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Abstract. This paper proposes the algorithm for analyses of sample strategies. 

The back propagation artificial neural network approach is employed to 

approximate CMM measurements of the circular features of the aluminum 

workpieces machined with milling process. The discrete data is transformed into 

continuous nondeterministic profiles. The profiles are used for simulation to 

estimate the maximum possible error in different sample strategies for various 

diameters. 
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1 Introduction 

Coordinate Measuring Machines (CMMs) play an important role in the part inspection 

and quality control [1]. One of the important parameters in measuring strategy with 

CMM is the sample size of measuring points. The sample-point measurements provide 

discrete coordinates of the workpiece surface. The point-coordinates are used for 

assessment whether a form or dimension deviation are inside or outside of tolerance 

limits. The optimal choice of discrete points also relatives with applied evaluation 

methods and tolerance types  [2], [3]. The reliability and quality of CMM sample 

assessment depends on density and location of measured points [4]. Thus, the 

inspection is often a compromise between a required time, cost, and the measuring 

uncertainty. 

The result of measuring inspection depends on manufacturing process errors as well. 

Mesay et al. [5] have classified the process error into systematic and random 

components. In another paper, Qimi, Mesay et al. [6] have estimated the frequency of 

systematic errors by use of Fourier analyses. Other authors have investigated the 

measuring uncertainty due to the sample size based on approximation of aperiodic 

deterministic profile with Fourier series  [7], [8]. 

Moschos et. al [9] suggested a Bayesian regularized artificial neural network 

(BRANN) model trained with relatively small sample size to predict a variability of 

large data sample. Other authors determine an optimal inspection sample size based on 
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measuring errors approximated by ANN for various machine processes and nominal 

sizes [10]. 

A workpiece profile cannot be prescribed before it is measured, thus the profile is 

characterized as nondeterministic. This paper deals with the nondeterministic profiles 

derived from coordinate measurements of real workpieces. In order to investigate an 

influence of the sample size, Artificial Neural Network (ANN) was employed to create 

the continues nondeterministic profiles based on the discrete CMM data. 

2 Artificial Neural Network approach 

The state of the art in Artificial Neural Network is based on our understanding level of 

biological neurons function [11]. One of the most important advantage of ANN is that 

it can mimic processes with unknown relation of input and output data. In the case of 

limited information about a complex process, the ANN can provide relatively precise 

solution based on limited experimental data. The artificial network composed of 

differently connected artificial neurons, which are named as processing elements (PE). 

The PEs are connected into input layers, hidden layers, and output layers to create the 

artificial network [12]. Multilayers ANN can include many layers but to reduce the 

computation time, most commercial systems do not exceed two layers. It is important 

to notice that the final solution of ANN is not unique, but the one that satisfies the 

minimal error requirements. 

A multiple feed forward back-propagation (PB) ANN [13], was created in MATLAB 

program environment (Fig. 1). The design of PB ANN includes a number of steps [14] 

such as: preparing and pre-processing of training data; creating of a network structure; 

configuring the network; initialization weights and biases; training, validation and 

testing of the network.Let us have a look at each of these steps in detail.  

We denote k  as the network input and kR as the target, thus we have a network with 

one input and one output. In order to achieve a better accuracy we apply a deep leaning 

strategy in this work. There are two hidden layers, with 260 neurons in the first and 12 

neurons in the second layer. The chosen number of layers, neurons is a trial and error 

procedure. 

In our case, we utilize the tan-sigmoid transfer function (tansig) for both hidden 

layers. The tansig function has a following form: 
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where the argument a  is a summation of weights ijw and biases is  (threshold value) 

and given by such expression: 
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where j  is the input. 

The linear transfer function (purelin) was used for the output layer. The activation 

functions are defined over the interval [-1, 1]. 
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Fig. 1. A 1-260-12-1 feed forward ANN architecture for approximation of the measuring profiles 

The Levenberg-Marquardt training algorithm was performed for ANN learning 

[15]. In spite of the fact that this method has larger memory requirements than other 

approaches, it is the fastest supervised optimization algorithm with an efficient 

implementation in MATLAB. The algorithm regulates whether the Newton or the 

Gradient Decent method is performed. In such case we must use the mean squared error 

(MSE) obtained as following: 
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where m  is a total set of all entries. 

The measurement data was divided as the following: training – 85 % ; validation – 

10 %; test – 5 %. The procedure described above was repeated until maximum absolute 

error max  reaches a value below a certain value. In this work max 2 μm   was 

applied. 

3 Model Implementation 

For implementation of our approach, we measured circular holes milled in a 20 mm 

aluminium plate. There are 9 holes of various diameters from 40 mm to 500 mm. The 

inspection was performed in a Leitz PMM-C-600 coordinate measuring machine with 

an analogue probe and PC-DMIS software. The middle section of each hole was 

measured with 480 uniformly distributed points. The least squares circle (LSC) method 

was used to calculate the circle centre coordinates ( , )c cX Y  and radius values of each 

section. Usually, the LSC method overestimates the roundness value compared to the 

minimum zone (MZ, Chebyshev) method, which is recommended method by ISO 1101 

standard. However, in the case of small sample sizes, the true value might be 

underestimated. Thus, the LSC may be more preferable. Besides, the LSC method is 

set as default in all previous versions of PC-DMIS. 

The radius distance kR from the circle centre ( , )c cX Y to each individual measured 

point ( , )k kX Y  was calculated as following:   
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2 2( ) ( )k k c k cR X X Y Y= − + − ,          (4) 

The value of the radial angle was set as 2 / 480, 0...479k k k =  = , where k  is the 

index number of measured points. The few examples of such estimated radius variable 

versus the angle are shown on the polar plots in Fig. 2. 

 

(a) 1D =  40 mm     (b) 3D =  100 mm     (c) 9D = 500 mm 

Fig. 2. The measured profiles of three radial sections 

These estimated profiles were approximated with ANN model. An example of the 

approximated nondeterministic profile is illustrated in Fig. 3. The lowest graph of figure 

3 shows the approximations error in each particular point. The total range of the fit 

errors is within 
40.9 10−   mm for this particular profile. The nondeterministic profile 

equivalents to a continuous function, that provides an opportunity to simulate the 

measuring strategies based on real measurements and perfect repeatability conditions. 

4 Simulation procedure  

In order to estimate the maximum measuring error due to the sample size, an additional 

procedure was developed. A common practice in CMM measuring is using the sample 

consisting of equally distributed measuring points and the LSC as the default method. 

An example of the simulation, using a five-point sample (n = 5), is illustrated in Fig. 4. 

A sample of n equally distributed points is taken from the ANN profile (section 2.2), 

and the n-point sample is rotated clockwise with m = 103 iteration number. In each 

iteration the sample is rotated by the angular step 2 /s nm= . When the first point 1p  

position is defined, the other ( 1)n − sample points ( 2 3, ,... np p p ) are determined 

uniquely with equal space 2 / n . The sample of n  radius values ANN
kr ( 1,...k n= ) is 

generated from the trained network corresponding to uniform point locations.  
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Fig. 3. The continues nondeterministic profile approximated with ANN ( 3 100D =  mm) 

The corresponding ,k kx y  coordinates are calculated from radius variables ANN
kr by 

following equations: 
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A new circle centre was calculated with transformed coordinates as: 

( ) ( )( , ) , ,c c c cx y u v x y= + ,         (6) 

where a “best fit” circle of least squares of simulated points with the circle centre 

( , )c cu v  was found from following system: 
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Where kku x x= −  and k kv y y= −  are the transformed coordinates. Then, the radius 

values for each point can be calculated as following: 

2 2( ) ( )k k c k cx x y y = − + − .         (8) 

The circle centre ( , )c cx y  and radius values k  are calculated in the each iteration. 

Then the radius variation range of the n-sample for each particular location is estimated 

by the residual max min   = − . Eventually, after all iterations were completed, the 

smallest estimated radius variation range min  for the particular sample size n was 

defined. The maximum estimation error max  due to the sample size n was calculated 

as max min
ANNR =  − , where max min

ANNANN ANNR R R = −  is the precise radius 
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variation range estimated from 480 variables, which were simulated with the 

continuous virtual profile. 

 

Fig. 4. The five-point sample: 2 3, ,... np p p – the measured points; 
1 2 5
, , ...   – the estimated 

radius variables; ref.lsc – reference least squares circle; 
1

ANN
r – a radius of the original reference 

circle; ( , )
c c

X Y  – a reference circle center based on 480 points; ( , )c cx y  – a new circle center 

based on 5 points. 

5 Results and Discussion 

The simulation procedure described in section 3 was applied with different sample sizes 

from 5 to 400 measuring points, and for 9 circle sections with nominal diameter from 

40 mm to 500 mm. The final simulation results are tabulated in Table 1. 

The graphical interpretation of the results (see Fig. 5a) shows that relation between 

the maximum estimated error max and the sample size n has nonlinear, asymptotic 

behavior. This behavior appears relatively predictable. However, the relation between 

the maximum estimated error and the diameter size for a given sample size does not 

follow a clear trend, when a five point-sample is used (see Fig.5b). The maximum 

estimated error for different diameters varies between 7.1 µm and 30.2 µm. In our tests, 

the maximum estimated error is up to 6.6 µm for the ninety three points sample size, 

and up to 2.1 μm for three hundred measuring points. 

6 Conclusion  

According to the simulation results, the error due to the sample size can be a significant 

contributor to the measurement uncertainty and thus, it must be considered in the 

measuring strategy for CMM. 

 The simulation procedure presented in this paper is a new algorithm for estimating 

the maximum error due to number of the measuring points. As shown with the test 

pieces, the diameter size is not the main factor for defining the sample strategy. 
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Table 1. The maximum estimated error max due to the sample size n for various diameters iD   

*
max

 is given in μm  

 

(a) The maximum estimated error vs sample 

size for diameters 1 2 9, ,...D D D   

(b) The maximum estimated error vs 

diameter size for samples of 5, 93 and 300 

points 
Fig. 5. The relationship of the maximum estimated error with the sample size and the diameter 

size of circle profiles 

The presented ANN approach can be adapted to profile forms generated by any 

machine operations. The approximated nondeterministic profile can be further used as 

the continuous function for other simulations regarding the sample strategy, alignment, 

filtration methods and measuring uncertainty estimation. 

 

 

Sample size n 5 15 30 60 93 150 200 300 400 

1 40 mmD = * 11.2 7.5 5.0 4.3 3.1 2.8 2.5 1.3 0.7 

2 80 mmD =   10.2 5.4 5.0 4.1 2.5 1.9 1.6 1.1 0.5 

3 100 mmD =  7.1 4.9 4.0 3.1 2.5 2.0 1.3 0.7 0.4 

4 150 mmD =  21.4 11.5 9.1 7.3 6.6 6.6 4.5 2.1 0.8 

5 200 mmD =  15.1 4.4 2.0 0.9 0.7 0.3 0.2 0.1 0.1 

6 250 mmD =  30.2 7.8 2.6 1.9 1.1 0.7 0.7 0.4 0.0 

7 300 mmD =  22.2 8.7 5.9 3.7 2.1 1.4 1.3 1.0 0.8 

8 400 mmD =  21.5 8.7 4.1 1.8 1.6 1.1 0.7 0.4 0.2 

9 500 mmD =  24.3 10.6 7.8 7.8 5.0 3.2 3.2 1.9 0.8 
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