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Abstract—This paper considers the problem of constructing a
filter for estimating attitude and rate sensor bias, that has both
proven stability and close-to-optimal performance with respect
to noise. The filter is based on measuring the difference in
time of arrival for signals sent from three or more known,
fixed positions to two or more receivers on the vehicle. An
inertial measurement unit is also used, both rate sensor and
accelerometer measurements, and a position estimate is needed,
generated from depth and time of arrival measurements. The
vectors between receivers on the vehicle are assumed to be
known in the body frame, and are calculated in the inertial
frame through an algebraic transformation. These vectors are
used as input for a non-linear observer along with rate sensor
and accelerometer data, estimating Euler angles and rate sensor
bias. These estimates are used as a linearization point for a
Linearized Kalman Filter, taking the full non-linear system into
account. Two experiments are run, and the filter is compared to
an Extended Kalman Filter, and a non-implementable Linearized
Kalman Filter using the true state as linearization point.

Keywords—attitude estimation; non-linear filtering; exogenous
kalman filter; linearized kalman filter

I. INTRODUCTION

Robust and accurate position and attitude estimation is an
important part in reaching the goal of autonomy for underwater
vehicles. A common approach for positioning is to use an
underwater long base-line (LBL) network, measuring the time
of arrival (TOA) of acoustic signals from several fixed, known
positions. These measurements relate directly to the range,
and from these ranges position can be calculated. This paper
builds on the work presented in Jørgensen and Schjølberg[20],
where the LBL network is used to determine the yaw angle
of the vehicle. This is done by placing several receivers on
the vehicle, and measuring the difference in TOA between the
receivers. If the LBL system is already in place, this means
adding one or more extra receivers on the vehicle, yielding
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only a small increase in infrastructure. Similar approaches can
be found for surface vehicles, in which several GPS antennas
are placed on the vehicle, and the measurements are used to
determine attitude[27][6].

It is possible to measure angular velocities with rate sensors,
usually a part of an inertial measurement unit (IMU), but
these measurements are often corrupted by biases and noise.
Consequently, simply integrating the rate sensor output will
not give accurate attitude estimates, and some extra measure-
ments relating directly to the attitude is necessary. A common
approach is to use two or more non-parallell reference vectors
known in either the body- or the global frame, and measured
in the other. These can be used to determine attitude[25]. For
constant reference vectors, a non-linear observer (NLO) for
estimating attitude and rate sensor bias with global stability
properties was suggested by Hamel and Mahony[14], and
extended to time-varying reference vectors by Grip et al.[11].
Traditionally these methods have been applied using the
measured acceleration from the accelerometer combined with
either magnetometer- or gyrocompass measurements. Other
approaches for non-linear attitude determination are suggested
for example in Sabatini[23] and Salcudean[24], and a survey
can be found in Crassidis et al.[7].

It is common to use two reference vectors to determine
attitude for underwater vehicles: accelerometer measurements
combined with either magnetometer- or gyrocompass measure-
ments. These are used as input to the NLO for estimating atti-
tude. The acceleration vector in the global frame is assumed to
be the gravity vector, and the magnetic field in the global frame
is assumed to be known beforehand. For small accelerations
(which is usually the case for underwater vehicles, especially
autonomous vehicles), the gravity vector will be dominating,
and the acceleration measurement will therefore give good
results. However, the second reference vector measurement,
provided by either magnetometer or gyrocompass has some
drawbacks. The magnetometer is prone to disturbances; the



magnetic field can be varying over time and position, as
well as local disturbances from thrusters and electronics. The
gyrocompass is very accurate, but is heavy, large, expensive
and requires recalibration. As a result of this, it is suggested
and demonstrated in this paper how to use the acoustic LBL
system for providing extra reference vector measurements in
addition to the acceleration measurement.

By using the difference-in-time-of-arrival (DTOA), it is
possible to calculate the reference vectors in the global frame,
while it is assumed the reference vectors are known in the
body frame. The length of the vectors are naturally dependent
on the size of the underwater vehicle, but in general the
demand for accurate calibration and DTOA measurements
increases with smaller distance between receivers. However,
these measurements are assumed to be unbiased, and not
distorted over time or with changing vehicle position. A
similar approach can be found in Batista et al.[4], in which
a NLO is suggested, based on a combination of LBL, Ultra
Short BaseLine (USBL) and rate sensor measurements.

The goal of the work is to develop a filter with proven
stability and close-to-optimal performance wrt. bounded noise,
for determining attitude and rate sensor bias without em-
ploying magnetometer or gyrocompass measurements. This
can increase robustness and redundancy for underwater ve-
hicle attitude estimation. Filter design, stability analysis and
simulations have been carried out in [20], and consequently
experimental validation is the next step. The main contribution
of this paper is a full experimental validation of the filter
suggested in [20]. Furthermore, the filter is compared to
an Extended Kalman Filter (EKF) and a non-implementable
optimal Linearized Kalman Filter (LKF) to validate the claim
that the filter has close-to-optimal stationary performance, and
similar stationary performance as the EKF. The experiments
were performed in LabOceano, a lab testing facility at the
Federal University of Rio de Janeiro. The filter is also modified
slightly from [20] to relax one of the assumptions stated,
in which one of the receivers has to be in the origin of
the body frame. Furthermore, implementation aspects and
practical issues are discussed and solutions to these issues are
proposed.

A. The eXogenous Kalman Filter

The presented filter is based on the eXogenous Kalman
Filter (XKF) principle, in which an exogenous state estimate
provided by a globally stable auxiliary estimator is used as a
linearization point for a LKF. As is shown in Johansen and
Fossen[17], under certain assumptions and if the system has
certain properties, this results in a filter with proven stability
and with close-to-optimal noise properties. The globally stable
auxiliary estimator has proven stability properties, but does not
have close-to-optimal noise properties. This is in contrast to
the EKF, which has close-to-optimal noise properties, but no
proven stability for the given model, resulting in potentially
unpredictable and unstable behaviour. The computational com-
plexity of the XKF is larger than the EKF, as an auxiliary
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Fig. 1: Illustration of system with range difference measure-
ments. Variables are defined and explained in Sec. II-C.[20]

estimator needs to be run in addition to the LKF. However,
the computational load is small compared to other, more robust
alternatives to the EKF such as the particle filter or Monte-
Carlo filter. For more examples of the XKF, see [16][19].

The paper is organized as follows. Section II describes how
to transform the original measurements into the computed
measurements. Section III shows the overall structure of the
filter, and presents details about each step. Section IV discusses
the practical aspects, regarding system setup, calibration of
equipment and implementation of the filters. Section V pro-
vides the results, Section VI gives a short discussion regarding
the results and possible improvement of the system, and
Section VII holds the conclusion.

II. COMPUTED MEASUREMENTS

A. Acoustic System Description

The acoustic system consists of N senders with fixed,
known positions located on the seafloor, and M + 1 receivers
with fixed, known positions located on the vehicle. Acoustic
signals are sent simultaneously from each sender, and the TOA
is measured from each sender at each receiver. One receiver
is chosen as the “base receiver” and the vectors from this
receiver to the other receivers in the body frame are denoted
d1,...,M . The DTOA between the base receiver and the other
receivers are calculated, converted to ranges, and from these
measurements the vectors can be calculated in the global
frame, and used to determine attitude. An illustration of the
system is shown in Fig. 1.



B. Attitude Representation

In the suggested filter, the attitude is described by Euler
angles, Θ = [φ, θ, ψ]

T . This is an intuitive way of representing
attitude, and fits well with the acceleration measurement, in
which two out of three Euler angles can be determined. A well
known drawback of the Euler angles are singularities, resulting
in only a locally stable filter. However, these singularities
are well defined, and as mentioned in [9], it is possible to
change representation if the filter is approaching one of the
singularities. Alternatively, unit quaternions can be used [21].
The representation chosen is the same as in [9], the roll-pitch-
yaw sequence, in which the singularities will be at θ = ±π2 ,
as having a pitch angle of ±π2 is a rare state for the type
of Remotely Operated Vehicles (ROVs) used in underwater
operations today.

C. Measurement Models

The two coordinate frames used in the measurement models
are the body frame, and the North-East-Down (NED) frame
approximated as a local inertial frame with origin defined by
the Qualisys camera positioning system, described in more
detail in Sec. IV-A.

The outputs from the IMU applied in the filter are ac-
celerometer measurements and rate sensor measurements. The
IMU is fixed on the ROV and thus follows the body frame,
known as a strapdown system. Consequently, the measure-
ments of both acceleration, abimu, and angular velocity, ωbimu,
is in the body frame. Traditionally these IMU measurements
are modeled as

abimu = ab+Rb
ngn+ba+ εa = Rb

n(an+gn) +ba+ εa (1)

ωbimu = ωbb/n + b + εω (2)

where ai is the vehicle acceleration in coordinate frame i, gn is
the gravity vector in the NED frame, Rb

n is the rotation matrix
from the NED frame to the body frame, ba is a slowly time-
varying acceleration measurement bias, b is a slowly time-
varying rate sensor bias and εa and εω are zero-mean Gaussian
white noise vectors with covariances Qa and Qω .

In this paper it is assumed that the accelerometer bias is
compensated for in a calibration scheme, either pre-calibration
or online estimation of the bias. Examples of pre-calibration
schemes can be found in [5][28], and online calibration
schemes can be found in [13][8][5]. If the accelerometer bias
is calibrated beforehand, the performance of the filter might
deteriorate over time, as accelerometer bias is assumed to be
slowly time-varying. Consequently, if a pre-calibration scheme
is applied the accelerometer bias should be re-calibrated after
some time period, depending on the quality of the accelerom-
eter. Furthermore, it is assumed that for ROVs performing
underwater operations the acceleration of the vehicle is small
enough to be negligible compared to the gravity vector.

The resulting acceleration measurement model is a simplified
version of (1) given by

abimu ≈ Rb
ngn + εa (3)

The model of the range difference measurements is based on
the system described in Sec. II-A. The position of the base re-
ceiver is defined as pn = [x, y, z]

T and the position of sender
i is defined as p̆ni = [x̆i, y̆i, z̆i]

T , both in the NED frame. The
geometric range is defined as ρi = cti = ||pn − p̆ni || where c
is the wave speed, ti is the TOA from sender i and || · || is the
2-norm. In Stovner et al.[26] an acoustic range measurement
is given as

yi =
1√
β

(ρi + εy,i) i = 1, .., N (4)

where εy,i is zero-mean Gaussian white noise with variance
σ2
y,i and β is an unknown, multiplicative parameter to take into

account uncertainty in the underwater acoustic wave speed.
These are referred to as pseudo-range measurements as they
are a function of the geometric range, but also an unknown
parameter, β. Based on this formulation, each pseudo-range
difference, δi,j , is modeled as

δi,j =
1√
β

(
||pn + Rn

b dbj − p̆i
n|| − ρi + εδ,i,j

)
,

i = 1, .., N, j = 1, ..,M (5)

where εδ,i,j is zero-mean Gaussian white noise with variance
σ2
δ,i,j and dbj is vector j between receivers, expressed in

the body frame. Furthermore, depth measurements are also
employed, modeled as

zm = z + εz (6)

where εz is assumed to be zero-mean Gaussian white noise
with variance σ2

z .

Assumption 1. At least one of the vectors between receivers,
dnj , will be non-parallel with gn for all t, i.e.[20]

∃ c s.t.
∑

j∈{1,..,M}

||gn × dnj || ≥ c > 0 ∀ t

In practice this means that if there is only two receivers
on the vehice, resulting in one vector between receivers, dn1 ,
then dn1 must never be parallell to the gravity vector. If dn1
is along the body x-axis, the requirement would mean not
having a pitch angle of θ = ±π/2, which are the same angles
as the singularities in the filter, and as mentioned above, is not
a natural state for most ROVs used in underwater operations
today. However, if there are three non-collinear receivers on
the vehicle, the system will have two non-parallell vectors
between receivers, and Assumption 1 will always be true.



D. Calculate Roll Angle and Pitch Angle

The calculation of vectors between receivers, dn1,..,M , de-
scribed in Sec. II-E is significantly more robust if estimates of
roll angle and pitch angle are already available. In this case, the
TDOA measurements are only used to calculate yaw angle. As
described in [9], it is possible to calculate roll angle and pitch
angle directly from the accelerometer measurements, given
that bias is compensated for, and the vehicle is stationary. It is
rarely the case that the vehicle is completely stationary, but as
long as the accelerations are small, gravity is the dominating
factor and the calculated roll angle and pitch angle will be
fairly accurate. As discussed in Sec. II-C, it is assumed that
for ROVs performing underwater operations it is assumed that
accelerations will be small. This is also discussed in [8], in
which a scheme is suggested where roll angle and pitch angle
are only calculated when the acceleration is below a certain
threshold. It is also possible to account for the acceleration by
creating a feedback loop in which the estimated acceleration is
subtracted from the acceleration measurements, as described
in for example [18], or by having an auxiliary filter estimate
this acceleration. As this increases the complexity of the filter,
this has not been done in the applied filter, and is considered
potential further work. Consequently, the accelerations of the
vehicle are assumed to be negligible compared to the gravity
vector.

When calculating roll angle and pitch angle, the formulas
are modified slightly from the ones given in [9], to make them
more robust close to the singularities. Furthermore, the atan2-
function is used instead of the arctan-function, to consider
also which quadrant the solution is in. The accelerometer
output is given as abimu = [ax, ay, az]

T , the formulas for roll
angle, φ, and pitch angle, θ, are given by

θ ≈ atan2
(
−ax ,

√
a2
y + a2

z

)
(7)

φ ≈ atan2
(

s1·ay , s1 · s2 ·
√
a2
z + k1 · a2

x

)
(8)

where s1 = sign(cos(θ)), s2 = sign(az). atan2 is given by

atan2(y, x) =



arctan
(
y
x

)
if x > 0

arctan
(
y
x

)
+ π if x < 0 and y ≥ 0

arctan
(
y
x

)
− π if x < 0 and y < 0

+π
2 if x = 0 and y > 0

−π2 if x = 0 and y < 0

undefined if x = 0 and y = 0

(9)

k1 is zero except for when θ is close to ±π2 , given by

k1 = (A+A · tanh(B · (|θ| − 1.43)))

·(A−A · tanh(B · (|θ| − 1.71))) (10)

where A =
√

0.1/2 and B = 200. The values of A and B
are chosen based on experience from simulations, therefore
different values might give better results, depending on the
accelerometer used and its noise characteristics.

The calculated values for θ and φ will both be used in
calculating the vectors dn1,..,M as described in the following
section, and as measurements of roll angle and pitch angle in
the LKF described in Sec. III-D.

E. Calculate Vectors Between Receivers, dn1,..,M

Based on the pseudo-range difference measurement model
in (5) and that for a vector v, ||v|| =

√
vTv, each pseudo-

range difference measurement can be written as

δi,j =
1√
β

(√
(∆pi + Rz,ψd̄j)T (∆pi + Rz,ψd̄j)

−
√

(∆pi)T (∆pi) + εδ,i,j

)
(11)

where ∆pi = pn − p̆ni = [∆xi,∆yi,∆zi]
T and d̄j =

Ry,θRx,φd
b
j =

[
d̄j,x, d̄j,y, d̄j,z

]T
, with Ry,θ and Rx,φ given

from the calculated φ and θ. Squaring (11), omitting mea-
surement noise for simplicity and performing some algebraic
manipulation gives

(∆pi + Rz,ψd̄j)
T (∆pi + Rz,ψd̄j) =

βδ2
i,j + 2

√
βδi,j ||∆pi||+ (∆pi)

T (∆pi) (12)

By describing Rz,ψ as

Rz,ψ =

 cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 =

 x1 −x2 0

x2 x1 0

0 0 1

 (13)

it is possible to estimate Rz,ψ using the least squares approach,
thus giving a measurement of dnj which can be used in a
Kalman Filter (KF), described in Sec. III-B. With Rz,ψ as in
(13), the set of equations can be written as

2
[
d̄x∆xi + d̄y∆yi, d̄x∆yi − d̄y∆xi

]
· [x1, x2]

T
=

βδ2
i,j + 2

√
βδi,j ||∆pi|| − ||dj ||2 − d̄z∆zi (14)

By stacking all measurements, it is possible to write

Ax = z (15)

where x = [x1, x2]
T

A = 2

 d̄1,x∆x1 + d̄1,y∆y1, d̄1,x∆y1 − d̄1,y∆x1

...
d̄M,x∆xN + d̄M,y∆yN , d̄M,x∆yN − d̄M,y∆xN



z =

 βδ2
1,1 + 2

√
βδ1,1||∆p1|| − ||d1||2 − d̄1,z∆z1

...
βδ2
N,M + 2

√
βδN,M ||∆pN || − ||dM ||2 − d̄M,z∆zN


If Assumption 1 is fulfilled, at least three TDOA measure-

ments are available, and the sender positions are not co-linear
in the north-east-plane (NE-plane), A will have full rank, and
it is possible to solve (15) as a least squares problem. When
Rz,ψ is calculated from solving (15), a measurement of dnj
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can be constructed from dnj = Rz,ψd̄j . The vectors are also
normalized to have unit length.

As mentioned in Sec. II-D, it is possible to calculate dn1,..,M
without estimates of roll angle and pitch angle. This could
be done by simply viewing each vector as the unknown and
applying a similar approach as above. However, this will
usually result in a less accurate attitude estimate, depending
on the accuracy of the TDOA measurements compared to the
accelerometer measurements.

III. ATTITUDE AND RATE SENSOR BIAS FILTER

Attitude and rate sensor bias filter applied in the experiments
is based on the XKF-principle, in which a globally stable,
auxiliary estimator provides a linearization point for a LKF.
The overall structure of the suggested filter is shown in Fig.
2. As can be seen from Fig. 2, there are no feedback loops,
making stability analysis a question of the model in the LKF
being uniformly completely observable (UCO) and uniformly
completely controllable (UCC)[17]. This is in contrast to the
EKF, in which stability has not been proven for the model
used, due to the feedback where the estimated state itself
is used as a linearization point for the filter. This increases
the complexity of potentially proving stability for the EKF
significantly. Stability for the suggested filter is discussed in
Sec. III-D1. In the following each subsystem will be described
in more detail.

We define Ii as a i x i identity matrix, 0i as a i x i matrix
of zeros and 0i x j as a i x j matrix of zeros .

A. Subsystem Σ1: Position Estimate

The position estimate is provided by a simplified version of
the filter suggested in [19]. This filter is also built on the XKF
principle, and takes pseudo-range-, depth- and acceleration-
measurements as input, giving position, velocity and scaling
factor for underwater wave speed (β in eq. (4)) as an output.
The filter consists of three stages, in which the first stage is an

algebraic transformation converting pseudo-range- and depth-
measurements into position and scaling factor measurements,
the second stage is a linear KF taking these measurements
as input and the third is a LKF using the original pseudo-
range- and depth-measurements as input, employed to increase
accuracy. From both simulations and lab testing it seems the
accuracy requirements for the position estimate are met after
just employing the first two stages. Consequently, with regards
to computational complexity, the output from the second stage
is used as the position estimate in the filter in this paper.
Naturally, the full filter can be used in a different scenario
if necessary, due to increased measurement noise or changed
sender geometry.

As the acceleration measurements require an attitude esti-
mate to be rotated to the NED frame, and the purpose of this
paper is to estimate attitude, acceleration measurements are not
employed in the position estimate filter. This also significantly
reduces the computational burden, as the filter only needs to
be updated each time pseudo-range measurements arrive, in
other words at a frequency of approximately 1.5 Hz.

The KF is based on the system model

ṗn = vn

β̇ = εβ

v̇n = εa

or, written in matrix form

χ̇p =

 03 0 I3

03 0 03

03 0 03

χp +

 0 03

1 03

0 I3

[ εβ
εa

]
(16)

with measurement

y =
[

I4 04x3

]
χp + εyp (17)

where vn is the velocities in the NED frame and χp =[
pnT , β,vnT

]T
is the full state vector. εβ , εa are the process

noises with variance σ2
β and covariance matrix Qa respec-

tively. The covariance matrix of εyp is approximated by first
order linearization and employing finite differences using the
central differences approach and the values of σ2

y,i and σ2
z .

1) Outlier Detection: The position estimate filter is also
responsible for performing outlier detection for the range
measurements. Outliers occured during testing, and a simple
outlier detection scheme based on the Mahalanobis distance
seemed sufficient. The Mahalanobis distance is given by[3]

dM = νTk S−1νk (18)

where νk = yi − ŷi and S = Hk,iPk+1/kH
T
k,i + σ2

y,i is
the filter innovation covariance. Hk,i is the Jacobian of (4)
for measurement i. dM is calculated for each pseudo-range
measurement, and a measurement is rejected if dM is above
a given threshold, γM .

As each pseudo-range difference measurement requires two
different pseudo-ranges, from two receivers, one position



estimate filter is run for each receiver. For the base receiver
the position estimate is used, as described in Sec. II-E, and for
the other receivers the filter is solely run for the purpose of
outlier detection. Consequently, less computationally demand-
ing outlier detection approaches can be employed for other
receivers than the base receiver. However, as mentioned above,
these filters need only be run with the same frequency as the
TDOA measurements, in this case approximately 1.5 Hz.

B. Subsystem Σ2: Estimate Vectors Between Receivers,
dn1,..,M

This subsystem performs the calculation of dn1,..,M from
TDOA measurements, roll angle, pitch angle and position
estimates as described in Sec. II-E. However, the solutions for
dn1,..,M can be noisy due to the fact that measurement noise is
not taken into account when performing the calculations. As
a result of this, a KF is used to filter the data before they are
used as input for the NLO.

The calculated dn1,..,M as described in Sec. II-E is used as
input for a Kalman filter with model given by

ḋnj = anj

ȧnj = εd (19)

yd = dnj + εy

where εd and εy are zero-mean Gaussian white noise vectors
and yd is the calculated measurement of dnj . The covariance
matrix of εd, Qd is tuned based on expected rate of change in
attitude for the vehicle and the covariance matrix of εy , Rd can
be calculated from the finite differences approach, combined
with the values of σ2

δ,i,j and εa.

It would also be possible to apply less computationally
expensive methods to filter the data, for example a band-pass
filter or a low-pass filter. However, the noise in the input of
each part of dnj are not independent of each other due to the
fact that they are calculated from the same measurements. Fur-
thermore, the characteristics of the noise are dependent on the
characteristics of A and z in eq. (15), which are dependent on
both sender and receiver position. This dependency is similar
to dilution of precision (DOP)[22], which is commonly used
in GPS positioning, and more specifically the attitude dilution
of precision discussed in [27]. As a result of this the noise
characteristics will change with vehicle position, and a KF
with the model given in eq. (19) can be viewed as a band-pass
filter with position-dependent cut-off frequencies. Both cut-off
frequencies and dependencies between the measurements are
approximated by employing the finite differences approach for
Rd.

C. Subsystem Σ3: Non-linear Observer

As the purpose of the NLO is to provide a globally stable
estimate of attitude and rate sensor bias, with vector- and
rate sensor measurements as input, any NLO that performs

this action can be employed. The NLO used in this paper is
suggested in Grip et al.[12], which provides an estimate of the
attitude described by a 3x 3 matrix asymptotically converging
towards a rotational matrix, and the rate sensor bias. This NLO
is globally exponentially stable (GES) except for a singularity
point if Assumption 1 is fulfilled, along with a known upper
bound for the bias and a design property regarding the matrices
An
j (t) and Ab

j(t) used in the estimator. The observer equations
are given by

˙̂
R = R̂S(ωbimu − b̂) + σKpJ(t, R̂) (20)

˙̂
b = Proj(b̂,−kIvex(Pa(R̂T

SKpJ(t, R̂)))) (21)

J(t, R̂) =
∑

j=1,..,q

(An
j (t)− R̂Ab

j(t))A
b
j(t)

T (22)

where kI > 0 is a scalar tuning parameter, Kp > 0 is a
symmetric gain matrix, σ ≥ 1 is a scaling factor to achieve
stability and An

j (t) and Ab
j(t) are designed to fulfill certain

properties, in this case chosen like in [12] for two vectors:

Aι
1 =

[
wι1
||wι1||

S(wι1)wι2
||S(wι1)wι2||

S2(wι1)wι2
||S2(wι1)wι2||

]
where ι ∈ {n, b}, and Aι

2 follows the same formula, but
with the vectors reversed. S(x) is a skew-symmetric matrix
such that for any y ∈ R3, S(x)y = x × y, vex(S(x)) = x,
Pa(X) = 1

2 (X −XT ) and R̂s = sat1(R̂), the element-wise
saturation function of R̂. Proj is a projection function ensuring
that the bias stays within a pre-defined upper bound, given by

Proj(b̂, β) =

{(
I3 − c(b̂)

||b̂||2
b̂b̂T

)
β, ||b̂|| ≥Mb, b̂Tβ > 0,

β, otherwise,

where c(b̂) = min
{

1, (||b̂||2 −M2
b )/(M2

b̂
−Mb)

}
. For fur-

ther details and stability proof, see Grip et al.[12].

As mentioned above, the inputs to the NLO are rate sensor
measurements in addition to vectors that are known in one
coordinate frame and measured in the other. In the case of
this paper, the input will be M + 1 vectors, more specifically
the acceleration measurement where gravity is assumed to
be be dominating factor and M vectors between receivers,
known in the body frame and calculated in the NED-frame
from the approach described in Sec. II-E and Sec. III-B. As
the sampling frequencies of the accelerometer (approximately
100 Hz) is very different from the TDOA measurements
(approximately 1.5 Hz), Kp is chosen to be ten times larger
when TDOA measurements are available, KpTDOA = 10Kp.

It is desired in the NLO to have both fast convergence
and stable stationary performance. Choosing large gains gives
fast convergence, but will give a more aggressive estimator,
resulting in amplification of measurement noise. Therefore it
is natural to have large gains in the start, when the estimator
is converging, and turn down the gains when the estimator is
assumed to have converged. Consequently, both Kp and kI in
the observer are set to be five times the chosen values for the
first 20 seconds of running the filter.



The output from the chosen NLO is a rotation matrix and
rate sensor bias. As the states chosen for the filter are Euler
angles and rate sensor bias, the rotation matrix is converted
into Euler angles before it is given as output. The total output
of the NLO is the Euler angles linearization point, Θ̄ and the
rate sensor bias linearization point, b̄, combined in the vector
χ̄ =

[
Θ̄T b̄T

]T
.

D. Subsystem Σ4: Linearized Kalman Filter

The LKF is based on linearizing the system model about
the linearization point from Σ3, χ̄. The model used in the LKF
is given by

χ̇ =

[
03 −T(χ̄)
03 03

]
χ+

[
T(χ̄)
03

]
ωbb/n

+

[
T(χ̄) 03

03 I3

]
εχ (23)

where εχ =
[
εω εb

]T
is a vector of two zero-mean

Gaussian white noise vectors with covariances Qω and Qb

and T is derived in Fossen[9], given by

T =

 1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

 (24)

where s · = sin(·), c · = cos(·) and t · = tan(·), and

χ =

[
Θ
b

]
The measurement equation is given by

yLKF = h(χ) =


φ
θ
δ1,1

...
δN,M

+ εh (25)

where εh is a vector of zero-mean Gaussian white noise with
covariance Rh, φ and θ are calculated from (7) and (8).
As h(χ) is a non-linear function wrt. χ, it is necessary to
perform a linearization for approximating ŷLKF about χ̄.
The first order Taylor-series approximation of (25) about the
linearization point χ̄ is given by

ŷLKF ≈ h(χ̄) +
dh(χ)

dχ

∣∣∣∣
χ=χ̄

(χ− χ̄)

As can be seen in (24), the filter has a singularity when θ =
±π2 . This is a widely known drawback of using Euler angles.
However, these singularities are well known and therefore it is
easily detectable if the filter is close to one of the singularities.
As is mentioned in [9], if the filter is close to one of the
singularities, the Euler angle representation can be changed
to a representation which has different singularities far from
the current working point. The models for these alternative
representations have not been considered as the approaches are
very similar to the one suggested in this paper. The problem
of getting close to the singularities was never an issue during
testing as the equilibrium state of the ROV is φ = θ = 0.

Fig. 3: Senders and ROV during testing

1) Stability Analysis: For a detailed stability analysis, see
[20]. The model given above is shown to be UCO and UCC,
and does therefore inherit stability properties from the NLO in
Σ3, which is GES. However, as there are singularities in the
model at θ = ±π/2, the filter is GES except for the singular
points. In practice this is a minor problem, as the singularities
are known, easily detectable and as mentioned it is possible
to switch between Euler angle representations if needed.

IV. SYSTEM SETUP, CALIBRATION AND
IMPLEMENTATION ASPECTS

The experiments were performed in LabOceano at the
Federal University of Rio de Janeiro. Due to limitations in
the ground truth measurement system, the ROV had to stay
inside a designated area of around 8 m x 8 m x 8 m. However,
this is sufficient to give an experimental validation of the filter,
as the important factor for accuracy is the co-linearity of each
vector from senders to receiver, and not the distance between
senders and receiver. This will be further discussed in Sec. VI.

A. System setup

The acoustic system used is a development kit provided by
Waterlinked[2], consisting of four senders and four receivers.
Waterlinked specializes in short-range, accurate postitioning
for underwater vehicles. The intended use of the Waterlinked
system is accurate state estimation within a small area of up
to 100 m x 100 m. Four senders were placed on the seabottom
at 13-14 m depth, see Fig. 3 for an image of the sender setup.

The ROV used is the BlueROV2[1], and four receivers were
placed on the ROV with a custom made rack for increasing the
distance between receivers, see Fig. 4 for an image. However,
for simplicity, only two receivers were used in the experiment
as this was enough to give experimental validation of the
filter. Employing more receivers might increase accuracy, but



Fig. 4: ROV with receiver setup. In the image the ROV is
upside down. Base receiver and receiver 1 are marked

in the authors opinion it is also important to demonstrate
that two receivers is sufficient. The IMU used is the internal
IMU in the M Robotics PixHawk autopilot controller, a
microelectromechanical IMU with a price of less than 20$,
which is in the lower part of the IMU price/quality range. The
IMU data is read with a frequency of approximately 100 Hz,
and pseudo-range measurements are run with a frequency of
approximately 1.5 Hz.

For ground truth measurements, a Qualisys underwater
camera positioning system with measurement frequency of
approximately 50 Hz is employed, giving 6 degree-of-freedom
(DOF) measurements of the ROV, with stated millimeter
precision for position and sub-degree precision on the attitude.
However, this is under optimal circumstances, and during
testing some inaccuracies in attitude of up to two degrees were
registered. This will be discussed further in Sec. V.

B. Calibration

There are several sources of error and inaccuracy in this
system, and different calibration schemes have been applied
to try to take this into account.

For a description of possible IMU error sources, see [10].
As the accelerometer is only used for calculating roll angle
and pitch angle, it is assumed the rotational offset is the most
important offset, whereas scaling of measurements and size
of the gravity vector are less interfering. The accelerometer
bias can cause an offset in the roll angle and pitch angle
calculations if it is large enough, but only compensating
for rotational offset seemed to give sufficient accuracy. The
rotational offsets between the Qualisys body coordinate frame
and the IMU body coordinate frame, as well as the rotational

Parameter p̆n1 p̆n2 p̆n3 p̆n4 db1

x[m] −6.86 −6.83 −1.19 −1.41 −0.544

y[m] 1.04 −3.21 0.531 −1.10 −0.375

z[m] 0.357 0.506 0.338 −0.130 −0.0113

TABLE I: Calibration results

offset between the Qualisys world frame and the inertial NED
frame were estimated by running a nonlinear optimization
scheme, minimizing the error between the extracted roll angle
and pitch angle data from Qualisys with the roll angle and
pitch angle data computed by the accelerometer measurements.

For calibrating sender positions, a nonlinear optimization
scheme minimizing the error between the calculated geometric
range using Qualisys and the measured ranges was applied.
Furthermore, for calibrating receiver positions in the body
frame and logger time delay, a nonlinear optimization scheme
was also applied, minimizing the error between the calculated
geometric range differences based on Qualisys data and the
measured range differences.

The results from the calibration can be seen in Tab. I .

C. Implementation Aspects

The IMU measurement frequency was approximately 100
Hz, high enough to capture the dynamics of the system,
whereas a higher frequency would result in a larger computa-
tional burden. First order Euler approximation has been used
as the integration scheme for all subsystems, as this seemed
sufficient to achieve desired accuracy. As the filters integrate
the IMU data, the frequency of the filters is the same as the
frequency of the IMU data, approximately 100 Hz, resulting
in small timesteps compared to the dynamics of the system,
thus lessening the need for a more extensive scheme.

1) Range Measurement Timing Issues: As mentioned in
Sec. II-E, at least three TDOA-measurements must be available
before being able to calculate the vectors between receivers,
dn1,..,M in Σ2. As the distances between sender and receiver
in the experiment are small (maximum 8 m) and the acoustic
waves are sent at the same time, the time offsets between the
arrival of each acoustic wave are assumed to be negligible in
the experiments performed in this paper. However, in a setup
with larger distances between sender and receiver, the waves
will arrive at significantly different times, and this needs to be
handled in the filter. For calculating dn1,..,M the simplest way
of handling an offset in arrival time from each transponder is
to simply wait until three or more waves have arrived, and then
start the calculations. Naturally this will decrease accuracy, as
it is assumed when doing the calculations that this is an instant
measurement with no time offset.

A more extensive approach might be to take the vehicle
position into account after the position filter, Σ1, has con-
verged, and in this way be able to identify lost measurements



by knowing the expected time for a measurement from a given
position to arrive. The accuracy of this scheme is dependent on
several factors, such as position estimate accuracy, magnitude
of time offset, probability of a lost measurement and vehicle
velocity. However, it is important to note that simulations
done in [17][20][19] indicate that in general for the XKF the
linearization point provided by the auxiliary estimator can be
somewhat inaccurate, depending on system configuration and
noise magnitude, and the output of the filter will still be close-
to-optimal wrt. noise.

In the LKF in Σ4, handling measurement time offset is fairly
straight forward, as each measurement can be applied when it
arrives, simply by modifying the measurement equation, (25),
to only take the received measurement.

Each acoustic wave needs to be received, registered and
processed to be used as a pseudo-range measurement. This
results in a natural time-delay for each measurement. As the
data in this case has been post-processed, a simple time offset
for all measurements has been added to take this into account,
but in a real-time system, ways of handling this delay must
be applied, see for example [8][15].

2) Handling Outliers: Handling outliers is performed the
same way as handling lost measurements. As mentioned
above, at least three valid TDOA measurents are needed to
calculate dn1,..,M in Σ2. Consequently, if less than three mea-
surements are found to be valid, this stage is simply avoided
at the given time, and the system waits for new measurements.
For the LKF in Σ4 any number of valid measurements can be
applied, by modifying (25).

3) Computational Load: As subsystems Σ1 and Σ2 are run
only when pseudo-range measurements are received, approxi-
mately 1.5 Hz, the main computational load is in Σ3 and Σ4.
The state in Σ3 and Σ4 must be updated each time an IMU-
measurement arrives, in other words these two subsystems
are run at the same frequency as the IMU data is extracted,
approximately 100 Hz. When pseudo-range measurements are
available, Σ4 contains more complex calculations, especially
matrix inversions, whereas Σ3 is mostly multiplication. As this
only happens approximately every 0.67 s, the total computa-
tional load of Σ3 and Σ4 is similar, and the computational load
for the full filter was around 2.35 times more than running
an EKF for the given setup and measurement frequencies.
However, if the filter in [19] is run for accurate positioning also
in a full state estimation scheme, the computational burden of
Σ1 can be disregarded as Σ1 needs to be run for the position
filter regardless. Then the computational load of the suggested
filter is around 2 times more than running an EKF.

V. TESTING AND RESULTS

Two experiments, A and B, have been performed, to cover
two types of common ROV manoeuvres. In experiment A
the ROV is almost stationary, only turning from side to side,
changing the yaw angle similar to an inspection scenario.

During experiment B the ROV is driving back and forth,
similar to a transit scenario.

Assuming both bias and vehicle acceleration are negligible
compared to the gravity vector gave satisfactory results. Con-
sequently, in the experiments it is assumed abimu ≈ Rb

ngn+εa,
see Sec. II-C for discussion.

Simulations and experiences with real lab data suggest
that all subsystems Σ1 - Σ4 are robust towards inaccurate
initial values, and to observe both transient and stationary
behaviour, the initial estimates for each filter, especially in
yaw angle are rather inaccurate. Each parameter has been
decided through trial and error, by considering the expected
rate of change for different parts of the system, and looking at
the noise in the measured data. The tuning parameter values
for each subsystem can be seen in Tab. II. P0 is the initial
covariance matrix for the KFs, x0 is the initial estimate for
each subsystem and ki x j means an i times j matrix with
containing the value k. diag(v) is a diagonal matrix with the
vector v along the diagonal.

For comparison, an EKF is also run, with the same tuning as
the LKF in Σ4, the only difference being that the linearization
point is the estimated state, and not the output from Σ3. The
output from the EKF is denoted χEKF . Furthermore, an LKF
using the ground truth states instead of the output from Σ3

as linearization point is also run. This is a non-implementable
filter in a real scenario, as ground truth measurements are not
available, but it is interesting to give an impression of the
optimal filter performance for the current scenario and tuning.
This filter is also tuned the same way as the LKF in Σ4, and
the output from this filter is denoted χopt.

A. Experiment A: Turning

In this experiment the ROV is fairly stationary with a
constant depth, rotating from side to side with different angular
velocity, with yaw angles of around −π2 ≤ ψ ≤

π
2 . The ground

truth position and Euler angles from the Qualisys system can
be seen in Fig. 5.

The raw pseudo-ranges measured can be seen in Fig. 6.
Throughout experiment A around 0.53 % of the pseudo-range
measurements were rejected as outliers. The estimated and
ground truth value of dn1 is shown in Fig. 7, and the real
and estimated position is shown in Fig. 8. The estimated
rate sensor bias is shown in Fig. 9, and the Euler angle
errors are shown in Fig. 10, with two different axis to show
transient and stationary behaviour. No error plot is shown for
the estimated rate sensor bias, as it is difficult to know this in
reality, but at the end of the experiment the estimated rate sen-
sor bias was bXKF =

[
4.6 · 10−4, 5.0 · 10−3,−5.2 · 10−3

]T
whereas in calibration this bias was found to be bcal =[
7.0 · 10−4, 5.3 · 10−3,−5.0 · 10−3

]T
, which is similar con-

sidering the magnitude of the bias compared to the expected
rate sensor measurement noise, stated as Qω in Tab. IId.



Parameter σ2
β Qa σ2

y,i

Value (1 · 10−3)2 0.52 · I3 0.022

Parameter γM x0 P0

Value 3


03x1

1

03x1

 diag(

 52
3x1

0.12
4x1

)

(a) Values for Σ1

Parameter Qd σ2
δ,i,j εa

Value 32 · I3 0.052 0.32

Parameter x0 P0

Value 06x1 diag(0.56x1)

(b) Values for Σ2

Parameter kI Kp σ

Value 0.05 I3 1

Parameter Mb Mb̂ x0

Value 0.39 0.4


0.1

0.1

π/2

03x1


(c) Values for Σ3

Parameter Qω Qb Rh

Value 0.052 · I3
(
1 · 10−4

)2 · I3 diag(
[
0.12

6x1

]
)

Parameter x0 P0

Value


0.1

0.1

π/2

03x1

 diag(

 12
3x1

0.12
3x1

)

(d) Values for Σ4

TABLE II: Tuning parameter values

It is apparent that the error for the linearization point, χ̄, is
larger than the error for the output of the three other filters,
which have similar response (although the EKF has a slightly
larger transient error). This fits well with the theory and
reasoning for the XKF principle, as the NLO is designed for
global stability, not for optimal performance wrt. measurement
noise whereas the LKF is designed to be close-to-optimal wrt.
noise, given that the linearization point is accurate, and the
system is modeled correctly. Consequently, the LKF improves
the estimate of the NLO by having a more accurate model of
the system providing a filter which is statistically optimal, and
using the output of the NLO simply as a linearization point.

As can be seen from the results, the filter converges quickly,
and stays close to the ground truth values. The RMSE for
roll angle, pitch angle and yaw angle after convergence for
the different filters is shown in Tab. III. However, this RMSE
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Fig. 5: Experiment A: Ground truth position and Euler angles
from the Qualisys system
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Fig. 6: Experiment A: Raw measured pseudo-ranges for both
receivers. Pseudo-range i is the range measured from the
sender at p̆ni .

is most likely a combination of estimator and ground truth
error, as will be discussed in the following paragraph. Note
that the RMSE of the suggested filter is equal to the optimal
filter, supporting the claim that the suggested filter is close-to-
optimal wrt. noise.

The roll angle and pitch angle errors have some spikes ,
especially for 150 s < t < 250 s. By looking at the ground
truth attitude data for the times of these spikes, it seems this
is a result of inaccuracies in ground truth, as the ground truth
attitude jumps back and forth at the times of these spikes (see
Fig. 11 for an illustration). Furthermore, for the roll angle
estimate there is a larger error when the vehicle is turning
quicker. This might be due to the fact that the IMU is not in
the center of gravity, thus resulting in measured accelerations
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Experiment A B

RMSE[degrees]

χ̄ [0.40, 0.31, 1.4] [0.42, 0.77, 1.3]

χ [0.40, 0.25, 0.85] [0.25, 0.58, 0.70]

χEKF [0.40, 0.25, 0.86] [0.25, 0.58, 0.80]

χopt [0.40, 0.25, 0.85] [0.25, 0.58, 0.68]

TABLE III: RMSE for [roll angle, pitch angle, yaw angle]
after convergence for all filters. Both experiment A and B.

when the yaw angle is changed rapidly. As discussed in Sec.
II-D, these accelerations are not taken into account, as it is
assumed gravity is the dominating acceleration measured.

B. Experiment B: Transit

In the second experiment the ROV is driving back and forth
at different velocities. The ground truth position and Euler
angles can be seen in Fig. 12. It is apparent that due to the
difficulty in manual control of the ROV it is also turning,
reaching yaw angles of up to around 0.9 radians. However,
this also makes the experiment more varied, which can be
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Fig. 11: Ground truth disturbance example. The spikes occur-
ing for example around t = 139 s does not seem to reflect
realistic vehicle behaviour, and are therefore assumed to be
disturbances
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from the Qualisys system

seen as a good thing, as it seems the filter is also able to
handle these cases. In addition it is also noteworthy that
in experiment B the TDOA measurements start arriving at
around 5 seconds into the experiment, as can be seen in the
following figures, whereas in experiment A the measurements
start arriving immediately.

The raw pseudo-ranges measured can be seen in Fig. 13.
Throughout experiment B around 0.81 % of the pseudo-range
measurements were rejected as outliers. The estimated and
ground truth value of dn1 is shown in Fig. 14, and the real
and estimated position is shown in Fig. 15. The estimated
rate sensor bias is shown in Fig. 16, and the Euler angle
errors are shown in Fig. 17, with two different axis to
show transient and stationary behaviour. As in experiment A,
no error plot is shown for the estimated rate sensor bias,
but at the end of the experiment the estimated rate sen-
sor bias was bXKF =

[
1.9 · 10−4, 4.9 · 10−3,−4.7 · 10−3

]T
whereas in calibration this bias was found to be bcal =[
2.1 · 10−4, 5.0 · 10−3,−4.7 · 10−3

]T
, which is similar also

for this experiment.

Also in experiment B the linearization point, χ̄, is less
accurate than the output of the filter, χ, further supporting the
claims made about the filter having both proven stability and
close-to-optimal noise properties. Furthermore, in experiment
B the EKF takes longer than the suggested filter to converge
(around 18 s from the first TDOA measurement, compared to
around 5 s for the suggested filter), whereas the suggested filter
performs very similarly to the optimal filter throughout both
experiments.

The results are similar to experiment A. The filter converges
quickly, and stays close to the ground truth values. The RMSE
after convergence for the different filters is shown in Tab. III.
Also here the RMSE of the suggested filter is not much larger
(2.2 %) than the error for the optimal filter. Note also that the
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Fig. 13: Experiment B: Raw measured pseudo-ranges for both
receivers. Pseudo-range i is the range measured from the
sender at p̆ni .
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Fig. 17: Experiment B: Euler angle estimation errors. Two axis
are chosen to show both transient and stationary behaviour

RMSE for yaw angle in the EKF is 15 % larger than for the
suggested filter. However, also here the RMSE is most likely a
combination of estimator and ground truth error, as the spikes
in ground truth Euler angles are similar to the spikes in roll
angle and pitch angle for experiment A, and seem to have the
nature of disturbances rather than actual dynamic.

It can be seen in Fig. 17 that the pitch angle error increases
slightly towards the end of the experiment, when the vehicle
is moving faster, peaking at around t = 192 s. At around this
time the vehicle is changing velocity from around −0.4 m/s
to around 0.4 m/s in slightly over one second, giving a larger
acceleration than before. As in experiment A, these acceler-
ations are not taken into account, as it is assumed gravity is
the only acceleration measured.

VI. DISCUSSION

The performance of the applied filter is dependent on LBL
sender- and receiver positions. The vectors from senders to
the receiver should be as non-co-linear as possible. In the
experiments performed in this paper the senders were placed
in a trapezium-like shape in the NE-plane, and the ROV spent
most of the time within the trapezium. Consequently, the
geometry of the system was good for employing the suggested
filter. However, situations where the vectors are very co-linear
can happen either when the ROV is very far from the senders,
or if the senders are placed almost co-linearly, neither of which
is planned to be a scenario where the system is applied.

The performance of the filter is dependent on the tuning
parameters for each subsystem. As the NLO in Σ3 is based on
a mathematical stability property, the tuning parameters have
a more mathematical meaning, whereas Kalman Filters are
based on the actual scenario and noise properties of the sensors
provided. Therefore the tuning parameters in Σ3 are chosen
by trial and error, and other parameter values might give better
results. However, in this paper it was also important to show
that choosing the tuning parameters intuitively, based on a few
simple principles was enough to get a well functioning filter.

As the performance of the EKF in the transient state is
unpredictable, due to the inaccurate linearization point used
in the filter, better performance wrt. transient error might have
been achieved by tuning the EKF differently, especially by
changing the P0-matrix to higher or lower values. However,
tuning the EKF with the same intuitive tuning as the other
filters gave a more fair comparison, as this tuning will cover
all scenarios where the uncertainty in initial state described by
P0 is accurate, whereas manipulation of P0 to an unrealistic
value to get better results for a specific experiment will give
more unpredictable behaviour in other scenarios.

The performance of the filter might be improved by com-
pensating for the two acceleration measurement assumptions,
that the accelerometer measurement has no bias, and that the
vehicle acceleration is negligible compared to gravity. The
validity of these assumptions is dependent on the accelerations
of the ROV and the performance of the accelerometer bias
calibration, along with the rate of change for the accelerometer
bias. Ways of constructing filters with proven stability taking
this into account for the given system are being considered,
and is potential further work.

Low-pass filtering the IMU data before they are used as
input to the filter is a common approach, and could also
have been done in this paper. However, low-pass filtering
results in a phase offset, which results in a delay in the
IMU measurements. Furthermore, the filter seemed to give
satisfactory results, as long as this noise was compensated for
properly in the tuning of each subsystem.

As discussed in Sec. V-A, it seems that the ground truth
data also contains some disturbances. Therefore, the RMSEs



calculated are not entirely accurate. However, they still func-
tion well as means of comparing the filters, as the ground
truth noise is the same for all filters when calculating the
RMSE. Furthermore, the ground truth noise seems to not occur
often, and therefore does not have a significant effect on the
calculated RMSE.

VII. CONCLUSIONS

Experimental validation of a filter for determining attitude
and rate sensor bias based on TDOA and IMU measurements
has been presented. The filter is based on the XKF principle,
which is a cascade structure in which the output from a NLO
is used as a linearization point for a LKF to achieve both
proven stability properties and close-to-optimal performance
wrt. bounded noise. In contrast to the EKF, which does not
have proven stability, the filter has been proven to have local
exponential stability, with singularities that are easily de-
tectable, and not likely to occur for most conventional ROVs.
Furthermore, the singularities can be handled by changing
Euler angle representation.

Two experiments have been conducted, one in which the
ROV is turning from side to side while stationary, and one
where the ROV is driving back and forth. In both experiments
the filter converges, and stays within a few degrees of the
true state throughout the experiments. The RMSE of the
suggested filter is equal to the non-implementable optimal
filter in one experiment, and 2.2 % larger than the optimal
filter for yaw angle in one experiment. Furthemore, the EKF
takes longer than the suggested filter to converge, whereas the
suggested filter estimates attitude very similarly to the non-
implementable, optimal filter also in the transient state.
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