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Abstract
Telomeres are repeatingDNA sequences found on the ends of chromosomes, which shortenwith age and are
implicated in senescence. Cross-species analyses of telomere shortening rates (TSR) and telomere lengths are
important for understanding mechanisms underlying senescence, lifespan and life-history strategies of
different species. Whittemore et al. (2019) generated a new dataset on variation in TSR, lifespan and body
mass. In phylogenetically uncorrected analyses they found that TSR negatively correlates with lifespan. We
re-ran analyses of their dataset using appropriate phylogenetic corrections. We found a strong phylogenetic
signal in the association between TSR and bodymass.We were able to corroborateWhittemore et al.’s major
findings, including while correcting for body mass in a multivariate analysis. Since laboratory mice have
different telomere lengths and potentially different telomere dynamics than wild mice, we removed mice
from the analysis, which attenuates most associations.
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Introduction

Telomeres are repeating DNA sequences found on the ends of chromosomes which shorten with age and
are implicated in senescence. Past studies found that telomeres tend to shorten at faster rates in species with
shorter lifespans (Dantzer & Fletcher, 2015; Haussmann et al., 2003; Tricola et al., 2018).Whittemore et al.
(2019), hereafterWEA, recently generated a dataset of cross-sectional telomere shortening rates across nine
different tetrapod species using the quantitative fluorescence in situ hybridization technique to measure
telomere length. They found a strong negative relationship between telomere shortening rates and lifespan.
However, their analyses did not consider the phylogenetic relationships between the species they compared.
It is now well established that it is necessary to consider the phylogenetic relationships between species in
cross-species analyses (e.g. Garland et al., 2005). Not controlling for the phylogenetic relationship between
species implicitly assumes a “star phylogeny” inwhich all species are equally related to each other or that the
traits in question are not influenced by phylogeny (Felsenstein, 1985). Neither of these are usually the case.
Here we re-analyze the data fromWEA using phylogenetically informed analyses. Our analyses are similar
to the recent re-analysis of WEA by Udroiu (2020). Our analysis differs from Udroiu’s in two key ways.
First, instead of independent contrasts and analyses of residuals we use phylogenetic generalized least
squares (PGLS) regression with multivariate analyses. Second, we exclude the laboratorymouse in some of
our analyses out of concern that laboratory mice have been shown to have considerably longer telomeres
than their wild counterparts possibly due to artificial selection and/or inbreeding (Eisenberg, 2011;
Kotrschal et al., 2007; Manning et al., 2002; Weinstein & Ciszek, 2002).
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Objective

While we appreciate these new data generated by WEA, and the questions they address with these data,
we have concerns about their statistical techniques and inclusion criteria. We elaborate these concerns
and discuss re-analyses of the data using appropriate phylogenetic corrections and exclusion of the
laboratory mouse below.

Methods

We compiled species-level phylogenetic trees from sources reported in the supporting information. This
supporting information also contains further details on the methods briefly described below. We
reconstructed a time-calibrated supertree, which was pruned to match the species in WEA. We used
PGLS (Grafen, 1989) to test linear correlations between lifespan, telomere shortening rate (TSR), initial
telomere length (TL), body mass and heart rate following WEA. Most data are log-transformed for
normalization, but we also include some analyses of the non-transformed data for comparison with
WEA. We estimated Pagel’s λ with default bounds (0-1) using maximum likelihood.

Results

As illustrated in Figure 1, the species in question lie in two distinct groups, which can create a “worst case”
scenario for cross-species analysis (Felsenstein, 1985). Re-analyzing the primary findings from WEA
(their Figures 2, S1, & S2) with appropriate phylogenetic regressions leaves the general findings of WEA
intact (Table 1). However, we find a strong phylogenetic association between bodymass and TSR (Pagel’s
λ=0.97), but not among the other associations in Table 1. Re-analyzing the WEA dataset with
phylogenetic corrections and excluding the laboratory mouse (C57BL/6 strain) weakens all results
(Table 1). While the key association between TSR and lifespan remains in the same direction and
significant, the magnitude of the effect is attenuated. The multivariate analyses of lifespan inWEA (their
Tables S5 and S6) includes both bodymass and heart rate, which strongly correlate (R2 = 0.94, p < 0.0001).
WEA found that TSR, initial TL, bodymass and heart rate all significantly correlate with average lifespan.
To avoid multicollinearity, we excluded heart rate from the phylogenetic multivariate models, which
show that only TSR significantly predicts average andmaximum lifespan (Table 2). Excluding themouse
samples strengthens the positive association of initial TL with maximum lifespan.

Discussions

Telomere shortening across species has been shown to be strongly influenced by phylogeny in birds
(Tricola et al., 2018) and telomere length to be strongly influenced by phylogeny in mammals
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Phoenicopterus ruber(American flamingo)
Mus musculus (House mouse)
Homo sapiens (Human)
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Rangifer tarandus (Reindeer)
Tursiops truncatus (Bottlenose dolphin)
Elephas maximus (Asian elephant)
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Figure 1. Phylogenetic relationships between species compared in Whittemore et al. (2019) with a time scale in million years
ago (Ma).
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(Gomes et al., 2011). Particularly concerning is the fact that a past study suggests that telomeres might
lengthen with age in wild mice (Ilmonen et al., 2008), which can live longer than laboratory mice (Miller
et al., 2002). However, we find that corrections for phylogeny and excluding the potentially problematic
laboratory mouse does not substantively alter the general findings of WEA’s analysis.

Conclusions

Together with past analyses of lifespan and TSR (Dantzer & Fletcher, 2015; Haussmann et al., 2003;
Tricola et al., 2018) and another re-analysis of WEA (Udroiu, 2020), it is clear that species with more

Table 1. Results of non-phylogenetic (corresponding to Whittemore et al., 2019) and phylogenetic corrected regressions
between species traits with and without the inbred laboratory mouse. Figure references are to figures in Whittemore et al.
(2019).

Non-phylogenetic
regression
(9 species)

Phylogenetic
regression
(9 species)

Phylogenetic
regression without
mouse (8 species)

R2 p-value R2 p-value R2 p-value

log(body mass) vs. log(TSR). (Fig. S1) 0.413 0.062 0.623 0.011* 0.081 0.495

log(heart rate) vs. log(TSR). (Fig. S2) 0.540 0.038* 0.540 0.038* 0.008 0.849

max. lifespan vs. initial TL. (Fig. 2A) 0.019 0.724 0.019 0.724 0.001 0.948

log(max. lifespan) vs. log(initial TL). (Fig. 2B) 0.041 0.603 0.041 0.603 0.021 0.730

av. lifespan vs. initial TL. (Fig. 2C) 0.125 0.350 0.125 0.350 0.077 0.507

log(av. lifespan) vs. log(initial TL). (Fig. 2D) 0.145 0.313 0.145 0.313 0.029 0.688

log(max. lifespan) vs. log(TSR). (Fig. 2E) 0.829 0.0006*** 0.829 0.0006*** 0.581 0.030*

log(av. lifespan) vs. log(TSR). (Fig. 2G) 0.934 0.00002*** 0.934 0.00002*** 0.839 0.0014**

*p < 0.05, **p < 0.01, ***p < 0.001

Table 2. Phylogenetic multivariate analyses of average and maximum lifespan, respectively, versus TSR, initial TL and
body mass with (w.) and without (w/o) the mouse samples.

Response: log(av.
lifespan)

β with
mouse

β w/o
mouse

S.E. w.
mouse

S.E. w/o
mouse

t-val.
w.
mouse

t-val.
w/o
mouse

p-value
w. mouse

p-value
w/o
mouse

Intercept 3.027 2.839 0.292 0.289 10.38 9.836 0.00014*** 0.00060***

log(TSR) �0.807 �0.714 0.116 0.121 �6.934 �5.915 0.00096*** 0.00409**

log(initial TL) 0.274 0.284 0.192 0.171 1.431 1.659 0.21197 0.17249

log(mass) �0.001 �0.025 0.040 0.039 �0.031 �0.650 0.97680 0.55136

log(max. lifespan)

Intercept 2.664 2.693 0.327 0.318 8.134 8.464 0.00046*** 0.00107**

log(TSR) �0.748 �0.777 0.131 0.144 �5.725 �5.406 0.00228** 0.00567**

log(initial TL) 0.536 0.692 0.215 0.164 2.491 4.223 0.05508 0.01344*

log(mass) 0.009 �0.117 0.045 0.072 0.211 �1.618 0.84108 0.18100

*p < 0.05, **p < 0.01, ***p < 0.001
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rapid TSR tend to have shorter lifespans even when correcting for body mass. Nonetheless, we think it is
important to share our re-analyses to help assure others with the same concerns about theWEA analysis
we raised, to serve as a reminder of the importance of best practices in cross-species analyses, and to
provide more reliable estimates of the associations in question.
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