithm of the elastic attributes, but we refer to it as m. In

the geoscience literature, these variables are often referred to as (model)

parameters; however, we refer to them as (model) variables, as they are in

principle observable by well measurements. In summary, we focus on the

assessment of κ, r and m defined on L.

12
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The motion of the seismic waves propagating through the layers of the

subsurface is described by the wave equation. The resulting seismic data

consist only of information on contrasts in the subsurface and relate the two-

way traveltime to the seismic amplitude of the elastic attributes of interest.

In marine seismic acquisition, reflections of seismic waves in the subsurface

are recorded at a set of receivers for various incident angles. Each incident

angle represents the angle at which a ray-path impinges upon a line normal

to an interface. Note that the dimension of the variables of interest is often

larger than the dimension of the acquired observations, since we have a

limited number of incident angles. We consider seismic amplitude versus

offset (AVO) observations, denoted by d, discretized on L. The Gauss-linear

likelihood model is defined as in Buland and Omre (2003),

[
d | κ, r,m

]
= WADm + εd, (9)

where W is a dense matrix representing the convolution kernel, A is a ma-

trix approximation of the Aki-Richards coefficients valid for weak contrasts

(Aki and Richards, 1980), D is a matrix approximation of the derivative,

and εd is a zero-mean Gaussian error vector. Note that Equation 9 implies

that p
(
d | κ, r,m

)
= p
(
d |m

)
, since m is a canonical variable for d.

In Figure 1, we present an example of a wavelet in the vertical direction

used in reservoir characterization. Considering a specific depth v, the ob-

servation dv depends on past (< v) and future (> v) values of the elastic

attributes along the vertical profile. For the presented wavelet, each obser-

13
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vation dv depends on the elastic attributes in a time window in a vertical

direction of approximately 200 ms. The recorded seismic data are heavily

processed before they are used for quantitative interpretation by account-

ing for various effects from the acquisition procedure, such as the removal

of multiples and attenuation. We do not consider processing problems but

account for them by including the modeling error εd.

Figure 1: Wavelet used in reservoir characterization.

The resolution of seismic images is also often less than the desired reso-

lution. The reason why the resolution of the seismic signal is less than the

desired resolution in the vertical direction is the convolution. In Figure 2,

we display near- and far-angle AVO observations of a seismic volume. The

spatial continuity of the reservoir variable has a far greater lateral extent

than vertical extent. Since seismic observations are band-limited, thin hor-

izontal layers need not be easily observable in the seismic observations for

14
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a given vertical trace but may be observable across a cross-section.

Figure 2: Near- and far-angle 3D volumes of seismic AVO measurements.

The main objective of reservoir characterization is to describe the reser-

voir properties κ, r and m from geophysical measurements d. Assessment

of these variables is phrased in three distinct inverse problems: assessment

of elastic attributes given seismic data (seismic or elastic inversion), assess-

ment of petrophysical properties (petrophysical or rock physics inversion),

and assessment of lithology/fluid classes (lithology/fluid class or facies in-

version). Traditionally, these inverse problems are often solved in a stepwise

procedure. First, the seismic data are used to obtain a prediction of the

elastic attributes. The predictions are next used as an input in a petrophysi-

cal inversion framework (Doyen, 2007). Finally, the predicted petrophysical

properties are used to classify the lithology/fluid classes. Such a stepwise

procedure is known to often underpredict the uncertainty. Recently, joint

approaches, where the variables are assessed simultaneously, have been in-

troduced (Rimstad and Omre, 2010; Grana and Della Rossa, 2010). In this

thesis, we consider a joint approach.

More specifically, we consider a sequential model (Figure 3) relating

15



i
i

“Doktorgrad” — 2020/5/18 — 13:53 — page 18 — #22 i
i

i
i

i
i

seismic data d to the variables of interest κ, r and m. This is specified as

the following sequential decomposition of the prior density:

p(κ, r,m)= p
(
m | κ, r

)
p
(
r | κ

)
p(κ), (10)

where p
(
m | κ, r

)
is the rock physics model, p

(
r | κ

)
is the petrophysics

model and p(κ) is the lithology/fluid class model. We assume the rock

physics model and the petrophysics model to be Gaussian random fields.

For p(κ), we consider various models that will be discussed later.

κ

r m

d

Pe
tro

ph
ys
ics

mod
el

Rock
physics

model

Rock physics

model

Con
vo

lut
ion

mod
el

Figure 3: Directed acyclic graph relating the model variables and observations.
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Rock physics models (Mavko et al., 2009) describe the relationships be-

tween reservoir properties, such as lithology/fluid classes κ, petrophysical

properties r, and elastic attributes m. Houck (2002) discuss the importance

of considering rock physics model uncertainties in a lithology/fluid predic-

tion setting. The uncertainty arises from the potential mis-specification

of the physical relationships (Mukerji et al., 2001; Avseth et al., 2005;

Bachrach, 2006). Landrø (2001) considered a linear approximation of the

rock physics model, and various linearized rock physics models are discussed

in Grana (2016). We restrict ourselves to linear rock physics models. In

Figure 4, we display a reference classification of the lithology/fluid classes

at a well location together with the water saturation and log P-impedance

measurements. In this example, there are two different types of sandstone,

namely, brine-filled (water-filled) and gas-filled. The value of the observed

water saturation log is strongly dependent on the corresponding reference

lithology/fluid class log. For example, for a gas sandstone layer, the ob-

served values of water saturation are close to zero, while they are close to

unity for a brine sandstone layer. Note that the histograms are observed to

be bimodal and skewed. In general, both the petrophysical properties and

elastic attributes are often observed to be multimodal and skewed due to the

presence of various fluid and saturation effects of the subsurface. Finally,

it is well known that some lithology/fluid transitions in κ are geophysically

non-valid due to gravitational sorting. For example, brine sandstone can

never occur above gas sandstone.
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Figure 4: Well measurements: Reference classification of the lithology/fluid

classes (left), water saturation (middle) and log P-impedance (right). Histograms

of the continuous-valued properties are displayed.

Bayesian spatial inversion

Recall the definition of the likelihood model in Equation (9) and the prior

model in Equation (10). We consider the following probabilistic model:

[κ, r,m] ∼ p(κ, r,m) prior model
[
d | κ, r,m

]
∼ p
(
d |m

)
likelihood model

. (11)
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The ultimate objective is to assess the variables κ, r and m in an inverse

setting. We refer to the characterization of κ, r and m as variable prediction

since these quantities are in principle observable. Note that the prior density

p(κ, r,m) includes both discrete- and continuous-valued variables.

Recall the definitions of the likelihood model in Equation (9) and the

prior model in Equation (10). In a Bayesian framework, the objective is to

assess the posterior of the variables given the observations,

p
(
κ, r,m | d

)
= const× p

(
d |m

)
p
(
m | κ, r

)
p
(
r | κ

)
p(κ), (12)

where const is a normalizing constant that ensures the left-hand side of

Equation (12) is a valid density. Finding the normalizing constant is in

practice not computationally feasible since it requires evaluating the nor-

malizing constant, that is, the marginal likelihood p(d).

We operate mainly in an empirical Bayes setting, where the model pa-

rameters are fixed and known based on geophysical knowledge from compa-

rable geological areas. The posterior densities of the reservoir variables are

given as follows:

p
(
κ | d

)
∝ p
(
d | κ

)
p(κ) lithology/fluid class inversion

p
(
r,m | d

)
∝ p
(
d |m

)
p(r,m) petrophysical and elastic inversion

. (13)

Next, we discuss the assessment of these inverse problems separately.
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Lithology/fluid class inversion

First, we consider the problem of lithology/fluid class inversion. Recall that

the posterior of interest is given as

p
(
κ | d

)
∝ p
(
d | κ

)
p(κ). (14)

In the following, we discuss the likelihood model p
(
d | κ

)
and various choices

for the prior density p(κ).

Likelihood model

The likelihood defined in Equation (14) is given as

p
(
d | κ

)
=

∫
p
(
d |m

)∫
p
(
m | κ, r

)
p
(
r | κ

)
dr dm, (15)

which is analytically tractable, since the densities are all Gaussian densities.

Note that the likelihood p
(
d | κ

)
cannot be written as a product of the

marginal conditional densities p
(
dv | κv

)
. The reason is that each datum dv

is dependent on a large subset of κ because of the convolution in p
(
d |m

)
.

Prior models

To build initial models for the reservoir, it is important to model the propor-

tion of hydrocarbons and the lateral connectivity and channels where the

fluids are allowed to flow. We refer to Rimstad et al. (2012) for a discussion

of its importance. We focus on constructing a prior model p(κ) that follows
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geophysical properties such as the ordering of the lithology/fluid classes,

non-valid transitions and spatial connectivity. Recall that the lateral ex-

tent of the lithology/fluid classes is far greater than the vertical extent.

Next, we discuss the one-dimensional vertical model based on a Markov

chain model and the more complex spatially coupled models in two and

three dimensions based on the Markov random field model and the Markov

mesh model.

Markov chain model

In the following, we consider only a one-dimensional vertical profile dis-

cretized on Lxy· = {xyt : t = 1, . . . , nt} at a given horizontal position xy

and assume that p(κ) follows a first-order Markov chain. The use of Markov

chain models in geophysical applications dates back to Krumbein and Dacey

(1969). Formally, the first-order Markov chain prior model on Lxy· is defined
as

p(κ)= p(κ1)×
nt∏

t=2

p
(
κt | κt−1

)
, (16)

where p(κ1) is the stationary probability and p
(
κt | κt−1

)
is the transition

probability of going from a specific class at layer t− 1 to a specific class at

layer t. Markov chain prior models have become increasingly popular in geo-

science applications during the last two decades due to their interpretability

and intuitive understanding of the ordering and sorting of lithology/fluid

classes in the prior model (Elfeki and Dekking, 2001; Eidsvik et al., 2004;
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Larsen et al., 2006; Ulvmoen and Omre, 2010; Grana and Della Rossa, 2010;

Rimstad and Omre, 2013; Connolly and Hughes, 2016; de Figueiredo et al.,

2019). This implies that it is possible to restrict non-valid geophysical tran-

sitions, such as brine sandstone above gas sandstone. We refer to Moja

et al. (2018) for a discussion of non-stationary Markov chain models, where

various marginal probability and conditional independence properties are

discussed. Equation (16) can be extended to a higher-order Markov chain

to incorporate, for example, knowledge of the minimum thickness of each

layer. We refer to Talarico et al. (2019) for a discussion of higher-order

Markov chains with applications in reservoir characterization.

Markov random field model

Consider the undirected graph G = {L, E}, where E ⊆ {{u, v} : u, v ∈
L, u 6= v} defines the set of edges. A clique is defined to be a subset c ∈ L
of G such that every pair of distinct vertices in the clique are adjacent. A

maximal clique c is a clique that is not a subset of another clique, and we

denote the set of maximal cliques of G by C. Let n(v) ∈ L be the set of

neighbors of each v ∈ L.
We specify the Markov random field prior model on L based on the

Gibbs formulation (Besag, 1974; Kindermann et al., 1980)

p(κ)= const−1 × exp



−

∑

c∈C
Φc(κc)



 , (17)

where Φc(κc) is the clique potential function for the maximal clique
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c and κc = {κv; v ∈ c}. The normalizing constant const =
∑

κ′∈Ωnκ
exp

{
−∑c∈C Φc(κ

′
c)
}

is not computationally tractable, since the

sum is exponential in the number of grid cells. For sufficiently small grids,

computation of the normalizing constant may be computationally tractable

using recursions relying on factorisable models (Reeves and Pettitt, 2004;

Friel and Rue, 2007). The Markov chain model defined previously is an

example of a one-dimensional vertical Markov random field with a neigh-

borhood system consisting of the two closest neighbors. We refer to Stoehr

(2017) and references therein for an overview of Markov random fields.

For a fixed set of model parameters, simulation from a Markov random

field is often performed using the Metropolis-Hastings algorithm since the

troublesome normalizing constant cancels in the acceptance ratio in Equa-

tion (6). Simulation from a Markov random field is often done by simulation

from the (pointwise) Markov formulation

p
(
κv | κ−v

)
= p
(
κv | κn(v)

)
(18)

until convergence. This is a Gibbs step, since we sample from the set of

full-conditional densities. The correspondence between the Gibbs formu-

lation in Equation (17) defined by the clique system and the set of the

full-conditional densities p
(
κv | κn(v)

)
defined by the neighborhood system

is given by the Hammersley-Clifford theorem (Hammersley and Clifford,

1971). An alternative to simulation based on Equation (18) is to simulate

each vertical profile jointly conditioned on every other vertical profile, e.g.,
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perform simulation based on joint vertical block update. That is, simulate

from p
(
κxy· | κ−xy·

)
, where κxy· = (κxy1, . . . , κxynt) and κ−xy· = κ \ κxy·.

For a first-order Markov random field, the conditional density for each ver-

tical profile can be expressed in factorial form as

p
(
κxy· | κ−xy·

)
= p
(
κxy1 | κ−xy·

)
×

nt∏

t=2

p
(
κxyt | κxy,t−1,κ−xy·

)
, (19)

which makes sequential simulation feasible. Extensions of Equation (19) for

Markov random fields based on a larger neighborhood system are valid.

Markov mesh model

An alternative to the Markov random field parametrization in two dimen-

sions is the Markov mesh model (Abend et al., 1965; Cressie and Davidson,

1998; Stien and Kolbjørnsen, 2011; Luo and Tjelmeland, 2017). We con-

sider a lexiographic ordering of the nodes in Lx·· = {xyt : y = 1, . . . , ny, t =

1, . . . , nt} for a fixed x and assume κv to be a binary random variable for

each v ∈ Lx··. The dimension of the lattice is ny × nt. Let

ρ(v) = {(k, l) ∈ Lx·· : ntk + l < nty + t} (20)

be the set of predecessors for each v = (y, t) ∈ Lx··. The Markov mesh

model is then defined as

p(κ)=
∏

v∈Lx··
p
(
κv | κρ(v)

)
=
∏

v∈Lx··
p
(
κv | κν(v)

)
, (21)
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where ν(v) ⊆ ρ(v) is called the sequential neighborhood of v ∈ Lx·· and
is defined as a translation of a template sequential neighborhood (Luo and

Tjelmeland, 2017).

In regard to simulation, there are several approaches for simulating from

the Markov mesh model. Simulation based on the Markov mesh formulation

is traditionally done by sequentially simulating from p
(
κv | κν(v)

)
, while

simulation based on the Markov random field formulation is performed by

the full conditionals p
(
κv | κ−v

)
; see Figure 5. Note that any random field

specified from the Markov mesh model is a Markov random field; however,

the contrary is not true. An arbitrary Markov random field defined from

the Gibbs formulation (Equation (17)) may not be able to be phrased as a

Markov mesh model. In summary, simulation from a Markov mesh model is

feasible by simulation from an extended version of the conditional Markov

chains defined in Equation (19).
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(a) Markov random field model (b) Markov mesh model

Figure 5: Conditioning set based on the Markov random field and the Markov

mesh model. The grid cell v ∈ Lx·· to be simulated is marked by a gray cross,

the full conditioning set (κ−v and κρ(v)) is in light gray and the corresponding

reduced conditioning set (κn(v) and κν(v)) is in red.

Posterior model

The vertical spatial blurring and averaging caused by the convolution in

the likelihood model defined in Equation (9) restricts the analytical and

fast simulation-based assessment of p
(
κ | d

)
defined in Equation (14). Con-

sider the one-dimensional vertical case based on a first-order Markov chain

prior defined on Lxy·: p
(
κ | d

)
∝ p
(
d | κ

)
× p(κ1)×∏nt

t=2 p
(
κt | κt−1

)
, where

we have omitted xy for ease of notation. Because of the ordering and possi-

ble non-valid transitions in the prior model, numerical optimization of the

posterior model is challenging. It can be demonstrated that the convolution

in the likelihood model defines a convolved hidden Markov model (Lindberg
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and Omre, 2014), where each datum dv is dependent on a large subset of

κ. In Figure 6a, the model is visualized as a first-order Markov chain for

κ and a convolutional model p
(
d | κ

)
. The exact inverse model p

(
κ | d

)

is then a higher-order Markov chain (Figure 6b), since the convolutional

model extends the simpler first-order neighborhood structure that occurs in

the well-known hidden Markov model (Frühwirth-Schnatter, 2006). Assess-

ment of a kth-order Markov chain generally requires O(Lk+1) operations,

which becomes computationally unfeasible even for modest values of k. The

exact posterior model is approximated by constructing a kth-order Markov

chain approximation (Figure 6c) of the form

p̃
(
κ | d

)
= p̃

(
κ1:k | d

)
×

nt∏

t=k+1

p̃
(
κt | κ(t−k):(t−1),d

)
, (22)

which is assessed analytically by a recursive algorithm (Reeves and Pettitt,

2004; Friel and Rue, 2007). Various approximations exist here, for exam-

ple, based on truncation of the likelihood or more complex approximations

(Rimstad and Omre, 2013). Finally, the approximate density p̃
(
κ | d

)
is

used as an independent proposal density in a Markov chain Monte Carlo

Metropolis-Hastings algorithm (Equation (5)) to simulate based on p
(
κ | d

)
.

This is a so-called independent proposal density, since each proposal density

is independent of the current value of κ. In two and three dimensions, the

approximation defined in Equation (22) is constructed by also conditioning

on the neighboring traces based on Equation (19).
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(a) Forward model
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(b) Inverse model
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(c) Approximate model (k = 1)

Figure 6: Dependence structure of the forward, inverse and first-order approxi-

mate inverse model for the convolved hidden Markov model.

Petrophysical and elastic inversion

Thus far, we have only discussed the evaluation of p
(
κ | d

)
. Recall that one

of the objectives is to construct a class of continuous-valued prior models

that includes multimodal and skewed marginal densities. We consider the

Gaussian mixture prior density, which has become increasingly popular in

the last decade in reservoir characterization (Grana and Della Rossa, 2010).
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Likelihood model

Recall that the likelihood model is defined as

p
(
d | r,m

)
= p
(
d |m

)
. (23)

Note that the likelihood cannot be factorized by including only the set of

univariate densities p
(
dv | mv

)
because of the convolution, as was the case

for Equation (15).

Prior model

We consider the following spatially coupled Gaussian mixture prior density:

p(r,m)=
∑

κ∈Ωnκ

p
(
r,m | κ

)
p(κ), (24)

where p
(
r,m | κ

)
is a Gaussian density for which the mean and covariance

are defined from the corresponding value of κ. The high-dimensional Gaus-

sian mixture model includes spatial coupling because of the spatial coupling

in p(κ). One interpretation of κ is that it acts as a spatially connected

mode identifier that assigns a corresponding conditional Gaussian density

p
(
r,m | κ

)
for each value of κ. Furthermore, p

(
r,m | κ

)
may be dependent

on a (parametric) spatial correlation function.

Posterior model

For the Gauss-linear likelihood model defined in Equation (9), the Gaussian

mixture density is a conjugate prior model. Hence, the posterior density is
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a Gaussian mixture density, where the model parameters have analytic ex-

pressions given by the likelihood and prior model parameters. The posterior

density is given by

p
(
r,m | d

)
=
∑

κ∈Ωnκ

p
(
r,m | κ,d

)
p
(
κ | d

)
. (25)

Note that the mixing weights p
(
κ | d

)
are identical to the posterior den-

sity obtained by the lithology/fluid class inversion in Equation (14). One

consequence of Equation (25) is that the posterior model is analytically

tractable, since the set of densities p
(
r,m | κ,d

)
are Gaussian densities

having analytical expressions. However, the dimensions of κ, r and m make

it unfeasible to compute all possible configurations of κ. Thus, we are only

able to generate an ensemble of realizations from these posterior densities

by simulation. It can be verified that the Gaussian mixture density is closed

under marginalization. Thus, the marginal densities p
(
rv | d

)
and p

(
mv | d

)

are univariate Gaussian mixture densities.

Summary of papers

The objective of this PhD thesis is to construct a class of computationally

feasible models in a Bayesian spatial inverse framework for the joint char-

acterization of lithology/fluid classes, petrophysical properties and elastic

attributes in three-dimensional reservoir characterization.

In the following, we summarize the papers included in this thesis. They
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constitute the scientific contribution of this PhD thesis. Each paper is

considered to be self-contained; hence, the papers can be read in an arbitrary

order.
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PAPER I

Bayesian Gaussian Mixture Linear Inversion for Geophysical

Inverse Problems

Dario Grana, Torstein Fjeldstad and Henning Omre

Published in Mathematical Geosciences vol. 49 (4) (2017)

The problems of both seismic inversion and petrophysical inversion are

cast in Bayesian frameworks based on spatially coupled Gaussian mixture

prior models. The two inverse problems are both phrased based on a Gauss-

linear likelihood model and Gaussian mixture prior density. That is, the

proposed workflow is valid for both seismic and petrophysical inversion.

The spatially coupled Gaussian mixture prior is discussed and demonstrated

on two real case studies jointly with lithology/fluid class prediction. The

results based on the Gaussian mixture prior density are compared to results

based on a simpler Gaussian prior model for two real case studies, and an

improvement for the root-mean-squared error, typically in the range 10−30

%, is obtained.

Main contribution: rigorous formulation of petrophysical and seismic

inversions based on spatially coupled Gaussian mixture prior densities.
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PAPER II

Bayesian Inversion of Convolved Hidden Markov Models With

Applications in Reservoir Prediction

Torstein Fjeldstad and Henning Omre

To appear in IEEE Transactions on Geoscience and Remote Sensing

Two classes of approximations for a long-memory 1D Markov chain for

the convolved hidden Markov model based on a Gauss-linear likelihood

model are proposed. These approximate low-order Markov chains are as-

sessed analytically by the forward-backward algorithm. Assessment of the

correct posterior model is performed by an independent proposal Markov

chain Monte Carlo algorithm together with a delayed rejection step. The

two proposed approximations are validated on a set of synthetic cases, and

their performance is compared. The favorable approximation is demon-

strated in a real 1D case study from the Norwegian Sea to predict lithol-

ogy/fluid classes and elastic attributes.

Main contribution: two classes of kth-order Markov chain approxima-

tions are introduced, and their performance is discussed.
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PAPER III

Joint probabilistic petrophysics-seismic inversion based on

Gaussian mixture and Markov chain prior models

Torstein Fjeldstad and Dario Grana

Published in Geophysics vol. 83 (1) (2018)

The two distinct inverse problems defined in Paper I are combined into

a joint probabilistic model that allows for joint Bayesian characterization of

lithology/fluid classes, petrophysical properties and elastic attributes based

on the Gauss-linear likelihood model. The posterior model in 2D is as-

sessed using a block-Gibbs simulation algorithm, where each vertical profile

is updated conditionally on the remaining vertical profiles. The proposed

methodology is demonstrated on seismic data from a 2D cross-section from

the Norwegian Sea reservoir to predict the occurrence of gas sandstone.

Main contribution: sequential specification of a spatially coupled

Bayesian model for joint prediction of lithology/fluid class, petrophysical

properties and elastic attributes.
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PAPER IV

Bayesian model for lithology/fluid class prediction using a

Markov mesh prior fitted from a training image

Håkon Tjelmeland, Xin Luo and Torstein Fjeldstad

Published in Geophysical Prospecting vol. 67 (3) (2019)

Two classes of prior models for inversion of binary lithology/fluid classes

based on seismic data in a real 2D case study are discussed. The first prior

model is based on a manually specified Markov random field with a first-

order neighborhood system for the lithology/fluid classes. The second prior

model is based on a Markov mesh prior model, where the neighborhood

and the associated model parameters are estimated from a training image

in an empirical Bayesian framework. These prior models are combined with

a Gauss-linear likelihood model to assess the posterior density of the lithol-

ogy/fluid classes. The difference between the posteriors for the marginal

probabilities is small but observable. However, the connectivity in the pos-

terior realizations is vastly different. The larger neighborhood of the Markov

mesh model enables the identification of long-range connectivity, which is

important for modeling fluid flow.

Main contribution: impact of a neighborhood system with a complex

structure in reservoir characterization.
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PAPER V

A one-step Bayesian inversion framework for three-dimensional

reservoir characterization based on a Gaussian mixture model –

A Norwegian Sea demonstration

Torstein Fjeldstad, Per Åge Avseth and Henning Omre

Submitted

Joint spatial Bayesian inversion of lithology/fluid classes, petrophysical

properties and elastic attributes is considered in three dimensions based

on a Gauss-linear likelihood model. A recursive algorithm that translates

the Gibbs formulation for a Markov random field into a set of vertical

Markov chain transition probabilities is proposed. The proposed algorithm

is demonstrated on a 3D gas discovery from the Norwegian Sea. We com-

pare the proposed model to a simpler model where the vertical profiles

are assumed to be conditionally independent of every other vertical pro-

file. Both methods are validated at a blind well location, and the proposed

model based on a Markov random field prior obtains a reduction of the

root-mean-squared error of up to 60 %. Posterior realizations from the 3D

model are observed with a stronger lateral connectivity.

Main contribution: a recursive algorithm that translates a 3D Markov

random field into a set of conditional vertical 1D Markov chains.
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In Table 1, we present a short summary of the included variables and

posterior densities of interest. In summary, the main scientific contributions

of this thesis are the following: Paper I formalizes the Gaussian mixture

prior density in cases of petrophysical and seismic inversion (Equation (24))

and is written for a geoscience audience. Paper II presents two classes

of statistical approximations of Equation (22) and discusses their perfor-

mance as proposal densities. Specifically, their impact on the acceptance

rate (Equation (6)) is discussed. The focus is on the statistical properties of

the proposed approximations, and the paper is therefore aiming at a statisti-

cal audience. Paper III presents a sequential model for joint lithology/fluid

class and petrophysical and elastic inversion of Equation (13) and is written

for a geophysical audience. A linearized statistical rock physics model and

block-Gibbs simulation algorithm are discussed. Paper IV introduces the

use of the Markov mesh prior model (Equation (21)) in seismic inversion.

Its impact on connectivity in a real case study is studied and compared

with a simpler manually specified Markov random field. The paper targets

a geoscience audience. Paper V can be viewed as the natural extension of

previous papers and discusses the assessment of Equation (12). An algo-

rithm to simulate a three-dimensional Markov random field (Equation (17))

based on recursive simulations of vertical Markov chains is presented. The

3D Markov random field posterior model (Equation (17)) is compared to

a set of 1D vertical Markov chain posterior models (Equation (16)) at a

blind well location. The 3D Markov random field prior model obtained a
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reduction of up to 60 % in root-mean-squared error for the petrophysical

properties compared to the alternative trace-independent model. The paper

is written for a geophysical audience with a strong background in statistical

modeling.

Table 1: Summary of the models discussed in Papers I-V.

Paper Included

variables

Number

of classes

Dimension of

reservoir model

Posterior densities

of interest

I κ and r, and

κ and m

L ≥ 2 1D p
(
κ, r |m

)
and

p
(
κ,m | d

)

II κ and m L ≥ 2 1D p
(
κ,m | d

)

III κ, r and m L ≥ 2 2D p
(
κ, r,m | d

)

IV κ L = 2 2D p
(
κ | d

)

V κ, r and m L ≥ 2 3D p
(
κ, r,m | d

)
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Joint probabilistic petrophysics-seismic inversion based on Gaussian
mixture and Markov chain prior models

Torstein Fjeldstad1 and Dario Grana2

ABSTRACT

Seismic reservoir characterization focuses on the prediction of
reservoir properties based on the available geophysical and pet-
rophysical data. The inverse problem generally includes continu-
ous properties, such as petrophysical and elastic attributes, and
discrete properties, such as lithology/fluid classes. We have devel-
oped a joint probabilistic inversion methodology for the predic-
tion of petrophysical and elastic properties and lithology/fluid
classes that combined statistical rock physics and Bayesian seis-
mic inversion. The elastic attributes depend on continuous petro-
physical variables, such as porosity and clay content, and discrete
lithology/fluid classes, through a nonlinear rock-physics relation-
ship together. The seismic model relates the elastic attributes, such
as velocities and density, to their seismic response (reflectivity,
traveltime, and amplitudes). The advantage of our integrated ap-
proach is that the inversion method accounts for the uncertainty

associated to each step of the modeling workflow. The lithology/
fluid classes are assigned by aMarkov random field prior model to
capture vertical continuity and vertical sorting of the lithology/
fluid classes. Because rock and fluid properties are in general
not Gaussian, a spatially coupled Gaussian mixture prior model
based on the lithology/fluid classes is constructed. The forward
geophysical operator includes a lithology-/fluid-dependent rock
physics model and a linearized seismic model based on the con-
volution of the seismic wavelet with the reflectivity coefficient
series. The solution of the inverse problem consists of the posterior
distributions of petrophysical and elastic properties and lithology/
fluid classes. We proposed an efficient Markov chain Monte Carlo
algorithm to sample from the posterior models and assess the un-
certainty. Our methodology is demonstrated on a seismic cross
section from a survey in the Norwegian Sea, and it shows prom-
ising results consistent with well-log data measured at the well
location as well as reliable prediction uncertainties.

INTRODUCTION

In reservoir characterization, the prediction of hydrocarbon pres-
ence in the subsurface given geophysical observations is a problem of
utmost importance. Geophysical observations may include data from
seismic surveys and exploration wells. Quantitative interpretation
(Avseth et al., 2005) is an important tool in oil and gas recovery
to predict reservoir properties, evaluate the associated uncertainty,
and build models for fluid flow simulations. We focus on the lithol-
ogy/fluids classification, and the predictions of rock properties and
elastic attributes. Indeed, the assessment of the uncertainty is impor-
tant to reduce risk and increase the expected revenue.
Petrophysics models describe the relations between rock and

fluid properties and measured petrophysical well logs, whereas

rock-physics models link the rock and fluid properties to the elastic
attributes (Mavko et al., 2009). Petrophysics and rock-physics re-
lations might be different in different lithology/fluid classes.
Common petrophysics and rock-physics models can be either theo-
retical models (Mavko et al., 2009) or empirical models calibrated
from well log measurements. These models are generally nonlinear;
therefore, the classic linear inverse theory cannot be applied. How-
ever, many of these models can be linearized within a small range of
the model properties, e.g., using Taylor’s expansion (Grana, 2016).
A common geophysical data type in reservoir characterization is

amplitude variation with offset (AVO) observations. The seismic re-
sponse can be generally approximated using a convolutional model
of the source wavelet with the vector of reflection coefficients at the
interfaces. The reflection coefficients are a function of the elastic

Manuscript received by the Editor 21 April 2017; revised manuscript received 9 July 2017; published ahead of production 25 October 2017; published online
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properties of the rock, i.e., velocities and density, and for weak elastic
contrasts, they can be computed using linear approximations (Aki
and Richards, 1980).
In this paper, we focus on the assessment of the spatial distribu-

tion of lithology/fluids, rock and fluid properties (such as porosity),
and elastic attributes (such as acoustic impedance), conditioned
by the measured seismic data. Mathematically, this problem can
be considered as three distinct inverse problems; however, they
are strongly related. Wewill refer to the inverse problems as, respec-
tively, lithology/fluid, petrophysical, and seismic inversion. In
the first problem, the model variable to be predicted is a discrete
property representing an indicator for each of the lithology/fluids
classes. In the second problem, it is a set of continuous reservoir
properties bounded between zero and one, and in the third problem,
it is a set of continuous nonnegative elastic properties. Assessment
of these inverse problems is a major challenge in reservoir charac-
terization because they are often ill-posed (Tarantola, 2005). We
operate in a Bayesian framework, which is a popular choice in res-
ervoir characterization for property prediction and uncertainty
quantification (Scales and Tenorio, 2000; Ulrych et al., 2001). The
solution of the inverse problem is represented by a probability den-
sity function, not just a single predicted value. As discussed in
Houck (2002), it is important to combine rock physics and seismic
uncertainties in quantitative interpretation to obtain posterior den-
sities with realistic uncertainty. For deterministic methods, we refer
to Aster et al. (2005), and the references therein.
Buland and Omre (2003) propose a Bayesian framework for seis-

mic inversion, in which they focused on the prediction of elastic
attributes. They assumed a Gaussian prior model and linearized
seismic forward model together with Gaussian error terms; thus,
their posterior density can be assessed analytically. Hansen et al.
(2006) propose a sequential simulation approach for the seismic
inversion problem. Larsen et al. (2006) and Ulvmoen and Omre
(2010) consider lithology/fluid predictions based on a Markov
chain prior model for the lithology/fluids classes inspired by Eids-
vik et al. (2004). Rimstad and Omre (2013) later formalize this to a
convolved hidden Markov model. Gunning and Glinsky (2007),
Grana and Della Rossa (2010), and Rimstad and Omre (2010) also
assess the rock properties. Jullum and Kolbjørnsen (2016) propose a
series of local Gaussian approximations of the likelihood function
to assess the posterior model for rock properties and elastic attrib-
utes. Connolly and Hughes (2016) propose an acceptance/rejection
sampling technique in which a set of lithology/fluids classes is
generated from the prior model together with a set of synthetic ob-
servations and is updated until convergence. The lithology/fluids
classes are accepted based on a misfit criterion of the corresponding
synthetic observations and the observed seismic observations. We
refer to González et al. (2008) and Bosch et al. (2010) for a discus-
sion of geostatistical methods applied to seismic inversion.
For a non-Gaussian prior and likelihood model, Markov chain

Monte Carlo (MCMC) methods (Robert and Casella, 2005) are
often required because analytical expressions for the posterior
model do not exist except for very particular cases. In MCMCmeth-
ods, a sample of the variables of interest is generated from a pro-
posal density and accepted or rejected based on the likelihood of
observing the measured data given the sampled variable. Unfortu-
nately, the assessment of geophysical inverse problems is in general
not feasible by straightforward single-site MCMC methods because
of the spatial coupling in the likelihood function; i.e., designing a

suitable proposal density in the MCMC algorithm is a challenging
problem.
The inverse problem is also challenging for the presence of the

discrete and continuous properties. Rock and fluid properties, such
as porosity and water saturation, are in general not Gaussian, but
appear as multimodal and skewed due to the presence of different
lithology/fluids classes (Grana and Della Rossa, 2010; Dubreuil-
Boisclair et al., 2012; de Figueiredo et al., 2017). Grana and Della
Rossa (2010) propose a Gaussian mixture model, in which the rock
properties and elastic attributes are Gaussian conditional on the lith-
ology/fluids classes; i.e., each lithology/fluid class is detectable as a
single component of the Gaussian mixture. Hidden Markov models
(Cappé et al., 2005) have been applied to seismic inversion (Larsen
et al., 2006) to honor the vertical geologic ordering of lithologic
facies and fluids (Krumbein and Dacey, 1969). A Markov random
field prior model (Besag, 1974) for geologic sequences is presented
in Ulvmoen and Omre (2010) and Rimstad and Omre (2010) to ac-
count for the lateral continuity of the subsurface. These methods are
based on Gaussian approximations of Gaussian mixture densities
for the rock and fluid properties, together with the efficient recursive
forward-backward algorithm (Reeves and Pettitt, 2004) to assess an
approximate posterior model for the lithology/fluids classes given
the geophysical observations. Rimstad and Omre (2013) and Fjeld-
stad and Omre (2017) propose various approximate posterior mod-
els and empirically evaluated their similarities with the correct
posterior model.
Our method provides a rigorous mathematical formulation for the

estimation of discrete (facies) and continuous (rock properties and
elastic attributes) variables including the spatial coupling (vertical
and lateral) of the properties and avoids simplistic assumptions re-
lated to the Gaussian distribution of the model parameters. In this
work, we define Gaussian mixture prior models for the rock proper-
ties and elastic attributes inspired by Grana et al. (2017). The mix-
ing weights are defined according to a first-order Markov chain
prior model for the lithology/fluids classes. Combined with Gaus-
sian likelihood functions for the forward geophysical operators, the
posterior models of rock properties and elastic attributes are Gaus-
sian mixture densities. We present an efficient MCMC algorithm for
assessing the correct posterior models for the lithology/fluids
classes, rock properties, and elastic attributes in a Bayesian frame-
work, and we discuss the joint assessment. A case study from the
Norwegian Sea based on a seismic cross section and well logs is
presented.

MODEL SPECIFICATION

The focus of this work is on the joint assessment of petrophysical
and elastic properties such as lithology/fluid classes, porosity, and
P-wave velocity from seismic data, often referred to as petrophys-
ical and seismic inversion. Indeed, these problems can be formu-
lated as separate inverse problems (Grana et al., 2017) or as a joint
inverse problem (Rimstad and Omre, 2010). We consider the latter
and distinguish between the continuous-valued inverse problems
(prediction of rock and fluid properties and elastic properties)
and the categorical inverse problem (lithology/fluid classification).
In the following section, we discuss these inverse problems and
specify the probabilistic model of interest.
We present the methodology for a 1D target zone of interest, i.e.,

a profile through a reservoir unit discretized onto a regular grid
LT ¼ f1; : : : ; Tg. We denote by r ∈ RT the continuous-valued

R32 Fjeldstad and Grana
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rock properties, e.g., porosity ϕ, and by m ∈ RT the elastic proper-
ties, e.g., P-wave velocity VP. The seismic signal d is assumed to be
observed on LT ; however, our methodology extends to cases where
r, m, and d are of different dimensions. For example, the seismic
signal d could be defined on a coarser grid than the model variables
r and m.
The objective is to assess the posterior models pðrjdÞ and pðmjdÞ

in a Bayesian framework. We define the continuous-valued petro-
physical and seismic inverse problems according to Bayes’ theorem:

pðrjdÞ ¼ constr × pðdjrÞpðrÞ
pðmjdÞ ¼ constm × pðdjmÞpðmÞ; (1)

where constr and constm are the normalizing constants, pðdjrÞ and
pðdjmÞ are the likelihood functions, and pðrÞ and pðmÞ are the prior
models. In practice, the analytical assessment of the posterior models
in equation 1 is only feasible for simpler models; i.e., the posterior
models are often assessed by MCMC sampling in real case applica-
tions (Mukerji et al., 2001).
Let the lithology/fluids classes be labeled by κ ∈ Ωκ ¼ ΩT

κ ,
where κt ∈ Ωκ ¼ f1; : : : ; Lg is an indicator variable taking on ex-
actly one of the L values for each t ∈ LT . We also predict the lith-
ology/fluids classes κ given the seismic signal d, being a categorical
inverse problem:

pðκjdÞ ¼ constκ × pðdjκÞpðκÞ; (2)

where constκ is the normalizing constant, pðdjκÞ is the likelihood
function, and pðκÞ is the prior model.
Seismic data d are approximated as a convolution of the reflec-

tion coefficients ofm due to the propagation of seismic waves. The
reflection coefficients are given by the nonlinear Zoeppritz equa-
tion (Sheriff and Geldart, 1995). The lithology/fluid classes κ
and the rock and fluid properties r affect the velocity of seismic
waves m propagating through the subsurface through a nonlinear
relationship, usually referred to as the rock-physics model (Avseth
et al., 2005). Such models include, among the others, Dvorkin’s
cemented sand model, Raymer’s equation, and the Kuster-Toksoz
models, and they are in general known for conventional reservoirs
(Mavko et al., 2009). Indeed, the rock and fluid properties are de-
pendent on the lithology/fluids classes themselves, which we denote
by the petrophysics model. Figure 1 displays the conditional inde-
pendence structure defined by the geophysical models. Indeed,m is
a canonical variable for d; i.e., ðκ; rÞ and d are conditionally inde-
pendent givenm. We observe that the effect of κ propagates directly
into m and indirectly through the effect of the rock properties r, as
desired.
We focus on the assessment of equation 2 and discuss how it

relates to equation 1. Because m is a canonical variable for d and
is related to the seismic model, we present the seismic likelihood
model pðdjmÞ first. Afterward, we discuss the various prior models
pðrÞ, pðmÞ, and pðκÞ. Finally, we discuss the posterior models
pðκjdÞ, pðrjdÞ, and pðmjdÞ.

Likelihood model

We consider the class of so-called Gauss-linear likelihood func-
tions, i.e., likelihood models that are linear in the conditioning variable
together with additive Gaussian errors.

The observed seismic signal for t ∈ LT is approximated as a
convolution of the reflection coefficients and a wavelet for each
incident angle. The exact reflection coefficients are given by the
nonlinear Zoeppritz equation; however, we consider a linearized
approximation based on the Aki-Richards formulation for weak
contrasts (Aki and Richards, 1980). We define the seismic likeli-
hood model as

½djm� ¼ Wmþ ϵdjm; (3)

whereW ∈ RT×T is a matrix including the convolution and Aki-Ri-
chards linearized approximation, and ϵdjm is a zero mean Gaussian
error term having covariance matrix Σdjm ∈ RT×T . Thus, the seis-
mic likelihood function pðdjmÞ is a Gaussian density. As in Buland
and Omre (2003), we write W as a matrix product: W ¼ CAD,
where C is the convolution matrix, A is the matrix with weak con-
trast Aki-Richards reflection coefficients, and D is a first-order dif-
ferential matrix.

Prior models

Continuous-valued rock and fluid properties r, such as porosity
and clay volume, appear in general as skewed and multimodal due
to the presence of various lithology/fluids classes (Grana and Della
Rossa, 2010); i.e., the conditional mean value for porosity given
sandstone is usually larger than the conditional mean value given
shale. Buland and Omre (2003) consider a Gaussian prior model
that is unimodal and symmetric, in their Bayesian linearized elastic
inversion methodology. However, because the rock properties r of
interest are usually skewed and multimodal, we seek a prior model
pðrÞ that honors these characteristics. Because rock properties are
constrained to ½0; 1�, we discuss later a one-to-one transformation
from ½0; 1� to R.
We define the following lithology/fluid dependent petrophysical

model:

½rjκ� ¼ μrjκ þ ϵrjκ; (4)

where μrjκ ¼ ðμr1 jκ1 ; : : : ; μrT jκT Þ⊺ is a vector of length T including
the pointwise conditional mean values for the rock properties
switching according to the lithology/fluids classes. We assume
ϵrjκ ∈ RT to be a centered Gaussian error term having the covari-
ance matrix Σrjκ ∈ RT×T . Due to the geologic continuity, the rock
and fluid properties are observed to be spatially correlated; there-
fore, we assume Σrjκ to be defined from a vertical spatial correlation
function ρrðhÞ for h ¼ 0; : : : ; T − 1 and the set of marginal stan-
dard deviations σrtjκt for all t ∈ LT (Grana et al., 2017). Thus,

Figure 1. Directed graph of conditional independence structure
based on geophysical models.
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pðrjκÞ is a Gaussian density, which we denote as the petrophy-
sics model.
Because the petrophysics model is Gaussian, the multivariate

marginal density

pðrÞ ¼
X
κ
pðrjκÞpðκÞ (5)

is a Gaussian mixture prior density. Thus, we have constructed a
multimodal and skewed prior for the rock properties. Indeed, r
is a mixture of Gaussian variables with at most LT unique modes,
where the mixing proportions are defined by the lithology/fluids
classes’ prior model pðκÞ. Note that pðrjκÞ is a Gaussian density,
and κ can be thought of as an indicator for a set of Gaussian den-
sities indexed by κ. Because there are LT unique configurations of
κ, evaluating pðrÞ is computationally unfeasible even for small L
and T. The marginal densities pðrtÞ are univariate Gaussian mixture
densities for all t ∈ LT .
The lithology/fluids classes κ, and rock and fluid properties r

affect the seismic velocities m propagating along a vertical profile.
For a given set of lithology/fluids classes κ and rock properties r,
we define the following rock-physics model:

m ¼ fðr;κÞ þ ϵm; (6)

where f is the rock-physics model and ϵm ∈ RT is an error term. In
general, f is a complex nonlinear function that allows for computing
compressional and shear velocities when the porosities, lithology/
fluids, and fluid contents are known. These models are often non-
linear but can be approximated by a first-order Taylor approxima-
tion or a linear empirical relation, at least locally.
We define a linearized version of equation 6:

½mjr;κ� ¼ μmjκ þ Bκðr − μrjκÞ þ ϵmjκ; (7)

where μmjκ ¼ ðμm1jκ1 ; : : : ; μmT jκT Þ⊺ is the vector of length T with
the pointwise conditional mean values dependent on the lithol-
ogy/fluids κ. The matrix with regression coefficients Bκ ∈ RT×T

is assumed to be dependent on κ, and for simplicity and to avoid
overfitting, we assume Bκ to be diagonal having the regression co-
efficients on the diagonals. These coefficients are obtained by least-
squares from a set of training data, e.g., from a well nearby. We
assume ϵmjκ ∈ RT to be a centered Gaussian error term having
covariance matrix Σmjκ ∈ RT×T dependent on a vertical spatial cor-
relation function ρmðhÞ and the set of conditional standard devia-
tions σmt jκt for t ∈ LT, similar to Σrjκ. Indeed, pðmjr;κÞ is a
Gaussian density, and we refer to it as the rock-physics model.
It follows that the multivariate marginal density for the m:

pðmÞ ¼
X
κ

�Z
pðmjr;κÞpðrjκÞdr × pðκÞ

�
; (8)

is a Gaussian mixture prior density because the inner integral is a
Gaussian density.
If our linearization in equation 7 is not adequate, the conditional

pðmjr;κÞ can be assessed by, e.g., a kernel density estimator (Sil-
verman, 1986) or regression splines (Hastie et al., 2009). Such
methods allow for a more flexible rock-physics model at the cost
of a more complex prior model. Note that analytical expressions for
the inner integral in equation 8 do not exist in this case, except for

very particular cases. Therefore, we consider only Gaussian likeli-
hood functions, and we refer to Jullum and Kolbjørnsen (2016) for
more complex nonlinear rock-physics likelihood models.
We define a first-order stationary Markov chain prior model for

the vector of lithology/fluids classes κ:

pðκÞ ¼ pðκ1Þ ×
YT
t¼2

pðκtjκt−1Þ; (9)

inspired by Eidsvik et al. (2004). Here, pðκ1Þ is the stationary
distribution and the prior marginal probability for each class. For
t ∈ LT , we assume each κt to take on exactly one of L different
categories, e.g., shale, gas sandstone, or brine sandstone. A Markov
chain prior model is well-suited for geologic constraints, e.g., gravi-
tational sorting of fluids (Krumbein and Dacey, 1969). We consider
only a stationary first-order Markov chain; however, the methodol-
ogy extends to kth order nonstationary Markov chains at essentially
no additional computational cost. Indeed, a higher order Markov
chain prior model can enforce specific layer constraints such as
minimum thickness and sorting in the posterior model.
Becaue the prior model pðκÞ is included in the definition of pðrÞ

and pðmÞ (equation 5 and equation 8), we focus on the assessment
of the posterior model pðκjdÞ. We define the gross likelihood:

pðdjκÞ ¼
Z

pðdjmÞpðmjr;κÞpðrjκÞdðr;mÞ; (10)

where pðdjmÞ, pðmjr;κÞ, and pðrjκÞ are, respectively, the seismic,
rock physics, and petrophysics models. Indeed, by construction,
pðdjκÞ is a Gaussian density, and it can be assessed analytically for
a given κ. Note that the covariance matrix in pðdjκÞ is dependent on
κ; thus, we have to compute its inverse for each κ, which is com-
putationally expensive.

Posterior models

Recall that the posterior models of interest are pðrjdÞ, pðmjdÞ,
and pðκjdÞ, as given in equation 1 and equation 2. Combining equa-
tion 2 and equation 10, it can be verified that the normalizing con-
stant in pðκjdÞ is

constκ¼
�X

κ

Z
pðdjmÞpðmjr;κÞpðrjκÞdðr;mÞ×pðκÞ

�
−1
;

(11)

and that the posterior pðκjdÞ is a nonhomogeneous Markov chain
with long-ranged vertical spatial dependence. Straightforward as-
sessment of the posterior model pðκjdÞ is computationally unfea-
sible because of the vertical spatial coupling in the gross likelihood.
The posterior density pðκjdÞ is assessed by MCMC sampling, and a
set of B realizations κ1; : : : ;κB can be generated from pðκjdÞ. For
κ ∈ f1; : : : ; Lg, we define the marginal probability profiles:

p̂κ ¼
�
p̂κ
t ¼

1

B

XB
b¼1

Iðκbt ¼ κÞ; t ∈ LT

�
(12)

and the marginal maximum posterior (MMAP) predictor:
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κ̂ ¼ fκ̂t ¼ argmax
κ

p̂κ
t ; t ∈ LTg: (13)

As for linear transformations together with Gaussian errors of a
Gaussian variables, it can be verified that any linear transformation
together with Gaussian errors of a Gaussian mixture variable is also
a Gaussian mixture variable (Grana et al., 2017). Extending Grana
et al. (2017), it can be verified that the posterior densities for r and
m given d are Gaussian mixture densities:

pðrjdÞ ¼
X
κ
pðrjd;κÞpðκjdÞ

pðmjdÞ ¼
X
κ
pðmjd;κÞpðκjdÞ; (14)

where pðrjd;κÞ and pðmjd;κÞ are analytically tractable Gaussian
densities. Note that the weights pðκjdÞ are dependent on the data,
being the posterior model pðκjdÞ. We note that pðrjdÞ and pðmjdÞ
belong to the same class of densities as their prior models pðrÞ and
pðmÞ; i.e., pðrÞ and pðmÞ are conjugate prior models. It follows
that pðrtjdÞ and pðmtjdÞ are univariate Gaussian mixture densities,
and we define the following MMAP predictors:

r̂ ¼ fr̂t ¼ argmax
rt

pðrtjdÞ; t ∈ LTg

m̂ ¼ fm̂t ¼ argmax
mt

pðmtjdÞ; t ∈ LTg: (15)

The corresponding prediction intervals are obtained by a series of
univariate optimizations.

ASSESSMENT OF POSTERIOR MODELS

Recall that the straightforward assessment of pðκjdÞ is unfeasible
and straightforward, single-site MCMC sampling is unfeasible due
to the vertical spatial coupling in pðdjκÞ. We present a class of kth
order approximate posterior models pðkÞðκjdÞ for k ¼ 1; 2; : : : ex-
tending the projection approximation proposed in Fjeldstad and
Omre (2017). The idea is to replace the Tth order Markov chain
model pðκjdÞ with a kth order Markov chain model pðkÞðκjdÞ
where k ≪ T. For a fixed k, the approximate posterior model
pðkÞðκjdÞ is used as proposal density in an independent proposal
MCMC Metropolis-Hastings (MH) algorithm (Robert and Casella,
2005) to assess the correct posterior model pðκjdÞ.
Consider the subvectors κðkÞ

t ¼ðκt−kþ1; :::;κtÞ⊺, rðkÞt ¼ðrt−kþ1;
:::;rtÞ⊺, and mðkÞ

t ¼ ðmt−kþ1; : : : ; mtÞ⊺ for k ¼ 1; 2; : : : of length
k.
Because zero probabilities in the prior model pðκÞ enforces zero

probabilities in the posterior model pðκjdÞ, we approximate only
the gross likelihood model pðdjκÞ. By a trivial extension of the
sample space, we observe that the prior density can be rephrased
as a kth order Markov chain:

pðκÞ ¼ pðkÞðκðkÞ
k Þ

YT
t¼kþ1

pðkÞðκðkÞ
t jκðkÞ

t−1Þ; (16)

because the first k − 1 elements in κðkÞ
t are a member of the con-

ditioning set κðkÞ
t−1.

We define a Gaussian approximation p�ðmÞ to the Gaussian mix-
ture density pðmÞ by computing the theoretical mean vector and
covariance matrix as in Fjeldstad and Omre (2017). Empirically
calibrated Gaussian approximations to pðmÞ are indeed valid; how-
ever, we experienced slightly lower acceptance rates in the MCMC
algorithm using this approximation. Note that p�ðmÞ is a valid prior
model in the Buland and Omre (2003) approach. The joint approxi-
mate density

p�ðd;mÞ ¼ pðdjmÞp�ðmÞ (17)

is Gaussian, and it follows that the conditional densities p�ðdjmðkÞ
t Þ

for t ¼ k; : : : ; T are also Gaussian densities. The conditional den-
sities p�ðdjmðkÞ

t Þ serve as a kth order approximation of the seismic
likelihood function.
Recall the definition of the petrophysics and rock-physics mod-

els. It can be verified that pðrðkÞt jκðkÞ
t Þ and pðmðkÞ

t jrðkÞt ;κðkÞ
t Þ are

Gaussian densities for t ¼ k; : : : ; T. Thus,

p�ðd;mðkÞ
t ; rðkÞt jκðkÞ

t Þ ¼ p�ðdjmðkÞ
t ÞpðmðkÞ

t jrðkÞt ;κðkÞ
t Þ

× pðrðkÞt jκðkÞ
t Þ (18)

are Gaussian densities that are assessed analytically. We define the
following kth order likelihood approximation for t ¼ k; : : : ; T:

pðkÞðdjκðkÞ
t Þ ¼

�Z
p�ðdjmðkÞ

t ÞpðmðkÞ
t jrðkÞt ;κðkÞ

t Þ

× pðrðkÞt jκðkÞ
t ÞdðmðkÞ

t ; rðkÞt Þ
�
1∕k

; (19)

where the kth root ensures that each κt is used exactly once in the
likelihood.
Combining equation 16 and equation 19, we obtain an approxi-

mate posterior model:

pðkÞðκjdÞ ¼ constκ × pðkÞðdjκðkÞ
k ÞpðκðkÞ

k Þ

×
YT

t¼kþ1

pðkÞðdjκðkÞ
t ÞpðκðkÞ

t jκðkÞ
t−1Þ; (20)

in factorial form. The approximate posterior model is assessed ana-
lytically in OððT − kþ 1Þ × Lkþ1Þ operations by the recursive for-
ward-backward algorithm (Reeves and Pettitt, 2004). Maximum
posterior (MAP) predictors are obtained by the Viterbi algorithm
(Viterbi, 1967) for the approximate posterior model.
We assess the correct posterior model pðκjdÞ using the approxi-

mate posterior model pðkÞðκjdÞ as the proposal density in an inde-
pendent proposal MCMCMH algorithm. Note that the troublesome
normalizing constant in equation 2 cancels in the acceptance prob-
ability α. Rimstad and Omre (2013) and Fjeldstad and Omre (2017)
empirically verify in synthetic case studies that a higher order k re-
sults in a higher acceptance rate, at the cost of increased computa-
tional demands in the forward-backward algorithm.
We extend the proposed methodology, and consider a cross sec-

tion D in two dimensions discretized onto a lattice LD. The reser-
voir is discretized vertically in time domain onto LT , as defined
earlier, and in the horizontal direction onto Ln ¼ f1; : : : ; ng; thus,
LD ¼ Ln × LT . The variables of interest are κ ¼ fκx∶x ∈ Lng ¼

Probabilistic petroelastic prediction R35



i
i

“Doktorgrad” — 2020/5/18 — 13:53 — page 98 — #102 i
i

i
i

i
i

fκx;t∶x ∈ Ln; t ∈ LTg, r¼ frx∶x ∈ Lng ¼ frx;t∶x ∈ Ln; t ∈ LTg,
and m ¼ fmx∶x ∈ Lng ¼ fmx;t∶x ∈ Ln; t ∈ LTg, and the objec-
tive is to assess them given d ¼ fdx∶x ∈ Lng ¼ fdx;t∶x ∈ Ln; t
∈ LTg.
We assume the gross likelihood function to be in factorial form

horizontally, extending Ulvmoen and Omre (2010):

pðdjκÞ ¼
Yn
x¼1

�Z
pðdxjmxÞpðmxjrx;κxÞpðrxjκxÞdðrx;mxÞ

�
:

(21)

Indeed, this is the extension of equation 10, where the observa-
tions are assumed to be collected independently in the horizontal
direction.
We define a profile Markov random field prior model, defined by

pðκxjκ−xÞ where κ−x is every trace except trace x, for the lithology/
fluids classes, extending Ulvmoen and Omre (2010). By the Ham-
mersley-Clifford theorem (Besag, 1974), the set of conditional prior
densities fully specifies the prior model for the Markov random
field. Because the characteristics of the lithology/fluids classes are

a result of sedimentary processes in the cross section, the condi-
tional prior for each trace should be nonstationary in the vertical
direction. For a given trace x and depth t, we denote, respectively,
the sedimentary and fluid neighborhood by δsðxÞ and δfðtÞ, and the
full neighborhood by δðx; tÞ.
We assume a nearest horizontal neighborhood; however, higher

order horizontal neighborhoods are of course valid:

pðκxjκ−xÞ ¼ pðκx;1jκy;s; ðy; sÞ ∈ δðx; 1ÞÞ

×
YT
t¼2

pðκx;tjκx;t−1; κy;s; ðy; sÞ ∈ δðx; tÞÞ: (22)

We refer to Rimstad and Omre (2010) for details of the paramet-
rization. Gravitational sorting and ordering are controlled by the
vertical transition matrix P, and lateral dependence structure in sedi-
mentary direction for the lithologies and that in horizontal direction
for the fluids are described by, respectively, βl and βf.
By combining equation 21 and equation 22, we obtain a posterior

model on conditional form:

pðκxjκ−x;dÞ ¼ constκ

×
Z

pðdxjmxÞpðmxjrx;κxÞpðrxjκxÞdðrx;mxÞ

×pðκxjκ−xÞ; (23)

which we can efficiently assess by a block Gibbs algorithm (Algo-
rithm 1). Note that we assess pðkÞðκxjκ−x; dÞ by the recursive for-
ward-backward algorithm at each iteration based on the current
neighboring traces; i.e., the proposal density is adaptive with respect
to its neighboring traces. Without adaptive proposal densities, we ex-
perienced unsatisfactory acceptance rates because the proposal den-
sity does not necessarily honor the continuity in the lithology/fluids
classes. Indeed, the innermost loop can be parallelized because each
trace x is only dependent on its two neighboring traces. Posterior
models pðrjdÞ and pðmjdÞ are similarly assessed for the vertical pro-
file of interest (equation 14).

Our methodology extends trivially to 3D by
extending the neighborhood; however, to ease
notation, it is only presented for a 2D cross
section.

CASE STUDY

We demonstrate our methodology on a 2D
cross section from the Norwegian Sea. The res-
ervoirs zones are characterized by a relatively
high value of porosity, approximately 0.25–0.35.
The interval of interest shows a stratigraphic se-
quence of sand and shale. Gas accumulated at the
top of the structure in the high porosity sand layer,
and it is mixed with a small percentage of irreduc-
ible water saturation. Porosity decreases in the
lower part of the interval due to the increasing clay
volume that reduces the volume of the pore space
in the sandstone. The layers with lower clay con-
tent in the bottom part of the interval are filled by
water. We refer to Avseth et al. (2016) for further

Algorithm 1. Block Gibbs MCMC algorithm.

1 Initialize κð0Þ with pðκjdÞ > 0.

2 for b ¼ 1 to B do

3 Set κðbÞ ¼ κðb−1Þ.
4 for x ∈ Ln in random order do

5 Assess pðkÞðκxjκðbÞ
−x ; dÞ by the forward-backward algorithm.

6 Propose ~κx ∼ pðkÞðκxjκðbÞ
−x ; dÞ.

7 Set κðbÞ
x ¼ ~κx with probability

8 α ¼ min

�
1; pð ~κxjκðbÞ

−x ;dÞpðkÞðκðbÞ
x jκðbÞ

−x ;dÞ
pðκðbÞ

x jκðbÞ
−x ;dÞpðkÞð ~κxjκðbÞ

−x ;dÞ

�
.

9 end

10 end
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Figure 2. Observed petrophysical properties, elastic attributes, observed and synthetic
seismic AVO at well location. From left to right: porosity, water saturation, clay volume,
logðρVPÞ, logðVP∕VSÞ, and observed (solid lines) and synthetic (dashed lines) AVO
observations.
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details of the target zone of interest. For this case study, a set of well
logs and interpreted petrophysical parameters is available at the well
location (Figure 2). The comparison between the measured seismic
data and the synthetic AVO predictions computed from the well logs
(Figure 2) shows an acceptable well-to-seismic tie, and some thin
layers are not resolved, especially in the mid-section of the
well-log interval. A 3D seismic survey was also acquired and was
processed to derive three partial angle stacks.
We consider geophysical data from a seismic 2D survey includ-

ing AVO observations based on near, mid, and far angles (Figure 3).
The cross section includes one well, which we use for model vali-
dation, but not for conditioning. The region of interest is discretized
onto a latticeLD and spans a domain of 61 vertical samples times 100
traces. The seismic sampling rate is 4 ms, and it starts at approxi-
mately 2390 m below sea level, corresponding to an initial traveltime
of 2272 ms.
Three distinct lithology/fluids classes are of interest in the target

zone, namely, shale, gas sandstone, and brine sandstone. We assume
a first-order Markov chain prior model for the lithology/fluids κ:

P ¼
0
@ 0.75 0.05 0.20

0.15 0.85 0

0.20 0.10 0.70

1
A; (24)

and we note the prior zero-transition between the gas sandstone and
brine sandstone due to gravitational sorting. The prior transition ma-
trix P is calibrated from a well outside the target zone.
The continuous-valued rock properties of interest are porosity,

water saturation, and clay volume: r ¼ ðϕ; sw; cÞ⊺, and the elastic
properties of interest are the logarithm of P-impedance and the
VP∕VS ratio: m ¼ ðlogðρVPÞ; logðVP∕VSÞÞ⊺. The use of the loga-
rithm is convenient for the model linearization as in Buland and
Omre (2003). We assume ϵdjm to be white noise and identical
for all traces.
Because rock properties are constrained to

½0; 1�, we apply a modified logit transform (Has-
tie et al., 2009) to the rock properties of interest
to ensure support onR; i.e., we define a Gaussian
mixture prior model (equation 5) for logitðrÞ. In
Figure 4, we display crossplots of the empirical
linear models ½expðmÞjr� and ½mjlogitðrÞ� for up-
scaled data extracted from the reference well to
justify a simplified linear rock-physics model
½mjlogitðrÞ� without lithology/fluid class depend-
ency. The fitted linear models have adjusted R2

values of 0.88 for ½logðρVPÞjlogitðrÞ� and
0.76 for ½logðVP∕VSÞjr�, which is satisfactory.
The assumptions for a linear model appear to
be satisfied. Therefore, the linear approximation
in equation 7 appears to be acceptable because
we expect the lithology/fluid class dependence
in the rock-physics model to capture some
of the nonlinearities in ½logðρVPÞjlogitðrÞ�
and ½logðVP∕VSÞjr�. In other words, we expect
½mjlogitðrÞ; κ� to capture some of the nonlinear-
ities in the rock-physics model. The estimated
marginal variances (equation 4 and equation 7)
are increased by factors in the range of 1.5–5
for numerical stability.

A set of empirical rock-physics models ½mjlogitðrÞ; κ� is calibrated
in Figure 5 from the upscaled well logs outside the target zone. We
display three subsections of the rock-physics models ½logðρVPÞj
logitðϕÞ; κ� for three fixed values of ðsw; cÞ. Each subplot includes
the linear models ½logðρVPÞjlogitðϕÞ; κ� for the three distinct lithol-
ogy/fluid classes of interest displayed in colored lines. For example,
the red line displays the linear model ½logðρVPÞjlogitðϕÞ� in which
we have fixed the lithology/fluid class to gas sandstone. Note that the
rock-physics models are hyperplanes defined everywhere; however,
only a small subset of them is of geologic interest. The choices of
ðsw; cÞ are such that the rock physics models are centered approxi-
mately on the mean values for, respectively, shale, gas sandstone, and
brine sandstone in the respective subfigures. In the leftmost plot, the
values of ðsw; cÞ are chosen such that shale is the most likely lith-
ology/fluid class, gas sandstone second in the middle one, and brine
sandstone in the rightmost one; i.e., even though all rock physics
models are defined, they are not necessarily geologically meaningful.
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Figure 3. Two-dimensional seismic cross sections for near-, mid-,
and far-angle stacks. Location of exploration well displayed by a
solid black line.
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The defined rock physics models are assumed to
be identical for all traces.
The horizontal coupling parameters βf and βl

are set to, respectively, 1.5 and 0.75; i.e., the fluid
couplings are chosen to be stronger in the sand
than in the shale (Rimstad and Omre, 2010).
We generate in total 2,000,000 realizations

from the posterior model pðκjdÞ, and we extract
a subsample of every tenth realization to obtain
approximately independent realizations. Mixing
is observed to be satisfactory; however, it is not
included here. We obtain a mean acceptance rate
of 0.26 and a median acceptance rate of 0.24. The
acceptance rates vary between 0.02 and 0.74 (Fig-
ure 6). Indeed, it is reasonable that the acceptance
rate for each trace varies within the cross section
because of possible misalignment in the seismic,
strong local couplings, and poorly calibrated
wavelets. There can also be lateral drift trends

in the petrophysics and rock-physics models, which we have not in-
cluded in our model. Also, the quality of our approximation, and thus
the approximate posterior model pðkÞðκxjdÞ, is strongly dependent on
the position of each trace.
In Figure 7, posterior results for the lithology/fluids classes at the

well location are displayed. We observe that the thin shale layer
between the gas reservoirs is not fully captured in the posterior real-
izations; however, the uncertainty at the lowermost part is captured.
We note that the MMAP predictor captures the main characteristics
of the reference lithology/fluid classification, but the small-scale
variability is lost, probably due to the low resolution and low sig-
nal-to-noise ratio of seismic compared with the actual well-log data.
The mismatch between the predicted values and the observed values
approximately 2450 ms is noted, which might be a result of a poorly
calibrated wavelet (Figure 2).
Observed upscaled logs for rock and fluid properties and elastic

attributes at the well location are displayed in Figure 8. Posterior
mean and MMAP predictors are displayed, and they show similar
main characteristics; however, the mean predictor tends to be
slightly smoothed toward the local mean values.
In Figure 9, we display the fitted posterior densities for porosity

at six randomly selected two-way times at the well location. At
2276 ms, we observe the posterior to be centered on the porosity
value for shale and slightly skewed. At 2324 ms, the posterior den-
sity has been shifted to be centered on the porosity value for gas
sandstone, and the density appears to be almost Gaussian. At the
last four locations, the posterior are observed to be skewed and mul-
timodal. At 2460 ms, we observe the MMAP predictor to predict the
incorrect mode, whereas the mean predictor is located in between
the two modes; however, at 2468, the MMAP predictor captures the
correct mode resulting in a smaller pointwise prediction error than
the mean predictor. In Table 1, we display the root-mean-square
(rms) errors for the mean and MMAP predictors, and observe that
the values based on the mean predictor are in general slightly
smaller. This is true because the mean predictor is often in between
the posterior modes, whereas the MMAP predictor can predict the
incorrect mode, which results in a large pointwise discrepancy.
Similar characteristics were observed also for water saturation, clay
volume, log ip, and logVP∕VS. The coverage ratios for the 80%
prediction intervals are also given in Table 1, and they appear to
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and colored based on the reference lithology/fluid classification. From left to right, we
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be satisfactory, except for the coverage ratio of logðρVPÞ which is
smaller than expected.
In Figure 10, we display the posterior marginal probabilities for

shale, gas sandstone, and brine sandstone together with the MMAP
predictor for the cross section. We observe that
we only predict gas sandstone in the uppermost
part of the reservoir, and that the marginal prob-
abilities appear with some lateral continuity in
agreement with the expected geology of the field.
Our methodology is observed to separate shale
and gas sandstone with more distinct boundaries
than shale and brine sandstone; however, the ex-
act positions of the boundaries are uncertain.
This is as we expected given the similar petroe-
lastic features of shale and brine sandstone. In the
MMAP predictor of the lithology/fluid classes,
we observe larger bed thicknesses. We speculate
that this feature could be due to the low resolu-
tion of the measured seismic data as well as to the
high values of the lateral coupling parameters in
the Markov random field, which might lead to
regression toward the dominating class and loss
of thin bed thicknesses. Such limitation could be
overcome assuming a variable transition matrix P
across the 2D section. For a discussion on the
variability of the transition matrix, and conse-
quently the variability in the facies proportions
and average thicknesses, we refer to Connolly
and Hughes (2016).
Figure 11 displays the MMAP predictors for

porosity, water saturation, and clay volume. The
MMAP predictors show some lateral and vertical
continuity, and the gas layer is observed at the
uppermost part of the target zone. The MMAP
predictors show rapid transitions; thus, the pre-
dictor is fairly nonsmooth vertically compared
with the predictor based on the pointwise pos-
terior mean values. We display also the pointwise
width of the 80% prediction intervals, and we ob-
serve the pointwise errors to be largest around the
gas reservoir, as expected. Indeed, identifying the
exact boundaries of the gas reservoirs is a chal-
lenging problem and is strongly dependent on the
discretization of the grid.
Figure 12 displays the posterior results for the

elastic attributes in a similar format as Figure 11.
Both predictors for the elastic attributes share
similarities with the predictors for the rock and
fluid properties, such as lateral smoothness and
disrupted vertical transitions.

DISCUSSION

Inspired by applications in lithology/fluid pre-
diction, we have presented a convolved hidden
Markov model extending Larsen et al. (2006)
for a vertical section. The lithology/fluids classes
are assumed to follow a Markov chain vertically
to honor geologic constraints such as fluid sort-
ing. We have defined a lithology/fluid-dependent

Gaussian petrophysics model and a Gauss-linear lithology/fluid-de-
pendent rock physics model. The linearity assumption is valid in
many applications, with the exception of the porosity effect in
unconsolidated sandstones and the fluid effect in homogeneous
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mixtures (Dvorkin et al., 2014). Indeed, the fluid effect in homo-
geneous fluid mixtures and the porosity effect in unconsolidated
rocks can introduce nonlinear effects in the model, resulting in
unsatisfactory local linearizations. Seismic AVO data are approxi-
mated as a convolution of the reflection coefficients with additive
Gaussian errors. The advantage of our method is the joint assess-
ment of lithology/fluids classes, rock and fluid properties, and elas-
tic attributes given the seismic AVO data.
In the vertical direction, we define a first-order Markov chain

prior model for the lithology/fluids classes. Spatially coupled Gaus-
sian mixture prior densities are defined for the rock and fluid prop-
erties and the elastic attributes, and they are verified to be conjugate
prior models for Gauss-linear likelihood models. For a detailed
comparison between Gaussian and Gaussian mixture prior models,
we refer to Grana et al. (2017).
The fitted rock physics model is a first-order linear approxima-

tion. The methodology could be extended to include nonlinear
rock physics models, such as granular media or inclusion models
(Mavko et al., 2009). If the rock physics model is close to
being linear, e.g., the stiff sand model or the Kuster-Toksoz model
(Grana, 2016), the model could be linearized using Taylor’s series
approximation. If the model is nonlinear, such as the soft sand
model or saturation models for homogeneous fluid mixtures, our
method is still applicable, but the assessment of the posterior
distribution requires the evaluation of a nonlinear likelihood func-
tion. Note that rock and fluid properties and the elastic attributes are
no longer conjugate prior models for a nonlinear likelihood
function.
We propose a kth order likelihood approximation to obtain an

approximate posterior model in factorial form which is efficiently
assessed by the forward-backward algorithm. The correct posterior
density is assessed using the approximate posterior model as a
proposal density in a MCMC MH algorithm. Note that the realiza-
tions are sampled conditional on the observations — not from a
prior model as in most of the stochastic sampling techniques. These
methods tend to underpredict the uncertainty (González et al., 2008;
Grana et al., 2012).
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Figure 10. Posterior results lithology/fluids classes in 2D. Marginal
probabilities for the various lithology/fluids classes and MMAP pre-
dictor for the cross section.

Table 1. Root-mean-square errors at the well location for
posterior mean and MMAP predictors, and coverage ratio
for the 80% prediction intervals.

Mean MMAP Coverage ratio (%)

ϕ 0.0403 0.0475 75.4

sw 0.1279 0.1557 78.7

c 0.1044 0.1087 80.3

logðρVPÞ 0.1009 0.1017 67.2

logVP∕VS 0.0362 0.0354 77.1
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Figure 11. Posterior results rock and fluid properties in two dimen-
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Our methodology is extended to 2D by assuming a Markov
random field prior model for the lithology/fluids classes (Ulvmoen
and Omre, 2010). The correct posterior model is assessed by a
block-Gibbs MCMC algorithm in 2D, in which each trace is up-
dated given its neighboring traces and seismic observations. Be-
cause of the first-order neighborhood assumption in the lateral
direction, the block-Gibbs algorithm can be run in parallel as every
pair of two traces separated by at least one trace are conditionally
independent given all other traces.
Posterior densities are observed to capture the skewness and mul-

timodality. The defined MMAP predictors are in general observed
to be slightly discontinuous compared with the mean predictor
which is regressed toward the local mean values.
Our methodology has been empirically verified on a cross section

from the Norwegian Sea. Lithology/fluids classes, rock, and fluids
properties and elastic attributes are observed to be predicted real-
istically and are consistent with the data at the well location. We
observe MMAP predictors to capture the lateral extent of the lith-
ology/fluids classes. The acceptance rates are found to be satis-
factory.
Future research might include the lateral variability of the

transition matrices and the rock physics models, and joint petro-
physical and seismic inversion together with model parameter in-
ference.

CONCLUSION

We presented a methodology for the joint prediction of lithology/
fluid classes, rock and fluid properties, and elastic attributes in a
Bayesian framework. Our methodology allows for efficient MCMC
assessment of the posterior models in 2Dwith satisfactory acceptance
rates. The posterior model for the rock and fluid properties and elastic
attributes are Gaussian mixture densities that show skewness and
multimodality. The application to a real data set for the validation
part of the method showed promising results consistent with the
well-log data.
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ABSTRACT
We consider a Bayesian model for inversion of observed amplitude variation with
offset data into lithology/fluid classes, and study in particular how the choice of prior
distribution for the lithology/fluid classes influences the inversion results. Two distinct
prior distributions are considered, a simple manually specified Markov random field
prior with a first-order neighbourhood and a Markov mesh model with a much larger
neighbourhood estimated from a training image. They are chosen to model both hor-
izontal connectivity and vertical thickness distribution of the lithology/fluid classes,
and are compared on an offshore clastic oil reservoir in the North Sea. We com-
bine both priors with the same linearized Gaussian likelihood function based on a
convolved linearized Zoeppritz relation and estimate properties of the resulting two
posterior distributions by simulating from these distributions with the Metropolis–
Hastings algorithm. The influence of the prior on the marginal posterior probabilities
for the lithology/fluid classes is clearly observable, but modest. The importance of the
prior on the connectivity properties in the posterior realizations, however, is much
stronger. The larger neighbourhood of the Markov mesh prior enables it to identify
and model connectivity and curvature much better than what can be done by the
first-order neighbourhood Markov random field prior. As a result, we conclude that
the posterior realizations based on the Markov mesh prior appear with much higher
lateral connectivity, which is geologically plausible.

Key words: Computing aspects, Inverse problem, Inversion, Mathematical formula-
tion, Seismics.

INTRODUCTION

From seismic data one can predict elastic properties and lithol-
ogy/fluid classes (LFCs) in a reservoir. This is an inverse prob-
lem and for a given seismic data set many solutions exist.
Different methods have been used for inverting seismic data
to elastic properties and LFCs, both deterministic approaches
such as optimization-based methods (Aster, Borchers and
Thurber 2011; Sen and Stoffa 2013) and probabilistic ap-
proaches such as Bayesian inversion (Tarantola 2005). Using
the Bayesian framework, a linearized relation between the

∗E-mail: haakon.tjelmeland@ntnu.no

data and the elastic properties is commonly used and a Gaus-
sian likelihood function is adopted (see, for example Buland
and Omre 2003; Gunning and Glinsky 2007, and the discus-
sion in Grana, Fjeldstad and Omre 2017). When inverting
to elastic properties, the prior is also often assumed to be
Gaussian, in which case the posterior becomes Gaussian with
analytically available mean and covariance (see again Buland
and Omre 2003). When inverting to LFCs, other priors have
to be used. In particular Rimstad and Omre (2010) define
a hierarchical prior, where a Markov random field (Kinder-
mann and Snell 1980; Hurn, Husby and Rue 2003) is used
to model the LFCs and conditional on these the elastic prop-
erties are assumed to be Gaussian with mean and covariance

609C© 2019 European Association of Geoscientists & Engineers
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functions depending on the LFCs. Grana and Della Rossa
(2010) consider a Gaussian mixture prior for the elastic at-
tributes to include multi-modality and skewness in the prior
model where the effect of the LFCs is summed out. With a
non-Gaussian prior, the posterior is no longer analytically
available and Markov chain Monte Carlo (Gilks, Richardson
and Spiegelhalter 1996; Robert and Casella 1999; Gamerman
and Lopes 2006) must typically be used to estimate properties
of the resulting posterior distribution. It is also challenging
to specify lateral connectivity and spatial dependency later-
ally for non-Gaussian priors, and often the inverse problem is
solved trace by trace before a smoother is applied afterwards
(Connolly and Hughes 2016).

To specify a prior that reflects available prior informa-
tion in a spatial problem, such as inversion of seismic data,
can be difficult. The properties of a Gaussian field is ana-
lytically well understood, so by adopting a Gaussian prior
as in Buland and Omre (2003), the prior specification pro-
cess is simplified. Eidsvik, Mukerji and Switzer (2004) con-
sider a one-dimensional problem and assume a Markov chain
prior to predict geological attributes from well log data, and
Fjeldstad and Omre (2019) use a similar model to predict
LFCs and elastic attributes from seismic data. The proper-
ties of Markov chains are also analytically available, which
again simplifies the specification of a reasonable prior. For
most non-Gaussian spatial prior models the situation is less
favourable. In Rimstad, Avseth and Omre (2012), a discrete
Markov random field prior is used for the LFCs. The prop-
erties of discrete Markov random fields are analytically not
available, which makes it difficult to verify the properties of
the chosen prior. To cope with the problem of specifying non-
Gaussian spatial prior models, it has in geostatistics become
common practice to estimate the prior model from a so-called
training image. A training image is from an outcrop or a con-
structed scene assumed to have the same spatial structure as
the phenomenon under study. The idea is to estimate a prior
model from one or more training images (see the discussion
in Mariethoz and Caers 2014). Various multiple-point statis-
tics models (Guardiano and Srivastava 1993; Strebelle 2002;
Journel and Zhang 2006; Zhang et al. 2012) have been de-
fined to implement this idea. These models are algorithmically
defined. The nodes in a lattice are visited in a random order
and when a node is visited, the value in that node is simulated
conditional on values in previously visited nodes, where the
conditional distribution used is estimated from the training
image. There are two serious complications associated with
the use of multiple-point statistics models. First, the number
of conditional distributions that has to be estimated from the

training image is enormous, and the information content in a
typical training image is not sufficient to estimate this number
of parameters. Emery and Lantuéjoul (2014) are discussing
this issue mathematically. Second, the models are only algo-
rithmically defined and no simple-to-evaluate expressions are
available for the estimated model. The implication of this is
that if we want to use the estimated model as a prior and gen-
erate realizations conditional on some observed data, it is in
general not clear how to do this. Since we have no analytical
formula for the prior, we do not have an expression for the
posterior. This issue is also discussed in Toftaker and Tjelme-
land (2013). As alternatives to the multiple-point statistics
models, Arnesen and Tjelmeland (2017) and Luo and Tjelme-
land (2019) introduce procedures for fitting Markov random
fields and Markov mesh models, respectively, to a given train-
ing image. For these model classes explicit expressions for
the distributions are available, so to simulate from a corre-
sponding conditional distribution Markov chain Monte Carlo
procedures can, for example be employed.

The purpose of this article is to demonstrate how in-
version of seismic data into LFCs can be accomplished
in a Bayesian framework by estimating a prior model for
the LFCs from a given training image, and combine this
with a linearized and Gaussian likelihood function. We fit
a Markov mesh prior model to a training image as dis-
cussed in Luo and Tjelmeland (2019) and use Markov chain
Monte Carlo to simulate from the resulting posterior dis-
tribution as discussed in Rimstad et al. (2012). A Markov
mesh prior is used for lithology/fluid prediction also in Stien
and Kolbjørnsen (2011), but they specify manually the neigh-
bourhood and interaction structures and fit only the pa-
rameter values to the training image. In our fitting proce-
dure, we fit both neighbourhood and interaction structures
and parameter values to the given training image. To focus
on the methodological aspects, we consider a situation with
only two LFCs, oil sand and shale. In particular, we com-
pare the results from our procedure with what we get by in-
stead using a simpler manually chosen Markov random field
prior.

The article has the following layout. First, we present the
data set and the associated training image, and we analyse
and introduce our Bayesian model formulation. A Gaussian
likelihood function is defined, and its properties are discussed.
We introduce the Markov mesh and Markov random field
priors, and in particular focus on how we fit the Markov mesh
prior to the given training image. Next, a sampling algorithm
for the posterior distribution is discussed. The two priors are
tested on a real two-dimensional section case study in the

C© 2019 European Association of Geoscientists & Engineers, Geophysical Prospecting, 67, 609–623
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Figure 1 Near (left) and far (right) offset seismic data used for lithology/fluid prediction.

North Sea. Finally, we discuss the posterior properties of the
two priors and provide some closing remarks.

METHODOLOGY

The objective is to demonstrate and compare two differ-
ent prior models in a Bayesian framework to predict lithol-
ogy/fluid classes (LFCs) in the subsurface. In this section, we
introduce the data set and formulate the inverse problem in
a Bayesian setting, define a likelihood function and the two
priors and discuss posterior simulation.

Data set and Bayesian model formulation

In this article, we consider a seismic section from the Alvheim
field in the North Sea, which is a clastic oil reservoir. The
Alvheim field is characterized by a complex sand lobe ge-
ometry and is buried approximately 2 km below the sea
floor. In the analysis, we use one near and one far offset
seismic data represented in a 105 × 51 lattice G = {(i, j)|i =
1, . . . , 105; j = 1, . . . , 51}. The stacked sections were gener-
ated from pre-stack time migrated common depth gathers (see
Rimstad et al. 2012 for further processing details). The seismic
data are shown in Fig. 1. The horizontal and vertical sam-
ple rates are about 100 m and 4 milliseconds, respectively.
We let dij, (i, j) ∈ G denote a vector of size 2 containing the
observed near and far offset seismic data in node (i, j) ∈ G,
and let d be a vector where all dij, (i, j) ∈ G are stacked on
top of each other. We model two LFCs, oil sand and shale.
For each node (i, j) ∈ G we let κij ∈ {0, 1} denote the LFC in
node (i, j), where κij = 0 and κij = 1 represent shale and oil
sand, respectively. We let κ be a vector of all κij, (i, j) ∈ G

stacked on top of each other. To estimate a Markov mesh
prior distribution for κ, we use a training image from Lang
and Grana (2017), which is shown in Fig. 2. The training
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Figure 2 Training image that we use to estimate a Markov mesh prior
distribution for the spatial distribution of lithology/fluid classes, κ.
Black and yellow represent shale and oil sand, respectively.

image is from a reservoir with similar geological characteris-
tics as the reservoir under study. It should be noted that it is
only used to give prior information about the spatial continu-
ity of the classes, and does not in any way represent a class
map of the section of the underground from where the seismic
data is coming.

To model the relation between κ and d, we first introduce
a vector m = {mij, (i, j) ∈ G} of elastic properties, where mij

is a vector of length 2. We let the first element in mij be
the impedance, that is, the product of the density ρ and the
pressure-wave velocity vp, in node (i, j) and let the second
element be the vp/vs ratio in the same node, where vs is the
shear-wave velocity.

For the three variables κ, m and d we adopt a Bayesian
model. We let p(κ) denote a prior distribution for κ and let
p(m|κ) denote the conditional distribution for the elastic pa-
rameters m given the LFCs κ. Finally, we assume the seismic
data d to be conditionally independent of κ when the elastic
properties m are given. We let p(d|m) denote the conditional
distribution for the seismic data d given elastic properties m.

C© 2019 European Association of Geoscientists & Engineers, Geophysical Prospecting, 67, 609–623
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The p(d|m) represents a probabilistic formulation of the for-
ward model. Bayes’ theorem then gives

p(κ|d) ∝ p(κ)p(d|κ), (1)

where

p(d|κ) =
∫

p(m, d|κ)dm =
∫

p(m|κ)p(d|m)dm. (2)

In the following we first outline the details of p(m|κ) and
p(d|m), which is used to specify the likelihood p(d|κ), and
thereafter specify the prior p(κ) before we describe the Markov
chain Monte Carlo procedure we use to simulate from p(κ|d).

Likelihood model

Following Grana et al. (2017) and Fjeldstad and Omre (2019),
we adopt a linearized and Gaussian likelihood for the forward
model for d given κ. More specifically, we assume each of
p(m|κ) and p(d|m) to be Gaussian, the conditional mean of
d given m to be a linear function of m and the conditional
covariance matrix of d given m not to be a function of m. In
the following we outline the distributions p(m|κ) and p(d|m)
in more detail, starting with p(m|κ).

We assume m|κ to be Gaussian and

E[mij|κ] = μκij
and cov[mij|κ] = �κij

, (3)

where μ0 and �0 are the conditional mean and covariance for
mij if node (i, j) contains shale (κij = 0), and μ1 and �1 are
corresponding quantities when node (i, j) contains oil sand
(κij = 1). Moreover, we assume a separable correlation func-
tion ρ((i, j), (k, l)) for m|κ, and do not allow the correlations
to depend on the LFCs κ. The validity of the latter assump-
tion can be discussed, but is adopted to make evaluation of
the likelihood function computationally more efficient.

For the forward model p(d|m), we use a convolved lin-
earized approximation of the Zoeppritz equation (Buland and
Omre 2003) based on the Aki–Richards formulation that is
valid for weak vertical contrasts (Aki and Richards 1980). The
vector d is then formed from m in several steps. First, all verti-
cal first-order contrasts or differences mij − mi−1, j are formed
by pre-multiplying m with a matrix D. Thereafter, reflection
coefficients are formed by pre-multiplying Dm with a block
diagonal matrix A, where all the blocks are identical 2 × 2
matrices containing coefficients in the Aki–Richards formu-
lation. The mean value of the seismic data are then formed
via a convolution of each column of ADm with wavelets. Dif-
ferent wavelets are used for the near and far offset seismic
data as shown in Fig. 3. These wavelets are estimated from

data in a well in the same reservoir as the seismic data is com-
ing from. This well is, however, located some distance away
from the seismic section we are studying. The effect of the
convolutions can be written as pre-multiplying ADm with a
matrix W. Finally, a zero mean Gaussian error term ε with a
fixed covariance matrix �ε is added to WADm. Thus, D|m is
Gaussian with

E[d|m] = WADm and cov[d|m] = �ε. (4)

With the Gaussian distributions specified above for
p(m|κ) and p(d|m) it follows from standard properties of
the Gaussian distribution that also p(d|κ) becomes Gaussian.
Moreover, expressions are available for the mean E[d|κ] and
the covariance cov[d|κ] as functions of κ, μ0, μ1, �0, �1,
ρ(·, ·), W, A, D and �ε.

Prior models

The main purpose of this article is to demonstrate how a
Markov mesh model fitted to a training image can be used
as prior in a Bayesian model for lithology/fluid prediction.
However, we also want to study how the inversion results
change when using such a prior relative to what we get using a
simpler manually specified prior. To fit a Markov mesh model
to a training image involves extra working and computing
time, so there is no reason to do so unless it results in a
significant change in the inversion results. In the following,
we first specify the class of Markov mesh models and briefly
discuss the procedure we use to fit the model to the training
image in Fig. 2. Thereafter we describe a simpler manually
specified prior we use for comparison, the profile Markov
random field introduced in Ulvmoen and Omre (2010).

Markov mesh prior

An introduction to the class of Markov mesh models can
be found in Abend, Harley and Kanal (1965) and the more
general class of partially ordered Markov models is defined in
Cressie and Davidson (1998). In the following description, we
limit the attention to binary fields and introduce the necessary
notions to define homogeneous Markov mesh models defined
on a rectangular lattice.

Let G = {(i, j)|i = 1, . . . , n1; j = 1, . . . , n2} be a rectan-
gular lattice, to each node (i, j) ∈ G of which we associate
a binary variable κij ∈ {0, 1}. We let κ = (κij : (i, j) ∈ G) de-
note the collection of all these binary variables and use
κλ = (κij : (i, j) ∈ λ) to denote the collection of binary vari-
ables in a set λ ⊆ G of nodes. The Markov mesh model is

C© 2019 European Association of Geoscientists & Engineers, Geophysical Prospecting, 67, 609–623
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Figure 3 Wavelets used for the near (left) and far (right) offset seismic data. The x- and y-axes show vertical distance and wavelet values,
respectively.

based on numbering the nodes in G from 1 to n1 · n2 in the
lexicographical order. Without loss of generality, the distri-
bution of κ can then be expressed as

p(κ) =
∏

(i, j)∈G

p(κij|κρij
), (5)

where ρij is the set of all nodes coming before node (i, j), that
is,

ρij = {(k, l) ∈ G : nk + l < ni + j}. (6)

The set ρij is called the predecessor set of node (i, j). The
central assumption in Markov mesh models is that p(κij|κρij

)
has a Markov property in that

p(κij|κρij
) = p(κij|κνij

), (7)

where νij ⊆ ρij is called the sequential neighbourhood of node
(i, j). Following Luo and Tjelmeland (2019), we assume that
all the sequential neighbourhoods are generated via a transla-
tion of a template sequential neighbourhood τ . The set τ can
best be thought of as the sequential neighbourhood of node
(0,0) in an infinite lattice. More precisely, τ should contain a
finite number of elements and

τ ⊂ {(i, j) : i ∈ Z−, j ∈ Z} ∪ {(0, j) : j ∈ Z−}, (8)

where Z = {0,±1, ±2, . . .} and Z− = {−1,−2, . . .} are the sets
of all integers and all negative integers, respectively. Given
the set τ we assume the sequential neighbourhood νij to be
generated by translating each element in τ a distance (i, j)
and, if necessary, dropping elements falling outside the lattice
G. Mathematically, νij is then given as

νij = (τ ⊕ (i, j)) ∩ G, (9)

where the translation operator ⊕ is defined as

τ ⊕ (i, j) = {(k + i, l + j) : (k, l) ∈ τ }. (10)

Constructing νij in this way, the sequential neighbourhoods
for all nodes sufficiently far away from the lattice borders will
have the same form.

Still following Luo and Tjelmeland (2019), we model
p(κij|κνij

) by assuming the logit transformation of p(κij =
1|κνij

) to be given by

logit
[

p(κij = 1|κνij
)
]

= ln

(
p(κij = 1|κνij

)

1 − p(κij = 1|κνij
)

)

= θ (ξ (κ, τ, (i, j))), (11)

where ξ (κ, τ, (i, j)) ⊆ τ is the set of elements (k, l) ∈ τ associ-
ated to a node with oil sand in the sequential neighbourhood
for node (i, j), that is,

ξ (κ, τ, (i, j))

= {(k, l) ∈ τ : (i + k, j + l) ∈ G and κi+k, j+l = 1}, (12)

and θ (·) is a pseudo-Boolean function (Hammer and Holzman
1992; Grabisch, Marichal and Roubens 2000) to be specified.
One should note that, as we assume the same function θ (·) for
all nodes (i, j) ∈ G we get a homogeneous model. Moreover,
one should note that the definition of ξ (κ, τ, (i, j)) implies
that for nodes (i, j) close to the boundary of the lattice, so
that (τ ⊕ (i, j)) \ G �= Ø, the conditional distribution p(κij|κνij

)
becomes as if one had an infinite lattice where all variables
associated to nodes outside of G were zero.

The last step in specifying the Markov mesh model is to
choose the function θ (·). This is a real valued function, where
the argument is a subset of τ specifying for which sequential
neighbours the associated binary variable is equal to 1. With-
out loss of generality, the θ (·) can be uniquely expressed in

C© 2019 European Association of Geoscientists & Engineers, Geophysical Prospecting, 67, 609–623
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Figure 4 The sequential neighbourhood (left) and the corresponding
Markov random field neighbourhood (right) for the fitted prior p(κ).
The nodes marked with a dot are (sequential) neighbours of the node
marked with a cross.

terms of a collection of interaction parameters {β(λ) : λ ⊆ τ }
by

θ (λ) =
∑
λ�⊆λ

β(λ�) for λ ⊆ τ . (13)

The number of interaction parameters is 2|τ |, where |τ | is the
number of elements in τ . Unless |τ | is very small the number of
parameters necessary to specify θ (·) is thereby very large. We
still follow Luo and Tjelmeland (2019) and limit the number
of model parameters by restricting many of the interaction
parameters to be zero. More specifically, for some 
 ⊆ �(τ ),
where �(τ ) is the set of all subsets of τ , we assume β(λ) = 0
for all λ �∈ 
. Thus, we specify the Markov mesh model by
choosing the sets τ and 
 and the interaction values {β(λ) :
λ ∈ 
}.

To fit the Markov mesh model specified above to the
training image in Fig. 2, we adopt the Bayesian procedure in-
troduced in Luo and Tjelmeland (2019), including the hyper-
parameter values used in that article. A prior is specified for τ ,

 and {β(λ) : λ ∈ 
} and assuming the training image to be a
sample from the specified Markov mesh model, a Metropolis–
Hastings algorithm is used to generate samples from the result-
ing posterior distribution for τ , 
 and {β(λ) : λ ∈ 
}. When
we conditioned on the training image in Fig. 2, the conver-
gence of the Metropolis–Hastings algorithm was so slow that
we were unable to obtain convergence within a reasonable
computation time. As a pragmatic approach to obtain a rea-
sonable prior p(κ) we simply run the Metropolis–Hastings al-
gorithm in Luo and Tjelmeland (2019) for a large number of
iterations and used the last values for τ , 
 and {β(λ) : λ ∈ 
}
in this run to define the prior p(κ). The resulting p(κ) prior
has |τ | = 9 sequential neighbours and |
| = 31 interaction
parameters that are allowed to differ from zero. The sequen-
tial neighbourhood τ is illustrated in the left part of Fig. 4,
while the complete specification of τ , 
 and {β(λ) : λ ∈ 
} is
given in an Appendix. The Markov mesh prior can also be re-
formulated as a Markov random field. The resulting Markov

random field has then a neighbourhood system where the set
of neighbours to node (i, j) ∈ G is

∂ij = νij ∪
⎛
⎝ ⋃

(k,l)∈G:(i, j)∈νkl

(νkl ∪ {(k, l)})
⎞
⎠. (14)

For nodes sufficiently far away from the lattice borders the ∂ij

becomes as shown in the right part of Fig. 4.
The best way to understand the properties of the prior

is perhaps to look at realizations sampled from p(κ), four of
which are shown in Fig. 5. We see that the fitted prior is
reproducing large continuous areas of shale and oil sand as
seen in the training image, but the boundaries between shale
and oil sand is less horizontal in the realizations from the prior
than in the training image.

Profile Markov random field prior

The profile Markov random field prior was first defined and
used for seismic inversion in Ulvmoen and Omre (2010) (see
also Rimstad and Omre 2010). Even though the prior class
is defined for categorical variables, in our description of the
model we limit the attention to the binary variable case.

Let again G = {(i, j)|i = 1, . . . , n1; j = 1, . . . , n2} be a
rectangular lattice, where in each node we associate a bi-
nary variable κij ∈ {0, 1}. We let Cj = {(i, j) : i = 1, . . . , n1}
be the set of nodes in profile or column j of the lattice G and
let κCj

= (κij : (i, j) ∈ Cj ) denote the collection of the binary
variables associated to this column. The collection of all the
binary variables except the ones in column j we denote by
κ−Cj

. The profile Markov random field prior is then specified
by first adopting the Markov property

p(κCj
|κ−Cj

) = p(κCj
|κCj−1

, κCj+1
), (15)

that is, given the values in columns j − 1 and j + 1, the values
in column j are independent of the values in the remaining
columns. Secondly, the profile Markov random field prior
assumes p(κCj

|κCj−1
, κCj+1

) to be a Markov chain down along
the column,

p(κCj
|κCj−1

, κCj+1
) = p(κ(1, j)|κ(1, j−1), κ(1, j+1))

×
n∏

i=2

p(κ(i, j)|κ(i−1, j), κ(i, j−1), κ(i, j+1)),

(16)

where the conditional distribution p(κ(i, j)|κ(i−1, j), κ(i, j−1),

κ(i, j+1)) is the same for all values of i and j . For the
transition probabilities, we have used values adapted from

C© 2019 European Association of Geoscientists & Engineers, Geophysical Prospecting, 67, 609–623
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Figure 5 Four independent realizations from the Markov mesh prior fitted to the training image shown in Fig. 2. Black and yellow represent
shale and oil sand, respectively.

Table 1 Values used for p(κ(i, j)|κ(i−1, j), κ(i, j−1), κ(i, j+1)) in the speci-
fication of the profile Markov random field prior

κi, j−1 = 0, κi, j+1 = 0 κi, j−1 = 0, κi, j+1 = 1

κij = 0 κij = 1 κij = 0 κij = 1
κi−1, j = 0 0.9877 0.0123 κi−1, j = 0 0.6539 0.3461
κi−1, j = 1 0.8339 0.1661 κi−1, j = 1 0.1056 0.8944

κi, j−1 = 1, κi, j+1 = 0 κi, j−1 = 1, κi, j+1 = 1

κij = 0 κij = 1 κij = 0 κij = 1
κi−1, j = 0 0.6539 0.3461 κi−1, j = 0 0.0425 0.9575
κi−1, j = 1 0.1056 0.8944 κi−1, j = 1 0.0028 0.9972

corresponding values in Rimstad et al. (2012). Table 1
defines the values we have used. Rimstad and Omre
(2010) describe the structure used to specify these val-
ues. The basic idea is that these values should repre-
sent high probability for lateral continuity of oil sand and
shale. The initial distribution p(κ(1, j)|κ(1, j−1), κ(1, j+1)) are set
equal to p(κ(i, j)|κ(i−1, j) = 0, κ(i, j−1), κ(i, j+1)), that is, condition-
ing on shale being present above the lattice. Correspond-

ingly, p(κ(i, j)|κ(i−1, j), κ(i, j−1), κ(i, j+1)) for the left and rightmost
columns j = 1 and j = n2 are defined by conditioning on
shale being present outside the lattice.

Posterior model and simulation algorithm

For each of the Markov mesh and profile Markov random
field priors we obtain a posterior distribution for the LFCs κ,
given in (1). To explore and estimate properties of the two
posterior distributions we adopt the Metropolis–Hastings al-
gorithm (Gilks et al. 1996; Robert and Casella 1999; Gamer-
man and Lopes 2006). Since the wavelets in the likelihood
model induce strong dependencies between different κijs in
the same column, a simple single-site updating scheme would
give a Markov chain with a long burn-in and slow mixing.
We therefore adopt the proposal scheme previously used in
Rimstad and Omre (2010) and propose in each iteration new
values for all LFCs in one column. Using notation from the
discussion of the profile Markov random field prior, the joint
full conditional for the LFCs in column j is

p(κCj
|κ−Cj

, d) ∝ p(κCj
|κ−Cj

)p(d|κ). (17)
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Figure 6 The left column shows four independent realizations from the posterior distribution when using the Markov mesh prior. The right
column shows correspondingly four independent realizations from the posterior distribution when using the profile Markov random field prior.
Black and yellow represent shale and oil sand, respectively.
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Figure 7 Upper row: Estimated posterior marginal probabilities for oil sand when using the Markov mesh (left) and the profile Markov random
field (middle) priors. The colour scale is shown in the rightmost plot. Middle row: Estimated marginal posterior mode for each node. Black and
yellow represent shale and oil sand, respectively. Lower row: Probability histograms of estimated posterior marginal probabilities when using
the Markov mesh (left) and the profile Markov random field (right) priors, respectively.

To sample from this distribution is, however, computa-
tionally very expensive due to the long range dependencies
in κCj

induced by the wavelets in the likelihood model.
Still following Rimstad and Omre (2010), we therefore
adopt the approximation scheme specified in Larsen et al.

(2006) to construct an approximation p�
ν(κCj

|κ−Cj
, d) to

p(κCj
|κ−Cj

, d), where ν is an algorithmic tuning parameter,

and generate potential new values for κCj
by sampling from

p�
ν(κCj

|κ−Cj
, d). The p�

ν(κCj
|κ−Cj

, d) is a higher order Markov
chain and thereby by construction easy to sample from. In
general the approximation quality grows with ν, but so does
the computation time required for simulating one realiza-
tion from p�

ν(κCj
|κ−Cj

, d). Based on preliminary runs of the
Metropolis–Hastings algorithm we find a value for ν which
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Figure 8 Estimated marginal probabilities for oil sand in three traces. Results when using the Markov mesh and profile Markov random field
priors are shown by red and blue lines, respectively. The left, middle and right plots show the marginal probabilities in traces j = 15, j = 30
and j = 45, respectively.

gives reasonable acceptance rates for the Metropolis–Hastings
algorithm.

To run the Metropolis–Hastings scheme discussed above
we first need to have expressions for p(κCj

|κ−Cj
) for each of

the two priors. For the profile Markov random field prior this
is by construction given by (15) and the values in Table 1. To
obtain p(κCj

|κ−Cj
) for the Markov mesh prior we first need

to reformulate the Markov mesh model as a Markov random
field as discussed related to Fig. 4. When the prior p(x) is
formulated as a Markov random field it is straightforward
to find the corresponding p(κCj

|κ−Cj
) by first ignoring poten-

tial functions for cliques which do not include any node in
Cj and thereafter plugging in values for x−Cj

in the remain-
ing potential functions. In particular, for the Markov mesh
sequential neighbourhood used in this study, p(κCj

|κ−Cj
) be-

comes a third-order Markov chain.
The second factor in (17) is a high-dimensional multivari-

ate Gaussian density. To be able to evaluate this efficiently,
it is essential that we have chosen the correlation structure of
d|κ to be separable. For each of the two priors we run the
Metropolis–Hastings algorithm scheme for the resulting pos-
terior distribution for a large number of iterations. We use
standard output analysis to identify and discard a burn-in pe-
riod. In the next section, we use the κ realizations after the

burn-in period to estimate and compare properties of the two
posterior distributions.

N O R T H S E A C A S E S T U D Y

Recall that the objective is to assess the posterior of the lithol-
ogy/fluid classes (LFCs) κij ∈ G given seismic AVO data d in
a clastic oil reservoir in the North Sea. That is, we want to
assess the posterior p(κ|d) given in (1), for the two prior mod-
els discussed earlier. Note that the two posteriors will not be
identical since the priors are different.

To study and compare the properties of the two posterior
distributions, we can first look at the posterior realizations
shown in Fig. 6. The left and right columns show four real-
izations from each of the two posteriors. Realizations from
the posterior when using the Markov mesh prior are shown
in the left column, whereas the realizations in the right col-
umn is based on a model with the profile Markov random
field prior. The eight realizations are quite similar, but when
studying them in more detail one can observe that with the
Markov mesh prior there seems to be more skewed and curved
structures than when using the profile Markov random field
prior. Since the Markov mesh prior has much larger neigh-
bourhoods than the profile Markov random field prior, this

C© 2019 European Association of Geoscientists & Engineers, Geophysical Prospecting, 67, 609–623
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Figure 9 For each node, estimated posterior probabilities that there is contact (via other oil sand nodes) between this node and the node marked
with a red filled circle. The plots in the left and right columns are when using the Markov mesh and the profile Markov random field priors,
respectively. The colour scale is as defined by the legend in Fig. 7.
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Figure 10 As a function of a number of nodes η, estimated posterior
probability for a random oil sand node to be connected (via other
oil sand nodes) to at least η other oil sand nodes. The η is along the
x-axis and the estimated probability is along the y-axis. Results when
using the Markov mesh and profile Markov random field priors are
shown in red and blue, respectively.

is not really surprising. With larger neighbourhoods, and cor-
responding larger cliques, it becomes possible for the model
to identify skewed and curved structures.

The upper row in Fig. 7 shows the result of estimating in
each node the marginal posterior probability of oil sand. In
each node the probability is estimated as the fraction of the re-
alizations where the node has oil sand. Again the left and right
images are results when using the Markov mesh and profile
Markov random field priors, respectively. The two probabil-
ity maps are similar, but somewhat more continuity of skewed
and curved high probability areas can be observed when using
the Markov mesh prior. In the middle row of Fig. 7, the prob-
abilities in the upper row is rounded to the nearest integer to
get an estimate of the most probable LFC in each node. Again
we can observe somewhat more continuity of skewed and
curved oil sand areas when using the Markov mesh prior. The
histograms in the lower row of Fig. 7 are simply probability
histograms of the estimated marginal posterior probabilities
shown in the upper row of the same figure. We can observe
that when using the profile Markov random field prior, some-
what more marginal posterior probabilities are close to zero
and one than when using the Markov mesh prior.

To study the marginal probabilities a little more we have
chosen three traces, or columns, j = 15, 30 and 45, and in
Fig. 8 plotted the marginal probabilities. The estimated pos-
terior marginal probabilities when using the Markov mesh
and profile Markov random field priors are plotted in red and
blue, respectively. More than in Fig. 7 we can here see how

close the two posterior probabilities are for most of the nodes.
In a few of the nodes, however, the difference is quite clear.

The continuity of oil sand is very important for fluid flow
in a petroleum reservoir. We can get some understanding of
how the prior influences this continuity by studying Fig. 7,
but to study the continuity in more detail we need to sum-
marize how this continuity is in each posterior realization.
To do this, we have manually picked four nodes with very
high posterior probability for oil sand both when using the
Markov mesh and the profile Markov random field priors.
These four nodes are marked with a red bullet in Fig. 9, one
row for each of the four chosen nodes. For each of these four
nodes and for each posterior realization we identified all other
nodes with oil sand which through other oil sand nodes had
contact with the chosen node. Thereby we could estimate the
posterior probability that any node was in contact with the
chosen node as the fraction of the realizations where this oc-
curred. The resulting estimated probabilities are visualized in
Fig. 9. The left and right columns are again the results when
using the Markov mesh and the profile Markov random field
priors, respectively. In the three upper rows we can see a lot
more continuity in the posterior realizations when using the
Markov mesh prior than when using the profile Markov ran-
dom field prior. In the lower row the situation is for some
reason reversed. To study this type of continuity more gener-
ally, not only for the four hand-picked nodes used in Fig. 9,
we finally repeat the exercise of finding all nodes in a realiza-
tion with oil sand connected to a particular node, but now the
particular node is sampled at random among all nodes with
oil sand. For each realization and each particular node we
find the number of oil sand nodes connected to the particular
node. In Fig. 10, we show the resulting estimated posterior
probabilities for the randomly chosen particular node to be
connected to more than η other oil sand nodes, as a function
of η. The red and blue curves are the results when using the
Markov mesh and the profile Markov random field priors, re-
spectively. We see that the curve related to the Markov mesh
prior lies consistently clearly above the curve related to the
profile Markov random field prior, showing that the Markov
mesh prior produces more posterior continuity of oil sand
than the profile Markov random field prior.

D I S C U S S I O N

In this article we have, for a particular seismic data set in
the North Sea and two particular prior models for the lateral
connectivity of the lithology/fluid classes (LFCs), studied how
the prior influences the posterior properties. When focussing

C© 2019 European Association of Geoscientists & Engineers, Geophysical Prospecting, 67, 609–623
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on the posterior marginal probabilities we found, for most
nodes, that the prior had little influence. When focussing on
posterior continuity of oil sand, however, we found that the
prior had a quite strong influence on the results. Not surpris-
ingly, the prior with the largest neighbourhoods produced the
largest posterior continuity. When evaluating whether to use
a simple prior with a small neighbourhood or to use a more
complicated prior with a larger neighbourhood one should
therefore first decide what posterior properties that are of
interest. If the focus is only on the posterior marginal proba-
bilities, a simple prior is perhaps sufficient. If the focus is on
fluid flow, however, spatial continuity is crucial and it may be
beneficial with a more complicated prior which is better able
to capture spatial continuity.

When deciding what prior to use one should also take
into account the computational resources necessary to simu-
late from the posterior distribution. A more complicated prior
typically gives a posterior which requires more computation
time to explore. With our implementations, sampling from
the posterior when using the Markov mesh prior required ap-
proximately 20 times more computation time compared to
when using the profile Markov random field prior. However,
our implementation of the sampling when using the Markov
mesh prior was partly in Matlab and partly in C++ and a lot
of the computation time here was just overhead in the com-
munication between Matlab and C++. Our implementation
of the sampling algorithm when using the profile Markov
random field prior was entirely in Matlab, so we did not
have the same overhead in this case. If we had implemented
also the sampling algorithm when using the Markov mesh
prior entirely in Matlab we expect this algorithm would have
required a factor between 3 and 5 more computation time
than that for the profile Markov random field prior. That
the sampling when using the Markov mesh prior requires more
computation time than when using the profile Markov ran-
dom field prior should come as no surprise, since the Markov
mesh prior has a much larger neighbourhood than the profile
Markov random field prior.

The study presented in this article is quite limited. The
model includes only two LFCs, we have considered only one
seismic section, and we have not studied how sensitive the
results are for the parameter values used in the two prior
models. It is of interest to study the effect of using a prior
with a larger neighbourhood also when the model represent
more than two LFCs. The profile Markov random field prior
is already defined with more than two LFCs and the Markov
mesh construction used here can easily be extended to such
a situation. The computational complexity of our Markov

mesh fitting procedure will grow with the number of LFCs
used, but we do not expect this increase to become a major
problem. One should note that the training image we have
used in the present study seems to have too much spatial
continuity in that the realizations from the posterior shown in
Fig. 6 have less spatial continuity than both the training image
and the realizations from the Markov mesh prior shown in
Fig. 5. If we had used a more realistic training image, for
example a training image with spatial continuity similar to
the posterior realizations in Fig. 6, we expect the convergence
when fitting the Markov mesh model to the training image to
have been quicker.

To condition on a seismic cube is also of interest. Then the
LFCs need to be represented on a three-dimensional lattice and
the prior models need to be defined for such a situation. Again
the profile Markov random field prior is already formulated
in such a situation. The Markov mesh formulation used here
can also be extended to a three-dimensional lattice, but it
remains to see whether it is computationally feasible to handle
such a model. A computationally cheaper alternative would
be to adopt a two-dimensional Markov mesh prior for the
lithology/fluid values in each layer of the three-dimensional
lattice and assume lithology/fluid values in the different layers
to be a priori independent.
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AP P ENDI X : F I TTED MARKO V M ESH PR IOR ,
p(κ)

The Markov mesh model fitted to the training image
in Fig. 2 has template sequential neighbourhood τ =
{(−1, 0), (0, −1), (−1, 2), (0,−2), (−3,−1), (0,−3), (−1, 4),
(0,−4), (−2,−4)} and 
 and {β(λ) : λ ∈ 
} are as specified in
Table A1.
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Table A1 The elements λ in the set 
 and the associated interaction parameters β(λ)

λ ∈ 
 β(λ)

∅ −4.33884
{(−1,0)} 3.27479
{(0,−1)} 2.96595
{(−1,0),(0,−1)} −0.460735
{(−1,2)} 1.49237
{(−1,2),(0,−1)} −1.10759
{(0,−2)} 1.99035
{(−3,−1)} −1.43573
{(0,−3)} 3.06786
{(−1,0),(0,−3)} −3.44258
{(0,−3),(0,−1)} −2.03335
{(−1,0),(0,−3),(0,−1)} 1.95605
{(0,−3),(0,−2)} −1.02729
{(−1,4)} 2.90431
{(−1,0),(−1,4)} −3.42674
{(−1,4),(0,−1)} −0.404195
{(−1,2),(−1,4)} 0.268767
{(−1,4),(0,−3)} −2.73426
{(−1,0),(−1,4),(0,−3)} 2.96929
{(−1,4),(0,−3),(0,−1)} 1.95346
{(0,−4)} 2.1858
{(−1,0),(0,−4)} −0.355664
{(0,−4),(0,−2)} −1.61185
{(0,−4),(0,−3)} −1.23267
{(−1,0),(0,−4),(0,−3)} 0.606075
{(0,−4),(0,−3),(0,−2)} 2.03717
{(−1,4),(0,−4)} −4.01512
{(−1,0),(−1,4),(0,−4)} 3.80173
{(−1,4),(0,−4),(0,−3)} 2.6053
{(−1,0),(−1,4),(0,−4),(0,−3)} −1.64379
{(−2,−4)} −0.717159

C© 2019 European Association of Geoscientists & Engineers, Geophysical Prospecting, 67, 609–623
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A one-step Bayesian inversion framework for

three-dimensional reservoir characterization based

on a Gaussian mixture model – A Norwegian Sea

demonstration

Torstein Fjeldstad, Per Åge Avseth & Henning Omre

February 2020

Abstract

A one-step approach for Bayesian prediction and uncertainty quan-

tification of lithology/fluid classes, petrophysical properties and elas-

tic attributes conditional on prestack 3D seismic amplitude-versus-

offset data is presented. A 3D Markov random field prior model is as-

sumed for the lithology/fluid classes to ensure spatially coupled lithol-

ogy/fluid class predictions in both the lateral and vertical directions.

Conditional on the lithology/fluid classes, we consider Gauss-linear

petrophysical and rock physics models including depth trends. Then,

the marginal prior models for the petrophysical properties and elastic

1
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attributes are multivariate Gaussian mixture models. The likelihood

model is assumed to be Gauss-linear to allow for analytic compu-

tation. A recursive algorithm that translates the Gibbs formulation

of the Markov random field into a set of vertical Markov chains is

proposed. This algorithm provides an efficient proposal density in a

Markov chain Monte Carlo algorithm such that simulation from the

posterior model of interest in three dimensions is feasible. The model

is demonstrated on real data from a Norwegian Sea gas reservoir. We

evaluate the model at the location of a blind well, and we compare

results from the proposed model with results from a set of 1D models,

where each vertical trace is inverted independently. At the blind well

location, we obtain an improvement of at most a 60 % reduction in

the root mean square error for the proposed 3D model compared to

the model without lateral spatial coupling.

Introduction

Quantitative interpretation (Avseth et al., 2005) of prestack seismic data is

an essential part of reservoir characterization in the exploration phase to

predict the proportion of hydrocarbon and to determine the well design for

production. The objective is to reduce the technological and economic risk

during the development phase. In reservoir characterization, there are three

inverse problems (Tarantola, 2005): prediction of elastic attributes, such as

P-impedance (seismic inversion); prediction of rock and fluid properties,

2
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such as porosity and water saturation (petrophysical inversion); and predic-

tion of the lithology/fluid classes (lithology/fluid classification). We refer to

Grana et al. (2017) and references therein for a discussion of these inverse

problems. Assessment of such geophysical inverse problems is a challenging

problem due to the uncertainty in the measurements and nonuniqueness

of the solution. There are several sources of uncertainty in the workflow,

including observation errors, limited bandwidth of seismic data and rock

physics modeling errors. We refer to Bosch et al. (2010) for an overview of

seismic inversion.

Various deterministic (Aster et al., 2005; Sen and Stoffa, 2013) and prob-

abilistic (Doyen, 1988; Lia et al., 1997; Tarantola, 2005) approaches exist

to solve the abovementioned inverse problems. These approaches were first

applied to seismic inversion but have lately been extended to also cover

petrophysical inversion (Doyen, 2007). Deterministic techniques are often

based on optimization of a misfit function including a penalty term for

regularization of the solution. In a Bayesian setting, a prior probability

model is assigned to the reservoir variables of interest in order to include

prior knowledge and experience. Probabilistic approaches have been ap-

plied successfully for reservoir characterization; see, e.g., Doyen (1988); Lia

et al. (1997); Mukerji et al. (2001); Buland and Omre (2003); Gunning and

Glinsky (2007); Rimstad and Omre (2010); Grana and Della Rossa (2010);

Rimstad et al. (2012); Jullum and Kolbjørnsen (2016) and Connolly and

Hughes (2016).

3
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We consider a Bayesian framework where the solution is not only a

point prediction but rather the full posterior model for the variables of

interest, which allows for uncertainty and risk quantification. The posterior

model is computed by combining the likelihood for the observed data given

the reservoir variables and the prior model for the latter. In general, the

class of models that can be solved analytically is limited, and sampling-

based methods such as Markov chain Monte Carlo have to be applied. In

sampling-based methods, an ensemble of realizations represent the posterior

model, on which summary statistics and predictions are based. However,

construction of a satisfactory proposal density in the simulation algorithm

that ensures sufficiently fast convergence is challenging in high-dimensional

problems.

Traditionally, Bayesian inversion techniques are based on a stepwise pro-

cedure, where one first inverts for the elastic attributes (Doyen, 2007), then

for the petrophysical properties and finally for the lithology/fluid classes.

These methodologies are often applied at the pointwise level, where lat-

eral spatial continuity in the predictions is inferred only from the spatial

continuity of the seismic data. During the last decade, simultaneous (or

joint/integrated/one-step) inversion techniques have been developed (Rim-

stad and Omre, 2010), and they capture the joint model and tend to rep-

resent the uncertainty more realistically. We consider the latter approach,

where we jointly assess the posterior model of the variables of interest.

For a linear seismic model with an additive Gaussian error term and

4
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a Gaussian prior model for the elastic attributes, the posterior model for

the elastic attributes is also Gaussian, with analytic expressions for the

mean vector and covariance matrix (Buland and Omre, 2003). Pointwise

classification of the lithology/fluid classes based on classification techniques,

such as discriminant analysis (Hastie et al., 2009) or other machine learning

techniques, may then be applied to obtain a lithology/fluid classification.

The prior model has recently been extended to also cover Gaussian mixture

prior models (Grana and Della Rossa, 2010; Grana et al., 2017) to model

multimodal and skewed marginal characteristics, and we consider the latter

class of models.

Spatial histograms of well logs for the petrophysical properties, such as

porosity and water saturation, often appear as multimodal and/or skewed

due to varying lithology classes and fluid fillings of the subsurface. We

therefore include a lithology/fluid class variable to model these variations,

as they have an important impact on the petrophysical properties. To

honor vertical sorting and ordering of the lithology/fluid classes, Markov

chain prior models are frequently used. The usage of Markov chains to

model a vertical profile dates back to Krumbein and Dacey (1969). These

models are either used only for one-dimensional problems (Eidsvik et al.,

2004; Connolly and Hughes, 2016; Fjeldstad and Omre, 2019) or used in

coupling of vertical Markov chains in a 2D and 3D random field context

(Ulvmoen and Omre, 2010; Rimstad and Omre, 2010; Fjeldstad and Grana,

2018; de Figueiredo et al., 2019). We extend this work by replacing the one-
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dimensional Markov chain prior model for the lithology/fluid classes with a

three-dimensional Markov random random field prior model, which allows

for consistent three-dimensional modeling. We refer to Gunning and Sams

(2018) for more information regarding the use of Markov random fields in

reservoir characterization. The main advantage of phrasing a full 3D model

is that each posterior realization in a vertical trace borrows predictive power

from its neighboring traces. Hence, posterior realizations are expected to

have larger lateral spatial continuity. If the ultimate objective is to fore-

cast reservoir productions, reproducing lateral connectivity is of the utmost

importance. We refer to Tjelmeland et al. (2019) for a discussion of the

impact of lateral continuity in seismic inversion related to fluid flow.

Rock physics models relate the rock and fluid properties to the elastic

attributes, and these relations are generally known for conventional reser-

voirs (Avseth et al., 2005; Mavko et al., 2009). Houck (2002) contains a

discussion regarding the importance of considering both seismic and rock

physics uncertainties, and in Bachrach (2006), stochastic rock physics mod-

els for joint prediction of porosity and saturation are presented. We consider

the class of Gauss-linear models conditional on the lithology/fluid classes

and the petrophysical properties and elastic attributes, where the forward

model is assumed to be linear in the reservoir variable together with an

additive zero-mean Gaussian error term.

The ultimate objective is to assess the reservoir variables of interest given

seismic amplitude-versus-offset (AVO) data. We use a Markov chain Monte

6
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Carlo Metropolis-Hastings algorithm to generate realizations from the cor-

rect posterior model of interest. Each iteration in the Metropolis-Hastings

algorithm consists of two main steps: proposal of a new realization and

accepting or rejecting the proposed sample. In high-dimensional problems,

such as in reservoir characterization, the major challenge is to construct a

reasonable proposal density in order to obtain satisfactory acceptance and

convergence rates. Our focus is on construction of the proposal density in

three dimensions, extending Rimstad and Omre (2013) and Fjeldstad and

Omre (2019), and hence improving the convergence rate of the algorithm.

The main contribution of this paper is an algorithm that rephrases the

complete Markov random field model in three dimensions into the set of

corresponding conditional one-dimensional vertical Markov chain models.

We present an efficient block-Gibbs algorithm in three dimensions based on

analytic evaluations that may be used for sequential simulation. First, we

define the probabilistic model in a Bayesian inversion setting and discuss

assessment of the posterior model. Second, we demonstrate the methodol-

ogy on a real Norwegian Sea case study. We consider seismic AVO data and

refer to Avseth et al. (2016) for details of the reservoir. The results are val-

idated at the location of a blind well and compared to an alternative model

based on a collection of 1D models, where each vertical profile is assumed

to be independent of the other profiles.

7
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Model description

In the following section, we define the variables of interest and the proba-

bilistic model, extending Fjeldstad and Grana (2018).

Notation

Denote by p(·)an arbitrary probability density/mass function (pdf). Vectors

are given in lowercase bold font and matrices in uppercase bold font. Let

N (x;µ,Σ) denote the (multivariate) Gaussian pdf for a random vector x

having mean vector µ and covariance matrix Σ. We refer to a likelihood

model as Gauss-linear if the modeling variable is linear in the conditioning

variable together with an additive Gaussian error term. Let R[a,b] denote

the set of real numbers on the interval [a, b], where a < b are real numbers.

Consider a discretized grid of the subsurface, L =
{

(x, y, t) : x = 1, . . . , nx; y = 1, . . . , ny; t = 1, . . . , nt}, where x and y

are the coordinates in the horizontal direction and t is the vertical

position (e.g., time) indexed top-down, and let n = nxnynt denote the

total number of grid cells in the cube. Let v = xyt ∈ L denote an

arbitrary cell and −v denote all cells except v. Moreover, denote by

Lxy· = {(x, y, t) : x, y, t = 1, . . . , nt} ⊂ L the set of vertical nodes at

horizontal position xy and let L−xy· = L \ Lxy·, where \ denotes the set

difference. Finally, let u = (xy1, . . . , xynt) ⊂ L denote the indices of a full

vertical profile at horizontal position xy.

8
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The variables of interest on the grid L are the lithology/fluid classes

κ = (κ1, . . . , κn), the petrophysical properties r = (r1, . . . , rn) and the

logarithm of the elastic attributes m = (m1, . . . ,mn). Moreover, let

rv ∈ Ωr = R[0,1] and mv ∈ Ωm = R[0,∞) denote the petrophysical prop-

erty, taking on values on [0, 1], and the elastic attribute, which takes pos-

itive values, respectively. Since rock properties such as the porosity, wa-

ter saturation, permeability and net-to-gross are bounded on Rn[0,1], we use

an elementwise logit-transformation to ensure support on Rn. The logit-

transform is one-to-one, which ensures that we can transform back to the

original domain. To ease notation, we specify in the following the proba-

bilistic model only for one petrophysical property variable (porosity) and

one elastic attribute variable (logarithm of P-impedance) at each grid cell

v ∈ L. The proposed methodology is valid for additional petrophysical

properties and elastic attributes such as water saturation and/or the log-

arithm of the Poisson ratio at the expense of a more complex notation.

Each node v ∈ L is assigned three stochastic variables κv, rv and mv. Let

κv ∈ Ωκ = {1, . . . , L}; hence, κv takes one out of L categorial values in each

grid cell. These categorical values represent the lithology/fluid classes of

the subsurface, for example, gas sandstone or shale. We consider prestack

seismic amplitude-versus-offset (AVO) data d = (d1, . . . , dn) and consider

only one incidence angle in the following to ease notation.

9
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Bayesian inversion

Recall that the variables of interest are the lithology/fluid classes κ, the

petrophysical properties r and the logarithm of the elastic attributes m

of the subsurface. The objective is to characterize these variables given

seismic AVO data in a joint spatial Bayesian inverse setting. A one-step

joint methodology allows for a consistent treatment of the uncertainties, as

these uncertainties are often underestimated in a stepwise procedure.

We operate in a Bayesian inversion framework, where the ultimate ob-

jective is to assess the joint posterior pdf of the variables of interest; that

is,

p
(
κ, r,m | d

)
∝ p
(
d | κ, r,m

)
p(κ, r,m)

= p
(
d |m

)
p
(
m | κ, r

)
p
(
r | κ

)
p(κ)

(1)

since m is a canonical variable for d. We refer to the likelihood model

p
(
d |m

)
as the seismic model. The joint prior model p(κ, r,m) is sequen-

tially decomposed, and we refer to p(κ) as the lithology/fluid class model,

p
(
r | κ

)
as the petrophysical model and p

(
m | κ, r

)
as the rock physics

model. The latter two models are defined conditional on the lithology/fluid

classes κ. Obtaining the normalizing constant of Equation (1) may not be

computationally feasible since it requires a summation over κ ∈ Ωn
κ and

evaluation of the high-dimensional integral over r and m to obtain the nor-

malizing constant p(d).

We assume the petrophysical model, rock physics model and likelihood
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model to have the factorial form

p
(
κ, r,m | d

)
∝

nxny∏

u=1

[
p
(
du |mu

)
p
(
mu | κu, ru

)
p
(
ru | κu

)]
× p(κ), (2)

Hence, the observations du for each vertical trace are conditionally inde-

pendent of the observations for every other vertical trace given κ. Next, we

define the petrophysical model, rock physics model and likelihood model for

each vertical profile u.

Likelihood model

The observed seismic signal dv at grid cell v = xyt ∈ L can be represented

as a convolution of the reflection coefficients along the vertical profile Lxy·
and a wavelet due to the dispersion of the seismic waves in the subsurface.

Seismic model

We consider a linearized approximation of the nonlinear Zoeppritz equa-

tions based on the Aki-Richards formulation for weak contrasts (Aki and

Richards, 1980) following Buland and Omre (2003). We assume a Gauss-

linear likelihood model

p
(
du |mu

)
= N

(
du; Gmu,Σdu

)
; (3)

that is, the model is linear in the conditioning variable m with additive

Gaussian error terms. The linear operator G is a (nt×nt)-matrix assumed

11
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to be the product of three matrices G = WAD (Buland and Omre, 2003),

where W is the (nt×nt) convolution matrix, A is a (nt×nt)-matrix contain-

ing the Aki-Richards coefficients and D is a (nt×nt)-matrix approximating

derivative. We assume that the (nt × nt)-covariance matrix Σdu includes

vertically colored noise.

Prior model

The prior model in Equation (2) is specified sequentially, as in Fjeldstad

and Grana (2018), and we discuss the lithology/fluid class, petrophysical

property and elastic attributes models separately.

Lithology/fluid class model

To model the spatial connectivity and continuity of the lithology/fluid

classes κ, we consider a Markov random field model (Besag, 1974), which

requires some additional notation. We consider the set of cliques c ⊂ L,
which consists of the pairs of closest neighbors. Let C denote the clique

system that is the set of all cliques. Let nv ∈ L be the set of neighbors

of each v ∈ L. Given the clique system of the closest pairwise cliques, it

follows that nv consists of the six closest neighbors, not including v itself,

for each v ∈ L. The methodology presented is also valid for a more com-

plex clique set, at the expense of a more complex notation. We phrase the

12
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lithology/fluid prior model in Gibbs form:

p(κ)= const−1
1 × exp


−

∑

c∈C
gc(κc)


 , (4)

where each gc(·) is an arbitrary real-valued function. The normalizing con-

stant in Equation (4), const1 =
∑

κ′∈Ωnκ
exp

(
−∑c∈C gc(κ

′
c)
)
, is in general

not analytically tractable, as it requires summation over κ ∈ Ωn
κ, which has

Ln elements.

The locationwise (conditional) Markov formulation is given as

p
(
κv | κ−v

)
∝ exp


−

∑

c∈C
v∈c

gc(κv,κw;w ∈ c \ v)




= const−1
2 × exp

(
−hv(κv | κw;w ∈ nv)

)
(5)

where hv(·) is a real-valued function defined by the Gibbs formulation and

neighborhood system nv. The normalizing constant is given by const2 =
∑

κ′v∈Ωκ
exp

(
−hv(κ′v | κw;w ∈ nv)

)
, which is feasible to compute since it

only requires a sum over κv ∈ Ωκ. The restriction v ∈ c in Equation (5)

implies that we need only consider the set of cliques associated with neigh-

borhood nv. Hence, the pdf including the normalizing constant is compu-

tationally tractable. Simulation from the prior p(κ)defined in Equation (4)

is often performed by Markov chain Monte Carlo simulation using the set

of full-conditional pdfs p
(
κv | κ−v

)
in Equation (5) for each v ∈ L.

We consider a block-update Gibbs scheme where a subset of nodes is

updated at each iteration. A joint update scheme for each vertical trace u

13
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is proposed. We rephrase the conditional pdf for each trace in sequential

form as a vertical Markov chain:

p
(
κxy· | κ−xy·

)
=

nt∏

t=1

p
(
κxyt | κxy,1:(t−1),κ−xy·

)

=

nt∏

t=1

p
(
κxyt | κxy,(t−1),κ−xy·

) , (6)

where p
(
κxy1 | κxy0,κ−xy·

)
= p

(
κxy1 | κ−xy·

)
to ease notation. The latter

equality of Equation (6) follows from the simpler first order neighborhood

nv. We propose a recursive algorithm to obtain the set of conditional pdfs

p
(
κxyt | κxy,(t−1),κ−xy·

)
.

We observe that p
(
κxy,nt | κxy,(nt−1),κ−xy·

)
is available directly from

the locationwise Markov formulation in Equation (5). The locationwise

Markov formulation for t = nt − 1, . . . , 2 is given as

p
(
κxyt | κ−xyt

)
∝ p
(
κxyt | κxy,1:(t−1),κ−xy·

)nt−1∏

t′=t

p
(
κxy,(t′+1) | κxy,1:t′ ,κ−xy·

)

∝ p
(
κxyt | κxy,(t−1),κ−xy·

)
p
(
κxy,(t+1) | κxyt,κ−xy·

) .

(7)

By rephrasing Equation (7), we obtain

p
(
κxyt | κxy,(t−1),κ−xy·

)
∝ p

(
κxyt | κ−xyt

)

p
(
κxy,(t+1) | κxyt,κ−xy·

). (8)

The normalizing constant is tractable since it is a sum over κ ∈ Ωκ, which

is feasible to compute. Since each pdf p
(
κxyt | κxy,(t−1),κ−xy·

)
depends

14
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only on p
(
κxyt | κ−xyt

)
and the previous iteration p

(
κxy,(t+1) | κxyt,κ−xy·

)
,

one may use a recursive algorithm to obtain the transition probabilities in

Equation (6) by iterating downwards t = nt − 1, . . . , 2. Finally, for t = 1,

we obtain

p
(
κxy1 | κ−xy·

)
∝ p

(
κxy1 | κ−xy1

)

p
(
κxy2 | κxy1,κ−xy·

). (9)

The resulting recursive algorithm is given in Algorithm 1.

Algorithm 1: Reverse algorithm for transition probabilities.

Result: Transition probabilities
{
p
(
κxyt | κxy,(t−1),κ−xy·

)}

1 p
(
κxynt | κxy,(nt−1),κ−xy·

)
= p
(
κxynt | κ−xynt

)

2 for t = nt − 1 to 2 do

3 p
(
κxyt | κxy,(t−1),κ−xy·

)
= const× p(κxyt|κ−xyt)

p(κxy,(t+1)|κxyt,κ−xy·)

4 const−1 =
∑

κ′xyt∈Ωκ
p
(
κ′xyt | κxy,(t−1),κ−xy·

)

5 end

6 p
(
κxy1 | κ−xy·

)
= const× p(κxy1|κ−xy1)

p(κxy2|κxy1,κ−xy·)

7 const−1 =
∑

κ′xy1
p
(
κ′xy1 | κ−xy·

)

8 return
{
p
(
κxyt | κxy,(t−1),κ−xy·

)}
.
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Petrophysical model

We assume the petrophysical model to be Gaussian,

p
(
ru | κu

)
= N

(
ru;µru|κu

,Σru|κu

)
, (10)

with conditional nt-mean-vector µru|κu
=
(
µrxy1|κxy1 , . . . , µrxynt |κxynt

)
and

(nt×nt)-covariance matrix Σru|κu
. The pointwise expected value µrxyt|κxyt

takes on one of L distinct values dependent on the value of κv ∈ Ωκ and

might depend on v to model fixed lateral and vertical trends such as com-

paction.

It can be demonstrated that the marginal multivariate pdf for the petro-

physical properties is a spatially coupled Gaussian mixture pdf (see Fjeld-

stad and Omre (2019) and references therein):

p(r)=
∑

κ∈Ωnκ

p
(
r | κ

)
p(κ). (11)

That is, each univariate marginal pdf p(rv) is a Gaussian mixture pdf that

can be used to model skewness and multimodality a priori to represent

various lithology effects.

Rock physics model

Rock physics models are in general nonlinear but can be locally linearized

(Landrø, 2001; Grana, 2016) or empirically fitted. We consider a probabilis-

tic Gaussian lithology/fluid class-dependent rock physics model to represent
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various lithology/fluid and petrophysical effects:

p
(
mu | κu, ru

)
= N

(
mu;µmu|κu

+ Bκuru,Σmu|κu

)
, (12)

where µmu|κu
=
(
µmxy1|κxy1 , . . . , µmxynt |κxynt

)
is the nt-vector of pointwise

expected values for the elastic attributes similar as µru|κu
, Bκu is a (nt×nt)-

block-diagonal matrix with lithology/fluid class dependent coefficients, and

Σmu|κu
is an (nt × nt)-covariance matrix with colored noise. As for the

petrophysical model, it is possible to include fixed depth-trends in the rock

physics model for each lithology/fluid class.

The multivariate marginal pdf for the elastic attributes is a Gaussian

mixture pdf:

p(m)=
∑

κ∈Ωnκ

∫
p
(
m | κ, r

)
p
(
r | κ

)
dr× p(κ)=

∑

κ∈Ωnκ

p
(
m | κ

)
× p(κ). (13)

We interpret the marginal rock physics model as a nonlinear model, where

the model itself assigns the rock physics model marginally depending on the

corresponding lithology/fluid class.

Posterior model

We present a block-Gibbs simulation algorithm to assess the joint posterior

p
(
κ, r,m | d

)
with a block update of the full vertical trace at horizontal

position xy in each iteration. In general, the Markov chain Monte Carlo

Metropolis-Hastings algorithm consists of two steps. First, there is a pro-

posal step where a trace of updated variables is proposed, and then, there
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is an accept-or-reject step where this trace is accepted with a certain prob-

ability. We discuss both parts in detail. Finally, we relate the proposed

simulation algorithm to strategies proposed earlier.

First, initialize κ, r and m with p
(
κ, r,m | d

)
> 0, denote by superscript

i the current value of κ, r and m, and consider a random vertical trace u.

The proposed workflow consist of the following steps:

Proposal step: In each iteration, we consider the following block-

dependent proposal density:

q
(
κu, ru,mu | κi−u, ri−u,mi

−u,d
)
∝ q

(
κu | κi−u,du

)

× p
(
ru | κu,κ

i
−u, r

i
−u
)

× p
(
mu | κu, ru,κ

i
−u, r

i
−u,m

i
−u
)
.

(14)

To simulate from the block proposal density, we perform the fol-

lowing steps. First, we construct the Markov chain p
(
κu | κi−u

)

using the recursion defined in Algorithm 1. The approximate pdf

q
(
κu | κ−u,du

)
∝ p̃

(
du | κu

)
p
(
κu | κi−u

)
is then exactly assessed

by Algorithm 1. Here, p̃
(
du | κu

)
is an approximation to the exact

likelihood model p
(
du | κu

)
(Fjeldstad and Omre, 2019). Note that

the algorithm presented in Algorithm 1 can be used directly to assess

q
(
κu | κ−u,du

)
by including a term dependent on d, p̃

(
du | κu

)
,

in Equation (4). Because of the convolution, the simpler first-order

neighborhood system is extended to a higher-order neighborhood sys-
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tem, and the algorithm has to be modified accordingly. Finally,

we propose κu ∼ q
(
κu | κi−u,du

)
, ru ∼ p

(
ru | κu,κ

i
−u, r

i
−u
)
and

mu ∼ p
(
mu | κu, ru,κ

i
−u, r

i
−u,m

i
−u
)
. Here, laterally smooth realiza-

tions of ru are constructed by assuming a joint multivariate Gaussian

pdf for ru and its four neighboring traces in ri−u together with a spatial

correlation coefficient %r, which acts as a spatial smoother or regular-

izer in the horizontal direction. Note that the marginal expectations

and variances are specified from the petrophysical model; this implies

that an analytic expression for p
(
ru | κu,κ

i
−u, r

i
−u
)
is available. We

construct p
(
mu | κu, ru,κ

i
−u, r

i
−u,m

i
−u
)
similarly by correlating the

vertical profile mu with its four nearest neighboring traces in mi
−u

by assuming a spatial correlation coefficient %m between neighboring

vertical traces to construct a joint pdf.

Accept/reject step: The proposed values of κu, ru and mu are accepted

with probability

α = min

{
1,
p
(
du |mu

)
p
(
mu | κu, ru

)
p
(
ru | κu

)

p
(
du |mi

u

)
p
(
mi

u | κi
u, r

i
u

)
p
(
riu | κi

u

)

× p̃
(
du | κi

u

)
p
(
riu | κi

u,κ
i
−u, r

i
−u

)
p
(
mi

u | κi
u, r

i
u,κ

i
−u, r

i
−u,m

i
−u

)

p̃
(
du | κu

)
p
(
ru | κu,κi

−u, r
i
−u

)
p
(
mu | κu, ru,κi

−u, r
i
−u,m

i
−u

)
}.

(15)

These steps are performed until convergence, and the result is an ensemble

of realizations from the posterior p
(
κ, r,m | d

)
. After convergence, the re-

alizations are combined to construct marginal summary statistics such as
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marginal probabilities for the lithology/fluid classes and marginal maximum

a-posteriori (MMAP) predictors for the continuous-valued properties.

Alternative sampling strategies

The accept-or-reject step increases the computational complexity because

it requires evaluation of a high-dimensional Gaussian pdf p
(
du | κu

)
.

To reduce the computational complexity, one alternative is to omit the

accept-or-reject step and only consider an approximate posterior solution

p̃
(
κ, r,m | d

)
. If we propose ru ∼ p

(
ru | κu

)
and mu ∼ p

(
mu | κu, ru

)
,

the acceptance rate defined in Equation (15) can be further simplified to

reduce the computational complexity (Rimstad and Omre, 2010). An-

other alternative is to also condition on du when proposing to update

ru and mu, that is, to simulate ru ∼ p
(
ru | κu,κ

i
−u, r

i
−u,du

)
and mu ∼

p
(
mu | κu, ru,κ

i
−u, r

i
−u,m

i
−u,du

)
, which also increases the computational

demand. In our experience, the mode indicator κu appears to be far more

important for the mixing and convergence rates in the Markov chain Monte

Carlo algorithm. There are other sampling strategies such as a moving-

window update (see de Figueiredo et al. (2017)) or considering a model

where each vertical profile is treated independently of all other traces (Con-

nolly and Hughes, 2016). Finally, an extension of Fjeldstad and Omre

(2019) is to first generate an ensemble of realizations from p
(
κ | d

)
by iter-

atively sampling κu ∼ q
(
κu | κi−u,du

)
and accepting each realization with
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probability min

{
1,

p(du|κu)
p(du|κiu)

× p̃(du|κiu)
p̃(du|κu)

}
based on the current value κiu. Af-

terwards, exact realizations from p
(
r | d

)
and p

(
m | d

)
are obtained since

the Gaussian mixture prior pdfs defined in Equations (11) and (13) are

conjugate priors for a Gauss-linear likelihood model (Grana et al., 2017).

Results from a Norwegian Sea case study

We demonstrate the proposed methodology on a Norwegian Sea gas dis-

covery; see Avseth et al. (2016) for details. The 3D seismic data consist of

broadband prestack time-migrated and normal-moveout-corrected gathers

from a survey covering the target area. We condition on near- and far-angle

prestack AVO data and invert for the three distinct lithology/fluid classes:

brine sandstone, gas sandstone and shale. Moreover, we include the porosity

φ, the water saturation sw, the clay volume/proportion c, and the elastic at-

tributes log ρVP (log P-impedance) and log VP /VS (log Poisson ratio). The

data cover a domain discretized onto a grid with 98 × 75 × 100 = 735, 000

cells. The observations are sampled regularly in the depth domain at every

4 ms and cover a lateral domain of approximately 3 km× 3 km. Note that

the dimension of the variable space, being the number of spatially coupled

univariate posterior pdfs to assess, is 6× 735, 000 = 4, 410, 000, and the di-

mension of the data space is 2×735, 000 = 1, 470, 000. The domain contains

one well, which we use for blind well validation.

Figure 1 displays the near- and far-angle prestack seismic AVO data
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for a 2D section containing the blind well. We observe the seismic AVO

measurements to have a fairly long ranged horizontal spatial dependency.

In Figure 2, we display the variables of interest observed in the blind well

together with the observed seismic signal and the set of synthetic seismic

signals. We display spatial histograms of the continuous variables of inter-

est and observe the variables to appear as either unimodal, multimodal or

skewed due to varying lithology effects. The well-tie between the observed

seismic and synthetic seismic signal, based on the likelihood parameters

specified below, is reasonable. The corresponding correlations are 0.70 and

0.89 for the near and far angles, respectively. In Figure 3, we display the

near- and far-angle wavelets. The signal-to-noise ratio is set to 2.5 for the

near stack and 1.5 for the far stack, where most of the colored noise depends

on the convolutional model.

The prior model parameters defined earlier are empirically calibrated

based on a well outside the target area. Figure 3 displays a subset of the

empirically calibrated rock physics model: log ρVP against porosity and

lithology/fluid class for a fixed value of water saturation and clay volume.

The rock physics model is assumed to be a linear model dependent on both

the porosity and the lithology/fluid class. We assume vertical squared ex-

ponential spatial correlation functions for the petrophysical properties and

elastic properties, both having a range parameter equal to 2. The marginal

prior pdfs defined in Equation (11) and Equation (13) will be discussed

later. The correlation of log ρVp and log VP /VS is set to 0.8, to −0.5 for
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porosity and water saturation, to −0.65 for porosity and clay volume, and

to 0.65 for water saturation and clay volume. The prior Markov random

field is specified such that the marginal probabilities are (0.5, 0.15, 0.35) for

shale, gas and brine, respectively, together with an anisotropic spatial inter-

action in the depth and horizontal directions. Finally, we set %r = %m = 0.5

in the simulation algorithm.

Figure 1: 2D vertical cross-section with near- and far-angle AVO observations.

Here, red indicates a positive amplitude (hard event) and blue indicates a negative

amplitude (soft event). The location of the blind well is indicated by the solid

vertical line.

We compare the results based on the proposed methodology to the re-

sults based on a set of trace-independent models, with each vertical profile

being independent of every other vertical profile; see Connolly and Hughes

(2016). The lithology/fluid class prior model in this trace-independent

model is assumed to follow a vertical Markov chain downwards with tran-
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Figure 2: 1D blind well observations together with observed and synthetic seismic

observations. Top row from left to right: reference classification (shale in black,

gas in red and brine in blue), porosity, water saturation, clay volume, log ρVP and

log VP /VS , and observed (black) and synthetic (red) seismic observations. Bottom

row: marginal histograms of the observed variables of interest.

sition matrix

P =




0.7 0.1 0.2

0.2 0.7 0.1

0.3 0 0.7



, (16)

which has marginal distribution (0.47, 0.16, 0.37)ᵀ. This marginal distri-

bution is comparable to the one of the Markov random field prior in the

proposed model. We refer to the two models as the 3D model for the pro-

posed spatially-coupled model and the 1D model for the trace-independent
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Figure 3: 1D wavelet and rock physics model. From left to right: near-angle

(solid) and far-angle (dashed) wavelets and log ρVP against porosity and lithol-

ogy/fluid class (shale in black, gas in red and brine in blue).

model. We generated 10, 000 approximately independent posterior realiza-

tions after thinning (100, 000 before thinning) for both models. For the 3D

model, we obtain an average acceptance rate of 27.8 % across all vertical

traces (min. 6.3 % and max. 64.5 %); correspondingly, we obtain 14.2 %

(min. 2.0 % and max. 69.5 %) for the 1D model. The trace-wise acceptance

rate is dependent on the similarity of the proposal density in the simulation

algorithm and the correct posterior model (Fjeldstad and Omre, 2019). On

a 12-core shared university workstation from mid-2016, the computational

requirement for the 3D model is 24 hours, and it is 7 hours for the 1D

model. The mixing and convergence properties appear to be satisfactory
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based on trace plots, not presented here, with convergence after only a few

full updates of the full 3D grid.

To validate and compare the two models, we display the resulting pos-

terior pdfs for the variables of interest at the blind well location. Fig-

ure 4 contains the reference lithology/fluid classification together with a set

of posterior realizations, the marginal posterior pdf for the lithology/fluid

classes and the MMAP predictor for the lithology/fluid classes. Overall,

the two models have similar marginal posterior characteristics; however,

the 1D model fails to identify the thin top gas reservoir in the MMAP pre-

dictor. Additionally, the MMAP predictor based on the 3D model predicts

the bottom gas zone to be thicker than that for the 1D model. Indeed, the

thin shale-layers around depth 2450 ms are not identified in the MMAP

predictors, which may not be surprising since predictions are known to be

more homogeneous than in reality. Note that these shale layers appear in

the posterior realizations. In summary, introducing a lateral spatial depen-

dence into the probabilistic model appears to help to identify thin layers.

Figure 5 displays the posterior pdfs for the porosity, water saturation

and clay volume for the two models at the blind well location. For each

property, we display the log-prior pdf together with the log-posterior models

based on the 3D model and the 1D model to ease interpretation. The prior

models for the petrophysical properties and elastic attributes need not be

identical in the two models because of the different lateral coupling in the

lithology/fluid class model, but we expect them to be very similar. For
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Figure 4: 1D posterior results lithology/fluid classes at the blind well location.

The top row is based on results for the 3D model, while the bottom row is for

the 1D model. Each row consists of, from left to right, the reference classification

based on the blind well, a set of posterior realizations, the marginal probability

profiles, and the marginal maximum posterior predictor.
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simplicity, we display the prior based on the 1D model. The marginal prior

at each depth point for porosity is close to unimodal but skewed, while

the marginal prior at each depth point is bimodal, with two modes close

to 0 and 1 for water saturation. In general, the MMAP predictors based

on the 3D model and the 1D model are similar; however, the latter fails to

capture the high-porosity zone and low-water-saturation zone around depth

2315 ms, where the top gas reservoir is located. The MMAP predictors

are generally observed to be more homogeneous than the true profile. In

general, we observe the posterior models based on the 3D model to have

greater variability than those based on the 1D model, i.e., they have a larger

pointwise uncertainty. Both models are able to satisfactorily capture the

rapid transition from low to high water saturation at approximately 2360

ms, which corresponds to the boundary of the lower gas reservoir.

Figure 6 displays in a similar format as Figure 5 the posterior pdfs for

log ρVP and log VP /VS . We have included a depth trend in the prior for

the elastic attributes with a higher expected response for log ρVP at the

bottom of the target zone than on top. Again, we observe the 3D model

to have a more realistic level of uncertainty compared to the observed well

measurements.

The marginal posterior pdfs need not be unimodal but rather may be

both multimodal and skewed; see Figure 7. The pdfs in the figure are cho-

sen at time depths to represent a variety of the posterior models, which

are observed to be unimodal, skewed and multimodal. Note the large dis-
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crepancy between the posterior models at locations 2300 ms and 2324 ms,

which corresponds to the top reservoir and the upper part of the lower-

most reservoir at the blind well location. Note that the marginal modes

for the posterior pdfs for the petrophysical properties and elastic attributes

are strongly dependent on the corresponding marginal posterior pdf for the

lithology/fluid classes, which acts as the weights in the Gaussian mixture

model. We interpret the smaller marginal variances for the 1D model to

be the result of a bias-variance trade-off, where we have obtained a smaller

marginal variance at the cost of a biased predictor.

In Table 1, we present the mean absolute error (MAE) and root mean

square error (RMSE) for the two models at the blind well location. Except

for the clay volume, we obtain an improvement of up to 59 % for the MAE

and 62 % for the RMSE for the variables of interest.

Table 1: Mean absolute error and root mean square error for the petrophysical

properties and elastic attributes for the two models at the blind well location.

MAE RMSE

3D 1D 3D 1D

Porosity 0.0326 0.0376 0.0402 0.0484

Water saturation 0.0667 0.1629 0.1124 0.2986

Clay volume 0.1014 0.0819 0.1353 0.1130

Log ρVP 0.0498 0.0822 0.0636 0.0822

Log VP /VS 0.0244 0.0325 0.0351 0.0438
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In Figure 8 through Figure 10, we display posterior results for the 2D

section corresponding to the seismic data presented in Figure 1. In Figure 8,

the marginal probabilities for the three lithology/fluid classes and the cor-

responding MMAP predictor for the two models are presented. In general,

the marginal posterior characteristics are observed to be similar; however,

the lateral connectivity is larger for the 3D model. Since the MMAP pre-

dictor is a marginal property, the lateral connectivity does not need to be

preserved in the predictor. Figures 9 and 10 display the MMAP predictor

for the petrophysical properties and elastic attributes, respectively. For the

3D model, we observe the gas zones to be thicker and the predictions to be

more homogeneous.

Next, we present the results for the variables of interest in a three-

dimensional view based on the two models. In Figure 11, we present the

MMAP predictor for the lithology/fluid classes based on the two different

models. In general, we observe the MMAP predictor based on the 3D model

to have a larger spatial connectivity in the lateral directions, as expected.

The main characteristics of the sand bodies are observed in both models, but

the MMAP predictor based on the 1D model appears to be less smooth and

include abrupt invalid geophysical transitions. One advantage of the more

complex 3D model is that each posterior realization appears with stronger

spatial connectivity, which resembles more geologically plausible scenarios

such as elongated sand bodies and channels that allow fluid flow (Figure 12).

In Figure 13, we display the ISO-50 cube for gas (more than 50 % probability
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of gas) based on the two models. The 3D model is observed to have a far

greater lateral extent of the gas reservoir, while the 1D model is observed to

have less connectivity. A similar conclusion is drawn from Figure 14, where

we display a set of horizontal slices for the marginal probability of gas for

three consecutive horizontal layers. The main characteristics are shared

across the two different models; however, the marginal probabilities based

on the 3D model appear smoother, as expected. Note that the marginal

probabilities are smooth across the time slices.

In Figure 15 and Figure 16, we display the MMAP predictor for the

petrophysical properties and elastic attributes in a 3D perspective based on

the two models. They share the main characteristics, but the predictors

based on the 3D model appear more laterally connected and smoother than

those based on the 1D model.

31



i
i

“Doktorgrad” — 2020/5/18 — 13:53 — page 156 — #160 i
i

i
i

i
i

Figure 5: 1D posterior results petrophysical properties at the blind well location.

Each row consists of, from left to right, the marginal log-prior pdf, marginal log-

posterior pdf based on the 3D model, and marginal log-posterior pdf based on the

1D model. In each plot, the observed well log (black line) is displayed together

with the marginal mode (red line).
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Figure 6: 1D posterior results elastic attributes at the blind well location. Each

row consists of, from left to right, the marginal log-prior pdf, marginal log-posterior

pdf based on the 3D model, and marginal log-posterior pdf based on the 1D model.

In each plot, the observed well log (black line) is displayed together with the

marginal mode (red line).
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Figure 7: 1D posterior densities at the blind well location for porosity (left col-

umn) and log ρVP (right column) for four chosen time points. Each plot consists of

the prior (solid black), 1D model posterior pdf (blue line), and 3D model posterior

pdf (red line), together with the observed value at the blind well location (vertical

green line).
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Figure 8: 2D posterior marginal densities for the lithology/fluid classes. From

top to bottom: marginal probability shale, marginal probability gas, marginal

probability brine and MMAP predictor. The results based on the 3D model are

given in the leftmost column, and the results based on the 1D model are given on

the right.

35



i
i

“Doktorgrad” — 2020/5/18 — 13:53 — page 160 — #164 i
i

i
i

i
i

Figure 9: 2D posterior densities for the petrophysical properties. From top to

bottom: MMAP predictor porosity, MMAP predictor water saturation and MMAP

predictor clay volume. The results based on the 3D model are given in the leftmost

column, and the results based on the 1D model are given on the right.
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Figure 10: 2D posterior densities for the elastic attributes. From top to bottom:

MMAP predictor log ρVP and MMAP predictor log VP /VS . The results based on

the 3D model are given in the leftmost column, and the results based on the 1D

model are given on the right.

Figure 11: 3D MMAP predictor for the lithology/fluid classes based the 3D

model (right) and 1D model (left).
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Figure 12: 3D posterior realizations for the lithology/fluid classes for the 3D

model (right) and 1D model (left).
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Figure 13: 3D ISO-50 probability for gas. From left to right: the results based

on the 3D model and the 1D model.
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Figure 14: 3D posterior marginal probability of gas for three consecutive hori-

zontal slices. From left to right: the results based on the 3D model and the 1D

model.
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Figure 15: 3D MMAP predictor for the petrophysical properties. From left to

right: the results based on the 3D model and the 1D model. From top to bottom:

the results given for the porosity, water saturation and clay volume.
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Figure 16: 3D MMAP predictor for the elastic attributes. From left to right: the

results based on the 3D model and the 1D model. The top row includes log ρVP

and the bottom row includes log VP /VS .
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Discussion

We have evaluated the proposed model using a real 3D case study and com-

pared it with a model consisting of a set of 1D models without spatial lateral

dependency. The lithology/fluid classes, petrophysical properties and elas-

tic attributes are observed to be predicted with realistic spatial continuity

in three dimensions. The marginal posterior densities for the continuous-

valued properties capture multimodality and skewness, a property observed

in the well logs of the blind well. The mean square error predictions in the

blind well are reduced by at most 60 % by using the proposed 3D model

compared to a set of 1D models.

In practice, seismic images are heavily processed images of the subsur-

face, where the vertical traces already have been migrated to match its

neighboring traces by some criterion. Since prestack AVO data are strongly

laterally connected, the 1D model will also tend to give posterior predic-

tions that are laterally smooth to some extent; however, each realization

does not need to satisfy this property. Since the 3D model has predictive

power in neighboring traces, thin laterally extending layers are more easily

identified than those in the 1D model. However, this advantage comes at

the potential cost of oversmoothing.

In our experience, it is challenging to specify the model parameters in

the Gibbs formulation in such a way that it does not become too dominant

relative to the likelihood. Finally, the 3D model is less prone to misaligned
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vertical traces and/or misspecification of the likelihood model because it

acts as a spatial smoother.

However, the computational demand for the 3D model is severe com-

pared to that of the 1D model since each Markov chain Monte Carlo iteration

requires a rerun of the reverse algorithm conditional on the current value

of the neighboring traces. Higher memory usage is also required because

larger parts of the 3D cube need to be stored in memory in each iteration.

We note that the 1D model is easily computed in parallel, while the 3D

model requires a larger computational overhead to be parallelized. In our

experience, the 1D model is feasible on a regular laptop, while the 3D model

requires a workstation or cluster to be feasible.

Conclusions

We propose a one-step block-Gibbs update scheme for joint probabilistic

prediction of lithology/fluid classes, petrophysical properties and elastic at-

tributes in three dimensions. The proposed methodology is demonstrated

on seismic AVO data from a Norwegian Sea discovery and is validated at a

blind well position. Realistic lateral spatial connectivity is obtained in both

realizations and predictions for the variables of interest for the 3D model.

Compared to a 1D model based on inverting the set of vertical profiles inde-

pendently, we obtain an increased average acceptance rate in the simulation

algorithm and a significant reduction in the mean absolute error and root
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mean square error at the blind well location.

Future research should include joint statistical inference of the model

parameters in the Gibbs formulation together with the variable prediction

to avoid oversmoothing.
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