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Abstract—One of the by-products of Sparse Network Coding
(SNC) is the ability to perform partial decoding, i.e., decoding some
original packets prior to collecting all needed coded packets to
decode the entire coded data. Due to this ability, SNC has been
recently used as a technique for reducing the Average Decoding
Delay (ADD) per packet in real-time multimedia applications. This
study focuses on characterizing the ADD per packet for SNC
considering the impact of finite field size. We present a Markov
Chain model that allows us to determine lower bounds on the
mean number of transmissions required to decode a fraction of a
generation and the ADD per packet of the generation. We validate
our model using simulations and show that the smaller finite fields,
e.g., q = 24, outperform large finite fields, e.g., q = 232, in regard
to the ADD per packet and provide a better trade-off between the
ADD per packet and the overall number of transmissions to decode
a generation.

Index Terms—Random Linear Network Coding, Sparse Network
Coding, Average Decoding Delay per packet

I. INTRODUCTION

RANDOM Linear Network Coding (RLNC) was introduced
as a random strategy for decentralized Network Coding

(NC) which achieves multi-cast capacity asymptotically [1]. From
a practical perspective, RLNC considers a sender that divides
a block data into n original packets and organizes them in a
group called a generation. The sender generates random linear
combinations of those n packets, while a receiver(s) collects coded
packets until it would be able to decode the whole generation.
This occurs as soon as the receiver obtains n linearly independent
coded packets. RLNC designed to achieve capacity will have poor
partial performance. Even if the number of coded packets is very
close to (but not exactly) sufficient, the fraction of original packets
that can be decoded will be negligible. This disadvantage can
be significantly reduced by operating a sparse implementation of
RLNC [2]. Sparse Network Coding (SNC) was first introduced
as a mechanism to alleviate the decoding complexity of RLNC
by selecting a large fraction of zero-valued coding coefficients
in the encoding matrix [3], [4]. In this context, an encoding
vector is defined w - sparse, if it consists of exactly w coding
coefficients which are chosen at random and their value is selected
uniformly from the elements of a finite field of size q (Fq), while
the remaining n − w entries of the encoding vector are set to
zero. According to this definition SNC with w = n is identical
to RLNC. This definition is also different than that has provided
in [2] that the w selected coefficients must be nonzero.

SNC is also able to perform partial decoding employing a
low complexity encoding and decoding algorithm. Let us look
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at a scenario where a data stream is to be delivered to multiple
users over a shared medium. The stream needs to be decoded in
real time, or near-real time with a nite amount of buffering. If
NC is to be employed for the transmission, the stream would
have to be broken into generations of original packets, and
each generation would have to be encoded separately. If such
a transmission strategy is employed, the coded packets from any
given generation will only be transmitted from a nite amount
of time, before the encoder moves on the next generation. If
the user channel qualities are very different, it is likely that a
user may not receive the required number of coded packets to
decode the entire of a generation. It is reasonable to assume
that many real-time applications, if suitably pre-coded, can be
reliably played back from a large fraction of original packets.
For example, in conversational video applications, there is a limit
of 100 ms in which each original packet must be received and
playback within this time. Moreover, packet loss rates between
1 and 10 percent can be tolerated [9]. Unlike RLNC, SNC does
not need to wait until the whole generation is decoded and it
can exploit the partial recovery of the original packets. When
the playback time is approaching, the decoder must decode and
playback the recoverable packets and drop packets that cannot
be decoded. In this way, the receiver may have the benefits of
forward erasure correction considering the delay constraint of the
conversational video applications. A key point is that the level of
sparsity can have effect on the decoding delay so that too sparse
or dense coding schemes may create higher delay.

Both SNC and RLNC are exploiting on-the-fly version of
Gauss-Jordan algorithm [7]. In this approach, the newly received
vector is forward substituted into the previous received encoding
vectors, and subsequently backward substitution is performed
to bring the decoding matrix into echelon form. Since SNC's
decoding matrix is sparse, it needs less operations to bring
echelon form of the matrix leading faster decoding speed and less
computational complexity. Such that, the authors in [8] provided
an efficient and intuitive algorithm for tuning SNC by reordering
rows and columns of a matrix to perform efficient Gaussian
elimination in sparse matrices. This algorithm guarantees linear
decoding complexity of sparse packets.

SNC's partial performance was first analyzed in [2] using
an Absorbing Markov Chain. The model was based on a new
suitable concept, so that the authors focused on decoding delay
of each original packet to get Average on Decoding Delay of all
original packets of a generation, denoted by ADD per packet. The
provided model characterized the overall number of transmissions
and the ADD per packet to recover a generation considering
large finite field sizes(e.g., q ≥ 216). The assumption of large
size of q is a potential limitation, especially for the practical
implementations of SNC. To investigate this limitation, we have
simulated a scenario of one sender and one receiver, where the
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Fig. 1: The ADD per packet to decode a generation of 128 original
packets for three different systems: SNC, RLNC and LT.

SNC sender uses a fixed w to deliver a generation of 128 original
packets to the receiver over a lossless channel. In such scenario,
we scrutinize the impact of the finite field size on the ADD per
packet by Fig. 1. In other words, Fig. 1 illustrates the impact of
different q on the ADD per packet for some values of w, and
shows that the SNC system establishes a better performance of
q = 2 for w ∈ (3, 9], as well q = 24 for w ≤ 3 and w > 9. Fig.
1 has also considered the RLNC performances for q = 232, and
LT code [6] based on two degree distributions: Ideal and Robust
soliton. Fig. 1 asserts the improved ADD per packet of SNC and
RLNC than the provided LT code. We can finally conclude that
modeling the impact of q on the ADD is key to characterize a
SNC system. This paper focuses on generalizing the preliminary
work in [2] for the case of general finite field sizes and makes
the following contributions:

Proposing the analytical model: The model is based on an
Absorbing Markov Chain, where the states employ the notion
of covering original packets, i.e., the nonzero columns at the
decoding matrix. This enables us to nominate the states with the
ability to recover a fraction of a generation. Next, we present
lower bounds on the number of transmissions to recover a fraction
of a generation (recovering minimum x from n original packets)
and the imposed ADD per packet to recover a generation.

Confirming the accuracy of the model: Our analysis shows
that the difference of the Markov model and the simulation results
are insignificant for a wide range of generation sizes, packet loss
rates, finite field sizes, and sparsity levels. More precisely, the
deviations with reference to mean square of the gap between the
simulation results and the provided lower bounds for the overall
number of transmissions to decode a fraction of a generation
and ADD per packet of the generation are only 6 % and 7 %,
respectively. Moreover, as a benchmark, we compare our results
with RLNC and LT code.

Trade-off and Operating Regions for Finite Field and
Sparsity: Although using q = 232 leads to a better performance
for the overall number of transmissions, q = 24 outperforms
q = 232 in terms of ADD per packet. Furthermore, the proposed
model enables us to opt the suitable sparsity and field size to
establish the trade-off between ADD per packet and the overall
number of transmissions required to decode a generation.

The rest of the paper is structured as follows. In Section II
and III, we describe the system model and analyze the impact of
the finite fields size, respectively. Then, Section IV validates the
models by means of a broad simulation campaign and discusses
the obtained results. Finally, Section V concludes the paper.

II. SYSTEM MODEL

We consider a SNC system of one sender transmitting coded
packets to one receiver. For simplicity, we first suppose that

the channel between the sender and the receiver is lossless,
then extend our model over a channel with the probability of
packet loss equal to ϵ . A time step is defined as the duration of
transmitting one coded packet, implying that n coded packets can
be received at the receiver in n time steps in a lossless channel.
We say that the generation of S consists of n original packets
S = {si}ni=1. At time step j, the sender generates a w-sparse
coded packet uj , which is constructed as uj =

∑w
i=1 gf (i), j × s f (i),

where f (i) is selected randomly from the set {1, ..., n}. The
coefficients gf (i), j are chosen randomly from the elements of
Fq , in an identical and independent pattern conforming to the
following probability

p(gi, j = v) = 1
q
, ∀v ∈ {0, 1, 2, ..., 1 − q}. (1)

Let u1, ..., um denote coded packets that the receiver has
collected to decode the S (m ≥ n). Also, let M represents the
m×n decoding matrix constructed at the receiver. The relationship
between u1, ..., um and the original packets s1, ..., sn is

u1
...

um

 =M


s1
...

sn


where

M =


g1,1 g1,2 g1,3 . . . g1,n
g2,1 g2,2 g2,3 . . . g2,n
...

...
...

. . .
...

gm,1 gm,2 gm,3 . . . gm,n


In order to record the coefficients of performed linear combi-

nations, a network coding header is appended to each produced
original packet by the sender as

X =


x1
...

xn

 =


1 . . . 0 s1
...
. . .

...
...

0 . . . 1 sn

 =
[
InS

]
Decoding can be done via Gauss-Jordan elimination:

Y =MX =
[
M MS

]
=⇒ RREF(Y ) =

[
InS

]
,

where RREF(Y ) is Y matrix in Reduced Row Echelon Form.
We define the decoding delay of original packet si as the overall

number of time steps until the original packet si is decoded,
denoted by di . By using this definition, the ADD per packet for
the generation of S can be calculated as

ADD =
∑n

i=1 di
n
. (2)

III. PROPOSED MODEL

Eq. (1) obviously shows that by reducing the field size q, the
probability of choosing a zero-coefficient as an element of Fq

is increased. Therefore, for small field sizes, the probability of
choosing the zero-coefficient as part of the w original packets is
higher. For example, if q = 2, the coding coefficients are chosen
from the set {0, 1}, and this probability p(gi, j = 0) is equal to
0.5. This value has a significant impact on the probability of
generating a linear dependent coded packet. Because of this, the
smaller the q, the less valid the provided model in [2] is. To
design a complete model incorporating the effect of field size,
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it is enough to consider the probability of choosing the zero-
coefficient.

The system is modeled through an Absorbing Markov model
with states (c, t), where t is the current number of coded packets
collected by the receiver, and c is the number of covering original
packets by t. Every new received coded packet causes the state
to change from (c, t) to (c+ i, t+1). As an example, the transition
probability pw,nc,t (i) between states (c, t) and (c + i, t + 1), when
the sender sets w = 2 to transmit coded packets, is defined in the
following way:
The new received coded packet covers zero, one or two new
original packets. For i = 0, where any new original packet is
not covered, the total probability obtains from three probabilities.
First, the probability that the combined original packets already
covered by t−1 collected coded packets. Second, one new original
packet is selected by the sender but its coefficient is equal to zero.
Third, two new original packets are selected but their coefficients
are equal to zero.

p2,n
c,t (0) =

( (c
2
)(n

2
) ) + ( (c

1
)
×

(n−c
1

)(n
2
) × (1

q
)1

)
+

( (n−c
2

)(n
2
) × (1

q
)2

)
.

For i = 1, where a new original packet is covered, the total
probability obtains from two probabilities. First, the probability
that one new original packet is selected and its coefficient is not
equal to zero. Second, two new original packets are selected but
the coefficient of one of them is not equal to zero.

p2,n
c,t (1) =

( (c
1
)
×

(n−c
1

)(n
2
) × (1 − 1

q
)1

)
+( (n−c

2
)(n

2
) × (1 − 1

q
)1 × (1

q
)1 ×

(
2
1

))
.

Finally, for i = 2, where two new original packets are covered,
the total probability obtains when two new original packets are
covered and their coefficients are not equal to zero.

p2,n
c,t (2) =

( (n−c
2

)(n
2
) × (1 − 1

q
)2

)
.

By using Eq. (3), the transition probabilities can be easily
derived to the case of general w, in the following way:

pw,nc,t (i) = 0 if (c, t) ∈ A,

pw,nc,t (i) =
b2∑
j=i

( c
w−j

)
×

(n−c
j

)(n
w

) × (1 − 1
q
)i × (1

q
)j−i ×

(
j
i

)
if (c, t) < A and i ∈ Bn,c,w . (3)

where A consists of the states with possibility of decoding
at least x out of n original packets, i.e., absorbing states, and
Bn,c,w = [b1, b1 + 1, ..., b2],

Bn,c,w =


[w − c,w] if w ∈ (c, n − c],
[0, n − c] if w ∈ (n − c, c],
[0,w] if w ≤ c and w ≤ n − c
[w − c, n − c] if w > c and w > n − c.

A coded packet is constituted by w original packets and the
coefficients can be zero or nonzero. Thus, the states with (c <
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Fig. 2: The average number of transmissions needed to decode a
generation for different n,w and q.
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Fig. 3: The average number of transmissions needed to decode a fraction
of a generation for n = 128, and q = 2 and q = 232.

w, t) are visible. However, the states with (c > min(t × w, n), t)
are not visible because every transmission covers maximum w

new original packets. Therefore, we consider the probability of
visiting these states equals to zero.

Finally, the occurrence probability of the state (c, t), denoted
by prc,t , can be derived as follows:

prc,t =

{
1 if t = 0 or 1,∑w

i=0 pw,nc−i,t (i) × prc−i,t−1 otherwise.
(4)

A. Lower bound on the overall number of transmissions

In order to derive a lower bound on the average number of
transmissions required to decode x from n original packets, we
first restrict our focus on the Markov model 's parameters. More
precisely, Lemma 1 in [2] determines that the A includes potential
states with the chance of decoding x from n original packets. Note
that, the occurrence of these states dose not guarantee decoding x
original packets. Thus, to provide a reasonable approximation, we
calculate a multiplication of the occurrence probability of each
absorbing state by its t parameter, then, sum these values.

Lemma 1 ( [2]). For recovering minimum x from n original
packets, merely states with (c ≥ x, t ≥ (x + ⌈ c−xw ⌉) are absorbing.

The same as previous model [2], we can now provide a lower
bound based on the states (c ≥ x, t ≥ (x + ⌈ c−xw ⌉)) ∈ A, in the
following way:

Tx =
∑

∀(c,t)∈A
⌈prc,t × t⌉, (5)

where t is the collected number of coded packets for covering
c original packets, and Tx signifies the average number of
transmissions in order to decode minimum x from n original
packets. In addition, to recover the whole generation in Eq. (5), let
x = n. In this case Tn shows the average number of transmissions
needed to recover the whole generation.
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B. Lower bound on ADD per packet

Tx and di are an approximation bound on the decoding mini-
mum x original packets and the required number of transmissions
until the original packet si is recovered, respectively. To derive
a lower bound on the ADD per packet, we say for decoding the
x-th packet of the x original packets, collecting Tx coded packets
is needed. Also, it suffices collecting maximum Tx coded packets
to recover the remaining original packets. Therefore, Ti can be
investigated as a lower bound on the decoding delay of di . By
substituting Ti with di in Eq. (2), a lower bound can be gained
on the ADD per packet of the generation, in the following way:

�ADD =
∑n

i=1 Ti
n

≤ ADD, (6)

C. Complexity of the Markov model

In order to derive the time complexity of the Markov model, we
need to count the overall number of states after t transmissions.
To this end, we take advantage of Lemma 2.

Lemma 2. The overall number of vertices, denoted by f (t,w, n),
in T of depth t is

f (t,w, n) =


t
2 × (2 + (w × (t − 1))) if t ≤ ⌊ n

w ⌋,
⌊ n
w ⌋
2 × (2 + (w × (⌊ n

w ⌋ − 1)))
+(t − ⌊ n

w ⌋) × (n − w + 1) if t > ⌊ n
w ⌋ .

(7)

proof : Our Discrete-time absorbing Markov chain can be corre-
sponded to a directed rooted tree T , where the root is a state of
(c = w, t = 1) and t shows the level of the tree (we assume that
the root is on level 1). We can now count the overall number of
vertices in the T of depth t (or the total number of states after t
transmissions). One key observation is that for covering n original
packets, at least ⌈ n

w ⌉ received coded packets are required. Based
on the Markov model for t ≤ ⌊ n

w ⌋, by receiving a w − sparse
coded packet, w new original packets would be covered, then
the overall number of vertices at the depth t is equal to the
number of vertices at the depth t − 1 plus w. Therefore, we
can claim that the number of vertices on each the tree's level
follows an arithmetic progression of common difference w, initial
term of 1, and general formula of am = (m − 1)w + 1, so
the addition of all the arithmetic progression's terms can be
derived by f (⌊ n

w ⌋,w, n) =
⌊ n
w ⌋
2 × (2 + (w × (⌊ n

w ⌋ − 1))). On
the other hand, after ⌈ n

w ⌉ transmissions by receiving a coded
packet, the number of states would not be increased than the
previous level because all the original packets have been already
covered, then the number of vertices on each level is a constant
of a ⌊ n

w ⌋ = (n − (w − 1)). Finally, the overall number of vertices
for t > ⌊ n

w ⌋ is derived by summing two parts such that, for
t ≤ ⌊ n

w ⌋, the tree has f (⌊ n
w ⌋,w, n) vertices, and for t > ⌊ n

w ⌋,
((t−⌊ n

w ⌋)×(n−w+1)) vertices. Thus, the total number of vertices
of the tree is f (⌊ n

w ⌋,w, n) + ((t − ⌊ n
w ⌋) × (n − w + 1)).

According to the Markov model, the number of absorbing
states is infinite, thus in Eq. (7), t → ∞. However, in order to
implement the model, the number of absorbing states is bounded
by a constrain. Such that we only regard the absorbing states that
prc,t > α, where α = 10−5. Based on our experiment, for each
n after n + (n/10) transmissions prc,t < α, if (c, t) is absorbing
state. We can now obtain the complexity of the Markov based on
Theorem 1.

Theorem 1. The time complexity of the Markov chain is O(n2).
proof: Based on Lemma 2, the overall number of vertices for t =
n+ (n/10) can be calculated by summing two parts such that, for
t ≤ ⌊ n

w ⌋, the number of vertices and its complexity are
⌊ n
w ⌋
2 ×(2+

(w×(⌊ n
w ⌋−1))) and O( n2

w ), respectively. For t > ⌊ n
w ⌋, the number

of vertices and its complexity are (((n+n/10)− ⌊ n
w ⌋)×(n−w+1))

and O(n2). Therefore, we can conclude the total complexity is
O(n2). □
Based on Theorem 1, we have the following corollaries to present
the complexity of the provided lower bounds.

Corollary 1: The complexity of Eq. (5) is O(n2).
proof: To derive Tn based on Eq. (5) and Lemma 1 we have to run
the Markov model for t ∈ [n, .., n + (n/10)]. However, it is clear
that by running prn,n+(n/10) the values of prn,n, ..., prn,n+(n/10)−1
would also be obtained. Then, the time complexity of Eq. (5)
for calculating prn,n+(n/10) and summing a multiplication of the
occurrence probability of absorbing states by their t parameters
are O(n2) and O(n), respectively, totally O(n2).

Corollary 2: The complexity of Eq. (6) is O(n3).
proof: To calculate Eq. (6) we need to run Eq. (5) for gaining
Ti , where i ∈ [1, 2, .., n], thus the time complexity of Eq. (6) is
O(n × n2).

D. Impact of packet loss

Until now, the channel has considered lossless. The model can
be smoothly expanded for a loss channel. To this purpose, we
only need to amend the transition probabilities in the following
way: �pw,nc,t (i) = pw,nc,t (i) × (1 − ϵ), (8)

where ϵ is the loss rate of the wireless channel.

IV. SIMULATION AND MODEL VALIDATION

This section evaluates the validity of the proposed Markov
model using a broad simulation campaign. SNC operations are
handled by running Kodo library in C++ to perform encod-
ing/decoding processes. This allows us to analyze key parameters
affecting the SNC technique; sparsity level, generation size, and
the finite field size. We have carried 50000 independent runs for
data tuple (n,w, q), and report the expected of these experiments.
As a benchmark, we compare our model with the performance of
RLNC and the designed degree distributions for LT codes such as
Ideal and Robust. The deviation of two plots is computed through
the mean square of its vectors. For examples if the vectors x and y

have n entries, the deviation of x and y equals to
√

1
n

∑n
i=1(

xi−yi
xi

)2.
Fig. 2 (a) and (b) depicts the average number of transmissions

required to decode a generation via the simulation (sim) and
theoretical (bound) results for the different q, w and n. We can
first highlight that the difference of the two results is almost
negligible. A deviation of ∼ 6%, for moderate values of w

(w = 2 and 3), shows the validity of the proposed model.
Previous studies [2], [5] showed that the use of sparse codes
leads to an increase in the overall number of transmissions since
high sparsity (small w) rises the likelihood of producing linear
dependent coded packets, consequently rising the transmission
overhead. Fig. 2 also shows the impact of the field size on the
overall number of transmissions such that we can conclude that
the smaller the size of q, the higher the transmission overhead
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Fig. 4: Average decoding delay for different n,w and q.
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Fig. 5: The ADD and the Tn for different values of w.

is. This result due to the fact that, the probability of choosing
a zero-coefficient as an element of Fq is increased, especially
for smaller w which the overhead is more noticeable. Fig. 2
finally demonstrates the improved performance of RLNC than
Ideal and Robust Soliton degree distributions for LT codes in
terms of the total number of transmissions. This is because more
ability of RLNC to produce linear independent coded packets, and
because RLNC takes advantage of Gaussian elimination algorithm
for its decoding process. We can observe that although the LT
code can present a better the total number of transmission than
SNC in some configurations, SNC provides a lower number of
transmissions depending on the size of w and Fq , particularly
in larger w since by generating denser coded packets the SNC
performance goes toward RLNC.

Fig. 3 (a) and (b) illustrates the average number of transmis-
sions required to decode minimum x out of 128 original packets
for q = 2 and q = 232. The difference of the simulation results
and the obtained lower bound is very small (a deviation of ∼ 7%).
When SNC is used, by decoding a fraction of the original packets,
the next transmissions can be a combination of decoded original
packets. These transmitted packets do not rise the independent
linear combination received at the receiver side, they only rise
the transmission overhead, especially for smaller w. Therefore,
Fig. 3 shows that the highest number of transmissions to recover
a generation occurs for w = 2 to all the sizes of q. Furthermore,
Fig. 3 depicts the impact of the finite field size on partial decoding
for the different w and q. It is clear that, for smaller w, partial
decoding starts earlier than other w. For the case of q = 2 and
w = 2, 3 and 5, the receiver starts partial decoding as soon as it
collects 6.96, 8.74 and 18.85 coded packets, respectively. These
numbers increase to 63.39, 118.54 and 128, for q = 232 and w =
2, 3 and 5, respectively.

Fig. 4 (a) and (b) collects the imposed ADD per packet to
recover a generation for the different settings, in which we have
modified the values of n, q and w. We can first remark that
the difference of the simulation and analytical results is almost
negligible.. Also, the impact of the sparsity level on the SNC's
ADD per packet is significant. Such that for small w (w = 2 and
3) and the size of moderate generations (n = 64 and 128), SNC
provides 13 % and 12 % improvement in compared with RLNC

for q = 24 and q = 232, respectively. Fig. 4 also shows a different
behavior for q = 2 and w < 5. Such that the high probability of
choosing the zero-coefficient, along with the small size of the w

lead to rise the transmission overhead, consequently an increase in
ADD per packet. Moreover, Fig. 4 indicates that for w = 2, q = 24

and q = 232 have a better ADD per packet than q = 2. However,
for w ∈ [3, 11], q = 2 has the better performance than other finite
field sizes. Although using q = 232 leads to better efficiency in
terms of the overall number of transmissions, q = 24 provides 4%
and 3% improvement compared to q = 232 for ADD per packet to
decode the generations with sizes 64 and 128, respectively. The
illustrated results in Fig. 4 finally show an improvement in SNC
and RLNC than the LT code in terms of ADD per packet. This is
because NC schemes take advantage of more efficient decoding
algorithm in order to perform partial decoding.

Fig. 5 (a) and (b) depicts a trade-off curve between the imposed
ADD per packet and the overall number of transmissions for
SNC, RLNC and LT systems. When we use a SNC scheme
includes moderate generation sizes and w ∈ [3, 9], the optimal
choices in terms of the ADD per packet and the overall number
of transmissions are q = 2 and q = 232, respectively. Also, q = 24

establishes a trade-off between q = 2 and q = 232 for ADD and
tn. However, for w ≤ 3 and w > 11, q = 24 has a lower ADD per
packet. Above all, we can conclude that NC approaches provide
a more suitable performance than the provided LT code in with
regard to the total number of transmissions and the ADD per
packet.

V. CONCLUSION

This paper has addressed the impact of the field size on two
SNC's metrics, i) the average number of transmissions required to
decode a fraction of a generation, and ii) the imposed ADD per
packet to decode a generation. We have derived the mostly tight
lower bounds on the two mentioned metrics. Our results show
that SNC's ADD per packet can be significantly reduced through
selecting the appropriate w and q.
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