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Abstract. Using group theory we describe the relation between lattice sam-
pling grids and the corresponding non-aliasing Fourier basis sets, valid for all
1-periodic lattice s. This technique enable us to extend the results established in
[16]. We also provide explicit formula for the Lagrange functions and show how
the FFT algorithm may be used to compute the expansion coefficients.
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1 Introduction

We are interested in interpolating a periodic function f on [0,1)s by an s−dimensional
trigonometric polynomial

f (x)≈ ∑
k∈S

cke2πik·x,

We do so by sampling f in N grid points x j ∈ [0,1)s such that

f (x j) = ∑
k∈S

cke2πik·x j ∀ x j ∈Ω . (1)

Ω is called the sampling grid, the vector k= (k1,k2, · · · ,ks) is a multi-index, commonly
called wave numbers or Fourier indices, k ·x = kT x denotes the innerproduct of k ∈ S
and x ∈ Rs, and S ⊂ Zs is a finite set with |S| = N. S defines the approximation space
HS = {e2πik·x | k ∈ S}. We write

I f = ∑
k∈S

cke2πik·x,

where I denotes the interpolation operator. For fixed Ω ,S and f , (1) defines a linear
system of equations for the coefficients ck. If the system is non-singular, the grid is said
to be unisolvent with respect to HS. If sufficient structure is present in the point set,
Ω , the FFT-algorithm may be used to solve (1), offering huge savings in computational
cost. Unisolvency also ensures that a set of N Lagrange functions satisfying L`(x j) =
δ`, j exists. If these can be described explicitly, the interpolation may be written: I f =
∑

N
`=1 f (x`)L`(x).

The obvious extension to multi-dimensional interpolation is done by taking the ten-
sor product of your favorite one-dimensional interpolation grid. Then the well-known
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one-dimensional theory can be straightforwardly extended. However, the exponential
increase in cost severely limits this approach and for that reason using non-tensorial
sampling grids such as sparse grids [1], [3], [18] and lattice grids [4], [16] have been
suggested.

In this paper we will focus on the lattice grid approach. In particular we will estab-
lish the relation between a given lattice grid and its corresponding approximation space,
and show how to construct the associated Lagrange functions and efficient computation
of the expansion coefficients, ck by the FFT. This was also an issue in [16]. In that
paper our proofs were restricted to rank-1 lattices of prime order. In this paper we gen-
eralize this result to all 1-periodic lattices. Framing these problems in terms of group
theory gives access to the full arsenal of group theoretical tools. This allows us to more
precisely describe the decomposition of higher rank lattices into rank-1 lattices, which
among other things are the bases for a variable transformation permitting the FFT to be
used for fast computation of the interpolation coefficients. Again this has been done be-
fore in [14], but there it remains unclear exactly how to relate the computed coefficients
with the corresponding basis functions.

For a thorough understanding of the basic properties of 1-periodic integration lat-
tices we recommend [11], [12] and sections 1-4 of [17]. In general, a good understand-
ing of Fourier analysis on lattice grids requires basic knowledge of group theory, espe-
cially Abelian and quotient groups. Good references are [2], [13], and [14].

Similar work has been pursued by Li, Sun and Xu, and reported in a series of pa-
pers [5], [6], [7], [8] and [9]. Their work is targeting other physical domains in 2 or
3 dimensions such as triangles, hexagons, etc. On the other hand they are not limit-
ing themselves to trigonometric interpolation as they employ variable transformations
to obtain Chebyshev’s polynomials for algebraic polynomial interpolations. These are
then used to develop interpolating quadrature rules.

We first establish the correct correspondence between the interpolating lattice points
and the corresponding approximation space. In Section 3 we show how to construct
a full set of trigonometric Lagrange functions. In Section 4 we establish the proper
variable transformations allowing us to to compute the interpolation coefficients by the
FFT.

2 The correspondence between the sampling grid and the index set

An s-dimensional lattice Λ is a finitely generated Abelian group under vector addition.
Alternatively it may be viewed as a linear integer combination of s linearly independent
basis vectors. When arranging the basis vectors as rows in a matrix, the matrix is said to
be an generator matrix for the lattice. In this paper we will consider only [0,1)s-periodic
integration lattices, and thus all lattice points may be written x = z

N , with z ∈ Zs [10].

Definition 1. The lattice (sampling) grid T of Λ is

T = Λ ∩ [0,1)s.

If Λ is periodic on [0,1)s, then T is a group under addition mod 1, and

T 'Λ/Zs.
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See [11] and [17] for details. From here on, any addition of lattice points in T will be
tacitly understood to be mod 1. We shall write N = |T | throughout this paper.

Definition 2. Let x ∈ T . The order d of x is the least natural number such that dx = 0.
The subgroup of T generated by x is the set

{x}= { jx | 0≤ j ≤ d−1} .

It is clear that {x} is a cyclic group of order d and its periodic extension is a lattice, Λx
and Λx ⊆Λ .

Definition 3. Let x1,x2, ...,xt ∈ T . We say that T has rank t, and is generated by
x1,x2, ...,xt if

T ' {x1}⊕{x2}⊕ ·· ·⊕{xt}.

All finite Abelian groups are direct products of cyclic groups. The orders of the gen-
erators of T are called invariants, denoted d1, d2,...,dt . The generators are in general
not unique, but the invariants are, under the condition that dl|dl+1 for all l. Elementary
group theory implies that N = ∏

t
l=1 dl.

Lemma 1. Let x = z
N ∈ T , with z ∈ Zs, and a = gcd(z,N), then the order of x is N/a.

Proof. Since a divides z, we have

N
a

z
N

= 0.

Let z′ = z/a. If there exist a natural number b < N
a such that b is the order of x, then

elementary group theory dictates that we must have bc = N
a for some natural number

c > 1. Then
z′

c
= b

z
N

= 0,

and this implies that c divides all components of z′. But then ac divides z, hence cannot
divide N, so b = N

ac is not an integer, and arriving at a contradiction, we conclude that
no b < N

a exists. ut

It follows that we may always write x = z
d , with z ∈ Zs, where d is the order of x. If

x ∈ T has order N, then x generates T .
We now turn our attention to approximation spaces corresponding to a particular

sampling grid T . As stated above this is equivalent to finding index sets S ∈ Zs or Sx for
sampling sets T or {x}, respectively. Associated with T (or Λ ) is the dual lattice.

Definition 4. The dual lattice of T is

Λ
⊥ = {k : k ·x ∈ Z ∀ x ∈ T}.

As k,h ∈Λ⊥⇒ k+h ∈Λ⊥, Λ⊥ is itself a lattice and whenever Λ is 1-periodic, Λ⊥ is
an integer lattice. We may also define
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Definition 5. The dual lattice of {x} is

Λ
⊥
x = {k : k ·x ∈ Z ∀ x ∈ {x}}.

A key observation is that two Fourier modes e2πik·x and e2πih·x are indistinguishable for
x ∈ T if k−h ∈Λ⊥. k and h are said to be aliasing. To be useful for us S must contain
only non-aliasing indecies.

Note that Λx ⊆ Λ implies Λ⊥ ⊆ Λ⊥x , and that Λ⊥x = Λ⊥ if the order of x ∈ T is N.
The subgroup {x} is treated specifically with respect to aliasing.

Lemma 2. Let d be the order of {x}, and let z,k,h ∈ Zs/{0}, with x = z
d ∈ T . Then

k · z≡ h · z (mod d) ⇔ k−h ∈Λ
⊥
x . (2)

Proof. A simple computation yields

k · z ≡ h · z (mod d)

m
(k−h) · z = m; m ∈ Z,

and the lemma follows from Definition 5. ut

Lemma 3. Let d be the order of x ∈ T . Then |Sx|= d.

Proof. Let x = z
d with z ∈ Zs. The equivalence relation

k = h if k · z≡ h · z (mod d),

clearly partitions Zs into d equivalence classes. From lemma 2 we know that this equiv-
alence relation is equivalent to the equivalence relation

k = h if k−h ∈Λ
⊥
x .

Accordingly, these two equivalence relations partition Zs in the same number of equiv-
alence classes, and thus |Sx|= d. ut

We now turn to the construction of unisolvent approximation spaces on T . Since Λ⊥

is a normal subgroup of Zs, we may construct Zs/Λ⊥, which is a group of equivalence
classes under the equivalence relation

k = h if k−h ∈Λ
⊥.

Theorem 1. A non-aliasing Fourier index set for T is

S = Zs/Λ
⊥.
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Proof. For computations we choose a representative from each equivalence class; it is
then evident that no two representatives will alias. Moreover, the set of representatives
will be isomorphic to Zs/Λ⊥ under the addition inherited from Zs/Λ⊥: if k,h, l ∈ Zs

are representatives for [k], [h], [l] ∈ Zs/Λ⊥, then k+h = l if [k]+ [h] = [l]. ut
We write Sx = Zs/Λ⊥x .

Lemma 4. The cosets of Sx partition S.

Proof. Since Λ⊥ is a normal subgroup of Λ⊥x ⊂ Zs, we know from the fundamental
theorem of quotient groups [2] that

Zs/Λ⊥

Λ⊥x /Λ⊥
' Zs/Λ

⊥
x ,

which says that the cosets of Zs/Λ⊥x partition Zs/Λ⊥. Since S = Zs/Λ⊥ and Sx =
Zs/Λ⊥x , the result follows. ut

3 Trigonometric Lagrange functions for lattice grids

Definition 6. The Dirichlet kernel of S on [0,1)s is

DS(x) = ∑
k∈S

e2πik·x. (3)

We proceed to prove that the Dirichlet kernel is zero on all x ∈ T except at the origin.

Lemma 5. For x ∈ T .

DSx(x) =
{

0; x ∈ T \{0}
|Sx|; x = 0 .

Proof. Let x = z
d , with z ∈ Zs. We have k ·x = k · z/d = m

d for all k ∈ Sx. Now m takes
at most d different values, and due to lemma 2, none of them are equal mod d. This
implies that DSx(x) is a geometric series, and for x 6= 0 we may compute

DSx(x) = ∑
k∈Sx

fk(x) = ∑
k∈Sx

e2πik·x =
d−1

∑
m=0

e
2πim

d = 0.

The case x = 0 is trivial. ut
Theorem 2. Let x ∈ T . Then

DS(x) =
{

0; x ∈ T \{0}
N; x = 0 .

Proof. Since Sx partitions S, we just rearrange the sum in (3) and apply Lemma 5

DS(x) = ∑
k∈S

e2πik·x = ∑
h∈S/Sx

∑
l∈Sx

e2πi(h+l)·x = ∑
h∈S/Sx

e2πih·x
∑

l∈Sx

e2πil·x =

{
0; x 6= 0
N; x = 0

ut
We can now construct a complete set of Lagrange functions.

Corollary 1. For any y ∈ T a trigonometric Lagrange function is given as

Ly(x) =
1
N

DS(x−y).
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4 Fast Fourier Transform on lattice grids

By utilizing the Smith normal form, the standard FFT-algorithm may be extended in a
natural way to lattice grids of any rank. In the following, we shall write T (A) for the
sampling grid generated by the generator matrix A ∈ IRs×s.

Definition 7. The index set of T (A) is

S(A) = {kT = xT A−1| x ∈ T (A)} (4)

For integration lattices, A−1 is an integer matrix, and N = det A−1, see [10]. If A is
non-singular, we have the following trivial lemma.

Lemma 6. S(A) is a group, with T (A)' S(A).

Proof. Let x,y,z ∈ T (A), let k,h, l ∈ S(A), with k = A−1x, h = A−1y, l = A−1z and
x+ y = z. If we agree that k+ h = l, then under this addition, S(A) is a group, with
T (A)' S(A). ut

In the preceding section we used the letter S to denote non-aliasing Fourier index sets,
and in this subsection we use the same letter to denote lattice index sets. This makes
sense because of the following theorem, proved in [16].

Theorem 3. S(AT ) is a non-aliasing index set for T (A).

Note that the generator matrix A is not unique. Any matrix UA where U is unimodular
(integer matrices with determinant equal ±1), generates the same lattice and conse-
quently T (A) = T (UA). However, using Definition 7 we see that S(UA) = {kTU |k ∈
S(A)} and consequently S(A) 6= S(UA). In [16] we give algorithms for computing good
index sets for typical function classes.

To solve (1) efficiently by the multi-dimensional FFT-algorithm the sampling points
as well as the index-set must form a hyper-rectangular equidistant grid. This is not the
case for T (A) and S(AT ), respectively. However, an appropriate grid/index-set may be
obtained by a simple structure preserving variable transformation. The inverse generator
matrix A−1 may be decomposed by the Smith normal form [15] as

D̃ = ŨA−1Ṽ ; D̃ = diag(d1, . . . ,ds); d`|d`+1,

where Ũ and Ṽ are s×s unimodular matrices, and D̃∈Zs×s is a unique diagonal matrix
with d`|d`+1 for 1≤ ` < s, the invariants of T (A). If t < s we may omit the upper s− t
rows of U and the leftmost s− t columns of V , writing

D =UA−1V, (5)

where U ∈ Zt×s, V ∈ Zs×t , and D ∈ Zt×t . Transposition of (5) proves that T (A) and
T (AT ) have the same invariants, hence

T (A)' T (AT ),

and Lemma 6 then implies
T (A)' S(AT ).
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In [12] Lyness and Keast showed that the rows of D−1U generate T (A). Transposition
shows that the columns of V D−1 similarly generate T (AT ), and hence the columns
of A−1V D−1 generate S(AT ). The Cartesian grid with d` points in the `-th coordinate
direction may be written T (D−1), and its non-aliasing Fourier index set is

S(D−1) = {h : 0≤ h` < d` 1≤ `≤ t} .

More formally we may write

T (D−1) =
{

y : y = D−1h; h ∈ S(D−1)
}
.

The sampling grid T (D−1) and the index space S(D−1) are standard regular equidistant
t-dimensional grids which allows straightforward use of the FFT for solving equation
(1). Now let x ∈ T (A), k ∈ S(AT ), and h, l ∈ S(D−1), with

xT = hT D−1U = yTU (6)

and
k = A−1V D−1l. (7)

The matrix-vector form for computing all f (x j) of (1) becomes

f = Fc where (F) j,l = e2πiklx j ; kl ∈ S(AT ); x j ∈ T (A). (8)

If x, y are related by (6) and k, l by (7), then by (5) it follows that

exp(2πix ·k) = exp(2πiy · l).

Thus the matrix F in (8) is just a permutation of the matrix produced by the T (D−1)
grid. The matrix obtained by the y, l entries correspond to the standard t-dimensional
inverse Fourier transform, efficiently carried out by the FFT-algorithm. The permuta-
tion is implicitly defined by (6) and (7), and care needs to be taken when matching
coefficients with function values in (1).

The computations in (6) and (7) are linear in N. Thus the total complexity is domi-
nated by the FFT which is of order O(N logN), with a constant factor weekly depending
on how N factorize. This complexity stays the same regardless of whether we do a one
dimensional FFT of length N (for a rank-1 lattice) or we do a t-dimensional FFT on a
d1×d2×·· ·×dt array for N = ∏

t
j=1 d j in the case of a rank-t lattice with N points.

5 Numerical examples

As an example, consider the lattice generated by A when

A−1 =


0 −1 −4 −5
5 0 −1 −4
4 5 0 −1
1 4 5 0


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Its Smith Normal form, D̃ = ŨA−1Ṽ is:
1 0 0 0
0 1 0 0
0 0 6 0
0 0 0 102

=


1 −4 4 0
3 4 −5 3
−17 3 1 −13
−19 −4 9 −16




0 −1 −4 −5
5 0 −1 −4
4 5 0 −1
1 4 5 0



−5 0 −19 263
−1 0 −4 55
1 −1 7 −117
0 0 0 1

 .

This tells us that the lattice has rank 2, with invariants 6 and 102. Utilizing the reduced
Smith Normal form, the rows of

D−1U = D̃−1(3 : 4,3 : 4)Ũ(3 : 4, :) =
( 1

6 0
0 1

102

)(
−17 3 1 −13
−19 −4 9 −16

)
,

are generators for T (A). The columns of

A−1V D−1 =


0 −1 −4 −5
5 0 −1 −4
4 5 0 −1
1 4 5 0



−19 263
−4 55
7 −117
0 1

( 1
6 0
0 1

102

)
,

are generators for S(AT ). To get the lattice points in [0,1)s, needed for practical com-
putation, the points obtained by (6) have to be taken modulo 1. Likewise, members of
the non-aliasing set of Fourier coefficients obtained using (7) need to be shifted so that
they represent the most significant Fourier modes, typically the lowest frequencies. As
an illustration we have computed the interpolation on the above lattice grid for four
1-periodic functions and compared the error to the similar interpolation on a regular
Cartesian grid. In all cases the lattice grid produce a more accurate interpolant. More
exhaustive experimental results for these testfunctions on lattice grid versus regular grid
in 2 and 3 dimension is given in [16], and they show a clear advantage for lattice grid.
The advantage seems to increase with the dimension.

function Lattice grid regular grid
f1(x) = ∏

s
`=1(x`−1)2x2

` 0.031 0.038
f2(x) = ∏

s
`=1 esin(2πx`)−1 0.036 0.128

f3(x) = ∏
s
`=1(2+ sign(x`− 1

2 )sin(2πx`)p) 0.250 0.367
f4(x) = e−λ ∏

s
`=1(x`−1/2)2

0.068 0.084
Table 1: The relative error for the interpolating function when the grid is produced by
the lattice in this section or by a regular, equidistant Cartesian grid using N = 625 grid-
points. The error is estimated by computing || fk(x)− I fk(x)||1/|| fk(x)||1 on a regular
fine grid (31×31×31×31 gridpoints). For f3 we used p = 3 and for f4, λ = 7.
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Fig. 1: The left frame displays the set S(D−1). In the right frame we display two different
2-dim projections of the 4-dim index array S(A). The 4 remaining 2-dim projections
have a similar look.
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