
 
A

cc
ep

te
d 

A
rt

ic
le

 
Dongda Zhang    ORCID iD: 0000-0001-5956-4618 

Review of advanced physical and data-driven models for 
dynamic bioprocess simulation: Case study of algae-bacteria 
consortium wastewater treatment 

Ehecatl Antonio Del Rio-Chanona1,ǂ, Xiaoyan Cong2,ǂ, Eric Bradford3, Dongda 

Zhang1,4,*, Keju Jing2,* 

1: Centre for Process Systems Engineering, Imperial College London, South 

Kensington Campus, London SW7 2AZ, UK. 

2: Department of Chemical and Biochemical Engineering, College of Chemistry and 

Chemical Engineering, Xiamen University, Xiamen 361005, China. 

3: Engineering Cybernetics, Norwegian University of Science and Technology, 

Trondheim, Norway. 

4: Centre for Process Integration, University of Manchester, Oxford Road, 

Manchester, M1 3BU, UK. 

ǂ: These authors contributed equally to this work. 

*: Corresponding authors, email: dongda.zhang@manchester.ac.uk, tel: 44 (0)161 306 

5153 (Dongda Zhang); jkj@xmu.edu.cn, tel: 86 592 2186038 (Keju Jing). 

Running title: Machine learning for bioprocess modelling 

 

This article has been accepted for publication and undergone full peer review but has 
not been through the copyediting, typesetting, pagination and proofreading process, 
which may lead to differences between this version and the Version of Record. Please 
cite this article as doi: 10.1002/bit.26881. 

 

This article is protected by copyright. All rights reserved. 



 
A

cc
ep

te
d 

A
rt

ic
le

 
Abstract 

Microorganism production and remediation processes are of critical importance to the 

next generation of sustainable industries. Undertaking mathematical treatment of 

dynamic biosystems operating at any spatial or temporal scale is essential to guarantee 

their performance and safety. However, constructing physical models remains a 

challenge due to the extreme complexity of process biological mechanisms. Data-

driven models also encounter severe limitations because datasets from large-scale 

bioprocesses are often scarce without complete information and on a restricted 

operational space. To fill this gap, the current research compares the performance of 

advanced physical and data-driven models for dynamic bioprocess simulations subject 

to incomplete and scarce datasets, which to the best of our knowledge has never been 

addressed before. In specific, kinetic models were constructed by integrating different 

classic models, and state-of-the-art hyperparameter selection frameworks were 

developed to design artificial neural networks and Gaussian process regression 

models. An algae-bacteria consortium wastewater treatment process was selected to 

test the accuracy of these modelling strategies, as it is one of the most sophisticated 

biosystems due to the intricate mutualistic and competitive interactions. Based on the 

current results and available data, a heuristic model selection procedure is provided. 

This research paves the way to facilitate future bioprocess modelling. 
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Graphical Abstract 

Microorganism production and remediation processes are of critical importance to the 

next generation of sustainable industries. Undertaking mathematical treatment of 

dynamic biosystems operating at any spatial or temporal scale is essential to guarantee 

their performance and safety. However, constructing physical models remains a 

challenge due to the extreme complexity of process biological mechanisms. 

 

Keywords: Gaussian processes, artificial neural network, kinetic modelling, scarce 

dataset, algae-bacteria consortium 

Introduction 

Microorganism based industrial biotechnologies have drawn great attention within the 

last decade due to their applications in sustainable production and environmental 

remediation. Microalgae have been extensively studied to produce a variety of 

renewables e.g. biohydrogen, transportation fuels, food supplements and high-value 

bioproducts (Dongda Zhang and Vassiliadis 2015; Harun et al. 2018; Jiao et al. 2017). 

They can utilise solar energy and CO2 for bioproduct synthesis without the necessity 

of occupying arable land and competing with agricultural plants. Several algal 

products have been commercialised in the US, China, and the Middle East, and their 

global market has been predicted to reach over $5.1 billion by 2023 (Wood 2018). 
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Traditional fermentation processes also play a vital role for industrial scale production 

of a broad range of commodities including bulk chemicals, polymers, pharmaceuticals, 

and food additives (Jing et al. 2018; Wang et al. 2015; Bankar et al. 2014). Their 

global market demand has been expected to reach over $2.4 trillion in 2025 (John 

2018). Meanwhile, algae-bacteria consortia have also been used for wastewater 

treatment and detoxification of environmental pollutants (Jia and Yuan 2016). They 

have been reported to effectively remove different nitrogen, phosphorus and carbon 

source (Delgadillo-Mirquez et al. 2016; He et al. 2013).  

Bioproduction and bioremediation processes are conducted dynamically in a batch or 

fed-batch operation. To improve their efficiency and safety, it is vital to allow the 

mathematical treatment of bioprocesses to improve performance and reliability 

through advanced optimisation and control methods. As a result, a rigorous model 

capable of simulating complex biological dynamics is essential. Conventionally, this 

was achieved by constructing physical models based on biological mechanisms. 

Kinetic models, a class of grey-box models, are principally used for bioprocess 

modelling, optimisation, control, and design (Quinn et al. 2011; del Rio-Chanona, et 

al. 2017). Kinetic models lump the large number of metabolic pathways into a small 

set of differential equations to model cell growth, substrates uptake, and product 

production. Classic kinetic models for fermentation include the Monod model, the 

Droop model, the Contois model, and the Luedeking–Piret model, each one designed 

by distinct assumptions and used under different circumstances (Vatcheva et al. 2006). 

For algal systems, kinetic models that include light effects have also been designed 

(Quinn et al. 2011; D. Zhang et al. 2015). However, for multi-strain co-culturing 

systems (e.g. algae-bacteria consortium), measuring cell growth and nutrients uptake 

of each strain is difficult, causing a challenge for process modelling.  
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Datasets in many bioprocesses are scarce and involve time-series with high 

uncertainty. They are usually incomplete, meaning that part of the information is 

missing due to equipment limitation or labour shortage. Kinetic models can handle 

these issues effectively, but their application has been severely limited due to the very 

high complexity of mechanisms underlying the biosystems. For example, photo-

production or algae-bacteria consortium remediation processes are affected by various 

factors including multiple nutrients, light, and temperature. Intricate interactions 

between these factors are poorly understood, making it challenging to construct an 

accurate model. Thus, kinetic model parameters are often assigned different values to 

model the behaviour of biological processes well for a specific range of operating 

conditions in a particular experiment (Adesanya et al. 2014; He et al. 2013). This 

causes the loss of predictive power of kinetic models, as they then cannot predict well 

the biological process at conditions distinct from those used in the experiments. 

Hence, machine learning (ML) methods have been increasingly applied as an 

alternative.  

Artificial neural networks (ANN) are one of the earliest ML methods used in 

chemical engineering (He et al. 2013). Being black-box models, they can estimate 

complicated relationships between inputs and outputs without the necessity of 

understanding the detailed physical mechanisms. They have been utilised to model 

and optimise microbial bioproduction processes, yielding substantial increases (85% 

to 187%) on productivity of biorenewables (del Rio-Chanona et al. 2016; 

Dineshkumar et al. 2015). Recently, there is an emerging effort to exploit Gaussian 

process (GP) regression, a cutting-edge ML method, for bioprocess modelling, 

optimisation, and monitoring (Bradford et al. 2018; Tulsyan et al. 2018). GP 

regression provides predictions as Gaussian distributed variables conditioned on the 
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available data. They possess an excellent feature compared to most ML and physical 

models, which is to predict output uncertainty. This is especially important to 

biosystems due to their high uncertainty arising from the sophisticated and sensitive 

metabolisms. Despite successful applications in other fields, ML methods have 

encountered critical bottlenecks in bioprocesses due to the small size and 

incompleteness of the datasets. As they are data-driven models, collecting large 

datasets is vital for their construction. Meanwhile, having a full record of 

measurements at each time step is essential for them to learn system dynamics. 

Nonetheless, neither of these pre-requisites can be easily satisfied for biosystems. 

This study aims to compare performance (i.e. simulation accuracy, predictive 

capability) of different types of models when confronting applications with scarce 

datasets, thus providing suggestions for future modelling studies. Algae-bacteria 

consortium wastewater treatment is selected as the case study due to its high 

complexity. State-of-the-art model construction strategies were adopted with their 

advantages and disadvantages thoroughly discussed. The most reliable models were 

then used to improve understandings of the underlying system.  

2. Material and methods  

2.1 Strains selection and medium 

Alga Chlorella vulgaris GY-H4 was purchased from the Institute of Hydrobiology 

(IHB), Chinese Academy of Sciences, China; and bacterium Bacillus subtilis was 

obtained from earlier work in our laboratory and stored at the Culture Collection of 

Xiamen University. Prior to the experiments in synthetic wastewater (SWW), algal 

and bacterial cells were pre-cultured in the BG-11 medium and the Luria-Bertani (LB) 

medium, respectively. C .vulgaris and B. subtilis were inoculated separately in both 
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high and low concentration SWW mediums. The high concentration SWW was 

initially composed of (per L of distilled water): 500 mg Glucose, 1750 mg NaHCO3, 

727 mg NaNO3, 83.3 mg KH2PO4, 7 mg NaCl, 4 mg CaCl2·2H2O, 75 mg 

MgSO4·7H2O, 2.5 mg FeSO4, 20 mg EDTA, 0.00125 mg ZnSO4, 0.0025 mg MnSO4, 

0.0125 mg H3BO3, 0.0125 mg Co(NO3)2, 0.0125 mg Na2MoO4, and 6.25×106 mg 

CuSO4. This resulted in 200 mg/L dissolved organic carbon (DOC), 120 mg/L N-

NO3
-, and 19 mg/L TP-PO4

3-. The low concentration SWW contains (per L of distilled 

water): 100 mg Glucose, 350 mg NaHCO3, 115 mg NaNO3, 13.2 mg KH2PO4, 7 mg 

NaCl, 4 mg, CaCl2·2H2O, 75 mg MgSO4·7H2O, 2.5 mg FeSO4, 20 mg EDTA, 

0.00125 mg ZnSO4, 0.0025 mg MnSO4, 0.0125 mg H3BO3, 0.0125 mg Co(NO3)2, 

0.0125 mg Na2MoO4, and 6.25×106 mg CuSO4. This resulted in 40mg/L DOC, 19 

mg/L N-NO3
-, and 3 mg/L TP-PO4

3-. 

2.2 Culture methods and experiment setup 

Bacterial experiments were conducted in a 500mL baffled flask containing 100 mL 

SWW medium and cultivated at 28°C, 200 rpm for 8 days, with an initial inoculum 

size of 0.24 g/L. The algal and algae-bacteria consortium experiments were conducted 

in a 1L photobioreactor (PBR) equipped with an external light source mounted on 

both sides. Light intensity was 300 μmol/m2/s and aeration rate was 0.1 vvm with 2.5% 

CO2. Initial culture volume was 800 mL SSW medium and the cultures were 

incubated for 8 days at 25-28°C. Initial biomass concentration for the algal 

experiments was 0.24 g/L. In the consortium experiments, the same inoculum size of 

algae and bacteria was added into the PBR with a joint concentration of 0.48 g/L. The 

consortium was also cultivated in the sterilized SWW with high and low 

concentrations of glucose (500 and 100mg/L), TN-NO3
-(120 and 19 mg/L) and TP-
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PO4

3- (19 and 3 mg/L), respectively. The culture pH was maintained at 7 to 8. Liquid 

samples were collected from the culture broth at set time intervals to measure cell 

concentration, DOC, TP and TN. Experiments were conducted in triplicate and are 

summarised in Table I. 

2.3 Analytical procedures 

Biomass concentration was measured through optical density at a wavelength of 680 

nm (OD680) and recorded as dry weight (g/L). Biomass was harvested by 

centrifugation (5000 rpm, 5 min) and washed three times using reverse osmosis 

treated water. During the experiments, carbon concentration was determined by a 

TOC analyser (LiquiTOC II, Elementar, Germany) from filtrated samples (0.45 μm). 

NO3
- and PO4

3- ions from the filtrated (0.20 μm) wastewater was analysed by an Ion 

Chromatograph (ICS-5000, Dionex, Italy).  

3. Modelling methodology 

3.1 Dataset augmentation for the construction of data-driven models  

Datasets from the four single strain processes (Table I) were used for model 

construction. Data points were measured once every 6 hours, some of which were 

excluded to resemble industrial cases. For kinetic models, the datasets were used 

directly for parameter estimation. For ML models, two strategies were applied with 

their advantages discussed in Section 4. The first is to fill missing information by 

linearly interpolating existing data, and the second is to generate a set of artificial 

datasets by embedding adequate noise (±3% standard deviation given the equipment 

precision) into the original datasets (del Rio-Chanona, et al. 2017). Then, the 

augmented datasets were normalised to train ML models.  
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3.2 Construction of kinetic models 

A number of kinetic models were adopted and modified in this study. As each model 

parameter has a unique physical meaning, their number in a kinetic model is less than 

that in a ML model. The model structure which represents best the dynamics of 

bacterial experiments is shown as Eqs. 1(a)-1(d), built on the original Monod model, 

Logistic model, and Luedeking–Piret model (Zhang et al. 2015). The first term on the 

right-hand-side (RHS) in Eq. 1(a) represents cell growth, with the second calculating 

cell decay. The first term on the RHS in Eqs. 1(b)-1(d) denotes cell-growth dependent 

uptake of each substrate, with the second term estimating cell-growth independent 

consumptions (e.g. used for cell maintenance).  
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𝑁 + 𝐾𝑁
∙

𝐶
𝐶 + 𝐾𝐶

∙
𝑃

𝑃 + 𝐾𝑃
∙ 𝑋 − 𝜇𝑑 ∙ 𝑋2 1(𝑎) 

𝑑𝐶
𝑑𝑡

= −𝑌𝐶1 ∙ �𝜇 ∙
𝑁

𝑁 + 𝐾𝑁
∙

𝐶
𝐶 + 𝐾𝐶

∙
𝑃

𝑃 + 𝐾𝑃
∙ 𝑋 − 𝜇𝑑 ∙ 𝑋2� − 𝑌𝐶2 ∙ 𝑋 1(𝑏) 

𝑑𝑁
𝑑𝑡
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𝑁
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𝑑𝑃
𝑑𝑡
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where 𝑋 , 𝑁 , 𝐶 , 𝑃  are concentrations of biomass, nitrate, glucose, and phosphate, 

respectively; 𝐾𝑖  is half-velocity coefficient of substrate 𝑖 ; 𝑌𝑖1  and 𝑌𝑖2  are growth-

dependent and growth-independent yield coefficient of 𝑖; 𝜇 and 𝜇𝑑 are specific growth 

and decay rate. 

The best kinetic model structure for algal processes (also adopted from the three 

classical models) is shown in Eqs. 2(a)-2(d), and all terms on the RHS denote the 
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same meaning as those in Eqs. 1(a)-1(d). As light intensity was fixed, to avoid 

parameter identifiability and over-fitting issues, its effects are grouped into the 

specific growth rate term and not listed separately.  
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where 𝑋𝑚𝑎𝑥 denotes the maximum biomass concentration. 

Parameter estimation was conducted by a weighted nonlinear least squares 

optimisation problem. Given the high nonlinearity and stiffness, the differential 

equations were discretised by orthogonal collocation over finite elements in time 

using Radau roots (del Rio-Chanona et al. 2015; Kameswaran and Biegler 2008). The 

problem was solved using the interior point nonlinear optimisation solver IPOPT 

through a multi-start framework in the parameter space (Wächter and Biegler 2006). 

This was programmed in the Python optimisation environment Pyomo (Hart et al. 

2012). The models were simulated in Mathematica 11. 
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3.3 Construction of machine learning based models 

3.3.1 Construction of Artificial Neural Networks  

An ANN (Fig. 1(a)) comprises an input and an output layer, and several hidden layers, 

each of which contains several neurons to store activation functions (e.g. sigmoid 

function, Eq. 3) and formulate relations between inputs and outputs. To apply to a 

dynamic system, an ANN is designed by feeding the system’s current states to predict 

future ones at the next time step. By recursively using the ANN, behaviour of a 

process over the entire course can be modelled (del Rio-Chanona et al. 2016). 

Another approach is to use Recurrent Neural Networks which is structured 

specifically to model time-series events (Valdez-Castro, Baruch, and Barrera-Cortés 

2003). This work builds on the feedforward ANN without loss of generality.  

𝑦𝑗 =
1

1 + exp �−�∑ 𝑥𝑖 ∙ 𝑤𝑖𝑗 + 𝑏𝑗𝑖 ��
 (3) 

where 𝑦𝑗  is the output from neuron 𝑗 , 𝑥𝑖  is the input from the 𝑖𝑡h  neuron in the 

previous layer, 𝑤𝑖𝑗 is the weight of 𝑥𝑖, and 𝑏𝑗 is the bias.  

To construct an accurate ANN, both parameters and hyperparameters must be 

optimised. Parameter optimisation (weights and bias) follows the standard 

backpropagation method. The key to obtain a rigorous ANN lies in the estimation of 

hyperparameters (numbers of neurons, layers, and training epochs). Increasing these 

numbers increases the model complexity, which gives a better fit of the training data 

but increases the risk of over-fitting, worsening the predictive power for data outside 

of the training data. Higher model complexity also leads to higher computational costs. 

In our previous work (del Rio-Chanona et al. 2017), a hyperparameter selection 
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framework, namely “elbow rule”, was adopted to balance the trade-off between model 

accuracy, computational cost and over-fitting. This strategy was refined by examining 

the optimal size of artificial datasets in this work. Another technique is the k-fold 

method, where a selection of N-1 from the N datasets is used for ANN training and 

the remaining one is used to estimate the maximum prediction error of this ANN. 

Then, another N-1 subsets are selected to repeat this procedure until the best model is 

identified.  

The k-fold method is applied when the size of datasets is greater than 3. This is not the 

current case as each system only has two experiments governed by different kinetics 

(Table I). Hence, the two datasets must be fitted together. As a result, 70% of data 

points from both sets were randomly chosen to train ANN and the rest was used for 

cross validation. Inputs of the current ANN includes concentrations of biomass and all 

nutrients (i.e. 4 inputs), with outputs being changes of these state variables after 6 

hours. Two ANNs were constructed, one for algae and the other for bacteria. Through 

the refined “elbow rule”, optimal structure of both ANNs was found to contain 2 

hidden layers, each including 8 neurons. 100 artificial datasets (zero-mean Gaussian 

noise with 3% standard deviation) were generated for the algal ANN, and 50 for the 

bacterial ANN. Number of training epochs was 5,000 for the algal ANN and 2,000 for 

the bacterial ANN. The larger number of artificial datasets and training epochs 

required for the algal ANN construction may indicate that the algal process involves 

more complex metabolic mechanisms compared to the bacterial process. Once the 

optimal structure identified, the ANNs were trained again using all available datasets 

to complete model construction. All these implementations were carried out in 

Mathematica 11. 
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3.3.2 Construction of Gaussian Processes 

In this section a brief description of GPs is given, for more information please refer to 

(Rasmussen & Williams 2006), we provide a detailed explanation of GPs applied to 

bioprocesses in (Bradford et al. 2018). Unlike ANNs, GPs provide an uncertainty 

measure representing the prediction uncertainty of the unknown function given the 

availability of only limited amounts of data. This uncertainty can be used to evaluate 

the reliability of GP predictions to prevent over-optimistic conclusions. GP regression 

aims to model a latent function 𝑓(x) given noisy measurements. The relationship 

between the function 𝑓(x) and the measurements can be expressed as follows (Kirk 

and Stumpf 2009): 

𝑦(x) = 𝑓(x) + 𝜀, 𝜀~𝒩(0,𝜎2) (4) 

where 𝑦(x)  denotes the measurement of 𝑓(x)  at x  and 𝜀  the corresponding 

measurement noise assumed to follow a normal distribution with zero mean and 

variance 𝜎2. 

The GP regression starts with the definition of a prior GP distribution (Fig. 1(b)), 

which describes the function to be modelled 𝑓(x) before any data is used and hence 

encapsulates the assumptions made on this function e.g. continuity or smoothness. 

The prior takes the form: 

𝑓(x)~𝐺𝑃�𝑚(x), 𝑘(x, x′)� (5)  

where 𝑘(x, x′) is the covariance function, x, x′ are arbitrary inputs, and 𝑚(x) is the 

mean function.  

This article is protected by copyright. All rights reserved. 



 
A

cc
ep

te
d 

A
rt

ic
le

 
Now assume we are given a set of 𝑝 observations 𝑦1 , …, 𝑦𝑝  of 𝑓(x) evaluated at 

different inputs x1, …, x𝑝. The prior can then be updated using this data to obtain the 

posterior GP distribution (Fig. 1(c)), which is the updated distribution of 𝑓(x) given 

the available data. The posterior GP can subsequently be employed to estimate the 

conditional probability of 𝑓(𝐱∗) represented by a Gaussian distribution at an arbitrary 

input 𝐱∗  given the observed information. The mean in this context represents the 

prediction of 𝑓(𝐱∗), whilst the variance denotes the uncertainty. As GPs are non-

parametric methods, their accuracy heavily depends on the selection of their 

hyperparameters (parameters of the mean function 𝑚(x) , covariance function 

𝑘(x, x′) and measurement noise 𝜀 ). When encountering applications with scarce 

datasets, the maximum a posteriori method is recommended to optimise GPs’ 

hyperparameters rather than the maximum likelihood method given its advantage in 

preventing over-fitting (Rasmussen and Williams 2006). So far, we have described 

multi-input, single output usage of GPs, however we are interested in the multi-input, 

multi-output case. This can be achieved by training separate GPs for each output, 

which are then used together for multi-input, multi-output predictions.  

In this study, 4 GPs were constructed to simulate algal processes (one for each state), 

the input of each of which is the concentration of biomass and nutrients, with the 

output of each referring to the change of concentration of one specific state variable 

after 6 hours. The same GP framework was also designed for the bacteria system. 3 

artificial datasets were generated to train the GPs in each case. Construction of the 

GPs was programmed in Mathematica 11. It is worth mentioning that in principle it is 

feasible to construct four separate ANNs. However, in practice ANN is often designed 

as a multi-input, multi-output (MIMO) model because it requires less computational 
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time for model training and meanwhile able to achieve the same accuracy compared 

to several multi-input, single-output (MISO) ANN models. 

4. Results and Discussion 

4.1 Comparison of physical models and machine learning based models 

Once constructed, all models were initially used to simulate the 4 single strain 

processes from which their parameters were estimated. To test accuracy, the offline 

modelling framework was used in which only initial conditions were given and the 

models must simulate over the entire process time course of operation. This is 

accomplished by recursively using the fitted models, i.e. by using the initial condition 

to predict one-step ahead and then using this prediction as the next input to obtain the 

next prediction. It should be noted that for each strain, the two experimental datasets 

were fed together to train one ANN and one GP framework; whilst they were used 

separately to estimate two sets of parameter values for kinetic models (Table II). A 

discussion of this implementation is shown in Section 4.1.3. 

4.1.1 Comparison on algae wastewater treatment process 

Figs. 2-3 show the model simulation results of algae processes. It can be seen that in 

the high concentration experiment the kinetic model has larger errors than the 

machine learning based models, particularly when simulating nitrate (Fig. 2(b)) and 

glucose (Fig. 2(c)), indicating a mismatch between model structure and biological 

mechanisms; whilst all models act similarly when simulating biomass growth and 

phosphate uptake. The kinetic model fits well in the low concentration experiment, 

with mild errors (Fig. 3(d) slightly larger than the other methods) when modelling 

phosphate consumption. In terms of the two data-driven models, in most cases there is 
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no distinguishable difference between their simulation results. This is expected, since 

ANNs and GPs will always be able to fit noiseless training data exactly. This is 

further highlighted by the GP having very low uncertainty (not visible). Nonetheless, 

the ANN overestimates the final nitrate concentration consistently (Fig. 3(b)), unlike 

the GP which has a high prediction quality throughout and can hence be regarded as 

more reliable.  

4.1.2 Comparison on bacteria wastewater treatment process 

Figs. 4-5 show the model simulation results of bacteria processes. Opposite to the 

algal system, it is observed that the kinetic model can represent the two bacterial 

experiments well for the most part, except for the overlook of final nitrate uptake in 

the high concentration experiment (Fig. 4(b)) and glucose uptake in the low 

concentration experiment (Fig. 5(c)). The ANN, however, overestimates 

concentrations of nitrate and phosphate in later stage of the low concentration process 

(Figs. 5(b) and 5(d)), although this is not significant. It is worth stressing that some 

data points in these experiments have large measurement and stochastic noise as they 

deviate from the system’s dynamic trajectory (e.g. nitrate at the 36th hour in Fig. 4(b) 

and 24th hour in Fig. 5(b), biomass at the 24th hour in Fig. 5(a), glucose at the 36th 

hour in Fig. 5(c)). The kinetic model can take advantage of its structure to filter out 

the noise as it is constructed by biochemical mechanisms; whilst neither of the data-

driven models is able to remove the noise since they assume input of the training data 

does not have stochastic error. 
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4.1.3 Discussion on simulation of complex bioprocesses 

This study shows that compared to the data-driven models, the kinetic model is 

successful in representing the bacterial processes, but large deviations are found when 

simulating algal systems, indicating its inadequacy for process predictions and 

exploration of algae-bacteria interactions. Thus, ANNs and GPs are used in the next 

section. However, a comprehensive comparison between kinetic models and machine 

learning models is conducted here.  

From the time-efficiency aspect, constructing a kinetic model is in general 

considerably more time consuming (summarised in Table III). For instance, over 15 

structures of kinetic models were designed in this study by adopting and amending a 

number of advanced models with various biological hypotheses. However, growth of 

cells and uptake of nutrients are subject to distinct mechanisms under the two extreme 

conditions, making it infeasible to obtain a single structure or set of parameter values 

that describe both mechanisms well. The current work successfully identified the 

optimal model structure valid in algae and bacteria systems for the two extreme 

conditions, and all parameters have a valid physical interpretation. Nonetheless, when 

gathering both datasets to estimate parameter values, the model fails to represent 

either of them as the parameters were calculated to compromise the contradictory 

behaviours. Thus, each dataset was used to estimate its own parameters so that the 

model can represent the different mechanisms. This unavoidably sacrifices the model 

prediction ability. In contrast, the key to train a machine learning model is to identify 

the optimal hyperparameters. Specific to ANNs and GPs, effective hyperparameter 

selection frameworks have been proposed in our studies and refined in this work. 
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Therefore, designing a data-driven model only took a few days whilst that for a 

kinetic model cost several weeks (Table III). 

From the datasets perspective, ANNs require many large datasets. This was solved by 

generating artificial datasets. As dynamics of fermentation and photo-production 

processes do not change drastically in general, it is acceptable to fill the missing data 

by linear interpolation over a short time span. For GPs, the number of artificial 

datasets must be selected cautiously. Adding artificial datasets can consolidate GPs’ 

accuracy in predicting the mean of the output. But they will also shape GPs’ posterior 

distribution and interfere with the GPs’ prediction on the output uncertainty, thus 

deteriorating GPs’ performance in robust optimisation. As a result, GPs require much 

less artificial datasets (e.g. 3 sets in this study) than ANNs (e.g. 50-100 sets in this 

study). Hypothetically, artificial datasets for GPs can be substituted by carefully 

tuning the corresponding measurement noise term; we however leave this matter to be 

addressed by future research. In contrast, a kinetic model does not need complete or 

large datasets, and their parameter estimation method can nullify the use of artificial 

datasets. In fact, adding artificial datasets may be detrimental to kinetic models as it 

amplifies the scale and complexity of the parameter estimation problem. This should 

be avoided if a kinetic model is highly nonlinear and stiff. It is important to stress that 

kinetic models are vital in many applications such as process scale-up and bioreactor 

design which cannot be replaced by machine learning methods. Thus, the conclusion 

that kinetic models are less efficient cannot be generalised.  

Finally, it should be observed that an important factor – light intensity – is not 

included in the current kinetic model for algal process simulation. This is because 

incident light intensity in the current experiments was fixed constant, thus it is 
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difficult to accurately identify values of relevant kinetic parameters. Hence, future 

experiments should be implemented with different light intensities. It is expected that 

through the inclusion of light intensity effects, the kinetic model may present a better 

simulation performance. However, adding more parameters will complicate the 

kinetic model structure; this trade-off should be balanced in future research. 

4.2 Process modelling and mechanism exploration on algae-bacteria interactions  

To investigate algae-bacteria interactions during wastewater treatment, three extreme 

cases: algae completely inhibiting bacteria growth (Case 1), bacteria completely 

inhibiting algae growth (Case 2), and algae and bacteria growing independently (Case 

3) were simulated and compared to the experimental data. In the first two cases, the 

consortium process is reduced to a single strain system and the offline modelling 

framework was adopted. In Case 3, uptake of nutrients was assumed to be the sum of 

that consumed by algae (predicted by algal models) and that by bacteria (predicted by 

bacterial models). Strictly speaking, this approximation only holds within a small time 

interval. Hence, in Case 3 the online modelling framework was used such that models 

only predict nutrient concentrations one step ahead and then experimental data at the 

next time step are fed as model input for further predictions. It is noted that individual 

biomass concentrations cannot be measured, thus in all cases algal and bacterial 

concentrations were predicted through the offline framework.  

4.2.1 Investigation of algae-bacteria interaction under high nutrient 

concentrations 

From Fig. 6, it is seen that ANNs and GPs predict similar results in Cases 1 and 2 

(Figs. 6(a), (c), (e), (g)), except for the final nitrate concentration in Fig. 6(c). The 

GPs predict a closer result to the data compared to the ANNs in Case 3 (Figs. 6(b), (d), 
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(f), (h)), indicating their better predictive capability. Large deviation exhibited in the 

ANNs (e.g. Fig. 6(b)) may be attributed to the propagated errors for prediction of 

algae and bacteria concentrations through the offline framework. Hence, the GPs’ 

results are chosen for further analysis. 

From the figures, it is firstly concluded that algae growth is noticeable. This is 

obtained by comparing the offline prediction results with the experimental data. Figs. 

6(c) and 6(e) show that nitrate and phosphate are barely consumed in Case 2 (bacteria 

growth dominates) but rapidly decreased in Case 1 (algae growth dominates). This is 

consistent with previous studies in which algae instead of bacteria are found to mainly 

consume nitrogen and phosphorus (Hernandez et al. 2009; Liang et al. 2013). 

Secondly, there exists a mild algae-bacteria competition for organic carbon. This is 

because glucose concentrations in Cases 1 and 2 are similar to the data (Fig. 6(g)) and 

final algae cell concentration in Case 1 is almost the same as the experimental result 

(Fig. 6(a)). Thus, if there is no competition, total biomass concentration of the 

consortium should be higher than the experimental data with glucose being lower. 

Given that Case 3 (independent growth of algae and bacteria) also predicts similar 

dynamics to the data (Figs. 6(b), (f), (h)), it is suggested that this competition should 

not be serious and may not be the primary interaction.  

Most importantly, it is seen that nitrate uptake in Cases 1 and 2 and even the sum of 

them are markedly slower than the real observation (Fig. 6(c)). However, Case 3 is 

very similar to the data (Fig. 6(d)), indicating that the presence of both strains may 

significantly accelerate nitrate consumption. This has been reported by several 

research that bacteria can promote algal nitrate uptake (Hernandez et al. 2009; 

Subashchandrabose et al. 2011). A previous work using similar bacteria and algae 
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species to the current study claims that 78% of nitrogen can be removed in the algae-

bacteria consortium system, whilst only 29% in the algae system and 1% in the 

bacteria system (Liang et al. 2013). So far, the mechanism of this mutualistic 

interaction has not been identified. One hypothesis is that bacteria excrete hormones 

to stimulate algae for nitrate uptake (Hernandez et al. 2009). Another popular one 

believes that this is caused by the rapid change of culture conditions rather than direct 

impact from one strain to the other (He et al. 2013). Due to bacterial glucose uptake, 

algae need to trigger photosynthesis to fix CO2, causing the synthesis of relevant 

pigments (e.g. chlorophyll). This enhances algal nitrate uptake. Indeed, previous work 

has declared that algal chlorophyll a content in the consortium is 40% more than that 

in the single system (Liang et al. 2013).  

The current study cannot verify the first theory, as machine learning models cannot 

evolve new mechanisms that are not trained before (consortium data not used for 

training). However, as the models are trained by the 4 single strain datasets, they can 

predict the response of cell growth and nutrient uptake of each strain under different 

conditions well. The close prediction between Case 3 and consortium data therefore 

favours the second hypothesis. It is also noticed that although a kinetic model is 

constructed based on physical observations, it can only test hypotheses which are 

already included in its structure. In other words, the kinetic model cannot be used to 

identify an unknown mechanism if it does not have any parameter taking into account 

this mechanism. In fact, as the kinetic model in this study does not contain parameters 

representing the effect of bacterial hormones on algal nitrate uptake, it cannot be used 

to verify the first hypothesis either.  
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4.2.2 Investigation of algae-bacteria interaction under low nutrient 

concentrations 

Same as above, ANNs and GPs exhibit similar results in Cases 1 and 2 (Figs. 7 (a), (c), 

(e), (g)), with GPs predicting closer results to the data compared to the ANNs in Case 

3 (Figs. 7(b), (f), (h)). Once again, GPs results are chosen for analysis. From Figs. 7(a) 

and 7(c), it can be seen that algae growth is still significant in this process. However, 

in this system the algae-bacteria competition becomes severe and acts as the primary 

interaction. Firstly, uptake of glucose and nitrate in the experiment lies in between 

Cases 1 and 2 (Figs. 7(c), (g)), suggesting neither algae nor bacteria can grow fully. 

As Case 1 predicts closer cell growth and nitrate uptake to the experiment (Figs. 7(a), 

(c)), it is concluded that algae growth slightly prevails in the system. Secondly, the 

constant underestimation of concentrations of phosphate (Fig. 7(f)) and glucose (Fig. 

7(h)) and overestimation of biomass concentration (Fig. 7(b)) in Case 3 suggest a 

strong competition for multiple nutrients (i.e. phosphate and glucose). Thirdly, the 

high uncertainty estimated by GPs in Case 3 also (Figs. 7(d), (f), (h)) implies that 

algae and bacteria encounter an unexperienced circumstance, probably caused by their 

intense competition. Finally, the algae-bacteria mutualistic interaction is not observed 

in this condition, meaning that this consortium is governed by a rather different 

mechanism. 

5. Conclusion  

The algae-bacteria consortium wastewater treatment process is one of the most 

sophisticated biosystems governed by contradictory mechanisms under different 

conditions. Constructing an accurate model is time/resource-consuming and 

This article is protected by copyright. All rights reserved. 



 
A

cc
ep

te
d 

A
rt

ic
le

 
challenging, particularly if the datasets are scarce and incomplete. This work therefore 

presents a heuristic model selection procedure: 

1. A kinetic model should be designed firstly. Classic models can deal with three 

operating factors, beyond which there is no effective structure and parameter 

estimation can be an issue;  

2. A GP could be more effective than an ANN for scarce datasets. Using the 

hyperparameter selection framework is vital. A GP requires fewer datasets (up to 5) 

than an ANN (50-200); 

3. Linear interpolation is generally accurate enough to fill missing data. If the system 

changes dramatically, a kinetic model should be constructed to estimate the missing 

information;  

4. Advanced real-time optimal control frameworks e.g. economic model predictive 

control can be used if accuracy of the designed model is limited due to the scarcity of 

available data.  
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Table I: Summary of the current experiments. 

Experiments for model construction 

Single strain processes Biomass Glucose TN TP 

Exp. 1: Algae in high nutrients con. 0.24 g/L 500 mg/L 120 mg/L 19 mg/L 

Exp. 2: Algae in low nutrients con. 0.24 g/L 100 mg/L 19 mg/L 3 mg/L 

Exp. 3: Bacteria in high nutrients con. 0.24 g/L 500 mg/L 120 mg/L 19 mg/L 

Exp. 4: Bacteria in low nutrients con. 0.24 g/L 100 mg/L 19 mg/L 3 mg/L 

Experiments for algae-bacteria consortium wastewater treatment process investigation 

Exp. 5: Consortium in high nutrients 

con. 

0.48 g/L 500 mg/L 120 mg/L 19 mg/L 

Exp. 6: Consortium in low nutrients 

con. 

0.48 g/L 100 mg/L 19 mg/L 3 mg/L 
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Table II: Values of kinetic model parameters for algal and bacterial wastewater 

treatment processes with high and low nutrients concentration.  

Values of parameters for the bacterial kinetic model 

Parameter High con. Low con. Parameter High con. Low con. 

𝜇, h-1 0.109 0.0821 𝜇𝑑, L/(g·h) 0.0854 0.103 

𝐾𝑁, mg/L 0.00860 0.00873 𝐾𝐶, mg/L 0.0 0.0 

𝐾𝑃, mg/L 0.0 0.001 𝑌𝐶1 mg/g 217.0 85.5 

𝑌𝑁1 mg/g 5.36 4.36 𝑌𝑃1 mg/g 2.74 2.47 

𝑌𝐶2 mg/(g·h) 0.839 0.172 𝑌𝑁2 mg/(g·h) 0.0559 0.0132 

𝑌𝑃2 mg/(g·h) 0.00833 0.00373    

Values of parameters for the algal kinetic model 

Parameter High con. Low con. Parameter High con. Low con. 

𝜇, h-1 0.329 0.116 𝑋𝑚𝑎𝑥, g/L 2.70 2.13 

𝐾𝑁, mg/L 15.2 0.010 𝐾𝐶, mg/L 10.0 76.8 
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𝐾𝑃, mg/L 36.9 0.001 𝑌𝐶1 mg/g 20.4 20.4 

𝑌𝑁1 mg/g 8.62 8.63 𝑌𝑃1 mg/g 0.829 0.822 

𝑌𝐶2 mg/(g·h) 0.0630 0.0217 𝑌𝑁2 mg/(g·h) 0.138 0.0 

𝑌𝑃2 mg/(g·h) 5.01 0.00198    

 

Table III: Total time consumed for model construction. 

Algal models 

Time consumption Kinetic model ANN GP 

Time for model structure design 8 weeks 3 days 5 days 

Time for parameter estimation 84 seconds 246 seconds 162 seconds 

Bacterial models 

Time consumption Kinetic model ANN GP 

Time for model structure design 5 weeks 2 days 3 days 
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Time for parameter estimation 16 seconds 262 seconds 101 seconds 

 

Figures 

Figure 1: Schematic of ANN and GP. (a): A classic ANN structure. (b): Prior and 
Posterior distributions of a GP regression. The dashed lines covered region is the prior 
distribution (initial guess), and the solid lines covered region is the posterior 
distribution (updated distribution). 

 

Figure 2: Simulation results of algal wastewater treatment process with high nutrients 
concentration. (a): Biomass concentration; (b): Nitrate concentration; (c): Glucose 
concentration; (d): Phosphate concentration. Red point (open circle with cross): 
experimental data. Open diamond: ANN simulation result. Blue point (filled circle): 
GP simulation result (the uncertainty is not detectable). Black line: kinetic model 
simulation result.  
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Figure 3: Simulation results of algal wastewater treatment process with low nutrients 
concentration. (a): Biomass concentration; (b): Nitrate concentration; (c): Glucose 
concentration; (d): Phosphate concentration. Red point (open circle with cross): 
experimental data. Open diamond: ANN simulation result. Blue point (filled circle): 
GP simulation result (the uncertainty is not detectable). Black line: kinetic model 
simulation result.  

 

Figure 4: Simulation results of bacterial wastewater treatment process with high 
nutrients concentration. (a): Biomass concentration; (b): Nitrate concentration; (c): 
Glucose concentration; (d): Phosphate concentration. Red point (open circle with 
cross): experimental data. Open diamond: ANN simulation result. Blue point (filled 
circle): GP simulation result (the uncertainty is not detectable). Black line: kinetic 
model simulation result.  
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Figure 5: Simulation results of bacterial wastewater treatment process with low 
nutrients concentration. (a): Biomass concentration; (b): Nitrate concentration; (c): 
Glucose concentration; (d): Phosphate concentration. Red point (open circle with 
cross): experimental data. Open diamond: ANN simulation result. Blue point (filled 
circle): GP simulation result (the uncertainty is not detectable). Black line: kinetic 
model simulation result.  
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Figure 6: Prediction results of algae-bacteria consortium wastewater treatment process 
with high nutrients concentration. (a), (c), (e), (g): Prediction results of biomass 
concentration and nutrients concentration in Case 1 and Case 2. Blue points (open 
circle with cross): Experimental data. Filled circles: GP prediction results of Case 1 
(red circle) and Case 2 (black circle). Open circles: ANN prediction results of Case 1 
(red circle) and Case 2 (black circle). (b), (d), (f), (h): Prediction results of biomass 
concentration and nutrients concentration in Case 3. Blue points (open circle with 
cross): Experiment data. Filled circles: GP prediction result. Open circles: ANN 
prediction result.  
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Figure 7: Prediction results of algae-bacteria consortium wastewater treatment process 
with low nutrients concentration. (a), (c), (e), (g): Prediction results of biomass 
concentration and nutrients concentration in Case 1 and Case 2. Blue points (open 
circle with cross): Experimental data. Filled circles: GP prediction results of Case 1 
(red circle) and Case 2 (black circle). Open circles: ANN prediction results of Case 1 
(red circle) and Case 2 (black circle). (b), (d), (f), (h): Prediction results of biomass 
concentration and nutrients concentration in Case 3. Blue points (open circle with 
cross): Experiment data. Filled circles: GP prediction result. Open circles: ANN 
prediction result.  
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