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Summary

The chemical industry is a vital part of the world economy transforming raw ma-
terials into crucial intermediary products. Batch processes are common in many
sectors of the chemical industry, which are gaining in importance due to the in-
creasing emphasis on fine and speciality chemicals that are mostly produced em-
ploying batch processes. The main advantage of batch processes is their relative
ease of design and inherent flexibility to produce different products and product
grades. The control of batch processes is challenging, since these are operated at
unsteady state and are often highly nonlinear. Nonlinear model predictive control
(NMPC) is therefore a promising approach that can handle nonlinearity and con-
straints on manipulated and controlled variables. Most batch process models are
however affected by significant uncertainties, which need to be taken into account
to prevent performance deterioration and constraint violations.

This thesis focuses on the development of NMPC formulations for batch pro-
cesses that explicitly consider stochastic uncertainties to trade-off risk with eco-
nomic performance. The work presented in this thesis is divided into two parts:

• Stochastic nonlinear model predictive control using uncertainty propagation

• Gaussian process dynamic modelling and nonlinear model predictive control

The first part deals with the formulation of stochastic NMPC (SNMPC) algo-
rithms by propagating the stochastic uncertainty through nonlinear transformations
within the optimal control problem (OCP). Stochastic uncertainties considered in-
clude both time invariant parametric and additive uncertainties. The estimated
statistics at each time step, such as mean and variance are utilised to ensure the
satisfaction of chance constraints, while optimizing a nonlinear economic objec-
tive in expectation.

Initially it is shown how the Unscented transformation and polynomial chaos
expansions (PCEs) can be exploited to propagate stochastic uncertainties resulting
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iv Summary

from state estimates, parametric uncertainties, and additive disturbances to for-
mulate the SNMPC algorithm. In addition, these are exploited to update the state
estimates given available measurements. Next a novel application of Gaussian pro-
cesses (GPs) is introduced for uncertainty propagation in SNMPC similar to PCEs.
Given the outstanding performance of GPs and PCEs to capture the required statis-
tics, a new approach for uncertainty propagation is proposed next combining PCEs
and GPs. This combination is shown to be superior to either GPs and PCEs alone.
All of the proposed SNMPC algorithms are shown to lead to a robust and reli-
able solution for batch processes and show superior performance to their nominal
NMPC counterparts.

The second part applies GPs to model batch processes from noisy input/output
data. Commonly, dynamic models for batch processes are derived from first prin-
ciples, which often have high development costs and are frequently too complex
to be utilised online. Using GPs for black-box identification is therefore an ap-
pealing alternative. GPs in this regard are especially useful, since these quantify
the residual uncertainty from the identification of a dynamic model. This uncer-
tainty measure can be exploited to obtain more reliable optimization and control
solutions.

Firstly, it is illustrated how GPs are able to accurately simulate a bioprocess
from experimental data and capture the model uncertainty by propagation of the
uncertainty measure. Further, it is shown that the predictive quality of GPs is over-
all comparable to that of ANNs. Given the excellent predictive quality of GPs, an
algorithm is then proposed to employ the GP as an approximate plant model for
NMPC. It is crucial to account for the plant-model mismatch of the GP to avoid
constraint violations. The proposed algorithm generates Monte Carlo samples of
the GP offline for constraint tightening using back-offs. It is shown how proba-
bilistic guarantees can be derived based on the number of constraint violations of
these samples. Further, the approach is able to account for both online learning and
state dependency of the uncertainty explicitly to alleviate conservativeness. Lastly,
computational times could be shown to be relatively low. Often for batch processes
it is possible to derive major parts of the plant models from first principles, how-
ever certain parts of the model are very difficult to determine from physical laws
alone. It is therefore proposed to extend the previous algorithm to this case, for
which the GP is exploited to model only the parts of the dynamic system that are
difficult to describe using first principles alone. A graphical abstract to summarize
the algorithm is given in Figure 1.
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Figure 1: Graphical abstract for the GP NMPC algorithm proposed in Part II.
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Chapter 1

Background

1.1 Batch processes
In this chapter some background information is given on batch processes. In

particular, the chapter focuses on their importance and the challenges for their
control to motivate the use of nonlinear model predictive control (NMPC). Note
we use the term batch processes to include semi-batch processes.

The chemical industry is a crucial part of the world economy. In 2017 the
chemical industry supported 120 million jobs and contributed US$5.7 trillion to
the world’s gross domestic product, an equivalent of 7% [122]. While continuous
and batch operations are employed in all sectors of the chemical industry, high
volume processes such as petroleum refining are typically continuous, while low
volume processes such as the production of speciality chemicals exploit batch op-
erations. In batch operations the raw materials are loaded in a vessel and processed
without material addition or removal, while for semi-batch processes some of the
reactants are continuously added. Continuous processes can be operated at eco-
nomically desirable operating points, however require considerably more effort to
design. Batch processes on the other hand enable higher flexibility by allowing
for adjustment of the temperature profile, final time, and feeding profile in the
case of semi-batch processes. Furthermore, batch reactors can be utilized for the
production of different products and product grades, which allows the production
to be adjusted based on market demand. The emphasis in the chemical indus-
try has increasingly changed towards high technology and niche markets such as
life sciences (pharmaceuticals and agrochemicals) as well as speciality chemicals.
Consequently, batch processes are gaining in importance [29].
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In general, batch process operation consists of the following steps:

• Loading the reactor vessel with raw material.

• Processing the raw material by following a recipe that outlines range of con-
centrations, flowrates, or temperatures for the desired reactions or separa-
tions to take place. During this stage key variables, such as temperature,
need to be controlled to ensure satisfactory performance.

• Discharging the reactor vessel and measuring the quality of the final batch
product.

In this regard, two different control problems arise for batch processes:

• End-point property control: the real economic objective of batch processes
is usually related to the product quality at the end of the batch.

• Set-point tracking: offline or online determined time-varying setpoint tra-
jectories need to be followed.

1.1.1 Control challenges

Batch process control poses some unique control challenges, which are mainly
concerned with productivity, product quality, and safety. Important characteristics
and challenges of batch processes are as follows [29]:

• Unsteady state operation: Batch processes do not operate according to a
designed single operating point and instead dynamically proceed from an
initial state to a very different final state. Set-points and control signals
consequently correspond to time varying profiles. Implications are that the
controller cannot be designed using approximate linearization around a sin-
gle operating point and it is rarely possible to operate away from constraints
due to wide operating ranges. Furthermore, available models are commonly
incomplete and poor, since a large range of operating conditions needs to be
covered.

• Irreversible behaviour: For batch processes it is often impossible to intro-
duce remedial corrections to off-specification material once produced, while
in contrast for continuous processes control actions can be used to move the
process back to the desired operating point.

• Limited feedback information: The control of the product quality is vital,
however online measurement can rarely be utilized to determine the product
quality. It is therefore difficult to correlate specific inputs to the final product
quality obtained.



1.1. Batch processes 5

• Slow dynamics: Compared to electrical or mechanical systems, chemical
systems are rather slow. This allows for larger sampling times and therefore
longer online computational times for MPC.

• Repetitive nature: Batch runs are repeated frequently and hence knowledge
from previous runs can be exploited to improve subsequent runs.

1.1.2 Dynamic modelling and optimization of batch processes

Mechanistic first principles dynamic models can be derived from material and
energy balances. The state variables are given by concentrations, pressure, tem-
perature, and volume, while typical control inputs are given by flow rates or valve
positions. Output measurements are often temperature and pressure. The model of
a batch process can be expressed as:

Ûx(t) = f (x(t),u(t)), x(0) = x0 (1.1)

y(t) = h(x(t),u(t)) (1.2)

where t is the run time, x denotes the states, u represents the control inputs, and y
are the online output measurements.

The main objective of batch operations is to determine an input profile that
optimizes an objective function expressing the system performance. A typical
optimization problem may be given as follows:

minimize
u[0,T ]

J (x0,u[0,T];T) = φ(x(T)) +
∫ T

t=0
L(x(t),u(t))dt

subject to

Ûx(t) = f (x(t),u(t)) ∀t ∈ [0,T], x(0) = x0

umin ≤ u(t) ≤ umax ∀t ∈ [0,T]

gp(x(t),u(t)) ≤ 0 ∀t ∈ [0,T]

gT (x(T)) ≤ 0

(1.3)

where J(·) is the objective function to be minimized, gp(·) represents path con-
straints, and gT (·) are terminal constraints. Note: unlike continuous processes that
have an infinite time horizon, OCPs of batch processes have a finite time horizon.

Batch process optimization involves both path constraints on inputs and states,
as well as end-point constraints. Input path constraints are generally given by ac-
tuator limits, while state path constraints are the result of safety and operability
considerations. Terminal constraints are often given by minimum product quality
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requirements. The objective is commonly to maximize productivity. For exam-
ple for tight temperature control we might aim to add as much of the reactant as
possible to maximize productivity, while still adhering to the safety constraints on
reactor temperature and pressure. This would lead to the following objective and
constraints:

• Maximize the reactant dosage: J (x0,u[0,T];T) = −F, where F is the feed
rate of the reactant.

• Path safety constraints: Keep temperature and pressure below certain safety
limits, i.e. gp(x(t),u(t)) = [TR −Tmax,PR −Pmax], where TR and PR are the
reactor temperature and pressure respectively.

• Ensure that the total amount of reactant added remains below a certain limit:
gT (x(T)) =

∫ T

t=0
Fdt − FTmax .

1.1.3 Batch process control

The aim of the control strategy is generally to maximize the amount of prod-
uct generated per unit time, while maintaining an acceptable product quality and
respecting safety limits. In particular, side-reactions can lead to a poor product
quality, while adiabatic temperature limits need to be followed to avoid a ther-
mal runaway. Measurements related to product quality are often not available and
hence it is common practice to track set-points of key process variables, such as
reactor temperature, to ascertain the required product quality. The vast majority of
batch processes are exothermic and therefore tight temperature control is vital.

Consider the problem of controlling a semi-batch reactor polymerization pro-
cess, which is highly exothermic. The feed rate of monomers is often fixed. Typ-
ically a cascade of PI controllers is employed in industry to maintain a given set-
point temperature, for which a slave controller tracks the set-point of the cooling
jacket temperature. The master controller provides the set-point of the cooling
jacket temperature to control the reactor temperature. The cascade control struc-
ture is illustrated in Figure 1.1. This cascade control structure has been shown to
provide reliable operation, however the fixed monomer feed rates are kept low to
ensure robustness [93]. Furthermore, it is industrial practice to operate at relatively
low temperature levels for safety. Keeping the reactant feed rates constant and
the reactor temperature low leads to low productivity and hence long batch times.
Therefore, many different control schemes have been devised for semi-batch re-
actions, which optimize both the monomer dosage and temperature profile. For
example, in [248] it has been proposed to determine optimal feeding and tem-
perature profiles offline to be tracked online, while in [96] it is proposed to track
necessary optimality conditions.
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Figure 1.1: Typical cascade control structure for batch processes.

Among the most promising approaches is NMPC, which repeatedly solves an
optimization problem based on a dynamic model of the batch process as in Equa-
tion 1.3. Many applications of NMPC for batch processes have been reported, such
as for crystallization processes [176], semi-batch polymerization reactions [188],
and bio processes [13]. NMPC can not only be used for improved temperature
control, but also to optimize end-point quality constraints. It should be noted how-
ever that there is a lack of in situ sensors to measure product quality online. The
main disadvantage of NMPC is its reliance on an accurate dynamic model of the
batch process. Dynamic model predictions of production scale operations are of-
ten affected by high uncertainties as highlighted in Figure 1.2. It is therefore vital
to account for these uncertainties to prevent constraint violations and performance
deterioration of the NMPC algorithm. NMPC works that consider uncertainties
are for example the multi-stage NMPC algorithm [164], an extended Kalman fil-
ter based NMPC approach [184], and polynomial chaos expansion based NMPC
methods [177].

Figure 1.2: Batch process uncertainties.
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1.2 Nonlinear model predictive control
Model Predictive Control (MPC), also referred to as receding horizon control,

was developed in the late seventies and has progressed significantly since then.
Model predictive control is the only advanced control methodology, which has
made a significant impact on industrial control engineering. The main advantages
of MPC are [165, 52]:

• It can be readily extended to multivariable problems.

• The formulation of the control problem takes actuator limitations into ac-
count.

• Process constraints can be included explicitly, which frequently leads to a
more profitable operation.

• Can be used for processes with simple and complex dynamics.

• The resulting control law is easily implemented.

• Deals with dead time intrinsically.

Often MPC algorithms are categorised by the models that are implemented.
Linear MPC refers to a family of MPC utilising linear models. Linear MPC ap-
proaches have found a multitude of successful applications in industry, in partic-
ular in the process industry [91]. Linear MPC theory is relatively mature and is
well-established in practice. Many systems however display strong nonlinear be-
haviour. In addition, due to higher product quality specifications, higher produc-
tivity demands, tighter environmental regulations and demanding economic con-
siderations the process industry is required to operate closer to the boundaries of
the system. This necessitates the use of models that describe the dynamics of the
process more accurately and hence the use of nonlinear models, which motivates
the use of nonlinear model predictive control (NMPC) [92].

1.2.1 Principle and formulation of NMPC

In general, MPC is based on the online solution of a finite horizon open-loop
optimal control problem (OCP) based on a dynamic model of the system to be
controlled. Figure 1.3 depicts the basic principle of MPC. Given measurements
at time t, the controller predicts the future states over a prediction horizon N
and determines the inputs to optimize a specified open-loop performance objec-
tive subject to constraints on states and control inputs. Due to disturbances and
plant-model mismatch, it is important to incorporate some feedback mechanism.
This is achieved by implementing only the calculated open-loop control input of
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the MPC until a new measurement becomes available, i.e. at each sampling time
the OCP is solved again with the control and prediction horizon moving forward.

Figure 1.3: Principle of model predictive control.

We consider the system to be controlled to be given by a set of nonlinear dis-
crete time equations:

xt+1 = f (xt,ut ), x0 = x̂0 (1.4)

where xt ∈ R
nx and ut ∈ R

nu are the vectors of states and inputs respectively,

The dynamic system is further assumed to be subject to constraints of the form:

ut ∈ U ∀t ≥ 0, xt ∈ X ∀t ≥ 0 (1.5)

whereU ⊆ Rnu andX ⊆ Rnx denote the set of feasible states and the set of feasible
inputs respectively. Basic examples ofU and X are given by box constraints:

U := {u ∈ Rnu |umin ≤ u ≤ umax} (1.6)

X := {x ∈ Rnx |xmin ≤ x ≤ xmax} (1.7)

where umin,umax,xmin, and xmax are specified constant vectors.
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A general discrete time open-loop OCP can be stated as follows:

minimize
U

J
(
xt,U; N

)
subject to

xk+1 = f (xk,uk) ∀k ∈ {t, . . . , t + N − 1}, xt = xt

uk ∈ U ∀k ∈ {t, . . . , t + N}

xk ∈ X ∀k ∈ {t, . . . , t + N}

(1.8)

where U = [ut, . . . ,ut+N−1], the time horizon is given by N and the objective
function by J(·). To distinguish between the real system and the system model
to predict the future, we denote the internal variables of the controller by a bar
(e.g. xk , uk ). This distinction is required, since even in the case with an exact
system model, the predicted values will in general not be the same as the actual
closed-loop values due to the recalculation of the OCP at every sampling time.

A common control objective is to steer the system to a desired set-point r =
(xs,us). A standard quadratic form for J(·) is the simplest and most often used:

J
(
xt,U; N

)
=

t+N∑
k=t

(xk − xs)
TQ(xk − xs) + (uk − us)

TR(uk − us) (1.9)

where Q and R denote positive definite weighting matrices.

The objective of the MPC is usually setpoint stabilization, however the true
objective is often to maximize profit. MPC using an objective to directly optimize
a quantity of interest instead of setpoint stabilization is referred to as economic
MPC (EMPC). Objectives for the EMPC may be to maximize a valuable product
in the process industry, minimize energy consumption in building climate control,
or cost efficient scheduling of production processes.

The open-loop OCP is repeatedly solved at each sampling time t = 0, . . . once
new measurements become available. The closed-loop control is then given by the
first optimal control action of Equation 1.8:

u∗t = u∗t (xt ; N) (1.10)

where u∗t (xt,N) denotes the first control action of the optimal solution of Equation
1.8.

The corresponding value function as the function of the state is given by:

V(xt ; N) = J(xt,U
∗
; N) (1.11)
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NMPC involves the online solution of a nonlinear OCP with a finite horizon
N and finitely parameterized controls and states as in Equation 1.8. For linear
MPC the solution of the OCP can be obtained as the optimization of a convex
quadratic program, which can be efficiently solved online and may explain in part
its wide usage in industry. NMPC on the other hand requires the solution of a
non-convex nonlinear program (NLP), which can be computationally expensive.
To allow for real-time solutions in general NMPC problems are solved only to
local optimality and the special structure of the NLP needs to be exploited, such
as sparsity. Two algorithms are most commonly utilized to solve NLPs, which
are sequential quadratic programming (SQP) approaches and interior point (IP)
methods [195]. The NLPs for NMPC in this work were solved using Casadi in
Python, which was developed to allow for a large degree of flexibility compared
to other algebraic modelling languages [9]. Casadi determines the exact gradients
of the NLP utilizing automatic differentiation in forward and reverse modes on
sparse matrix-valued computational graphs. These can subsequently be exploited
in state-of-the-art NLP solvers such as IPOPT [258]. It should be noted that NMPC
can be efficiently warm-started, since the NLP problem at one sampling is closely
related to the NLP problem at the previous sampling time. For MPC problems the
solution can be shifted by one sampling period and provide a reasonable solution
for the next NLP.

Figure 1.4: Basic NMPC control setup.

A basic NMPC control setup is depicted in Figure 1.4. The NMPC algorithm
described so far is initialized using the actual system state at each sampling time,
which often cannot be measured directly. Instead, the required state needs to com-
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monly be estimated from output measurements. The basic steps for a NMPC
scheme are as follows:

1. Obtain an estimate of the current system state using current measurements.

2. Compute an optimal control action sequence by solving a finite horizon OCP
based on a dynamic model of the system.

3. Implement the first control action of this sequence and continue with 1.

1.2.2 Nominal stability of NMPC

A key question for NMPC is concerned with its closed-loop stability without
uncertainties or disturbances, referred to as nominal stability. For simplicity it is
assumed that the objective is regulation to a constant set-point r = (xs,us). The
state trajectory resulting from the solution of the infinite horizon problem using
the principle of dynamic programming is known to be closed-loop stable. NMPC
based on a finite horizon OCP on the other hand may not be stable, since the
open-loop predictions and the closed-loop behaviour may be very different. In
principle the guarantees on stability exploit the value function of the NMPC given
in Equation 1.11 as a Lyapunov candidate using for example a quadratic objective
as in Equation 1.9. Firstly, it is shown that feasibility at one sampling instance
implies feasibility for the next sampling instance, which is known as recursive
feasibility. Thereafter, it is established that the value function is strictly decreasing,
which then implies asymptotic stability. Most techniques to guarantee stability
modify the NMPC formulation by introducing additional constraints and a suitable
penalty in the cost function. Several popular approaches are as follows [128]:

• A simple approach to guarantee stability is to add a so-called terminal equal-
ity constraint of the form xN = xs, which ensures convergence in finite time.
This leads to stability given feasibility at time t = 0, since it implies that af-
ter time N the value function is zero. The main disadvantage is that the
system needs to be brought to the origin for a finite horizon, which can lead
to small regions of attraction [134].

• Terminal set constraint of the type xN ∈ Ω that ascertain the state to be reg-
ulated close enough to the set-point. In dual mode NMPC it is then assumed
that there exists a feasible and stabilizing controller in Ω to switch to, which
means once x ∈ Ω it never leaves Ω and asymptotically goes to the set-point
[178].

• The use of a terminal set constraint xN ∈ Ω and a terminal cost function
E(xN ) that is added to the objective. The terminal set constraint ensures
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the state to be in Ω for a finite horizon, while the terminal cost acts as a
Lyapunov function to ensure local stability for all x ∈ Ω from the NMPC.
Terminal constraint sets and terminal costs can be obtained from local lin-
earization, which is relatively practical [63].

• A sufficiently large time horizon N leads to closed-loop stability. Rules
to choose a large enough time horizon N to guarantee stability were first
introduced in [106].

1.2.3 Nonlinear state estimation

The implementation of NMPC requires knowledge of the current state of the
nonlinear system at each sampling instance. Rarely is it possible to attain a mea-
surement of the full state and hence nonlinear state estimation is crucial for the
successful application of NMPC in practice. Furthermore, there may be substan-
tial uncertainty on parameters of the nonlinear dynamic model utilized within the
NMPC. It is common practice to add these uncertain parameters to the state vector
to update them together with the states within the state estimator. Furthermore, to
converge to a given set-point offset free a bias correction can be computed from
output measurements to account for modelling errors and disturbances [224].

The most common approach for nonlinear state estimation is given by the Ex-
tended Kalman Filter (EKF), which applies the original Kalman filter equations
to estimate the state by linearizing the nonlinear system [99]. This allows the
mean and covariance of the Gaussian distribution to be propagated, which how-
ever achieves only a 1st order accuracy of these. To overcome this issue the
Unscented Kalman filter (UKF) has been introduced, which uses a determinis-
tic sampling approach instead to evaluate the mean and covariance accurately up
to 3rd order [131]. Another popular stochastic approach is given by particle filters,
which express the probability distributions of the states using weighted samples
and propagate these through the nonlinear equation system. A major disadvantage
of particle filters is that the number of samples required can be computationally
prohibitive [12]. Alternatively, a least-squares optimal state estimation problem
can be formulated defined on the full data history subject to the nonlinear dynam-
ics. This may however be impractical due to the growing amount of data with time.
Therefore, nonlinear moving horizon estimation has been proposed to make use of
a finite memory moving window of both current and historical measurements for
least-square estimation of the states [181].

1.2.4 Continuous time dynamic model

Most systems in chemical engineering are given by differential equations in
continuous time. For example, as shown in Section 1.1.2 first principles models of
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batch processes are in continuous time, which we assume can be expressed as:

Û̃x(t̃) = f̃ (x̃(t̃), ũ(t̃)), x̃(0) = x̂0 (1.12)

where the continuous time variables are denoted by a tilde.

Let T denote the continuous time horizon over the finite horizon N , such that
the sampling time is given by h = T

N and t̃k denotes the continuous time at discrete
time k. Unlike the OCP given in Equation 1.8, which has a finite number of opti-
mization variables, the OCP based on a continuous system model has theoretically
infinitely many optimization variables even for a finite time horizon. There are two
approaches to solve the continuous time OCP, which are:

• Indirect approach: This method is based on the solution of Euler-Lagrange
differential equations from the classical calculus of variations, which yields
the control actions as a function of time and hence needs to be resolved for
updated initial conditions. It can be seen as the application of the necessary
conditions of optimization to an infinite dimensional optimization problem.
The finite dimensional problem is however often too difficult to solve online.

• Direct approach: The direct approach parameterizes the infinite dimensional
decision variables yielding a finite dimensional NLP. This NLP can be effi-
ciently solved online by exploiting its sparse structure.

For online solutions of the NMPC problem the last approach is commonly used,
which needs to be resolved at each sampling instance with the new initial state.
The most common techniques for parameterization are single shooting, multiple
shooting, and collocation. A further distinction within direct approaches is se-
quential or simultaneous. For sequential techniques the integrator is outside of the
optimization problem, which only passes states and gradient information between
each iteration. For simultaneous methods the required equations for discretization
are added to the optimization problem as equality constraints. In this thesis most
papers are written using discrete time notation, for which collocation has been ap-
plied to yield the required discrete time formulation. The collocation equations
are added to the optimization problem, i.e. using a simultaneous formulation. The
details for this are outlined here. For more information refer to [27].
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Figure 1.5: Polynomial approximation of state trajectory using collocation.

The infinite OCP is discretized in both controls and states on a finite grid
t̃k with k = 0, . . . ,N . This N corresponds to the time horizon length in dis-
crete time. Let the controls be piecewise constant on each interval [t̃k, t̃k+1], i.e.
ũ(t) = uk ∀t̃ ∈ [t̃k, t̃k+1] equivalent to the previous discrete time formulation. Col-
location approximates the state trajectory over the time interval utilizing a polyno-
mial representation of order K with K +1 parameters. Lagrange polynomials are a
common choice to represent the interpolation polynomials with K+1 interpolation
points. This is illustrated in Figure 1.5. Let i refer to term i for each polynomial.
The polynomial approximation of the state can then be stated as:

t̃ = t̃k + hτ, h =
T
N

(1.13)

x̂(θk, t̃) =
K∑
i=0

θk ,i · Pk ,i

(
t̃ − t̃k

h

)
, Pk ,i(τ) =

K∏
j=0, j,i

τ − τj

τi − τj
(1.14)

where t̃ ∈ [t̃k, t̃k+1], τ ∈ [0,1] is the normalized time, τi i = 0, . . . ,K are the
collocation points, h is the time interval length of one polynomial, Pk ,i are the
Lagrange polynomials, x̂(·) is the approximate state trajectory, and θk ∈ Rnx×(K+1)

are the polynomial coefficients. The polynomial state approximation has the fol-
lowing property: x̂(θk, t̃k + hτi) = θk ,i, i.e. x̂(·) is exactly equal to its parameters
at the collocation points.

The initial collocation point is at t̃k to enforce continuity, i.e. τ0 = 0. The
remaining K collocation points are chosen according to quadrature rules, such as
Radau or Legendre quadrature.
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The collocation parameters θk need to be adjusted to approximate the contin-
uous time equation f̃ (x̃(t̃),uk) in Equation 1.12. This is achieved by requiring the
gradients of the polynomial at K collocation points to be equal to f̃ (x̃(t̃),uk):

K∑
i=0

θk ,i ·
dPk ,i

dτ τ=τj
= h · f̃ (θk , j,uk) j = 1, . . . ,K, k = 1, . . . ,N − 1 (1.15)

Further, we require equations that ensure that the first state of the first polyno-
mial matches the given initial condition and thereafter continuity conditions such
that the final state prediction matches the initial state of the next polynomial:

x̂(θ0,0) = θ0,0 = x̂0 (1.16)

x̂(θk, tk+1) = x̂(θk+1, t̃k+1) = θk+1,0 k = 1, . . . ,N − 1 (1.17)

This then leads to nx × (K + 1) × N equality constraints to determine the un-
known parameters θk . In essence the original discrete time system model f (xk,uk)

in Equation 1.8 is replaced with discretization equations for Equation 1.12 using
collocation. The reformulated OCP can then be given as:

minimize
U

J
(
xt,U; N

)
subject to

xk+1 = x̂(θk, t̃k+1) ∀k ∈ {t, . . . , t + N − 1}, θ0,0 = xt

K∑
i=0

θk ,i ·
dPk ,i

dτ τ=τj
= h · f̃ (θk , j,uk) j = 1, . . . ,K, k = 1, . . . ,N − 1

x̂(θk, tk+1) = θk+1,0 k = 1, . . . ,N − 1

uk ∈ U ∀k ∈ {t, . . . , t + N}

xk ∈ X ∀k ∈ {t, . . . , t + N}

(1.18)

where the nonlinear discrete time equation is given by the polynomial approxi-
mation of the continuous time equation. Note using x̂(θk, t̃) additional state con-
straints can be introduced at arbitrary times t̃.

1.2.5 Infeasibility handling

Feasibility of the NMPC optimization problem is an important requirement to
obtain reliable performance. For practical applications of NMPC this means that
the optimization problem is relaxed to ensure feasibility at each sampling time,
since accurate uncertainty information is commonly not available. A general way
to reformulate an optimization problem is the use of soft constraints using slack
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variables. Assume the state constraint set to be given by X = {x ∈ Rnx |g(x,u) ≤
0}, slack variables can then be introduced as follows:

minimize
U,λ

J
(
xt,U; N

)
+ | |Wλ| |1

subject to

xk+1 = f (xk,uk) ∀k ∈ {t, . . . , t + N − 1}, xt = xt

uk ∈ U ∀k ∈ {t, . . . , t + N}

g(xk,uk) ≤ λ ∀k ∈ {t, . . . , t + N}

λ ≥ 0

(1.19)

where W is a positive definite weight matrix. The penalty term in the objective
is usually chosen such that it dominates the original objective function to avoid
undesirable relaxations.

1.2.6 NMPC under uncertainty

It was assumed so far that the actual plant is identical to the model employed
in the NMPC algorithm, i.e. that there is no plant-model mismatch or unknown
disturbances. In reality the dynamic model is going to be affected by many dif-
ferent uncertainties, which need to be addressed in the formulation of the NMPC.
Assume the nonlinear discrete time system to be given by:

xt+1 = f (xt,ut,ωt ), x0 = x̂0 (1.20)

where ωt describes possible uncertainties.

It has been shown that the nominal MPC approach ignoring uncertainties has
inherent robustness under certain conditions, however this is usually not sufficient
[224]. Instead, uncertainties need to be considered within the NMPC formula-
tion. In principle approaches can be divided into two separate categories, which
are robust MPC (RMPC) methods or stochastic MPC (SMPC) approaches. RMPC
consider set-membership-type uncertainties, which are assumed to be determin-
istic and lie in a bounded set, i.e. it is assumed ω ∈ W and W is assumed to
be compact. Uncertainties in the real-world are often of probabilistic nature and
hence it may seem more natural to account for the probabilistic occurrence of these
explicitly. SMPC therefore assumes uncertainties to be given by probability dis-
tributions, such that ω ∼ pω and pω is a known probability distribution with either
bounded or unbounded support.

The earliest RMPC approaches were focused on min-max MPC [53]. These
methods focus on minimizing cost, while satisfying constraints under the worst-
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case realization of the uncertainties. It has been shown however that, in many
cases, these methods are unable to deal with the spread of state trajectories and
hence are overly conservative or infeasible [232]. An example of a min-max OCP
formulation is given in Equation 1.21. To overcome this issue closed-loop min-
max MPC was proposed [155], for which the cost function is minimized over con-
trol policies as opposed to control actions. This alleviates the conservativeness by
accounting for feedback. Optimizing over general control policies presents an infi-
nite dimensional problem, such that it has been proposed to instead optimize over
parameterized feedback policies [21]. Another RMPC approach are tube-based
MPC methods, which were first introduced for linear systems [174] and later ex-
tended to nonlinear systems [174]. These methods introduce a so-called ancillary
controller, which ensures that the evolution of the real system stays in a tube cen-
tred around the nominal solution. The tube is based on the pre-computation of
a robust positive invariant set. For tube-based MPC the feedback control action
reduces the influence of disturbances, however it does not address the optimal per-
formance in the presence of uncertainties.

minimize
U

[
maximize
ωt:t+N−1

J
(
xt,U; N

)]
subject to

xk+1 = f (xk,uk,ωk) ∀k ∈ {t, . . . , t + N − 1}, xt = xt

uk ∈ U ∀k ∈ {t, . . . , t + N}

xk ∈ X ∀k ∈ {t, . . . , t + N}

(1.21)

SMPC generally aims to maximize the expectation of the objective function
subject to either chance constraints or expectation constraints. A possible formu-
lation of a stochastic MPC problem is given in Equation 1.22. Stochastic tube MPC
methods have been introduced extending the tube-based approaches in RMPC
for linear systems affected by additive or multiplicative stochastic uncertainties
[57]. There have also been several approaches proposed that optimize parameter-
ized affine disturbance feedback policies [201]. Another class of popular methods
for SMPC use scenario-based techniques, which draw several realizations of the
stochastic uncertainties and then use these scenarios to approximate the probabilis-
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tic constraints and objective [230].

minimize
U

[
E

ωt:t+N−1

(
J
(
xt,U; N

))]
subject to

xk+1 = f (xk,uk,ωk) ∀k ∈ {t, . . . , t + N − 1}, xt = xt

uk ∈ U ∀k ∈ {t, . . . , t + N}

P(g(xk,uk) ≤ 0) ≥ 1 − ε ∀k ∈ {t, . . . , t + N}

(1.22)

Figure 1.6: Illustration of chance constraints.

The probability of admissible constraint violations ε gives SMPC an additional
tuning parameter, which can be utilized to trade-off the conservativeness of the
SMPC controller with the control objective. Some scenarios of the uncertainty
may have a diminishingly small probability of occurrence, which can lead to ex-
cessively conservative solutions if considered. RMPC requires the constraints to
be fulfilled for all scenarios, while SMPC allows for some constraint violations.
Chance constrained SMPC is therefore often motivated by alleviating this conser-
vativeness of RMPC. An illustration of a chance constraint is shown in Figure 1.6.
A recent development is also the use of stochastic EMPC, which often leads to im-
proved performance by yielding higher objective values "on average" [19]. Several
challenges that may arise for SMPC are as follows:

• The evaluation of chance constraints involves the solution of multivariate
integrals, which is commonly computationally prohibitive. Instead, it is
common practice to utilize inequalities to upper bound the original chance
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constraint, such as the Chebyshev inequality. This however often leads to an
overly conservative solution [88].

• Joint chance constraints are also difficult to evaluate exactly and therefore
are frequently approximated exploiting individual chance constraints using
Boole’s inequality. This also leads to an overly conservative solution [88].

• To attain probabilistic guarantees for scenario-based approximations the cen-
tral limit theorem is commonly utilized, which however requires the samples
to be independent. This in turn prevents the use of more efficient sampling
approaches, which introduce correlations between samples to improve con-
vergence [119].

1.2.7 Stochastic nonlinear model predictive control

Most work in SMPC has been on linear systems, while stochastic NMPC (SN-
MPC) has received relatively little attention [175]. This can be in part explained
by the difficulty of propagating stochastic uncertainties through a nonlinear sys-
tem model without being prohibitively expensive. An exception are Markovian
systems with finite possible realizations of the stochastic uncertainties, for which
efficient algorithms are available [164]. Several methods have been proposed to
propagate uncertainties through nonlinear systems, such as Monte Carlo sam-
pling (MC), polynomial chaos expansions (PCEs), Gaussian closure, equivalent
linearization, and stochastic averaging [148]. Chance constraints are commonly
approximated using either estimates of the mean and variance of the states, or
sample-based evaluations.

Several SNMPC approaches have been proposed. Assuming the uncertainties
to have only finite number of realizations, multi-stage stochastic nonlinear pro-
gramming approaches can be used to determine the exact solution [164]. These
in general require adhering to the constraints for each scenario. Given this re-
striction, stochastic stability and recursive feasibility have been proven [205]. For
continuous stochastic uncertainties on the other hand it is difficult to propagate
the uncertainties without being prohibitively expensive. An easy solution to this
problem is given by successive linearization of the nonlinear dynamic system as in
extended Kalman filter based NMPC [154, 184]. Similarly, stochastic averaging
can be utilized using the unscented transformation [160]. While both approaches
are computationally cheap, they are only applicable to moderately nonlinear sys-
tems. In [233] the particle filter equations are used to estimate the required statis-
tics. This SNMPC algorithm however becomes quickly prohibitive in complexity
due to the required number of samples. Similarly, in [166] Markov Chain MC is
proposed to solve constrained nonlinear stochastic optimization problems. A well-
established framework exists for both particle filters and Markov Chain MC, which
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do not rely on convexity assumptions and converge to a near-optimal solution for
a sufficient number of samples. Nonetheless, the number of samples required is
often computational prohibitive. For continuous-time dynamic systems Fokker-
Planck equations have been used in [50] to propagate the pdfs of the uncertain
variables. This approach is however quite expensive, since it requires the online
solution of partial differential equations. In [261] it is proposed to use Gaussian
mixtures for uncertainty propagation, in which most of the calculations are carried
out offline. While this is generally quite efficient, it is only applicable for control
actions from a discrete set and low dimensional systems. Conventional RMPC
methods can also be applied to include chance constraints by defining the robust
sets accordingly [30].

A number of methods in SNMPC rely on regression approaches, such as poly-
nomial chaos expansions (PCEs) [177], supervised clustering [4], and Gaussian
processes [36]. These methods replace the implicit mapping between uncertain
variables and objective and constraint functions from realizations of the uncertain
variable. This mapping can then be utilized to estimate the mean and variance
of the objective and constraint functions [177], or sampled directly to estimate
the chance constraints [242]. These methods are efficient for low dimensional
uncertain variables and quickly become computationally expensive for higher di-
mensional uncertainties due to exponential scaling with the number of uncertain
parameters. This poses a particular issue for time-varying uncertainties, which add
to the dimension of the uncertain variables at each time instance. These approaches
are therefore regarded as only applicable to time-invariant uncertainties.

There are several issues pertaining to many of the methods presented. Firstly,
most methods rely on optimizing over scenarios of the uncertainties. Each scenario
represents a nonlinear dynamic equation system and hence quickly leads to a very
expensive non-convex optimization problem even for a moderate number of sam-
ples. In addition, most techniques rely on the optimization of open-loop control
actions to limit the computational complexity and hence ignore feedback. This is
however quite conservative. In addition, the estimation of the chance constraints is
a very challenging issue in SMPC even in the linear case. Most approaches there-
fore rely on approximations using Chebyshev’s inequality, which leads to further
conservativeness. Lastly, there is a lack of guarantees for stability and recursive
feasibility due to the difficulty of defining a worst-case scenario and propagat-
ing uncertainty sets for nonlinear systems. Lipschitz-based bounds for example
quickly lead to infeasible problems [30].
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1.2.8 Gaussian processes in NMPC

NMPC algorithms exploit numerous different models, commonly developed
by first principles or by black-box identification. For example NMPC algorithms
can be based on neural network models [212], fuzzy models [133], or support
vector machines [123]. Another increasingly popular nonlinear regression method
for black-box identification is based on GP regression. An example of GP regres-
sion is shown in Figure 1.7. GP models are probabilistic non-parametric models
that also offer information about prediction uncertainties, which are difficult to
evaluate appropriately for nonlinear parametric models [144]. This estimation of
confidence is a significant advantage of GP models, because this information can
be utilised in NMPC algorithms to attain a more robust and reliable control per-
formance. Furthermore, the GP uncertainty measure can be exploited for active
learning of dynamic models by steering the system into regions with large uncer-
tainties [147]. Early work using GPs to identify dynamic models can be found in
[100, 141].

Figure 1.7: Gaussian process regression example with 95% confidence interval.

GPs have generally been applied in two distinct ways for MPC. Firstly, GPs
have been employed to identify the required plant model based on input/output
data pairs in some diverse areas of control. The use of GPs as approximate plant
model was first introduced in [183], which continuously updates a GP for set-point
tracking. In [143, 142] the GP plant is instead identified offline. The variance in
this approach was constrained to prevent the controller from steering into regions
with high uncertainty. [103] derived an explicit solution for GP-based NMPC,
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while in [272] rise-sensitive cost functions are introduced for GP MPC for more
effective online learning by balancing exploration with exploitation. Secondly,
GPs have been exploited to overcome unmodelled errors. In [139] a GP is updated
online to overcome unmodelled periodic errors, while in [239] a GP is trained to
tackle unmodelled nonlinearities for linear MPC. In [167] it is proposed to apply
GPs to update the dynamic model after a fault has occurred. There are also several
papers that model the deviation of first principles models and the real system using
GPs [113]. Applications of GP NMPC include the control of UAVs [60, 125], the
control of a gas-liquid separation process [158], and the steering of autonomous
miniature race cars [113]. These and other works show the feasibility of GP-based
MPC, however the consideration of the uncertainty in an efficient manner remains
a difficult problem. The issues concerning this uncertainty measure face similar
issues as presented in the previous section, since GPs are nonlinear probabilistic
models. Efficient uncertainty propagation and formulation of chance constraints is
therefore difficult.

Most methods to account for the uncertainty measure are based on different
uncertainty propagation methods with variance constraints or chance constraints,
for example [143, 142, 113, 60, 103, 260]. In [114] an overview is given of the
various stochastic propagation techniques. Recently, some methods from robust
NMPC have been adopted to incorporate the uncertainty measure. In [147] the
uncertainties are represented by ellipsoidal sets and propagated using lineariza-
tion around the mean function to obtain closed-loop stability guarantees. [169]
propose an approach that relies on bounds for the one-step ahead errors to obtain
closed-loop stability guarantees. Lastly, [239] develops a linear MPC approach
with stability guarantees.





Chapter 2

Thesis overview

2.1 Research objective
The aim of this thesis is the development of novel NMPC formulations that ex-

plicitly consider stochastic uncertainties for batch processes to trade-off risk with
economic performance. The thesis is divided into two parts.

In the first part it is assumed that a first principles model is available with
stochastic uncertainties arising from parametric uncertainties, time varying addi-
tive disturbances and state estimation errors. In particular, it aims to develop novel
uncertainty propagation algorithms utilized within the NMPC formulation that use
a small number of scenarios to remain computationally tractable.

In the second part it is instead assumed that a full first principles model is not
available, and therefore part of this first principles model or the full state space
model need to be identified from available data. To accomplish this a GP is built
and the overall aim is to establish a GP NMPC algorithm that accounts for the
stochastic non-parametric error quantified by the GP.

2.2 Outline and contributions
Part I of the thesis is the background and introduction to the thesis with chapters

1-2, while part IV concludes the thesis with some suggestions for future research in
chapters 11-12. The main body of the thesis is divided thematically into two parts
II-III. Part II consists of chapters 3-6 dealing with novel formulations of NMPC
algorithms using uncertainty propagation, while part III is given by chapters 7-10
involving GP-based dynamic modelling and NMPC for batch processes.

Chapter 1 gives some background material for the main part of the thesis.
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Chapter 2 gives of an overview of the thesis including the main research ob-
jective, outline and contributions, and a list of publications.

Chapter 3 (Paper A) introduces an algorithm using the Unscented transfor-
mation for uncertainty propagation for both the SNMPC formulation and state es-
timation considering noise from disturbances, parametric uncertainties, and state
estimation errors. The approach is verified on a semi-batch reactor case study. The
work extends existing unscented SNMPC formulations by accounting for paramet-
ric noise in addition to additive noise, adding a reformulation using log-transforms
to ensure physical variables remain non-negative, and also uses the square-root
unscented Kalman filter for improved numerical stability.

Chapter 4 (Paper B) describes an algorithm using PCEs to express the proba-
bility distributions of the uncertainties, which are updated using a PCE based state
estimator from noisy output measurements and exploited in the NMPC formula-
tion to adhere to chance constraints. Feedback is considered using time-invariant
linear feedback gains. The method is verified on a polymerization semi-batch
reactor case study. Previous work using PCE based SNMPC is extended to the
output feedback case. PCEs are utilized, since for moderate dimensional prob-
lems these have been shown to give accurate estimates of the statistics required for
relatively low number of samples. To alleviate conservativeness, a time-invariant
linear feedback gain was added to the problem, which is optimized over in addi-
tion to the open-loop control actions. Lastly, the presence of time-varying additive
disturbance noise is considered using the law of total expectation.

Chapter 5 (Paper C) shows how GPs can be utilized as an alternative to PCEs
to propagate uncertainties in the NMPC formulation and formulate chance con-
straints with Gaussian parametric uncertainties. The approach is verified by show-
ing the ability of the GP to accurately describe the probability density functions of
the underlying system and the closed-loop behaviour of the resulting NMPC algo-
rithm on a semi-batch reactor case study. The main advantage of using GPs over
PCEs in SNMPC is the fact that the uncertainty involved from the approximation
of the true model by a finite number of samples is taken into account, which is
otherwise ignored by PCEs. In addition, GPs are not prone to unstable swings and
are interpolating, i.e. pass exactly through all sample points provided, but other-
wise suffer from the same drawbacks as PCEs. The novelty in this paper is the
application of GPs to learn the mapping between uncertain parameters and model
outputs for SNMPC applications. Terms are identified that can be calculated offline
to significantly reduce the computational costs online.

Chapter 6 (Paper D) introduces a novel uncertainty propagation method by
combining GPs and PCEs with Gaussian parametric uncertainties to obtain the re-
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quired statistics, which mainly builds on Chapter 5 by employing PCEs as mean
function for the GP. GPs are known to approximate the function well locally, but
not as well globally. PCEs on the other hand are better suited for global function
approximations, but may not have the same accuracy between data-points as GPs.
The combination of both is therefore beneficial. The ability of this new approach to
estimate the probability density function, and the mean and variance is extensively
verified and compared to other techniques on a semi-batch reactor case study. It
is shown that the approach outperforms PCEs, GPs, and the Unscented transfor-
mation. The computational times are kept moderately low by pre-computing the
expensive terms involved in the method. Lastly, the new algorithm is shown to
lead to superior constraint satisfaction over a nominal NMPC algorithm using soft
constraints despite the stochastic uncertainties present.

Chapter 7 (Paper E) applies GP regression to obtain a dynamic model of a
batch bioreactor from experimental data to show its potential application in this
field. Dynamic modeling is an important tool to gain better understanding of com-
plex bioprocesses and to determine optimal operating conditions for process con-
trol. In literature two modeling methodologies have been applied to bio systems:
kinetic modeling, which necessitates deep mechanistic knowledge, and artificial
neural networks (ANN), which in most cases cannot incorporate process uncer-
tainty. To test the performance of this strategy, GPs were applied to model mi-
croalgae growth and lutein production based on existing experimental datasets and
compared against the results of previous ANNs. The goal of this study is to in-
troduce an alternative modeling strategy, namely Gaussian processes (GP), which
incorporates uncertainty but does not require complicated kinetic information. The
results show that GPs possess comparable prediction capabilities to ANNs for
long-term dynamic bioprocess modeling, while accounting for model uncertainty.
This strongly suggests their potential applications in bioprocess systems engineer-
ing. Furthermore, a dynamic optimization under uncertainty is performed, avoid-
ing over-optimistic optimization outside of the model’s validity.

Chapter 8 (Paper F) introduces an algorithm, which utilizes GP regression
to obtain an approximate plant model for NMPC from input/output data given
the excellent predictive quality of GP plant models shown in Chapter 7. To ac-
count for the uncertainty due to data sparsity the probabilistic nature of the GP
is exploited to account for the plant-model mismatch. The majority of works for
GP-based MPC consider the uncertainty measure provided using stochastic un-
certainty propagation, which substantially increases the computational time due
to the propagation approach and most works ignore feedback in the formulations.
Due to the issues using uncertainty propagation for the NMPC formulation, we
base the NMPC only on cheap evaluations of the GP. In particular, possible plant
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models are sampled independently from the GP using recent sampling techniques
and explicit back-offs are used to tighten constraints of the NMPC to guarantee
satisfaction of chance constraints. Advantages of the approach over existing tech-
niques is the consideration of closed-loop behaviour and online updates of the GP
to alleviate conservativeness, while keeping the online computational time low.
In addition, independence of samples allows some probabilistic guarantees to be
given. Finally, through a comprehensive semi-batch bioprocess case study, the ef-
ficiency and potential of this method for the optimisation of complex stochastic
systems (e.g. biological processes) is well demonstrated.

Chapter 9 (Paper G) further extends the algorithm introduced in the previous
chapter. Apart from considering online updates, it is also shown how to take into
account the inherent state dependency of the GP uncertainty measure to alleviate
conservativeness. Furthermore, possible uncertainties from additive disturbance
noise and the initial state were added. Lastly, a root-finding algorithm is exploited
to obtain the required backoffs, which leads to improved convergence and satisfac-
tion of the required probability bounds. All in all, the new algorithm is consider-
ably more reliable than the algorithm in Chapter 8, while accounting for additive
disturbance noise, noise on the initial state, and the ability to consider the state de-
pendency of the uncertainty. The approach is extensively verified on a semi-batch
bioreactor case study.

Chapter 10 (Paper H) further extends the technique from the previous two
chapters to the hybrid modelling case, in which it is assumed that the GP is uti-
lized to identify parts of a first principles model that are difficult to derive using
physical laws alone as opposed to identifying the entire state space model. To ac-
complish this a new modelling approach is introduced using maximum a posteriori,
since the required function values for the GP are now latent and need to be esti-
mated. The approach is verified on a semi-batch bioreactor case study. Firstly, it is
shown that the identified GP is able to both give accurate predictions and account
for the uncertainty accurately. Further, the algorithm is compared to the previous
algorithm in Chapter 9 using the same number of data-points. While the hybrid
GP-based algorithm is able to determine a reasonable solution, the algorithm in
Chapter 9 is evidently unable to establish a solution due to the very large spread of
trajectories. This highlights the main advantage of the algorithm to take advantage
of a pre-existing first principles model, which drastically reduces the amount of
the data required to obtain an accurate plant model.

Chapter 11 concludes the thesis.

Chapter 12 gives some suggestions for future work.
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2.3 Publications

2.3.1 Main part of the thesis

The following publications are given each as individual chapters in the main
body of the thesis.

A E. Bradford and L. Imsland. Economic Stochastic Model Predictive Control
Using the Unscented Kalman Filter. IFAC-PapersOnLine, 51(18):417–422,
2018.

B E. Bradford and L. Imsland. Output feedback stochastic nonlinear model
predictive control for batch processes. Computers & Chemical Engineering,
126:434–450, 2019.

C E. Bradford and L. Imsland. Stochastic Nonlinear Model Predictive Control
Using Gaussian Processes. In 2018 European Control Conference (ECC),
pages 1027–1034, 2018.

D E. Bradford and L. Imsland. Combining Gaussian processes and polynomial
chaos expansions for stochastic nonlinear model predictive control. Journal
of Process Control, submitted, 2020.

E E. Bradford, A. M. Schweidtmann, D. Zhang, K. Jing, and E. A. del Rio-
Chanona. Dynamic modeling and optimization of sustainable algal produc-
tion with uncertainty using multivariate Gaussian processes. Computers &
Chemical Engineering, 118:143–158, 2018.

F E. Bradford, L. Imsland, and E. A. del Rio-Chanona. Nonlinear model pre-
dictive control with explicit back-offs for Gaussian process state space mod-
els. In 58th Conference on decision and control (CDC), pages 4747–4754.
IEEE, 2019.

G E. Bradford, L. Imsland, D. Zhang, and E. A. del Rio-Chanona. Stochastic
data-driven model predictive control using Gaussian processes. Computers
& Chemical Engineering, accepted, 2020.

H E. Bradford, L. Imsland, M. Reble, and E. A. del Rio-Chanona. Hybrid
Gaussian process modelling applied to economic stochastic model predic-
tive control of batch processes. In Progress on Economic and Distributed
Model Predictive Control and Applications. Springer, submitted, 2020.
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2.3.2 Appendix of the thesis
The following publications are not directly included in the thesis and instead
are given in the appendix, since they describe intermediary work.

I E. Bradford and L. Imsland. Expectation constrained stochastic nonlinear
model predictive control of a batch bioreactor. Computer Aided Chemical
Engineering, 40:1621–1626, 2017.

J E. Bradford and L. Imsland. Stochastic NMPC of Batch Processes Using
Parameterized Control Policies. Computer Aided Chemical Engineering,
44:625–630, 2018.

K E. Bradford and L. Imsland. Stochastic nonlinear model predictive control
of a batch fermentation process. Computer Aided Chemical Engineering,
46:1237–1242, 2019.

L E. Bradford, M. Reble, A. Bouaswaig, and L. Imsland. Economic stochastic
nonlinear model predictive control of a semi-batch polymerization reaction.
IFAC-PapersOnLine, 52(1):667–672, 2019.

M E. Bradford, M. Reble, and L. Imsland. Output feedback stochastic nonlin-
ear model predictive control of a polymerization batch process. In 2019 18th
European Control Conference (ECC), pages 3144–3151. IEEE, 2019.

2.3.3 Not included in the thesis
The following are publications that are not directly relevant to the PhD the-
sis, but were written during the period of the PhD.

• E. A. del Rio-Chanona, X. Cong, E. Bradford, D. Zhang, and K. Jing.
Review of advanced physical and data-driven models for dynamic bio-
process simulation: Case study of algae-bacteria consortium wastew-
ater treatment. Biotechnology and Bioengineering, 116(2):342–353,
2018.

• E. A. del Rio-Chanona, J. E. A. Graciano, E. Bradford, and B. Chachuat.
Modifier-Adaptation Schemes Employing Gaussian Processes and Trust
Regions for Real-Time Optimization. IFAC-PapersOnLine, 52(1):52–
57, 2019.

• P. Petsagkourakis, I. O. Sandoval, E. Bradford, D. Zhang, and E. A. del
Rio-Chanona. Reinforcement Learning for Batch-to-Batch Bioprocess
Optimisation. Computer Aided Chemical Engineering, 46:919–924,
2019.
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• P. Petsagkourakis, I. Sandoval, E. Bradford, D. Zhang, and E. A. del
Rio-Chanona. Reinforcement Learning for Batch Bioprocess Opti-
mization. Computers & Chemical Engineering, 133:106649, 2019.

• P. Petsagkourakis, I. Sandoval, E. Bradford, D. Zhang, and E. A. del
Rio-Chanona. Constrained Reinforcement Learning for Dynamic Op-
timization under Uncertainty. In IFAC 2020 - 21st IFAC World Congress,
submitted, 2020.

• L. E. Andersson, E. Bradford, and L. Imsland. Gaussian processes
modifier adaptation with uncertain inputs using distributed learning
and optimization on a wind farm. In IFAC 2020 - 21st IFAC World
Congress, submitted, 2020.

• L. E. Andersson, E. Bradford, and L. Imsland. Distributed learning for
wind farm optimization with Gaussian processes. In 2020 American
Control Conference (ACC), accepted, 2020.





Part II
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Chapter 3

Economic Stochastic Model
Predictive Control Using the
Unscented Kalman Filter

This chapter is based on Paper A: E. Bradford and L. Imsland. Economic Stochas-
tic Model Predictive Control Using the Unscented Kalman Filter. IFAC-PapersOnLine,
51(18):417–422, 2018.

Summary
Economic model predictive control is a popular method to maximize the effi-

ciency of a dynamic system. Often, however, uncertainties are present, which can
lead to lower performance and constraint violations. In this paper, an approach is
proposed that incorporates the square root Unscented Kalman filter directly into
the optimal control problem to estimate the states and to propagate the mean and
covariance of the states to consider noise from disturbances, parametric uncertain-
ties and state estimation errors. The covariance is propagated up to a predefined
“robust horizon” to limit open-loop covariances, and chance constraints are intro-
duced to maintain feasibility. Often variables in chemical engineering are non-
negative, which however can be violated by the Unscented Kalman filter leading
to erroneous predictions. This problem is solved by log-transforming these vari-
ables to ensure consistency. The approach was verified and compared to a nominal
nonlinear model predictive control algorithm on a semi-batch reactor case study
with an economic objective via Monte Carlo simulations.
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3.1 Introduction
Batch reactors are common in the chemical industry due to their flexibility. The

control of batch processes is challenging, since these are operated at unsteady state
and are frequently highly nonlinear. This motivates the use of nonlinear model
predictive control (NMPC) [184]. The objective of the NMPC is usually to track a
set point, but the true objective is to maximize profit. Therefore, in economic MPC
(EMPC) the cost function is given by the quantity to be maximized [163], which
has attracted significant attention in recent years [223]. For batch reactors the
objective is usually a property of the final product and hence the control problem
leads to a shrinking horizon implementation.

The performance of the NMPC algorithm depends on the accuracy of the model
used. Models of real processes often involve substantial uncertainties, including
parametric uncertainties, unaccounted disturbances and state estimation errors. In
particular, economic MPC often drives the system to its constraints [163]. Most
work to consider uncertainties has been in robust NMPC (RNMPC), which as-
sumes that uncertainties are deterministic and bounded. Important methods for
RNMPC are min-max NMPC [64] and tube-based NMPC [173]. An alternative to
RNMPC is given by stochastic NMPC (SNMPC), which assumes that the uncer-
tainties are given by known probability distributions. In SNMPC constraints are
probabilistic and given by either chance or expectation constraints. The regulation
of the probability of constraint violations allows the adjustment of the conserva-
tiveness of the solution [175].

In [59] a procedure for SNMPC is introduced based on successive linearization
and application of a probabilistic tube method. [31] proposed to use a sampling av-
erage approach with variance reduction. A popular tool in SNMPC is given by the
so-called polynomial chaos expansion (PCE), which is an efficient alternative to
Monte Carlo simulations to propagate probabilistic uncertainties. A major disad-
vantage of this approach is that the complexity with respect to the number of uncer-
tainty parameters scales exponentially [87]. In [36] a similar method is proposed
using Gaussian processes instead. This has the advantage that it also considers the
uncertainty of the approximation itself, but otherwise suffers from the same draw-
backs. [166] proposed a method based on the Markov chain Monte Carlo approach,
which is generally more efficient than common Monte Carlo sampling based tech-
niques, but does not take gradient information into account. Lastly, multi-stage
MPC has been used to solve SNMPC problems for discrete uncertainties, which
however quickly becomes intractable due to the computational complexity scaling
exponentially with the size of the time horizon, number of uncertainty parameters
and uncertainty levels [101, 162].
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In [32] the Unscented Kalman filter (UKF) is used to estimate the state for
output feedback model predictive control and propagate the state estimation error
and additive noise from disturbances forward in time. The predicted Gaussian dis-
tributions of the states were used to impose probabilistic constraints. A similar
approach is given in [89] to propagate state estimation error and additive noise for
the control of nonholonomic mobile robots. In addition, [160] and [257] show that
the unscented transformation (UT) can be used to efficiently propagate additive
disturbance errors. Lastly, in [109] the UT is used to propagate parametric uncer-
tainties. A general advantage of the UT is the linear scaling with respect to the
number of uncertain parameters.

In this paper the previous work is unified to take into account state estima-
tion error from the square root UKF, noise from additive disturbances and lastly
parametric uncertainties. Log-transformations are used to enforce positiveness of
several variables and the square root UKF is used to guarantee positive semi-
definiteness of the state covariances [253]. The approach was tested on a semi-
batch reactor case study with an economic objective. The robustness of the ap-
proach was verified with 4 uncertain parameters and compared to a nominal NMPC
approach via Monte Carlo simulations. The paper is divided into the following sec-
tions. In the next Section the general SNMPC problem is formulated. In the third
Section the square root UKF is introduced and utilised to solve the SNMPC prob-
lem. Further, the concepts "robust horizon", log-transformation and linear joint
state constraints are outlined. The case study to test the procedure is formulated in
Section 4. Section 5 gives the results of the Monte Carlo simulations for the case
study. In the last Section conclusions were drawn from the simulation results.

3.2 Nonlinear Model Predictive Control with Linear Chance Con-
straints

The dynamic system we consider is given by a discrete time stochastic non-
linear system with parametric uncertainties and additive noise. The states and the
parameters enter the nonlinear equation system in a non-additive fashion, such that
it is practical to write them jointly as xa.

x(k + 1) = f (xa(k),u(k)) + w(k) (3.1)

y(k) = h(xa(k),u(k)) + ν(k) (3.2)

where k is the discrete time, xa = [xT , θT ]T ∈ Rnx×nθ=L denotes the augmented
state vector with a joint dimension of L, x ∈ Rnx are the states, u ∈ Rnu repre-
sents the inputs, y ∈ Rny are the measurements and θ ∈ Rnθ denotes the para-
metric uncertainties; the additive disturbance term w lies in Rnx and the addi-
tive measurement noise ν lies in Rny . The equations f : RL × Rnu → Rnx and
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h : RL × Rnu → Rny represent the dynamics of the states and the measurements
respectively.

The parametric uncertainties are assumed to be Gaussian distributed with mean
vector mθ(k) and covariance matrix Σθ(k) at stage k. The additive disturbances
w(k) and ν(k) are assumed to be zero mean independent normal random variables
with variances Σw(k) and Σν(k) at stage k respectively. The probability density of
the initial state x(0) is assumed to be normal with mean x̂(0) and covariance Σx(0).
Assuming that we are at stage n, let Yn stand for the measurements collected thus
far. Subsequently, EYn (·) and PYn (·) denote the expectation and probability condi-
tioned on Yn respectively [271]. The goal of the SNMPC algorithm at stage n is
to determine a control sequence over a finite time horizon to adjust the probability
distributions of the states to optimize an objective, while adhering to predefined
probabilistic constraints, given imperfect information through Yn. A general SN-
MPC problem formulation at stage n can be given as follows, with deterministic
constraints on the inputs and joint, linear chance constraints on the states:

Finite-horizon SNMPC problem with chance constraints

minimize
uN

EYn (J(N, x(n),uN ))

subject to

x(n + k + 1) = f (xa(k),u(k)) + w(n + k)

y(n + k) = h(xa(k),u(k)) + ν(n + k)

PYn (l
iT
k x(n + k) ≤ gik) ≥ 1 − pik

∀(k, i) ∈ {1, . . . ,N} × {1, . . . ,ng}

u(n + k) ∈ Uk ∀k ∈ {0, ...,N − 1}

(3.3)

where the time horizon is given by N , ng is the number of linear state constraints,
li
k
∈ Rnx and gi

k
∈ R define each linear state constraint, the input constraints

are represented by Uk ⊂ R
nu , uN := {u(n), . . . ,u(n + N − 1)} is a collection of

inputs over the finite horizon N from an initial stage n and J(N, x(n),uN )) is the
objective function. The chance constraints are set to be violated by a probability
of pi

k
∈ (0,1) ⊂ R.

3.3 Incorporation of the square root unscented Kalman filter

3.3.1 Transformation of variables with lower bound

First principle equations for batch processes are commonly given as continu-
ous differential equations, which can be discretized using numerical integration
techniques to obtain equations in the form of Eq. (3.1). In this work orthogonal
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collocation was used for numerical integration [62]. The log-transformation is,
however, directly applied to the continuous differential equation system. Many
variables in chemical engineering are non-negative due to physical constraints,
such as temperatures, concentrations, volumes, etc.. The methods available in lit-
erature to incorporate state constraints in the UKF are not suitable for our specific
problem, since these are discontinuous [237]. Instead, we suggest to log-transform
the variables to ensure a lower bound on the variables. Let x ′ be the variable that
cannot be lower than a. Then define x as:

x = log(x ′ − a) (3.4)

If we now work with x in the problem rather than x ′, then x ′ is guaranteed to
remain larger than a, i.e. we have implicitly introduced the following constraint:

x ′ > a (3.5)

The differential equation of x ′ can then be transformed in the following way to
obtain the required differential equation of x:

dx
dt
=

dx ′

dt
1

x ′ − a
(3.6)

Lastly, given that we know x is normally distributed with mean x̂ and covariance
Σx , i.e. x ∼ N(x̂,Σx), x ′ then follows a log-normal distribution, with mean and
covariance given by [108]:

x̂ ′i = exp

(
x̂i +
Σxi,i

2

)
(3.7)

Σx′ i, j = exp

(
x̂i + x̂j +

Σxi,i + Σx j , j

2

)
(exp(Σxi, j) − 1) (3.8)

where x̂ ′ and Σx′ are the mean and covariance of x ′ respectively

Eq. (3.7) can be used to obtain the state estimate for the true variable x ′ from
x with the corresponding covariance matrix from Eq. (3.8).

3.3.2 Propagation of state probability distributions using the square root
Unscented Kalman filter

The problem in Eq. (3.3) is intractable, since it requires the propagation of
conditional probability densities of the states through nonlinear transformations.
Instead we use the UT to approximate the mean and covariance of this probability
density. In our case the uncertain input is given by the states and uncertain param-
eters. The UT creates a set of sampling points, which depend on the mean and
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covariance of the Gaussian distributed input. The mean and covariance of the UT
are accurately estimated up to third order [236], which is an advantage of the UT
over more conventional linearization approaches.

To obtain the state estimate the Kalman filter equations are used at stage n.
For the propagation of the mean and covariance of the states the UT is repeatedly
applied to Eq. (3.1), assuming at each stage that the output follows a Gaussian
distribution. This approach is summarised in the Algorithm 3.1 box and illustrated
in Fig. 3.1. The equation system is given such that x̂(n|n), the state estimate,
is also calculated given the current measurement y(n), the previous state estimate
x̂(n−1|n−1), the previous state covariance Σx(n−1|n−1) and the previous control
input u(n − 1). Guidelines on how to set the scaling parameters ( ωµi ,ω

c
i , λ ) and

definitions of qr(·), ·/· and cholupdate(·, ·, ·) can be found in [253].

The considered OCP in Eq. (3.3) is open-loop, which does not account for the
NMPC to have reduced covariances through feedback by the state and bias update.
This leads to the predicted conditional covariances to increase with k and therefore
the OCP becoming increasingly conservative with larger time horizons. Eventually
the OCP becomes infeasible [271]. The “robust horizon” is utilised as in [32],
up to which the covariances are propagated to address the problem of growing
covariances. Hence, for the square root UKF in the Algorithm 3.1 box, equations
were added, such that the covariance matrix is constant after a defined “robust
horizon” tR. This is similar to [271] who propagates the covariance at the first
stage from a Kalman filter in linear MPC. [89] introduces “fake measurements”.
This is an interesting approach to take into account information gained to learn
parameters, but is expensive since it requires additional equations.
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Figure 3.1: Illustration of UKF SNMPC algorithm: Each Sigma point resembles a differ-
ent input, which are then propagated through the nonlinear transformation to the next stage
as indicated by the red lines. These are then used to estimate the mean and covariance of
the Gaussian distribution of the states at the next stage. The probability of violating the
chance constraint shown is given by the area under the pdf.

Algorithm 3.1: Square root Unscented Kalman filter with additive noise
and parametric uncertainty

Initialization

Input: x̂(n − 1|s), Σx(n − 1|s),

u(n − 1), y(n), λ, ωµ, ωc, tR, n, N

mθ(n + k), ∀k ∈ {1, . . . ,N},

Σθ(n + k), ∀k ∈ {1, . . . ,N}

Σw(n + k), Σv(n + k) ∀k ∈ {1, . . . ,N}

f (·), h(·)

For s = n − 1, k = 0 and s = n, k ∈ {1, . . . ,N}

Definition of Sigma points

x̂a(n + k − 1|s) = [x̂(n + k − 1|s)T mθ(n + k − 1)T ]T (3.9a)

Σ
1/2
a (n + k − 1|s) =

diag(Σ1/2x (n + k − 1|s),Σ1/2θ (n + k − 1))
(3.9b)

X(n + k − 1|s) = [x̂a(n + k − 1|s)
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x̂a(n + k − 1|s) +
√

L + λ Σ1/2a (n + k − 1|s) (3.9c)

x̂a(n + k − 1|s) −
√

L + λ Σ1/2a (n + k − 1|s)]

Covariance and mean approximation of predictions

Xi(n + k |s) = f (Xi(n + k − 1|s),u(n + k − 1)) (3.10a)

x̂(n + k |s) =
2L∑
i=0

ω
µ
i Xi(n + k |s) (3.10b)

∀k ≤ tR Σ
1/2
x (n + k |s) = qr([

√
ωc
1(X1:2L(n + k |s)−

x̂(n + k |s)) Σ1/2w (n + k)])
(3.10c)

∀k ≤ tR Σ
1/2
x (n + k |s) = cholupdate(Σ1/2x (n + k |s),

X0(n + k |s) − x̂(n + k |s),ωc
0)

(3.10d)

∀k > tR Σ
1/2
x (n + k |n) = Σ1/2x (n + k − 1|n) (3.10e)

Covariance and mean approximation of observations

φi(n|n − 1) = h(Xi(n|n − 1),u(n − 1)) (3.11a)

ŷ(n|n − 1) =
2L∑
i=0

ω
µ
i φi(n|n − 1) (3.11b)

Σ
1/2
yy (n|n − 1) = qr([

√
ωc
1(φ1:2L(n|n − 1)−

ŷ(n|n − 1)) Σ1/2v ])

(3.11c)

Σ
1/2
yy (n|n − 1) = cholupdate(Σyy(n|n − 1),

φ0(n|n − 1) − ŷ(n|n − 1),ωc
0)

(3.11d)

Σxy(n|n − 1) =
2L∑
i=0

ωc
i (X

(i)(n|n − 1)−

x̂(n|n − 1))(φ(i)(n|n − 1) − ŷ(n|n − 1))T

(3.11e)

Update of states from available measurements

K(n) = (Σxy(n|n − 1)/Σ1/2Tyy (n|n − 1))/Σ1/2yy (n|n − 1) (3.12a)

x̂(n|n) = x̂(n|n − 1) + K(n)(y(n) − ŷ(n|n − 1)) (3.12b)

U = K(n)Σ1/2yy (n|n − 1) (3.12c)

Σx(n|n) = cholupdate(Σx(n − 1|n − 1),U,−1) (3.12d)
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3.3.3 Probability constraints

The probability constraints on the states of interest are in the form of linear
constraints as defined in Eq. (3.3):

P(lT x ≤ g) ≥ 1 − ε (3.13)

Using Chebychev’s inequality the probability constraints in Eq. (3.13) can be ro-
bustly transformed to the following equation [160]:

lT x̂ +
√
βlTΣx l ≤ g (3.14)

where x̂ and Σx are the mean and covariance of x respectively and β = 1−ε
ε

For the untransformed variables Eq. (3.13) can be directly used with the mean
and covariance predicted by the square root UKF. For the transformed variables we
instead use the mean and covariance given by Eq. (3.7) and Eq. (3.8) respectively.
This is also done so that we can define the robust horizon.

∀k > tR Σx′(n + k |n) = Σx′(n + k − 1|n) (3.15)

3.3.4 Square root UKF SNMPC formulation

Given linear chance constraints of the form in Eq. (3.13), a simplified SNMPC
formulation can be stated as follows:

Finite horizon SNMPC problem with incorporated square root UKF and
chance constraints

minimize
uN

EYn (J(N, x(n),uN ))

subject to

PYn (l
iT
k x(n + k) ≤ gik) ≥ 1 − pik

∀(k, i) ∈ {1, . . . ,N} × {1, . . . ,ng}

u(n + k) ∈ Uk ∀k ∈ {0, ...,N − 1}

(3.9) − (3.12) square root UKF based on transformed variable x

(3.7), (3.8), (3.15) Variance and mean of untransformed variable x ′

(3.16)

where the probability constraints can be reformulated as shown in Section 3.3.
The open-loop problem can then be used in a receding horizon fashion to obtain a
SNMPC algorithm as shown in the box for Algorithm 3.2.
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Algorithm 3.2: Square root UKF SNMPC with receding horizon

Initialize: Supply x̂(0|0), Σx(0|0), u(0) and define (3.16)
At each sampling time n = 1,2,3, . . .

• Take measurements y(n)

• Solve (3.16) with x̂(n − 1|n − 1), Σx(n − 1|n − 1), u(n − 1), y(n) and
obtain u(n), x̂(n|n), Σx(n|n)

• Apply u(n) to the real system

3.4 Semi-Batch Reactor Case Study

3.4.1 Semi-batch reactor model

To test the procedure the same case study as in [32] based on a DAE system
in [94] is used, however parametric uncertainties were added and all the states
were log-transformed. The following series reaction takes place in the reactor
with H2SO4 as catalyst:

2A
k1A
−−−→
(1)

B
k2B
−−−→
(2)

3C

The reactions are first order. The first reaction step is exothermic, while the second
reaction step is endothermic. A heat exchanger is utilised to control the temper-
ature. The following DAE system describes the dynamic behaviour of the semi-
batch reactor:

ÛCA = (−k1AC ′A + (θ1 − C ′A)
F
V ′
)/C ′A, (3.17a)

ÛCB = (0.5k1AC ′A − k2BC ′B − C ′B
F
V ′
)/C ′B, (3.17b)

ÛCC = (3k2BC ′B − C ′C
F
V ′
)/C ′C, (3.17c)

ÛT =

(
(θ2(Ta − T ′) − Fθ1CPA(T

′ − T0)
(C ′ACPA + C ′BCPB + C ′CCPC )V ′ + θ4CPH2SO4

+

(−∆HRx1Ak1AC ′A − ∆HRx2Bk2BC ′B)V ′

(C ′ACPA + C ′BCPB + C ′CCPC )V ′ + θ4CPH2SO4

)
/T ′,

(3.17d)

ÛV = F/V ′, (3.17e)
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k1A = θ3 exp

(
−E1A

(
1

420
−

1

T ′

))
, (3.17f)

k2B = A2 exp

(
−E2B

(
1

400
−

1

T ′

))
, (3.17g)

C ′A = exp(CA), C ′B = exp(CB), C ′C = exp(CC) (3.17h)

T ′ = exp(T), V ′ = exp(V) (3.17i)

where C ′A, C ′B, C ′C are the concentrations in moldm−3 of species A, B and C
respectively, T ′ is the temperature in K of the reactor and V ′ is the liquid volume
in dm3. CA, CB, CC , T and V are the log-transformed states of C ′A, C ′B, C ′C , T ′

and V ′ respectively. The deterministic parameters were kept at their nominal val-
ues, which can be found in [94]. The uncertain parameters are jointly given by the
vector θ, which are assumed to be normally distributed, with constant mean mθ =

[4,45000,0.08,100]T and constant covariance Σθ = diag([0.1,2e7,1.6e−4,5]). The
inputs of the problem are given by the flow rate of pure A entering the reactor F in
dm3h−1 and the temperature of the heat exchanger Ta in K.

In compact form we can write x ′ = [C ′A,C
′
B,C

′
C,T

′,V ′]T , x = [CA,CB,CC,T,V]T

and u = [F,Ta]
T . Using orthogonal collocation the continuous time equations can

be given as a discrete time equation system in the form:

x(k + 1) = f (x(k),u(k)) + w(k) (3.18)

where f (x(k),u(k)) describes the DAE system in Eq. (3.17) and w(k) is additive
Gaussian noise with a constant covariance matrix Σw = diag([1e−3,1e−3,1e−3,1e−6,1e−6]).

Lastly, the measurement dynamics need to be defined, which are given by the
following equation:

y(k) =

1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

 x ′(k) + ν(k) (3.19)

where ν(k) is additive Gaussian noise with a constant covariance matrix Σν =
diag([1e−3,1e−3,1e−3]).

3.4.2 SNMPC problem

The OCP to be solved is formulated below. The economic objective is to maxi-
mize the amount of C at a fixed final batch time with a penalty for excessive control
actions. The feed rate can be varied between 0dm3h−1 and 250dm3h−1 and the heat
exchanger temperature can be adjusted between 270K and 500K . The liquid vol-
ume inside the semi-batch reactor is constrained to lie below 800dm3, while the
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temperature is constrained to lie below 440K. The OCP problem is given by:

minimize
uN

− (x̂2(n + N |n) + x̂4(n + N |n)) + ∆UT S∆U

subject to

x̂ ′3(n + k |n) +
√
βΣx′3,3(n + k |n) ≤ 440 ∀k ∈ {1, ...,N}

x̂ ′4(n + k |n) +
√
βΣx′4,4(n + k |n) ≤ 800 ∀k ∈ {1, ...,N}

u(n + k) ∈ [0,250] × [270,500] ∀k ∈ {0, ...,N − 1}

(3.9) − (3.12) square root UKF based on transformed variable x

(3.7) − (3.8), (3.15) variance and mean of true variable x ′

(3.20)

where β = ε
1−ε , ∆U = [u(n+k)−u(n+k−1)]k∈{1,...,N−1} and S = diag([8e−6,2e−6]).

For Eqs. (3.9) − (3.12), (3.15) the robust horizon tR was set to 2, the required scal-
ing parameters can be determined from [253] with α = 0.9, β = 2 and κ = 1, f (·)
is defined in Eq. (3.17) and Eq. (3.18) and h(·) in Eq. (3.19).

The problem objective is given at a fixed final time, such that a shrinking hori-
zon implementation was used.

3.5 Simulation studies
The final batch time was set to 4h with the total number of sampling points

set to Nt = 20. The OCP in Eq. (3.20) was solved repeatedly using Casadi [8]
by employing direct collocation in Python. The degree of the polynomials was
set to 4. The nonlinear programming problem was solved utilising IPOPT [258].
IDAS [116] simulated the "real" plant. At time n = 1, Algorithm 3 needs to
be initialized by with the "previous" covariance matrix, mean and control action.
These were set to x̂(0|0) = [log(1e−3), log(1e−3) , log(1e−3), log(290), log(100)]T ,
Σx(0|0) = diag([1e−3, 1e−3,1e−3,1e−3,1e−3]) and u(0) = [0,290]T respectively.

To test the robustness of the method 200 Monte Carlo simulations were per-
formed, i.e. by sampling different realizations of parameters, additive disturbances
and initial conditions for the “real system”, again with ε = 0.05. The various tra-
jectories can be seen in Fig. 3.4. For comparison purposes a nominal NMPC was
run on 200 Monte Carlo simulations, for which the results are shown in Fig. 3.3.
The UKF SNMPC overall performs well and leads to a relatively small number of
constraint violations, while the nominal NMPC can be seen to violate both con-
straints substantially.

Lastly, the method was run for 3 different values of ε and for the nominal
NMPC algorithm, with 100 Monte Carlo samples. The obtained objective values
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are illustrated in Fig. 3.2 as a box plot to highlight the trade-off between conserva-
tiveness and performance. The red line in the box plot indicates the median of the
objective values, while the blue lines represent the upper and lower quartiles. The
black lines give the smallest and largest value attained from the simulations, ex-
cluding outliers, shown as red crosses. We can clearly see that the median amount
of C at the final batch time consistently increases with ε as expected, since an in-
crease in ε leads to less conservativeness. The nominal NMPC algorithm leads to
the largest amount of C on average.

3.6 Conclusion
Overall a new algorithm is proposed for SNMPC with efficient formulation

of the probability constraints, which has been shown to be an efficient means to
account for uncertainties from state estimates, disturbances and parameters for an
economic model predictive control problem of a semi-batch reactor. The algorithm
was able to keep nearly all 200 Monte Carlo simulations within the constraints,
while it was shown that a nominal NMPC algorithm leads to significant constraint
violations. In addition, important issues such as the prevention of negative con-
centrations were addressed by log-transformations.
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Figure 3.2: Box plot of 100 Monte Carlo simulations for different values of ε for the UKF
SNMPC algorithm based on the OCP in Eq. (3.20) and for the nominal NMPC algorithm
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Figure 3.3: 200 Monte Carlo trajectories of the "real" system from a nominal NMPC
algorithm
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Figure 3.4: 200 Monte Carlo trajectories of the "real" system from the SNMPC algorithm
based on the OCP in Eq. (3.20) with ε = 0.05





Chapter 4

Output feedback stochastic
nonlinear model predictive
control for batch processes

This chapter is based on Paper B: E. Bradford and L. Imsland. Output feedback
stochastic nonlinear model predictive control for batch processes. Computers &
Chemical Engineering, 126:434–450, 2019.

The paper is an extension work from:

• Paper K: E. Bradford and L. Imsland. Stochastic nonlinear model predic-
tive control of a batch fermentation process. Computer Aided Chemical
Engineering, 46:1237–1242, 2019.

• Paper L: E. Bradford, M. Reble, A. Bouaswaig, and L. Imsland. Economic
stochastic nonlinear model predictive control of a semi-batch polymeriza-
tion reaction. IFAC-PapersOnLine, 52(1):667–672, 2019.

• Paper M: E. Bradford, M. Reble, and L. Imsland. Output feedback stochas-
tic nonlinear model predictive control of a polymerization batch process. In
2019 18th European Control Conference (ECC), pages 3144–3151. IEEE,
2019.

Summary
Batch processes play a vital role in the chemical industry, but are difficult to

control due to highly nonlinear behaviour and unsteady state operation. Nonlin-

51
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ear model predictive control (NMPC) is therefore one of the few promising ap-
proaches. Batch process models are however often affected by uncertainties, which
can lower the performance and cause constraint violations. In this paper we pro-
pose a shrinking horizon NMPC algorithm accounting for these uncertainties to
optimize a probabilistic objective subject to chance constraints. At each sampling
time only noisy output measurements are observed. Polynomial chaos expansions
(PCE) are used to express the probability distributions of the uncertainties, which
are updated at each sampling time using a PCE state estimator and exploited in
the NMPC formulation. The approach considers feedback by using time-invariant
linear feedback gains, which alleviates the conservativeness of the approach. The
NMPC scheme is verified on a polymerization semi-batch reactor case study.

4.1 Introduction
Batch processes are used in many sectors in the chemical industry due to their

inherent flexibility to produce multiple products and deal with variations in feed-
stock, product specifications, and market demand. Batch processes are difficult
to control due to frequently highly nonlinear behaviour and unsteady state opera-
tion leading to an increased acceptance of advanced control methods in industry
[184]. Model predictive control (MPC) is a popular advanced control method for
multivariate plants with process constraints. At each sampling time MPC solves
an optimal control problem (OCP) based on a dynamic plant model to evaluate a
finite sequence of control actions [165]. Feedback is introduced to this procedure
through the state update. Nonlinear MPC (NMPC) employs a nonlinear dynamic
model to deal with systems that display strong nonlinear behaviour. In particu-
lar, the use of first principles models has become feasible due to the advent of
improved optimization methods [61].

Many dynamic model predictions however are affected by significant uncer-
tainties, such as parametric uncertainties, disturbance noise, or state estimation
errors. This may have an adverse effect on the control performance of the MPC
and may lead to constraint violations. While the feedback introduced from the
state update gives MPC some degree of robustness with regards to uncertainties,
this is often not enough and hence explicit consideration of these uncertainties in
the MPC formulation is crucial [175]. Robust NMPC (RNMPC) assumes the un-
certainties present to lie in a bounded set [22]. RNMPC approaches include tube-
based NMPC [173] and min-max NMPC [64]. These approaches allow guaran-
tees on stability and performance in the worst-case realization of the uncertainties,
which however may have a very small chance of occurrence and hence the solution
may be overly conservative. Alternatively, stochastic NMPC (SNMPC) methods
have been proposed, which assume the uncertainties to follow known probability
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density functions (pdf). Constraints and objective are formulated probabilistically.
This allows for a pre-defined level of constraint violations in probability alleviating
the issue of RNMPC by trading-off risk with closed-loop performance [177].

Several SNMPC approaches have been proposed. Assuming the uncertainties
to have only finite number of realizations, multi-stage stochastic nonlinear pro-
gramming approaches can be used to determine the exact solution [164]. Given this
restriction, stochastic stability and recursive feasibility have been proven [205].
For continuous stochastic uncertainties on the other hand it is difficult to propa-
gate the uncertainties without being prohibitively expensive. An easy solution to
this problem is given by successive linearization of the nonlinear dynamic system
as in extended Kalman filter based NMPC [154]. In [34] stochastic averaging is
applied using the unscented transformation (UT). While both approaches are com-
putationally cheap, they are only applicable to moderately nonlinear systems. In
[233] the particle filter equations are used to estimate the required statistics. This
SNMPC algorithm however becomes quickly prohibitive in complexity due to the
required number of samples. Similarly, in [166] Markov Chain MC is used instead
with similar restrictions. In [4] a supervised clustering algorithm is proposed to re-
duce the number of samples required to estimate the relevant statistical properties
required, which however remains computationally expensive. For continuous-time
dynamic systems Fokker-Planck equations have been used in [50] to propagate the
pdfs of the uncertain variables. This approach is however quite expensive, since
it requires the online solution of partial differential equations. In [261] it is pro-
posed to use Gaussian mixtures for uncertainty propagation, in which most of the
calculations are carried out offline. While this is generally quite efficient, it is only
applicable for control actions from a discrete set and low dimensional systems.
Alternatively, the statistics can be estimated using regression approaches such as
polynomial chaos expansions (PCE) [87] or Gaussian processes [36]. While these
methods are considerably more efficient than MC sampling, they are only applica-
ble for moderate dimensional problems due to exponential scaling with the number
of uncertain parameters. In a similar fashion power series expansions (PSE) have
been employed, which use a Taylor expansion of the dynamic system to propagate
the uncertainties with similar advantages and disadvantages as using PCEs. While
PSEs have been shown to have comparable accuracy to the PCE approach with
the same polynomial order, it is difficult to extend to polynomial approximation
of PSEs to orders higher than 2 [138]. Much of the work in SNMPC has been
restricted to full state feedback with some exceptions. The UT work in [34] uses
the Unscented Kalman filter equations for state estimation, a probabilistic high-
gain observer has been proposed in [120] for state estimation in conjunction with a
continuous-time SNMPC formulation, and lastly in [233] particle filter equations
were used for both propagation and state estimation.



54 Output feedback stochastic nonlinear model predictive control for batch processes

In particular, PCE has received a lot of interest for SNMPC. PCEs are used to
estimate the statistics online by building a stochastic surrogate model. This surro-
gate is then used in [87] to approximate objective and constraints in expectation.
The work was then further extended in [177] to include chance constraints by using
Chebychev’s inequality. [242] samples instead the PCE directly and approximates
the chance constraints using the empirical distribution function, which is less con-
servative, but also computationally more expensive. PCE is often computationally
too expensive for time-invariant uncertainties. The problem of time-varying ad-
ditive noise [18] and time-varying non-additive noise [207] has been addressed
by employing conditional probability rules. In [35] feedback is considered in the
control formulation using parameterized control policies to significantly lessen the
conservativeness of the approach. PCE has also been used to great success for
state estimation. [83] use linear update rules considering higher-order moments.
By sampling the PCE it can be updated directly using Bayes’ theorem as shown
in [168]. Similarly, [16] applies Bayes’ rule, however the approach accounts for
time-varying additive disturbances and in addition uses the PCE for uncertainty
propagation. In [44] a PCE SNMPC algorithm was extended to the case of output
feedback by using the state estimator proposed in [168], while in [45] a similar
approach is proposed considering in addition additive disturbance noise.

For batch processes we are often interested in constraints involving the end-
product quality leading to a shrinking horizon NMPC (sh-NMPC) formulation,
where the prediction horizon is equal to the final batch time. In [252] a sh-NMPC
algorithm using min-max successive linearization is proposed. [184] use an ex-
tended Kalman filter based sh-NMPC approach to account for parametric uncer-
tainties and state estimation errors. The real-time implementation of a sh-NMPC
for industrial applications is studied in [188]. [176] compares various optimization
algorithms for sh-NMPC applied to a crystallization process. [190] employs a sh-
NMPC algorithm to control the crystal growth and size distribution of ibuprofen.
The multi-stage SNMPC algorithm has been extensively applied to batch processes
[164], while the PCE based SNMPC algorithms have been applied to sh-NMPC
crystallization problems [177]. In [221] the evolution of a thin-film deposition
process based on partial differential equations is controlled using a sh-NMPC im-
plementation, for which the uncertainties are considered using PSEs.

In this paper we extend the previous work using a PCE based sh-SNMPC for
batch processes [44, 45, 177] in the output feedback case. PCEs are utilised, since
for moderate dimensional problems these have been shown to give accurate es-
timates of the statistics required for relatively low number of samples compared
to other sampling approaches [157]. It was shown in [35] that feedback needs to
be included in the nonlinear PCE MPC formulation to not be overly conservative,
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which however has been otherwise ignored in such formulations. We propose to
use time-invariant linear feedback gains to accomplish this, which are optimized
over in addition to the open-loop control actions. The feedback only affects the
predictions of the MPC, but are not themselves implemented outside of the MPC
formulation. The parametric and state uncertainties are given by PCEs. It is as-
sumed that at each sampling time only noisy output measurements are available,
such that a nonlinear state estimator is used to update the PCE representations of
the states and parameters. These representations are then efficiently exploited in
the PCE based sh-SNMPC formulation to follow both path and end-point chance
constraints to optimize an economic objective. The presence of time-varying addi-
tive disturbance noise is taken into account using the law of total expectation. The
algorithm is verified on a challenging case study of a semi-batch reaction involving
the production of the polymer polypropylene glycol. The aim is to directly min-
imize the required batch time subject to both safety and end-product constraints.
The paper is comprised of the following sections. In Section 2 background infor-
mation is given. In Section 3 a general problem definition is stated. In Section
4 the PCE state estimator is outlined, while in Section 5 we introduce the PCE
sh-SNMPC formulation. Section 6 defines the algorithm using both the PCE state
estimator and the PCE sh-SNMPC. Section 7 defines the case study to be solved,
for which the results are shown and discussed in Section 8. Lastly, conclusions are
given in Section 9.

4.2 Background

4.2.1 Introduction to polynomial chaos expansions

In this section we briefly outline PCEs specific for our purposes. For a more
general review of PCEs, please refer to [270, 85, 199]. A PCE is a method to
represent an arbitrary random variable γ with finite second order moments as a
function of random variables ξ with a known distribution. The random variable
γ is expanded onto an orthogonal polynomial basis, which can be expressed as
follows:

γ(ξ) =
∑
α∈N

nξ

aαφα(ξ) (4.1)

where ξ ∈ Rnξ is called the germ, φα : Rnξ → R are known multivariate poly-
nomials comprising the basis with corresponding expansion coefficients aα and
multidimensional summation indices α ∈ Nnξ .

The probability distribution of the germ ξ is a modelling choice. Without loss
of generality we assume ξ to follow a standard normal distribution with zero mean
and unit variance, i.e. ξ ∼ N(0, I). The multivariate polynomials in Equation 4.1
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are given as a tensor product of univariate polynomials of the components of ξ:

φα =

nξ∏
i=1

φαi (ξi) (4.2)

where φαi : R→ R are univariate polynomials of ξi of order αi. The multidimen-
sional index α = [α1, . . . , αnξ] is hence used to define the degree of each univariate
polynomial and the total order of the multivariate polynomial φα is consequently
given as |α| =

∑nξ
i=1 αi.

The univariate polynomials φαi are chosen to satisfy an orthogonality prop-
erty according to the probability distribution of ξi, which in our case for standard
normal distributions leads to Hermite polynomials:

φαi (ξi) = (−1)αi exp

(
1

2
ξ2i

)
dαi

dξαi

i

exp

(
−

1

2
ξ2i

)
(4.3)

The multivariate polynomials built in this way according to Equations 4.2-4.3
have the following useful orthogonality property, which can be defined by the fol-
lowing inner product:

〈φα(ξ),φβ(ξ)〉 = E[φα(ξ)φβ(ξ)] =

∫
φα(ξ)φβ(ξ)p(ξ)dξ = τ2αδαβ (4.4)

where p(ξ) is the pdf of ξ, δαβ is the Kronecker delta, i.e. δαβ = 1 iff α = β

otherwise δαβ = 0. The normalization constant τ2α is dependent on the chosen
family of polynomials and often known in practice.

Generally to use Equation 4.1, it needs to be truncated. Keeping all terms up to
a total order of m:

γ(ξ) ≈
∑

0≤ |α | ≤m

aαφα(ξ) = aTφ(ξ) (4.5)

where a ∈ RL and φ(ξ) : Rnξ → RL are vectors of the coefficients and poly-
nomials of the truncated expansion respectively. The truncated series consists of
L =

(nξ+m)!

nξ!m! terms.

Often the coefficients a of the truncated PCE expansion in Equation 4.5 are
unknown and need to be determined using samples of γ. In this work we use the
non-intrusive spectral projection approach based on the orthogonality property in
Equation 4.4 and the definition of the truncated series in Equation 4.5:

aj =
〈γ(ξ),φα j (ξ)〉

τ2α j

=
1

τ2α j

∫
γ(ξ)φα j (ξ)p(ξ)dξ (4.6)
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where aj refers to the j th coefficient of a with a corresponding αj multidimensional
summation index.

The integral in Equation 4.6 can be approximated using sampling. Quadrature
methods are commonly used due to their improved convergence rates compared
to crude MC. In the case of standard normal distributed germs Gauss-Hermite
quadrature rules are employed, which approximate the integral in Equation 4.6 as:

∫
γ(ξ)φα j (ξ)p(ξ)dξ ≈

Nq∑
q=1

wqγ(ξq)φα j (ξq) (4.7)

where Nq is the total number of quadrature points and ξq are the sample points
with corresponding weights wq given by the Gauss-Hermite quadrature rule.

This procedure leads to the following sample estimate â of the coefficient vector
a:

â = (w(Γ)TΦ(Ξ))T ∗ τ−2 (4.8)

where ∗ denotes element-wise multiplication, Ξ = [ξ1, . . . ,ξNq
]T ∈ RNq×nξ repre-

sents the quadrature sample design, the response vector is given by
Γ = [γ(ξ1), . . . , γ(ξNq

]T ∈ RNq , w(Γ) = [w1γ(ξ1), . . . ,wNqγ(ξNq
)]T ∈ RNq ,

τ−2 = [τ−2α1 , . . . , τ
−2
αL
]T ∈ RL and Φ(Ξ) = [φ(ξ1), . . . ,φ(ξNq

)]T ∈ RNq×L .

So far we have limited ourselves to single dimensional random variable rep-
resentations using PCEs, which can however easily be extended to multivariate
random variables. Let a multivariate stochastic variable be given by
γ(ξ) = [γ1(ξ), . . . , γnγ (ξ)]

T ∈ Rnγ=nξ with coefficients collected in
A = [a1, . . . ,anγ ] ∈ R

L×nξ , where we have assumed that each PCE is parametrized
in terms of standard normal variables ξ with the same dimension as γ(·). We
further let each component of γ(ξ) be given by a truncated PCE with the same
truncation order m and hence the same number of terms L.

Statistical moments are an important characterization of random variables. As-
suming the multivariate random variable to be given by PCEs as defined above,
the statistical moments are functions of the PCE coefficients A and can be defined
as:

Mr(A) =

∫ nξ∏
i=1

γrii (ξ)p(ξ)dξ (4.9)

where r ∈ Rnξ is a vector defining the moments with a total order k =
∑nξ

i=1 ri.
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Substituting the definition of the PCEs in Equation 4.5 into Equation 4.9 we
arrive at [83]:

Mr(A) =

∫ nξ∏
i=1

(aTi φ(ξ))
ri p(ξ)dξ (4.10)

Using Equation 4.10 and the orthogonality property in Equation 4.4 it can be
shown that the mean values and covariances of γ are given by:

µγi = E[γi] = ai1 (4.11)

Σ
γ
i j = E[(γi − µ

γi )(γj − µ
γj )] =

L∑
s=2

L∑
t=2

aisajt 〈φαs ,φαt 〉 (4.12)

where µγi is the mean of γi and Σγ is the covariance matrix of γ. Note that
〈φαs ,φαt 〉 does not depend on the coefficients a and can hence be pre-computed.
The diagonal of Equation 4.12 define the variances of γ.

4.2.2 Uncertainty propagation using PCEs

In this section we illustrate how PCEs can be used to efficiently propagate
uncertainties through nonlinear functions using non-intrusive spectral projection
as introduced in the previous section. Let an arbitrary nonlinear function q(·) of a
random variable γ(ξ) be given by:

p = q(γ(ξ)) (4.13)

where ξ is the germ random variable parametrizing a random variable γ(ξ) as
shown in the previous section.

The variable p is now a random variable as well parametrized by the germ ξ and
the aim in this section is to determine its corresponding truncated PCE expansion.
It should be noted that the PCE truncation order of p and γ(ξ) can be dissimilar.
To accomplish this we generate samples of ξ with corresponding weights using the
Gauss-Hermite rule and evaluate p at those points. The PCE coefficients of p can
then be determined using Equation 4.8 as follows:

âq = w(Γq)
TΦ(Ξ) ∗ τ−2 (4.14)

where w(Γ) = [w1q(γ(ξ1)), . . . ,wNq q(γ(ξNq
))]T with

Γq = [q(γ(ξ1)), . . . ,q(γ(ξNq
)]T . The remaining terms are defined in Equation 4.8.

Once the approximate coefficients âq have been determined, we can use Equa-
tions 4.11-4.12 to obtain mean and variance estimates for p as follows:

µp = E[p] ≈ âq1 (4.15)
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σp = E[(p − E[p])2] ≈
L∑

s=2

â2qs 〈φ
2
αs
〉 (4.16)

From the above procedure only the response vector Γq and
w(Γq) = [w1q(γ(ξ1)), . . . ,wNq q(γ(ξNq

))]T depend on the values of p and hence
the remaining terms can be pre-computed. We can therefore view this as a func-
tion for which a response vector Γq returns estimates of mean and variance of a
nonlinear transformation, which we will denote as:

µp ≈ µPCE
ζ (Γq) (4.17)

σp ≈ σPCE
ζ (Γq) (4.18)

where ζ = {m,w,nξ,Ξ} is a collection of variables defining the mean and variance
function, m is the total order of truncation of the PCE approximation of p, w is a
vector of Gauss-Hermite weights, nξ the dimensionality of ξ, and Ξ is the sample
design of ξ from the Gauss-Hermite rule.

Note that this approach to determine the statistics of p can be employed as long
as clearly defined input-output data pairs are available utilising Equation 4.16 to
evaluate the required coefficients. A closed-form expression as shown in Equation
4.13 is not necessarily required.

4.2.3 Laws of total expectation and total variance

PCEs are an efficient way to represent time-invariant probabilities, but become
quickly prohibitive in complexity for time-varying uncertainties. This is because
each instance of a time-varying uncertainty would require its own dimension in
the germ distribution ξ, which scales exponentially with the number of terms L
required in the PCE expansion, see Equation 4.5. We therefore use the laws of
total expectation and covariance to deal with the uncertainties in turn, i.e. using
PCEs for the time-invariant uncertainties and utilising linearization for the time-
varying uncertainties. In this section we introduce these laws.

Let γ and ω be arbitrary random variables and q an arbitrary function of these
random variables, then according to the law of total expecation we have:

E[q(γ,ω)] = Eω[Eγ[q(γ,ω)|ω]] (4.19)

The law of total variance can be stated as:

Var[q(γ,ω)] = Eω[Varγ[q(γ,ω)|ω]] + Varω[Eγ[q(γ,ω)|ω]] (4.20)
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Now we aim to use linearization to account for γ and PCE forω to approximate
the expectation and variance of q(γ,ω). Using linearization first we arrive at the
following simplified expressions:

E[q(γ,ω)] ≈ Eω[q(µγ,ω)] (4.21)

Var[q(γ,ω)] ≈ Eω[Q(ω)ΣγQ(ω)T ] + Varω[Eγ[q(µγ,ω)|ω]] (4.22)

where µγ is the mean of γ, Σγ denotes the covariance of γ and Q(ω) = ∂q
∂γ µγ ,ω is

the Jacobian of q(·) with respect to γ evaluated at µγ and ω.

Next using the PCE Equations 4.17-4.18 for ω we arrive at:

E[q(γ,ω)] ≈ µPCE
ζ (Γ

q
µ) (4.23)

Var[q(γ,ω)] ≈ µPCE
ζ (Γ

q
σ) + σ

PCE
ζ (Γ

q
µ) (4.24)

where Γq
µ = [q(µγ,ω1), . . . ,q(µγ,ωNq )] and

Γ
q
σ = [Q(ω1)ΣγQ(ω1)

T , . . . ,Q(ωNq )ΣγQ(ωNq )
T ].

Here we have shown how two separate random variables ω and γ can be dealt
with separately. In particular, regarding γ as time-varying it was accounted for us-
ing linearization, while assuming ω as time-invariant was considered using PCEs.

4.2.4 Chance constraint reformulation using Chebyshev’s inequality

Let γ be a random variable, for which we have a chance constraint as follows:

P(γ ≤ 0) ≥ 1 − ε (4.25)

Often the exact evaluation of Equation 4.25 is difficult due to the integral def-
inition of the probability function. Instead, we are however able to estimate the
mean and variance of γ. Using Chebychev’s inequality the probability constraints
in Equation 4.25 can be robustly transformed to the following equation [177]:

µγ + κε
√
σγ ≤ 0 (4.26)

where µγ and σγ are the mean and variance of γ respectively and κε =
√

1−ε
ε .

Note the robust reformulation now only depends on the mean and variance of γ as
required.

4.3 Problem definition
The dynamic system in this paper is assumed to be given by a discrete-time

nonlinear equation system with stochastic parameters and additive disturbance
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noise::

xt+1 = f (xt,ut,θt ) + wx
t , x0 = x0(ξ) (4.27)

yt = h(xt,θt ) + νt (4.28)

θt+1 = θt + wθ
t , θ0 = θ0(ξ) (4.29)

where t is the discrete time, x ∈ Rnx are the system states, θ ∈ Rnθ are paramet-
ric uncertainties, u ∈ Rnu denote the control inputs, f : Rnx × Rnu × Rnθ → Rnx

represents the nonlinear dynamic system for the states, y ∈ Rny denote the mea-
surements and h : Rnx × Rnθ → Rny are the output equations. Both the states x
and the measurements y are assumed to be affected by normally distributed zero
mean additive noise denoted by wx and ν with known covariance matrices Σν and
Σx

w respectively. In addition, the parametric uncertainties θ are also assumed to
be affected by zero mean normally distributed additive disturbance noise to ac-
count for possible time variation denoted by wθ with corresponding covariance
matrix Σθw. The initial condition x0 and the initial parametric uncertainties θ0 are
assumed to follow PCEs represented by x0(ξ) and θ0(ξ) respectively parametrized
by ξ ∈ Rnx+nθ ∼ N(0, I). For more information refer to Section 4.2.1. These PCEs
express the initial uncertainty of θ and x, which will usually represent a relatively
broad distribution with large variances. Note by directly adding a disturbance term
dt ∈ R

nx given by a PCE to Equation 4.27, we could account for plant-model
mismatch and update this mismatch using the filter introduced in Section 4.4.

In the following sections we will work with joint vectors of states and para-
metric uncertainties for simplification, which we will denote by x′ = [x,θ]T ∈
Rnx′=nx+nθ . The nonlinear equation system for x′ can then be expressed as:

x′t+1 = f ′(x′t,ut ) + wt, x′0 = x′0(ξ) (4.30)

yt = h(x′t ) + νt (4.31)

where f ′(x′t,ut ) = [f (x
′
t,ut ),θt ]

T , w = [wx,wθ]T with corresponding covariance
matrix Σw = diag(Σx

w,Σ
θ
w) and x′0(ξ) = [x0(ξ),θ0(ξ)]

T .

The aim in this paper is the development of an algorithm for the dynamic equa-
tion system stated above for batch processes. Generally the objective to be mini-
mized depends on the properties of the final product at the end of the batch, such
that the control problem commonly has a finite-horizon leading to a sh-NMPC
formulation [184]. We assume the objective to have the following form:

J(N,x′0(ξ),UN ) = E[Jd(N,x′0(ξ),UN )] (4.32)

Jd(N,x′0(ξ),UN ) =M(x
′
N ) +

N−1∑
t=0

L(x′t,ut ) (4.33)
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where N is the time horizon,M : Rnx′ → R is the Mayer term, L : Rnx′×nu → R

is the Lagrange term, and UN = [u0, . . . ,uN−1] ∈ R
nu×N are the control actions

that need to be determined.

The objective is taken as the expectation of a nonlinear function with a Mayer
and Lagrange term, i.e. the objective is to minimize the expected value of
Jd(N,x′0(ξ,UN ) given the initial PCE x′0(ξ) and the dynamic system stated in
Equation 4.30 and Equation 4.31.

The minimization of the objective is subject to both the adherence of path con-
straints and terminal constraints. The control inputs are subject to hard constraints
expressed by the set U. For batch processes common path constraints are safety
limits on the reactor temperature and terminal constraints are commonly a mini-
mum product quality to be reached. The constraints can be stated as follows:

P[gj(x
′
t,ut ) ≤ 0] ≥ 1 − ε ∀(t, j) ∈ {1, . . . ,N} × {1, . . . ,ng} (4.34)

P[gN
j (x

′
N ) ≤ 0] ≥ 1 − ε ∀ j ∈ {1, . . . ,nN

g } (4.35)

ut ∈ U ∀t ∈ {0, . . . ,N − 1} (4.36)

where gj : Rnx′×nu → R are the path constraint functions, gN
j : Rnx′ → R are the

terminal constraint functions and ε is the probability of constraint violation.

The constraints are given as so-called chance-constraints due to the presence
of the stochastic uncertainties in both the initial condition x′0 and the disturbance
noise. Each constraint in Equations 4.34 and 4.35 should be violated at most by a
low probability of ε despite the stochastic uncertainties present to maintain feasi-
bility.

4.4 Polynomial chaos expansion state estimation
In this section we introduce a nonlinear state estimator to update a prior proba-

bility distribution of the state x′ given by a PCE using the available measurements
from Equation 4.28. The nonlinear filter is similar to the one given in [168, 182],
however these works do not consider additive disturbance noise. We assume we
are at sampling time t and wish to update the PCE representation of the uncer-
tainties given the newly available measurements. Let Dt = {y1 . . . ,yt } be the
available measurements up to time t. In particular Bayes’ rule is used recursively
for the update of x′ using Dt :

p(x′t |Dt ) =
p(x′t |Dt−1)p(yt |x

′
t,Dt−1)

p(yt |Dt−1)
(4.37)

For convenience we denote N(γ|µγ,Σγ) as the normal probability density of a
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random variable γ with mean µγ and covariance Σγ:

N(γ|µγ,Σγ) = det
(
2πΣγ

)− 1
2 exp

(
−

1

2
(γ − µγ)

TΣ−1γ (γ − µγ)

)
(4.38)

The terms on the RHS of Equation 4.37 are dependent on the dynamic system
introduced in Section 4.3 and are defined below in turn.

p(x′t |Dt−1)

Prior distribution of x′t given the previous measurements Dt−1, which can be
expressed as:

p(x′t |Dt−1) =

∫
p(x′t |x

′
t−1)p(x

′
t−1 |Dt−1)dx′t−1 (4.39)

where p(x′t |x
′
t−1) = N(x

′
t |f
′(x′t−1,ut−1),Σw) is a multivariate normal pdf with

mean given by the dynamics defined in Equation 4.27 and the covariance by the
disturbance noise evaluated at x′t . It should be noted that without disturbance noise
p(x′t |Dt−1) =

∫
δ(x′t − f ′(x′t−1,ut−1))p(x′t−1 |Dt−1)dx′t−1.

p(yt |x
′
t,Dt−1)

The pdf of the current measurement yt given x′t , which can be stated as follows:

p(yt |x
′
t,Dt−1) = N(yt |h(x

′
t ),Σν) (4.40)

p(yt |Dt−1)

Total probability of observation yt given previous measurements can be ex-
pressed as:

p(yt |Dt−1) =

∫
p(yt |x

′
t,Dt−1)p(x′t |Dt−1)dx′t (4.41)

If we take both sides of Equation 4.37 times
∏nξ

j=1(x
′
t j)

rj and integrate over
both sides with respect to x′t we obtain:

M+r =

∫ ∏nξ
j=1(x

′
t j)

rj p(yt |x
′
t,Dt−1)p(x′t |Dt−1)dx′t

p(yt |Dt−1)
(4.42)

where from Equation 4.37 M+r =
∫ ∏nξ

j=1(x
′
t j)

rj p(x′t |Dt )dx′t and k =
∑nξ

j=1 rj . Now
by definition M+r refers to the various k th order moments of the updated distribution
of x′t , p(x′t |Dt ).
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In our case the uncertainties of x′t are given by PCEs, which we have so far
not taken advantage of. Let x′t−1(ξ) refer to the previously estimated PCEs of x′t
using the measurements up to time t − 1, i.e. x′t−1(ξ) refers to x′t−1 |Dt−1. The
RHS of Equation 4.42 is approximated using sampling. The probability distri-
bution x′t−1(ξ) is readily sampled by generating samples of ξ, which is known to
follow a standard normal distribution. In addition, we also require samples of the
disturbance w to estimate the integral in Equation 4.39. In this work we used Latin
hypercube sampling with the inverse normal cumulative transformation, which has
an improved convergence over crude MC, see [240] for more information. The
sample approximation of the total probability in Equation 4.41 can be stated as:

α =
1

NSE
s

NSE
s∑

s=1

N(yt |h(x
′
t
(s)
),Σν) (4.43)

where α is the sample estimate of p(yt |Dt−1), x′t
(s) = f (xt−1(ξs),ut−1) + ws, NSE

s

is the sample size, ξs ∼ N(0, I), and ws ∼ N(0,Σw) are the sample points.

Using the sample estimate in Eq.(4.43) and applying a further sample estimate
to Equation 4.42 we obtain:

M (s)+r =

∑NSE
s

s=1

∏nξ
j=1 (x

′
t
(s)
j )

rjN(yt |h(x
′
t
(s)),Σν)

αNSE
s

(4.44)

where M (s)+r is an approximation of the RHS of Equation 4.42.

To update x′t−1(ξ) to x′t (ξ)we match the moments defined in Equation 4.44 with
those of the PCE x′t (ξ), which are a function of its coefficients as shown in Equa-
tion 4.10. The PCE is then fitted by solving a nonlinear least-squares optimization
problem:

Ât = arg min
At

∑
k≤mSE

| |M+r (At ) − M (s)+r | |22 (4.45)

where k =
∑nξ

j=1 rj was defined above as the order of the moments and hence mSE

defines the total order of moments we aim to match. M+r (At ) is parametrized by At

as shown in Equation 4.10. The estimated coefficients Ât then define the updated
PCE x′t (ξ) as required, which approximately represents the probability distribution
of x′t |Dt . The overall procedure to update an initial PCE expansion x′t−1(ξ) to x′t (ξ)
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is summarised in Algorithm 4.1 below.

Algorithm 4.1: PCE state estimation
Input : yt , f ′(x′,u), h(x′), Σν, Σw, x′t−1(ξ), mSE , NSE

s

1. Generate NSE
s Gaussian distributed Latin hypercube samples of ξ and w.

2. Using these samples approximate α in Equation 4.43.

3. Using the samples and α approximate the moments with an order of mSE

or less in Equation 4.44.

4. Solve the optimization problem in Equation 4.45 to obtain the updated
coefficients that yield x′t (ξ).

Output : x′t (ξ)

4.5 Polynomial chaos expansion model predictive control
In this section we introduce the PCE based sh-SNMPC formulation used to

solve the problem defined in Section 4.3 using the dynamic equation system for the
joint state vector in Equations 4.30-4.31. We assume we are at sampling time t and
we are given a current PCE approximation of x′t |Dt denoted by x′t (ξ) from the PCE
state estimator, which accounts for our current uncertainty of the initial condition
given the available measurements, see Section 4.4. To approximate the chance
constraints and the objective it is not only necessary to propagate the uncertainty
of the initial condition x′t (ξ), but also the uncertainty of the additive disturbance
noise.

4.5.1 Control policy parameterization

A common issue of MPC under uncertainty is the fact that open-loop uncer-
tainties grow unboundedly leading to control actions that are exceedingly conser-
vative, since the feedback through the state update is disregarded. Eventually the
OCP will become infeasible with a large enough prediction horizon [271]. There-
fore, to ensure reasonable predictions of the uncertainty feedback needs to be in-
corporated in the optimal control formulation. Optimization over general causal
feedback policies is however often intractable [25], such that the optimization is
restricted over a class of parameterized feedback policies [102]. In this paper we
employ the following parameterization of the control input:

uk = vk +K(yk − µy,k) (4.46)
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where vk ∈ R
nu are the mean of the applied control inputs, K ∈ Rnu×ny are linear

time-invariant feedback gains and µy,k denotes the mean of yk .

This is a relatively common form to parameterize the control policy, where vk

corresponds to the control inputs of the nominal system, whereas K is times by
the difference of the real system outputs to the nominal system outputs for cor-
rection. This control parameterization is for example used in [185] to design a
linear feedback gain for batch processes. The importance to account for feedback
is highlighted in Figure 4.1. A stochastic OCP was solved twice once optimizing
over a linear time-invariant feedback gain in addition to the open-loop control ac-
tions shown on the left-hand side and once over only the open-loop control actions
shown on the right-hand side subject to an adiabatic temperature constraint. As
can be seen on the left-hand side the adiabatic temperature trajectories are con-
siderably narrower than on the right-hand side and hence accounting for feedback
leads to a considerably less conservative OCP solution.

Figure 4.1: OCP adiabatic temperature trajectories accounting for linear time-invariant
feedback on the left-hand side and not accounting for feedback on the right-hand side

4.5.2 Uncertainty propagation

For the uncertainty propagation in the sh-SNMPC formulation we use the re-
sults in Sections 4.2.2-4.2.3. In this section we outline recursive equations to ob-
tain the required mean and variances of the objective, constraints and outputs from
an initial time t to a final shrinking time horizon Nsh to formulate the MPC prob-
lem. The uncertainty represented by the PCE x′t (ξ) is accounted for using the PCE
Equations 4.17-4.18, while the additive disturbance noise from the states and mea-
surements are considered using linearization. The overall mean and variance of
the objective and chance constraints are then determined using the laws of total
expectation and variance as shown in Section 4.2.3.

Let µx′,k(ξ) correspond to the mean and Σx′,k(ξ) to the covariance of x′
k

given
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ξ defined as:

µx′,k(ξ) = E[x
′
k |ξ] (4.47)

Σx′,k i j(ξ) = E
[
(x′k i − E[x

′
k i
])(x′k j − E[x

′
k j
])ξ

]
(4.48)

We propagate the uncertainty of µx′,k(ξ) and Σx′,k(ξ) from the additive distur-
bances using linearization for the dynamic equation system in Equations 4.30-4.31,
which yields:

µx′,k+1(ξ) = f ′(µx′,k(ξ),µuk
(ξ)), µx′,0(ξ) = x′t (ξ) (4.49)

Σx′,k+1(ξ) = Ak(ξ)Σx′,k(ξ)Ak(ξ)
T + Bk(ξ)Σu,k(ξ)B(ξ)

T+ (4.50)

2Ak(ξ)Σx′u,k(ξ)Bk(ξ)
T , Σx′,0(ξ) = 0

where Ak(ξ) =
∂f ′

∂x′ µx′ ,k (ξ),µuk
(ξ), and Bk(ξ) =

∂f ′

∂u µx′ ,k (ξ),µuk
(ξ) are Jacobian matrices

of f ′(x′,u) with respect to x′ and u respectively evaluated at x′ = µx′,k(ξ) and
u = µuk

(ξ) = vk + K(h(µx′,k(ξ)) − µyk
). Let each component of µyk

be given by
µyk i = µ

PCE
ζ (Γ

yk i

µ,k
), which is defined later in Equation 4.62.

For the control policy parameterization in Equation 4.46 the covariance matri-
ces Σu,k(ξ) and Σx′u,k(ξ) can be expressed as:

Σu,k(ξ) = K
(
Hk(ξ)Σx′,k(ξ)Hk(ξ)

T + Σν

)
KT (4.51)

Σx′u,k(ξ) = Σx′,k(ξ)Hk(ξ)
TKT (4.52)

where Hk(ξ) =
∂h
∂x′ µx′ ,k (ξ)

is the Jacobian matrix of h(x′) evaluated at x′ = µx′,k(ξ).

From Equation 4.49 we obtain µx′,k(ξ) recursively for all k ∈ {1, . . . ,Nsh},
while Equation 4.50 gives us Σx′,k(ξ) recursively for all k ∈ {1, . . . ,Nsh}. The
objective, output measurements, and constraint functions are however assumed
to be nonlinear functions of these, see Section 4.3. We therefore require further
simplification to estimate the required statistics to formulate the SNMPC problem.
Using further linearization these quantities can be determined as follows:

E[Jd(Nsh,x′t (ξ),UN sh )|ξ] ≈ Jd(Nsh,x′t (ξ),UN sh ) (4.53)

E[gj(x
′
k,uk)|ξ] ≈ gj(µx′,k(ξ),µuk

(ξ)) (4.54)

E[gN
j (x

′

N sh )|ξ] ≈ gN
j (µx′,N sh (ξ)) (4.55)

E[yk |ξ] ≈ h(µx′,k(ξ)) (4.56)

Var[gj(x′k,uk)|ξ] ≈ Gj k(ξ)Σx′,k(ξ)Gj k(ξ)
T (4.57)

Var[gN sh

j (x′
N sh )|ξ] ≈ GN

j (ξ)Σx′,N sh (ξ)GN
j (ξ)

T (4.58)
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where Gj k(ξ) =
∂g j

∂x′ µx′ ,k (ξ),µuk
(ξ) is the Jacobian matrix of gj(x

′,u) evaluated at

x′ = µx′,k(ξ) and u = µuk
(ξ) and GN

j (ξ) =
∂gN

j

∂x′ µx′ ,Nsh (ξ) is the Jacobian matrix of
gN
j evaluated at x′ = µx′,N sh (ξ).

We now have the means and variances of the objective, constraint functions
and outputs accounting for the additive disturbance noise, but ignoring the uncer-
tainty from the initial condition x′t (ξ). As highlighted the means and variances,
and their respective terms are all functions of x′t (ξ) and in turn of ξ on which they
are conditioned. To obtain the overall means and variances required we use the
laws of total expectation and variance as shown in Section 4.2.3. This is accom-
plished by creating a Gauss-Hermite sample design of ξ, which we will denote as
Ξ = [ξ1, . . . ,ξNq

] with Nq quadrature points. Obtaining the respective response
vectors Γ for the conditional means and variances in Equations 4.53-4.58 for these
samples and applying the PCE mean and variance estimates from Section 4.2.2,
the overall variances and expectations are given by:

E[Jd(Nsh,x′t (ξ),UN sh )] ≈ µPCE
ζNMPC
(ΓJd

µ ) (4.59)

E[gj(x
′
k,uk)] ≈ µ

PCE
ζNMPC
(Γ

g j

µ,k
) (4.60)

E[gN
j (x

′

N sh )] ≈ µ
PCE
ζNMPC
(Γ

gN
j
µ ) (4.61)

E[yk i] ≈ µ
PCE
ζNMPC
(Γ

yk i

µ,k
) (4.62)

Var[gj(x′k,uk)] ≈ µ
PCE
ζNMPC
(Γ

g j

σ,k
) + σPCE

ζNMPC
(Γ

g j

µ,k
) (4.63)

Var[gN
j (x
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N sh )] ≈ µ
PCE
ζNMPC
(Γ

gN
j
σ ) + σ

PCE
ζNMPC
(Γ

gN
j
µ ) (4.64)

where Γyk i

µ,k
= [h(µx′,k(ξ1)), . . . ,h(µx′,k(ξNq

))],

ΓJd

µ = [J
d(Nsh,x′t (ξ1),UN sh ), . . . , Jd(Nsh,x′t (ξNq

),UN sh )]T ,
Γ
g j

µ,k
= [gj(µx′,k(ξ1),µuk

(ξ1)), . . . ,gj(µx′,k(ξNq
),µuk

(ξNq
))],

Γ
gN
j
µ = [gN

j (µx′,N sh (ξ1)), . . . ,g
N
j (µx′,N sh (ξNq

))],
Γ
g j

σ,k
= [Gj k(ξ)Σx′,k(ξ1)Gj k(ξ1)

T , . . . ,Gj k(ξ)Σx′,k(ξNq
)Gj k(ξNq

)T ] and

Γ
gN
j
σ = [GN

j (ξ1)Σx′,N sh (ξ1)G
N
j (ξ)

T , . . . ,GN
j (ξ)Σx′,N sh (ξNq

)GN
j (ξNq

)T ].

Note that each sample of ξ corresponds to a separate initial condition and hence
a separate nonlinear equation system given by Equation 4.30. In essence the PCE
methodology generates separate samples of the initial condition, which each cor-
respond to a distinctive nonlinear dynamic system that are propagated individually
together with their linearized variance approximations. From these samples the
overall means and variances are then determined from the coefficients of the PCE
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expansion as shown in Sections 4.5.2 and 4.2.3. ζNMPC = {mNMPC,wNMPC,nξ =
nx′,ΞNMPC} defines in this context the variables of the PCE mean and variance
function, see Section 4.5.2, which are the order of truncation of the PCE approxi-
mation, the Gauss-Hermite weights, the dimensionality of nξ given by the number
of states and uncertain parameters, and lastly the Gaussian-Hermite sample design.
Next we formulate the sh-SNMPC problem based on the above equations.

4.5.3 Chance constraint reformulation

In Section 4.5.2 we show how to obtain estimates of the mean and variance
of the objective and constraint functions. While this is sufficient to approximate
the objective defined in Section 4.3, we still require estimates for the chance con-
straints defined in Equations 4.34-4.35. In Section 4.2.4 it was shown how Cheby-
shev’s inequality can be used to robustly reformulate chance constraints exploiting
only mean and variance of the constrained variable, which leads to the follow-
ing robust reformulations of Equations 4.34-4.35 using the estimates of mean and
variances given in Equations 4.60-4.64:

µPCE
ζNMPC
(Γ

g j

µ,k
) + κε

√
µPCE
ζNMPC
(Γ

g j

σ,k
) + σPCE

ζNMPC
(Γ

g j

µ,k
) ≤ 0 (4.65)

µPCE
ζNMPC
(Γ

gN
j
µ ) + κε

√
µPCE
ζNMPC
(Γ

gN
j
σ ) + σ

PCE
ζNMPC
(Γ

gN
j
µ ) ≤ 0 (4.66)

where κε =
√

1−ε
ε .

4.5.4 Stochastic nonlinear optimal control formulation

In this section we formulate the stochastic optimal control problem to be solved
in a shrinking horizon fashion at each sampling time t given a probability distribu-
tion of the initial condition represented by its PCE x′t (ξ) and the dynamic equation
system defined in Section 4.3. The formulation is based on the propagation equa-
tions outlined in Section 4.5.2 and the reformulations of the chance constraints
in Section 4.5.3. We optimize over both open-loop control actions vk and a time-
invariant feedback control gain K to account for feedback. The overall formulation
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can be stated as follows:

minimize
V

Nsh ,K
µPCE
ζNMPC
(ΓJd

µ )

subject to
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g j
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√
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(Γ
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∀(k, j) ∈ {1, . . . ,Nsh} × {1, . . . ,ng}
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µPCE
ζNMPC
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gN
j
σ ) + σ

PCE
ζNMPC
(Γ

gN
j
µ ) ≤ 0 ∀ j ∈ {1, . . . ,nN

g }

µuk
(ξi) = vk +K(h(µx′,k(ξi)) − µyk

) ∈ U ∀k ∈ {0, . . . ,Nsh − 1}

µ
(i)
x′,0 = x′t (ξi) ∀i ∈ {1, . . . ,Nq}

(4.67)

where VN sh = [v0, . . . ,vN sh−1]
T is a matrix of open-loop control actions. It

should be noted that the initial control input is given by v0, which is the output
of the MPC algorithm. The initial measurement is known and hence feedback
does not apply for the first control action in the problem above, i.e. h(µx′,k(ξi)) =

µy0∀i ∈ {1, . . . ,Nq}. The linear feedback gain K is only used to lead to more
realistic future predictions.

4.6 Algorithm
In this section we state the algorithm to solve the problem defined in Section

4.3. Initially at time t = 0 we are given a probability distribution represented by
a PCE of x′ denoted by x′0(ξ). In addition, we define the DAE system to be con-
trolled by f (x′,u) and their measurement equation h(x′), and the corresponding
additive disturbances defined by the covariance matrices Σν and Σw. The over-
all time horizon N needs to be given, which is also equal to the number of con-
trol inputs. Further, we define the objective Jd(N,x′0(ξ),uN ) with path gj(x

′
t,ut )

and terminal constraints gN
j (x

′
N ) with a corresponding chance of constraint viola-

tion ε given an overall time horizon of N . We define mSE and NSE
s as the order

to be matched in the state estimator, while NSE
s denotes the number of samples

to approximate the moments in the state estimator, see Algorithm 4.1 in Section
4.4. Lastly, ζNMPC is required to define the PCE approximation of the sh-SNMPC
in Section 4.5. Overall we suggest to represent the states x′ at each sampling
time t using PCEs introduced in Section 4.2.1. The SNMPC algorithm exploits
this uncertainty description to control the dynamic system in Section 4.3. The
available measurements are utilised to update the PCE representation recursive as
outlined in Section 4.4. The overall algorithm is given below as Algorithm 4.2.
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Algorithm 4.2: Output feedback PCE sh-SNMPC

Input : f ′(x′,u), h(x′), Σν, Σw, x′0(ξ), mSE , NSE
s , N , ζNMPC

Initialize: Nsh := N
for each sampling time t = 0,1,2, . . . ,N − 1 do

1. Solve the PCE SNMPC problem in Equation 4.67 with x′t (ξ) and time
horizon Nsh.

2. Apply the first optimal control action v0 to the plant.

3. Measure yt+1.

4. Apply PCE filter to update x′t (ξ) to x′t+1(ξ) using yt+1.

5. Set Nsh := Nsh − 1.

4.7 Case study
The algorithm outlined in Section 4.6 is applied to a challenging polymeriza-

tion semi-batch reactor case study. The reactor produces the polymer polypropy-
lene glycol from the monomer propylene oxide (PO). A schematic of the process
is shown below in Figure 4.2.

Figure 4.2: F is the monomer feedrate, V and T are the volume and temperature of the
liquid in the reactor respectively, W is water, M is the monomer, Dn and Gn are the dormant
and active product chains with length n respectively.

4.7.1 Semi-batch reactor model

A complex model for this process has been proposed in [193], which uses a
separate balance equation for each specific chain length. This model was em-
ployed in [132] for crude NMPC and in [126] for multi-stage robust NMPC. The
computational times reported were approximately in the range of 30 seconds to
minutes, which is relatively high and can be attributed to the relative complexity
of the dynamic model in [193]. In particular the high dimensionality of the state
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would cause issues with the proposed methodology due to the scaling of PCEs,
see Section 4.2.1. To reduce the dimensionality and complexity of the model we
therefore applied the so-called "method of moments" [194]. This leads to balance
equations describing the moments of the polymer as opposed to the concentration
of each specific chain length, which is commonly sufficient to estimate key perfor-
mance indicators. Further, we disregard the balance equations for the unsaturated
polymer chain length and in addition assume that there are only trace amounts of
water or methanol present. This means that hydrolysis only takes place in negli-
gible amounts and hence can be ignored. In the original dynamic model perfect
temperature control was assumed. Due to the relative importance of temperature
control with regards to safety, we added an energy balance. The modified ordinary
differential equation system consists of 4 balance equations and can be stated as
follows:

Ûm = FMWPO m(0) = m0(ξ) (4.68a)

ÛT =
(−∆Hp)kpnCPO

VmCpb
−

UA(T − TC)
mCpb

−
FMWPOCp f (T − Tf )

mCpb
T(0) = T0(ξ) (4.68b)

ÛPO = F −
nC(kp + kt )PO

V
PO(0) = PO0(ξ) (4.68c)

Ûγ1 =
kpnCPO

V
γ1(0) = γ10(ξ) (4.68d)

where m is the liquid mass in the reactor in [kg], F is the feed rate of the monomer
in [kmol/s], T is the temperature of the reactor in [K], PO is the amount of
monomer in [kmol] and γ1 is the first moment and hence the average molecu-
lar weight of the polymer chains in [kmol], MWPO is the molecular weight of PO
in [kg/kmol], ∆Hp is the enthalpy of the propagation reaction in [kJ/kmol], kp is
the kinetic constant of the propagation equation in [m3/kmol/s], nC is the amount
of catalyst in [kmol], V is the volume of the liquid in the reactor in m3, Cpb and
Cp f are the heat capacities of the bulk liquid and the monomer feed respectively
in [kJ/kg/K], kt is the transfer kinetic constant in [m3/kmol/s], TC is the cooling
water temperature in [K] and UA is the overall heat transfer coefficient in [kJ/K].

The kinetic constants are given by Arrhenius equations as functions of tem-
perature, while the heat capacities Cpb and Cp f are also functions of temperature
[193]:

kp = Ap exp(−EAp/RT) (4.69a)

kt = At exp(−EAt/RT) (4.69b)
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Cp f = 0.92 + 8.871 × 10−3T − 3.1 × 10−5T2 + 4.78 × 10−8T3 (4.69c)

Cpb = 1.1 + 2.72 × 10−3T (4.69d)

Two parameters in the above model are assumed to be uncertain: Ap and UA.
The remaining values of parameters to define Equations 4.68-4.69 are given in
Table 4.1. Note that for the assumptions made the amount of the zeroth polymer
moment γ0 in the reactor is fixed, since no hydrolysis takes place.

Table 4.1: Parameter values for dynamic model defined in Equations 4.68 − 4.69 taken
from [193]

Parameter Value Units Description
MWPO 58.08 kg/kmol Molecular weight of PO
∆Hp −92048 kJ/kmol Enthalpy for propagation reaction
At 950410 m3/kmol/s Pre-exponential factor of transfer reaction
EAp 69172 kJ/kmol Activation energy of propagation reaction
EAt 105018 kJ/kmol Activation energy of transfer reaction
nC 2.0 kmol Amount of catalyst
R 8.314 kJ/kmol/K Universal gas constant
γ0 10 kmol Zeroth polymer moment (Methanol)

The control inputs are given by the monomer feed rate F and the cooling wa-
ter temperature TC . In compact form we can write x = [m,T,PO, γ1]T , u =
[F,TC]T and θ = [Ap,UA]T . The corresponding joint vector is then given by
x′ = [m,T,PO, γ1, Ap,UA]T . The continuous-time dynamic system we denote by
f̄ ′(x′,u) = [ Ûm, ÛT, ÛPO, Ûγ1,0,0]T .

We assume that reactor temperature T and the amount of monomer PO are
measured at each sampling time with y = [T,PO]T . The measurement equation
h(·) is given as follows:

h(x′) = [T,PO]T (4.70)

The initial uncertainty of the states x and the uncertain parameters θ is given
by their respective initial PCEs, which are defined as:

m0(ξ) = 1538 (4.71a)

PO0(ξ) = 10 + ξ2 (4.71b)

T0(ξ) = 378.15 + 4ξ3 (4.71c)
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γ10(ξ) = 10 + 0.5ξ4 (4.71d)

AP0(ξ) = 10 + ξ5 (4.71e)

UA0(ξ) = 15 + 4ξ6 (4.71f)

The overall initial PCE is now given by
x′0(ξ) = [m0(ξ),PO0(ξ),T0(ξ), γ10(ξ), AP0(ξ),UA0(ξ)]

T . The PCEs of x′ given by
x′(ξ) have a truncation order of 2.

The additive disturbance and measurement noise is defined by their respective
covariance matrices, which were set to:

Σw = diag(1,10−3,1,2.5 × 10−1,5 × 10−2,2 × 10−1) (4.72)

Σν = diag(0.25,1 × 10−3) (4.73)

4.7.2 Problem set-up

The time horizon N was set to 8 with a variable continuous time of tbatch. Given
the dynamic system in Equation 4.68 we define the objective and constraints in
this section to define a problem as the one given in Section 4.3. The control algo-
rithm aims to minimize the required batch time tbatch with a penalty on the control
change, which can be stated as follows:

Jd(N,x′0(ξ),UN ) = tbatch +

N∑
k=1

∆Tuk
R∆uk

(4.74)

where ∆uk
= uk − uk−1 and R = diag(10−6,10−4).

The batch time is defined to describe the discrete-time equation for a control
horizon N:

x′t+1 =

∫ tbatch/N

0
f̄ ′(x′t,ut )dt + x′t (4.75)

The minimum of the objective above is subject to two terminal constraints and a
path constraint. The path constraint aims to keep the reactor temperature to remain
below 420K for safety reasons:

g(x′t,ut ) = T − 420 ≤ 0 (4.76)

The two terminal constraints are given by two product quality constraints.
Firstly, the batch needs to reach a specified number average molecular weight
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(NAMW) in [kg/mol] of 350 defined as NAMW = MWPO
γ1
γ0

. Secondly, the amount
of monomer PO in the final batch may not exceed 1000ppm. The two end-point
product quality constraint can consequently be stated as:

gN
1 (x

′
N ) = −MWPO

γ1
γ0
+ 350 ≤ 0 (4.77)

gN
2 (x

′
N ) = 106 ×

(
POMWPO

m

)
− 1000 ≤ 0 (4.78)

The chance of constraint violation was set to ε = 0.05 for the constraints de-
fined above. The monomer feed rate and the cooling water temperature were con-
strained as follows:

0 ≤ F ≤ 0.01 (4.79)

298.15 ≤ TC ≤ 423.15 (4.80)

4.7.3 Solution approach

To solve the case study we need to discretize the continuous-time equation sys-
tem outlined in Equation 4.68 to obtain the required discrete-time equation used in
the problem definition in Section 4.3. For the discretization we applied orthogonal
Radau collocation [27]. Each control interval is modelled by one polynomial with
an overall degree of 5. Further, we require linearization matrices for the states and
control inputs for the discrete time system to propagate the additive disturbance
noise as outlined in Section 4.5.2, which are given as follows [151]:

Ak(ξ) = exp

(
∂ f̄ ′

∂x′ x′=µx′ ,k (ξ),uk=µuk
(ξ)

)
(4.81a)

Bk(ξ) =

(
∂ f̄ ′

∂x′ x′=µx′ ,k (ξ),uk=µuk
(ξ)

)−1
(Ak(ξ) − I)

(
∂ f̄ ′

∂u x′=µx′ ,k (ξ),uk=µuk
(ξ)

)
(4.81b)

The resulting optimization problems for both the PCE sh-SNMPC problem
and the PCE state estimator were solved using Casadi [9] to obtain the gradients
of the problem using automatic differentiation in conjunction with IPOPT [258].
The "real" plant model was simulated using IDAS [116]. The PCE state estimator
aims to match up to 3 orders with overall 10000 samples to estimate the posterior
moments, i.e. mSE = 3 and NSE

s = 10000. For the Gauss-Hermite samples we
use a sparse rule for the weights w and sample design Ξ as outlined in [127] with
a polynomial accuracy of 3. The PCE of the sh-SNMPC has a truncation order
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of 2 with a dimensionality of ξ of 6 corresponding to the dimensionality of x′.
The parameters for the PCE sh-SNMPC algorithm are then given by ζNMPC =

[2,w,6,Ξ].

4.8 Results and discussions
In this section we present and discuss the results of the case study outlined

in the previous section. For comparison purposes we compare three different sh-
NMPC variations, which are as follows:

• SNMPC with feedback: The algorithm as outlined in Section 4.6 optimizing
over both a linear feedback gain and open-loop control actions.

• SNMPC without feedback: The algorithm as outlined in Section 4.6, but op-
timizing over only open-loop control actions and setting the linear feedback
gain to zero.

• Nominal NMPC: A NMPC algorithm based on the same dynamic model and
discredization with the state estimate equal to the best-estimate given by the
mean of the PCE state estimator. Objective and constraints are deterministic
in this case with soft constraints used for feasibility.

The sh-SNMPC variations were each run for the economic MPC problem min-
imizing the objective given in Equation 4.74 subject to the safety path constraint in
Equation 4.76, and end-point product quality constraints defined in Equations 4.77
and 4.78. Note that the time-invariant feedback gain is never actually implemented,
since the first control action does not depend on it, see the SNMPC formulation in
Equation 4.67. Instead, this inclusion of feedback only serves to obtain more re-
alistic and less conservative predictions. The actual closed-loop response depends
on the feedback from the state update.

4.8.1 Example scenario

We first run the three sh-NMPC variations on a single scenario, where we
set the initial condition to the following: x′0 = [m0,P00,T0, γ10, AP0,UA0]

T =

[1538,9.0,385,9.5,7.5,10]T . This can be seen as a single realization of the ini-
tial PCE stated in Equation 4.71. The results of this are summarised in Figures
4.3-4.11. In Figures 4.3-4.6 the trajectories of the four states are shown for each
algorithm with the corresponding state estimate. In addition an error-bar is shown
corresponding to a 95% confidence interval of the state estimate. In Figures 4.7
and 4.8 the two control inputs are shown respectively for each algorithm. Figure
4.9 shows the sampling times for each algorithm, which is minimized for the ob-
jective and changes at each sampling interval due to the improved estimates of the
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uncertain parameters and states. Lastly, Figures 4.10 and 4.11 illustrate the evo-
lution of the uncertain parameter probability density functions for the "SNMPC
with feedback" variation. We can draw the following conclusions from the graphs
depicted:

• Figure 4.5 shows the relative conservativeness of the SNMPC without feed-
back compared to the nominal NMPC and the SNMPC with feedback. While
the latter two algorithms lead to trajectories that quickly approach the tem-
perature constraint, the SNMPC without feedback first drastically reduces
the temperature in the reactor due to the open-loop growth of the uncertainty.
This is further highlighted in Figures 4.7 and 4.8, where the SNMPC with-
out feedback keeps the Monomer feed rate and cooling water temperature at
its lower bound for much longer than the other two algorithms. In addition
it can be seen that the nominal NMPC overshoots the constraint slightly,
while the SNMPC algorithms keep a reasonable distance to the constraint to
prevent this.

• Figure 4.4 shows the evolution of the monomer concentration. While the
nominal NMPC and the SNMPC with feedback operate at a rather steady
amount of monomer until it is reduced due to the second terminal constraint,
the SNMPC without feedback increases it considerably due to its initial con-
servativeness. In addition it can be seen that both SNMPC algorithms have a
longer "reduction" phase, which is due to considering the uncertainty in the
problem. In fact the nominal NMPC algorithm contains 90ppm too much of
the monomer in the final batch, while the SNMPC algorithms overshoot the
constraint slightly.

• In Figure 4.6 the evolution of the first polymer moment is shown, for which
similar observations can be made as in Figure 4.4. The nominal and SNMPC
with feedback approach the constraint steadily, while the SNMPC without
feedback takes longer due to its conservativeness and consequently low fee-
drate initially, see Figure 4.7. Again while the nominal NMPC reaches the
constraint exactly, both SNMPC algorithms overshoot the constraint to ac-
count for the uncertainty present. The final batch of the nominal NMPC has
an NAMW that consequently is 0.1 kmol too small.

• It can be seen that the trajectories have different time lengths. The longest
batch time is given by the SNMPC without feedback with a time of 6800
seconds due its relatively slow start resulting from the initially large open-
loop uncertainties. By disregarding the uncertainties the nominal NMPC
algorithm is able to have the shortest batch time with 5000 seconds, which
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however leads to it violating both terminal constraints. The SNMPC with
feedback is intermediary with a batch time of 5900 seconds, since it con-
siders the uncertainties present but does not have the problem of open-loop
growing uncertainties.

• In Figure 4.9 the variation of the sampling times is shown. The nominal
NMPC has relatively consistent sampling times, since the reduction in un-
certainty has no effect on its constraints. The two SNMPC algorithms on
the other hand show an overall reduction of the sampling time, since the
uncertainty is lowered from the PCE state estimator update. The SNMPC
without feedback is as expected significantly more conservative initially and
also shows a more dramatic response to the uncertainty reduction.

• In Figures 4.10 and 4.11 the probability density functions of the uncertain
parameters Ap and UA are shown for SNMPC with feedback at different
discrete times. In both cases the initial distribution is very broad and quickly
approaches the true value. Nonetheless even at t = 8 a certain amount of
biasness remains in particular for UA. While this is accounted for in the
SNMPC algorithms, it is ignored by the nominal NMPC algorithm, which
only considers the mean of the distribution.

Figure 4.3: Scenario trajectories of the reactor mass for each algorithm variation
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Figure 4.4: Scenario trajectories of the amount of monomer for each algorithm variation

Figure 4.5: Scenario trajectories of the reactor temperature for each algorithm variation

Figure 4.6: Scenario trajectories of the first polymer moment for each algorithm variation
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Figure 4.7: Monomer feed rate trajectory for each algorithm variation

Figure 4.8: Cooling temperature trajectory for each algorithm variation

Figure 4.9: Changes in sampling time for each sampling interval and algorithm variation
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Figure 4.10: Probability density function evolution for the propagation pre-exponential
factor in the case of SNMPC with feedback

Figure 4.11: Probability density function evolution for the overall heat transfer coefficient
in the case of SNMPC with feedback

4.8.2 Monte Carlo simulations

Next we run 100 closed-loop MC simulations of the same case study apply-
ing the outlined algorithms by sampling the initial condition and the disturbances
independently. The results of these MC simulations are summarised in Figures 4.3-
4.8. Figures 4.3, 4.4 and 4.5 show the probability density estimation of NAMW,
the ppm of the monomer and the batch time respectively. Figures 4.6, 4.7 and
4.8 show the temperature trajectories of the 100 MC simulations for SNMPC with
feedback, SNMPC without feedback and the nominal NMPC respectively. Based
on these results the following observations can be made:
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• Figure 4.12 shows that for both SNMPC variations the constraint on the
NAMW given by the vertical black line is not violated by any of the MC
simulations despite the uncertainty present. The nominal NMPC algorithm
on the other hand violates the constraint in 46% of the closed-loop simula-
tions.

• Figure 4.13 shows again that both SNMPC algorithms do not violate the
constraint on the ppm of the monomer frequently or to a significant extent.
The algorithm SNMPC with feedback violated this constraint in 3% of the
simulations, while without feedback this constraint was violated in 2% of the
simulations. In contrast the nominal NMPC contained too much monomer
in the final batch in 53% of the simulations.

• Figure 4.14 illustrates the trade-off for the more robust behaviour from the
SNMPC algorithm compared to their deterministic counterpart. While the
nominal NMPC requires an average batch time of 4900 seconds, the SN-
MPC with feedback needs approximately 7000 seconds on average. The
SNMPC without feedback requires the largest batch times on average of
7400 seconds. In addition, this illustrates that the feedback leads to a reduc-
tion of batch times of about 5% with the same guarantees.

• Figures 4.15-4.17 illustrate the improved temperature control of the SNMPC
algorithms compared to the nominal NMPC. While the nominal NMPC vio-
lates the temperature control 73% of the time, the SNMPC without feedback
breaks it 30% and with feedback 14% of the time. Overall it can be said that
the uncertainty has a small effect on the temperature constraint. The rela-
tively large number of violations from the SNMPC variants can be possibly
attributed to the inaccuracy of the linearization matrices in Equation 4.81,
although the extent of the constraint violation is considerably lower than the
nominal NMPC.

• In Table 4.2 the computational times of the SNMPC algorithms and the nom-
inal NMPC are shown. While SNMPC with feedback is significantly less
conservative, it does require on average twice the computational time as the
SNMPC without feedback. The nominal NMPC is as expected 20 times
faster, since it is based on a much smaller optimization problem without
scenarios and linearization propagation matrices.
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Figure 4.12: Probability density of NAMW based on 100 MC simulations

Figure 4.13: Probability density of part per million of the monomer based on 100 MC
simulations
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Figure 4.14: Probability density of the batch times based on 100 MC simulations

Figure 4.15: Temperature trajectories of 100 MC simulation for SNMPC with feedback

Figure 4.16: Temperature trajectories of 100 MC simulation for SNMPC without feed-
back
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Figure 4.17: Temperature trajectories of 100 MC simulation for nominal NMPC

Table 4.2: The mean and standard deviation computational times for solving the sh-
SNMPC OCP from 100 MC simulations

sh-NMPC variation Mean (s) Standard deviation (s)
SNMPC with feedback 11.5 9.8
SNMPC without feedback 5.7 4.5
Nominal NMPC 0.27 0.1

4.9 Conclusions
In conclusion a new algorithm has been proposed for output feedback sh-

SNMPC for batch processes. The algorithm is able to account for parametric un-
certainties, state estimation errors and additive disturbance noise. PCEs are utilised
to represent the probability distributions of the states and uncertain parameters,
which are updated at each sampling time using a PCE nonlinear state estimator
employing noisy output measurements. This PCE representation is then exploited
in a SNMPC formulation, which accounts for this uncertainty using PCEs and
considers the additive disturbance noise by employing linearization in conjunction
with the law of total probability. To reduce the conservativeness the algorithm op-
timizes not only over open-loop control actions, but also over a time-invariant lin-
ear feedback gain. The objective and constraints were based on general nonlinear
functions. The aim was set to minimise the objective in expectation, while adher-
ing the constraints in probability to maintain feasibility. For verification purposes
a semi-batch reactor case study was used, which showed that the SNMPC frame-
work is able to control the system despite the uncertainties on the initial condition
and additive disturbance noise. In particular, ignoring the uncertainty information
leads to approximately 50% constraint violations of the terminal constraints and
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to 70% violation of the temperature constraint. Further, considering feedback in
the SNMPC formulation leads to on average 5% lower batch times with the same
guarantees.



Chapter 5

Stochastic Nonlinear Model
Predictive Control Using
Gaussian Processes

This chapter is based on Paper C: E. Bradford and L. Imsland. Stochastic Non-
linear Model Predictive Control Using Gaussian Processes. In 2018 European
Control Conference (ECC), pages 1027–1034, 2018.

Summary
Model predictive control is a popular control approach for multivariable sys-

tems with important process constraints. The presence of significant stochastic un-
certainties can however lead to closed-loop performance and infeasibility issues.
A remedy is given by stochastic model predictive control, which exploits the prob-
ability distributions of the uncertainties to formulate probabilistic constraints and
objectives. For nonlinear systems the difficulty of propagating stochastic uncer-
tainties is a major obstacle for online implementations. In this paper we propose
to use Gaussian processes to obtain a tractable framework for handling nonlinear
optimal control problems with Gaussian parametric uncertainties. It is shown how
this technique can be used to formulate nonlinear chance constraints. The method
is verified by showing the ability of the Gaussian process to accurately approximate
the probability density function of the underlying system and by the closed-loop
behaviour of the algorithm via Monte Carlo simulations on an economic batch
reactor case study.

87
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5.1 Introduction
The only advanced control method that has been employed to a significant ex-

tent in industry is model predictive control (MPC). MPC refers to a control ap-
proach that explicitly uses a dynamic model to evaluate a sequence of control ac-
tions at each sampling time by solving an optimal control problem (OCP). The
success of MPC can be largely attributed to its ability to deal with multivariable
plants and process constraint [165].

Many problems however are affected by uncertainties, including inaccuracies
from the parameters in the dynamic model and external disturbances. Robust MPC
(RMPC) methods have been proposed to handle uncertain systems for which the
uncertainties are assumed to be in a bounded set [22]. For robust nonlinear MPC
(RNMPC), min-max NMPC [64] and tube-based NMPC [173] have been intro-
duced among others. These approaches enable analysis of the stability and per-
formance of the system in the worst-case, which may however have a very small
chance of occurrence and hence lead to a too conservative solution [177].

An alternative to robust MPC is given by stochastic MPC (SMPC), which as-
sumes the uncertainties to be described by known probability density functions
(pdf). Constraints in this context are given by chance or expectation constraints.
SMPC alleviates the previously described problem by allowing for a level of con-
straint violation in probability, which leads to a trade-off between risk of constraint
violation and closed-loop control performance [175].

Most work in SMPC has been on linear systems, e.g. stochastic tube based
MPC [55, 54], scenario-based MPC [213, 24] and affine-parameterization ap-
proaches [201, 118], while stochastic NMPC (SNMPC) has received relatively
little attention [175]. This can be in part explained by the difficulty of propa-
gating stochastic uncertainties through a nonlinear system model without being
prohibitively expensive. An exception are Markovian systems with finite possi-
ble realizations of the stochastic uncertainties, for which efficient algorithms are
available [205]. Several methods have been proposed to propagate uncertainties
through nonlinear systems, such as Monte Carlo sampling (MC), generalized poly-
nomial chaos expansions (gPCe), Gaussian closure, equivalent linearization and
stochastic averaging [148].

A simple procedure to solve the SNMPC problem for moderately nonlinear
systems is given by successive linearization and application of linear SMPC al-
gorithms, such as stochastic tube based MPC [59]. In [33] stochastic averaging
is applied using the unscented transformation, which is computationally efficient,
but similar to the linearization approach only applicable to moderately nonlinear
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systems. [31] used a sampling average approach to obtain a tractable OCP for-
mulation. The required number of samples was reduced by employing variance
reduction techniques. In [256] Markov Chain MC was used to solve the nonlin-
ear MPC problem, which however quickly becomes prohibitive in complexity. In
particular, the Markov Chain MC approach suggested tries to find the global opti-
mum, which is only applicable to low dimensional problems. For continuous time
the Fokker-Planck equations can be used to predict the pdf of the states over time,
which has been used in [50]. A Lyapunov function is included in the SNMPC
formulation to guarantee probabilistic stability, however feasibility is not ensured
and the method is expensive due to the requirement of solving a partial differential
equation system online.

Lastly, much of the research in SNMPC has been concerned with the applica-
tion of gPCe, which describes a procedure of propagating uncertainties through
a nonlinear model as an efficient alternative to MC sampling by utilising orthog-
onal polynomials [186]. For SNMPC these methods rely on running several re-
alizations of the uncertain parameters, while solving a least-squares problem to
calculate the coefficients of the orthogonal polynomials for every iteration of the
control inputs [87, 177], which is known as non-intrusive gPCe. Alternatively,
Galerkin projection may be used to determine the coefficients of the orthogonal
polynomial, which however is only applicable to polynomial-type systems [242].
The chance constraints are either reformulated as second-order cone constraints or
using direct MC sampling on the polynomial chaos expansion itself [242]. [18]
shows how gPCe can in addition be used for additive disturbances of nonlinear
systems, while [17] utilises gPCe to solve a MPC problem for model maintenance
by designing experiments online. While gPCe constitute a promising approach
for SNMPC, there are several disadvantages. The complexity of gPCe grows ex-
ponentially with the number of uncertain parameters, orthogonal polynomials of
high orders are prone to unstable swings, time-varying disturbances are difficult
to handle and lastly the expansion is only exact as the number of terms tends to
infinity [199, 175].

In the statistics community the use of gPCe is rare and instead Gaussian pro-
cesses (GP) are used for uncertainty quantification in "Bayesian calibration" by
running different realizations of the uncertain parameters [135, 198]. An excellent
comparison of gPCe to GPs is given in [199].

Gaussian process models are probabilistic, non-parametric models that not only
provide predictions, but also prediction uncertainties. GPs have been shown to be a
powerful tool in single- [130] and multi-objective optimization [46] by exploiting
the uncertainty measure to sample functions efficiently. GPs have found various
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applications in MPC. GPs have been shown to be an efficient alternative to neu-
ral network models to identify nonlinear models from data for NMPC [143] with
successful application to a gas-liquid separation plant [158]. In addition, GPs have
been used to identify disturbance models online. For example, in [139] the GP is
used to overcome unmodelled periodic error and in [167] to update a model after a
fault has occurred. In [114] it is shown how the GP can be used to model residual
model uncertainty and formulate chance constraints based on the Gaussian distri-
bution of the states.

In this paper we propose the use of GPs as an alternative to non-intrusive gPCe
for SNMPC. The main advantage of using GPs over gPCe in SNMPC is the fact
that the uncertainty involved from the approximation of the true model by a fi-
nite number of samples is taken into account, which is otherwise ignored by the
gPCe. In addition, GPs are not prone to unstable swings and are interpolating,
i.e. pass exactly through all sample points provided, but otherwise suffer from the
same drawbacks as gPCe. The novelty in this paper is the application of GPs to
learn the mapping between uncertain parameters and model outputs for SNMPC
applications.

The remainder of the paper is structured as follows. In Sec. II a stochastic
nonlinear OCP is formulated. Sec. III introduces Gaussian Process regression
with equations to estimate the exact mean and variance from uncertain inputs. In
Sec. IV it is shown how the stochastic nonlinear OCP can be approximately solved
by employing GPs and how this can be applied in a receding horizon fashion for
SNMPC. Lastly, Sec. V tests the approach on a batch reactor case study by com-
paring open-loop predictions of the pdf and closed-loop performance via Monte
Carlo simulations.

5.2 Stochastic Nonlinear Optimal Control Problem Formulation
In this work we consider a general discrete time stochastic nonlinear system

with parametric uncertainties:

x(k + 1) = f (x(k),u(k),θ) (5.1)

where k represents the discrete time, x(k) ∈ Rnx are the states, u(k) ∈ Rnu

are the control inputs, θ ∈ Rnθ denotes the uncertain model parameters and f :
Rnx ×Rnu ×Rnθ → Rnx represents the nonlinear system dynamics. The paramet-
ric uncertainties are assumed to be jointly Gaussian distributed with known mean
mθ ∈ R

nθ and known covariance Σθ ∈ Rnθ×nθ , which fully specifies the pdf of θ.

Based on (5.1), we formulate an OCP. Assuming that the system states are
measured at all times, a general OCP can be given as follows:
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Finite-horizon nonlinear OCP with chance constraints

minimize
uN

E (J(N,xt,uN ,θ)) + ωVar (J(N,xt,uN ,θ))

subject to

x(k + 1) = f (x(k),u(k),θ) ∀k ∈ {0, ...,N − 1}

P(g
(k)
j (x(k),u(k),θ) ≤ 0) ≥ 1 − p(k)j

∀(k, j) ∈ {1, . . . ,N} × {1, . . . ,n(k)g }

u(k) ∈ Uk ∀k ∈ {0, ...,N − 1}

x(0) = xt

(5.2)

where the length of the time horizon is given by N , the objective consists of the
expectation and variance of a nonlinear function J(N,xt,uN ,θ) weighted by ω,
g
(k)
j : Rnx × Rnu × Rnθ → R are individual nonlinear chance constraints of which

there are n(k)g for each discrete time k, p(k)j ∈ [0,1] ⊂ R is the desired probability

of constraint violation with respect to g
(k)
j , the input constraints are represented by

Uk , uN := {u(0), . . . ,u(N − 1)} is a collection of inputs and lastly xt is the initial
state, which is assumed to be known.

The goal of the stochastic nonlinear OCP is to calculate an optimal control se-
quence over a finite time horizon that adjusts the pdfs of the states to obtain the
optimal value of the probabilistic objective function, while allowing for a prede-
fined violation of the stochastic nonlinear constraints.

5.3 Gaussian Process Regression
In this section we give a short introduction to GP regression specific for our

purposes. For a more general review, please refer to [263, 220]. GP regression
describes the inference of an unknown function ξ : Rnθ → R from data. The
purpose of GPs in our case is to determine an unknown transformation ξ(θ) with
respect to the uncertain parameters, hence the input dimension nθ .

GPs describe a distribution over functions and can be seen as a generalisation
of multivariate Gaussian distributions. A GP, ξ ∼ GP(m(·), k(·, ·)), is specified by
a mean function m(·) and a covariance function k(·, ·), defined as follows:

m(θ) B Eξ (ξ(θ)) (5.3)

k(θ,θ ′) B Eξ ((ξ(θ) − m(θ))(ξ(θ ′) − m(θ ′))) (5.4)

where θ, θ ′ ∈ Rnθ are arbitrary input vectors and Eξ (·) is the expectation over the
function space. The mean function can be interpreted as the ’average’ shape of the
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function, while the covariance function specifies the covariance between any two
function values computed at the corresponding inputs.

GPs in regression are used to place a prior on admissible functions in a Bayesian
framework. The prior is given by the choice of the mean function and the covari-
ance function. In this study we apply a constant mean function and the squared-
exponential (SE) covariance function [263]:

m(θ) B c (5.5)

k(θ,θ ′) = α2 exp

(
−

1

2
(θ − θ ′)TΛ(θ − θ ′)

)
(5.6)

where c is a constant, Λ = 1
`2

I, ` is a width scaling parameter and α2 is the signal
variance. By selecting the SE covariance function we assume that the underlying
transformation to be inferred is smooth and stationary.

Next we require data of the function, i.e. evaluations of the function at spe-
cific input values. We assume we are given ns such function values at ns different
inputs. Let Θ =

[
θ̃0, θ̃1, . . . , θ̃ns−1

]
∈ Rnθ×ns denote a data matrix with a collec-

tion of training inputs with a corresponding output vector of function evaluations
defined by y = [ξ (̃θ0), . . . , ξ (̃θns−1)]

T ∈ Rns .

The hyperparameters that define the prior of the GP in (5.5) and (5.6) are jointly
given by the vector Ψ = [c, `, α]T . The hyperparameters are generally unknown
a priori, such that they need to be inferred from data. Maximum likelihood esti-
mation (MLE) is commonly carried out to determine Ψ. The log-likelihood of the
observed data, ignoring constant terms, is given by:

L(Ψ) = −
ns
2

log(α2) −
1

2
log(|K|) −

(y − 1c)TK−1(y − 1c)
2α2

(5.7)

where Ki j = exp
(
−1

2 (̃θi − θ̃ j)
TΛ(̃θi − θ̃ j)

)
for all i, j = [0, . . . ,ns − 1]

By setting the derivatives with respect to α2 and c to zero, it is possible to obtain
closed-form expressions for the optimal MLE values of α2 and c as functions of K
[129]:

ĉ =
ay

b
(5.8)

α̂2 =
νTK−1ν

ns
(5.9)

where a = 1TK−1, b = 1TK−11, ν = (y − 1ĉ) , ĉ and α̂2 are the optimal MLE
values of c and α2 respectively.
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The value of the scaling parameter `, was fixed in this work due to the excessive
cost of evaluating it online. This will however lead to a worse fit for the GP and
a correspondingly larger uncertainty of the model. An alternative could be to find
a value for ` using (5.7) for different nonlinear function values y that gives on
average the best likelihood value. Possible function values y can be found by
open-loop simulation with different control inputs. Fixing ` allows for the pre-
computation of various quantities. The heuristics that was used in this work for
fixing ` can be found in [124] and is given as the median of all pairwise euclidean
distances between the uncertain parameter values in the data matrix Θ:

` = median(| |θ̃i − θ̃ j | |2) (5.10)

Finally, we require the mean and variance of ξ(θ)|Θ,y at an arbitrary input
θ, where the input follows a Gaussian distribution with mean mθ and covariance
matrix Σθ . ξ(θ)|Θ,y in this case refers to the posterior function of ξ(·), which
corresponds to the prior that was updated using the data in Θ and y. GPs are com-
monly used for deterministic inputs. The case of Gaussian distributed uncertain
inputs has, however, received extensive attention for the propagation of uncertain-
ties in the case of multi-step ahead predictions [100]. It has been shown that for
our choice of mean and covariance functions given in (5.5) and (5.6) respectively,
it is possible to calculate the exact mean and variance. The expressions for the
expectation and variance of ξ(θ)|Θ,y are [71]:

E (ξ(θ)|Θ,y) = ĉ + α̂2dν (5.11)

Var (ξ(θ)|Θ,y) = α̂2 + νTCν − α̂2e −
(
α̂2dν

)2
(5.12)

where d = qTK−1, C = K−1QK−1, e = tr(K−1Q), qj = |ΣθΛ+I|−1/2exp(−1
2 (mθ−

θ̃ j)
T (Σθ + Λ

−1)−1(mθ − θ̃ j) and

Qi j = exp

(
−

1

2
(̃θi −mθ)

TΛ(̃θi −mθ)

)
× exp

(
−

1

2
(̃θ j −mθ)

TΛ(̃θ j −mθ)

)
|R|−1/2

× exp
(
(xb −mθ)

TR−1ΣθΛ(xb −mθ)

)
where R = 2ΣθΛ + I and xb = Λ

−1(̃θi −mθ) + Λ
−1(̃θ j −mθ).

It should be noted that while we assume Gaussian distributed uncertainties in
this paper, it is possible to determine (5.11) and (5.12) for other types of uncer-
tainties, such as uniformly distributed uncertainties. Therefore, the method can be
easily extended to other types of uncertainties.
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In the GP-SNMPC algorithm the input training design Θ is created offline and
remains the same online. In addition, the hyperparameter ` is fixed onceΘ is fixed
based on the heuristic in (5.10). The terms a, b, K−1, d, C and e in (5.8-5.12) are
only functions of Θ and `, and hence can be pre-computed offline. This makes
the use of GPs viable for SNMPC, since otherwise expensive calculations would
have to be carried out for each iteration of the optimization algorithm, such as the
inversion of the matrix K or the calculation of C.

5.4 Gaussian Process Stochastic Nonlinear Model Predictive
Control

In this section we show how GPs can be exploited for reformulating the OCP
given in (5.2). Firstly, we outline how the chance constraints in (5.2) can be re-
formulated robustly in terms of the mean and variance of the random variable in
question. Subsequently, the principle of the GP-SNMPC is highlighted. Lastly, the
space-filling parameter design used is outlined and the reformulated OCP problem
is given in terms of the resulting samples from the parameter design.

5.4.1 Robust chance constraints

The probabilistic control problem in (5.2) can be solved efficiently by robust
reformulation of the chance constraints using the Chebyshev inequality, which
results in the following theorem [177]:

Theorem 5.4.1. Consider a generic probability constraint of the form:

P (ξ ≤ 0) ≥ 1 − ε, ε ∈ (0,1) ⊂ R (5.13)

where ξ ∈ R is some random variable with known mean E(ξ) = ξ̂ and variance
Var(ξ) = σ2

ξ . Let Ω be the set of random variables with mean ξ̂ and variance σ2
ξ ,

then for any ε ∈ (0,1), the distributionally robust probability constraint

inf
ξ ∈Ω
P (ξ ≤ 0) ≥ 1 − ε (5.14)

can be shown to be equivalent to:

κεσξ + ξ̂ ≤ 0, κε =
√
(1 − ε)/ε (5.15)

where σξ is the standard deviation of ξ. �

The probability constraints in the stochastic OCP in (5.2) are given in the form
of:

P(g
(k)
j (x(k),u(k),θ) ≤ 0) ≥ 1 − p(k)j (5.16)
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Using Thm. 1 we arrive at the following deterministic constraints for the probabil-
ity constraint in (5.16):

κjk

√
Var

(
g
(k)
j (x(k),u(k),θ)

)
+ E

(
g
(k)
j (x(k),u(k),θ)

)
≤ 0 (5.17)

where κjk =
√
(1 − p(k)j )/p

(k)
j

It should be noted that Chebyshev inequality leads to conservative constraints,
in particular for pdfs that are close to Gaussian. An alternative to this has been used
in gPCe based SNMPC by sampling the random variable instead to approximate
the probability constraint [242].

5.4.2 GP-SNMPC Principle

Before outlining the exact equations necessary to simplify (5.2), we will first
highlight the principle behind the approach. The main difficulty of the OCP in (5.2)
is the determination of the statistics of the objective function J(N,xt,uN ,θ) and
the nonlinear functions constituting the probabilistic constraints g(k)j (x(k),u(k),θ).
Given that θ is assumed to be time invariant, once all control inputs uN are fixed,
the values of the states x(k) and consequently the values of the objective J(N,xt,uN ,θ)
and the constraints g

(k)
j (x(k),u(k),θ) depend solely on the value of θ. The func-

tions can consequently be expressed in the following form:

y = ξ(θ) (5.18)

where ξ(θ) denotes an arbitrary transformation of θ.

The problem may now be expressed as the requirement to estimate the pdf
of the random variable y given the distribution of θ. In many cases it is suffi-
cient to determine the expectation (first moment) and variance (second moment)
of y. SNMPC using GPs is a scenario based approach similar to the non-intrusive
polynomial chaos method proposed in [177, 87]. This involves creating several
realizations of the uncertain variable θ. Each of these realizations corresponds to a
separate nonlinear dynamic equation system given by (5.1) with θ replaced by the
respective realization.

The principle on which the procedure works is illustrated in Fig. 5.1. Each
sample of θ creates a separate trajectory from the initial state x(0), as shown by
the lines on the left-hand side graph. These trajectories each have distinct values
of x at each discrete time, highlighted by the markers on the same graph. If we
are now interested in the statistics of a nonlinear transformation g(x), these val-
ues need to be transformed as shown by the arrows. This gives us several values
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for each uncertain parameter realization, which we can represent as an unknown
transformation of θ, ξ(θ), as is illustrated on the right-hand side graph. GP regres-
sion is then used to estimate the unknown transformation ξ(θ). The resulting GP
surrogate of ξ(θ) is then used to estimate the mean and variance from the closed-
form expressions in (5.11) and (5.12). The GP needs to be rebuilt each time uN

changes using the data from the different scenarios, i.e. for each iteration step of
the optimization algorithm.

Figure 5.1: Illustration of GP-SNMPC algorithm: On the left-hand side graph the trajec-
tories are shown for each realization of θ with markers highlighting the different values
of the state x. For the final discrete time the values of the states are transformed through
g(x), which gives us several values, which are plotted on the right-hand side graph against
the realization values of θ. It is then shown on the right-hand side graph that the unknown
relationship of the transformation with θ can be approximated by GP regression

5.4.3 Gaussian process optimal control formulation

The GP-SNMPC algorithm is a sampling-based algorithm, i.e. we create a set
of different values of θ, which was represented by Θ :=

[
θ̃0, θ̃1, . . . , θ̃ns−1

]
in

the previous section, where each θ̃ implies a separate nonlinear dynamic system
given by (5.1). From these separate simulations we then obtain the output values
y, which are used to estimate the necessary statistics in (5.19). The parameter
design needs to ensure a good spread of θ̃ values in the region of significant prob-
ability densities. In this work we used min-max Latin hypercube sampling from
the Gaussian distribution of θ to generate the necessary parameter set by using the
procedure described in [240]. Based on this parameter design Θ, the GP-SNMPC
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OCP problem may be given as follows:

Finite horizon GP-SNMPC problem with chance constraints

minimize
uN

E (ξJ |Θ,yJ ) + ωVar (ξJ |Θ,yJ )

subject to

xi(k + 1) = f (xi(k),u(k), θ̃i)

∀(k, i) ∈ {1, . . . ,N − 1} × {0, . . . ,ns − 1}

κjk

√
Var

(
ξg jk
|Θ,yg jk

)
+ E

(
ξg jk
|Θ,yg jk

)
≤ 0

κjk =
√
(1 − p(k)j )/p

(k)
j ∀(k, j) ∈ {1, . . . ,N} × {1, . . . ,n(k)g }

ĉJ =
ayJ

b
, α̂2

J =
νTJ K−1νJ

ns

ĉg jk
=

ayg jk

b
, α̂2

g jk
=

νTg jk
K−1νg jk

ns
E (ξJ |Θ,yJ ) = ĉJ + α̂2

JdνJ

Var (ξJ |Θ,yJ ) = α̂
2
J + ν

T
J CνJ − α̂

2
Je −

(
α̂2
JdνJ

)2
E

(
ξg jk
|Θ,yg jk

)
= ĉg jk

+ α̂2
g jk

dνg jk

Var
(
ξg jk
|Θ,yg jk

)
= α̂2

g jk
+ νTg jk

Cνg jk
− α̂2

g jk
e −

(
α̂2
g jk

dνg jk

)2
u(k) ∈ Uk ∀k ∈ {0, ...,N − 1}

xi(0) = xt ∀i ∈ {0, . . . ,ns − 1}

(5.19)

where xi corresponds to the state vector of scenario i with uncertain parameter θ̃i,
as mentioned in Sec. III the terms a, b, K−1, d, C and e can be pre-computed
offline from Θ, yJ = [J(N,xt,uN , θ̃i), . . . , J(N,xt,uN , θ̃i)]

T is a vector of values
of the objective function for each scenario,
yg jk

= [gj(x0(k),u(k), θ̃0), . . . ,gj(xns−1(k),u(k), θ̃ns−1)]
T is a vector of values for

each nonlinear chance constraint for each scenario, νg jk
= yg jk

− 1ĉg jk
and νJ =

yJ − 1ĉJ .

Algorithm 5.1: GP-SNMPC

Initialize:

• Supply uncertain parameter description: mθ and Σθ
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• Create uncertain parameter designZ

• Calculate a, b, K−1, d, C and e from (5.8-5.12)

• Define OCP in (5.19)

At each sampling time t = 0,1,2, . . .

• Take measurement xt

• Solve (5.19) to obtain uN

• Apply the first control input from uN , u(0) to the real system

A few remarks regarding the computational complexity of the algorithm. Firstly,
the expressions involving the expectation and variance are either linear or quadratic
with respect to the scenario output, which yields an overall well-posed optimiza-
tion problem that is smooth everywhere and makes implementation relatively easy.
The algorithm is the most effective when there are a small number of constraints
compared to the number of states, since then only a small number of GPs are re-
quired, the computational cost of which are likely negligible.

5.5 Stochastic Nonlinear Model predictive control of a batch
reactor

5.5.1 Dynamic model equations and OCP formulation

In this section the algorithm is verified on a semi batch reactor with a cooling
jacket. The reaction is the saponification of ethyl acetate, which is a good example
of an exothermic reaction for which safety concerns are paramount to prevent a
thermal runaway. The dynamic model was taken from [94]:

ÛCA = −k(CACB − CCCD/KC) − FCA/V, (5.20a)
ÛCB = −k(CACB − CCCD/KC) + F(exp(θ2) − CB)/V, (5.20b)
ÛCC = k(CACB − CCCD/KC) − FCC/V, (5.20c)
ÛNW = FCW0, (5.20d)

ÛT =
ÛQgs − ÛQrs

NCp
, (5.20e)

ÛV = F (5.20f)
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where k = 0.0039175 exp (5472.7(1/273 − 1/T)), KC = 10exp(θ3)/T , CD = CC ,
Cw = NW/V , ÛQgs = V k(CACB − CCCD/KC)∆HRX , ÛQrs = F exp(θ1)(exp(θ2) +
CW0)(T − T0) +U A(T − Tj),
NCP = V

(
CPACA + exp(θ1)(CB + CC + CD + CW )

)
,CA,CB,CC,CD are the con-

centration of species A, B, C and D respectively in kmol.m−3, T is the reactor
temperature in K, NW the amount of water in the reactor in kmol and V the reactor
volume in m3.

Three parameters were overall assumed to be uncertain indicated by compo-
nents of θ, which are assumed to be Gaussian distributed with mean and covariance
given by:

mθ =


4.40
0.59
8.26

 , Σθ =


2 · 10−3 5 · 10−6 −2 · 10−4

5 · 10−6 2.5 · 10−3 −2 · 10−4

−2 · 10−4 −2 · 10−4 1 · 10−2

 (5.21)

For the missing parameters refer to [94], example 13-3.

The control input is the feedrate to the semi-batch reactor given by F. In
compact form we can write x = [CA,CB,CC,NW ,T,V]T and u = F. Using dis-
cretization the equations can be given as a discrete time equation system with the
discretization time set to 15s. Direct orthogonal collocation was used for the dis-
cretization of the dynamic equation system in (5.20) with 4th order polynomials
placed according to the Radau quadrature rule.

x(k + 1) = f (x(k),u(k),θ) (5.22)

Based on this equation system we formulate an OCP as follows:

minimize
uN

− E (CC(N)V(N)) + 1.5Var (CC(N)V(N))

subject to

x(k + 1) = f (x(k),u(k),θ) ∀k ∈ {0, ...,N − 1}

P(Tadiabatic(k) − 320 ≤ 0) ≥ 0.95 ∀k ∈ {1, . . . ,N}

u(k) ∈ [0,8 × 10−3] ∀k ∈ {0, ...,N − 1}

x(0) = xt

(5.23)

where Tadiabatic(k) refers to the adiabatic temperature change at discrete time k
defined as Tadiabatic(k) = T(k) − ∆HRXCB(k)V(k)/NCP(k), assuming that CA

is in excess. The adiabatic temperature change refers to the maximum attainable
temperature in the reactor under a cooling failure.
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The OCP in (5.23) aims to maximize the mean production of C with trade-off
towards the variation of the production of C, while keeping the adiabatic tempera-
ture below 320K in probability to prevent a thermal runaway. The stochastic OCP
in (5.23) is converted using GPs. Algorithm 5.1 shows how this OCP can then be
used for a receding-horizon implementation to obtain a stochastic MPC. The time
horizon was set to N = 15 with a final batch time of 240s. The OCP was solved
utilising Casadi [8]. The resulting nonlinear programming problem was solved by
employing IPOPT [258]. Lastly, IDAS [116] was applied to simulate the "real"
nonlinear equation system. At time t = 0, the the initial state to solve the OCP was
set to x0 = [25,1,0,6.6,0.2,310].

5.5.2 Open-loop predictions of statistics

We first evaluate the ability of the GPs to estimate the statistics of the relevant
random variables. The procedure was taken from [203]. In particular, the random
variables "adiabatic temperature" at discrete times k = 5 and k = 15 and "amount
of species C" at the end of the batch were chosen for the analysis, since these repre-
sent the nonlinear probabilistic constraint and the objective respectively. To carry
out the comparison the feed rate was fixed at F = 8 × 10−3m3/s and the uncer-
tain parameter distribution was sampled 1000 times to obtain the "true" pdf. This is
contrasted to the approximations of the pdfs obtained from the GP-approximations
built from 5-points, 10-points and 20-points, which is shown in the graphs in Fig.
2 on the left-hand side. The pdfs were obtained from kernel density estimation. In
addition, it is possible for GPs to calculate a confidence region for the pdfs, since a
GP corresponds to not just one function value, but a distribution of possible func-
tion values. We can see that for all 3 pdfs the approximations get closer to the
"true" pdf as the number of points increases. In addition, it can be seen that the
confidence region is largest for the GP with 5 points and smallest for the GP with
20 points, which reflects the observations made. For 20 points the GP more or less
matches the pdf in all 3 cases.

Furthermore, the 20-point GP approximations were compared on the right-hand
side graphs to the pdf estimates obtained from 20 Monte Carlo samples and the
20 "maximin" Latin Hypercube samples the GP was built from. We can see that
the GP approximation gives the most accurate representation of all pdfs, while
the "maximin" Latin Hypercube tends to overestimate the variance and the Monte
Carlo tends to underestimate the variance.



5.5. Stochastic Nonlinear Model predictive control of a batch reactor 101

316 318 320 322 324 326 328 330

Adiabatic temperature / K

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

p
ro

b
a
b
ili

ty
 d

e
n
s
it
y

True pdf

5 point GP

10 point GP

20 point GP

316 318 320 322 324 326 328 330

Adiabatic temperature / K

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

p
ro

b
a
b
ili

ty
 d

e
n
s
it
y

True pdf

Monte Carlo

Latin Hypercube

GP-approximation

(a)
Adiabatic temperature at k = 5

316 318 320 322 324 326 328 330 332

Adiabatic temperature / K

-0.05

0

0.05

0.1

0.15

0.2

0.25

p
ro

b
a
b
ili

ty
 d

e
n
s
it
y

True pdf

5 point GP

10 point GP

20 point GP

316 318 320 322 324 326 328 330 332

Adiabatic temperature / K

-0.05

0

0.05

0.1

0.15

0.2

0.25
p

ro
b

a
b

ili
ty

 d
e

n
s
it
y

True pdf

Monte Carlo

Latin Hypercube

GP-approximation

(b)
Adiabatic temperature at k = 15

2 2.2 2.4 2.6 2.8 3

Amount of C / kmol

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

p
ro

b
a

b
ili

ty
 d

e
n

s
it
y

True pdf

5 point GP

10 point GP

20 point GP

2 2.2 2.4 2.6 2.8 3

Amount of C / kmol

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

p
ro

b
a
b
ili

ty
 d

e
n
s
it
y

True pdf

Monte Carlo

Latin Hypercube

GP-approximation

(c)
Amount of C at k = 15

Figure 5.2: pdf estimation comparison results for the OCP in (5.23) with fixed F = 8 ×
10−3m3/s. Left graph: true pdf compared to GP approximations with 5 points, 10 points
and 20 points. For the GP plots a 99% confidence region is shown. Right graph: true pdf
compared to Monte Carlo, Latin hypercube and GP-approximation built on a sample size
of 20 points.
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5.5.3 Closed-loop implementation

Next, the OCP in (5.23) was solved in a shrinking horizon fashion to gauge the
closed-loop performance of the algorithm with the size of the uncertain parameter
design set to 20. To verify the robustness of the approach 200 Monte Carlo simu-
lations were performed by sampling 200 independent realizations of the uncertain
parameter from the Gaussian multivariate distribution. These uncertain parame-
ters are used for the simulation of the "real" system to which the control inputs of
the GP-SNMPC algorithm were applied. The algorithm is compared to a nominal
NMPC, again using a shrinking horizon implementation. The OCP of the nominal
NMPC implementation is similar to the OCP in (5.23), except that the predictions
are taken to be deterministic by fixing the uncertain variables to their nominal val-
ues. Therefore, the objective is given by the predicted amount of C at the final
time. To avoid infeasibilities the adiabatic temperature constraint was formulated
using soft constraints.

In Fig. 5.3 the trajectories of the adiabatic temperature constraint are shown.
It can be seen that the nominal NMPC algorithm violates the upper bound signif-
icantly for many of the 200 simulations. Overall, 51% of the simulations for the
NMPC algorithm lead to constraint violations. It can be seen that the violations
mostly occur at the beginning of the reaction due to the initial concentration of B
being high. Once the concentration of B becomes lower towards the later parts
of the reaction, the probability of constraint violation is lower, since then the adi-
abatic temperature change corresponds more or less to the actual temperature of
the reactor with less uncertainty. The GP-SNMPC on the other hand fulfilled the
constraint in all simulations.
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(a) Nominal nonlinear model predictive control

(b) Stochastic nonlinear model predictive control

Figure 5.3: 200 Monte Carlo trajectories of the adiabatic temperature constraint. The
constraint at 320K is highlighted by a dashed black line.
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In Fig. 5.4 the histograms of the amount of C produced at the end of the batch
are shown based on the 200 Monte Carlo simulations for both methods. The ob-
jective of the GP-SNMPC was given in terms of both the mean and variance, while
the nominal NMPC was geared towards maximizing the amount of C only. The
GP-SNMPC produced on average 1.83 kmol of C, while the nominal NMPC algo-
rithm produced 1.96 kmol on average, which is approximately 7% more. On the
other hand the variance of the GP-SNMPC is 25% less, hence the performance dif-
ferences may be due to a different control objective or due to the conservativeness
of the GP-SNMPC algorithm.
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(b) Stochastic nonlinear model predictive control

Figure 5.4: Histograms of the amount of C at the end of the batch based on the 200 Monte
Carlo simulations
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5.6 Conclusions
In conclusion, a novel framework for SNMPC has been proposed by employ-

ing GPs to handle Gaussian distributed parametric uncertainties with known mean
and covariance. The SNMPC problem involved both objective and probability
constraints based on general nonlinear functions. The probability constraints were
reformulated requiring only mean and variance. GP-SNMPC is a scenario-based
MPC algorithm that uses the data from the various realizations of the uncertain pa-
rameter to build a surrogate, from which the variance and mean of the nonlinear ob-
jective and constraint functions are estimated efficiently. In addition, GP-SNMPC
not only takes into account the variance induced by the uncertain parameters but
also, unlike gPCe, the uncertainty of the surrogate itself. A semi-batch reactor case
study showed that GP-SNMPC is able to provide predictions on the statistics of
the problem more accurately than either Monte Carlo or Latin hypercube samples.
Lastly, a shrinking horizon application showed excellent closed-loop performance
by ensuring the fulfilment of a nonlinear chance constraint, while optimizing a
probabilistic objective.



Chapter 6

Combining Gaussian processes
and polynomial chaos expansions
for stochastic nonlinear model
predictive control

This chapter is based on Paper D: E. Bradford and L. Imsland. Combining Gaus-
sian processes and polynomial chaos expansions for stochastic nonlinear model
predictive control. Journal of Process Control, submitted, 2020.

Summary
Model predictive control is an advanced control approach for multivariable sys-

tems with constraints, which is reliant on an accurate dynamic model. Most real
dynamic models are however affected by uncertainties, which can lead to closed-
loop performance deterioration and constraint violations. In this paper we intro-
duce a new algorithm to explicitly consider time-invariant stochastic uncertainties
in optimal control problems. The difficulty of propagating stochastic variables
through nonlinear functions is dealt with by combining Gaussian processes with
polynomial chaos expansions. The main novelty in this paper is to use this com-
bination in an efficient fashion to obtain mean and variance estimates of nonlinear
transformations. Using this algorithm, it is shown how to formulate both chance-
constraints and a probabilistic objective for the optimal control problem. On a
batch reactor case study we firstly verify the ability of the new approach to ac-
curately approximate the probability distributions required. Secondly, a tractable
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stochastic nonlinear model predictive control approach is formulated with an eco-
nomic objective to demonstrate the closed-loop performance of the method via
Monte Carlo simulations.

6.1 Introduction
Model predictive control (MPC) was developed in the late seventies and refers

to a popular control approach that has been applied in the process industry to deal
with multivariable control systems with important constraints. MPC solves at each
sampling time a finite horizon optimal control problem (OCP) to determine a con-
trol action to take, by exploiting a dynamic model directly. Feedback enters this
process by updating the initial state at each sampling time with the available mea-
surements. Nonlinear MPC (NMPC) refers to MPC that utilize nonlinear dynamic
models, which is particularly relevant for highly nonlinear problems operated at
unsteady state, such as batch processes [165]. While most NMPC algorithms are
based on data-driven nonlinear models, NMPC using first-principles is becoming
increasingly used due to the availability of more efficient optimization algorithms
[27]. Commonly MPC algorithms are applied for set-point tracking, while eco-
nomic MPC employs as cost function the quantity to be maximized directly, such
as profits [223]. Many dynamic models include significant uncertainties, such as
parametric deviations or unaccounted disturbances. These may negatively affect
the performance of the MPC algorithm and lead to constraint violations. For eco-
nomic MPC the system is often driven close to its constraints [163]. It is therefore
crucial to account for significant uncertainties in the formulation of the MPC prob-
lem.

Assuming uncertainties to be deterministic and bounded leads to robust MPC
(RMPC). Min-max MPC frameworks are among the first methods proposed and
focus on minimizing the cost while satisfying constraints under worst-case realiza-
tions [232]. Min-max MPC has also been applied to nonlinear systems, for exam-
ple in [64]. These methods however were found to be often unable to deal with the
spread of the state trajectories or be overly conservative. Tube-based approaches
were subsequently developed to address these limitations, which uses a feedback
controller explicitly to ensure that the real system remains in a tube computed
offline centred around the nominal solution [174]. Several nonlinear tube-based
MPC algorithms have been proposed including [173, 171, 145]. RMPC allows for
the analysis of stability and performance of the system in the worst case, which
may however have a diminishingly small chance of occurrence and hence can be
overly conservative.

An alternative to RMPC is given by stochastic MPC (SMPC). In SMPC the un-
certainties are described by known probability density functions (pdf). In SMPC
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constraints are given by either expectation or chance constraints. Therefore, SMPC
allows for a controlled rate of constraint violations, which avoids the previously
mentioned problem of RMPC and leads to a trade-off between risk of constraint
violation and performance [175]. Recent reviews on SMPC can found in [88, 175].
SMPC has predominantly been developed for linear systems. An important group
of algorithms are given by probabilistic tube-based approaches as counter-part
to their robust versions for additive and multiplicative noise [55, 57]. Alterna-
tively several approaches have been suggested using affine parameterization of
either state or disturbance feedback [149, 201, 118], which apply exact propaga-
tion methods for the mean and covariance. Lastly, scenario-based MPC meth-
ods have been put forward that simulate separate realizations of the uncertain pa-
rameters and use Monte Carlo estimations of chance constraints and objectives
[230, 213, 70]. Stochastic NMPC (SNMPC) has on the other hand received sig-
nificantly less attention, which may be in part explained by the difficulty of prop-
agating stochastic variables through nonlinear transformations. An exception to
this is given by the case of only discrete realizations of uncertainties for which
efficient algorithms have been developed using multi-stage stochastic program-
ming [162, 205]. These propagate each possible scenario and ensure that none
of the constraints are violated. Several procedures are used in literature to anal-
yse stochastic uncertainties of nonlinear systems, including Monte Carlo (MC)
sampling, polynomial chaos expansions (PCE), Gaussian closure, equivalent lin-
earization, and stochastic averaging [148].

A straight-forward approach for SNMPC is given by successive linearization,
such as in [184] which uses an extended Kalman filter approach to propagate the
stochastic uncertainties or as in [55] that applies the probabilistic tube-based ap-
proach on the successively linearized system. An alternative is given by apply-
ing the Unscented transformation [34]. Both linearization or Unscented transfor-
mations, while being computationally cheap, are only applicable to moderately
nonlinear systems. [225, 31] utilize a sampling average approach to approximate
chance constraints and objective. The required number of samples to obtain ac-
curate predictions however quickly becomes prohibitive. In [233] an output feed-
back SNMPC approach is introduced by using the particle filter equations for both
prediction of future state distributions and for updating the states from available
measurements. Again the required number of samples can be prohibitive. [166]
proposed to use Markov chain MC sampling to propagate the uncertainties and
solve the optimization problem. The computational cost of the suggested method
is high, since it aims to find the global optimum at each sampling instant. In the
case of continuous time the Fokker-Planck partial differential equation system can
be used to describe the evolution over time of the pdfs of the states, which is used in
[50] for SNMPC. A Lyapunov function is included to guarantee stochastic stabil-
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ity. Much of the work in SNMPC has been concerned with the application of PCEs.
PCEs are an efficient alternative to MC sampling for approximating the probabil-
ity distribution of a nonlinear transformation of stochastic variables by employing
orthogonal polynomials [186]. PCEs in this context are a scenario-based SNMPC
algorithm that uses least-squares estimation online for every iteration of inputs to
approximate the coefficients of an orthogonal polynomial approximation, known
as non-intrusive PCE [87]. For polynomial-type systems Galerkin projection is
used instead to determine the coefficients, which is called intrusive PCE [242].
Chance constraints can either be given using Chebychev’s inequality [177] or ap-
plying a MC sampling approximation on the orthogonal polynomials themselves
[242]. The PCE based SNMPC algorithm has been extended to the case of output
feedback in [37, 45] by combining the approach with a PCE nonlinear state esti-
mator. The usefulness and generality of PCE can be seen for example by its use in
[17] to formulate a SNMPC formulation for design of experiments online to main-
tain the dynamic model or in [110] for discriminating between different dynamic
models for fault-diagnosis.

While PCE leads to useful SNMPC algorithms, it does have a few disadvan-
tages:

• Computational complexity grows exponentially with the number of uncer-
tain parameters.

• Orthogonal polynomials of high-order are prone to unstable swings.

• Time-varying disturbances are difficult to handle.

• Expansion is only exact for infinitely many terms.

In the statistics community PCEs are rarely used. Gaussian processes (GP) are
employed instead for uncertainty analysis in "Bayesian calibration" [135, 198]. A
comparison of GPs to PCEs is given in [199]. Gaussian processes are stochastic
processes that are used as non-parametric models, which unlike other popular re-
gression methods such as neural networks not only provide predictions, but also
prediction uncertainties. GPs have been applied in several MPC papers. In [144]
GPs were used to identify a nonlinear dynamic model from data as the prediction
model in a NMPC algorithm. This methodology has been successfully applied in
[158] to control a gas-liquid separation plant. Further, in [137] the GP models
are updated efficiently online using recursive formulas and sparse approximations.
Furthermore, GPs have been shown to be a powerful tool to model disturbances.
In [167] a GP is used to correct a dynamic model online for fault-tolerant control,
while in [139] a GP is employed to learn a function for an unmodelled periodic er-
ror term. Similarly, [114] proposes to model residual model uncertainty by GPs. In
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[42] a GP-based algorithm is proposed that tightens the constraints offline to main-
tain feasibility online. GPs have been in addition employed in multiple works to
approximate the mean and covariance of nonlinear transformations for the Kalman
filter equations [73, 215, 229], which bear some similarity to this paper’s use of
GPs.

In this paper we propose a new method using GPs and PCEs jointly for SN-
MPC. In this regard we employ PCEs as mean function for the GP. The combi-
nation will be referred to as "GPPCE". GPs are well-known to approximate the
function well locally, but not as well globally. PCEs on the other hand are better
suited for global function approximations, but may not have the same accuracy be-
tween data-points as GPs [203]. The combination of both is therefore beneficial.
Another advantage over regular PCEs apart from better local fits is that the un-
certainty introduced through the sample approximation can be taken into account
from the GPPCE, which is otherwise ignored. Furthermore, GPs are not prone to
unstable swings and are interpolating, i.e. pass through all sample points exactly.
Otherwise GPs suffer from similar drawbacks as PCEs. Combining GPs and PCEs
for uncertainty quantification has been previously proposed in [231]. The main
novelty in this paper is to show how to use this GPPCE to obtain cheap approxi-
mations of mean and variance using closed-form expressions derived in this paper.
In addition, terms are identified that can be calculated offline to significantly reduce
computational costs online. For SNMPC the terms are utilised directly in the opti-
mization problem and hence it is paramount that the mean and variance estimator
are fast. Lastly, we show how the GPPCE expressions can be utilised to approx-
imate the SNMPC problem. Using GPs for SNMPC was first introduced in [36].
The remainder of the paper is structured as follows. In the first three sections of the
paper we show how GPPCE can be formulated and used in an efficient fashion to
propagate uncertainties. In Section 6.2 GPs with a PCE mean function (GPPCE)
are introduced. Thereafter, in Section 6.3 terms are derived to obtain posterior
mean and variance estimates given a noisy input. Section 6.4 shows how these
expressions can be utilised efficiently to propagate uncertainties. Next we show
how GPPCE can be exploited to formulate a SNMPC algorithm. Section 6.5 de-
fines the general problem to be solved using the GPPCE SNMPC algorithm, while
Section 6.6 introduces the GPPCE SNMPC algorithm to accomplish this task. A
challenging semi-batch reactor case study is outlined in Section 6.7. Results and
discussions to this case study are presented in Section 6.8. The paper is concluded
in Section 6.9.
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6.2 Gaussian processes with polynomial chaos expansion mean
function

This section presents GPs and PCEs for our purposes and is not meant as a
general introduction. Please refer to [220, 226, 130] for general descriptions of
GPs and refer to [136, 199, 186] for a general outline on PCEs.

GP regression is utilized to identify an unknown function ζ : Rnθ → R from
data. GPs are a generalization of the multivariate normal distribution and can be
viewed as distributions over functions. These can hence be used as prior functions
in a Bayesian framework. The posterior update of this prior then gives us the
required function approximation. A GP is fully described by a mean function m(·)
and a covariance function k(·, ·) as follows:

m(θ) := Eζ [ζ(θ)] (6.1a)

k(θ,θ′) := Eζ [(ζ(θ) − m(θ))(ζ(θ′) − m(θ′))] (6.1b)

where θ,θ′ are arbitrary inputs and Eζ [·] denotes the expectation taken over the
function space ζ(·). The mean function can be seen as the "average" shape of the
function, while the covariance function defines the covariance between any two
output values at their corresponding inputs.

The prior is specified by the mean function and the covariance function, which
need to be chosen based on the prior knowledge of the function to be inferred.
The mean function can be chosen as any function, but in general should be chosen
close to the function to be learnt. In this work we propose to use as mean function
a linear regression term as in universal Kriging [136]:

m(θ) :=

nφ∑
i=1

βiφi(θ) := βTφ(θ) (6.2)

where β ∈ Rnφ is a vector containing nφ trend coefficients βi and φi : Rnθ → R are
a set of basis functions collected in φ(θ) = [φ1(θ), . . . , φnφ(θ)]

T. The exact choice
of the mean function is motivated by the noise assumed on θ, which in this paper is
for θ to follow a standard normal distribution with zero mean and unit variance, i.e.
θ ∼ N(0, I). The mean function in our case are then given by multivariate Hermite
polynomials. This selection of the mean function is motivated by their successful
use as PCEs, see [136, 199, 186] for more information. These can be expressed as
a tensor product of univariate Hermite polynomials of the components of θ:

φα =

nθ∏
i=1

φαi (θi) (6.3)
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where φαi : R→ R are univariate polynomials of θi of order αi. The multidimen-
sional index α = [α1, . . . , αnθ] is hence used to define the degree of each univariate
polynomial and the total order of the multivariate polynomial φα is consequently
given as |α| =

∑nθ
i=1 αi.

The univariate polynomials φαi are chosen to satisfy an orthogonality prop-
erty according to the probability distribution of θi, which in our case for standard
normal distributions leads to Hermite polynomials:

φαi (θi) = (−1)αi exp

(
1

2
θ2i

)
dαi

dθαi

i

exp

(
−

1

2
θ2i

)
(6.4)

Keeping all polynomial terms up to a total order of m leads then to the following
expression for the mean function in Equation 6.2:

m(θ) =
∑

0≤ |α | ≤m

βαφα(θ) = β
Tφ(θ) (6.5)

where β ∈ Rnφ and φ(θ) : Rnθ → Rnφ are vectors of the coefficients and poly-
nomials of the truncated expansion respectively. The truncated series consists of
nφ =

(nθ+m)!
nθ!m! terms. Note the number of terms grows exponentially with the input

dimension of θ and the truncation order of the polynomials.

For the covariance function we utilise the anisotropic squared-exponential (SE)
[220]:

k(θ,θ′) = α2r(θ,θ′), r(θ,θ′) = exp

(
−

1

2
(θ − θ′)TΛ−1(θ − θ′)

)
(6.6)

where Λ = diag(λ21, . . . , λ
2
nθ
) is a diagonal matrix with nθ separate width scaling

parameters λi for each input dimension i and α2 is the covariance magnitude. The
SE is infinitely differentiable and therefore assumes the underlying function to
be smooth. In addition, the SE covariance function is stationary, i.e. k(θ,θ′) =
k(θ − θ′,0).

Let the hyperparameters of the GP prior defined in Equation 6.2 and Equation
6.6 be denoted as ξ = [β1, . . . , βnφ, α, λ1, . . . , λnθ]

T. By choosing the mean func-
tion and covariance function the prior is now specified, however in general the
hyperparameters are unknown. We therefore need to infer these from data. The
data is given as noiseless samples of the function ζ(θ) at separate inputs. Given ns
such responses, letΘ = [θ1, . . . ,θns ]

T ∈ Rns×nθ be a vector of the input design and
z = [ζ(θ1), . . . ζ(θns )]

T ∈ Rns be a vector of the corresponding function values.
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Most commonly maximum likelihood estimation (MLE) is carried out to deter-
mine reasonable hyperparameter values. The log-likelihood of the observations z
is:

L(ξ) = −
ns
2

log(2π) −
ns
2

log(α2) −
1

2
log(|Σz |) −

νTΣ−1z ν

2α2
(6.7)

where [Σz]i j = r(θi,θj), ν = z −mz, mz = Φβ, and Φ = [φ(θ1), . . . ,φ(θns )]
T ∈

Rns×nφ is a matrix of the regression terms of the mean function in Equation 6.5
evaluated at the inputs of the data.

By setting the derivatives with respect to α2 and β to zero, the following closed-
form expressions for the optimal MLE values of α2 and β as functions of Σz and z
can be determined [136]:

β̂ = aTz, a = (ΦTΣ−1z Φ)
−1
ΦTΣ−1z (6.8a)

α̂2 =
νTΣ−1z ν

ns
(6.8b)

As pointed out in [36] the evaluation of the scaling parameters λi is too expen-
sive for online implementations and will therefore be fixed in this work. This will
however lead to a worse fit of the GP and hence a larger uncertainty with regards
to the model fit. We show two different approaches for fixing this parameter in this
paper. A simple but effective heuristic has been suggested in [124], where all the
width scales are fixed to the median of all pairwise euclidean distances in the data
matrix Θ:

λ̂i = median(| |θi − θj | |2) ∀i ∈ {1, . . . ,nθ} (6.9)

While this in general can lead to good solutions, it ignores the response values
z and sets all λi to the same value. In the GP-based Kalman filter the width scaling
parameters are fixed instead using qualitative reasoning on the importance of the
inputs on the output from ζ(·) [215]. A small λi corresponds to an important
input dimension θi to the value of ζ(·), while a large value conversely indicates
less significance of this input dimension. Often in these applications it is simple
to generate several representative datasets z offline and from these we can obtain
optimal scaling values as follows [95]:

λ̂ = arg max

[
−

ns
2

log(α̂2) −
1

2
log(|Σz |)

]
(6.10)

From these different values we can then choose values for λ̂ that account for the
importance of the different inputs. Let the corresponding scaling matrix be given
by Λ̂ = diag(λ̂1, . . . , λ̂nθ).
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Once the hyperparameters are fixed the posterior GP is utilised to obtain pre-
dictions and corresponding uncertainty values. The posterior distribution is given
by the prior distribution taking the observations z into account. Due to the GP prior
assumptions, the observations follow a multivariate Gaussian distribution. Simi-
larly, the value of the latent function at an arbitrary input θ also follows a Gaussian
distribution. The conditional distribution of ζ(θ) given the observations z can be
stated as [231]:

ζ(θ)|z ∼ N
(
mζ (θ)|z, σ

2
ζ (θ)|z

)
(6.11a)

mζ (θ)|z = m(θ) + rTζ ,z(θ)Σ
−1
z (z −mz) (6.11b)

σ2
ζ (θ)|z = α̂

2
(
1 − κTζ ,z(θ)K

−1κζ ,z(θ)
)

(6.11c)

where mζ (θ)|z and σ2
ζ (θ)|z are the mean and variance function of ζ(θ)|z at an

arbitrary input θ given the observations z, rζ ,z(θ) = [r(θ,θ1), . . . ,r(θ,θnz)]
T, and

κζ ,z(θ) = [φ
T(θ),rTζ ,z(θ)]

T, and K =

[
0 ΦT

Φ Σz

]
. The mean mζ (θ)|z can be seen as

the best-estimate of ζ(θ)|z, while the variance σ2
ζ (θ)|z can be viewed as a measure

of uncertainty of this prediction.

An example of a GP prior and posterior is shown in Figure 6.1. Firstly, it can
be seen that the posterior has significantly lower uncertainty than the prior due to
the data available, especially close to the data points. Secondly, it can be seen from
the samples that the SE covariance function yields smooth functions.

6.3 Posterior mean and variance estimates from GPPCE
So far we have assumed that the input θ is deterministic, often however the

input θ is given by a probability distribution. The aim of this section is to use
the GP posterior introduced in Section 6.2 to estimate the mean and variance of
ζ(θ)|z given that θ follows a standard normal distribution. In particular, the case
of Gaussian distributed inputs has been addressed extensively due to its importance
when using GP state space models for multi-step ahead predictions [100].

It is possible to give equations for the exact mean and variance of ζ(θ)|z for
certain choices of mean and covariance function, which were made in this work.
The law of iterated expectations can be used to find the exact posterior mean and
variance as follows [217]:

Eθ[ζ(θ)|z] = Eθ[Eζ [ζ(θ)|z,θ]] = Eθ[mζ (θ)|z] (6.12a)

Vθ[ζ(θ)|z] = Eθ[Vζ [ζ(θ)|z,θ]] + Vθ[Eζ [ζ(θ)|z,θ]] = (6.12b)

Eθ[σ
2
ζ (θ)|z] + Vθ[mζ (θ)|z]
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Figure 6.1: Illustration of a GP prior is shown on the top, while the corresponding GP
posterior is shown below, updated with 8 observations of a one dimensional function. The
prior has a mean function of 0 and a SE kernel given by Equation 6.6. It can be observed
that for the GP posterior points close to the data have low uncertainty, while data far away
from the observations have significantly higher uncertainty.

where mζ (θ)|z and σ2
ζ (θ)|z are given in Equation 6.11b and Equation 6.11c respec-

tively. Note this marks a major advantage of GPPCE modelling, since this leads to
analytically tractable expressions for the expectation and variance with respect to
the function ζ(·)|z given the observations z.

To evaluate the posterior mean and variance we require expressions for the
terms: Eθ[mζ (θ)|z], Eθ[σ2

ζ (θ)|z], and Vθ[mζ (θ)|z]. By substituting the definitions
of mζ (θ)|z and σ2

ζ (θ)|z in Equation 6.11, we arrive at:

Eθ[mζ (θ)|z] = Eθ[m(θ)] + Eθ
[
rTζ ,z(θ)

]
Σ−1z ν (6.13a)

Eθ[σ
2
ζ (θ)|z] = α̂

2
(
1 − tr

(
Eθ

[
κζ ,z(θ)κ

T
ζ ,z(θ)

]
K−1

))
(6.13b)

Vθ[mζ (θ)|z] = Eθ
[
m(θ)2

]
+ 2Eθ

[
m(θ)rTζ ,z(θ)

]
Σ−1z ν (6.13c)

+ νTΣ−1z Eθ

[
rζ ,z(θ)r

T
ζ ,z(θ)

]
Σ−1z ν −

(
Eθ[mζ (θ)]

)2
Note these expressions are given by a series of expectations and variances on

the covariance function and mean function. The idea here is to choose these such
that the integrals given above can be evaluated exactly. The expressions for the
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expectations can be found in Section 6.10. Substituting these values into Equation
6.13:

Eθ[mζ (θ)|z] = µm + µ
T
rζ ,zΣ

−1
z ν (6.14a)

Eθ[σ
2
ζ (θ)|z] = α̂

2
(
1 − tr

(
Mκζ ,zκTζ ,z

K−1
))

(6.14b)

Vθ[mζ (θ)|z] = µm2 + 2µTmrζ ,zΣ
−1
z ν + ν

TΣ−1z Mrζ ,zrTζ ,z
Σ−1z ν −

(
Eθ[mζ (θ)]

)2
(6.14c)

6.4 Uncertainty propagation using GPPCE
In this section we outline how the GPPCE methodology can be used to effi-

ciently propagate uncertainties through nonlinear functions. Let an arbitrary non-
linear function ζ(·) be given by:

z = ζ(θ) (6.15)

where θ ∼ N(θ; 0, I) follows a standard normal distribution.

The aim of this section is to estimate the mean and variance of z using GPPCE
as introduced in Section 6.2. The estimate should be as computationally cheap as
possible, since it is used online. Therefore, the section is divided into two parts:
”Offline computation” and ”Online computation”. ”Offline computation” outlines
terms that do not directly depend on the response values z and can hence be deter-
mined offline based on the sample design of θ alone to save significant computa-
tional time, while ”Online computation” shows how to obtain the posterior mean
and variance estimates given the pre-computed terms.

6.4.1 Offline computation

First we need to decide on the number of samples ns for the approximation.
Thereafter, a sample design denoted by Θ = [θ1, . . . ,θns ]

T ∈ Rns×nθ needs to be
chosen. This sample design should lead to a reasonable function approximation
of ζ(·) in regions that have significant probability densities. Regions of dimin-
ishing probability densities do not require good function approximations, since
they do not contribute to the expectation values. This is accomplished by ensuring
that the sample design is generated according to a standard normal distribution.
The most obvious, but arguably worst approach uses crude MC to obtain these
samples, which however may lead to poor convergence. Alternatively, so-called
space-filling designs can be used to generate the necessary points in a unit hyper-
cube [0,1]nθ . These sample designs can then be converted to follow a standard
normal distribution by using the probit function, see for example [240]. Popular
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space-filling sampling designs include Latin hypercube designs [240], or Quasi
MC designs, such as Sobol [238].

Given this sample design Θ we next set the hyperparameters λi according to
Section 6.2, which gives us Λ̂. These are treated differently than the other hyper-
parameters, since they do not have a closed-form solution and hence cannot be
evaluated online without incurring large computational times.

Next there are several terms that only depend on the sample design Θ and the
hyperparameters λ̂i, which can hence be pre-computed. These are as follows:

a = (ΦTΣ−1z Φ)
−1
ΦTΣ−1z (6.16a)

b = µTrζ ,zΣ
−1
z (6.16b)

c = tr
(
Mκζ ,zκTζ ,z

K−1
)

(6.16c)

d = µTmrζ ,zΣ
−1
z (6.16d)

E =
Σ−1z

ns
(6.16e)

F = Σ−1z Mrζ ,zrTζ ,z
Σ−1z (6.16f)

where the required parameters can be evaluated using their definitions in Section
6.2 and Section 6.10 for the expectations represented by µrζ ,z , Mκζ ,zκTζ ,z

, µmrζ ,z ,
and Mrζ ,zrTζ ,z

.

6.4.2 Online computation

Given these pre-computed values in Equation 6.16 we then have efficient for-
mulas to estimate mean and variance using the posterior GP. For this we need to
evaluate the function ζ() at the points defined in the sample design Θ according to
Equation 6.15, which gives us the response vector z = [ζ(θ1), . . . , ζ(θnθ)]

T. The
posterior GP then represents a fitted model using the data in z, for which we have
efficient formulas to obtain the mean and variance. Note that this is the first time
we actually use the function ζ() and hence can be repeated for different functions
ζ() without incurring too high computational costs. Based on the pre-computed
values we obtain the following estimates for the mean and variance of the nonlin-
ear transformation defined in Equation 6.15:

β̂ = aTz (6.17a)

ν = z − β̂Φ, Φ = [φ(θ1), . . . ,φ(θns )]
T (6.17b)

α̂2 = νTEν (6.17c)
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Eθ[ζ(θ)] ≈ µ
z
GP
(·; τ) = µm + bν (6.17d)

Vθ[ζ(θ)] ≈ σ
2
mζ
(z; τ) = Vθ[mζ (θ)|z] = µm2 + 2dν + νTFν − (µm + bν)2

(6.17e)

σ2
GP(z; τ) = Vθ[ζ(θ)|z] = σ

2
mζ
(z; τ) + α̂2(1 − c) (6.17f)

where µz
GP
(·; τ) is the mean estimate for the GPPCE, σ2

mζ
(·; τ) is the variance

estimate of the mean function from the GPPCE and can be seen as the best-estimate
of the true variance from the GPPCE, while σ2

GP(·; τ) is the variance of the GP
accounting for the uncertainty due to using only a finite sample approximation.
The variance estimate σ2

GP(·; τ) therefore has a larger variance by adding the term
α̂2(1 − c). The variable τ = {Θ, λ̂,nPCE } summarizes the different choices made,
that define the mean and variance estimate outside of the direct dependency on the
training data z. Firstly, the sample design Θ and the truncation order of the PCE
nPCE should be chosen. Thereafter, the hyperparameters λ̂ need to be determined
either using heuristics or available data as shown in Section 6.2. From this the
terms in Equation 6.16 can be pre-computed and used for different values of z to
obtain estimates of the mean and variance.

6.5 Problem formulation
We consider a general discrete-time stochastic nonlinear dynamic equation sys-

tem with parametric uncertainties:

xt+1 = f (xt,ut,θ), x0 = x̂0 (6.18)

where t is the discrete time, xt ∈ R
nx represents the states, ut ∈ R

nu denotes
the control inputs, θ ∈ Rnθ represents time-invariant parametric uncertainties, and
f : Rnx × Rnu × Rnθ → Rnx is the nonlinear dynamic equation system. The
parametric uncertainties θ are assumed to follow a standard normal distribution,
i.e. θ ∼ N(0, I). Note this is not restrictive, since the uncertain model parameters
can be parametrized in terms of θ and this way obtain the required probability
distribution, see for example [45]. The initial condition is given by a known value
x̂0.

Given the dynamic system defined in Equation 6.18 we aim to minimize a finite
horizon objective function:

J(N, x̂0,θ,UN ) = E[Jd(N, x̂0,θ,UN )] + ωVar[Jd(N, x̂0,θ,UN )] (6.19a)

Jd(N, x̂0,θ,UN ) =M(xN ) +

N−1∑
t=0

L(xt,ut ) (6.19b)
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where N is the time horizon,M : Rnx → R denotes the Mayer term, L : Rnx×nu →

R represents the Lagrange term, and UN = [u0, . . . ,uN−1] ∈ R
nu×N are the control

actions that need to be determined.

The objective is taken as the expectation with a weighted variance added to
it of a nonlinear function, i.e. the aim is to minimize the objective in Equation
6.19b given the dynamic system in Equation 6.18. The weighted variance can be
exploited to penalize excessive uncertainty on the objective values. The case-in-
point of this paper is the control of batch processes. The objective to be minimized
generally depends on the final product at the end of the batch, which leads to a
shrinking horizon NMPC formulation [184]. The objective depending on the final
state is represented by the Mayer term.

The control problem is subject to hard constraints on the control inputs ex-
pressed by the set U. In addition, the control problem is subject to both nonlinear
path chance constraints and terminal chance constraints. For batch processes com-
mon path chance constraints are given by safety limits, such as upper bounds on the
adiabatic temperature or reactor pressure. Terminal chance constraints on the other
hand often describe a minimum product quality to be reached. The constraints are
formulated as follows:

P[gj(xt,ut,θ) ≤ 0] ≥ 1 − ε ∀(t, j) ∈ {1, . . . ,N} × {1, . . . ,ng} (6.20a)

P[gN
j (xN ,θ) ≤ 0] ≥ 1 − ε ∀ j ∈ {1, . . . ,nN

g } (6.20b)

ut ∈ U ∀t ∈ {0, . . . ,N − 1} (6.20c)

where gj : Rnx×nu×nθ → R are the path constraint functions, gN
j : Rnx×nθ → R are

the terminal constraint functions, and ε is the probability of constraint violations.

The constraints are given as chance constraints due to the presence of the para-
metric uncertainties θ. Each constraint in Equations 6.20a and Equation 6.20b
should be violated by at most a low probability ε despite the stochastic uncertain-
ties present to maintain feasibility.

6.6 GPPCE stochastic nonlinear model predictive control
In this section we introduce the GPPCE based SNMPC algorithm to solve the

problem outlined in Section 6.5 employing the dynamic equation system in Equa-
tion 6.18. Assume we are at time t and we have a full state measurement xt of
the current state. The GPPCE equations are utilised in the optimization algorithm
to obtain accurate estimates of the mean and variances of both objective and con-
straint functions to approximate the probabilistic objective and chance constraints.
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6.6.1 Uncertainty propagation

For the uncertainty propagation we apply the results outlined in Section 6.4.
Our aim is to approximate the mean and variance of the objective and chance con-
straints to formulate the GPPCE SNMPC optimization problem. For this we first
create a sample design Θ = [θ1, . . . ,θns ]

T. Each realization of θ then represents
its own nonlinear dynamic equation system:

x̃(s)
k+1
= f (x̃(s)

k
, ũ(s)

k
,θs), x̃(s)0 = x̂0 ∀s ∈ {1, . . . ,ns} (6.21)

where x̃(s)
k

and ũ(s)
k

denotes the states and control inputs for the sample s.

Using Equation 6.21 we then have separate state values for each θ, for which
we obtain different values for the constraint functions and objective:

zJd = [Jd(N, x̂0,θ1,UN ), . . . , Jd(N, x̂0,θns ,UN )]
T (6.22a)

z(k)g j
= [gj(x̃

(1)
k
, ũ(1)

k
,θ1), . . . ,gj(x̃

(ns )
k

, ũ(ns )
k

,θns )]
T

∀(k, j) ∈ {1, . . . ,N} × {1, . . . ,ng} (6.22b)

zgN
j
= [gN

j (x̃
(1)
N ,θ1), . . . ,g

N
j (x̃

(ns )
N ,θns )]

T ∀ j ∈ {1, . . . ,nN
g } (6.22c)

Using the sample design Θ we define the mean and variance estimate GPPCE
functions by determining the hyperparameters λ̂ and setting the truncation order
for the PCE nPCE , which defines τ = {Θ, λ̂,nPCE }. The hyperparameters λ̂ in
general will be set to different values for the constraint and objective functions,
since the inputs have varied importance. The posterior mean and variance esti-
mates of the constraints and objective are then given by the mean and variance
function as defined in Equation 6.17.

The principle of the GPPCE estimates is shown in Figure 6.2. Each sample of θ
corresponds to a separate trajectory according to Equation 6.21, which is shown by
the red lines. Each of these trajectories then leads to distinct values of the state x at
each discrete-time k shown by the red markers. These in turn are then transformed
using the objective and constraint definitions to obtain the "data" required for the
mean and variance estimates, which leads to the data vectors shown in Equation
6.22. This is highlighted by the arrows for a particular constraint. Thereafter, GP
regression is applied leading to the blue line. The closed-form expressions from
Equation 6.17 are thereafter applied, which return the exact mean and variance
of the GP surrogate. Note that for each iteration of the control vector UN this
procedure needs to be repeated, i.e. for each step in the optimization algorithm.
GPs are probabilistic models and hence also include a confidence region, which
can be accounted for in the variance estimate.
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Figure 6.2: Illustration of the mean and variance estimate from the GPPCE algorithm.
The red trajectories on the left-hand side graph represent different realizations of θ, which
each lead to different state values. These are then transformed using a constraint function
g(·) to obtain a series of values, which are used as data to build a GP model as shown on
the right-hand side graph.

6.6.2 Chance constraint approximation

In Section 6.6.1 we show how to obtain mean and variance estimates employ-
ing GPPCE for the constraint and objective function. These can then be utilised
directly to approximate the objective in Equation 6.19b. The chance constraints
in Equation 6.20a and Equation 6.20b on the other hand are robustly reformulated
using Chebychev’s inequality, since the exact evaluation of the chance constraint
in Equation 6.23 is notoriously difficult due to the integral definition of the proba-
bility function.

Assume we have a chance constraints on an arbitrary random variable γ:

P{γ ≤ 0} ≥ 1 − ε (6.23)

Chebychev’s inequality can then be used as follows to robustly reformulate the
probability constraint in Equation 6.23 [177]:

µγ + κε

√
σ2
γ ≤ 0, κε =

√
1 − ε

ε
(6.24)

where µγ and σ2
γ are the mean and variance of γ respectively. The robust reformu-

lation now only requires the mean and standard deviation of γ.
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Now applying the robust reformulation introduced above and using the mean
and variance estimates from the GPPCE we can reformulate the chance constraints
in Equation 6.20a and Equation 6.20b as follows:

µGP(z
(k)
g j

; τg j ) + κε

√
σ2
GP
(z(k)g j

; τg j ) ≤ 0 ∀(k, j) ∈ {1, . . . ,N} × {1, . . . ,ng}

(6.25a)

µGP(zgN
j

; τgN
j
) + κε

√
σ2
GP
(zgN

j
; τgN

j
) ≤ 0 ∀ j ∈ {1, . . . ,nN

g } (6.25b)

where µGP(z
(k)
g j

; τg j ) and µGP(zgN
j

; τgN
j
) are the GPPCE mean estimates of the

constraints g(k)j and gN
j respectively, while σ2

GP(z
(k)
g j

; τg j ) and σ2
GP(zgN

j
; τgN

j
) rep-

resent the GPPCE variance estimates as introduced in Section 6.4. Note we are
using the GP variance that is larger, since it accounts for the error using only finite
number of samples.

6.6.3 GPPCE SNMPC formulation

In this section we formulate the stochastic optimal control problem to be solved
using the mean and variance approximations of the objective and constraint func-
tions as introduced in Section 6.6.1. We optimize over the control actions uk given
the objective and constraints defined in Section 6.5:

minimize
Ũ
(t )
N

µGP(zJd ; τJd ) + ω · σ2
GP(zJd ; τJd )

subject to

x̃(s)
k+1
= f (x̃(s)

k
, ũ(s)

k
,θs), x̃(s)

k
= x̂t ∀(k, s) ∈ {t, . . . ,N} × {1, . . . ,ns}

µGP(z
(k)
g j

; τg j ) + κε

√
σ2
GP
(z(k)g j

; τg j ) ≤ 0 ∀(k, j) ∈ {t, . . . ,N} × {1, . . . ,ng}

µGP(zgN
j

; τgN
j
) + κε

√
σ2
GP
(zgN

j
; τgN

j
) ≤ 0 ∀ j ∈ {1, . . . ,nN

g }

(6.26)

where x̂t is the current state measurement and Ũ(t)N = [ũt, . . . , ũN ]
T.

6.6.4 GPPCE SNMPC algorithm

In this section we outline the algorithm to solve the problem defined in Sec-
tion 6.5 using the GPPCE SNMPC optimization problem from the previous sec-
tion. At each time t we are given the current state measurement x̂t , from which
we aim to determine the best control action to take. To formulate the problem
the dynamic equation system in Equation 6.18 needs to be defined together with
the initial conditions x̂0 and the time horizon N . Further, the objective function
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Jd(N,x0(θ),θ,UN ) with the variance factor ω need to be defined, together with
the input constraint set U, path constraint functions gj(·) and terminal constraint
functions gN

j (·). The corresponding probability of feasibility ε needs to be set.
Next we specify τJd , τg j , and τgN

j
. Lastly, the terms required for the GPPCE

estimator are pre-computed according to Equation 6.16. The overall algorithm is
stated in Algorithm 6.1.

Algorithm 6.1: GPPCE SNMPC algorithm
Offline Computations

1. Choose time horizon N , initial condition x̂0, stage costs L(·) and terminal
costM(·), variance weighting factor ω, path constraint functions gj(·),
terminal constraint functions gN

j (·), input constraint set U, and the chance
constraint probability ε .

2. Specify the GPPCE estimator by setting reasonable values to τJd , τg j , and
τgN

j
.

3. Pre-compute terms required for the GPPCE estimator given in Equation
6.16.

Online Computations
for t = 0, . . . ,N − 1 do

1. Solve the SNMPC problem in Equation 6.26 with the current state x̂t .

2. Apply the first control input of the optimal solution to the real plant.

3. Measure the state x̂t .

6.7 Semi-batch reactor case study
The GPPCE SNMPC algorithm introduced in Section 6.6 is applied to a semi-

batch reactor case study for the production of the polymer polypropylene glycol
from the monomer propylene oxide (PO) as illustrated in Figure 6.3.
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Figure 6.3: Figure summarizing the main variables of the semi-batch reactors with the
main reactions taking place. F is the monomer feedrate, V and T are the volume and
temperature of the liquid in the reactor respectively, W represents water, M denotes the
monomer, Dn and Gn are the dormant and active product chains with length n respectively.

6.7.1 Dynamic model

For this batch process polymerization reaction an extensive model has been
proposed in [193]. This model has a separate dynamic equation for each chain
length separately, which we simplified using the "method of moments" [194]. The
ordinary differential equation (ODEs) then describe the moments of the polymer
as opposed to the amount of each specific chain length. This is often sufficient to
estimate important performance criteria. In addition, an energy balance was added
due to the importance of temperature control. The dynamic model consists of 7
ODEs. The dynamic model can be stated as:

Ûm = FMWPO, m0 = m̂0 (6.27a)

ÛT =
(−∆Hp)kpγG0M − UA(T − TC)V − FMWPOCp f (T − Tf )V

mCpbV
, T0 = T̂0

(6.27b)

ÛW = −
khW M

V
, W0 = Ŵ0 (6.27c)

ÛM = F −

(
khW + kiG0 + kpγG0 + kt (γG0 + G0)

)
M

V
, M0 = M̂0 (6.27d)

ÛX0 =
(2khW − kiG0)M

V
, X00 = X̂00 (6.27e)

ÛγX0 =
kiG0M

V
, γX00 = ˆγX00 (6.27f)

ÛγX1 =
(kiG0 + kpγG0)M

V
, γX10 = ˆγX10 (6.27g)
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where m is the liquid mass in kg, T is the reactor temperature in K, W is the amount
of water in kmol, M is the amount of monomer in kmol, X0 is the concentration of
Methanol in kmol, γX0 is the zeroth polymer moment in kmol, and γX1 is the first
polymer moment in kmol. F is the feed rate of the monomer in kmol/s and TC is
the cooling water temperature in K. kp, kh, ki, and kt in m3kmol/s are the kinetic
constants of the propagation, hydrolysis, initiation, and transfer reactions respec-
tively. Cpb and Cp f are the heat capacities of the bulk liquid and the monomer
feed respectively in kJ/kg/K. G0, γG0, and γG1 are the active concentrations of
Methanol, the zeroth polymer moment, and the first polymer moment in kmol. V
is the liquid volume in the reactor. The kinetic constants and the heat capacities
are given as functions of temperature [194]:

kp = Ap exp(−EAp/RT) (6.28a)

kh = Ah exp(−EAh/RT) (6.28b)

ki = Ai exp(−EAi/RT) (6.28c)

kt = At exp(−EAt/RT) (6.28d)

Cp f = 0.92 + 8.871 × 10−3T − 3.1 × 10−5T2 + 4.78 × 10−8T3 (6.28e)

Cpb = 1.1 + 2.72 × 10−3T (6.28f)

G0, γG0, and γG1 depend on X0, γX0, and γX1 as follows:

G0 = X0nC/(X0 + γX0) (6.29a)

γG0 = γX0nC/(X0 + γX0) (6.29b)

γG1 = γX1nC/(X0 + γX0) (6.29c)

where nC is the amount of catalyst in the reactor in kmol.

Three parameters in the dynamic model were assumed to be uncertain: The
pre-exponential factor of the propagation reaction Ap in m3/kmol/s, the overall
heat transfer coefficient UA in kW/K, and the total amount of catalyst nC in kmol.
The remaining parameters including the initial conditions are given in Table 6.1.
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Table 6.1: Parameter values for dynamic model taken from [193] and operating conditions
as defined in Equations 6.27a − 6.29a.

Parameter Value Units Description
MWPO 58.08 kg/kmol Molecular weight of PO
∆Hp −92048 kJ/kmol Enthalpy of reaction for propagation reaction
Ah 2.4 × 108 m3/kmol/s Pre-exponential factor of hydrolysis kinetic constant
Ai 4.0 × 108 m3/kmol/s Pre-exponential factor of initiation kinetic constant
At 9.5 × 108 m3/kmol/s Pre-exponential factor of transfer kinetic constant
EAp 6.9 × 104 kJ/kmol Activation energy of propagation reaction
EAh 8.2 × 104 kJ/kmol Activation energy of hydrolysis reaction
EAi 7.8 × 104 kJ/kmol Activation energy of initiation reaction
EAt 1.05 × 105 kJ/kmol Activation energy of transfer reaction
R 8.314 kJ/kmol/K Universal gas constant
m̂0 1.56 × 103 kg Initial reactor mass
T̂0 400 K Initial reactor temperature
Ŵ0 1.0 kmol Initial amount of water
M̂0 10.0 kmol Initial amount of monomer
X̂00 0.0 kmol Initial amount of methanol
ˆγX00 10.0 kmol Initial zeroth polymer moment
ˆγX10 10.0 kmol Initial first polymer moment

The control inputs are given by the monomer feed rate F and cooling water
temperature TC . In compact form we can write x = [m,T,W,M,X0, γX0, γX1]

T

and u = [F,TC]T. The uncertain model parameters are given as functions of θ,
which can be used to attain complex probability distributions:

Ap(θ) = exp (−5 + 0.05θ3 + 0.05θ2 + 0.03θ1) × 109 + 5 × 106 (6.30a)

U A(θ) = 40 cos (1.26 + 0.09θ3 − 0.09θ2 + 0.09θ1) + 40 (6.30b)

nC(θ) = | − 0.05θ3 + 0.05θ2 − 0.05θ1 | + 1 (6.30c)

This allows for the uncertain parameters to attain nearly arbitrary complex
probability distributions as can be seen from their respective pdfs plotted in Figure
6.4.
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Figure 6.4: Plots of the probability density functions of the uncertain parameters (from
left to right for: Ap , UA, nC)

6.7.2 Problem set-up

The time horizon N was set to 12 with a variable continuous batch time tbatch
with equal sampling times. The state at each discrete time t + 1 can be expressed
as follows employing Equation 6.27a:

xt+1 =

∫ tbatch/N

0
f̄ (xt,ut )dt + xt (6.31)

where f̄ (·) = [ Ûm, ÛT, ÛW, ÛM, ÛX0, ÛγX0, ÛγX1]
T as defined in Equation 6.27a.

The required discrete-time system for Equation 6.18 is then obtained using
orthogonal Radau collocation. Each control interval is simulated by a polynomial
with an overall degree of 5. The objective for the control algorithm is aimed to
minimize the required batch time tbatch with a penalty on changes in the control
input:

Jd(N, x̂0,θ,UN ) = tbatch +
N∑
t=1

∆Tut
R∆ut (6.32)

where ∆ut = ut − ut−1 and R = diag(10−6,10−4).

The minimization is subject to two terminal constraints and a path constraint.
The path constraint aims to keep the reactor temperature below 420K for safety
reasons, which can be stated as follows:

g(xt,ut,θ) = T − 420 ≤ 0 (6.33)

The two terminal constraints state batch product quality properties to be reached.
The first terminal constraint requires the batch to reach a number average molec-
ular weight (NAMW) in kg/kmol of 1500 defined as NAMW = MWPO

γX1

γX1
. The



6.8. Results and discussions 129

second terminal constraint requires the final monomer concentration to not exceed
1000ppm. These terminal constraints are:

gN
1 (xN ,θ) = −MWPO

γX1

γX0
+ 1500 ≤ 0 (6.34a)

gN
2 (xN ,θ) = 106 ×

MWPOM
m

− 1000 ≤ 0 (6.34b)

The chance of constraint violation was to ε = 0.05 for the constraints defined
above. The control inputs are constrained as:

0 ≤ F ≤ 0.1 (6.35a)

298.15 ≤ TC ≤ 423.15 (6.35b)

For the GPPCE approximation the scaling variable λ̂ was set to the following
for the different constraint functions:

λ̂g = [0.22,0.77,0.55] (6.36a)

λ̂gN
1
= [0.31,0.87,0.44] (6.36b)

λ̂gN
2
= [0.30,0.75,0.45] (6.36c)

The values were determined using Equation 6.10 by generating different tra-
jectories by setting U to values between its upper and lower bound. The various
λ̂ values obtained then allowed us to set λ̂ to reasonable values for the different
constraints.

6.8 Results and discussions
In this section we present the results of the case study outlined in Section 6.7.

The aim of this section is two-fold. First in Section 6.8.1 we compare the accuracy
of the GPPCE mean and variance estimates by comparing it to other important
approaches that have been utilised to formulate SNMPC problems. Thereafter, in
Section 6.8.2 we verify the GPPCE SNMPC algorithm defined in Section 6.6 and
compare it to a nominal SNMPC algorithm with soft constraints.

6.8.1 GPPCE accuracy

In this section we verify the GPPCE approach to obtain mean and variance
estimates of nonlinear transformations as outlined in Section 6.2. To accomplish
this we ran the following tests:

• Set U to its upper bound and compare the pdfs of PCE, GP, and GPPCE for
the two terminal constraint functions and the path constraint function at the
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final time t = N with the true pdfs. Each model has 15 training data points
according to a Sobol design and the PCE and GPPCE polynomial order was
set to 2. Note the pdfs are obtained using kernel density estimation (KDE)
of the respective models [235]. The models are obtained using the data and
polynomial order as outlined in the previous section. The results for this are
shown in Figure 6.5 with the corresponding mean and variance estimates
given in Table 6.2.

• Set U to its upper bound and compare the pdfs of GPPCE with 15, 25, and 40
training data-points according to a Sobol design with polynomial order of 2
throughout for the two terminal constraint functions and the path constraint
function at the final time t = N . The results for this are shown in Figure 6.6.

• Lastly, U was set to 100 random values. For these the mean and variance
of the terminal constraint functions and the path constraint at t = N were
estimated using GPs with 15 data-points, PCEs with 15 data-points, the Un-
scented transformation with 7 data-points (2nθ + 1), and GPPCE based on
15, 25, and 40 data-points. The relative absolute error for these is illus-
trated in Figure 6.7 for the mean estimates and in Figure 6.8 for the standard
deviation estimates as box plots.

Based on the tests outlined above we can draw the following observations and
conclusions:

• Generally speaking from the plots in Figure 6.5 and Table 6.2 it can be said
that all three approaches are able to represent the pdfs reasonably well with
good approximations to the mean and variance. Nonetheless, PCEs are seen
to outperform GPs considerably for the mid-plot, while for the graph on the
RHS GPs outperform PCEs. GPs are expected to be able to handle more
complex responses due to interpolating between data-points, while PCEs
often capture better the overall trend, i.e. lead to a better global fit. GPPCE
seems to approximate both well, since it is based on both methods, which
highlights its major advantage over both.

• The confidence bound for GPPCEs and GPs in Figure 6.5 and Figure 6.6
corresponds to a 95% confidence region. It can be seen that the region is
able to capture the relative uncertainty well, since it is larger if the fit is
poor and smaller if the fit is better. Nonetheless, it does seem to be often
overconfident. Furthermore, the variance accounting for the finite samples
is given in Table 6.2 as stochastic variance. It can be seen that this variance
is only once smaller then the true variance, further highlighting its potential
use as a more conservative variance estimate.
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• In Figure 6.7 the box plots highlight the absolute error from 100 mean ap-
proximations. It can be seen that in general the Unscented transformation
performs the worst, which is not surprising since it is based on only 7 data-
points. Furthermore, PCEs are seen to perform rather poorly as well. For
PCEs it should be noted that for several variations it performed very well
as can be seen in Figure 6.5 for example, however for several variations it
performed poorly. This can in part be explained by the difficulty of deter-
mining reasonable regularization parameters, which can viewed as a signif-
icant disadvantage. GPs on the other hand often perform worse than PCEs,
but manage to never perform very poorly due their nature of interpolating
between data-points. Therefore, GPs on average perform much better than
PCEs as can be seen in Figure 6.7. Lastly, GPPCE can again be seen to out-
perform both PCEs and GPs, which is in line with previous observations that
GPPCE captures the best of both techniques. Interestingly the GPPCE mean
approximation does not seem to improve with more data-points, however its
worst performance is already small at 3% with 15 data-points.

• In Figure 6.8 the box plots show the absolute error from 100 variance ap-
proximations. It should be noted that accurate variance estimates are more
difficult to achieve. The PCE performs the worst in this case, which simi-
lar to previously is down to it performing very poorly on a few test cases.
This is further exacerbated from the square variance definition. Unscented
performs poorly again, except for the second terminal constraint. GPs also
do not perform particularly well leading to a up to nearly 40% error for the
second terminal constraint. GPPCE on the other hand performs much better
with 15 data-points leading to an error of at most 15% for the first termi-
nal constraint. Further, it can be seen that GPPCE variance approximations
steadily improves with more data-points, with 40 data-point GPPCE never
exceeding a 5% error threshold. Overall it can be said that GPPCE is a vast
improvement over its GP and PCE counterparts for estimating variances.
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Figure 6.5: Plots of the probability density functions of the models PCE , GP, and
GPPCE for the path constraint function g(·) at t = N and the two terminal constraint
functions gN

1 (·), g
N
2 (·) from left to right respectively for U set to its upper bound.

Figure 6.6: Plots of the probability density functions of the GPPCE model with 15, 25,
and 40 training data-points for the path constraint function g(·) at t = N and the two
terminal constraint functions gN

1 (·), g
N
2 (·) from left to right respectively for U set to its

upper bound.

Table 6.2: Mean, variance, and stochastic variance for the PCE, GP, GPPCE with 15,
25 and 40 training data-points. From left to right the values in each field refer to the
path constraint g(·) at t = N , the first terminal constraint gN

1 (·), and the second terminal
constraint gN

2 (·) respectively.

Estimator Mean (g(·), gN
1 (·), g

N
2 (·)) Variance (g(·), gN

1 (·), g
N
2 (·)) Stochastic variance (g(·), gN

1 (·), g
N
2 (·))

True 71.7, −1.23 × 104, 2780 5.50, 195.1, 4.96 × 105

PCE 71.9, −1.23 × 104, 2660 5.59, 222.0, 4.96 × 105

GP 71.8, −1.23 × 104, 2760 3.57, 118.5, 3.40 × 105 4.01, 203.4, 5.73 × 105

GPPCE 15 71.8, −1.23 × 104, 2778 5.60, 199.1, 5.43 × 105 5.67, 203.4, 5.73 × 105

GPPCE 25 71.7, −1.23 × 104, 2809 5.67, 189.2, 5.51 × 105 5.74, 196.8, 5.85 × 105

GPPCE 40 71.7, −1.23 × 104, 2803 5.50, 202.0, 5.12 × 105 5.55, 204.4, 5.33 × 105
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Figure 6.7: Box plots of absolute relative error of mean estimates from 100 random U
values. From left to right the values in each field refer to the path constraint g(·) at t = N ,
the first terminal constraint gN

1 (·), and the second terminal constraint gN
2 (·) respectively.

Figure 6.8: Box plots of absolute relative error of standard deviation estimates from 100
random U values. From left to right the values in each field refer to the path constraint
g(·) at t = N , the first terminal constraint gN

1 (·), and the second terminal constraint gN
2 (·)

respectively.

6.8.2 SNMPC verification

To verify the SNMPC algorithm given in Section 6.6.4 we run 400 closed-loop
MC simulations of the case study outlined in 6.7 by sampling the uncertain param-
eters θ independently. For comparison purposes the 400 MC simulations of the
SNMPC algorithm are compared to 400 MC simulations of a nominal NMPC al-
gorithm with soft constraints. The results of these MC simulations are highlighted
in Figure 6.9 and Figure 6.10. Figure 6.9 depicts the probability densities using
KDE of the 400 MC simulations for the two terminal constraint functions and the
final batch time required for the SNMPC and nominal NMPC algorithm. Figure
6.10 shows the temperature trajectories of all 400 MC simulations for the SNMPC
algorithm on the RHS and for the nominal NMPC algorithm on the LHS. In Table
6.3 the average and standard deviation computational times are given for both the
SNMPC and the nominal NMPC algorithm. Based on these results we can draw
the following observations and conclusions:
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• In Figure 6.9 on the LHS we can see from the pdf the nominal NMPC vio-
lates the constraint considerably more than the SNMPC algorithm reaching
often not the required NAMW. For all 400 MC simulations the SNMPC al-
gorithm does not violate this constraint even once, while the nominal NMPC
algorithm violates the constraint in 70% of the simulations.

• In Figure 6.9 the mid plot shows the pdfs of the ppm of the monomer. Again
it can be seen that the nominal NMPC violates this constraint frequently,
while the SNMPC is considerably more robust. Again the SNMPC algo-
rithm does not violate this constraint for all 400 MC simulations, while the
nominal NMPC algorithm violates it 62% of the time.

• From Figure 6.10 it can be seen that the temperature control of the SNMPC
algorithm is considerably improved over the nominal NMPC, which violates
the constraint in many of the MC simulations. The SNMPC was found to not
violate the temperature constraint at all, while the nominal NMPC algorithm
violates the path constraint in 95% of cases.

• The rightmost plot in Figure 6.9 shows the trade-off of the improved con-
straint satisfaction for the SNMPC algorithm. The pdf of the batch time for
the SNMPC algorithm is more skewed towards longer batch times to be able
to adhere the constraints. While the nominal NMPC algorithm on average
has a batch time of 5550s, the SNMPC algorithm takes on average 7380s
to complete a batch. This is expected, since superior constraint satisfaction
leads to a worse objective.

• Table 6.3 shows the computational times of both algorithms. It can be seen
that the SNMPC algorithm has considerably longer computational times
compared to the nominal NMPC algorithm, which is expected. Nominal
NMPC is based on a much smaller optimization problem without scenarios
and has less strict constraints, which are often easier to adhere. Also the
absence of hard constraints can lead to considerably faster computational
times.
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Figure 6.9: Plots of probability densities of NAMW (kg/kmol), parts per million of
monomer, and batch time (s) based on 400 MC simulations from left to right respectively.

Figure 6.10: Plots of temperature trajectories of 400 MC simulations for SNMPC (left)
and nominal NMPC (right).

Table 6.3: Optimal control problem average and standard deviation of computational
times.

Algorithm average OCP time (s) standard deviation OCP time (s)
SNMPC 2.868 9.277
Nominal NMPC 0.045 0.001

6.9 Conclusions
In conclusion, we proposed a new approach to approximate the mean and vari-

ance of a nonlinear transformation given a standard normally distributed input by
combining GPs and PCEs. It was shown that the method in general is able to
capture better the shape of pdfs and leads to much improved approximations of
both mean and variance. This can in part be explained by the approach leading
to a good approximation if either GP or PCE leads to a good fit. Further, the GP-
PCE SNMPC algorithm is shown to lead to superior constraint satisfaction over a
nominal NMPC algorithm using soft constraints despite the stochastic uncertain-
ties present. The computational times are kept moderately low by pre-computing
the expensive terms involved in the GPPCE approach.
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6.10 Posterior mean and variance derivation
In Section 6.2 we show how to derive the posterior mean and variance given a

fitted GPPCE. The covariance function is given by the SE covariance function as
given in Equation 6.6 and for the mean function we use Hermite polynomials, as is
done in PCE [136]. Given these choices we need to determine several expectations
for Equation 6.16 with θ ∼ N(θ; 0, I) following a standard normal distribution.
Given these choices we can derive the expectations we require in turn. In essence
we will exploit the fact that the SE covariance function represents an unnormalized
Gaussian pdf:

k(θ,θi) =
α̂2N(θ; θi, Λ̂)

|2πΛ̂|−
1
2

(6.37)

and exploit the following identity:

N(θ;µp,Σp) · N(θ;µq,Σq) B rN(θ;µr,Σr ) (6.38)∫
N(θ; 0, I) exp

(
−

1

2
θTΛ−1θ

)
dθ B |I + Λ−1 |−

1
2 (6.39)

where Σr = (Σ
−1
p + Σ

−1
q )
−1, µr = Σr

(
Σ−1p µp + Σ

−1
q µq

)
, and r = |2π(Σp +

Σq)|
− 1

2 exp
(
−1

2 (µp − µq)
T(Σp + Σq)

−1(µp − µq)
)
.

Expectation of m(θ)

The expectation of m(θ) is given by the first expansion coefficient in Equation
6.2 due to the orthogonality properties of the Hermite polynomials [177]:

µm = β̂0 (6.40)

where µm = Eθ[m(θ)].

Expectation of kζ,z(θ)

The expectation of kζ ,z(θ) can be derived by expressing the SE covariance
function as a multivariate normal distribution. The full derivation can be found in
[71] and leads to the following:

[µkζ ,z]i = α̂
2 |I + Λ−1 |−

1
2 exp

(
−

1

2
θTi (I + Λ)

−1θi

)
(6.41)

where µkζ ,z = Eθ
[
kζ ,z(θ)

]
.
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Expectation of (m(θ))2

Note this is by definition the second moment of m(θ) and hence has received
considerable attention. Again due to the orthogonality properties of the Hermite
polynomials utilized the expectation of (m(θ))2 is considerably simplified [177]:

µm2 =

L−1∑
i=0

β2i Eθ
[
φ2i (θ)

]
(6.42)

where µm2 = Eθ
[
m(θ)2

]
.

Expectation of kζ,z(θ)k
T
ζ,z(θ)

The expectation of the outer product of kζ ,z(θ) can be found in [71] and is as
follows:

[Mkζ ,zkTζ ,z
]i j = k(θi,0)k(θj,0)|R|−

1
2 exp

(
lTR−1l

)
(6.43)

where Mkζ ,zkTζ ,z
= E

[
kζ ,z(θ)k

T
ζ ,z(θ)

]
, R = 2Λ̂

−1
+ I, and l = Λ̂θi + Λ̂θj .

Expectation of m(θ)kζ,z(θ)

This term is somewhat more difficult to deal with, since it is a cross-term be-
tween the mean function and the covariance function. Unfortunately we cannot
exploit the orthogonality properties of m(θ), nonetheless the term has a closed-
form solution as we will show here:[

µmkζ ,z

]
i
=

∫
N(θ; 0, I)

α̂2N(θ; θi,Λ)

|2πΛ|−
1
2

m(θ)dθ = r
∫

m(θ)N(θ;µr,Σr )dθ =

(6.44)

rβT
∫
φ(θ)N(θ;µr,Σr )dθ = rβTEθr [φ(θr )]

where Eθ
[
m(θ)kζ ,z(θ)

]
= µmkζ ,z , r = α2 |Λ−1 + I|−

1
2 exp

(
−1

2θ
T
i (Λ + I)−1θi

)
,

θr ∼ N(θ;µr,Σr ) follows a multivariate Gaussian distribution, µr = θi(Λ+I), and
Σr = (I + Λ

−1)−1. Note that φ(θr ) is a vector of polynomial terms, for which the
expectations are given by statistical moments, which have a closed form solution
according to a multivariate Gaussian distribution see [262].

Expectation of κζ,z(θ)κTζ,z(θ)

This term is again a cross-term and is dealt with in a similar way.

Mκζ ,zκζ ,z =


Eθ

[
φ(θ)φT(θ)

]
Eθ

[
φ(θ)kT

ζ ,z(θ)
]

Eθ
[
kζ ,z(θ)φ

T(θ)
]
Eθ

[
kζ ,z(θ)k

T
ζ ,z(θ)

] (6.45)
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where Mκζ ,zκζ ,z = Eθ

[
κζ ,z(θ)κ

T
ζ ,z(θ)

]
.

The bottom right expectation was determined previously. The top left can be
expressed as follows:[

Eθ
[
φ(θ)φT(θ)

] ]
i j
= Eθ

[
φi(θ)φ j(θ)

]
(6.46)

where the RHS expectation has a closed-form solution and is a common occur-
rence to determine the covariance employing PCE, see for example [83].

The last remaining term can be determined as follows:[
Eθ

[
φ(θ)kT

ζ ,z(θ)
] ]

i j
=

∫
N(θ; 0, I)

α̂2N(θ; θi,Λ)

|2πΛ|−
1
2

φ j(θ)dθ =

r
∫

φ j(θ)N(θr ; µ̄r,Σr )dθ = rEθr
[
φ j(θr )

]
(6.47)

where θr ∼ N(θ;µr,Σr ) follows a multivariate Gaussian distribution. Note that
φ j(θr ) is a multivariate polynomial, for which the expectations are given by sta-
tistical moments, which have a closed form solution according to a multivariate
Gaussian distribution [262].
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Chapter 7

Dynamic modeling and
optimization of sustainable algal
production with uncertainty
using multivariate Gaussian
processes

This chapter is based on Paper E: E. Bradford, A. M. Schweidtmann, D. Zhang,
K. Jing, and E. A. del Rio-Chanona. Dynamic modeling and optimization of sus-
tainable algal production with uncertainty using multivariate Gaussian processes.
Computers & Chemical Engineering, 118:143–158, 2018.

Summary
Dynamic modeling is an important tool to gain better understanding of com-

plex bioprocesses and to determine optimal operating conditions for process con-
trol. Currently, two modeling methodologies have been applied to biosystems:
kinetic modeling, which necessitates deep mechanistic knowledge, and artificial
neural networks (ANN), which in most cases cannot incorporate process uncer-
tainty. The goal of this study is to introduce an alternative modeling strategy,
namely Gaussian processes (GP), which incorporates uncertainty but does not re-
quire complicated kinetic information. To test the performance of this strategy,
GPs were applied to model microalgae growth and lutein production based on ex-
isting experimental datasets and compared against the results of previous ANNs.
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Furthermore, a dynamic optimization under uncertainty is performed, avoiding
over-optimistic optimization outside of the model’s validity. The results show that
GPs possess comparable prediction capabilities to ANNs for long-term dynamic
bioprocess modeling, while accounting for model uncertainty. This strongly sug-
gests their potential applications in bioprocess systems engineering.

7.1 Introduction
The synthesis of sustainable bioproducts from microalgae through photosyn-

thetic related metabolic pathways has become a promising research field because
of its outstanding advantages over traditional fossil fuel based processes [49, 274].
Specifically, in the energy and food sectors the development and deployment of mi-
croalgae based technologies have seen substantial interests within the last decade
[152, 172]. For example, these emerging technologies represent a variety of promis-
ing alternatives for the next generation of renewable and environmentally friendly
transportation fuels such as biodiesel and biohydrogen [246, 1]. Meanwhile, they
have been recently adopted by different countries such as the United States, China
and Mexico to produce nutritious food supplements and animal feeds, of which
the global market has been predicted to undergo considerable growth [66, 275].
Furthermore, they have been successfully industrialized to produce different high-
value bioproducts that are widely used in the cosmetic, pharmaceutical and food
industries (e.g. lutein, C-phycocyanin and astaxanthin), which are otherwise pro-
duced from expensive, energy intensive and low efficient manufacturing routes
using non-renewable sources [86, 243].

In particular, the biorenewable product investigated in the current study is
lutein, which is of great interest to the health, pharmaceutical, and food sectors.
In the United States the demand of lutein is predicted to increase from $150 mil-
lion in 2000 to $309 million in 2018, with an annual growth rate of over 6% up to
2024 [117, 77]. However, the current feedstock for lutein production is marigold,
a plant with extremely low lutein content (0.02-0.1% wt (fresh flowers)) and low
growth rate requiring large separation costs [273]. A promising alternative to pro-
duce lutein is from microalgae due to their rapid growth rate, higher lutein content
(up to 0.5% wt) and capability of utilizing abundant sustainable resources such
as solar energy, atmospheric CO2 and waste water for their growth and product
synthesis [268].

To drive the industrialization of sustainable lutein production from microal-
gae, a robust mathematical model is required for precise process control over a
long-term time horizon, so that both process safety and efficiency can be guar-
anteed. Moreover, by utilizing state-of-the-art process optimization strategies for
mathematical models, dynamic optimization can be further carried out to increase
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process profitability [75]. As bioprocesses are in general sensitive to changes of
operating conditions, it is expected that by implementing dynamic optimization a
significant improvement on product yield can be obtained compared to the recent
literature results [170, 268, 79].

So far, two modeling methodologies have been employed to simulate dynamic
behavior of the underlying biosystem for microalgal biomass growth and lutein
synthesis, namely kinetic modeling and artificial neural networks (ANN) [98, 79].
In this paper, however, a third methodology, Gaussian process (GP) regression, is
proposed to simulate this system and compared against the previous two, so that its
feasibility and capability for bioprocess modeling can be thoroughly explored for
the first time. Recently, GPs have become an increasingly popular non-parametric
method for both regression and classification problems [220]. GP regression was
first proposed by [200] and then popularized in [191].

The GP regression framework not only provides a prediction for unknown out-
puts, but also provides a measure for prediction uncertainty, which is a distinct
advantage compared to other commonly used black-box methods. Furthermore, in
[219] it was shown that GPs are able to forecast outputs with comparable per-
formance to other modeling approaches like ANNs or local learning methods.
GPs have been shown to be a powerful tool for derivative-free optimization, since
the uncertainty measure can be exploited to evaluate functions more efficiently
for both single-objective optimization [130, 234] and multi-objective optimization
[46]. Although GPs have been predominantly used to model static nonlinearities, it
is notable that they have also been demonstrated and applied to simulate dynamic
systems in several studies [141, 48, 100, 251, 259, 36]. Particularly for studies of
long-term bioprocess modeling and optimization, despite the fact that GPs have
never been adopted in this domain, they are expected to possess two outstanding
advantages over the most commonly used methods (i.e. kinetic model and ANN),
which are:

1. Compared to ANNs, GPs provide a clear measure of prediction uncertainty
which is crucial when modeling complex biological systems. In addition,
although ANNs might be preferred over GPs in some cases (e.g. when
there is a large amount of training data) because of the matrix inversion
that is required for the construction of GP predictions, in macro-scale bio-
manufacturing studies it is infeasible to obtain datasets in the order of hun-
dreds of thousands or millions. Hence, GPs are clearly a comparable or even
superior tool to ANNs in this domain.

2. Compared to kinetic models, GPs do not need a full understanding of the
complex metabolic mechanisms that take place in the specific biosystem.
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Specific to bioprocess applications, in most cases, intensive collaborative ef-
fort of the scientific community is required to identify the essential biochem-
ical kinetic information before a kinetic model is ready to be constructed. On
the contrary, GPs are black-box models that can be used to simulate and op-
timize processes in the early stage of research, hence efficiently forwarding
the assessment and prototyping stages for process design and scale-up.

As a result, in the current research GPs are set as the default black-box model-
ing strategy for algal lutein production. Given that for bioprocesses there is a need
to predict long time horizons (in the order of days), two approaches have been
proposed in literature to accomplish this [77]:

One approach is to train a model on all control inputs and the initial state to ob-
tain predictions at the full-time horizon. While this approach is easy-to-implement,
it has several considerable disadvantages. Once trained, the model cannot be ex-
tended to make predictions at time horizons with different lengths. In addition,
for large time horizons the number of inputs quickly becomes large, requiring a
high dimensionality of the GP to be learnt and hence too many data-points. Alter-
natively, the iterative method can be used, which trains a GP to predict one-step
ahead and applies this GP recursively to obtain a prediction for the full time hori-
zon. The iterative method has several advantages compared to one-step ahead
predictions. It can be easily used for different time horizons with different lengths
and provide any k-step ahead forecast including the joint probability distribution
of the states at the desired points. In addition, the dimensionality of GPs is much
smaller in the iterative method when control inputs are present and therefore more
data efficient.

In this paper, a general procedure to execute dynamic modeling using GPs
is outlined. For this the iterative method was selected and applied to predict the
evolution of multivariate states for lutein production. In [100] it was shown that the
noise in the one-step ahead prediction needs to be propagated to be conservative
enough. Therefore, we propagated the resulting probability densities of the GPs
using exact moment matching (by moments we refer to the mean and covariance)
for the squared exponential covariance function. The methodology exhibited in
[141] given for single variate state systems was extended to the multivariate case
by using results from machine learning (e.g. reinforcement learning) in [71].

The paper is structured as follows. In Section 7.2 we introduce the reader to
Gaussian processes. Section 7.3 outlines the experimental set-up of the algal lutein
production process with various operating conditions and shows how this data can
be used to build GPs for the dynamic modeling of biosystems. In Section 7.4 a
description of the recently constructed ANNs for comparison to the GP is given.
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In the Results and Discussion section (Section 7.5) the GP regression results are
presented and compared against the ANNs. Meanwhile, a dynamic optimization
with stochastic constraints was performed in this section to maximize lutein yield
by varying flow rate and light intensity, while taking advantage of the probabilistic
nature of the GP.

7.2 Introduction to Gaussian process regression

7.2.1 Multivariate Gaussian distribution

To explain the principle of the GP modeling framework, we need to first in-
troduce some concepts commonly used in probability theory. A random variable
follows a univariate Gaussian distribution if its probability density function is given
by Equation 7.1, where x ∈ R is the result of a single test. A Gaussian distribu-
tion is defined by its mean µ (expectation), and its variance σ2. This is generally
written as x ∼ N

(
µ,σ2

)
.

p(x) =
1

√
2πσ2

e−
(x−µ)2

2σ2 (7.1)

Let us generalize this definition into higher dimensions. For a given random
n-dimensional vector x = [x1, ..., xn]T with mean µ = [µ1, ..., µn]T , its covariance
matrix Σ = cov(x) is defined as a n × n matrix of which the entry at the ith row
and j th column is calculated by Equation 7.2, where µi and µj denote the expec-
tation of xi and xj , respectively. In general, any symmetric positive semidefinite
matrix can be used as a covariance matrix. This necessitates the diagonal elements
to be non-negative, since these are variances. The vector x ∈ Rn is said to have
a multivariate Gaussian distribution if every linear combination of its components
(x1, ..., xn) is a univariate Gaussian distribution. The probability density function
of this multivariate Gaussian distribution is written as Equation 7.3, and commonly
denoted as x ∼ N (µ,Σ), where µ and Σ are the mean and covariance matrix of
these random variables, respectively. It is worth mentioning that the covariance
cov

(
xi, xj

)
is a measure of the correlation between the component xi and the com-

ponent xj . Thus, if these components are independent, the covariance coefficient
becomes 0. For example, a standard multivariate Gaussian distribution is defined
such that each component is independent, the mean µ = 0 and the covariance
matrix is given by Σ = In×n.

cov
(
xi, xj

)
= E

[
(xi − µi)

(
xj − µj

) ]
(7.2)
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p (x) =
1

(2π)n/2 | Σ |1/2
exp

(
−

1

2
(x − µ)T Σ (x − µ)

)
(7.3)

where | · | denotes the determinant

There are two important identities for multivariate Gaussian distributions, which
are essential in GP regression. Let us assume that we are given a joint vector of x
and y that are distributed as a multivariate normal distribution as shown in Equa-
tion 7.4.

[
x
y

]
∼ N

(
µx

µy
,

[
Σx Σx,y

Σy,x Σy

] )
(7.4)

The marginal distribution of x (the distribution of x alone) is then given by
Equation 7.5.

x ∼ N
(
µx,Σx

)
(7.5)

The conditional distribution of x given y can be denoted by Equation 7.6.

x|y ∼ N
(
µx + Σx,yΣ

−1
y

(
y − µy

)
,Σx − Σx,yΣ

−1
y Σy,x

)
(7.6)

where x|y denotes the probability distribution of x given that we know the value
of y. Therefore, the distribution on the right-hand side of Equation 7.6 has lower
variances (the diagonal elements of the covariance matrix) than the marginal dis-
tribution of x in Equation 7.5, since we are exploiting the knowledge that the value
of y gives us on x.

7.2.2 Introduction to Gaussian process regression

In this section we give a short introduction to GP regression. For a more de-
tailed and complete overview please refer to [220, 84, 129]. GPs generalize multi-
variate Gaussian distribution to infinite dimensions defining a functional space and
hence describe a distribution over infinite dimensional vector functions. Formally,
a GP is a collection of random variables of which any finite subset follows a Gaus-
sian distribution. GP regression aims to model an unknown latent function f (x)
using noisy observations y of f (x), which are related as follows:

y = f (x) + ε, ε ∼ N(0, σ2
ε ) (7.7)



7.2. Introduction to Gaussian process regression 147

where x ∈ Rn denotes an arbitrary input vector and ε is Gaussian distributed mea-
surement noise with a variance of σ2

ε .

Assume we want to make a prediction of f (x) at some arbitrary input x. Before
we have sampled the function at this point, i.e. before we obtain observations of
f (x) at this input x, this value will be uncertain. For GPs we model this uncer-
tainty of the value of the function at x as the realization of a normally distributed
random variable f (x) with mean µ and variance σ2. Intuitively, we are assuming
the function value at x to have a typical value of µ, which can be expected to lie
with a probability of 99.7% in the range [µ − 3σ, µ + 3σ]. The mean µ of f (x) in
the most general case may be given by an arbitrary function m(x), which defines
the “average” shape of the function.

To define a covariance function, we consider two arbitrary input vectors x and
x′, which again have not been sampled and consequently the values of the function
at these points are uncertain. However, if we assume the unknown function, which
we wish to model, to be continuous, then the function values f (x) and f (x′)will be
close if the distance between x and x′ is small. This prior information can be mod-
eled statistically by assuming that the random variables f (x) and f (x′) are strongly
correlated if the distance | |x−x′ | | is small. Correlation means that f (x)will tend to
be large if f (x′) is large, as long as x and x′ are close together. On the other hand if
x and x′ are far apart, then the values of f (x) and f (x′) are virtually independent.
In particular, in this paper we assume the correlation between the random variables
is given by the squared-exponential (SE) covariance function, which is a stationary
covariance function. A stationary covariance function is a function of x − x′, such
that the covariance function is translation invariant k(x,x′) = k(x − x′,0). The SE
covariance function can be defined as follows [220]:

cov f ( f (x), f (x′)) = E f (( f (x) − m(x)) ( f (x′) − m(x′))) = k(x,x′) = (7.8)

α2 exp

(
−

1

2
(x − x′)TΛ(x − x′)

)
where x,x′ are arbitrary inputs, Λ = diag([λ−21 , . . . , λ−2n ]) is a diagonal matrix with
a length scale λi for each input and α2 is the signal variance. E f is the expectation
over the function space. The mean function can be viewed as the ’typical’ shape of
the function, while the covariance function specifies the covariance between any
two function values at two separate inputs. The SE covariance function is such
that if x = x′ then k(x,x′) = α2 reaches the maximum; while if | |x − x′ | | →
∞ the correlation tends to zero as required. The parameters λi determine how
fast the correlation tends to zero as one moves in the ith dimension of the input
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vector. Small values of λi model functions that are significantly dependent on the
ith dimension, i.e. the function value can rapidly change when varying the ith

variable of such functions. Conversely large values of λi lead to functions that are
close to invariant with respect to the ith variable. In addition, the SE covariance
function not only assumes the latent function to be continuous, but also smooth
since it is infinitely differentiable.

A GP generalizes the Gaussian distribution to infinite dimensions and describes
a distribution over functions. It is fully specified by a mean function m(x) and a
covariance function k(x,x′). We write f is distributed as a GP as follows:

f (x) ∼ GP(m(x), k(x,x′)) (7.9)

The noisy observations y also follows a GP due to the additive property of
Gaussian distributions with the same mean, but with a different covariance func-
tion to account for the measurement noise:

y ∼ GP(m(x), k(x,x′) + σ2
ε δ(x,x

′)) (7.10)

where δ(x,x′) = 1 iff x = x′ and else δ(x,x′) = 0, known as the Kronecker-delta.

Equations 7.9 and 7.10 define the prior of the function, since no data has been
used yet. Afterwards this prior is updated using input-output data available from
observations. For GP regression we need to first define the prior of the GP by
choosing the mean function and covariance function, which encapsulate our prior
beliefs, if available, about the function to be modeled. In this report we assume
a mean function of zero as given in Equation 7.11, which is a common choice in
Machine Learning [220]. A zero-mean of the data is achieved in this report by
scaling the data. In essence this means that we are assuming the function to be
overall zero mean, such as a sine function.

m(x) = 0 (7.11)

We assume the covariance function to be given by the SE defined in Equation
7.8. As previously described this encapsulates our belief that the function to be
modeled is smooth.

Next we assume that N observations are available at N different inputs given
by the following two quantities:

X = [x1, . . . ,xN ] , y = [y1, . . . , yN ]
T (7.12)
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We can then represent the uncertainty of n function values based on the prior
from the mean and covariance functions with the help of a random vector
F = [ f (x1), . . . , f (xN )]

T at n separate input vectors given by the matrix X. This
random vector has a mean vector defined as 0 and a covariance matrix equal to:

ΣF =
[
k
(
xi,xj

) ]
N×N

(7.13)

where ΣF is a N × N matrix with (i, j) element given by Equation 7.8.

Equation 7.13 gives us the covariance matrix for the latent function values. We
however observe y and not f (x), which is perturbed by Gaussian distributed mea-
surement noise with a variance of σ2

ε as shown in Equation 7.7. The uncertainty of
the observation matrix y can then be expressed in the same way as F with a mean
function of 0 and a covariance matrix given by:

Σy =
[
k
(
xi,xj

)
+ σ2

ε δ(xi,xj)
]
N×N

(7.14)

The hyperparameters defining the prior GP are commonly unknown a priori,
and hence an important step in GP regression is the determination of the hy-
perparameters from the available data. The hyperparameters that define the GP
are given by the parameters of the covariance function in Equation 7.8 and by
the noise of y in Equation 7.7. These are jointly denoted by the vector Θ =

[log(λ1), . . . , log(λn), log(α), log(σε )]
T , where the parameters were log-transformed

to ensure positiveness. The hyperparameters of the GPs in this study were effi-
ciently found using a maximum a posteriori (MAP) estimate, which is more ef-
ficient for smaller data sets than the more commonly used maximum likelihood
(ML) approach [220]. This is due to the prior introduced in MAP preventing over-
fitting compared to ML [245]. In this work, we assume independent Gaussian
distributions on the hyperparameters:

Θj ∼ N(µΘ j , σ
2
Θ j
) (7.15)

where µΘ j is the mean and σ2
Θ j

the variance of the prior Gaussian distribution for
the hyperparameter Θj .

Following from the uncertainty expression of the data as multivariate Gaussian
distribution with covariance matrix as in Equation 7.14 and the prior distribution
of the hyperparameters in Equation 7.15, the log-likelihood of the posterior density
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of the hyperparameters can be stated as follows [220]:

L(Θ) = −
1

2
log(|Σy |) −

1

2
yTΣ

−1

y y −
N
2

log(2π)+∑
j

(−
1

2
log(2π) −

1

2
log(σ2

Θ j
) −

1

2σ2
Θ j

(Θj − µΘ j )
2)

(7.16)

Notice that function L(Θ) is still a function of the training targets y, and hence
the difference between the predicted outputs and the target outputs (the ys) will
be minimized in a similar fashion as would happen with an ANN training frame-
work. The covariance matrix Σ−1y can be efficiently factorized using Cholesky
decomposition, since it is a symmetric positive semidefinite matrix. Once the hy-
perparameters are fixed, the inverse matrix product can then be solved efficiently.
Since the elements of the covariance are however nonlinear functions of the hyper-
parameters, the factorization needs to be recalculated for each iteration of these.

The MAP estimate of Θ is then given by:

ΘMAP ∈ arg max
Θ

L(Θ) (7.17)

Once we have calculated the MAP estimate of Θ, we can use GPs to predict
the value of f (x) and y at unknown inputs. First consider the joint distribution of
the data and the function value f (x), which can be established using the mean and
covariance function of the prior:[

f (x)
y

]
∼ N

( [
0
0

]
,

[
Σ f Σ f ,y

Σy, f Σy

] )
where Σy is given in Equation 7.14, Σ f = k (x,x), Σ f ,y = [k (x,x1) , . . . , k (x,xN )]

and Σy, f = Σ
T
f ,y.

As set out at the beginning, we want to know the value of f (x) given the data
available to us, which is represented by the random vector y. We can now apply
the identity given in Equation 7.6 that gives us the distribution of f (x) given the
observations of y, which can be stated as follows:

f (x) |y ∼ N
(
Σ f ,yΣ

−1
y y,Σ f − Σ f ,yΣ

−1

y Σ
T
f ,y

)
(7.18)

The mean in this case is the best estimate of f (x) given the data available,
while the variance gives us a measure of uncertainty to this estimate. To obtain the
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posterior of the observation of f (x) we simply need to add the observation noise
to the variance:

y |y ∼ N
(
Σ f ,yΣ

−1
y y,Σ f − Σ f ,yΣ

−1

y Σ
T
f ,y + σ

2
ε

)
(7.19)

where y is the observation of f (x) according to Equation 7.7.

We have now shown how GPs can be used to obtain predictions at arbitrary
inputs. The overall procedure involves these three steps:

1. Choose mean and covariance function depending on the prior knowledge of
the underlying function.

2. Determine the hyperparameter values by maximum a posteriori likelihood
estimation using observations of the underlying function.

3. Make predictions at arbitrary inputs using Equations 7.18 and 7.19, where
the mean represents the prediction and the variance the corresponding un-
certainty.

An example of GP regression can be seen in Figure 7.1 with the prior and posterior
shown.
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Figure 7.1: Illustration of a GP of a 1-dimensional function perturbed by noise. On the
left the prior of the GP is shown with mean 0 and standard deviation of ∼ 2 with 5 samples
drawn from the GP prior, each of which corresponds to a separate function. On the right
the GP was given additional information (8 observations of the latent function) and fitted
to these observations to obtain the posterior. Again the mean and 5 samples are shown.
One can notice that close to these observations the uncertainty is greatly reduced, however
areas far from observations exhibit greater uncertainty.
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7.3 Gaussian process dynamic modeling for bioprocesses

7.3.1 Algal lutein production process experimental set-up

The experiment of microalgal lutein production consists of 3 states and 2 con-
trol variables. The 3 states are biomass concentration, nitrate concentration and
lutein production and the 2 control variables are incident light intensity and nitrate
inflow rate. The microalgae species Desmodesmus sp. F51 was used for lutein
production and experimental temperature was fixed at 35◦C. A 1 L photobioreac-
tor (15.5 cm in length and 9.5 cm in diameter) was used in these experiments with
an external light source on both sides. Initial biomass concentrations were kept
constant and incident light intensities were varied between 150 µmol m−2s−1 to
600 µmol m−2s−1. Nitrate influent was supplied to the reactor to compensate for
the culture nitrate consumption from the 60th hour until the end of the experiment
with a fixed inflow rate of 3 mL hr−1. Influent nitrate concentration was chosen as
0.1M or 0.5M. All the runs were carried out over 6 days.

The states were measured every 12 hours over 144 hours, hence 12 measure-
ments were taken for each experimental run. In total 7 different experiments were
conducted. All of the experiments were replicated twice and the detailed presen-
tation of experimental design and measurement techniques can be found in [80].
The operating conditions of these experiments are summarized in Table 7.1.

Table 7.1: Operating conditions of 7 algal lutein production experiments

Operating conditions Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp7
Initial Biomass (g L−1) 0.07 0.07 0.07 0.07 0.07 0.07 0.07
Initial Nitrate (mM) 8.8 30 8.8 8.8 8.8 30 8.8
Inflow rate (mL h−1) 3.0 3.0 3.0 3.0 3.0 3.0 3.0
Influent nitrate (M) 0.5 0.5 0.1 0.1 0.1 0.5 0.1
Light intensity (µmol m−2s−1) 300 600 150 480 600 480 300

The aim of this section is to introduce GP regression in the context of a discrete
time, dynamic black-box model for a biosystem given a set of time series measure-
ments (data sets). It is emphasized that the measurements are taken at a constant
sampling frequency. Therefore, in this paper we consider the dynamic system to
be in the form of:

x(t) = F(x(t − 1),u(t − 1)) (7.20)

where t is the discrete time, x ∈ Rn denotes the states, u ∈ Rm denotes the control
inputs and F : Rn × Rm 7→ Rn resembles the nonlinear transition dynamics. It is
assumed that the control inputs u are deterministic.
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In simple words Equation 7.20 means that the system at time step t will be
predicted using measurements and inputs at the previous time step t − 1. This is
the general approach when a real experiment is conducted, where past data are
used to predict and hence optimize the process at a future time.

For a biosystem the states are commonly given by concentrations, while a com-
mon input is the feed rate of a substrate. For example for the lutein case study the
state vector is given by x = [CX,CN ,CL]

T , where CX represents the concentra-
tion of algal biomass, CN the concentration of nitrate and CL the concentration of
lutein; while the control inputs are given by u = [Li,FN ]

T , where Li denotes the
light intensity and FN the inflow rate of nitrate.

7.3.2 Data preparation

To model the multi-input, multi-output system in Equation 7.20, we employ
independent GPs for each output, i.e. each output is modeled by a separate GP.
The training procedure is therefore the same as outlined in Section 7.2. The data
is consequently given, such that each GP can be trained with the same multivariate
inputs, but with different single dimensional outputs.

GPs are identified from input-output data pairs, and can be adopted to approx-
imate the dynamic behavior described by Equation 7.20 given a set of measure-
ments. The first step consists of preparing available data points for the GP training.
Assuming several laboratory experiments have been conducted, we are commonly
given the initial conditions x(0) and the measurements of x(t) at constant time in-
tervals over different experimental runs with known controls u(t). From s distinct
experimental runs, we obtain data over s time series (data sets), which gives us data
in the form of

{
x(i)(0), . . . ,x(i)(Ti)

}
i∈{1,...,s} and

{
u(i)(0), . . . ,u(i)(Ti − 1)

}
i∈{1,...,s},

where Ti denotes the number of time intervals in experimental run i. We assume
that the sampling rate of all experiments remains constant. In this research we use
the augmented vector xa(t) = [x(t),u(t)]T ∈ Rn+m as inputs and the differences
∆x(t) = x(t)−x(t−1)+ε ∈ Rn as regression targets, where ε denotes measurement
noise. The regression targets define what we want to predict,i.e. we aim to predict
the change of the states at each stage using GPs.

The input-output data is consequently given by collecting the measurements of
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all experiments in the matrices X′ and Y′:

X′ =



[x(1)(0)
T
,u(1)(0)

T
]

...

[x(1)(T1 − 1)
T
,u(1)(T1 − 1)

T
]

[x(2)(0)
T
,u(2)(0)

T
]

...

[x(2)(T2 − 1)
T
,u(2)(T2 − 1)

T
]

...

[x(s)(0)
T
,u(s)(0)

T
]

...

[x(s)(Ts − 1)
T
,u(s)(Ts − 1)

T
]



T

, Y′ =



x(1)(1)
T
− x(1)(0)

T

...

x(1)(T1)
T
− x(1)(T1 − 1)

T

x(2)(1)
T
− x(2)(0)

T

...

x(2)(T2)
T
− x(2)(T2 − 1)

T

...

x(s)(1)
T
− x(s)(0)

T

...

x(s)(Ts)
T
− x(s)(Ts − 1)

T



T

(7.21)

where X′ ∈ R(n+m)×N are the training inputs, Y′ ∈ Rn×N are the training targets
and is the total number N of input-output data pairs.

Note that what we are proposing is for the GP to predict the change of the states
over a fixed time interval given previous states and inputs (e.g. given biomass con-
centration, lutein concentration, nitrate concentration, light intensity and nitrate
input at time t − 1, we can predict the increase or decrease on biomass concentra-
tion, lutein concentration and nitrate concentration from time t − 1 to time t).

The GPs were trained with transformed data. To train the GPs, the inputs were
scaled to lie in [0,1]. The input scaling was chosen as a popular feature scaling
procedure that have been shown to improve the prediction quality [3]. Unlike the
output, the equations used for the input do not assume zero mean and instead ac-
count for the mean of the input, consequently a zero mean scaling is not required.
The outputs were scaled to have mean 0 to match the zero mean assumption in-
troduced in Section 7.2 and a standard deviaiton of 1. Transformations also help
to set the priors of the hyperparameters introduced in Section 7.2 (Equation 7.15),
since normalized data behave in a more predictable fashion. The described trans-
formations are accomplished as follows:

X(i) = AX′(i) − b (7.22)

where Xi and X(i) are the ith row and column of matrix X respectively, X′i and
X′(i) are the ith row and column of matrix X′ respectively,
b = [min X′1, . . . ,min X′n+m]

T and
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A = diag([1/(max X′1 −min X′1), . . . ,1/(max X′n+m −min X′n+m)])

Y(i) = CY′(i) − d (7.23)

where Y(i) is the ith column of matrix Y, Y′(i) the ith column of the matrix Y′,
d = [Y′1, . . . ,Y′n]

T and C = diag([1/std1, . . . ,1/stdn]), where Y′i is the sample
mean and stdi the sample standard deviation of row i of matrix Y′.

7.3.3 Training of Gaussian processes

The inputs of the GP is the concatenated vector of states and deterministic
control inputs [xT ,uT ]T , where x = [CX,CN ,CL]

T represents the concentration
of biomass (CX), concentration of nitrate (CN ) and concentration of lutein (CL),
while u = [Li,FN ]

T denotes the light intensity (Li) and inflow rate of nitrate (FN ).
The training outputs are given by the differences of the states at each time step in
the training data. The three independent GPs, one for each state, were constructed
based on the procedure outlined in the subsequent sections. The parameters were
optimized over their log-values with priors set on their log-values as well to ensure
positiveness as was shown in Section 7.2 in Equation 7.15. The same Gaussian
priors were used for all states with mean and variances given in Table 7.2, which
were set to ensure that the parameters do not take too large or too small values
and hence to prevent overfitting. It is possible to use the same Gaussian priors
for all states due to the data transformation outlined in Section 7.2. The standard
deviation of the initial state was taken to be 5% of the initial state, based on the
current experimental measurement accuracy. The initial covariance matrix is hence
given by Σx(0) = diag([(0.05CX(0))

2, (0.05CN (0))
2, (0.05CL(0))

2]).

Table 7.2: Variance and mean of Gaussian prior distributions on the log of the hyperpa-
rameters

Hyperparameter Mean variance
log(λ1), . . . , log(λn) 0.0 1.0
log(α) 0.0 2.0
log(σε ) -6.0 4.0

The detailed training procedure is explained in the following subsections.

7.3.4 Gaussian process prior

The GP regression framework is designed for one-step ahead predictions by
identifying a latent function f (·) to predict ∆x(t) given xa(t − 1):

∆x(t)|xa(t − 1) = f (xa(t − 1)) + ε, ε ∼ N(0,Σε) (7.24)
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to approximate the subsequent states by:

x(t)|xa(t − 1) ≈ x(t − 1) + f (xa(t − 1)) (7.25)

where ε ∈ Rn represents the measurement noise, which is assumed to be normally

distributed with covariance matrix Σε = diag([σ(1)ε
2
, . . . ,σ

(n)
ε

2
]).

In Figure 7.2 an illustration is shown for a latent function representing a time
series of state x that is modeled by a GP using several noisy observations.

Figure 7.2: Illustration of a latent function of a times series modeled by a GP through a
finite number of measurements. The confidence region predicted by the GP is also shown.

Commonly, GPs are employed for multi-input, single-output problems as was
introduced in Section 7.2. An effective extension proposed in this research to
multi-outputs is to use a separate, independent GP for each output [220], where
independence means that the outputs are assumed to be uncorrelated. The latent
function in Equation 7.25, is therefore given by:

f (xa) = [ f (1)(xa), . . . , f (n)(xa)]
T (7.26)

where each component f (i)(xa)) is modeled separately by a GP and xa is an arbi-
trary input.

Given that essentially the same process is carried out n-times with different
output data, a superscript (i) was added to refer to the separate GPs for each output
dimension. We can therefore write that f (i)(xa) is distributed as a GP as follows,
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the same as Section 7.2:

f (i)(xa) ∼ GP(m(i)(xa), k(i)(xa,x
′
a)) (7.27)

where x′a is an arbitrary input, m(i)(xa) and k(i)(xa,x
′
a) are separate mean and

covariance functions for each component f (i)(xa) with different parameter values.

As shown in Equation 7.24, ∆(i)x is a noisy observation to f (i)(xa) perturbed by
additive Gaussian noise:

∆
(i)
x = f (i)(xa) + εi, εi ∼ N(0, σ

(i)
ε

2
) (7.28)

Due to the additive property of Gaussian distributions, the observation ∆(i)x of
f (i)(xa) also follows a GP with the same mean, but larger covariance, see Equation
7.10:

∆
(i)
x ∼ GP(m(i)(xa), k(i)(xa,x

′
a) + σ

2
ε δ(xa,x

′
a)) (7.29)

Without loss of generality we consider the prior mean function to be zero for
each GP, m(i)(xa) := 0. We propose to use the squared-exponential (SE) covari-
ance function for all the GPs, which is a frequently applied stationary covariance
function [200]. The SE covariance function can then be stated as follows for each
GP [220]:

k(i)(xa,x
′
a) = α

(i)2 exp

(
−

1

2
(xa − x′a)

TΛ(i)(xa − x′a)

)
(7.30)

where each SE function is parameterized with different parameter values to model

the separate GPs indicated by i, Λ(i) = diag([λ(i)1
−2
, . . . , λ

(i)
n

−2
]) and α(i)

2 is the
signal variance.

The hyperparameters that define the GPs are given in Equations 7.28 and 7.30
and are given by the vectors Θ(i) = [log(λ(i)1 ), . . . , log(λ(i)n ), log(α(i)), log(σ(i)ε )]

T .
The GPs for one-step ahead predictions are obtained by using the data defined in
Equations 7.22 and 7.23. For each output dimension in Y, i.e. for each row in Y,
a separate GP needs to be trained (fitted) . In particular, given N training points,
n independent GPs are trained with the same input data X and different response
data y(i) = YT

i , where y(i) ∈ RN is the transpose of the ith row of Y, YT
i . The

following steps need to be carried out for all i = 1, . . . ,n independent GPs and are
basically implemented based on the steps outlined in Section 7.2.
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7.3.5 Gaussian process posterior

The prior GP of f (i)(xa) and the observation ∆(i)x can be expressed as:

f (i)(xa) ∼ GP(0, k(i)(xa,x
′
a)), ∆

(i)
x ∼ GP(0, k(i)(xa,x

′
a)+σ

(i)
ε

2
δ(xa,x

′
a)) (7.31)

To build the posterior distribution of these functions knowledge of the obser-
vations needs to be incorporated. This is accomplished by considering the joint
distribution of observations y(i) and the response at an arbitrary input xa, f (i)(xa),
of the latent function. We assume the input xa to be deterministic. This is the same
process we used for the derivation in Section 7.2 and can be denoted as follows:[

f (i)(xa)

y(i)

]
∼ N

([
0
0

]
,

[
Σ
(i)
f

Σ
(i)
f ,y

Σ
(i)
y, f Σ

(i)
y

])
(7.32)

where Σ(i)
f
= k(i) (xa,xa), Σ

(i)
f ,y = [k

(i) (xa,x1) , . . . , k(i) (xa,xN )], Σ
(i)
y, f = Σ

(i)T
f ,y

and Σ(i)y ∈ R
N×N is the covariance matrix of the data whose entries are given by

Σ
(i)
y jk
= k(i)(xaj,xak) + σ

(i)
ε

2
δ(xaj,xak), where xaj refers to the vector of the j th

column of X.

By conditioning f (i)(xa) on the observations according to the joint Gaussian
distribution given in Equation 7.32 and using the identity given in Equation 7.6,
we obtain the posterior predictive distribution of f (i)(xa) [220]:

f (i)(xa)|y
(i) ∼ N(m(i)

f
(xa), σ

(i)
f

2
(xa)) (7.33)

m(i)
f
(xa) = Σ

(i)
f ,y(Σ

(i)
y )
−1y(i) (7.34)

σ
(i)
f

2
(xa) = Σ f − Σ

(i)
f ,y(Σ

(i)
y )
−1Σ

(i)
y, f (7.35)

where the mean m(i)
f

refers to the best-estimate of the latent function value, while

the variance σ(i)
f

2
is a measure of the uncertainty of this prediction.

The predictive distribution of the observation ∆(i)x at the test-input is given by

the same expressions, except that the term σ
(i)
ε

2
needs to be added to the right hand

side of Equation 7.35 [84]:

∆
(i)
x |y

(i) ∼ N(m(i)
f
(xa), σ

(i)
f

2
(xa) + σ

2(i)
ε ) (7.36)
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7.3.6 Hyperparameter training

The first step for GP regression is to determine hyperparameter values using
MAP, since these are generally unknown a priori. This again has to be carried out
for every GP separately. In this work, we assume independent Gaussian distribu-
tions on the hyperparameters:

Θ
(i)
j ∼ N(µ

(i)
Θ j
, σ
(i)
Θ j

2
) (7.37)

where µ(i)
Θ j

is the mean and σ(i)
Θ j

2
the variance of the prior Gaussian distribution for

the hyperparameter Θj , which are specified in Table 7.2 for the lutein case study.

Following from Equation 7.32, the log-likelihood of the posterior density of
the hyperparameters can be stated as follows [220]:

L(i)(Θ) = −
1

2
log(|Σ(i)y |) −

1

2
y(i)T (Σ(i)y )

−1y(i) −
N
2

log(2π)+∑
j

(−
1

2
log(2π) −

1

2
log(σ(i)

Θ j

2
) −

1

2σ(i)
Θ j

2
(Θj − µ

(i)
Θ j
)2)

(7.38)

The MAP estimates of Θ are then given by:

Θ(i)
MAP

∈ arg max
Θ

L(i)(Θ) (7.39)

We now have separate optimal hyperparameter vectors Θ(i)
MAP

for each output
y(i). We will refer to k(i)(xa,x

′
a) as the covariance function with hyperparameter

values according to Θ(i)
MAP

and hyperparameters with superscript (i) as optimal
values from Θ(i)

MAP
in the subsequent sections.

7.3.7 One-step ahead predictions

Next with the hyperparameters determined previously, predictions can be made
one-step ahead through the GP framework, using the predictive distribution given
in 7.33-7.36. The functions f (i)(xa) were defined to be able to predict the differ-
ence vector at each time-stage, which can be used for one-step ahead predictions
as follows [71]:

x(t)|x(t − 1) ∼ N(mx(t),Σx(t)) (7.40)

mx(t) = mx(t − 1) + Cmf (xa(t − 1)) − d (7.41)

Σx(t) = CΣf (xa(t − 1))CT (7.42)
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xa(t − 1) ∼ N(A−1([mx
T (t − 1),mu

T (t − 1)]T + b), (7.43)

A−1(diag(Σx(t − 1),Σu(t − 1))A−T )

where mf (xa(t − 1)) = [m(1)
f
(xa(t − 1)), . . . ,m(n)

f
(xa(t − 1))]T is a stacked vector

of independent predictions and the corresponding diagonal matrix of the variances

at x(t − 1) is Σf (xa(t − 1)) = diag([σ(1)
f

2
(xa(t − 1)), . . . ,σ(n)

f

2
(xa(t − 1))]). The

equations for m(i)
f

and σ
(i)
f

2
can be found in Equations 7.34 and 7.35. Let us

emphasize that mf (xa(t − 1)) refers to a difference and hence it needs to be added
to mx(t − 1) to calculate the mean of the state at the following time step mx(t).
The definitions of A,b,C and d can be found in Equations 7.22 and 7.23, and are
used to transform the predictions of the GP to obtain predictions of the true states
denoted by x, while xa needs to be transformed to match the transformation of the
input data.

Let yx be the observation of x(t), then yx has the same mean as x(t), but a larger
covariance:

yx(t)|x(t − 1) ∼ N (mx(t),Σx(t) + Σε) (7.44)

where yx(t) has the same distribution as x(t) with the difference that the measure-
ment noise Σε needs to be added to the covariance matrix.

7.3.8 Multi-step ahead prediction

Using the one-step ahead predictions from the GPs we wish to make multi-
step ahead predictions by repeatedly applying Equations 7.41, 7.42 and 7.43. It is,
however, important to emphasize that the input to the GP is now a normally dis-
tributed random variable, while in GP regression the input is generally assumed to
be deterministic. In the one-step ahead predictions in 7.2 the input was essentially
deterministic, since we conditioned on it.

In other words, the propagation of uncertainty for a multi-step prediction is
demonstrated here. In particular, we assume a joint Gaussian distribution on
the test input xa, p(xa) = N(mxa ,Σxa ). Obtaining the predictive distribution
p(f (xa)|Y,mxa ,Σxa ) of f (xa) at the test input xa is now obtained by integrating
out xa, which is however analytically intractable, so that an approximation method
is needed [71]. We assume that the predictive distribution of f (xa)|Y,mxa ,Σxa is
Gaussian, such that the distribution is fully specified by its mean and covariance.
For the SE covariance function in Equation 7.30 exact moment matching is pos-
sible, i.e. the predictive distribution p(f (xa)|Y,mxa ,Σxa ) is approximated by a
Gaussian which has the same mean and covariance as the true distribution [73].
In the multivariate case the predictive mean vector mf (xa) for an uncertain input
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xa is given by Equation 7.45. The target dimensions in general co-vary such that
the covariance matrix Σf (xa) is not diagonal anymore. The covariances on the
diagonal can be found using Equation 7.47, while the cross-covariances can be
determined using Equation 7.48. The expressions for the mean and covariance
of f (xa)|Y,mxa ,Σxa ) are then given by equations involving quantities of all GPs
[71]:

f (xa)|Y,mxa ,Σxa ∼ N(mf (xa),Σf (xa)) (7.45)

mf (xa) = q(i)T βββ(i) (7.46)

Σ
(ii)
f
(xa) = α

(i)2 + βββ(i)TQ(ii)βββ(i) − tr((Σ(i)y )
−1Q(ii)) − m(i)

f
(xa)

2 (7.47)

Σ
(i j)

f
(xa) = βββ

(i)TQ(i j)βββ(j) − m(i)
f
(xa)m

(j)
f
(xa) (7.48)

where βββ(i) = (Σy
(i))−1y(i), mf (xa) = [m

(1)
f
(xa), . . . ,m

(n)
f
(xa)]

T ,

q(i)p = α(i)
2
|ΣxaΛ(i) + I|−1/2exp(−1

2 (mxa − xap)
T (Σxa + (Λ

(i))−1)−1(mxa − xap))

and

Σf (xa) =


Σ
(11)
f
(xa) . . . Σ

(1n)
f
(xa)

...
. . .

...

Σ
(n1)
f
(xa) . . . Σ

(nn)
f
(xa)


Q(i j)pq = k(i)(xap,mxa )k

(j)(xaq,mxa )|R|
−1/2×exp

(
1

2
(ν −mxa )

TR−1Σxa (ν −mxa )

)
(7.49)

where R = Σxa (Λ
(i) + Λ(j)) + I and ν = Λ(i)(xap −mxa ) + Λ(j)(xaq −mxa ). The

superscripts i and j refer to the various quantities with respect to the ith and j th

Gaussian process, respectively, of the n independent Gaussian processes trained.
The vector xap is the pth training input contained in X, i.e. the pth column of X.

We are now able to make multivariate, multi-step ahead predictions by recur-
sively applying Equations 7.45 to 7.49 together with the following equations to
propagate the state through the predicted ∆x(t) [71]:

x(t) ∼ N(mx(t),Σx(t)) (7.50)

mx(t) = mx(t − 1) + Cmf (xa(t − 1)) − d (7.51)

Σx(t) = Σx(t − 1) + CΣf (xa(t − 1))CT + 2cov(∆x(t − 1),u(t − 1)) (7.52)

xa(t − 1) ∼ N(A−1([mx
T (t − 1),mu

T (t − 1)]T + b), (7.53)
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A−1(diag(Σx(t − 1),Σu(t − 1))A−T )

where cov(∆x(t−1),u(t−1)) is 0 and Σu = [0]m×m for deterministic control inputs
u(t − 1). For the case when one is interested in a feedback control law, such that
the input is given as some function of the current state, u(t − 1) = κ(x(t − 1)),
please refer to [72]. mx(t) is the best estimate of the state at k with corresponding
covariance Σx(t).

Let yx(t) be the observations of x(t), then yx(t) has the same mean as x(t), but
a larger covariance:

yx(t) ∼ N (mx(t),Σx(t) + Σε) (7.54)

where yx(t) has the same distribution as x(t) with the difference that the measure-
ment noise Σε needs to be added to the covariance matrix.

The initial state x(0) and covariance matrix Σx(0) need to be given from which
the state can be then propagated to an arbitrary time horizon recursively. The
initial state is generally known, while the covariance matrix can be obtained by
error propagation. For the lutein case study these were stated in 7.2.

7.4 Artificial neural network
In this section a brief introduction is given to artificial neural networks (ANNs).

Currently, ANNs are used as the standard black-box modeling tool to simulate
both traditional chemical engineering processes and emerging biological systems.
In order to demonstrate the outstanding characteristics of GPs, in this research
ANNs are considered as the benchmark to investigate the simulation and prediction
capabilities of GPs for bioprocess systems engineering. In particular, a state-of-
the-art ANN construction strategy was recently developed to simulate microalgal
lutein production in [77]. Thus, this ANN model will be used to compare against
the current constructed GPs.

In general, an ANN is a system of nodes or ’neurons’, based on graph theory,
organized in layers which are bound together by a series of mono-directional con-
nections and are meant to represent biological learning and computation. These
nodes accept inputs and generate outputs which are then either returned or used
as inputs to another layer of neurons [98, 121, 269]. The source and destination
of the connections depend on the structure of the type of network chosen. In spe-
cific, the ANN presented in the recent study was built up based upon a type called
multi-layer perceptron [77], where connections only point to the next layer, as in
the feed-forward case. A schematic of a multilayer ANN is illustrated in Fig. 7.3.
Other architectures have been developed over years, however, they are not within
the scope of this study.
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Figure 7.3: Schematic of an ANN with a single hidden layer, k inputs and m outputs

Within the last decade, there has been a push toward the use of ANNs in chem-
ical engineering [115], where they have found use as estimators and as part of
simulation of processes [204, 192, 90, 180]. As an example, ANNs have been em-
ployed for modeling and prediction in traditional processes such as in distillation,
fuel production and in the design of fuel cells [196, 90, 15]. They have been also
extensively used to simulate difficult processes such as the influence of param-
eters in catalyst preparation through experimental data [107], or even to extract
such rules from existing literature [197]. More importantly, the modeling of dif-
ferent useful processes involving microorganisms have been successfully tackled
by ANNs [254, 189]. Furthermore, there has been newly reported research focus-
ing on applying ANNs to identify optimal operating conditions for the production
of microalgae biorenewables, such as the work published in [179] and [81].

Specific to the previous study where ANNs were applied to simulate microal-
gae biomass growth and lutein production [77], a two hidden layer ANN con-
sisting of 15 nodes in each hidden layer, 5 inputs (biomass concentration, lutein
production, light intensity, nitrate concentration, nitrate inflow rate), and 3 outputs
(change of biomass concentration, lutein production, nitrate concentration) was
constructed, together with another one-layer ANN comprising the same inputs and
outputs but 20 nodes in the hidden layer. These optimal network structures were
determined through the cutting-edge hyperparameter selection framework, and the
ANNs were demonstrated to be of high accuracy and predictive capability. Thus,
they are selected in this study for comparison. The hyperparameter selection algo-
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rithm is the following:

Algorithm 7.1: ANN hyperparameter selection
Initialization:
Define the set of possible hidden layers Ω and possible neurons per hidden
layer Λ. In this research these sets were set to Ω = {1,2,3},
Λ = {3,5,10,15,20,25}.

Define possible neural network structures as Υ = Ω × Λ, where × denotes the
Cartesian product.

Define the set of time-series Γ. In this study Γ was defined by all the
experimental time-series.

1. For ANNk (neural network structure) in Υ

(a) For i in Γ: Select this time-series i as the test-set and group the rest as
the cross-validation data-set Ψ

(b) Initialize regularization penalty λ to a small value; in this study
λ = 0.001

i. For each time-series j in Ψ: Select this time-series j as the
cross-validation set and group the rest as the training-set Θ

A. Train ANNk on Θ
B. Compute training and cross-validation errors
C. Increase regularization penalty λ
D. If training error has stopped its sharp decrease and

cross-validation error increases continue to step (ii). Else,
return to (A).

ii. Use ANNk to predict i (test-set) and compute the error

(c) Compile test-set errors for ANNk

2. Compare test-set errors for all ANN structures, and determine the optimal
structure for 1 and 2 hidden layer ANNs

Parameter λ is a penalty imposed to the size of the weights of the ANN to avoid
overfitting. In this implementation, the term divides the weight values, hence it
starts at a small value and increases gradually throughout the algorithm. Step
1,b,i,D allows to compute the best regularization penalty parameter to reduce over-
fitting.
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7.5 Results and discussion

7.5.1 Comparison between Gaussian process and artificial neural network

The performance of the techniques was compared by leaving out the data set
for a single experiment and in turn predicting the trajectory of this experiment
using the GP methodology outlined in Section 7.2 (multi-step ahead prediction).
For the ANN the same cross-validation procedure was implemented for networks
with 1 and 2 hidden layers. This approach was applied to all experiments, thus in
total there are predictions for all 7 experiments. More importantly, to verify the
predictive capability of the GP for complex biological systems, the comparison be-
tween GP and ANNs in the current study is executed through an offline framework
where only initial operating conditions (and nitrate inflow rate) are provided, and
the models have to predict the entire dynamic behavior of the process.

The results are shown in Figures 7.4-7.7, on which the predictions from the
GP, ANN with 1 hidden layer and 2 Hidden layers were plotted for each of the 7
experiments. In addition, error bars were added to the GP predictions showing the
99% confidence regions of the latent functions given by the GPs. The confidence
regions presented are based on the experimental observations as given by Equation
7.44. This is the correct confidence region to show, since we are trying to see
in how far the experimental data perturbed by measurement noise is contained
within the confidence region, while the true underlying function is unknown. It
is necessary to recall that ANNs are not able to estimate the confidence region of
their predicted results.
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Figure 7.4: Cross-validation for data set 1, where (a) is the dynamic performance for
biomass concentration, (b) for nitrate concentration and (c) for lutein concentration; and
for cross-validation for data set 2, (d) is the dynamic performance for biomass concentra-
tion, (e) for nitrate concentration and (f) for lutein concentration
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Figure 7.5: Cross-validation for data set 3, where (a) is the dynamic performance for
biomass concentration, (b) for nitrate concentration and (c) for lutein concentration; and
for cross-validation for data set 4, (d) is the dynamic performance for biomass concentra-
tion, (e) for nitrate concentration and (f) for lutein concentration
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Figure 7.6: Cross-validation for data set 5, where (a) is the dynamic performance for
biomass concentration, (b) for nitrate concentration and (c) for lutein concentration; and
for cross-validation for data set 6, (d) is the dynamic performance for biomass concentra-
tion, (e) for nitrate concentration and (f) for lutein concentration
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Figure 7.7: Cross-validation for data set 7, where (a) is the dynamic performance for
biomass concentration, (b) for nitrate concentration and (c) for lutein concentration

From Figures 7.4-7.7 it can be appreciated that all models show good predic-
tions of the results given the limited data available, although it is difficult to deter-
mine the prediction superiority of one method over the other. Each method can be
seen to be better at predicting certain datasets, while none is always superior.

From the GP predictions it can be seen that the experimental data is rarely out-
side the confidence interval provided, this being an encouraging result for future
research. However, it can be also seen that the error propagation is relatively large
in the case of the nitrate concentration. This is mainly attributed to the fact that the
measurement noise is taken to be the same for both high and low nitrate concen-
trations. For low nitrate concentrations, in fact, percentage-wise the measurement
noise is similar to that of the high nitrate concentration. Nonetheless, in an actual
implementation, states would be monitored online and real-time datasets would
be updated to GPs constantly. As a result, the prediction uncertainty would be
contained within a narrower region.

However, in Fig. 7.5 (d) and Fig. 7.6 (d) the data points indeed fall slightly out-
side the confidence regions. This does indicates two limitations of the GP frame-
work proposed in this paper. The first one is that errors may not be entirely reliable,
since the error propagation involves approximating the true distribution using only
the mean and variance, which may lead to too low noise if the true distribution is
either particular skewed or multi-modal. This could be alleviated in future work
by using particle-based approaches instead, which in the limit approximates the
true distribution exactly [100]. In addition, the hyperparameters were set using
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optimization, which ignores the uncertainty of the parameter values themselves. A
more accurate, but expensive solution to this problem is to integrate the hyperpa-
rameters out instead [220], which could also be tested in future work.

Finally, through a design of experiment framework, it is possible to improve
the accuracy of the GP models. One efficient way to conduct this is to design
experiments in areas in which the variance of the GP is high, since this shows
regions that have high sparsity of data-points. Furthermore, if we are interested in
finding optimal operating conditions, it is sensible to try to learn the model more
accurately in areas that are promising. This has been used to great success in the
global optimization community by sequentially designing experiments that trade
off exploring unknown regions and exploiting regions in which good operating
conditions have already been observed [226]. This shows again an advantage of
GPs over ANNs due to the availability of an uncertainty measure.

In addition to the visual comparison given in Figures 7.4-7.7, the mean square
error (MSE) over each time series was calculated for each machine learning algo-
rithm, i.e. the difference of the prediction from the measurements was squared and
averaged over each time series. The values of the MSE for the biomass concentra-
tion, nitrate concentration and lutein concentration can be found in Tables 7.3, 7.4
and 7.5 respectively. The smallest value (best performing algorithm) among the
three models is highlighted in bold.

Table 7.3: Comparison of MSE for GP, 1 Hidden-layer ANN (1HL-ANN), 2 Hidden-
layer ANN (2HL-ANN) from Exp 1-7 for biomass concentration (g2L−2) . The best
performing algorithm in terms of MSE is highlighted in bold.

Exp GP 1HL-ANN 2HL-ANN
1 0.028 0.270 0.010
2 0.052 0.011 0.011
3 0.130 0.002 0.021
4 0.121 0.381 0.068
5 0.086 0.030 0.028
6 0.133 0.057 0.368
7 0.024 0.062 0.015
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Table 7.4: Comparison of MSE for GP, 1 Hidden-layer ANN (1HL-ANN), 2 Hidden-layer
ANN (2HL-ANN) from Exp 1-7 for nitrate concentration (g2L−2) . The best performing
algorithm in terms of MSE is highlighted in bold.

Exp GP 1HL-ANN 2HL-ANN
1 13.290 1.552 2.812
2 0.745 4.919 26.448
3 0.006 0.008 0.016
4 0.002 0.454 0.420
5 0.125 0.142 0.015
6 0.226 0.951 10.626
7 0.062 0.019 0.167

Table 7.5: Comparison of MSE for GP, 1 Hidden-layer ANN (1HL-ANN), 2 Hidden-layer
ANN (2HL-ANN) from Exp 1-7 for lutein concentration (mg2L−2) . The best performing
algorithm in terms of MSE is highlighted in bold.

Exp GP 1HL-ANN 2HL-ANN
1 0.045 0.324 0.011
2 0.175 0.967 0.658
3 0.059 0.031 0.144
4 0.145 0.793 0.432
5 0.092 0.631 0.162
6 0.090 1.337 0.227
7 0.064 0.127 0.203

From Tables 7.3, 7.4 and 7.5, it is concluded that the GP shows a comparable
performance to the ANN (either 1 or 2 layers). For example, it can be seen that GP
attains the best prediction result on 5 out of the 7 experiments and comes second
for the remaining 2 experiments when predicting lutein concentration. Similarly, it
possesses the best prediction on 4 out of the 7 experiments and comes second twice
when estimating the trajectory of nitrate concentration in the current study. Even
though the best prediction for biomass concentration is always an ANN, the current
constructed GP still provides a comparable result (second best prediction on 4
experiments) for the majority of the experimental tests. This clearly indicates the
great predictive capability of GPs and promising potential for bioprocess systems
engineering applications.

Moreover, significant attention should be paid on the fact that the current used
ANNs were constructed based on advanced methodologies through which the opti-
mal structure of ANNs were identified and their predictive capability is maximized
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[77]. However, as GPs have never been applied to describe and understand the be-
havior of complex biological systems, specific strategies capable of identifying the
optimal structure of GPs are not available yet. Therefore, the comparable pre-
dictive capability and performance of the current GPs against the optimal ANNs
strongly suggests the potential of GPs on bioprocess modeling and optimization.

The most important contribution of the GP is that a confidence region is simul-
taneously estimated during process prediction, and it is found that experimental
measurements in almost all the 7 experiments fall within this region. Such a re-
gion is essential for sensitive bioprocess optimization and for the implementation
of robust optimization strategies (e.g. worst-case scenario optimization), as the
safety of a bioprocess is in general given higher priority than the process yield.
Furthermore, the GP never gave catastrophically unreliable trajectory predictions.
This conclusion further emphasizes that GPs can not only provide an accurate
prediction for long-term biosystems, but also contribute a reliable estimation for
dynamic bioprocess design, modeling and control.

7.5.2 Dynamic optimization with stochastic constraints

One of the main advantages of GP regression over more common regression
methods, such as ANNs, is that it gives us a measure of prediction uncertainty.
In this section, we show how this measure can be used in optimization to ensure
that the optimal solution remains in the validity range of the model. The objective
of the optimization is to find operating conditions to yield the maximum lutein
concentration by the end of the process at the 144th hour, i.e. with a time horizon
of length N = 12. The operating conditions are given by control actions of light
intensity and the nitrate inflow rate chosen at each time stage. In addition, the
mean of the initial concentrations of biomass and nitrate was also varied.

The model adopted in this section is determined by using all the data from the
7 experiments given in Table 7.1 and following the procedure in Section 7.2. The
control actions are taken to be deterministic. The first constraint given in brackets
in Equation 7.55 is the stochastic constraint that limits the variance of lutein at the
final stage to be below 0.025 mg L-1, and hence the lutein concentration to lie in
a confidence region of 95% with ±0.025 mg L-1. This measure was chosen, as it
directly targets the relevant uncertainty of the measure to be optimized, while still
considering all other uncertainties since these are iteratively used as noisy input to
obtain the final prediction. The overall optimization problem is given below:
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Dynamic optimization problem using GP model

max
U, mx(0)

E
[
CLi (N)

]
= m(3)x (xa (N)) (7.55a)

subject to:

Σ
(3,3)
x (N) ≤ 0.025 (7.55b)

Σx (0) = diag
( [(

0.05m(1)x (0)
)2
,
(
0.05m(2)x (0)

)2
,
(
0.05m(3)x (0)

)2] )
(7.55c)

[0,0]T ≤ u (k) ≤ [600,1.5]T ∀k ∈ {0, ...,N − 1} (7.55d)

[0,0,0]T ≤ mx(0) ≤ [0.5,6000,0]T (7.55e)

(7.48) − (7.51) ∀k ∈ {1, . . . ,N} (7.55f)

where U = [u(0), . . . ,u(N − 1)] is a matrix of control inputs at each time interval,
Σ
(3,3)
x (t) is the 3rd diagonal element of the state matrix Σx(t) corresponding to the

variance of lutein concentration at time stage k and m(i)x (t) is the ith dimension of
the vector mx(t) corresponding to the expected value of the respective concentra-
tions at time stage k.

The optimization in Equation 7.55 was conducted using the fmincon function
in Matlab with 20 multistart initial points chosen according to a maximin Latin
hypercube. Choosing initial starting points according to a Latin hypercube scaled
to the upper and lower bounds of the decision variables has been shown to yield
good optimization results in [222]. With stochastic constraints for example the
optimization converged to either of six solutions with relatively small variations.
The optimal solution yielded a value of lutein of 4.94mg L-1. The optimal solution
was observed twice in the optimization procedure. The mean of the solutions
obtained was 4.4mg L-1 with a standard deviation of 0.33mg L-1. The optimal
trajectories are shown in Figures 7.8 and 7.9, where two optimization results are
shown, one with the stochastic constraints and another without.
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Figure 7.8: Results of dynamic optimization for lutein production. (a), (c), (e): Optimal
trajectory of concentrations of biomass, nitrate, and lutein without stochastic constrain,
respectively; (b), (d), (f): Optimal trajectory of concentrations of biomass, nitrate, and
lutein with stochastic constraint, respectively.
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Figure 7.9: Results of the optimal control scheme for lutein production. (a), (c): Opti-
mal control input of light emission and nitrate inflow rate without stochastic constraint,
respectively; (b), (d): Optimal control input of light emission and nitrate inflow rate with
stochastic constraint, respectively.

From the figures, it is seen that both optimization scenarios yield similar re-
sults since the predicted optimal operating conditions lie on the boundary of the
model, i.e. the optimum is close to the conditions in the second training experiment
(Exp2), given in Table 7.1. Comparing the two scenarios, although the optimiza-
tion without stochastic constraints yields a slightly higher final lutein concentra-
tion (5.10 mg L-1), the case with stochastic constraints (4.95 mg -1), can be seen
to show a lower uncertainty on all the state trajectories, in particular when pre-
dicting nitrate concentrations. This suggests that in order to reduce the uncertainty
of process optimization and guarantee the safety of underlying biosystems, it is
necessary to embed stochastic constraints into the optimization framework. It is
also worth noting that the optimal result with stochastic constraints is closer to the
second training experiment than without it. This was executed to minimize the
uncertainty of the model, i.e. as shown in Figure 7.1, where uncertainty is substan-
tially higher away from the measurements. Such a result means that experimental
trajectories near optimal solutions can be highly valuable. Furthermore, in general,
the model uncertainty is relatively high, suggesting that more data should be used
to further enhance the optimization results.

7.6 Conclusions
Overall, a new methodology was introduced to construct a dynamic model for

biorenewable synthesis and process optimization by using Gaussian process re-
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gression. By comparing against ANNs, the high predictive capability and simul-
taneous uncertainty measure of GPs show an outstanding capacity to simulate and
optimize complex biological processes, particularly in cases where the lack of ex-
perimental data becomes a severe challenge for the construction of kinetic models.
Furthermore, a distinctive feature of GPs is the simultaneous estimation of model
uncertainty alongside the real-time optimisation framework, which is difficult to
be achieved by other techniques.

In particular, the provision of a confidence region from GPs has the potential to
significantly facilitate their application in process scale-up and real-time optimal
control for both traditional bioprocesses such as fermentation and newly proposed
algae based photo-production systems, since the precise prediction and control
action decision-making throughout the entire process is indispensable to guaran-
tee the safety and productivity of these systems. An important issue to note, is
that, compared to traditional empirical and phenomenological models, data-driven
models are more susceptible to the amount, quality and range of the data used, this
is of paramount importance and should be carefully considered before building
such models.
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Chapter 8

Nonlinear model predictive
control with explicit back-offs for
Gaussian process state space
models

This chapter is based on Paper F: E. Bradford, L. Imsland, and E. A. del Rio-
Chanona. Nonlinear model predictive control with explicit back-offs for Gaussian
process state space models. In 58th Conference on decision and control (CDC),
pages 4747–4754. IEEE, 2019.

Summary
Nonlinear model predictive control (NMPC) is an efficient control approach

for multivariate nonlinear dynamic systems with process constraints. NMPC does
however require a plant model to be available. A powerful tool to identify such
a model is given by Gaussian process (GP) regression. Due to data sparsity this
model may have considerable uncertainty though, which can lead to worse control
performance and constraint violations. A major advantage of GPs in this context
is its probabilistic nature, which allows to account for plant-model mismatch. In
this paper we propose to sample possible plant models according to the GP and
calculate explicit back-offs for constraint tightening using closed-loop simulations
offline. These then in turn guarantee satisfaction of chance constraints online de-
spite the uncertainty present. Important advantages of the proposed method over
existing approaches include the cheap online computational time and the consid-

177
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eration of closed-loop behaviour to prevent open-loop growth of uncertainties. In
addition we show how the method can account for updating the GP plant model
using available online measurements. The proposed algorithm is illustrated on a
batch reactor case study.

8.1 Introduction
Model predictive control (MPC) is an advanced control method that has found

a wide range of applications in industry. The success of MPC can be largely at-
tributed to its ability to deal with multivariate plants and process constraints [165].
Linear MPC theory is relatively mature and well-established in practice. Many sys-
tems however display strong nonlinear behaviour motivating the use of nonlinear
MPC (NMPC) [6]. NMPC is being progressively more utilized due to the advent
of improved non-convex optimization algorithms [27], for example in chemical
engineering [28].

An important requirement for NMPC is the availability of an accurate plant
model. The development of an adequate model has been cited to take up to 80%
of the MPC commissioning effort [244]. NMPC algorithms exploit numerous dif-
ferent models, commonly developed by first principles [188]. These are however
often too complex and in addition frequently accompanied by high development
costs. Alternatively, black-box dynamic models can be used instead, such as sup-
port vector machines [267], neural network models [211], or Gaussian processes
(GP) [143].

GPs are an interpolation technique developed by [150] that were popularized by
the machine learning community [220]. GP predictions take the form of Gaussian
distributions. The mean of this distribution can be interpreted as a deterministic
prediction, while the variance of the distribution can be seen as a corresponding
measure of uncertainty. In particular, an appropriate measure of uncertainty is dif-
ficult to obtain by nonlinear parametric models [143]. In control this uncertainty
measure can be exploited for efficiently learning a dynamic model by exploring
unknown regions or obtaining robustness by avoiding regions that have an uncer-
tainty that is too high. GPs have found various applications in control, such as
reinforcement learning [71], designing probabilistic robust linear controllers [23],
or for adaptive control [65]. In particular, GPs have been applied in NMPC to
notable success as approximate plant models.

The use of GPs for NMPC was first proposed in [183], in which a GP model
is updated online for reference tracking without constraints. In [143] the GP is
instead identified offline and used online. The variance is constrained to prevent
the NMPC from steering the dynamic system into regions with high uncertainty.
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In [139] GPs are updated online to overcome unmodelled periodic errors, while in
[167] the GP is used to update the dynamic model online after a fault has occurred.
GPs have also been shown as a useful tool to approximate the mean and variance
required in stochastic NMPC [36]. While generally these and other works show the
feasibility of GP-based NMPC, there is a lack of efficient methods to account for
this uncertainty. Model uncertainty can lead to worse performance and feasibility
issues of MPC algorithms, which has led to the development of robust MPC [22]
and stochastic MPC [175] approaches.

Most works on GP-based NMPC do consider this uncertainty, however the vast
majority of proposed algorithms use stochastic uncertainty propagation to accom-
plish this, see for example [143, 113, 60]. A recent overview of different stochastic
uncertainty propagation approaches can be found in [114]. These approaches have
some considerable disadvantages. Firstly, there are no known methods to exactly
propagate stochastic uncertainties through the GP model, such that only approxi-
mate methods exist usually based on linearization or moment-matching. Secondly,
the computational time is often increased significantly due to the stochastic propa-
gation itself. Lastly, most works consider open-loop propagation of uncertainties,
which can be prohibitively conservative due to open-loop growth of uncertainties.

Recently there have been some works that do consider other robust control
methods. In [147] a robust GP-based NMPC algorithm is developed for learning
by propagating ellipsoidal sets using linearization, that provides closed-loop stabil-
ity guarantees. This approach may however suffer from increased computational
times, since the ellipsoidal sets need to be propagated online. In [169] an alter-
native procedure is proposed, which establishes closed-loop stability by bounding
the one-step ahead error, however determining the required parameters seems to be
non-trivial. Lastly, in [239] a robust control approach is proposed for linear sys-
tems, in which the GP is used to represent unmodelled non-linearities. The method
robustly stabilizes the linear system despite the unmodelled non-linearities, which
may however not have a solution if these uncertainties are too large in magnitude.

In this paper we propose a new approach to account for the uncertainty of GP
state space models for NMPC for finite-horizon control problems. The method
exploits recent results using so-called explicit back-offs, which can be used to ac-
count for stochastic uncertainties to design the NMPC [146, 206]. These rely on
generating Monte Carlo (MC) closed-loop simulations of possible plant models.
The back-offs are then used to tighten the constraints of the NMPC to obtain prob-
abilistic constraint satisfaction despite the stochastic uncertainties present. Fur-
ther, to generate the required MC samples of the GPs we employ results from
[68, 249], where it is shown how to obtain exact samples of GPs. There are several
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advantages of the proposed method. Firstly, the back-offs are determined using
closed-loop simulations, such that the problem of open-loop uncertainty growth
is avoided. Further, the required computations are carried-out offline, such that
the online computational time is nearly unaffected. In addition, the back-offs are
designed based on the empirical cumulative distribution function (cdf), which con-
siders the true underlying distribution [242]. Lastly, due to the independence of the
samples some probabilistic guarantees can be given. An extended journal paper of
this approach can be found in [42].

The paper is structured as follows. In section 8.2 the problem to be solved is
outlined. In section 8.3 we give an overview of GPs for our purposes. Section
8.4 then outlines the solution approach using GPs. Section 8.5 describes the semi-
batch reactor case study, for which the results and discussions are given in section
8.6. Subsequently, section 8.7 concludes the paper.

8.2 Problem definition
In this paper we consider a nonlinear discrete-time system:

xt+1 = f (xt,ut ) (8.1)

where t denotes the discrete time, x ∈ Rnx denotes the states, u ∈ Rnu represents
the control inputs, and f : Rnx × Rnu → Rnx denotes the corresponding nonlinear
dynamics.

It is assumed that the full state is measurable with a noisy output measurement
of the next state given by:

y = f (x,u) + ν (8.2)

where ν ∼ N(0,Σν) is independent Gaussian distributed measurement noise with
zero mean and a corresponding covariance function Σν = diag(σ2

ν1
, . . . ,σ2

νnx
).

Let z = (x,u) for convenience with joint dimension nz = nx + nu. We assume
we are given N noisy function evaluations of f (z) in Eq.(8.1) according to Eq.(8.2)
denoted as Y with corresponding input data Z:

Z := [z1, . . . ,zN ]
T ∈ RN×(nx+nu ) (8.3)

Y = [y1, . . . ,yN ]
T ∈ RN×nx (8.4)

We aim to minimize a finite-horizon cost function:

VT (x0,U) =
T−1∑
t=0

`(xt,ut ) + `f (xT ) (8.5)
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where T ∈ N is the time horizon, U = [u0, . . . ,uT−1]
T is a collection of control

inputs, ` : Rnx ×Rnu → R is the stage cost, and `f : Rnx → R is the terminal cost.

We assume that the control inputs are subject to hard-constraints, while the
states are subject to a joint chance constraint, which can be stated as:

ut ∈ Ut ∀t ∈ {0, . . . ,T − 1} (8.6)

P

{
T⋂
t=0

{xt ∈ Xt }

}
≥ 1 − ε (8.7)

where Xt are defined as nonlinear constraint sets
Xt = {x ∈ R

nx | g
(t)
j (x) ≤ 0, j = 1, . . . ,ng}

The joint chance constraints are formulated such that the joint event of all xt

fulfilling the nonlinear constraint sets Xt is greater than 1 − ε . It should be noted
that the uncertainty in this problem arises from the fact that we do not know f (x,u)
and are instead given noisy observations of f (x,u). We aim to solve this OCP by
utilizing GPs to model the unknown dynamics and use the GP approximation to
obtain probabilistic guarantees for the closed-loop system.

8.3 Gaussian processes

8.3.1 Gaussian process regression

In this section we give an introduction to GP regression. For a more general
overview refer to [220]. GP regression aims to describe an unknown function
f : Rnz → R using noisy observations y:

y = f (z) + ν (8.8)

where z ∈ Rnz is the argument of f () and ν ∼ N(0, σ2
ν ) is Gaussian distributed

measurement noise with zero mean and variance σ2
ν .

GPs consider a distribution over functions, and they can be seen as a general-
ization of multivariate Gaussian distributions, which can be expressed as:

f (·) ∼ GP(m(·), k(·, ·)) (8.9)

where the mean function m(·) can be interpreted as the "average" shape of the
function, while the covariance function k(·, ·) accounts for correlations between
function values.

The prior GP is defined by the choice of mean function and covariance function.
In this study we apply a zero mean function and the squared-exponential (SE)
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covariance function [220] 1:

m(z) := 0 (8.10)

k(z,z′) := α2 exp

(
−

1

2
(z − z′)TΛ−2(z − z′)

)
(8.11)

where z,z′ ∈ Rnz are arbitrary input vectors, α2 is the covariance magnitude, and
Λ−2 := diag(λ−21 , . . . , λ−2nz ) is a scaling matrix.

Maximum likelihood estimation is commonly applied to infer the unknown
hyperparameters Ψ := [α,λ1, . . . , λnz , σν]

T, including σν in case the measurement
noise variance is also unknown. Consider N noisy function evaluations, denoted
by Y := [y1, . . . , yN ]

T ∈ RN , with corresponding inputs collected in the matrix
Z := [z1, . . . ,zN ] ∈ R

nz×N . The log-likelihood of the observed data, ignoring
constant terms, is given by:

L(Ψ) := −
1

2
log(det(K)) −

1

2
YT K−1 Y (8.12)

with Ki j := k(zi,zj) + σ2
ν δi j for each pair (i, j) ∈ {1, . . . ,N}2 and the Kronecker

delta function δi j .

The posterior distribution of f (z) at an arbitrary input z, given the input-output
data (Z,Y) and the maximum-likelihood estimates of Ψ, follows the Gaussian dis-
tribution:

f (z)|Z,Y ∼ N(µ f (z; Z,Y), σ2
f (z; Z,Y)) (8.13)

with

µ f (z; Z,Y) := k(z)K−1 Y (8.14)

σ2
f (z; Z,Y) := α2 − k(z)K−1 k(z)T (8.15)

and k(z) := [k(z,z1) · · · k(z,zN )]. The mean function µ f (z; Z,Y) in this context
is the prediction made by the GP at z, while the variance σ2

f (z; Z,Y) provides a
measure of uncertainty around this predictor.

8.3.2 Gaussian process state space models

In this section we introduce GP state space models. We aim to identify an un-
known state space model from input-output data. GP methodology is usually used

1The zero-mean assumption can be achieved by normalizing the data. Also the method presented
can be used on any chosen covariance function.
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Figure 8.1: Illustration of a GP of a 1-dimensional function perturbed by noise. On the
top the prior of the GP is shown, while on the bottom the Gaussian process was fitted to
several observations to obtain the posterior. The dashed lines show GP samples.

to model scalar functions with vector inputs, while for the case of vector functions
it is common to build a separate, independent GP for each dimension [71]. Let the
function in Eq.(8.1) be given by f (xt,ut ) = [ f1(xt,ut ), . . . , fnx (xt,ut )]

T, such that
we aim to build a separate GP for each function fi(xt,ut ). We then build a separate
GP according to section 8.3.1 with observations Yi = [yi1, . . . , yi N ]

T and inputs
Z for i ∈ {1, . . . ,nx}, where yi refers to the ith dimension of the measurement y in
Eq.(8.2). The posterior Gaussian distribution of f (x,u) given the data-set (Z,Y) in
Eq.(8.3) and Eq.(8.4) respectively at an arbitrary input z = (x,u) is given by:

f (z)|Z,Y ∼ N(µ f (z; Z,Y),Σ f (z; Z,Y)) (8.16)

with

µ f (z; Z,Y) = [µ f (z; Z,Y1), . . . , µ f (z; Z,Ynx )]
T (8.17)

Σ f (z; Z,Y) = diag
(
σ2
f (z; Z,Y1), . . . ,σ

2
f (z; Z,Ynx )

)
(8.18)

8.3.3 Gaussian process samples

Each sample or realization of a GP in theory yields a deterministic function,
however this would require sampling an infinite dimensional stochastic process
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and hence there are no known methods to obtain an exact sample from a GP. In-
stead approximate sampling methods have been used, see for example spectral
sampling [46]. Exact samples of GPs can however be obtained in the case that the
function needs to be evaluated at only a finite number of points, which is com-
monly the case for state space models. The exact sampling approach was first
proposed in [68] and has been applied in [249] for the optimal design of linear
controllers.

Assume we are given a GP state space model as in section 8.3.2 built from
an input data-set Z and corresponding observations Y. We then wish to create
a single GP sample from an initial state x0 for a finite-horizon T given a known
control input sequence U = [u0, . . . ,uT−1]. A finite dimensional GP state space
model sample over time-horizon T is then represented by a sequence of states. The
posterior Gaussian distribution of x1 is given according to Eq.(8.16) as:

x1 = f (z0) ∼ N(µ f (z0; Z,Y),Σ f (z0; Z,Y)) (8.19)

Now to obtain a sample of x1, we draw from the Gaussian distribution in
Eq.(8.19). Let x(s)1 refer to this realization of x1, which is considered a realiza-
tion of the sampled function. To obtain x(s)2 we then need to first condition on this
realization x(s)1 , since it is part of the sampled function path. The realization x(s)1
is treated similar to a new training point, however without observation noise (i.e.
no σ2

ν is added to the kernel evaluation k(z0,z0)) and without updating the hyper-
parameters. If the sampled function revisited the same input, it would lead to the
exact same outcome due to the conditioning on a noiseless output.

Now given this new point x(s)1 , we next draw x(s)2 according to the GP obtained
from the updated data-sets. This procedure is recursively repeated until the re-
quired time-horizon T has been reached. The overall sampling method is summa-
rized in Algorithm 8.1 below and is illustrated in Fig.8.2. This gives us a single GP
sample and hence needs to be repeated multiple times to obtain multiple samples.

8.4 Solution approach
Given the input-output data-sets Z and Y we fit a GP state space model, see

section 8.3.2. We aim to solve the problem defined in section 8.2 using NMPC
based on this GP model. Now the mean model of the GP defines a state trajectory
itself, which we will refer to as the nominal case. Each sample of the GP defines
further deterministic solutions to the GP state space model. Overall each sample
of the GP over a finite horizon T is defined by drawing T independent random
states as shown in section 8.3.3, which we will refer to as ∆. For convenience we
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Algorithm 8.1: Gaussian process trajectory sampling

Input : z(s)0 = z0, U, K, K−1, Z, Y, k(z) T
for each sampling time t = 1,2, . . . ,T do

1. Draw x(s)t from
N(µ f (z

(s)
t−1; Z,Y),Σ f (z

(s)
t−1; Z,Y))

2. Update Z := [ZT,zT(s)t−1 ]
T, Y := [YT,xT(s)

t ]
T

3. Update K =

[
K k(z(s)t−1)

k(z(s)t−1) k(z(s)t−1,z
(s)
t−1)

]
4. Determine K−1

5. Define k(z) = [k(z), k(z,z(s)t−1)]

Output : State sequence x(s)1 , . . . ,x
(s)
T

introduce the notation:

xt = φ(t,Y,Z; x,U,∆) (8.20)

where φ(t,Y,Z; x,U,∆) corresponds to the state at time t, when the initial state is
x, the control sequence U is applied, and the GP realization is given by ∆ given
the initial input-output dataset (Z,Y). Further, by convention let ∆ = 0 refer to
the nominal scenario defined by setting the state space model to the mean function
µ f (z; Y,Z).

8.4.1 Gaussian process model predictive control

In this section we define the NMPC OCP based on the GP nominal model given
the data-set (Z,Y). Let the optimization problem be denoted as PT (t,Y,Z; x) for
the current state x at discrete-time t:

minimize
Ut:T−1

VT (x,Ut:T−1) =

T−1∑
k=t

`(xk,uk) + `f (xT )

subject to

xk+1 = φ(k,Y,Z; x,Ut:k,0) ∀k ∈ {t, . . . ,T − 1}

xk+1 ∈ Xk+1, uk ∈ Uk ∀k ∈ {t, . . . ,T − 1}

(8.21)
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Figure 8.2: Illustration of GP sampling scheme for a 1-dimensional function.

where Xk+1 is a tightened constraint set denoted by:
Xk+1 = {x ∈ R

nx | g
(k)
j (x) + b(k)j ≤ 0}, and

Ut:k = [ut, . . . ,uk].

The variables b(k)j denote so-called back-offs, which aim to tighten the origi-
nal constraints Xt to obtain constraint satisfaction for the real plant model using
nominal predictions of the state trajectory as in Eq.(8.21).Let U∗t:T (t,Y,Z; x) =
[u∗t (t,Y,Z; x), . . . ,u∗T−1(t,Y,Z; x)] be the optimal control sequence by solving PT (t,Y,Z; x).
Only the first of these control actions is applied to the plant at time t. This defines
our implicit model predictive control law as κ(t,Y,Z; x) = u∗t (t,Y,Z; x), where the
OCP in Eq.(8.21) needs to be re-solved for each new measurement of xt .

Applying this closed-loop control policy to a GP sample then leads to the fol-
lowing closed-loop response:

xMPC
t (∆,Y,Z) = φ(t,Y,Z; x0,K,∆) (8.22)

where K = [κ(0,Y,Z; x0), . . . ,κ(t − 1,Y,Z; xMPC
t−1 )] is a collection of control ac-

tions from the NMPC controller based on observations from the GP plant model
given by the realization ∆.

At each time t we are however given a new measurement of xt from Eq.(8.2)
and we know the previous input, since it is given by zt−1 = (xt−1,ut−1). Therefore,
it may be reasonable to update the mean/nominal GP model of the MPC using
this data online. This leads to the following alternative GP NMPC closed-loop
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response based on the updated models:

xMPC,l
t (∆,Y,Z) = φ(t,Y,Z; x0,K

l,∆) (8.23)

where the collection of control actions from the GP learning NMPC controller is
given as K l = [κ(0,Y,Z; x0), . . . ,κ(t − 1,Y(t−1),Z(t−1); xMPC,l

t−1 )] based on observa-
tions from the GP plant model given by GP realization ∆. The datasets Z(t) and
Y(t) are recursively defined as:

Z(t) = [ZT(t−1),zTt−1]
T ∀t ∈ {1, . . . ,T} (8.24)

Y(t) = [YT(t−1),yT
t ]]

T ∀t ∈ {1, . . . ,T} (8.25)

where yt is a measurement obtained from Eq.(8.2).

Note the sampling procedure of the plant model is unchanged, but the learn-
ing GP NMPC algorithm is updated based on the most recent measurements. This
leads to the mean function being updated in a similar procedure to the GP sampling
in Algorithm 8.1, however in this case the noise σ2

ν is included in the kernel eval-
uation. The hyperparameters are kept at their nominal value due to the excessive
computational cost required to update these. The closed-loop trajectories defined
by Eq.(8.22) and Eq.(8.23) are tied to the choice of the tightened constraint set X.

8.4.2 Back-off constraints

In this section we outline how to determine the back-off constraints in Eq.(8.21)
to obtain probabilistic constraint satisfaction of the real plant as defined in the
problem definition in section 8.2 based on the GP description of the plant. The GP
provides both a nominal model, but also describes a distribution of many possible
plant models based on the initial data-set given. The overall aim is to determine
back-off constraints and corresponding tightened constraint sets Xt , such that the
closed-loop response given by either Eq.(8.22) for GP NMPC without learning
or Eq.(8.23) for GP NMPC with learning satisfies the constraint set Xt with a
high probability. Note that the learning GP NMPC has a different closed-loop
behaviour from the GP NMPC without learning, such that these yield different
back-off values.

We propose to use S independent samples of the GP generated using the proce-
dure in section 8.3.3, which then in turn describe S different possible plant models.
The closed-loop response of these is then given by either the GP NMPC without
learning:

xMPC
t (∆(s)) = φ(t; x0,K,∆

(s)) ∀s ∈ {1, . . . ,S} (8.26)

or the GP NMPC with learning:

xMPC,l
t (∆(s)) = φ(t; x0,K

l,∆(s)) ∀s ∈ {1, . . . ,S} (8.27)
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The aim is now to ensure that xMPC
t (∆(s)) satisfies Xt for all t, for all but a few

samples to attain a high probability of constraint satisfaction.

It is however very difficult to derive an update rule for the back-off constraints
on joint probabilities, i.e. based on the intersection of Xk . Instead, we propose an
update rule that is applied point-wise to each nonlinear constraint g(t)j (x

MPC
k
(∆(s)))

following a procedure proposed in [206]. Assume we aim to determine back-off
constraints that imply:

g
(t)
j (x

MPC
k (0)) + b(t)j = 0 =⇒ P{g

(t)
j (x

MPC
k (∆)) ≤ 0} ≥ δ (8.28)

i.e. the back-offs are adjusted such that the satisfaction of the constraints given the
nominal model predictions implies satisfaction of the other possible plant models
according to the GP distribution with a probability of at least δ.

We then define the empirical cumulative distribution function (ecdf) as:

F̂
g
(t )
j

=
1

S

S∑
i=1

1{g(t)j (x
MPC
t (∆(s))) ≤ 0} (8.29)

where F̂(t)g j
is a sample approximation of the chance constraint given in Eq.(8.28)

on the RHS.

In [206] it is proposed to iteratively update the back-offs based on Eq.(8.28)
using the inverse of the ecdf in Eq.(8.29) 2. We then iterate over nb back-off
iterations using the approach given in algorithm 8.2.

Algorithm 8.2: Back-off iterative updates

for nb back-off iteration do
for each sampling time t = 1,2, . . . ,T and constraints j = 1, . . . ,n(t)g do

Initialize: Set b(t)j to some reasonable values

1. Run S simulations of either Eq.(8.26) without
learning or Eq.(8.27) with learning

2. Update b(t)j := F̂−1
g
(t )
j

(δ) − g
(t)
j (x

MPC
k
(0))

Output : b(t)j

2The inverse of ecdf is given by the quantile function.
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8.4.3 Probabilistic guarantees

In this section we give some probabilistic guarantees for the problem definition
in section 8.2 given fixed back-off values. It should be noted that our problem is
posed as a finite-horizon control problem, such that the NMPC implementation has
a shrinking horizon. Given S independent GP samples, we can define the following
ecdf to approximate the joint probability in Eq.(8.7):

F̂X =
1

S

S∑
i=1

1

{
T⋂
t=0

{xt ∈ Xt }

}
(8.30)

where F̂X is essentially equal to the fraction of trajectories, which violate the joint
constraint given in Eq.(8.7).

Theorem 8.4.1 below, which was derived in [242] can be used to obtain prob-
abilistic guarantees based on the ecdf of independent samples. It is therefore im-
portant that the sampling of the GP is carried-out using independent MC samples
as shown in section 8.3.3.

Theorem 8.4.1. If βcor = F̂X based on S independent MC samples, then the
following lower bound holds on the true probability β = P

{⋂T
t=0 {xt ∈ Xt }

}
with

a probability of at least 1 − α:

βlb = 1 − betainv (α,S + 1 − bβcorSc, bβcorSc) ≥ β (8.31)

The operator bc denotes rounding towards −∞, and betainv denotes the inverse of
the cumulative Beta-distribution.

Feasibility of the original chance constraint in Eq.(8.1) then follows trivially
from Theorem 8.4.1 as stated below.

Corollary 8.4.1. For an unknown plant model that follows the GP distribution
identified exactly, such that the uncertainty description of the GP is accurate, and
given a βlb ≥ 1 − ε with a probability of 1 − α that fulfills Theorem 8.4.1, then the
chance constraint in Eq.(8.1) holds with a probability no smaller than 1 − α.
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8.4.4 Algorithm

Algorithm 8.3: Back-off GP NMPC
Offline Computations

1. Build GP state-space model from data-sets Z,Y.

2. Choose initial condition x0, stage costs ` and `f
and constraint sets Xt,Ut ∀t ∈ {1, . . . ,T}

3. Determine explicit back-off constraints using algorithm 8.2 with or without
learning.

4. Check probabilistic guarantees as shown in section 8.4.3 to obtain ε .

Online Computations
for t = 0, . . . ,T do

1. Solve the MPC problem in Eq.(8.21)

2. Apply the first control input of the optimal solution.

3. Measure the state xt and update
the GP plant model for learning GP NMPC.

8.5 Case study
In this paper we apply the approach to a challenging semi-batch reactor case

study adopted from [33], which is an important example of a finite-horizon control
problem in chemical engineering. The following series chemical reactions take
place in the reactor catalyzed by H2SO4:

2A
k1A
−−−→
(1)

B
k2B
−−→
(2)

3C

The reactions taking place are all first-order. Chemical reaction (1) is an exother-
mic reaction, while chemical reaction (2) is endothermic. A cooling jacket is used
for temperature control. The control variables are given by the flowrate of pure
reactant A entering the reactor and the temperature of the cooling jacket T0. Over-
all there are 5 states: concentrations of reactants A, B, and C in mol/L, reactor
temperature in K, and the reactor volume in L.

The objective of the case study is to maximize the amount of product C at the
final time horizon. In addition, there are two path constraints. Firstly, the reactor
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temperature needs to be kept below 420K for safety reasons and the volume needs
to stay below 800L, which is the capacity of the reactor. The evolution of these
states can be described by a differential algebraic equation system, which can be
found in [33]. The time horizon T is fixed to 10 with a sampling time of 0.4h giving
an overall batch run-time of 4h. The concentrations of A, B and C is initially zero
with an initial reactor temperature of 290K and a volume of 100L.

8.6 Results and discussions
In this section the results based on the case study outlined in section 8.5 are

presented. Overall 6 different scenarios were run for verification of the approach.
We fit an initial GP model using data-sets with 50, 100, and 150 datapoints accord-
ing to a space-filling Latin hypercube design. Further, each of these was applied
to the algorithm presented in section 8.4.4 with online learning and without on-
line learning. The explicit back-offs were determined using 400 GP MC samples
for each back-off iteration. The back-offs were adjusted in a total of 5 iterations
using algorithm 8.2. Lastly, for the final back-off values the GP NMPC was ap-
plied to the real plant represented by the case study equations. The results of these
simulations are summarized in Figs.8.3-8.7 and in Table 8.1.

In Fig.8.3 and Fig.8.4 plots are shown of the closed-loop volume and tempera-
ture trajectories according to the 400 MC samples of the plant model. The top two
graphs of each figure show the trajectories for 50 data points, while the bottom
two graphs show it for 100 data points. On the left the graphs show the trajectories
considering online learning, while on the right without online learning. We can
see that the back-offs are adjusted such that most trajectories are kept below the
constraint shown by the red line. Nonetheless, for the trajectories using only 50
data-points many trajectories overshoot the temperature constraint by a significant
amount due to the inability of our method to find consistently good back-off val-
ues due to the very high uncertainty. For 150 data-points on the other hand the
frequency of constraint violation is relatively low. In addition, it can be seen that
the learning based method is able to more quickly reach the temperature constraint
and also stay closer to it leading to improved performance and less conservative
back-offs.

In Fig.8.5 and Fig.8.6 the closed-loop response of the GP NMPC is shown
for the "real" plant using the exact case study equations. In the top two graphs
of each figure the response is shown using back-offs, while in the bottom figures
the response is displayed disregarding back-offs. Further, the left figures show
the trajectories without learning, while the right figures utilize the available data.
Firstly, it can be seen that disregarding back-offs leads to constraint violations
of volume or temperature for all cases due to the mismatch between the "real"
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plant and the GP approximation. This in turn is avoided in all cases employing
back-offs, except for 50 data points, which overshoots the temperature constraint
by a significant amount. This is somewhat expected, since as shown in Fig.8.4
the determined back-offs are inadequate. Lastly, it can be seen that in all 3 cases
using back-offs the trajectories using online learning are able to stay closer to the
temperature constraint.

Apart from constraint satisfaction, it is also important to look at the perfor-
mance of the different approaches in terms of the economic objective achieved.
This is shown in Fig.8.7, where box-plots are given for the 6 different cases from
the objective values obtained at the final back-off iterations. The aim of the NMPC
is to maximize the amount of product C. In general one would assume that more
data leads to an improved objective value, since then the GP model used is closer
to the real plant. We can see that this is mostly true apart for the 50 data points run,
which however as mentioned has inadequate back-offs and therefore overshoots
the constraints by a large margin. In addition we can see that for both 100 data
points and 150 data points learning performs on average better than not learning,
which is as expected since it is less conservative and should have a plant model
closer to the real plant model.

Lastly, in Table 8.1 we show the probability of constraint violation stated as
"Probability", which corresponds to the fraction of the 400 GP NMPC MC trajec-
tories that violated either temperature or volume constraint for the final back-off
iteration. "c-Probability" refers to the real guaranteed probability βlb of violation
using the theorem outlined in section 8.4.3. We can see a clear trend that the more
data we have, the smaller the probability of constraint violation, which is more or
less as expected. In particular, for 50 data points without learning we have more
MC samples violating the constraints than not, while for 150 data points we are
able to guarantee constraint satisfaction of nearly 0.9. In addition, we see that for
50, 100, and 150 data points learning can provide significantly higher probability
guarantees than their counter-parts without learning. In addition, computationally
times are on-average low in the range of seconds, however they do rapidly increase
with the number of data-points.

8.7 Conclusions
In conclusion, a new approach has been proposed for finite-horizon control

problems using NMPC in conjunction with GP state space models. The method
utilizes the probabilistic nature of GPs to sample deterministic functions of pos-
sible plant models. Tightened constraints using explicit back-offs are then de-
termined, such that the closed-loop simulations of these possible plant models is
feasible to a high probability. In addition it is shown how probabilistic guarantees
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can be derived based on the number of constraint violations from the simulations.
It was in addition shown that online learning can be accounted for explicitly in
this method, which leads to overall less conservativeness. Lastly, the computa-
tional times could be shown to be relatively low, since the constraint tightening is
performed offline.

Figure 8.3: Closed-loop trajectories of volume for 400 GP MC samples for the cases 50
and 150 data-points with and without learning.
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Figure 8.4: Closed-loop trajectories of temperature for 400 GP MC samples for the cases
50 data-points and 150 data-points with and without learning.

Table 8.1: Comparison of closed-loop constraint satisfaction,corrected guaranteed proba-
bility, and average OCP/NMPC solution time.

Set-up Probability c-Probability OCP time (s)
50 dpts 0.55 0.57 0.11
50 dpts learning 0.31 0.33 0.19
100 dpts 0.27 0.30 0.52
100 dpts learning 0.21 0.24 0.75
150 dpts 0.16 0.19 1.12
150 dpts learning 0.09 0.11 1.34
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Figure 8.5: Closed-loop trajectories of volume for the "real" plant with tightened con-
straints at the top and without tightened constraints at the bottom.
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Figure 8.6: Closed-loop trajectories of temperature for the "real" plant with tightened
constraints at the top and without tightened constraints at the bottom.

Figure 8.7: Box plot of objective values from 400 MC closed-loop simulations of the final
back-off iteration together with the obtained objectives for the "real" plant shown in blue.



Chapter 9

Stochastic data-driven model
predictive control using Gaussian
processes

This chapter is based on Paper G: E. Bradford, L. Imsland, D. Zhang, and E. A.
del Rio-Chanona. Stochastic data-driven model predictive control using Gaussian
processes. Computers & Chemical Engineering, accepted, 2020.

Summary
Nonlinear model predictive control (NMPC) is one of the few control methods

that can handle multivariable nonlinear control systems with constraints. Gaus-
sian processes (GPs) present a powerful tool to identify the required plant model
and quantify the residual uncertainty of the plant-model mismatch. It is crucial
to consider this uncertainty, since it may lead to worse control performance and
constraint violations. In this paper we propose a new method to design a GP-
based NMPC algorithm for finite horizon control problems. The method generates
Monte Carlo samples of the GP offline for constraint tightening using back-offs.
The tightened constraints then guarantee the satisfaction of chance constraints on-
line. Advantages of our proposed approach over existing methods include fast
online evaluation, consideration of closed-loop behaviour, and the possibility to
alleviate conservativeness by considering both online learning and state depen-
dency of the uncertainty. The algorithm is verified on a challenging semi-batch
bioprocess case study.

197
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9.1 Introduction
Model predictive control (MPC) describes an advanced control method that has

found a wide range of applications in industry. MPC employs an explicit dynamic
model of the plant to determine a finite sequence of control actions to take at each
sampling time. The main advantage of MPC is its ability to deal with multivariate
plants and process constraints explicitly [165]. Linear MPC is relatively mature
and well-established in practice, however many systems display strong nonlinear
behaviour motivating the use of nonlinear MPC (NMPC) [6]. NMPC is becom-
ing progressively more popular due to the advancement of improved non-convex
optimization algorithms [27], in particular in chemical engineering [28].

The performance of MPC is however greatly influenced by the accuracy of the
plant model, which is one of the main reasons why MPC is not more widely used in
industry [162]. The development of an accurate plant model has been cited to take
up to 80% of the MPC commissioning effort [244]. NMPC algorithms exploit var-
ious types of models, commonly developed by first principles or based on process
mechanisms [188]. Many mechanistic and empirical models are however often
too complex to be used online and in addition have often high development costs.
Alternatively, black-box identification models can be exploited instead, such as
support vector machines [267], fuzzy models [133], neural networks (NNs) [211],
or Gaussian processes (GPs) [143]. For example, recently in [266, 265] recurrent
NNs are utilised for an extensive NMPC approach with proofs on closed-loop state
boundedness and convergence applied to a chemical reactor. In addition, in [264]
the approach was extended updating the recurrent NNs online to further improve
the effectiveness.

GPs are an interpolation technique developed by [150] that were popularized
by the machine learning community [220]. While GPs have been predominantly
used to model static nonlinearities, there are several works that apply GPs to model
dynamic systems [100, 141, 47]. GP predictions are given by a Gaussian distri-
bution. The mean of this distribution can be viewed as a deterministic prediction,
while the variance can be interpreted as a measure of uncertainty for this deter-
ministic prediction. This uncertainty measure is generally difficult to obtain by
nonlinear parametric models [143] and may in part explain the relative popularity
of GPs. For control applications this uncertainty measure can be utilized to effi-
ciently learn a dynamic model by exploring unknown regions or avoiding regions
with too high uncertainty to improve robustness [23]. So far, GPs have been ex-
ploited in a multitude of ways in the control community, including reinforcement
learning [71], designing robust linear controllers [250], or adaptive control [65]. In
particular, GPs have been shown to be an efficient approach to attain approximate
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plant models for NMPC.

The use of GPs for NMPC was first proposed in [183], which updates a GP
model online for reference tracking without constraints. In [143, 142] the GP is
instead identified offline and utilized online, in which the variance is constrained
to prevent the NMPC from steering the dynamic system into regions with high un-
certainty. A GP plant model is updated online in [139] and in [167] to overcome
unmodeled periodic errors or changes to the dynamic system after a fault has oc-
curred respectively. GPs have been shown in [260] to be an efficient means for
disturbance forecasting for a linear stochastic MPC approach applied to a drink-
ing water network. GPs have further been applied to approximate the mean and
variance required in stochastic NMPC [36]. [103] derived an explicit solution for
GP-based NMPC. In [60] a GP dynamic model is employed for the control of an
unmanned quadrotor, while in [158] a GP dynamic model is exploited to control
a gas-liquid separation process. While these and other works show the feasibility
of GP-based MPC, there is a lack of efficient approaches to account for the uncer-
tainty measure provided. Model uncertainty can lead to constraint violations and
worse performance. To mitigate the effect of uncertainty on MPC, robust MPC
[22] and stochastic MPC [175, 111] methods have been developed.

The majority of works for GP-based MPC indeed consider the uncertainty mea-
sure provided, however most proposed algorithms employ stochastic uncertainty
propagation to achieve this, for example [143, 142, 113, 60, 103, 260]. [114] give
an overview of the various stochastic propagation techniques available. These ap-
proaches have some considerable disadvantages, which are:

• No known methods to exactly propagate stochastic uncertainties through GP
models. Instead, only approximations are available relying on linearization
or statistical moment-matching.

• Increased computational time of GP-based MPC due to the propagation ap-
proach itself.

• Most works consider only open-loop propagation of uncertainties, which is
often prohibitively conservative due to open-loop growth of uncertainties.

Recently some papers have proposed different robust GP-based MPC algo-
rithms. In [147] a NMPC algorithm is introduced based on propagating ellip-
soidal sets using linearization, that provides closed-loop stability guarantees. This
approach may however suffer from increased computational times, since the el-
lipsoidal sets are propagated online. Furthermore, the method may be relatively
conservative due to the use of Lipschitz constants. [169] propose the use of a ro-
bust MPC approach by bounding the one-step ahead error, while the determination
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of the required parameters seems to be relatively difficult. [239] suggest a robust
control approach for linear systems, in which the GP is used to represent unmod-
eled nonlinearities. The approach is shown to stabilize the linear system despite
these uncertainties, which however may have no solution if the difference between
the linearized system and the actual nonlinear system is too large.

In this paper we extend an algorithm first introduced in [40], for which the
following extensions were made:

• Inclusion of uncertainty for the initial state.

• Adding additive disturbance noise to the problem definition.

• Accounting for state dependency on the GP noise.

• Improved algorithm to obtain the required back-offs using root-finding as
opposed to the inverse CDF, which has superior convergence and leads to
improved satisfaction of the required probability bounds.

The aim of this approach is to take into account the uncertainty given by a GP
state space model for a NMPC finite-horizon control problem. Due to the issues
using stochastic uncertainty propagation for the NMPC formulation as highlight
previously, we base the NMPC only on cheap evaluations of the GP. This leads
to considerably faster evaluation times with little effect on the performance. The
proposed method utilizes explicit back-offs, which were recently proposed in [146,
206] to account for stochastic uncertainties in NMPC. These methods generally
rely on generating closed-loop Monte Carlo (MC) samples offline from the plant
to attain the required back-off values. To obtain exact MC samples of the GP
dynamic models we exploit results from [68, 249]. There are several important
advantages of this new method:

• Back-offs are attained using closed-loop simulations, therefore the issue of
open-loop growth of uncertainties is avoided.

• Required computations are carried out offline, such that the online compu-
tational times are nearly unaffected.

• Independence of samples allows some probabilistic guarantees to be given.

• Explicit consideration of online learning and state dependency of the uncer-
tainty to alleviate conservativeness.

In the proposed algorithm the state dependency of the uncertainty is accounted
for by introducing a penalty term on the variance in the objective. This variance
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for GPs is a function of the states and hence leads to a trade-off between exploiting
the GP model to optimize the objective and avoiding uncertain regions to reduce
the spread of the trajectories. The algorithm proposed is aimed at finite horizon
control problems, for which batch processes are a particularly important example.
They are utilized in many different chemical engineering sectors due to their in-
herent flexibility to deal with variations in feedstock, product specifications, and
market demand. Frequent highly nonlinear behaviour and unsteady-state opera-
tion of batch processes have led to the increased acceptance for advanced control
solutions, such as NMPC [187]. Works on batch process NMPC accounting for un-
certainties include an extended and Unscented Kalman filter based algorithms for
uncertainty propagation [184, 33], a NMPC algorithm using min-max successive
linearization [252], NMPC algorithms that employ PCEs to account for possible
parametric uncertainties [177, 37], and multi-stage NMPC [164].

The paper is comprised of the following sections. In Section 9.2 the problem
definition is given. In Section 9.3 a general outline of GPs is given including the
sampling procedure used. Section 9.4 shows how the GPs can be exploited to
solve the defined problem. In Section 9.5 the semi-batch bioprocess case study is
described, while in Section 9.6 the results and discussions for this case study are
given. Section 9.7 concludes the paper.

Notation

N and R represent the sets of natural numbers and real numbers respectively.
The variable δi j denotes the Kronecker delta function, such that:

δi j :=

{
1, if i = j
0, otherwise

The notation diag(a0,a1, . . . ,an) is used to represent the following diagonal
matrix:

diag(a0,a1, . . . ,an) :=


a0 0 . . . 0

0 a1
. . .

...
...

. . .
. . . 0

0 . . . 0 an


We represent the Gaussian distribution with mean µ and covariance Σ asN(µ,Σ).

Further, φ ∼ N(µ,Σ) denotes that the random variable φ follows a Gaussian dis-
tribution with mean µ and covariance Σ.
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The expected value of a random variable φ is denoted as:

E[φ] :=

∫
Ω

φdpφ

where pφ the probability density function of φ over the sample space Ω.

Further, we define the indicator function and the probability measure of random
variable φ as follows:

1{C ≤ c} :=

{
1, if C ≤ c
0, otherwise

P{φ ∈ A} :=

∫
φ∈A

φdpφ, P{φ ≤ c} := E[1{φ ≤ c}]

where A is a set defining an event on φ and P{φ ≤ c} is the probability that φ is
less than or equal to c.

Lastly, we require the definition of the beta inverse cumulative distribution
function (cdf) for a random variable φ. This function betainv(P, A,B) returns a
value C of φ following a beta distribution with parameters A,B that has a proba-
bility of P to be less than or equal to C. The definition is as follows:

betainv(P, A,B) ∈ F−1φ (P |A,B) = {C : Fφ(C |A,B) = P)}

Fφ(C |A,B) :=
1

B(A,B)

∫ C

0
tA−1(1 − t)B−1dt,

B(A,B) =
∫ 1

0
tA−1(1 − t)B−1dt

9.2 Problem definition
The dynamic system in this paper is given by a discrete-time nonlinear equation

system with additive disturbance noise:

xt+1 = f (xt,ut ) + ωt, x0 ∼ N(µx0,Σx0) (9.1)

where t is the discrete time, x ∈ Rnx is the state, u ∈ Rnu are the control inputs,
f : Rnx×Rnu → Rnx are nonlinear equations, andω represents Gaussian distributed
additive disturbance noise with zero mean and diagonal covariance matrix Σω.
The initial condition x0 is assumed to be Gaussian distributed with mean µx0 and
covariance matrix Σx0 .
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We assume measurements of the states to be available with additive Gaussian
noise expressed as:

y = f (x,u) + ν (9.2)

where y ∈ Rnx is the measurement of f (x,u) perturbed by additive Gaussian noise
ν ∼ N(0,Σν) with zero mean and
a diagonal covariance matrix Σν = diag(σ2

ν1
, . . . ,σ2

νnx
).

The aim of the control problem is to minimize a finite-horizon cost function:

VT (x0,U) = E

[
T−1∑
t=0

`(xt,ut ) + `f (xT )

]
(9.3)

where T ∈ N is the time horizon, U = [u0, . . . ,uT−1]
T ∈ RT×nu is a joint vector of

T control inputs, ` : Rnx × Rnu → R is the stage cost, and `f : Rnx → R denotes
the terminal cost.

The control problem is subject to hard constraints on the inputs:

ut ∈ Ut ∀t ∈ {0, . . . ,T − 1} (9.4)

The states are subject to a joint chance constraint that requires the satisfaction
of a nonlinear constraint set up to a certain probability, which can be stated as:

P

{
T⋂
t=0

{xt ∈ Xt }

}
≥ 1 − ε (9.5a)

where Xt is defined as:

Xt = {x ∈ R
nx | g

(t)
j (x) ≤ 0, j = 1, . . . ,ng} (9.5b)

The joint chance constraints are formulated such that the joint event over all t ∈
{0, . . . ,T} of all xt fulfilling the nonlinear constraint sets Xt has a probability
greater than 1 − ε .

For convenience we define the tuple z = (x,u) ∈ Rnz with joint dimension nz =

nx + nu. The dynamic system in Equation 9.1 is assumed to be unknown. Instead,
we are only given a finite number of noisy measurements according to Equation
9.2. The available data can then be denoted by the following two matrices:

Z = [z(1), . . . ,z(N )]T ∈ RN×nz (9.6a)

Y = [y(1), . . . ,y(N )]T ∈ RN×nx (9.6b)
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where z(i) represents the input of the i-th data point with corresponding noisy ob-
servation y(i), N denotes the overall number of training data points, Z is a col-
lection of input data, and the corresponding noisy observations are collected in
Y.

It should be noted that the uncertainty in this problem arises partially from the
uncertain initial condition x0 and the additive disturbance noise ω. Most of the
uncertainty however comes from the fact that we do not know f (x,u) and are only
given noisy observations of f (x,u) instead. To solve this problem we train a GP to
approximate f (·) using the available data in Equation 9.6. The GP methodology is
introduced for this purpose in the next section. This GP then represents a distribu-
tion over possible functions f (·) given the available data, which can be exploited
to attain stochastic constraint satisfaction of the closed-loop system.

9.3 Gaussian processes

9.3.1 Regression

In this section we introduce the use of GPs to infer a latent function f : Rnz →

R from noisy data. For a more complete overview refer to [220]. Let the noisy
observations y of f (·) be given by:

y = f (z) + ν (9.7)

where z ∈ Rnz is the argument of f (·) and y is a perturbed observation of f (z) with
additive Gaussian noise ν ∼ N(0, σ2

ν ) with zero mean and variance σ2
ν .

GPs can be considered a generalization of multivariate Gaussian distributions
to describe a distribution over functions. A GP is fully specified by a mean function
and a covariance function. The mean function represents the "average" shape of
the function, while the covariance function specifies the covariance between any
two function values. We write that a function f (·) is distributed as a GP with mean
function m(·) and covariance function k(·, ·) as:

f (·) ∼ GP(m(·), k(·, ·)) (9.8)

The prior GP distribution is defined by the choice of the mean function and
covariance function. In this study we apply a zero mean function and the squared-
exponential (SE) covariance function defined as:

m(z) B 0 (9.9)

k(z,z′) B ζ2 exp

(
−

1

2
(z − z′)TΛ−2(z − z′)

)
(9.10)
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where z,z′ ∈ Rnz are arbitrary inputs, ζ2 denotes the covariance magnitude, and
Λ−2 B diag(λ−21 , . . . , λ−2nz

) is a scaling matrix.

Remark (Prior assumptions). Note the zero mean assumption can be easily achieved
by normalizing the data beforehand. The SE covariance function is smooth and
stationary, such that choosing the SE covariance function assumes the latent func-
tion f (·) to be smooth and stationary as well. The algorithm presented in this work
can be utilised using any covariance function. In the case of highly non-stationary
functions it may be necessary to use non-stationary covariance functions [227].

From the additive property of Gaussian distributions the measurements of f (·)
also follow a GP accounting for measurement noise:

y ∼ GP(m(z), k(z,z′) + σ2
ν δzz′) (9.11)

We denote the hyperparameters defining the prior jointly by
Ψ B [ζ, λ1, . . . , λnz, σν]

T, in which the variance σν of the measurement noise is
included in case it is unknown. Commonly the hyperparameters are unknown, such
that they need to be inferred from the available data using for example maximum
likelihood estimation (MLE).

Assume we are given N noisy function evaluations according to Equation 9.7
denoted by Y B [y(1), . . . , y(N )]T ∈ RN as the result of the inputs given in Z =
[z(1), . . . ,z(N )]T ∈ RN×nz . According to the prior GP assumption, the data follows
a multivariate Gaussian distribution:

Y ∼ N(0,ΣY) (9.12)

where [ΣY]i j = k(z(i),z(j)) + σ2
ν δi j for each pair (i, j) ∈ {1, . . . ,N}2.

The log-likelihood of the observations is consequently given by (ignoring con-
stant terms):

L(Ψ) B −
1

2
log(det(ΣY)) −

1

2
YTΣ−1Y Y (9.13)

The MLE estimate of the hyperparameters Ψ is determined by maximizing
Equation 9.13. Once the hyperparameters are known, we need to determine the
posterior GP distribution of the latent function f (·). From the prior GP assumption
we know that the training data and the value of f (·) at an arbitrary input z follow a
joint multivariate normal distribution:[

Y
f (z)

]
∼ N

( [
0
0

]
,

[
ΣY kT(z)
k(z) k(z,z′)

] )
(9.14)
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where k(z) B [k(z,z(1)), . . . , k(z,z(N ))]T.

The posterior Gaussian distribution of f (z) given the data (Z,Y) can then be
found by using the conditional distribution rule for multivariate normal distribu-
tions based on the joint normal distribution in Equation 9.14, which leads to:

f (z)|D ∼ N(µ f (z;D), σf (z;D)) (9.15a)

with

µ f (z;D) B kT(z)Σ−1Y Y (9.15b)

σ2
f (z;D) B ζ2 − kT(z)Σ−1Y k(z) (9.15c)

where D = (Z,Y) denotes the training data available to obtain the posterior Gaus-
sian distribution. The mean function µ f (z;D) in this context is the prediction of
the GP at z, while the variance function σ2

f (z;D) is a measure of uncertainty.

In Figure 9.1 we illustrate a prior GP in the top graph and the posterior GP in
the bottom graph.

Figure 9.1: Illustration of a GP of a 1-dimensional function perturbed by noise. On the
top the prior of the GP is shown, while on the bottom the Gaussian process was fitted to
several observations to obtain the posterior.

9.3.2 Recursive update

Often we are given a training dataset D initially to build a posterior GP and
then obtain data points individually afterwards. For example in GP-based MPC
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we may build an initial GP offline following the procedure shown in Section 9.3.1,
and then also update this model online as new data becomes available. In this
work we keep the hyperparameters constant but update the mean function and
variance function in Equations 9.15b-9.15c recursively given the new data points.
Furthermore, the approach used for MC sampling of the GPs to be introduced in
Section 9.3.4 requires recursive updates of this form as well.

Let the new dataset be given by D+ = (D, (z+, y+)), where D is the training
data for the initial GP, while z+ is the new input and y+ the new corresponding
output measurement. Then we will refer to the updated mean function and variance
function as:

µ+f (z;D+) B k+T(z)Σ+−1Y Y+ (9.16a)

σ2+
f (z;D+) B ζ2 − k+T(z)Σ+−1Y k+(z) (9.16b)

The updated terms in Equations 9.16a-9.16b can be expressed as:

k+(z) = [kT(z), k(z,z+)]T (9.17a)

Y+ = [YT, y+]T, Z+ = [ZT,z+]T (9.17b)

Σ+−1Y =

[
ΣY kT(z+)

k(z+) k(z+,z+)(+σ2
ν )

]−1
(9.17c)

where k(z), Z and Y refer to quantities of the initial GP. The noise term σ2
ν in

the lower diagonal is shown in brackets, since the new "measurement" y+ may be
noiseless as is the case for GP MC samples. In this case the noise term should not
be added to the new diagonal element.

Note the updates k+(z), Z+, and Y+ are trivial, however the update of the in-
verse covariance matrix Σ+−1Y is more involved. In essence we require the inverse
of the previous covariance matrix after adding a horizontal row and a vertical row
to the covariance matrix of the initial GP, see Equation 9.17c. For this process there
are efficient formula available, one of which is introduced in Section 9.8. These
take advantage of the fact that we already know the inverse covariance matrix Σ−1Y
of the initial GP. Once the update has been carried out, these terms then define the
new initial GP. This update procedure is then repeated for the next measurement.

9.3.3 State space model

In this section we briefly show how the previously introduced GP methodology
can be utilized to identify unknown state space models in the form of Equation 9.1
based on the measurements (data) according to Equation 9.2. GPs are commonly
applied to model scalar functions with vector inputs as shown in Section 9.3.1. To
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extend this to the multi-input, multi-output case as required it is common to build a
separate independent GP for each output dimension, see for example [71]. Let the
function in Equation 9.1 be given by f (x,u) B f (z) B [ f1(z), . . . , fnx(z)]

T. We aim
to build a separate GP for each function fi(z) ∀i ∈ {1, . . . ,nx} according to Section
9.3.1. For this purpose we are given observations Yi = [y

(1)
i , . . . , y

(N )
i ]

T ∀i ∈
{1, . . . ,nx} and corresponding inputs Z = [z(1), . . . ,z(N )]T, where yi refers to the
i-th dimension of measurements obtained according to Equation 9.2. Let Y =
[Y1, . . . ,Ynx] correspond to the overall measurements available. The posterior
Gaussian distribution of f (·) at an arbitrary input z = (x,u) is:

f (z)|D ∼ N(µ f (z;D),Σ f (z;D)) (9.18a)

with

µ f (z;D) = [µ f (z;D1), . . . , µ f (z;Dnx)]
T (9.18b)

Σ f (z;D) = diag(σ2
f (z;D1), . . . ,σ

2
f (z;Dnx)) + Σω (9.18c)

where µ f (z;Di) and σ2
f (z;Di) are the mean function and variance function built

according to Section 9.3.1 with datasets Di = (Z,Yi) ∀i ∈ {1, . . . ,nx} with D =
(Z,Y).

Remark (Additive disturbance noise). Note the additive disturbance noise defined
in Equation 9.1 is simply added to the posterior covariance matrix due to the
additive property of multivariate Gaussian distributions.

In addition, given an initial GP state space model built with a dataset D and
a new data point (z+,y+), we can update it recursively utilizing the method intro-
duced in Section 9.3.2:

µ+f (z;D+) = [µ+f (z;D+1 ), . . . , µ
+
f (z;D+nx

)]T (9.19a)

Σ+f (z;D+) = diag(σ2+
f (z;D+1 ), . . . ,σ

2+
f (z;D+nx

)) + Σω (9.19b)

where D+i = (Di, (z
+, y+i )) ∀i ∈ {1, . . . ,nx} and D+ = (D, (z+,y+))

9.3.4 Monte Carlo sampling

GPs are distribution over functions and hence their realizations yield determin-
istic functions, see for example the GP samples shown in Figure 9.1. In this section
we show how to attain independent samples of GP state space models over a finite
time horizon. Generating a MC sample of a GP would require sampling an in-
finite dimensional stochastic process, while there is no known method to achieve
this. Instead, approximate approaches have been applied such as spectral sampling
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[46, 218]. Exact samples of GPs are however possible if the GP MC sample needs
to be known at only a finite number of points, which is exactly the situation for
state space models over a finite time horizon. This technique was first outlined in
[68] and has been employed in [249] for the optimal design of linear controllers.
We next outline how to obtain an exact sample of a GP state space model over a
finite time horizon for an arbitrary feedback control policy.

Assume we are given a GP state space model as shown in Section 9.3.3 from
the input-output dataset D = (Z,Y). The initial condition x0 is assumed to follow
a known Gaussian distribution as defined in Equation 9.1. A GP state space model
represents a distribution over possible plant models, for which each realization
will lead to a different state sequence. The aim of this section is therefore to show
how to obtain a single independent sample of such a state sequence, which can
then be repeated to obtain multiple independent MC samples of the GP. Let X(s) =
[χ
(s)
0 ,χ

(s)
1 , . . . ,χ

(s)
T ]

T denote such a state sequence, where s denotes a particular GP
realization and χ(s)i the realization of the state at discrete time i in the sequence of
MC sample s. The control inputs at discrete time i for MC sample s are denoted
by u(s)i . The corresponding joint input of χ(s)i is represented by Z(s)i = (χ

(s)
i ,u

(s)
i ).

We assume the control inputs to be the result of a feedback control policy, which
we represent as κ : Rnx × R → Rnu . The control actions u(s)i are then given as
follows:

u(s)i = κ
(
χ
(s)
i , i

)
(9.20)

where i is the current discrete time. Note the control policy depends on the discrete
time directly, since it is a finite horizon control policy.

Consequently, the control actions over the finite time horizon T are a function
of X(s) and denoted jointly as
U(s) = [u(s)0 , . . . ,u(s)T−1]

T = [κ
(
χ
(s)
0 ,0

)
, . . . , κ

(
χ
(s)
T−1,T − 1

)
]T. Note these control

inputs are different for each MC sample s due to feedback.

We start by sampling the Gaussian distribution of the initial state
x0 ∼ N(µx0,Σx0) to obtain the realization χ(s)0 . The posterior Gaussian distribution
of the next state in the sequence x1 is subsequently given by the GP of f (·) as
defined in Equation 9.18 dependent on χ(s)0 :

x1 = f (Z0) ∼ N(µ f (Z0;D),Σ f (Z0;D)) (9.21)

The realization of x1 is obtained by sampling the above normal distribution,
which we will denote as χ(s)1 . To obtain the next state in the sequence χ(s)2 we
need to first condition on χ(s)1 , since this is part of this sampled function path. This
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requires to treat χ(s)1 similarly to a new training point, however without observation
noise (i.e. no σ2

ν is added to the kernel evaluation k(Z0,Z0)) and without changing
the hyperparameters. Note that if the sampled function were to return to the same
input it would lead to the exact same output, since it is conditioned on a noiseless
output. This shows that the sampled function is deterministic, since it is the result
of sampling. Next we draw χ

(s)
2 according to the posterior Gaussian distribution

obtained from adding the previously sampled data point to the training datasetD as
a noiseless observation. This sample is then again added to the training dataset as
a noiseless observation, from which the GP is updated and the next state is drawn.
This process is repeated until the required time horizon T has been reached. In this
paper we consider a finite time horizon control problem and hence the GP state
space model should for, moderate time horizons, not become too computationally
expensive, since at most T new data-points are added. Nonetheless, for large time
horizons this could become a problem and approximate sampling approaches, such
as spectral sampling should then be considered instead [46, 218].

This sampling approach is summarized in Algorithm 9.1 below and is illus-
trated in Figure 2. Each GP MC sample is defined by a state and corresponding
control action sequence. Note that this gives us a single MC sample and subse-
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quently needs to be repeated multiple times to obtain multiple realizations.

Algorithm 9.1: Gaussian process trajectory sampling
Input : µx0 , Σx0 , µ f (z;D), Σ f (z;D), D, T , κ(·)

Initialize: Draw χ
(s)
0 from x0 ∼ N(µx0,Σx0).

for each sampling time t = 1,2, . . . ,T do

1. Determine u(s)t−1 = κ(χ
(s)
t−1, t − 1)

2. Draw χ
(s)
t from xt ∼ N(µ f (Z

(s)
t−1;D),Σ f (Z

(s)
t−1;D)), where

Z(s)t−1 = (χ
(s)
t−1,u

(s)
t−1).

3. Define D+ := (D, (Z(s)t−1,χ
(s)
t )), where χ(s)t can be viewed as noiseless

"measurements".

4. Update the dataset D := ([ZT,Z(s)Tt−1 ]
T, [Y,χ(s)Tt ]T).

5. Recursively update the GP mean function µ f (z;D) := µ+f (z;D+) using
Equation 9.19a.

6. Recursively update the GP covariance function Σ f (z;D) := Σ+f (z;D+)
using Equation 9.19b.

Output : State sequence X(s) = [χ(s)0 ,χ
(s)
1 , . . . ,χ

(s)
T ]

T and control sequence
U(s) = [u(s)0 , . . . ,u(s)T−1]

T

Figure 9.2: Illustration of GP sampling scheme for a 1 dimensional function.
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Lastly, we define a nominal trajectory by setting all samples in Algorithm 9.1
to their mean values. LetX = [χ0,χ1, . . . ,χT ]T refer to this nominal state sequence
and U = [u0, . . . ,uT−1]T to the corresponding nominal control sequence, where
χi and ui are the values of the states and control inputs of the nominal trajectory at
discrete time i respectively. Therefore by definition, χ0 = µx0 , u t−1 = κ(χt−1, t−1),
and χt = µ f (Zt−1;D), where Zt−1 = (χt−1,u t−1). Note updating µ f (·;D) with
mean values has no effect.

In Section 9.4 a NMPC formulation is introduced, which uses the mean func-
tion of the GP as the prediction model. The control actions from this NMPC
algorithm then define the control policy in Equation 9.20, while the MC samples
represent possible plant responses. This is then exploited to tune the GP NMPC
algorithm to attain the desired behaviour.

9.4 Solution approach
From the input-output dataset D = (Z,Y) defined in Equation 9.6, we fit a GP

state space model as outlined in Section 9.3.3. The aim is to solve the problem
defined in Section 9.2 based on this GP state space model. In this context the GP
represents a distribution over possible plant models for the process given the avail-
able dataset. In Section 9.3.4 we have shown how to create a sample of this plant
model over a finite time horizon T , which each lead to different state sequences and
corresponding control sequences based on a control policy. In this paper we aim
to design a NMPC algorithm based on the GP that acts as this control policy. The
MC samples are utilized to tune the NMPC formulation by adjusting so-called
back-offs to tighten the constraints and attain the closed-loop probabilistic con-
straint satisfaction. We next state the GP NMPC formulation, which is based on
the tightened constraint set and predictions from the mean function µ f (·;D) and
covariance function Σ f (·;D).

9.4.1 Finite-horizon Gaussian process model predictive control formulation

In this section we define the NMPC OCP based on the GP nominal model given
the dataset D = (Z,Y). For the GP NMPC formulation the initial state x at each
sampling time is assumed to be measured or estimated and propagated forward
in time exploiting the GP mean function. The predicted states are then used to
optimize the objective subject to the tightened constraints. Let the corresponding
optimization problem be denoted as PT

(
µ f (·;D),Σ f (·;D); x, t

)
for the current

known state x at discrete time t based on the mean function µ f (·;D) and covariance
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function Σ f (·;D):

minimize
Ût:T−1

V̂T (x, t, Ût:T−1) =

T−1∑
k=t+1

[
`(x̂k, ûk) + ηk tr

(
Σ f (x̂k ;D)

) ]
+ `f (x̂T )

subject to:

x̂k+1 = µ f (ẑk ;D), ẑk = (x̂k, ûk) ∀k ∈ {t, . . . ,T − 1}

x̂k+1 ∈ Xk+1, ûk ∈ Uk ∀k ∈ {t, . . . ,T − 1}

x̂t = x

(9.22)

where x̂, û, and V̂T (·) refers to the states, control inputs, and control objective
of the MPC formulation, Ût:T−1 = [ût, . . . , ûT−1]

T, ηk are weighting factors to
penalize uncertainty, and Xk is a tightened constraint set denoted by: Xk = {x ∈
Rnx | g

(k)
j (x) + b(k)j ≤ 0, j = 1, . . . ,ng}. The variables b(k)j represent so-called

back-offs, which tighten the original constraints Xt defined in Equation 9.5.

Remark (Objective in expectation). It should be noted that the above objective in
Equation 9.22 does not exactly optimize the objective in Equation 9.3, since it is
difficult to obtain the expectation of a nonlinear function. Approximations of this
can be found in [114], however these generally are considerably more expensive
and often only lead to marginally improved performance.

Remark (Scaling for state dependency factors). Note we have opted for scalar
scaling factors ηk to account for state dependency. For this to work reliably it is
therefore necessary to normalize the data to ensure that all data has approximately
the same magnitude, for example normalizing the data to have zero mean and unit
variance.

The NMPC algorithm solves PT

(
µ f (·;D),Σ f (·;D); xt, t

)
at each sampling

time t given the current state xt to obtain an optimal control sequence:

Û∗t:T−1

(
µ f (·;D),Σ f (·;D); xt, t

)
= (9.23)

[û∗t

(
µ f (·;D),Σ f (·;D); xt, t

)
, . . . , û∗T−1

(
µ f (·;D),Σ f (·;D); xt, t

)
]T

Only the first optimal control action is applied to the plant at time t before the
same optimization problem is solved at time t + 1 with a new state measurement
xt+1. This procedure implicitly defines the following feedback control law, which
needs to be repeatedly solved for each new measurement xt :

κ(µ f (·;D),Σ f (·;D); xt, t) = û∗t

(
µ f (·;D),Σ f (·;D); xt, t

)
(9.24)
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It is explicitly denoted that the control actions depend on the GP model used.
There are several important variations of the GP NMPC control policy. Firstly, it
may seem reasonable to update the mean and covariance function using the previ-
ous state measurement and corresponding input by applying the recursive update
rules introduced in Section 9.3.2. We will refer to this as learning. This may
however lead to a more expensive and less reliable NMPC algorithm.

Secondly, the algorithm may want to avoid regions in which there is great un-
certainty due to sparsity of data. This can be achieved by assigning some of the
ηk with non-zero values to penalize the algorithm moving into these regions with
high variance. This explicitly takes advantage of the state dependency of the noise
covariance function and is hence referred as state dependent. It should be noted
that evaluation of the covariance function is computationally expensive. It was
determined that setting only ηt+1 to a non-zero value is often sufficient due to the
continued feedback update, i.e. penalizing only the variance for the one-step ahead
prediction at time t. These variations can be summarized as follows:

• Learning: Update the mean and variance function of the GP using the pre-
vious state measurement and the known corresponding input.

• State dependent: Set some ηk not equal to zero, which will lead to the NMPC
algorithm trying to find a path that has less variance and hence exploiting the
state dependent nature of the uncertainty.

• Non learning: Keep the mean and variance function the same throughout the
run.

• Non state dependent: Set all ηk to zero and hence ignoring the possible state
dependency of the uncertainty.

Remark (Full state feedback). Note in the control algorithm we have assumed
full state feedback, i.e. it is assumed that the full state can be measured without
noise. This assumption can be dropped if required by introducing a suitable ob-
server and introduced in the closed-loop simulations to account for this additional
uncertainty.

9.4.2 Probabilistic guarantees

In this section we illustrate how to obtain probabilistic guarantees for the joint
chance constraint introduced in Section 9.2 in Equation 9.5 based on independent
samples of the GP plant model. For convenience we define a single-variate random
variable C(·) representing the satisfaction of the joint chance constraint [69]:

C(X) = inf
(j ,t)∈{1,...,ng }×{0,...,T }

g
(t)
j (xt ) (9.25a)
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P {C(X) ≤ 0} = P

{
T⋂
t=0

{xt ∈ Xt }

}
(9.25b)

where X = [x0, . . . ,xT ]
T defines a state sequence, and Xt = {x ∈ R

nx | g
(t)
j (x) ≤

0, j = 1, . . . ,ng}.

The probability in Equation 9.25 is intractable, however a good nonparamet-
ric approximation is often achieved utilizing the so-called empirical cumulative
distribution function (ecdf). We define the cdf to be approximated as follows:

FC(X)(c) = P{C(X) ≤ c} (9.26)

Assuming we are given S independent and identically distributed MC samples
of X and hence of C(X), the ecdf estimate of the true cdf in Equation 9.26 is given
by:

FC(X)(c) ≈ F̂C(X)(c) =
1

S

S∑
s=1

1{C(X(s)) ≤ c} (9.27)

where X(s) is the s-th MC sample and F̂C(X)(c) is the ecdf approximation of the
true cdf FC(X)(c).

The quality of the approximation in Equation 9.27 strongly depends on the
number of samples used and it is therefore desirable to quantify the residual un-
certainty of the sample approximation. This problem has been studied to a great
extent in the statistics literature [67]. In addition, there are several works applying
these results for chance constrained optimization, see for example [5]. The main
result applied in this study is given below in Theorem 9.4.1.

Theorem 9.4.1 (Confidence interval for empirical cumulative distribution func-
tion). Assume we are given a value of the ecdf, β̂ = F̂C(X)(c), as defined in Equa-
tion 9.27 based on S independent samples of C(X), then the true value of the cdf,
β = FC(X)(c), as defined in Equation 9.26 has the following lower and upper con-
fidence bounds:

P
{
β ≥ β̂lb

}
≥ 1 − α, β̂lb = betainv

(
α,S + 1 − S β̂,S β̂

)
, (9.28a)

P
{
β ≤ β̂ub

}
≥ 1 − α, β̂ub = betainv

(
1 − α,S + 1 − S β̂,S β̂

)
. (9.28b)

Proof. The proof uses standard results in statistics and can be found in [67, 242].
The proof relies on the following observations. Firstly, 1{C(X(s)) ≤ c} for a
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fixed value of c describes a Bernoulli random variable, in which either C(X(s))
exceeds c and takes the value 0 or otherwise takes the value 1 with probability
FC(X)(c). Secondly, the ecdf describes the number of successes of S realizations
of these Bernoulli random variables divided by the total number of samples and
hence follows a binomial distribution, i.e. F̂C(X)(c) ∼ 1

NS
Bin(S,FC(X)(c)). The

confidence bound for the ecdf can consequently be determined from the Binomial
cdf. This method was first introduced by [67] as "exact confidence intervals". Due
to the close relationship between beta distributions and binomial distributions, a
simplified expression can be obtained using beta distributions instead, which leads
to the theorem shown [242]. �

In other words the probability of β exceeding the value β̂ub has a probability
of α and the probability of β being less than or equal to β̂lb has also a probability
of α. In particular, β̂lb for small α represents a conservative lower bound on the
true probability β. An illustration of the confidence bound for the ecdf is shown
in Figure 9.3. In general more samples will lead to a tighter confidence bound as
expected. The theorem provides a lower bound β̂lb that accounts for the statistical
error due to the finite sample estimate made, i.e. it gives us a conservative value
that is less than or equal to the true probability of feasibility with a confidence level
of 1 − α.

We assume we are given S independent samples of the trajectory X generated
according to Section 9.3.4. Let the approximate ecdf be given by β̂ = F̂C(X)(0)
according to Equation 9.27, and β̂lb the corresponding lower bound according to
Theorem 9.4.1 with confidence level 1 − α. From this the following Corollary
follows:

Corollary 9.4.1 (Feasibility probability). Assuming the GP representation of the
plant model to be a correct description of the uncertainty of the system and given a
value of the ecdf β̂ = F̂C(X)(0), as defined in Equation 9.27 based on S independent
samples and a corresponding lower bound β̂lb ≥ 1 − ε with a confidence level
of 1 − α, then the original chance constraint in Equation 9.5 holds true with a
probability of at least 1 − α.

Proof. The GP MC sample described in Section 9.3.4 is exact and therefore each
sample of the GP plant state space model leads to independent state trajecto-
ries X according to the GP distribution. From S such samples a valid lower
bound β̂lb to the true cdf value β can be determined from Theorem 9.4.1 with
a confidence level of 1 − α. If β̂lb is greater than or equal to 1 − ε , then the
following probabilistic bound holds on the true cdf value β according to The-
orem 9.4.1: P

{
β ≥ β̂lb ≥ 1 − ε

}
≥ 1 − α, which in other words means that



9.4. Solution approach 217

β = P {C(X ≤ 0)} ≥ 1 − ε with a probability of at least 1 − α. �

Figure 9.3: Illustration of the cdf confidence bound of α = 0.01 for sample sizes of S = 50
(top) and S = 200 (bottom).

9.4.3 Determining back-off constraints

In this section we describe how to determine the required back-off values to
tighten the constraints of the GP NMPC algorithm in Equation 9.22. The aim is
to choose these values to obtain probabilistic guarantees for the state constraints
defined in Equation 9.5 despite not knowing the exact dynamics. The GP provides
a nominal model for the GP NMPC formulation in Equation 9.22 using the mean
function and a distribution of possible plant models given the initial dataset in
Equation 9.6. This distribution is exploited to attain different possible plant model
realizations to simulate the closed-loop response of the GP NMPC algorithm and
then uses the response values to tighten the constraints, such that the original con-
straint set is satisfied with a high probability according to Equation 9.5.

We have shown how to obtain the closed-loop trajectory of a control policy
according to the realization of a plant model GP distribution in Section 9.3.4. To
this we apply the GP NMPC control policy defined in Equation 9.24. We propose
to utilize S independent MC samples of the GP distribution generated according to
Section 9.3.4, which then in turn describe S different possible plant models with
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corresponding state and control trajectories. The goal now is to adjust the back-
offs, such that the S different state trajectories adhere the original constraint set for
all but a few samples to attain the required probability of constraint satisfaction.
Let X(s) = [χ(s)0 , . . . ,χ

(s)
T ]

T refer to the state trajectory of sample s.

The update rule for adjusting the back-offs is based on two steps: First, we
define an approximate constraint set, which is then adjusted by a constant factor
to obtain the required constraint satisfaction using the ecdf of the joint chance
constraint in Equation 9.30. The approximate constraint set in essence needs to
reflect the difference in constraint values for the nominal model of the MPC and
the realizations of the GP plant model. We first set all the back-off values to zero
and run S MC samples of the GP plant model. As defined in Section 9.3.4, let χt
refer to the states according to the nominal trajectory with the back-offs set to zero
as well. Now assume we aim to obtain back-off values that imply the satisfaction
of the following individual chance constraints:

g
(t)
j (χt ) + b(t)j = 0 =⇒ P

{
g
(t)
j (χt ) ≤ 0

}
≥ 1 − δ (9.29)

where δ is a tuning parameter and should be set to a reasonably low value.

The rule in other words aims to find approximate back-offs for the nominal pre-
dictions χt utilized in the MPC formulation in Equation 9.22, such that the chance
constraints holds for any possible GP plant model MC sample with a probability
of 1 − δ. The parameter δ in this case is a tuning parameter to obtain the initial
back-off values. Note the considered individual chance constraint in Equation 9.29
is only there to obtain the initial constraint set and is unrelated to the joint chance
constraint in Equation 9.5, which we fulfil by adjusting this approximate constraint
set using a root-finding algorithm.

To accomplish this we define the following ecdf based on the S MC samples
available:

F̂
g
(t )
j

(0) =
1

S

S∑
s=1

1{g(t)j (χ
(s)
t ) ≤ 0} (9.30)

where F̂
g
(t )
j

(0) is a sample approximation of the chance constraint given in Equa-

tion (9.29) on the RHS.

In [206] it is proposed to employ the inverse ecdf to approximately fulfill the
requirement given in Equation (9.29) using the S MC samples available. The back-
offs can then be stated as follows:

b̃(t)j = F̂−1
g
(t )
j

(1 − δ) − g(t)j (χt ) ∀( j, t) ∈ {1, . . . ,n
(t)
g } × {1, . . . ,T} (9.31)
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where F̂−1
g
(t )
j

is the inverse of the ecdf defined in Equation 9.30 and b̃(t)j refers to

these initial back-off values. Note the inverse of an ecdf is given by the quantile
function of the discrete S values with probability δ. This gives us the initial back-
off values as required for the first step. Note that both the nominal trajectory χt and
the GP realizations depend on the back-off values, which is however ignored since
we are only interested in obtaining some reasonable initial values. In the next step
these back-off values are further adjusted using a constant back-off factor γ. The
new back-offs are then defined as:

b(t)j = γb̃(t)j ∀( j, t) ∈ {1, . . . ,n(t)g } × {1, . . . ,T} (9.32)

We aim to change γ until the lower bound of the ecdf β̂lb as defined in the
previous section for the joint chance constraint is equal to 1 − ε in Equation (9.5).
This is a root finding problem, in which γ is adjusted until β̂lb reaches the required
value:

h(γ) = β̂lb(γ) − (1 − ε) (9.33)

where the aim is to determine a value of γ, such that h(γ) is approximately zero.

To attain the required γ we use the so-called bisection method [20]. This
method determines the root of a function in an interval aγ and bγ, where h(aγ) and
h(bγ) have opposite signs. In our case this is relatively easy. Setting the value of γ
too low returns generally a negative value of h(γ) due to the constraint violations
using low back-offs, while setting it too high leads to positive values leading to a
too conservative solution. Note we generally set the initial aγ to zero since this
corresponds to the S MC samples used to determine b̃(t)j . The bisection method
consists of repeatably bisecting the interval, in which the root is contained. The
overall algorithm to determine the required back-offs in nb back-off iterations is
summarized below as Algorithm 9.2. The output of the algorithm are the required
back-offs with the corresponding lower bound on the probability of satisfying the
state chance constraint. Note for learning = true the mean and covariance function
of the GP are recursively updated utilizing the same procedure as for the update of
the GP plant model MC sample.

Remark (Conservativeness of chance constraint). Note to adjust the back-offs we
use the ecdf, which does account for the true shape of the underlying probability
distribution. This avoids the problem that is often faced in stochastic optimization
utilizing Chebyshev’s inequality to robustly approximate chance constraints, which
is often excessively conservative [207].
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Algorithm 9.2: Back-off iterative updates
Input : µx0 , Σx0 , µ f (z;D), Σ f (z;D), D, T , VT (x, t, Ût:T−1), Xt , Ut , ε , α, δ, learning, S,

nb
Initialize : Set all b(t)

j
= 0 and δ to some reasonable value, set aγ = 0 and bγ to some

reasonably high value, such that bγ − (1 − ε) has a positive sign. Define D0 = D

as the initial dataset.
for nb back-off iterations do

if nb > 0 then
cγ := (aγ + bγ)/2

b(t)
j

:= cγ b̃(t)
j
( j, t) ∈ {1, . . . ,n(t)g } × {1, . . . ,T}

for each MC sample s = 1,2, . . . ,S do
D := D0

Draw χ
(s)
0 from x0 ∼ N(µx0,Σx0 )

for each sampling time t = 1,2, . . . ,T do
if learning = true then

1. Determine u(s)
t−1 = κ(µ f (·;D),Σ f (·;D); xt , t).

else
1. Determine u(s)

t−1 = κ(µ f (·;D0),Σ f (·;D0); xt , t).

2. Draw χ
(s)
t from xt ∼ N(µ f (Z

(s)
t−1;D),Σ f (Z

(s)
t−1;D)), where Z(s)

t−1 = (χ
(s)
t−1,u

(s)
t−1).

3. Define D+ := (D, (Z(s)
t−1,χ

(s)
t )), where χ(s)t can be viewed as noiseless "measurements".

4. Update the dataset D := ([ZT,Z(s)T
t−1 ]

T, [Y,χ
(s)T
t ]T).

5. Recursively update the GP mean function µ f (z;D) := µ
+
f
(z;D+) using Equation 9.19a.

6. Recursively update the GP covariance function Σ f (z;D) := Σ
+
f
(z;D+) using Equation

9.19b.

7. Define X(s) = [χ(s)0 ,χ
(s)
1 , . . . ,χ

(s)
T
]T andU(s) = [u(s)0 , . . . ,u(s)

T−1]
T.

β̂ := F̂
C(X(s))(0) =

1
S

∑S
s=1 1{C(X(s)) ≤ 0}

β̂lb := 1 − betainv
(
α,S + 1 − S β̂,S β̂

)
if nb = 0 then

Let b̃(t)
j
= F̂−1

g
(t )
j

(δ) − g
(t)
j
(χt ) ∀( j, t) ∈ {1, . . . ,n

(t)
g } × {1, . . . ,T}

β̂
aγ
lb

:= β̂lb − (1 − ε)

else
β̂
cγ
lb

:= β̂lb − (1 − ε)

if sign(β̂
cγ
lb
) = sign(β̂

aγ
lb
) then

aγ := cγ
β̂
aγ
lb

:= β̂
cγ
lb

else
bγ := cγ

Output : b(t)
j
∀( j, t) ∈ {1, . . . ,n(t)g } × {1, . . . ,T}, β̂lb
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9.4.4 Algorithm

The overall algorithm proposed in this paper is summarized in this section.
Firstly, the problem to be solved needs to be defined as outlined in Section 9.2.
Thereafter, it needs to be decided if the GP NMPC should learn online or exploit
the state dependency of the uncertainty as shown in Section 9.4. Once the GP
NMPC has been formulated the back-offs are determined by running closed-loop
simulations of the defined problem as shown in Section 9.4.3. Lastly, these back-
offs then give us the tightened constraint set required for the GP NMPC online.
This GP NMPC is then run online solving the problem initially outlined. An over-
all summary can be found in Algorithm 9.3.

Algorithm 9.3: Back-off GP NMPC
Offline Computations

1. Build GP state-space model from data-set D = (Z,Y) and additive
disturbance Σω.

2. Choose time horizon T , initial condition mean µx0 and covariance Σx0 ,
stage costs ` and `f , state dependent factor ηt , constraint sets Xt,Ut

∀t ∈ {1, . . . ,T}, chance constraint probability ε , ecdf confidence α, tuning
parameter δ, decide if learning should be carried out, the number of
back-off iterations nb and the number of Monte Carlo simulations S to
estimate the back-offs.

3. Determine explicit back-off constraints using Algorithm 9.2.

4. Check final probabilistic value β̂lb from Algorithm 9.2 if it is close enough
to ε .

Online Computations
for t = 0, . . . ,T − 1 do

1. Solve the MPC problem in Equation 9.22 with the tightened constraint set
from the Offline Computations.

2. Apply the first control input of the optimal solution to the real plant.

3. Measure the state xt and update the GP plant model for learning GP
NMPC.

Note the back-offs could be also updated online making use of the new initial
conditions and updated prediction model in the case of "learning", which would
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lead to overall less conservativeness [206]. This would however require to carry-
out the offline calculations online, which is expensive, and not computationally
desirable.

9.5 Case study
The case study utilized in this paper deals with the photo-production of phy-

cocyanin synthesized by cyanobacterium Arthrospira platensis. Phycocyanin is a
high-value bioproduct and its biological function is to enhance the photosynthetic
efficiency of cyanobacteria and red algae. It has been considered as a valuable
compound because of its applications as a natural colorant to replace other toxic
synthetic pigments in both food and cosmetic production. Furthermore, it has
shown great promise for the pharmaceutical industry because of its unique antiox-
idant, neuroprotective, and anti-inflammatory properties. Using a simplified dy-
namic model we verify our GP NMPC algorithm by operating this process using a
limited dataset. The GP NMPC problem is formulated with an economic objective
aiming to directly maximize the bioproduct concentration of the final batch subject
to two path constraints and one terminal constraint.

9.5.1 Semi-batch bioreactor model

The simplified dynamic system consists of three ODEs describing the evolu-
tion of the concentration of biomass, nitrate, and bioproduct. The dynamic model
is based on the Monod kinetics, which describes microorganism growth in nutri-
ent sufficient cultures, where intracellular nutrient concentration is kept constant
because of the rapid replenishment. We assume a fixed volume fed-batch. Control
inputs are given by the light intensity (I) in µmol.m−2.s−1 and nitrate inflow rate
(FN ) in mg.L−1.h−1 [76]. To capture the effects of light intensity on microalgae
growth and bioproduction (photolimitation, photosaturation, and photoinhibition
phenomena) the Aiba model is used [2]. The balance equations are given as fol-
lows:

dCX

dt
= um ·

I

I + ks + I2

ki

· CX ·
CN

CN + KN
− ud · CX, CX(0) = CX0

(9.34a)
dCN

dt
= −YN

X
· um ·

I

I + ks + I2

ki

· CX ·
CN

CN + KN
+ FN , CN (0) = CN 0

(9.34b)
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dCqc

dt
= km ·

I

I + ksq + I2

kiq

· CX −
kdCqc

CN + KNp
, Cqc (0) = Cqc 0

(9.34c)

where CX is the biomass concentration in g/L, CN is the nitrate concentration
in mg/L, and Cqc is the phycocyanin (bioproduct) concentration in the culture
in mg/L. The corresponding state vector and control vector are given by x =
[CX,CN ,Cqc ]

T and u = [I,FN ]
T respectively. The initial condition is denoted as

x0 = [CX0,CN 0,Cqc 0]
T. The missing parameter values can be found in Table 9.1.

Table 9.1: Parameter values for ordinary differential equation system in Equation 9.34.

Parameter Value Units
um 0.0572 h−1

ud 0.0 h−1

KN 393.1 mg.L−1

Y N
X

504.5 mg.g−1

km 0.00016 mg.g−1.h−1

kd 0.281 h−1

ks 178.9 µmol.m−2.s−1

ki 447.1 µmol.m−2.s−1

ksq 23.51 µmol.m−2.s−1

kiq 800.0 µmol.m−2.s−1

KNp 16.89 mg.L−1

9.5.2 Problem set-up

The time horizon T was set to 12 with an overall batch time of 240h, and
consequently the sampling time is 20h. Based on the dynamic system in Equation
9.34 we define the objective and the constraints according to the general problem
definition in Section 9.2. The measurement noise matrix Σν and disturbance noise
matrix Σω were set to:

Σν = diag(4×10−4,0.1,1×10−8), Σω = diag(4×10−4,0.1,1×10−8) (9.35)

The mean µx0 and covariance Σx0 of the initial condition are given by:

µx0 = [1.,150,0.]T, Σx0 = diag(1 × 10−3,22.5,0) (9.36)

The control algorithm aims to maximize the amount of bioproduct produced
Cqc with a penalty on the change of control actions. The corresponding stage and
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terminal cost can be stated as follows:

`(xt,ut ) = ∆
T
ut

R∆ut (9.37a)

`f (xT ) = −CqcT (9.37b)

where ∆ut = ut − ut−1 and R = diag(3.125 × 10−8,3.125 × 10−6). The overall
objective is then defined by Equation 9.3.

For the case of state dependency we set all ηi to zero except η0, see Equation
9.22. The value of η0 was set to 15. Note that for these factors to work properly it
is important to normalize the data as we did in this case study.

There are two path constraints in the problem. The amount of nitrate is con-
strained to remain below 800 mg/L, while the ratio of bioproduct to biomass may
not exceed 11.0 mg/g for high density biomass cultivation. These constraints can
be stated as:

g
(t)
1 (xt ) = CN t − 800 ≤ 0 ∀t ∈ {0, . . . ,T} (9.38a)

g
(t)
2 (xt ) = Cqc t − 0.011CXt ≤ 0 ∀t ∈ {0, . . . ,T} (9.38b)

Lastly, there is a terminal constraint on nitrate to reach a final concentration of
below 150 mg/L:

g
(T )
3 (xT ) = CNT − 150 ≤ 0, g

(t)
3 (xT ) = 0 ∀t ∈ {0, . . . ,T − 1} (9.39)

The maximum probability for violating the joint chance constraint was set to
ε = 0.1. The control inputs light intensity and nitrate inflow rate are constrained
as follows:

120 ≤ It ≤ 400 ∀t ∈ {0, . . . ,T} (9.40a)

0 ≤ FN t ≤ 40 ∀t ∈ {0, . . . ,T} (9.40b)

For the back-off iterations we employed S = 1000 MC iterations with the initial
back-offs computed according to Equation 9.31 with δ = 0.1 and α = 0.01. The
maximum number of back-off iterations for the bisection algorithm was set to
nb = 16.

9.5.3 Implementation details and initial dataset generation

The optimization problem for the GP NMPC in Equation 9.22 is solved using
Casadi [9] to obtain the gradients of the problem using automatic differentiation
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in conjunction with IPOPT [258]. The "real" plant model was simulated using
IDAS [116]. In the next section, different variations of the proposed algorithm are
presented, for which two different type of datasets were collected. For the first
type of dataset we designed the entire input data matrix Z according to a Sobol
sequence [238] in the range zi ∈ [0,20]× [50,800]× [0,0.18]× [120,400]× [0,40].
The ranges were chosen for the data to cover the expected operating region. The
corresponding outputs Y were then obtained from the IDAS simulation of the sys-
tem perturbed by Gaussian noise as defined in the problem setup. In the second
approach only the control inputs were set according to the Sobol sequence in the
range ui ∈ [120,400] × [0,40] and the corresponding states Y were obtained from
the trajectories of the "real" system perturbed by noise using samples of the initial
condition and the time horizon as defined in the problem setup based on these con-
trol inputs. The system was simulated in "open-loop" using these control actions,
i.e. without any feedback controller present. For both datasets the input data Z
and output data Y are normalized to zero mean and a standard deviation of one.
The reason we use two different types of datasets is to highlight the advantages
of accounting for state dependency in two of the algorithm variations. In the first
dataset the data is relatively evenly distributed and hence considering the state de-
pendency of the uncertainty to avoid regions with high data sparsity has essentially
no effect, while in the second approach there are clearly defined trajectories that
can be followed by accounting for state dependency.

9.6 Results and discussions
In this section we present and discuss the results from the case study described

in the previous section. For comparison purposes we compare six different varia-
tions of the proposed GP NMPC approach, which are as follows:

• GP NMPC 50, 60, 100: GP NMPC approach without learning and without
taking into account state dependency for dataset sizes of 50, 60, and 100
points using the first type of dataset.

• GP NMPC learning 50: GP NMPC approach with learning and without state
dependency for a dataset size of 50 points, which will be compared to the
above case of 50 data points without learning. The first type dataset is uti-
lized.

• GP NMPC SD/NSD 50: GP NMPC approach with and without accounting
for the state dependency for a dataset size of 50 points employing the second
type of dataset.

In addition, we compare the approaches to a nominal NMPC algorithm based
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on the GP model to show the importance of employing back-offs to prevent con-
straint violations, i.e. we run the GP NMPC on the "real" plant model, while
setting the back-offs to zero. The results of the outlined runs are summarized in
Figures 9.6-9.12, and in Tables 9.2-9.3. In Figures 9.6-9.7 we show the evolution
of the back-off factor and the probability of constraint satisfaction β̂lb over the 16
back-off iterations from Algorithm 9.2. The next two Figures 9.4-9.5 show the
1000 MC trajectories of the constraints with a line to highlight the nominal pre-
diction of the GP NMPC. Next the GP NMPC was applied to the "real" plant with
back-offs from the final iteration and without back-offs referred to as nominal as
shown in Figures 9.8-9.9. Figure 9.10 shows the probability density function of the
objective values obtained from the "real" plant, where in the figure larger objective
values correspond to better objective values. Figure 9.11 shows representative con-
trol trajectories for GP NMPC 50, 60, 100 compared with the optimal trajectory
obtained from solving the OCP of the "real" plant ignoring uncertainties. Figure
9.12 shows the back-off values for the nitrate constraints g1 and g2 for GP NMPC
50 and GP NMPC 50 learning. Lastly, Table 9.2 shows the mean values for the
back-offs averaged over time for the final back-off iteration, while Table 9.3 shows
the attained probability of satisfaction β̂lb together with the average computational
times for solving a single GP NMPC optimization problem. We can draw the fol-
lowing conclusions from these results:

• Figures 9.6-9.7 and Table 9.2 show that apart from GP NMPC 50 the other
variations reach the required β̂lb and hence successfully converge to a rea-
sonable back-off factor. For these, as expected, a low back-off value leads
to too low β̂lb values near zero, while too high back-off values lead to too
high β̂lb values. The value of β̂lb does vary by ±0.01 even on convergence,
which is due to the randomness of the MC samples. Nonetheless, since β̂lb
is a sample robust value, it is high enough if at least 0.9 is reached once over
the 16 iterations, which is the case for all of them. Note that GP NMPC 50
does not converge, since even without back-offs the NMPC remains feasible
for all MC trajectories and hence the bisection procedure fails. The perfor-
mance of GP NMPC 50 is however also by far the worst. This is due to
insufficient amounts of data in crucial areas for the control problem.

• From GP NMPC 50, 60 to 100 the objective values steadily increase and
hence improve with increased number of data points as shown in Figure
9.10. This is as expected, since more data points should lead to a more
accurate GP plant model and hence more optimal control actions. Lastly,
a more accurate GP plant model should also require less conservative back-
offs. For the constraint g2 the mean of the back-off values steadily decreases
from 0.022 mg/L for GP NMPC 50 to 0.003 for GP NMPC 100 as shown in
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Table 9.2. For the constraints g1/g3 on the other hand the mean of the back-
offs decreases dramatically from GP NMPC 50 with a value of 250mg/L to
a value of 34.2mg/L for GP NMPC 60, while slightly increasing again for
GP NMPC 100 to 38.8 mg/L. This is further illustrated in Figure 9.4, for
which the spread of the trajectories decreases steadily from GP NMPC 50,
60 to 100. All in all, larger datasets lead to improved solutions.

• The learning approach GP NMPC 50 learning leads to a reasonable solu-
tion with an objective value that is on average higher and therefore an im-
provement over GP NMPC 60 as can be seen in Figure 9.10. Further, the
sharper peak of the objective value suggests a more reliable performance.
In contrast, GP NMPC 50 without learning is unable to determine a good
solution and therefore has an objective value that is considerably worse than
the remaining scenarios with an objective value that is on average over 30%
lower. GP NMPC 50 is also unable to reach a β̂lb value of 0.9 and has
instead a much higher value as shown in Table 9.3, but at the expense of
performance. This is highlighted in Figure 9.11 in which the control tra-
jectory of GP NMPC 50 decreases the nitrate flowrate early to satisfy the
terminal constraint, which leads to a sub optimal solution. This is believed
to be due to the high uncertainty of the g1/g2/g3 constraint trajectories of
GP NMPC 50, which can be seen by the large spread of the trajectories in
Figure 9.4. GP NMPC 50 learning on the other hand has a spread of the
constraints g1/g2/g3 that is significantly less than GP NMPC 50. This is
further highlighted by the considerably higher back-off values of GP NMPC
50 compared to GP NMPC 50 learning as can be seen in Table 9.2, where the
g1/g3 back-off values are nearly 400% larger, while the g2 back-off values
are over 300% larger. In conclusion, accounting for online learning has lead
to a significantly better solution, although it should be noted that at larger
datasets the effect is nearly negligible.

• GP NMPC 50 can be seen to be less erratic than GP NMPC 50 learning in
Figure 9.4, which is however expected. GP NMPC 50 uses the same pre-
diction model throughout and hence the control inputs are only influenced
by changes in the initial condition. For GP NMPC 50 learning on the other
hand the prediction model changes at each sampling point and hence this
leads to more irregular behaviour, which can be seen by the increased oscil-
lations. This then leads to overall improved control actions and performance
due to exploiting the new data available, as can be seen in Figure 9.10.

• It can be seen in Figure 9.5 that GP NMPC NSD 50 has a larger spread of
trajectories than GP NMPC SD 50. This is as expected, since GP NMPC



228 Stochastic data-driven model predictive control using Gaussian processes

SD 50 aims directly in its objective to minimize uncertainty. Consequently,
the mean of the back-off values of constraints g1/g3 and g2 in Table 9.2 are
over 50% larger and over 100% greater than those for GP NMPC SD 50,
respectively. Nonetheless, the attained average objective of GP NMPC SD
50 is marginally lower and hence worse as can be seen in Figure 9.10. This is
expected, since accounting for state dependency reduces conservativeness,
but may also lead to a sub optimal solution due to conflicting objectives.

• In Table 9.3 the average computational times of a single GP NMPC evalu-
ation are shown, which range from 135ms to 48ms. Overall, it can be seen
that by far the largest computational times are attributed to GP NMPC 100,
which is reasonable since the complexity of GP plant models grows expo-
nentially with the number of data points. GP NMPC 50 and GP NMPC 50
learning can be seen however to have higher computational times, which
is due to a more complex optimization problem from the reduced amount
of data. This is further highlighted by GP NMPC 50 SD and GP NMPC
50 NSD attaining the lowest average computational times due to the sec-
ond type of dataset leading to easier optimization solutions. In Table 9.3
we can further see that the computational times required for a single back-
off iteration is for all variations nearly solely determined by the GP NMPC
evaluation time.

• Lastly, in Figures 9.8-9.9 trajectories of the constraints are shown by apply-
ing the GP NMPC variants to the "real" plant. It can be seen that the nominal
variations of GP NMPC 50, 60, 100, and GP NMPC 50 learning with back-
offs set to zero violate the nitrate constraint g1 to remain below 800mg/L
by a substantial amount of up to 50mg/L for GP NMPC 50 learning and GP
NMPC 60. With back-offs on the other hand the approaches remain feasible
throughout the run, which illustrates the importance of employing back-offs.
GP NMPC NSD 50 nominal can be also seen to violate the nitrate constraint
g1 by 50mg/L, while GP NMPC SD 50 nominal does not violate this con-
straint. This is likely due to GP NMPC SD 50 nominal following a feasible
trajectory in the dataset. GP NMPC NSD 50 with back-offs remains feasi-
ble. Overall, it can be seen that back-offs are important to achieve feasibility
given the presence of plant-model mismatch.
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Figure 9.4: The 1000 MC trajectories at the final back-off iteration of the nitrate concen-
tration constraints g1 and g3 (LHS) and the ratio of bioproduct to biomass constraint g2
(RHS) for from top to bottom GP NMPC 50, 60, 100 and GP NMPC 50 learning.
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Figure 9.5: The 1000 MC trajectories at the final back-off iteration of the nitrate concen-
tration constraints g1 and g3 (LHS) and the ratio of bioproduct to biomass constraint g2
(RHS) for GP NMPC NSD 50 (top) and GP NMPC SD 50 (bottom).

Figure 9.6: Plots of evolution of the back-off factor and the probability of constraint
satisfaction β̂lb over the 16 back-off iterations for GP NMPC 50, 60, 100, and GP NMPC
learning 50.
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Figure 9.7: Plots of evolution of the back-off factor and the probability of constraint
satisfaction β̂lb over the 16 back-off iterations for GP NMPC SD 50 and GP NMPC NSD
50.

Figure 9.8: Trajectories of the nitrate concentration constraints g1 and g3 (top) and the
ratio of bioproduct to biomass constraint g2 (bottom) for the GP NMPC 50, 60, 100, and
GP NMPC 50 learning applied to the "real" plant model with the final tightened constraint
set on the LHS and with no back-off constraints on the RHS referred to as nominal.
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Figure 9.9: Trajectories of the nitrate concentration constraints g1 and g3 (LHS) and the
ratio of bioproduct to biomass constraint g2 (RHS) for the GP NMPC 50, 60, 100, and GP
NMPC 50 learning applied to the "real" plant model with the final tightened constraint set
and with no back-off constraints referred to as nominal.

Figure 9.10: Probability density function for the "real" plant objective values for all vari-
ations of the GP NMPC algorithm.

Figure 9.11: Example control trajectories for the light intensity on the LHS and the nitrate
flow rate on the RHS based on GP NMPC 50, 60, 100. The red line represents the optimal
control trajectories ignoring the noise present in the process.
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Figure 9.12: Example back-off values for the nitrate concentration constraints g1 and g3
of GP NMPC 50 (LHS) and GP NMPC 50 learning (RHS). The lines are plotted over the
16 back-off iterations, which are faded out towards earlier iterations.

Table 9.2: The mean of the back-off values for the nitrate concentration constraints g1/g3
and the ratio of bioproduct to biomass constraint g2 from the final back-off iteration.

Algorithm variation Mean back-off g1/g3 (mg/L) Mean back-off g2 (mg/L)
GP NMPC 50 205.8 0.022
GP NMPC 60 34.2 0.008
GP NMPC 100 38.8 0.003
GP NMPC learning 50 54.0 0.007
GP NMPC 50 SD 23.3 0.002
GP NMPC 50 NSD 36.2 0.004

Table 9.3: Lower bound on the probability of satisfying the joint constraint β̂lb , average
computational times to solve a single optimal control problem (OCP) for the GP NMPC,
and the average computational time required to complete one back-off iteration.

Algorithm variation Probability β̂lb OCP time (ms) Back-off iteration time (s)
GP NMPC 50 0.99 65 782
GP NMPC 60 0.89 54 753
GP NMPC 100 0.91 135 1626
GP NMPC learning 50 0.91 69 825
GP NMPC 50 SD 0.89 48 574
GP NMPC 50 NSD 0.91 49 584

9.7 Conclusions
In conclusion, a new approach is proposed for finite-horizon control problems

using NMPC in conjunction with GP state space models. The method utilizes
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the probabilistic nature of GPs to sample deterministic functions of possible plant
models. Tightened constraints using explicit back-offs are then determined, such
that the closed-loop simulations of these possible plant models are feasible to a
high probability. In addition, it is shown how probabilistic guarantees can be de-
rived based on the number of constraint violations from the simulations. Further-
more, it is shown that online learning and state dependency of the uncertainty can
be taken into account explicitly in this method, which leads to overall less con-
servativeness. Moreover, the computational times are shown to be relatively low,
since constraint tightening is performed offline. Finally, through the comprehen-
sive semi-batch bioprocess case study, the efficiency and potential of this method
for the optimisation of complex stochastic systems (e.g. biological processes) is
well demonstrated.

9.8 Recursive inverse matrix update
In this paper we are often concerned with inverting matrices as shown in Sec-

tion 9.3.2 in Equation 9.17c:

Σ+−1Y =

[
ΣY kT(z+)

k(z+) k(z+,z+)(+σ2
ν )

]−1
(9.41)

This is an recursive update formula and hence Σ−1Y is known a priori. In this
Section we introduce a recursive formula to exploit this fact to obtain Σ+−1Y in a
cheaper fashion taken from [241] adjusted to our case. The following quantities
need to be computed to obtain Σ+−1Y :

I = kT(z+)Σ−1Y (9.42a)

II = kT(z+)IT (9.42b)

C12 = IT × II (9.42c)

C11 = Σ−1Y − IT × CT
12 (9.42d)

C22 = −
(
II − k(z+,z+)(+σ2

ν )

)−1
(9.42e)

The inverted matrix is then given by:

Σ+−1Y =

[
C11 C12

CT
12 C22

]
(9.43)



Chapter 10

Hybrid Gaussian process
modelling applied to economic
stochastic model predictive
control of batch processes

This chapter is based on Paper H: E. Bradford, L. Imsland, M. Reble, and E. A. del
Rio-Chanona. Hybrid Gaussian process modelling applied to economic stochastic
model predictive control of batch processes. In Progress on Economic and Dis-
tributed Model Predictive Control and Applications. Springer, submitted, 2020.

Summary
Nonlinear model predictive control (NMPC) is an efficient approach for the

control of nonlinear multivariable dynamic systems with constraints, which how-
ever requires an accurate plant model. Plant models can often be determined from
first principles, parts of the model are however difficult to derive using physical
laws alone. In this paper a hybrid Gaussian process (GP) first principles modeling
scheme is proposed to overcome this issue, which exploits GPs to model the parts
of the dynamic system that are difficult to describe using first principles. GPs not
only give accurate predictions, but also quantify the residual uncertainty of this
model. It is vital to account for this uncertainty in the control algorithm, to pre-
vent constraint violations and performance deterioration. Monte Carlo samples of
the GPs are generated offline to tighten constraints of the NMPC to ensure joint
probabilistic constraint satisfaction online. Advantages of our method include fast
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online evaluation times, possibility to account for online learning alleviating con-
servativeness, and exploiting the flexibility of GPs and the data efficiency of first
principle models. The algorithm is verified on a case study involving a challenging
semi-batch bioreactor.

10.1 Introduction
Model Predictive Control (MPC) was developed in the late seventies and has

progressed significantly since then. Model predictive control is the only advanced
control methodology, which has made a significant impact on industrial control
engineering [165]. MPC is especially useful to deal with multivariable control
problems and important process constraints . Many processes are highly nonlinear
and may be operated along state trajectories, which motivates the use of nonlinear
MPC (NMPC). In particular NMPC applications based on first principles models
are becoming increasingly popular due to the advent of improved optimization
methods and the availability of more models [27]. In this paper we focus on finite
horizon control problems, for which chemical batch processes are a particularly
important example. These are employed in many different chemical sectors due
to their inherent flexibility. Previous works for batch processes include NMPC
based on the extended and unscented Kalman filter [33, 187], polynomial chaos
expansions [37, 177], and multi-stage NMPC [164].

A major limitation of NMPC in practice is the requirement for an accurate
dynamic plant model, which has been cited to take up to 80% of the MPC com-
missioning effort [244]. The required dynamic model for NMPC is often derived
from first principles taking advantage of the available prior knowledge of the pro-
cess [188]. While this can be an efficient modeling approach, often parts of the
model are notoriously difficult to represent using physical laws. In addition, mod-
eling certain phenomena may require excessive amounts of computational time.
Hybrid modeling approaches have therefore been proposed, which combine first
principles modeling with data-driven regression methods. For example in chemi-
cal engineering hybrid models have been developed to capture chemical reaction
kinetics [216, 247], the complex mechanics of catalyst deactivation [14], or for the
correction of first principles models using available measurements [26, 112]. Most
hybrid modeling applications focused on using neural networks (NNs). In this pa-
per we propose to use Gaussian processes (GPs) instead [220] due to their ability
to not only provide predictions, but also provide a measure of uncertainty for these
predictions difficult to obtain by other nonlinear modeling approaches [141]. GPs
compute predictive Gaussian distributions as output estimates, whose mean serves
as the prediction and the variance as a measure of uncertainty. GPs for regres-
sion were first introduced by [200]. It has been shown in [219] that GPs achieve
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comparable predictive accuracy as other modeling approaches like NNs. It is im-
portant to account for the GP measure of uncertainty to avoid constraint violations
and performance deterioration. To consider uncertainty for NMPC formulations
explicitly robust MPC [53] and stochastic MPC [88] approaches have been devel-
oped. Previous works on using GPs for hybrid modeling mainly focused on linear
ordinary differential equation systems of first- and second order that can be solved
exactly, see for example [7, 153, 228].

GP-based MPC was first proposed in [183], in which the GP is recursively
updated for reference tracking. In [142, 143] it is proposed to identify the GP of-
fline and apply it online for NMPC instead. The variance therein is constrained
to avoid the NMPC steering into regions of high uncertainty. Furthermore, GPs
have been used to overcome deviations between the approximate plant model and
the real plant model [139, 167]. GPs may also act as an efficient surrogate to es-
timate the mean and variance required for stochastic NMPC [36]. Applications
of GP-based MPC include the control of an unmanned quadrotor [60], the control
of a gas-liquid separation process [158], and the steering of miniature cars [113].
While these works show the feasibility of GP-based MPC, most formulations use
stochastic uncertainty propagation to account for the uncertainty measure provided
by the GP, e.g. [60, 113, 142, 143]. An overview of these approaches can be
found in [114]. Major limitations of stochastic propagation are open-loop uncer-
tainty growth and significantly increased computational times. Recently, several
papers have proposed alternative techniques to consider the GP uncertainty mea-
sure. [147] propagate ellipsoidal sets using linearization and accounting for the
linearization error by employing Lipschitz constants, which is however relatively
conservative. [169] use a robust MPC approach by bounding the one-step ahead
error from the GP, while [239] suggest a robust control approach for linear systems
to account for unmodeled nonlinearities. This approach may however be infeasible
if the deviation between the nonlinear system and linear system is too large.

In this paper we extend a method first proposed in [40, 42] to the hybrid model-
ing case. The approach determines explicit back-offs to tighten constraints offline
using closed-loop Monte Carlo (MC) simulations for finite horizon control prob-
lems. These in turn guarantee the satisfaction of probabilistic constraints online.
There are several advantages of this approach including avoidance of closed-loop
uncertainty growth, fast online computational times, and probabilistic guarantees
on constraint satisfaction. In addition, sampled GPs lead to deterministic models
that can be easily handled in a hybrid modeling framework. In contrast, obtain-
ing statistical moments for stochastic uncertainty propagation for hybrid models is
difficult.
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The paper is comprised of the following sections. In Section 9.2 the problem
definition is given. Thereafter, in Section 8.4 we outline the solution approach.
Section 8.5 outlines the semi-batch bioprocess case study to be solved, while in
Section 10.5 results and discussions for this case study are presented. Section 10.6
concludes the paper.

10.2 Problem definition
The dynamic system in this paper is assumed to be given by a discrete time non-

linear equation system with additive disturbance noise and an unknown function
q(·,uk):

xk+1 = F(xk,uk,q(·,uk)) + ωk, x0 ∼ N(µx0,Σx0), (10.1)

where xk ∈ R
nx represent the states, uk denotes the control inputs, q : Rnx ×

Rnu → Rnq are unknown nonlinear functions, and F : Rnx × Rnu × Rnq → Rnx

are known nonlinear functions. The initial condition x0 is assumed to follow a
Gaussian distribution with mean µx0 and covariance Σx0 . Additive disturbance
noise is denoted by ωk , which is assumed to follow a Gaussian distribution with
zero mean and covariance matrix Σω, ωk ∼ N(0,Σω).

Note most first principles models are given in continuous-time, which has im-
portant implications on the unknown function q(·,uk). For example, this model
needs to be well-identified not only at discrete times. Let δt = tk − tk−1 be
a constant sampling time at which measurements are taken. The corresponding
continuous-time model to F(·) is represented by f (·) assuming a zero hold:

F(xk,uk,q(·,uk)) =

∫ tk+1

tk

f (x(t),uk,q(x(t),uk))dt + xk, (10.2)

where xk = x(tk) is the value of the state at discrete time k.

In general q(·) may be composed of nq separate scalar functions:

q(x,u) = [q1(qin
1 (x,u)), . . . ,qnq(q

in
nq
(x,u))]T (10.3)

with nq separate input functions qin
i : Rnx × Rnu → R

n
qin
i for i = 1, . . . ,nq. Note

these input functions are assumed to be known, since commonly the unknown
function denotes an unmodeled physical process, for which the inputs are known
a priori. The input dimension nqin

i
is usually much lower than the dimension of

states and control inputs combined, and therefore modeling these components can
be considerably more data-efficient than determining the full state space model
from data instead.
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The variable ωk represents additive disturbance noise with zero mean and a
covariance matrix Σω. The measurement at discrete time t = tk can be expressed
as follows:

yk = Hxk + νk, (10.4)

where yk is the corresponding measurement, H ∈ Rny×nx is the linear observation
model, and νk denotes additive measurement noise with zero mean and a covari-
ance matrix Σν.

The aim of the control problem is to minimize a finite-horizon cost function:

VT (x0,U) = E

[
T−1∑
k=0

`(xk,uk) + `f (xT )

]
, (10.5)

where T ∈ N is the time horizon, U = [u0, . . . ,uT−1]
T ∈ RT×nu is a joint matrix

over all control inputs for time horizon T , ` : Rnx × Rnu → R represent the stage
costs, and `f : Rnx → R is the terminal cost.

The control inputs are subject to hard constraints:

uk ∈ U ∀k ∈ {0, . . . ,T − 1}. (10.6)

The states are subject to the satisfaction of a joint nonlinear chance constraint
over the time horizon T , which can be stated as:

P

{
T⋂
k=0

{xk ∈ Xk}

}
≥ 1 − ε, (10.7a)

where Xt is defined as:

Xk = {x ∈ R
nx | g

(k)
j (x) ≤ 0, j = 1, . . . ,ng}. (10.7b)

The state constraint requires the joint event of all xk for all k ∈ {0, . . . ,T} fulfilling
the nonlinear constraint sets Xk to have a probability greater than 1 − ε .

It is assumed that f (·) and qin
i for i = 1, . . . ,nq are known, while q(·) is un-

known and needs to be identified from data. We assume we are given N noisy
measurements according to Equation 10.4, which are represented by the following
two matrices:

Z = [z(1)
k
, . . . ,z(N )

k
]T ∈ RN×nz, (10.8a)

Y = [y(1)
k+1

, . . . ,y(N )
k+1
]T ∈ RN×ny, (10.8b)
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where z(i)
k
= (x(i)

k
,u(i)

k
) is a tuple of x(i)

k
and u(i)

k
, which are the i-th input of the data

at discrete time k with corresponding noisy measurements given by y(i)
k+1

at discrete
time k + 1. The matrix Z is a collection of input data with the corresponding noisy
observations collected in Y.

The noise in this problem arises in part from the additive disturbance noise
ω and from the noisy initial condition x0. The more important source of noise
however originates from the unknown function q(·), which is identified from only
finite amount of data. To solve this problem we train GPs to approximate q(·) from
the data in Equation 10.8. In the next section we first introduce GPs to model
the function q(·), which then also represent the residual uncertainty of q(·). This
uncertainty representation is thereafter exploited to obtain the required stochastic
constraint satisfaction of the closed-loop system.

10.3 Solution approach

10.3.1 Gaussian process hybrid model training

In this section we introduce GPs to obtain a probabilistic model description
for q(·). GPs are an example of flexible non-parametric models. The main appeal
of GPs is the fact that it requires little prior process knowledge and quantifies the
residual model uncertainty. A GP describes a distribution over functions and can
be viewed as a generalization of multivariate Gaussian distributions, and hence can
be utilized as a prior probability distribution on unknown functions in a Bayesian
framework. Formally, a GP is a collection of random variables of which any finite
subset follows a Gaussian distribution. For more information on GPs refer to [220,
263]. Hybrid modeling in this paper refers to the combination of first principles
modeling and data-driven modeling.

We use a separate GP for each component qi(qin
i (x,u)) for i = 1, . . . ,nq, which

is standard practice in the GP community to handle multivariate outputs [71]. Let
i refer to the GP of function i of q. Assume qi(·) is distributed as a GP with mean
function mi(·) and covariance function ki(·, ·), which fully specifies the GP prior:

qi(·) ∼ GP(mi(·), ki(·, ·)). (10.9)

The choice of the mean and covariance function define the GP prior. In this
study we use a zero mean function and the squared-exponential (SE) covariance
function:

mi(q
in
i ) := 0, (10.10a)

ki(qin
i ,q

′in
i ) := ζ2i exp

(
−

1

2
(z − z′)TΛi(z − z′)

)
, (10.10b)
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where qin
i ,q

′in
i ∈ Rnz are arbitrary inputs, ζ2i denotes the covariance magnitude,

and Λi := diag(λ1, . . . , λnz) is a scaling matrix.

Remark (Prior assumptions). Zero mean can be realized by normalizing the data.
Choosing the SE covariance function assumes the function to be modeled qi(·) is
smooth and stationary.

Now assume we are given N values of qi(·) , which we jointly denote as:

Qi = [q
(1)
i , . . . ,q(N )i ]

T. (10.11)

Assume these correspond to their q(·) values at the inputs defined in Z in Equa-
tion 10.8. The corresponding input response matrices to Z are then given by:

Qin
i = [q

in
i (z

(1)
k
), . . . ,qin

i (z
(N )
k
)]T. (10.12)

According to the GP prior the data vectors Qi follow the multivariate normal
distribution:

Qi ∼ N(0,ΣQi ), (10.13)

where [ΣQi ]lm = ki(qin
i (z

(l)
k
),qin

i (z
(m)
k
))+σ2

νiδl,m for each pair (l,m) ∈ {1, . . . ,N}2.
In essence this places a likelihood on the training dataset based on the continuity
and smoothness assumptions made by the choice of the covariance function. The
characteristic length-scales and hyperparameters introduced are jointly denoted by
Ψi = [λ1, . . . , λn

qin
i

, ζ2i , σ
2
νi]

T.

Given a value of Qi we can further determine a likelihood for values not part
of Qi using conditioning. Let Q̂i represent N̂ such values at the inputs:

Q̂in
i = [q

in
i (ẑ

(1)
k
), . . . ,qin

i (ẑ
(N̂ )
k
)]T. (10.14)

From the prior GP assumption Qi and Q̂i follow a joint Gaussian distribution:[
Qi

Q̂i

]
∼ N

([
0
0

]
,

[
ΣQi ΣT

Q̂i ,Qi

ΣQ̂i ,Qi
ΣQ̂i

])
, (10.15)

where [ΣQ̂i
]lm = k(qin

i (ẑ
(l)
k
),qin

i (ẑ
(m)
k
)) + σ2

νiδl,m for each pair (l,m) ∈ {1, . . . , N̂}2

and [ΣQ̂i ,Qi
]lm = k(qin

i (ẑ
(l)
k
),qin

i (z
(m)
k
)) for each pair (l,m) ∈ {1, . . . ,N}×{1, . . . , N̂}

[220].
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The likelihood of Q̂i conditioned on Qi is given by:

Q̂i ∼ N(µQ̂i
|Qi,ΣQ̂i

|Qi), (10.16)

where µQ̂i
|Qi := ΣT

Q̂i ,Qi
Σ−1

Q̂i
Qi and ΣQ̂i

|Qi = ΣQ̂i
− ΣT

Q̂i ,Qi
Σ−1Qi

ΣQ̂i ,Qi
.

So far the treatment of GPs has been relatively standard, however we are unable
to observe Qi and Q̂i directly. This problem is a common occurrence for latent
state space models, for which MCMC sampling [97] or maximum a posteriori
(MAP) [140] has been applied. In this paper we apply MAP to obtain the required
vectors Qi, for which we require the following likelihood based on Equation 10.7
and Equation 10.4:

yk+1 ∼ N(Hxk+1,Σν +HΣωHT), (10.17a)

where xk+1 =
∫ tk+1

tk
f (x(t),uk,q(x(t),uk))dt+xk is dependent on the dynamics and

crucially on the unknown function q(·).

Let Q, Q̂, and Ψ refer to the joint Qi, Q̂i and Ψi respectively, i.e.

Q = [Q1, . . . ,Qnq], Q̂ = [Q̂1, . . . , Q̂nq], Ψ = [Ψ1, . . . ,Ψnq]. (10.18)

Based on the different likelihoods we can now write down the likelihood equa-
tion for the data:

p(Y |Q, Q̂,Ψ,Z) ∝ p(Y |Q, Q̂,Z)p(Q̂|Q,Ψ,Z)

× p(Q|Ψ,Z)p(Q)p(Q̂)p(Ψ), (10.19a)

where the different likelihoods are given as follows:

p(Y |Q̂,Z) =

N∏
j=1

N(y
(j)
k+1

; F̂(x
(j)
k
,u
(j)
k
, Q̂),Σν +HΣωHT), (10.19b)

p(Q̂|Q,Ψ,Z) =

nq∏
i=1

N(Q̂i;µQ̂i
|Qi,ΣQ̂i

|Qi), (10.19c)

p(Q|Ψ,Z) =

nq∏
i=1

N(Qi; 0,ΣQi ), (10.19d)

where F̂(xk,uk, Q̂) refers to a discretized state-space model, for which Q̂ represents
the values of q(·) at the discretizaton points. The likelihoods stated above can be
understood as follows: p(Y |Q, Q̂,Z) is the likelihood of the observed data given
Q̂,Z, p(Q̂|Q,Ψ,Z) is the likelihood of Q̂ given Q,Ψ,Z, and lastly p(Q|Ψ,Z) refers
to the likelihood of Q given Ψ,Z.



10.3. Solution approach 243

Example 10.3.1 (Example discretization for MAP). F̂(xk,uk, Q̂) can in general
represent any valid discretization rule. Assume for example we apply the trapezium
rule for discretization, then we obtain the following relation for the known input
z
(j)
k
= (x

(j)
k
,u
(j)
k
):

x
(j)
k+1
= x
(j)
k
+ 0.5δt

(
f (x̂
(j)
1 ,u

(j)
k
, q̂
(j)
1 ) + f (x̂

(j)
2 ,u

(j)
k
, q̂
(j)
2 )

)
(10.20)

where x̂i and q̂
(j)
1 refer to the ith state and q-value of the discretization rule and

F̂(xk,uk, Q̂) = x
(j)
k+1

. These states x̂
(j)
1 = x

(j)
k

and x̂
(j)
2 = x

(j)
k+1

, however note in
general that the initial- and end-point may not be part of the discretization points.
Let the number of discretization points required per interval be given by ds, such
that for the trapezium rule above ds = 2. The corresponding matrices required
for the MAP likelihood are given by Q̂ = [q̂(1)1 , . . . , q̂(1)

ds
, . . . , q̂(N )1 , . . . , q̂(N )

ds
]T ∈

R(dsN )×nq and
Ẑ = [ẑ(1)1 , . . . , ẑ(1)

ds
, . . . , ẑ(N )1 , . . . , ẑ(N )

ds
]T ∈ R(dsN )×nq , where ẑ

(j)
i = (x̂

(j)
i ,u

(j)
k
). For

implicit integration rules like the one above either a Newton solver needs to be
employed or the unknown values x̂

(j)
2 are added to the optimization variables with

Equation 10.20 as additional equality constraints for each training data-point.

The remaining likelihoods p(Q), p(Q̂), and p(Ψ) are prior distributions of Q,
Q̂, andΨ respectively. These are a helpful tool to avoid overfitting and can be used
to easily integrate prior knowledge into the optimization problem, e.g. knowledge
on the approximate magnitude of Q. Refer to [140] for examples on how priors
can be used to incorporate prior knowledge on latent variables, such as Q.

The required values for Q and Ψ are then found by minimizing the negative
log-likelihood of Equation 10.19a:

(Q∗,Ψ∗, Q̂∗) ∈ argmin
Q,Ψ,Q̂

L(Q,Ψ) = − log p(Y |Q, Q̂,Ψ,Z), (10.21)

where Q∗, Ψ∗, Q̂∗ are the required maximum a posteriori (MAP) estimates.

In the following sections we assume that the GP has been fitted in this way
such that we have MAP values Q∗ and Ψ∗. The predictive distribution of q(·) at an
arbitrary input z = (x,u) given the dataset D = (Z,Q∗) is as follows:

q(z)|D ∼ N(µq(z;D),Σq(z;D)) (10.22a)

with

µq(z;D) = [kT
1 Σ
−1
Q1

Q∗1, . . . ,k
T
nq
Σ−1Qnq

,Q∗nq
]T (10.22b)
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Σq(z;D) = (10.22c)

diag
(
ζ2∗1 + σ

2∗
ν1 − kT

1 Σ
−1
Q1

k1, . . . , ζ
2∗
nq
+ σ2∗

νnq
− kT

nq
Σ−1Qnq

knq

)
,

where ki = [ki(qin
i (z),q

in
i (z

(1)
k
)), . . . , ki(qin

i (z),q
in
i (z

(N )
k
))]T. In Figure 10.1 we il-

lustrate a prior GP in the top graph and the posterior GP in the bottom graph.

Figure 10.1: Illustration of a GP of a 1-dimensional function perturbed by noise. On the
top the prior of the GP is shown, while on the bottom the Gaussian process was fitted to
several data points to obtain the posterior.

10.3.2 Hybrid Gaussian process model predictive control formulation

In this section we define the NMPC optimal control problem (OCP) based on
the GP hybrid nominal model fitted in the previous section, where the nominal
model refers to the mean function in Equation 10.22. The initial state for the GP
hybrid NMPC formulation is assumed to be measured or estimated, and propa-
gated forward using Equation 10.1. The predicted states are exploited to optimize
the objective subject to tightened constraints. Let the corresponding optimization
problem be denoted as PT

(
µq(·;D); x, k

)
for the current known state x at discrete
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time k based on the mean function µq(·;D):

minimize
Ûk:T−1

V̂T (x, k, Ûk:T−1) =

T−1∑
j=k+1

`(x̂j, ûj) + `f (x̂T )

subject to:

x̂j+1 = F̂(x̂j, ûj,µq(ẑ(t);D)), ẑ(t) = (x̂(t), ûj) ∀ j ∈ {k, . . . ,T − 1}

x̂j+1 ∈ Xj+1, ûj ∈ U ∀ j ∈ {k, . . . ,T − 1}

x̂k = x,

(10.23)

where x̂, û, and V̂T (·) refer to the states, control inputs, and control objective of the
MPC formulation, Ûk:T−1 = [ûk, . . . , ûT−1]

T, and Xk is a tightened constraint set
denoted by: Xk = {x ∈ R

nx | g
(k)
i (x) + b(k)i ≤ 0, i = 1, . . . ,ng}. The variables b(k)i

represent so-called back-offs, which tighten the original constraints Xk defined in
Equation 10.7.

Remark (Objective in expectation). Note the objective above in Equation 10.23
aims to determine the optimal trajectory for the nominal and not the expectation
of the objective as defined in Equation 10.5, since it is computationally expensive
to obtain the expectation of a nonlinear function [114]. Further, the difference
between the expectation and the nominal system is commonly marginal.

The NMPC algorithm solves PT

(
µq(·;D); xk, k

)
at each sampling time tk

given the current state xk to obtain an optimal control sequence:

Û∗k:T−1

(
µq(·;D); xk, k

)
= [û∗k

(
µq(·;D); xk, k

)
, . . . , û∗T−1

(
µq(·;D); xk, k

)
]T.

(10.24)

Only the first optimal control action is applied to the plant at time tk before the
same optimization problem is solved at time tk+1 with a new state measurement
xk+1. This procedure implicitly defines the following feedback control law, which
needs to be repeatedly solved for each new measurement xk :

κ(µq(·;D); xk, k) = û∗k

(
µq(·;D); xk, k

)
. (10.25)

It is explicitly denoted that the control actions depend on the GP hybrid model
used.

Remark (Full state feedback). Note in the control algorithm we have assumed
full state feedback, i.e. it is assumed that the full state can be measured without
noise. This assumption can be dropped if required by introducing a suitable ob-
server and introduced in the closed-loop simulations to account for this additional
uncertainty.
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10.3.3 Closed-loop Monte Carlo sample

In Equation 10.25 the control policy is stated, which is obtained by repeatedly
solving the optimization problem in Equation 10.23 with updated initial condi-
tions. GPs are distribution over functions and hence a GP sample describes a
deterministic function. An example of this can be seen in Figure 10.1, in which
several GP samples are depicted. In this section we outline how MC samples of
GPs can be obtained for a finite time horizon, each describing separate state trajec-
tories according to Equation 10.1. These are then exploited in the next section to
tighten the constraints defined in the previous section. In general exact GP realiza-
tions cannot be obtained by any known approach, since generating such a sample
would require sampling an infinite dimensional stochastic process. Instead, ap-
proximate approaches have been applied, such as spectral sampling [46]. Exact
samples of GP are however possible if the GP only needs to be evaluated at a finite
number of points. This is for example the case for discrete time GP state space
models as proposed in [68, 249]. We next outline this technique and show how
this can be extended to the continuous-time case for hybrid GP models, in which
discretization is applied.

Assume we are given a state space model defined as in Section 10.2 in Equation
10.1, and a fitted GP model for q(·) determined from Section 10.3.1. The predictive
distribution based on available data D = (Z,Y) is then given by Equation 10.22.
The aim here is to show how to obtain a sample of the state sequence, which can
be repeated multiple times to obtain multiple possible state sequences. The initial
condition x0 follows a known Gaussian distribution as defined in Equation 10.1.
Let the state sequence be given by:

X(s) = [χ(s)0 , . . . ,χ
(s)
T ]

T, (10.26)

where χ(s)
k

represents the state sequence of a GP realization s and χ(s)
k

the state of
this realization at time t = tk .

Further, let the corresponding control actions at time t = tk be denoted by
u(s)
k

. The control actions are assumed to be the result of the GP nominal NMPC
feedback policy defined in Equation 10.25 and hence can be stated as:

u(s)
k
= κ(µq(·;D); χ

(s)
k
, k). (10.27)

We denote the control actions over the time horizon T jointly as:

U(s) = [u(s)0 , . . . ,u(s)T−1]
T = [κ(µq(·;D); χ

(s)
0 ,0), . . . , κ(µq(·;D); χ

(s)
T−1,T − 1)]T,

(10.28)
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which are different for each MC sample s due to feedback.

To obtain a sample of a state sequence we first need to sample the initial state
x0 ∼ N(µx0,Σx0) to attain the realization χ(s)0 . Thereafter, the next state is given
by Equation 10.2, which is dependent on the fitted GP of q(·). An exact approach
to obtain an independent sample of a GP is as follows. Any time the GP needs to
be evaluated at a certain point, the response at this point q(·) is sampled according
to the predictive distribution in Equation 10.22. This sampled point is then part
of the sampled function path, and hence the GP needs to be conditioned on it.
This necessitates treating this point as a noiseless pseudo training point without
changing the hyperparameters. Note if the sample path were to return to the same
evaluation point, it would then lead to the same output due to this conditioning
procedure. Consequently, the sampled function is deterministic as expected.

Furthermore, we also need to sample ωk ∼ N(0,Σω) for each k. We refer
to these realizations as w (s)

k
. We assume Equation 10.2 has been adequately dis-

cretized, such that the GP of q(·) needs to be evaluated at only a finite number of
points. The state sequence for realization s can then be given as follows:

χ
(s)
k+1
= F̂(χ(s)

k
,u(s)

k
,Q
(s)
k
) + w (s)

k
∀k ∈ {1, . . . ,T}, (10.29)

where Q(s)
k

are discretization points sampled from the GP following the procedure
outlined above and F̂(·) represents the discretized version of Equation 10.2.

Example 10.3.2. We give an example here of the procedure above exploiting the
trapezium rule for F̂(χ(s)

k
,u(s)

k
,Q
(s)
k
). Note the covariance matrix and dataset of

the GPs are updated recursively. Assume we are at time k for MC sample s, and
the covariance matrix of qi(·) is given by Σ(s)

Qik
with the updated data set D(s)

k
=

(Z(s)
k
,Q∗(s)

k
), where Q∗(s)

k
= [Q∗(s)

1k
, . . . ,Q∗(s)

nqk
] and Z(s)

k
= [z(s1), . . . ,z(sN

k )]T as in

Section 10.3.1. The dataset size Nk = N + (k − 1) × ds, since at each time step k,
ds discretization points are added to the dataset.

Let the number of discretization points per time interval be given by ds, for the
trapezium rule ds = 2. The discretization points then follow the distribution:

Q̂(s)
ik
∈ Rds ∼ N(µ

Q̂
(s)
ik

|Q(s)
ik
,Σ

Q̂
(s)
ik

|Q(s)
ik
), (10.30)

where µ
Q̂
(s)
ik

|Q(s)
ik

:= ΣT

Q̂
(s)
ik
,Q
(s)
ik

Σ−1
Q̂
(s)
ik

Q(s)
ik

and Σ
Q̂
(s)
ik

|Q(s)
ik
= Σ

Q̂
(s)
ik

−ΣT

Q̂
(s)
ik
,Q
(s)
ik

Σ
Q
(s)
ik

Σ
Q̂
(s)
ik
,Q
(s)
ik

,

[Σ
Q̂
(s)
ik

]lm = k(qin
i (ẑ

(sl)
k
),qin

i (ẑ
(sm)
k
)) for each pair (l,m) ∈ {1, . . . , ds}2 and [Σ

Q̂
(s)
ik
,Q
(s)
ik

]lm =

k(qin
i (ẑ

(sl)
k
),qin

i (z
(sm)
k
)) for each pair (l,m) ∈ {1, . . . ,Nk} × {1, . . . , ds}.
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Firstly, we sample ds independent standard normally distributed ξi ∈ Rnq ∼

N(0, I) for each GP i. The sampled discretization points can then be expressed by:

Q
(s)
ik
= µ

Q̂
(s)
ik

|Q(s)
ik
+ ξi · Σ

1
2

Q̂
(s)
ik

|Q(s)
ik
), (10.31)

where Q(s)
k
∈ Rds ∼ N(µ

Q̂
(s)
ik

|Q(s)
ik
,Σ

Q̂
(s)
ik

|Q(s)
ik
).

Once Q(s)
k

has been sampled we arrive at the next state k+1 for the MC sample
as follows:

χ
(s)
k+1
= χ
(s)
k
+ 0.5δt

(
f (χ̂
(j)
1 ,u

(j)
k
,Q
(s)
1k
) + f (χ̂

(j)
2 ,u

(j)
k
,Q
(s)
2k
)

)
, (10.32)

where χ̂(j)1 = χ
(s)
k

and χ̂(j)2 = χ
(s)
k+1

, since for the trapezium rule the discretiza-
tion points coincide with the initial and the end-points, which is not true for other
discretization rules. The value of the inputs for the discretization points are conse-
quently given by ẑ(sl)

k
= (χ̂

(s)
l
,u(s)

k
). For implicit integration rules like the one above

a Newton solver needs to be employed using Equations 10.31 and 10.32. Equation
10.31 is required due to the dependency of ẑ(sl)

k
on χ̂(j)

l
.

Lastly, the data matrices for the particular MC sample need to be updated as
follows:

Z(s)
k+1
= [Z(s)

k
, ẑ(s1)

k
, . . . , ẑ(sds )

k
]T, (10.33a)

Q∗(s)
k+1
= [Q∗(s)T

k
,Q
(s)T
k
]T, (10.33b)

[ΣQik
]lm = ki(qin

i (z
(sl)
k
),qin

i (z
(sm)
k
)) + σ2

νiδl,m ∀(l,m) ∈ {1, . . . ,Nk+1}2.

(10.33c)

Repeating this procedure multiple times then gives us multiple MC samples
of the state sequence X(s). The aim then is to use the information obtained from
these sequences to iteratively tighten the constraints for the GP NMPC problem in
Equation 10.23 to obtain the probabilistic constraint satisfaction required from the
initial problem definition in Section 10.2.

10.3.4 Probabilistic constraint tightening

This section outlines how to systemically tighten the constraints based on MC
samples using the procedure outlined in the previous chapter. Firstly define the
function C(·), which is a single-variate random variable that represents the satis-
faction of the joint chance constraints:

C(X) = inf
(j ,k)∈{1,...,ng }×{0,...,T }

g
(k)
j (xk), (10.34a)
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FC(X) = P {C(X) ≤ 0} = P

{
T⋂
k=0

{xk ∈ Xk}

}
, (10.34b)

where X = [x0, . . . ,xT ]
T defines a state sequence, and Xk = {x ∈ R

nx | g
(k)
j (x) ≤

0, j = 1, . . . ,ng}.

The evaluation of the probability in Equation 10.34 is generally intractable, and
instead a non-parametric sample approximation is applied, known as the empirical
cumulative distribution function (ecdf). Assuming we are given S MC samples of
the state trajectory X and hence of C(X), the ecdf estimate of the probability in
Equation 10.34 can be defined as follows:

FC(X) ≈ F̂C(X) =
1

S

S∑
s=1

1{C(X(s)) ≤ 0}, (10.35)

where X(s) is the s-th MC sample and F̂C(X) is the ecdf approximation of the true
probability FC(X).

The accuracy of the ecdf in Equation 10.35 significantly depends on the num-
ber of samples used and it is therefore paramount to account for the residual un-
certainty of this sample approximation. This problem has been previously studied
in statistics, for which the following probabilistic lower bound has been proposed
known as “exact confidence bound” [67]:

Theorem 10.3.1 (Confidence interval for empirical cumulative distribution func-
tion). Assume we are given a value of the ecdf, β̂ = F̂C(X), as defined in Equa-
tion 10.35 based on S independent samples of C(X), then the true value of the
cdf, β = FC(X), as defined in Equation 10.34 has the following lower confidence
bounds:

P
{
β ≥ β̂lb

}
≥ 1 − α, β̂lb = betainv

(
α,S + 1 − S β̂,S β̂

)
, (10.36)

Proof. The proof uses standard results in statistics and can be found in [67, 242].
�

In other words the probability that the probability defined in Equation 10.34,
β, exceeds β̂lb is greater than 1 − α. Consequently, for small α β̂lb can be seen as
a conservative lower bound of the true probability β accounting for the statistical
error introduced through the finite sample approximation. Based on the definition
of C(X) and the availability of S closed-loop MC simulations of the state sequence
X, assuming we are given a value for β̂lb according to Equation 10.36 with a
confidence level of 1 − α, then the following Corollary holds:
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Corollary 10.3.1 (Feasibility probability). Assuming the stochastic system in Equa-
tion 10.1 is a correct description of the uncertainty of the system including the fit-
ted GP and ignoring possible inaccuracies due to discretization errors, and given
a value of the lower bound β̂lb ≥ 1−ε defined in Equation 10.36 with a confidence
level of 1−α, then the original chance constraint in Equation 10.7 holds true with
a probability of at least 1 − α.

Proof. The realizations of possible state sequences described in Section 10.3.3
are exact within an arbitrary small discretization error and therefore these S in-
dependent state trajectories X provide a valid lower bound β̂lb from Equation
10.36 to the true cdf value β. If β̂lb is greater than or equal to 1 − ε , then the
following probabilistic bound holds on the true cdf value β according to The-
orem 10.3.1: P

{
β ≥ β̂lb ≥ 1 − ε

}
≥ 1 − α, which in other words means that

β = P {C(X ≤ 0)} ≤ 1 − ε with a probability of at least 1 − α. �

Now assume we want to determine back-off values for the nominal GP NMPC
algorithm in Equation 10.23, such that βlb is equal to 1− ε for a chosen confidence
level 1 − α. This in turn guarantees the satisfaction of the original chance con-
straint with a probability of at least 1 − α. The update rule to accomplish this has
two steps: Firstly an approximate constraint set is defined and secondly this set is
iteratively adjusted. The approximate constraint set should reflect the difference
of the constraint values for the state sequence of the nominal MPC model and the
constraint values of possible state sequence realizations of the real system in Equa-
tion 10.1. The back-offs are first set to zero and S MC samples are run according
to Section 10.3.3. Now assume we aim to obtain back-off values that imply satis-
faction of individual chance constraints as follows to attain an approximate initial
constraint set:

g
(k)
j (χk) + b(k)j = 0 =⇒ P

{
g
(k)
j (χk) ≤ 0

}
≥ 1 − δ, (10.37)

where δ is a tuning parameter and should be set to a reasonably low value and χk
refers to states according to the nominal trajectory as defined in Section 10.3.3.

It is proposed in [206] to exploit the inverse ecdf to fulfill the requirement given
in Equation (10.37) using the S MC samples available. The back-offs can then be
stated as:

b̃(k)j = F̂−1
g
(k)
j

(1 − δ) − g(k)j (χk) ∀( j, k) ∈ {1, . . . ,n
(k)
g } × {1, . . . ,T}, (10.38)

where F̂−1
g
(t )
j

denotes the inverse of the ecdf given in Equation 10.35 and b̃(t)j refers

to these initial back-off values. The inverse of an ecdf can be determined by the
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quantile values of the S constraint values from the MC samples with cut-off prob-
ability 1 − δ.

This first step gives us an initial constraint set that depends on the difference
between the nominal prediction χk as used in the MPC and possible state sequences
according to the MC simulations. The parameter δ in this case is only a tuning
parameter to obtain the initial back-off values.

In the next step these back-off values are modified using a back-off factor γ:

b(k)j = γb̃(k)j ∀( j, k) ∈ {1, . . . ,n(k)g } × {1, . . . ,T}. (10.39)

A value of γ is sought for which the lower bound βlb is equal to 1 − ε to
obtain the required chance constraint satisfaction in Equation 10.7, which can be
formulated as a root finding problem:

h(γ) = β̂lb(γ) − (1 − ε), (10.40)

where the aim is to determine a value of γ, such that h(γ) is approximately zero.
β̂lb(γ) refers to the implicit dependence of β̂lb on the S MC simulations resulting
from the tightened constraints of the nominal GP NMPC algorithm according to
Equation 10.39.

In other words the back-off values of the NMPC are adjusted until they return
the required chance constraint satisfaction in Equation 10.7. To drive h(γ) to zero
we employ the bisection technique [20], which seeks the root of a function in an
interval aγ and bγ, such that h(aγ) and h(bγ) have opposite signs. It is expected
that a too high value of the back-off factor leads to a highly conservative solution
with a positive sign of h(·), while a low value of the back-off factor often results
in negative values of h(·). In our algorithm the initial aγ is set to zero to evaluate
b̃(k)j in the first step. The bisection method repeatedly bisects the interval, in which
the root is contained. The output of the algorithm are the required back-offs in
nb back-off iterations. The overall procedure to attain the back-offs is given in
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Algorithm 10.1.

Algorithm 10.1: Back-off iterative updates

Input : µx0 , Σx0 , µq(z;D), Σq(z;D), D, T , VT (x, k, Ûk:T−1), Xk , Uk , ε , α,
δ, learning, S, nb

Initialize: Set all b(k)j = 0 and δ to some reasonable value, set aγ = 0 and bγ
to some reasonably high value, such that bγ − (1 − ε) has a positive
sign.

for nb back-off iterations do
if nb > 0 then

cγ := (aγ + bγ)/2
b(t)j := cγ b̃(t)j ( j, t) ∈ {1, . . . ,n(t)g } × {1, . . . ,T}

Define GP NMPC in Equation 10.23 with back-offs b(t)j
Run S MC simulations to obtain X(s) using the GP NMPC policy with

updated back-offs

β̂ := F̂C(X(s)) =
1
S

∑S
s=1 1{C(X(s)) ≤ 0}

β̂lb := betainv
(
α,S + 1 − S β̂,S β̂

)
if nb = 0 then

b̃(t)j = F̂−1
g
(t )
j

(δ) − g
(t)
j (χt ) ∀( j, t) ∈ {1, . . . ,n

(t)
g } × {1, . . . ,T}

β̂
aγ
lb

:= β̂lb − (1 − ε)

else
β̂
cγ
lb

:= β̂lb − (1 − ε)

if sign(β̂cγ
lb
) = sign(β̂aγ

lb
) then

aγ := cγ
β̂
aγ
lb

:= β̂
cγ
lb

else
bγ := cγ

Output : b(t)j ∀( j, t) ∈ {1, . . . ,n(t)g } × {1, . . . ,T}, β̂lb

10.3.5 Algorithm

A summary of the overall algorithm proposed in this paper is given in this
section. As first step the problem needs to be specified following the problem
definition in Section 10.2. From the available data the GP hybrid model needs to
be trained as outlined in Section 10.3.1. Thereafter, the back-offs are determined
offline iteratively following Algorithm 10.1. These back-offs then define the tight-
ened constraint set for the GP NMPC feedback policy, which is run online to solve
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the problem initially outlined. An overall summary can be found in Algorithm
10.2.

Algorithm 10.2: Back-off GP NMPC
Offline Computations

1. Build GP hybrid model from data-set D = (Z,Y) as shown in Section
10.3.1.

2. Choose time horizon T , initial condition mean µx0 and covariance Σx0 ,
measurement covariance matrix Σν, disturbance covariance matrix Σω,
stage costs ` and `f , constraint sets Xk,Uk ∀k ∈ {1, . . . ,T}, chance
constraint probability ε , ecdf confidence α, tuning parameter δ, the number
of back-off iterations nb, and the number of Monte Carlo simulations S to
estimate the back-offs.

3. Determine explicit back-off constraints using Algorithm 10.1.

4. Check final probabilistic value β̂lb from Algorithm 10.1 if it is close
enough to ε .

Online Computations
for k = 0, . . . ,T − 1 do

1. Solve the MPC problem in Equation 10.23 with the tightened constraint set
from the Offline Computations.

2. Apply the first control input of the optimal solution to the
real plant.

3. Measure the current state xk .

10.4 Case study
The case study is based on a semi-batch reaction for the production of fatty

acid methyl ester (FAME) from microalgae, which is considered a promising re-
newable feedstock to meet the growing global energy demand. FAME is the final
product of this process, which can be employed as biodiesel [82]. We exploit a
simplified dynamic model to verify the hybrid GP NMPC algorithm proposed in
this paper. The GP NMPC has an economic objective, which is to maximize the
FAME (biodiesel) concentration for the final batch product subject to two path
constraints and one terminal constraint.
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10.4.1 Semi-batch bioreactor model

The simplified dynamic system consists of four ODEs describing the evolution
of the concentration of biomass, nitrate, nitrogen quota, and FAME. We assume
a fixed volume fed-batch reactor. The balance equations can be stated as follows
[82]:

dCX

dt
= 2µm(I0,CX)

(
1 −

kq
q

) (
N

N + KN

)
CX − µdCX, CX(0) = CX0

dCN

dt
= −µN

(
CN

CN + KN

)
CX + FN , CN (0) = CN 0 (10.41)

dq
dt
= µN

(
CN

CN + KN

)
− µm(I0,CX)

(
1 −

kq
q

)
q, q(0) = q0

dFA
dt
= µm(I0,CX)(θ

′q − ε ′FA)
(
1 −

kq
q

)
− γ′µN

(
CN

CN + KN

)
CX, FA(0) = FA0,

where CX is the concentration of biomass in gL−1, CN is the nitrate concentration
in mgL−1, q is the dimensionless intracellular nitrogen content (nitrogen quota),
and FA is the concentration of FAME (biodiesel) in gL−1. Control inputs are given
by the incident light intensity (I0) in µmol.m−2.s−1 and nitrate inflow rate (FN )
in mg.L−1.h−1. The state vector is hence given by x = [CX,CN ,q,FA]T and the
input vector by u = [I0,FN ]

T. The corresponding initial state vector is given by
x0 = [CX0,CN 0,q0,FA0]

T. The remaining parameters can be found in Table 10.1
taken in part from [82].
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Table 10.1: Parameter values for ordinary differential equation system in Equation 10.41.

Parameter Value Units
µM 0.359 h−1

µd 0.004 h−1

kq 1.963 mg.g−1

µN 2.692 mg.g−1.h−1

KN 0.8 mg.L−1

ks 91.2 µmol.m−2.s−1

ki 100.0 µmol.m−2.s−1

α′ 196.4 L.mg−1.m−1

θ ′ 6.691 -
γ′ 7.53 ×103 -
ε ′ 0.01 -
τ′ 1.376 -
δ′ 9.904 -
φ′ 16.89 -
β′ 0.0 m−1

L 0.0044 m

The function µm(I0,CX) describes the complex effects of light intensity on the
biomass growth, which we assume to be unknown in this study. This helps simplify
the model significantly, since these effects are dependent on the distance from the
light source and hence would lead to a partial differential equation (PDE) model if
modeled by first principles. The actual function can be given as follows to obtain
values to train the hybrid GP:

µm(I0,CX) =
µM
L

∫ L

z=0

©­« I(z, I0,CX)

I(z, I0,CX) + ks +
I (z,I0,CX )

2

ki

ª®¬ dz, (10.42)

where I(z, I0,CX) = I0 exp (−(α′CX + β
′)z), z is the distance from the light source

in m, and L is the reactor width in m.

10.4.2 Problem set-up

The problem has a time horizon T = 12 with a batch time of 480h, and hence a
sampling time of 40h. Next we state the objective and constraint functions accord-
ing to the general problem definition in Section 10.2 based on the dynamic system
in Equation 10.41.

Measurement noise covariance matrix Σν and disturbance noise matrix Σω are
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defined as:

Σν = 10−4 × diag
(
2.52,8002,5002,30002

)
, (10.43a)

Σω = 10−4 × diag
(
0.12,2002,102,1002

)
. (10.43b)

The mean and covariance of the initial condition are set to:

µx0 = [0.4,0,150,0]T,Σx0 = 10−3 × diag(0.22,0,1002,0). (10.44)

The aim of the control problem is to maximize the amount of biodiesel in the
final batch with a penalty on the change of control actions. The corresponding
stage and terminal costs can be given as:

`(xt,ut ) = ∆
T
ut

R∆ut , `f (xT ) = −FAT . (10.45)

where ∆ut = ut − ut−1 and R = 5 × 10−3 × diag(1/4002,1/402). The objective is
then defined by Equation 10.5.

There are two path constraints. Firstly, the nitrate is constrained to be below
800mg/L. Secondly, the ratio of nitrogen quota q to biomass may not exceed 0.011
for high density biomass cultivation. These are then defined as:

g
(t)
1 = CN t − 800 ≤ 0 ∀t ∈ {0, . . . ,T}, (10.46a)

g
(t)
2 = qt − 0.011CXt ≤ 0 ∀t ∈ {0, . . . ,T}. (10.46b)

Further, the nitrate should reach a concentration below 150mg/L for the final
batch. This constraint can be stated as:

g
(T )
3 (xT ) = CNT − 200 ≤ 0, g(t)3 (xt ) = 0∀t ∈ {0, . . . ,T − 1}. (10.47)

The control inputs light intensity and nitrate inflow rate are subject to the fol-
lowing box constraints:

120 ≤ It ≤ 300 ∀t ∈ {0, . . . ,T}, (10.48a)

0 ≤ FN t ≤ 10 ∀t ∈ {0, . . . ,T}. (10.48b)

The priors were set to the following values:

p(Q) = N(−6 × 1,50 × I), (10.49a)
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p(Q̂) = N(−6 × 1,50 × I), (10.49b)

p(Ψ) = N([0,5 × 10−3]T,diag(20 × I,1 × 10−6)). (10.49c)

Maximum probability of violation was to ε = 0.1. To compute the back-offs
a total of S = 1000 MC iterations are employed for each iteration according to
δ = 0.05 and α = 0.01. The number of back-off iterations was set to nb = 14.

10.4.3 Implementation and initial dataset generation

The discretization rule used for the MAP fit, for the GP MC sample, and for
the GP NMPC formulation exploits direct collocation with 4th order polynomials
with the Radau collocation points. The MAP optimization problem and the GP
NMPC optimization problem are solved using Casadi [9] to obtain the gradients
of the problem using automatic differentiation in conjunction with IPOPT [258].
IDAS [116] is utilized to simulate the real plant. The input dataset Z was designed
using the Sobol sequence [238] for the entire input data in the range zi ∈ [0,3] ×
[0,800] × [0,600] × [0,3500] × [120,300] × [0,10]. The ranges were chosen for
the data to cover the expected operating region. The outputs Y were then obtained
from the IDAS simulation of the system perturbed by Gaussian noise as defined in
the problem setup.

10.5 Results and discussions
Firstly, the accuracy of the proposed hybrid GP model is verified by creating

1000 random datapoints. For these we calculate the absolute prediction error and
the absolute error over the standard deviation, which gives an indication on the
accuracy of the uncertainty measure provided by the GP. These results are sum-
marized in Figure 10.2. For comparison purposes three cases of the GP NMPC
algorithm are compared. Firstly, we run the above case study using 30 datapoints
and 50 datapoints. In addition, we compare this with the previously proposed GP
NMPC algorithm in [42] that aims to model the dynamic state space equations
using GPs using 50 datapoints. Lastly, these three cases are further compared to
their nominal variations, i.e. setting all back-offs in the formulations to zero. The
results of these runs are highlighted in Figures 10.3-10.8 and in Table 10.2. From
these results we can draw the following conclusions:

• From Figure 2 we can see in the first graph that the median absolute error
decreases significantly going from a dataset size of 30 to 50, which is as ex-
pected. Overall the hybrid model predictions seem reasonably well. The GP
error measure can be tested by dividing the absolute error by the standard
deviation, for which the vast majority of values should be within approxi-
mately a range of 0 to 3. A value above 3 has a chance of 0.6% of occurrence
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according to the underlying Gaussian distribution. For N = 30 we observe
no value above 3, while for N = 50 we observed 1.1% of values above 3. It
can therefore be said that the error measure for N = 30 is more conservative,
but both seem to show reasonable behavior.

• From Figures 10.3-10.5 it can be seen that the hybrid approaches both lead
to generally good solutions, while the non-hybrid approach is unable to deal
with the spread of the trajectories for constraint g2. Further, it can be seen
that the uncertainty of GP hybrid 50 is less than GP hybrid 30 from the
significantly smaller spread of constraint g2, which is as expected given the
observations from Figure 10.2.

• Figure 10.6 illustrates the better performance of GP hybrid 50 over GP hy-
brid 30 obtaining a nearly 40% increase in the objective on average. This
is due to two reasons: Firstly more data leads to better decisions on average
and secondly lower uncertainty means that the GP hybrid 50 is less conser-
vative than GP hybrid 30. Lastly, GP non-hybrid 50 achieves high objective
values by violating the second constraint g2 by a substantial amount.

• Figures 10.7 and 10.8 show that the nominal approach ignoring back-offs
leads to constraint violations for all GP NMPC variations, while with back-
offs the two hybrid approaches remain feasible throughout. GP non-hybrid
50 overshoots the constraint by a huge amount due to the NMPC becoming
infeasible for the real plant. Overall, the importance of back-offs is shown
to maintain feasibility given the presence of plant-model mismatch for both
GP hybrid cases. However, for GP non-hybrid 50, the uncertainty is too
large to attain a reasonable solution.

• In Table 10.2 the average computational times are between 78ms and 174ms.
It can be seen that the GP hybrid approaches have higher computational
times, which is due to the discretization required in the NMPC optimiza-
tion problem. Overall the computational time of a single NMPC iteration
is relatively low, while the offline computational times required to attain the
back-offs is relatively high.
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Figure 10.2: GP hybrid model cross-validation for dataset sizes N = 30 and N = 50 using
1000 randomly generated points in the same range as the training datapoints. The LHS
graph shows the box plot of the absolute error, while the RHS graph shows the absolute
error over the standard deviation.

Figure 10.5: The 1000 MC trajectories at the final back-off iteration of the nitrate concen-
tration for the constraints g1 and g2 (LHS) and the ratio of bioproduct to biomass constraint
g2 (RHS) for the non-hybrid GP with N = 50 modeling the entire state space model.

Table 10.2: Lower bound on the probability of satisfying the joint constraint β̂lb , average
computational times to solve a single OCP for the GP NMPC, and the average computa-
tional time required to complete one back-off iteration.

Algorithm variation Probability β̂lb OCP time (ms) Back-off iteration time (s)
GP hybrid 30 0.89 109 1316
GP hybrid 50 0.91 174 2087
GP non-hybrid 50 0.91 78 824
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Figure 10.3: The 1000 MC trajectories at the final back-off iteration of the nitrate concen-
tration for the constraints g1 and g2 (LHS) and the ratio of bioproduct to biomass constraint
g2 (RHS) for hybrid GP N = 30.

Figure 10.4: The 1000 MC trajectories at the final back-off iteration of the nitrate concen-
tration for the constraints g1 and g2 (LHS) and the ratio of bioproduct to biomass constraint
g2 (RHS) for hybrid GP N = 50.

10.6 Conclusions
In conclusion, a new approach is proposed to combine first principles derived

models with GP regression for NMPC. In addition, it is shown how the probabilis-
tic nature of the GPs can be exploited to sample functions of possible dynamic
models. These in turn are used to determine explicit back-offs, such that closed-
loop simulations of the sampled models remain feasible to a high probability. It
is shown how probabilistic guarantees can be obtained based on the number of
constraint violations of the simulations. Online computational times are kept low
by carrying out the constraint tightening offline. Lastly, a challenging semi-batch
bioreactor case study demonstrates the efficiency and potential for this technique
to operate complex dynamic systems.
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Figure 10.6: Probability density function for the "real" plant objective values for GP
hybrid N = 30 and N = 50 on the LHS, and for the non-hybrid GP with N = 50 on the
RHS.

Figure 10.7: 90th percentile trajectory values of the nitrate concentration for constraints
g1 and g3 (LHS) and the ratio of the bioproduct constraint g2 (RHS) for all variations
applied to the "real" plant with the final tightened constraint set.
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Figure 10.8: 90th percentile trajectory values of the nitrate concentration for constraints
g1 and g3 (LHS) and the ratio of the bioproduct constraint g2 (RHS) for all variations
applied to the "real" plant with back-off values set.
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Chapter 11

Concluding remarks

This thesis presents contributions on novel NMPC formulations that explicitly con-
sider stochastic uncertainties for batch processes. The thesis was divided into two
parts based on separate assumptions made on the uncertainty. In Part II the avail-
ability of a complete first principles model is assumed with uncertainties arising
from parametric uncertainties, time varying disturbances, or state estimation er-
rors. In Part III it is instead assumed that a complete first principles is not available
and instead the full state space model or parts of it need to be identified from data
directly. To accomplish this GP regression is exploited, which quantifies the resid-
ual nonparametric uncertainty given the available data. Comments on possible
future work are given in Chapter 12.

In Part II firstly a simple algorithm is proposed in Chapter 3 using the Un-
scented transformation for both the SNMPC formulation and state estimation to
account for stochastic uncertainties from Gaussian distributed state estimates, ad-
ditive disturbances, and uncertain parameters. While the approach does work rel-
atively well, it can be seen from Chapter 6 that the Unscented transformation may
struggle significantly to capture the uncertainties of highly nonlinear problems due
to its limited number of samples. In addition, it was assumed that at each sampling
time the stochastic uncertainties and state estimates follow a Gaussian distribu-
tion. In Chapter 4 PCEs are employed instead for both state estimation and for-
mulation of the SNMPC algorithm. In addition, the uncertainties in this approach
are assumed to be represented by PCEs, which are able to capture more general
probability distributions.

In Chapter 5 it is shown how GPs can be exploited as surrogates for uncertainty
propagation similar to PCEs. An advantage of GPs over PCEs is that they not only
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account for the uncertainty induced by the uncertain parameters, but also account
for the uncertainty of the finite sample approximation of the surrogate itself. It
is shown that GP surrogates are able to capture the probability distributions of
the constraint and objective functions more accurately than either crude MC or
Latin hypercube sampling. Given the overall excellent performance of PCEs and
GPs, a novel uncertainty propagation algorithm is proposed in chapter 6 using a
combination of both. It is highlighted that the approach is able to capture the shape
of the probability density functions better than either GPs or PCEs on their own
leading to improved mean and variance estimates. It is further shown to be superior
to the Unscented transformation, which leads to relatively poor approximations.

All in all, in Part II it is clearly shown in each chapter that the presented SN-
MPC algorithms are able to adhere the constraints of semi-batch reactor case stud-
ies for a large number of scenarios, while in contrast a nominal NMPC algorithm
violates in many scenarios the constraints substantially. This improved robustness
however comes at a price of economic performance, such that for example in Chap-
ter 4 batch times were on average 50% longer for the SNMPC algorithm than for
the nominal NMPC to ensure constraint satisfaction. Furthermore, it is shown how
PCEs can be utilized to represent a more general class of probability distributions
and how these can be be updated efficiently using a PCE state estimator. A novel
uncertainty propagation algorithm is introduced in Chapter 6 combining PCEs and
GPs, which is thoroughly demonstrated to represent probability distributions more
accurately than either PCEs or GPs on their own.

Initially in Chapter 7 in Part III we employ GPs to identify a dynamic model for
a batch bioreactor from experimental input/output data and compare the results to
artificial neural networks (ANNs). The GP is not only utilized to obtain predictions
of unknown trajectories, but also the uncertainty measure is propagated to attain
confidence intervals for these predictions. From the results it was determined that
GPs are able to predict the trajectories of batch bioreactors well with comparable
predictive capabilities as ANNs. Furthermore, GPs are able to provide confidence
intervals that can be exploited to attain more robust solutions.

Next in Chapters 8 and 9 a novel algorithm is proposed for NMPC of batch re-
actors from input/output data using GPs for the identification of the required plant
model and quantify the residual uncertainty of the plant-model mismatch. To con-
sider this uncertainty Monte Carlo (MC) samples of the GP are generated offline,
which in turn are utilized to tighten the constraints to guarantee the satisfaction
of chance constraints online. It is shown that the approach is able to account for
both online learning and the state dependency of the uncertainty to alleviate con-
servativeness. Furthermore, online computational times are kept relatively low.
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Lastly, in Chapter 10 the approach is extended to hybrid modelling case. Often in
chemical engineering a first principles is available, however parts of this model are
difficult to derive using physical laws alone. It is therefore proposed to identify
this part from input/output data using GPs using maximum a posteriori estimation.
It is shown that not only is the identified GP able to give good predictions, but also
the confidence interval from the uncertainty measure is reasonable.

In conclusion, in Part III the ability of GPs to dynamically model batch reac-
tors is thoroughly demonstrated in Chapter 7. Subsequently, a new algorithm is
proposed in Chapters 8 and 9 that tunes a GP NMPC algorithm by tightening con-
straints systematically using MC samples of the GP offline. The performance of
the algorithm is extensively verified on semi-batch reactor case studies. In partic-
ular, it could be shown that accounting for online learning or the state dependency
can alleviate conservativenss significantly. Further, it can be seen that it is vital to
account for the uncertainty, since otherwise the nominal GP NMPC leads to sig-
nificant constraint violations. Finally, it is shown in Chapter 10 how the approach
can be extended to model only a part of a first principles model, which can be
considerably more data efficient.





Chapter 12

Suggestions for future work

Given the results presented the following opportunities for future research are pro-
posed.

12.1 Batch-to-batch learning
In this thesis there has been an emphasis on accounting for and learning the

uncertainties for a single batch run using NMPC, however batch processes are
characterized by repeating many batch runs. Furthermore, online measurements
are often restrictive and therefore the quality of the batch becomes only apparent
at the end of a batch run. It is therefore desirable to consider learning uncertain-
ties from batch-to-batch and tuning the SNMPC algorithm accordingly to improve
the quality of the batch or reducing the overall batch time. SNMPC presents a
unique opportunity in this regard, which can exploit the stochastic information of
the uncertainties to trade-off exploration and exploitation, i.e. trade-off running the
batch process optimally given the uncertainties or run it sub-optimally to reduce
the uncertainties to achieve better batch runs in the future [104].

Iterative learning control has been previously utilized to tune MPC controllers
for trajectory tracking exploiting measurements of past batches [156]. While it-
erative learning control has been shown to perform well, it commonly does not
actively learn the uncertainty. Alternatively, reinforcement learning (RL) may also
be applied to iteratively update control policies from batch-to-batch [208], which
inherently trades off exploration and exploitation. The GP approach in Chapters
8 -10 could be combined with a RL approach based on GPs to successively tune
the NMPC algorithm from batch-to-batch [71], i.e. parameters defining the MPC
could be adjusted between batches to improve a defined batch control quality cri-
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terion [105]. For chapters 3-7 the mean and variance estimates can be used to
explicitly trade off exploration and exploitation between batches, where the mean
represents exploiting current knowledge, while the variance represents the inherent
uncertainty. A similar procedure is utilized in Bayesian optimization [234].

12.2 Hybrid Gaussian process sampling
For the hybrid GP approach presented maximum a posteriori estimation was

used to determine the required quantities, i.e. the hyperparameters and the latent
function values. While this can work well, it relies heavily on the priors assumed
and can lead to overfitting if these are chosen poorly. This is in particular a prob-
lem, since then the uncertainties are heavily underestimated, which can lead to
large constraint violations. Instead, Markov chain Monte Carlo (MCMC) can be
utilized to sample the required hyperparameters and latent function values, which
should lead to a better representation of the uncertainty. An example on using
MCMC to sample a GP state space model can be found in [97]. In addition, para-
metric uncertainties of the first principles based model could be considered for both
building the hybrid GP and for the closed-loop simulations. These could again be
sampled using the same MCMC algorithm.

12.3 Stochastic stability and recursive feasibility
In this thesis only finite horizon control problems have been considered due

to the nature of batch processes. Most common control problems are however
infinite horizon problems. An extension of the current work could be to add termi-
nal constraint sets and terminal costs functions to obtain guarantees on stochastic
asymptotic stability and recursive feasibility. Guaranteeing recursive feasibility of
the MPC optimization problem in the case of noise with unbounded support is still
open.

Some solution approaches for linear MPC to address recursive feasibility in lit-
erature are to use soft constraints, the use of an alternative and feasible optimiza-
tion problem in case of infeasibility [55], or guarantee recursive feasibility only up
to a certain probability [202]. For bounded noise on the other hand a mixture of
probabilistic and worst-case constraint tightening can be applied to ensure feasibil-
ity [149]. For stochastic MPC commonly mean square stability is proven, which
ensures that the mean value of the state converges to zero. In the case of additive
disturbances it can be shown that the mean of the state converges to a neighbor-
hood of the steady state condition [161, 56], while for multiplicative the mean of
the state can be shown to converge to zero [214, 58]. In general, mean square
stability is also applicable to nonlinear systems. The main difficulty for nonlinear
systems is the propagation of uncertainty sets and the definition of a worst-case to
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establish recursive feasibility and stability. Most results in literature are based on
either lipschitz continuity [159] or other bounds on the nonlinear function [255],
which could be extended to the stochastic case.

12.4 Less conservative chance constraints
Commonly the use of SMPC over robust MPC is to alleviate uncertainty by

allowing for some constraint violations as opposed to not allowing for any. Most
approaches based on uncertainty propagation use the mean and variance to state
the chance constraints using either Chebyshev’s inequality or Chernoff’s inequal-
ity as has been done in this work. These are however notoriously conservative and
often lead to much too high constraint satisfaction probabilities, which is in con-
flict with the main motivation of applying SMPC in the first place [111]. Instead,
the chance constraint may in general be represented by a radius r that needs to be

chosen such that µg + r
√
σ2
g ≤ 0 =⇒ P(g ≤ 0) ≥ 1 − ε , where µg and σ2

g

are the mean and variance of the constraint g [207]. This could be for example
achieved by adjusting the back-off factor r iteratively using closed-loop simula-
tions as in Chapters 8 -10. Alternatively, a non-parametric approximation of the
chance constraint could be used instead, such as kernel density estimations (kde)
or the empirical cumulative distribution function (ecdf). Work on the use of kde to
reformulate chance constraints can be found in [51], while work on the use of the
ecdf for PCEs can be found in [242].

12.5 Validation using real experiments
Many chemical engineering systems have relatively large sampling times, which

gives a unique opportunity for more advanced algorithms to be employed that have
relatively long computational times. Algorithms should ideally be verified using
closed-loop implementations.
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Appendix A

Expectation constrained
stochastic nonlinear model
predictive control of a batch
bioreactor

This chapter is based on Paper I: E. Bradford and L. Imsland. Expectation con-
strained stochastic nonlinear model predictive control of a batch bioreactor. Com-
puter Aided Chemical Engineering, 40:1621–1626, 2017.
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Abstract
Nonlinear model predictive control is a popular control approach for highly nonlinear and
unsteady state processes, which however can fail due to unaccounted uncertainties. This
paper proposes to apply a sample-average approach to solve the general stochastic non-
linear model predictive control problem to handle probabilistic uncertainties. Each sam-
ple represents a nonlinear simulation, which is expensive. Therefore, variance reduction
methods were systematically compared to lower the necessary number of samples. The
method was shown to perform well on a semi-batch bioreactor case study compared to a
nominal nonlinear model predictive controller. Expectation constraints were employed to
deal with state constraints in this case study, which take into account both magnitude and
probability of deviations.

Keywords: Randomized MPC, Stochastic programming, Monte Carlo method, Uncer-
tainty, Variance reduction

1. Introduction

Model predictive control (MPC) refers to a class of control methods which explicitly em-
ploy a model to solve an open-loop optimal control problem (OCP) over a finite sequence
of control actions at each sampling instance. Its main advantages are its ability to deal
with constraints and strongly coupled, multi variable plants (Maciejowski, 2002). MPC
based on linear models is relatively mature and well-established. Many systems, however,
display strong nonlinear behaviour and have stringent performance demands, which ne-
cessitate the use of nonlinear model predictive control (NMPC) (Findeisen et al., 2003).
In particular, batch processes require NMPC approaches because of unsteady state oper-
ation. NMPC further allows the direct optimization of economic criteria, which has at-
tracted significant attention in recent years (Rawlings and Amrit, 2009). Nominal NMPC
however is prone to errors due to unaccounted uncertainties. Consequently, there have
been significant developments in robust NMPC (RNMPC) to handle uncertainties explic-
itly. RNMPC assumes uncertainties are deterministic and bounded. The main methods
for RNMPC are min-max NMPC and tube-based NMPC. An alternative to RNMPC is
stochastic NMPC (SNMPC) in which the uncertainties are given by known probabil-
ity distributions. In this framework constraints are addressed in a probabilistic sense.
Unlike RNMPC, in SNMPC the control of the objectives can be systematically traded-
off with an admissible level of constraint violation (Mesbah, 2016). Important methods
for SNMPC include polynomial chaos (Mesbah et al., 2014) and an approach based on
Markov Chain Monte Carlo (MCMC) (Visintini et al., 2006). In this paper a tractable
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approximation to SNMPC is proposed based on Monte Carlo (MC) simulations, known
as "sample-average approximation (SAA)" in stochastic programming (Homem-de Mello
and Bayraksan, 2014). Variance reduction (VR) techniques are compared and applied to
reduce the sample size required. The performance of the MC SNMPC is illustrated on a
semi-batch bioreactor case study and compared to the performance of a nominal NMPC.

2. Monte Carlo stochastic nonlinear model predictive control

The dynamics we consider are given by an uncertain, continuous-time nonlinear system:

ẋ = f(x,u,ξ ) (1)

where x ∈ Rnx represents the system states, u ∈ Rnu the control inputs, ξ ∈ Rnξ is a ran-
dom vector representing the uncertain system parameters, and f(·) a measurable function
representing the nonlinear system dynamics.

The random vector ξ consists of independently distributed random variables ξi with
known probability density functions (pdfs) pξi . The finite horizon OCP for SNMPC can
be stated as follows:

minimize
u(t)

E(J(x,u,ξ ))

subject to
ẋ = f(x,u,ξ )
gk(x,u) ≤ 0 ∀k ∈ {0, . . . ,ng}
E(hk(x,u,ξ ))≤ εk ∀k ∈ {0, . . . ,nh}
u ∈ U
x(t0) = x0
t ∈ [t0, t f ]

(2)

where E(·) is the expectation, u(t) denotes the control policy, gk represents the hard
inequality constraints, hk denotes the probabilistic inequality constraints, U ⊂ Rnu de-
notes the set of feasible control inputs, x0 the initial conditions of the states x, J(·) the
probabilistic objective, εk allows deviation in expectation of hk, t the time, t0 the ini-
tial time, and t f the final time. Chance-constraints are also covered by Eq.(2) by noting
that P(hk(x,u,ξ )≤ 0) := E(I{hk(x,u,ξ )≤ 0}) , where P(·) denotes probability and I{·}
represents the indicator function (Homem-de Mello and Bayraksan, 2014).

The resulting problem in Eq.(2) is intractable. Subsequently, we utilise the SAA ap-
proach to obtain an approximate solution. Consider a finite sequence of N independent
and identically distributed realizations of ξ , given by Ξ := {ξ̃ (0), ξ̃ (1), . . . , ξ̃ (N−1)}. Then
the problem in Eq.(2) is approximately given by Eq.(3). It has been shown by Bastin
et al. (2006), that under some smoothness conditions the local optima in Eq.(3) converge
almost surely to the local optima in Eq.(2) as N → ∞. One of the main issues of using
Eq.(3) is that each sample ξ̃ (i) depicts a separate nonlinear system simulation, which is
expensive.
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minimize
u(t)

1
N

N−1

∑
i=0

J(x(i),u, ξ̃ (i))

subject to
ẋ(i) = f(x(i),u, ξ̃ (i)) ∀i ∈ {0, . . . ,N−1}
gk(x(i),u)≤ 0 ∀(i,k) ∈ {0, . . . ,N−1}×{0, . . . ,ng}
1
N

N−1

∑
i=0

hk(x(i),u, ξ̃ (i))≤ εk ∀k ∈ {0, . . . ,nh}

u ∈ U
x(i)(t0) = x0

t ∈ [t0, t f ]

(3)

where x(i) ∈ Rnx corresponds to a separate state vector for each realization of the random
variable ξ̃ (i) ∈ Ξ.
The effectiveness of the samples can be notably improved by using VR methods com-
pared to standard MC. Let f̂N(x,u) = 1

N ∑N−1
i=0 F(x,u, ξ̃ (i)) denote the sample-average of

either objective or expectation constraints, then the variance of f̂N(x,u) for standard MC
is equal to σ2

N(x,u) := Var(F(x,u,ξ ))/N, which is a measure of the expected error. VR
techniques reduce the variance of f̂N(x,u) without increasing the sample size N to aid
convergence of the SAA problem. In this report we analysed several of these techniques:
Antithetic Variates (AV), Latin Hypercube Sampling (LHS), and different Quasi-Monte
Carlo (QMC) approaches. AV is a method which reduces variance by inducing negative
correlations between samples ξ̃ (i), which is effective for monotone functions. LHS cre-
ates a partition of the sample space and fixes the number of samples on each component
proportional to the probability of that component. QMC methods constitute a determin-
istic choice of points that are carefully chosen to obtain better uniformity than random
sequences (Homem-de Mello and Bayraksan, 2014). Three different QMC approaches
were included in the comparison: A rank-1 lattice rule (LR), the Sobol sequence (SOB),
and the Halton (HAL) sequence (L’Ecuyer and Lemieux, 2005).

3. Semi-batch bioreactor case study

The case study presented here deals with a semi-batch bioreactor for the production of
ethanol. The differential algebraic equation (DAE) system of index-1 can be found in
Wang and Sheu (2000). The equations describe the evolution of 4 states x, p, s, and V ,
which represent the concentrations of cell mass, glucose, and ethanol, and the working
volume of the fermenter respectively. The control input is the feeding rate F . In the
usual notation we can write x = [x,s, p,V ]T and u = F . Several of the parameters in
the original problem were assumed uncertain following a log-normal distribution, given
by ξ = [µm,νm,Ks,sF ,Kp,Yp/s]

T . The pdfs are summarised in Table 1. The remaining
parameter values were kept at their nominal values in Wang and Sheu (2000). The OCP
based on this DAE system and sample-averages of ξ is given below in Eq.(4):
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minimize
u(t)

1
N

N−1

∑
i=0
−x(i)3 (t f )x

(i)
4 (t f )

subject to
ẋ(i) = f(x(i),u, ξ̃ (i)) ∀i ∈ {0, . . . ,N−1}
1

2N

N−1

∑
i=0

(√
(x(i)2 (t)−90)2 +δ 2 +(x(i)2 (t)−90)

)
≤ ε

x(i)4 (t f )−5≤ 0 ∀i ∈ {0, . . . ,N−1}
u(t) ∈ [0,1]
x(0) = x0
t ∈ [0, t f ]

(4)

Table 1: pdfs of uncertain parameters, where
logN

(
µ,σ2) denotes the log-normal pdf with mean

µ and variance σ2 of the associated normal distribution

Parameter pdfs(pξi ) Units

µm logN
(
0.855,(0.02)2

)
s−1

νm logN
(
0.855,(0.02)2

)
s−1

Ks logN
(
0.848,(0.03)2

)
[ · ]

sF logN
(
5.010,(0.06)2

)
gl−1

Yp/s logN
(
−0.751,(0.01)2

)
[ · ]

Kp logN
(
3.330,(0.03)2

)
[ · ]

The objective is to maximize the av-
erage amount of ethanol at a fixed
final time by varying the feed rate.
Further, the glucose concentration is
constrained to lie below 90g/l by
the first inequality constraint, which
is formulated as an expectation con-
straint using a smooth approximation
for the max operator, max(x2(t)−
90,0). δ was set to 10−4. This con-
straint requires the "average" devia-
tion of the constraint to lie below ε .
The second constraint ensures the volume does not exceed the capacity of 5l. The final
time t f was set to 6h and the initial conditions x0 were set to [0.33,90,0.4,1.5]T . The
OCP in Eq.(4) was solved by employing direct collocation with Radau quadrature rule
and degree 4 polynomials, with 8 control intervals. The inequality constraints were en-
forced at each sampling point. The resulting NLP problem was solved utilising IPOPT
(Wächter and Biegler, 2006) in conjunction with CasADi (Andersson, 2013) in Python.
The computational work was carried out on a Dell XPS 15 notebook with a Quad-core
6th Generation Intel i-7 process with up to 3.5 GHZ and 16 GB RAM.

4. Results and discussion

The VR methods were compared by solving the OCP problem in Eq.(4) 200 times with
consistent solver settings, which should converge to the same local solution. The per-
formance of each VR technique is gauged by determining the variance of the objective
values attained compared to standard MC. Since the QMC methods are deterministic,
it is necessary to randomize these for the error analysis. This was achieved by using
the Cranley-Patterson randomization scheme. The VR measure used in this report was
σMC/σV R, where σMC is the sample variance of standard MC objective values and σV R
the sample variance of the respective VR method (Koivu, 2005). The results are shown in
Table 2. Overall it can be said that VR leads to large improvements over the MC approach
lowering variance by factors of up to 20. It can be seen that LHS performs consistently
well, while the factors of the QMC-based methods increase as the sample size grows. At a
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sample size of N = 256 the randomized LR outperforms LHS. For SNMPC, sample sizes
are generally below 100, such that it was decided to use LHS for SNMPC. In Figure 1 the
difference between the objective values obtained from MC to LHS is highlighted.
Table 2: Variance reduction compared to MC over the 200 optimizations (σMC/σV R)

Variance reduction N = 16 N = 32 N = 64 N = 128 N = 256

Antithetic Variance 4.9 4.1 3.6 3.2 4.3
Latin Hypercube Sampling 8.6 9.6 10.8 16.0 19.4

Randomized Sobol 2.9 3.0 4.5 7.5 15.1
Randomized Halton 2.3 3.4 3.8 6.5 13.0

Randomized Lattice Rule 3.9 5.1 6.9 10.9 23.6

Figure 1: Comparison of objective values of 200 optimizations using MC (left) to LHS (right)

Next the OCP in Eq.(4) was solved using LHS in a receding horizon fashion for 12h
simulations of the DAE system. The sample size N was set to 80. This approach was
compared to a nominal NMPC implementation by running 200 separate simulations with
200 different parameter values sampled according to the pdfs in Table 1. The "real" DAE
system was simulated utilising IDAS (Hindmarsh et al., 2005). The constraint on the
glucose concentration shows the disparity of the approaches. In Figure 2 the comparison
is shown between nominal NMPC and MC SNMPC with ε set to 0.2 and 0.1. As can
be seen the method is able to reduce the deviations substantially compared to nominal
NMPC. For ε = 0.2 there are still some rare but substantial deviations, while for ε = 0.1
deviations are rare and small, hence conservativeness can be adjusted by changing ε .

Table 3: Mean and standard deviation
of OCP computational times

N mean (s) std (s)

1(Nominal) 0.08 0.01
10 0.28 0.14
20 0.94 0.65
40 6.53 9.70
80 9.17 8.49

Handling state constraints by expectation con-
straints as opposed to chance constraints is uncom-
mon, however has the advantage that it takes into
account both magnitude and probability of devi-
ations. The average computational time required
with standard deviations for solving one OCP over
200 separate simulations is shown in Table 3.

5. Conclusion

Overall it has been shown how to obtain a tractable
problem using sample-averages from a general SNMPC formulation, which is more ef-
ficient with a larger number of uncertainty parameters than polynomial chaos (Xiu and
Karniadakis, 2002) and makes use of gradient information unlike the MCMC approach.
The method was further improved by applying VR, which reduced the variance substan-
tially. In particular, LHS was selected for the final SNMPC implementation due to its con-
sistently good performance. The final SNMPC algorithm showed promising performance
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Figure 2: Comparison of glucose concentration trajectories for nominal NMPC (left), MC SNMPC
with ε = 0.2 (centre) and MC SNMPC with ε = 0.1 (right)

on the bioreactor case study to handle state constraints using expectations compared to a
nominal NMPC implementation. Further, it was shown that the conservativeness of the
approach could be readily adjusted.
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Abstract 

Nonlinear model predictive control (NMPC) is an effective method for optimal 

operation of batch processes. Most dynamic models however contain significant 

uncertainties. It is therefore important to take these uncertainties into account in the 

formulation of the open-loop MPC problem to prevent infeasibilities or worse 

performance. An issue of such formulations is the disregard of feedback in the 

predictions, which leads to overly conservative control actions. The introduction of 

feedback through parametrized control policies is one way to solve this issue. In this 

work we compare the performance of affine feedback policies against more complex 

policies given by radial basis function networks. We incorporate these feedback policies 

into a polynomial chaos based stochastic NMPC algorithm to gauge their efficiency. 

The parameters of the feedback policies are either determined online by the NMPC 

algorithm or are pre-computed offline.  

Keywords: Nonlinear model-based control, Polynomial chaos, Closed-loop policies, 

Chemical process control, Uncertain dynamic system 

1. Introduction 

Batch processes are used in many chemical sectors due to their inherent flexibility. 

These are operated at unsteady state and are often highly nonlinear, which motivates the 

application of nonlinear model predictive control (NMPC) (Nagy and Braatz, 2003). 

Many dynamic models however have limited accuracy due to various uncertainties. This 

can lead to constraint violations and worse control performance, which can be 

circumvented by incorporating these uncertainties in the NMPC algorithm (Mesbah, 

2016). If we assume the uncertainties to be described by known probability density 

functions (pdfs), then the inclusion of the uncertainties in the NMPC algorithm leads to 

stochastic NMPC (SNMPC) formulations. In SNMPC constraints are addressed 

probabilistically, which allows for the systematic trade-off of constraint violation in 

probability with the conservativeness of the MPC solution (Mesbah, 2016). SNMPC 

methods include successive linearization (Cannon et al., 2009), sample-average NMPC 

(Bradford and Imsland, 2017), unscented sampling NMPC (Bradford and Imsland, 

2017) and polynomial chaos expansion (PCE) NMPC (Fagiano and Khammash, 2012). 

A well-known problem of MPC under uncertainty is the fact that open-loop control 

actions are exceedingly conservative. To ensure reasonable predictions of the 

uncertainty, feedback needs to be considered. One way to achieve this is to optimize 

over parametrized feedback policies (Goulart et al., 2006). For linear stochastic MPC it 

is common to either evaluate a feedback matrix offline for pre-stabilization (Cannon et 

al., 2011) or by determining the parameters of the feedback control law online as 
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decision variables (Hokayem et al., 2012). For SNMPC this problem is often ignored as 

in the PCE based SNMPC paper by (Mesbah et al., 2014) or heuristics are applied as in 

Bradford and Imsland (2017). In this paper we focus on parametrized feedback policies 

for batch processes. For the SNMPC algorithm we use PCE due to its accuracy. We 

compare two different approaches to determine the parameters of the feedback policies: 

online optimization in the SNMPC algorithm or pre-computation offline. The first 

approach allows for revaluation of the feedback policy with knowledge of the new 

measurements, while the second allows for more complex feedback policies to be used. 

In addition, we consider three different parametrizations: affine time invariant, affine 

time varying and lastly radial basis function networks. In particular, radial basis 

function networks allow us to consider arbitrarily complex parametrizations. The 

various constellations were compared on a semi batch reactor case study via closed-loop 

simulations. 

2. SNMPC with feedback policies 

The aim of SNMPC is to control a discrete-time stochastic nonlinear system: 

𝐱𝑘+1 = 𝐟(𝐱𝑘, 𝐮𝑘, 𝛉)                   (1)  

where k represents the discrete time, 𝐱 ∈ ℝ𝑛𝐱 are the system states, 𝐮 ∈ ℝ𝑛𝐮  are the 

control inputs, 𝛉 ∈ ℝ𝑛𝛉 are uncertain parameters and 𝐟(𝐱𝑘, 𝐮𝑘, 𝛉) denotes the system 

dynamics. We assume 𝛉 to be independent Gaussian distributed random variables. The 

components have known mean 𝜇𝑖 and standard deviation 𝜎𝑖. We can then formulate a 

general SNMPC problem with parametric feedback policies as follows: 

minimize
𝓾N

𝔼(𝐽(𝑁, 𝐱(n), 𝓾N, 𝛉)) 

 subject to:                                     

𝐱𝑘+1 = 𝐟(𝐱𝑘, 𝐮𝑘, 𝛉)                                ∀𝑘 ∈  {0, … , 𝑁 − 1}                            (2) 

ℙ(𝑔𝑗
(𝑘)(𝐱𝑘, 𝐮𝑘, 𝛉) ≤ 0) ≥ 1 − 𝑝𝑗

(𝑘)
    ∀𝑘 ∈  {1, … , 𝑁} × {1, … , 𝑛𝑔

(𝑘)
} 

𝐮𝑘 = 𝛗(𝛎𝑘 + 𝛋(𝐱𝑘, 𝛄𝑘))     ∀𝑘 ∈  {0, … , 𝑁 − 1} 

𝐱0 = 𝐱(n) 

where the objective function is the expectation of 𝐽(𝑁, 𝐱(𝑛), 𝓾N, 𝛉), 𝑔𝑗
(𝑘)(𝐱𝑘, 𝐮𝑘 , 𝛉) are 

individual chance constraints, 𝑝𝑗
(𝑘)

∈ (0,1) ⊂ ℝ is the probability of constraint violation, 

𝓾N = {𝛎0, … , 𝛎𝑁−1, 𝛄0, … , 𝛄𝑁−1} is the set of decision variables, 𝛗(∙) is a saturation 

function, 𝛋(∙) is the feedback policy employed, 𝛎𝑘 are the feed-forward control inputs, 

𝐱(𝑛) is the known initial state at time step 𝑛 and 𝑁 is the time horizon.  

The saturation function in this report was defined to be individual sigmoid functions for 

each control input to introduce implicit constraints on 𝐮𝑘: 𝛗(𝛎𝑘 + 𝛋(𝐱𝑘 , 𝛄𝑘)) =

[
𝑢𝑚𝑎𝑥,1−𝑢𝑚𝑖𝑛,1

1+exp(−[𝛎𝑘+𝛋(𝐱𝑘,𝛄𝑘)]1)
+ 𝑢𝑚𝑖𝑛,1, … ,

𝑢𝑚𝑎𝑥,𝑛𝐮−𝑢𝑚𝑖𝑛,𝑛𝐮

1+exp(−[𝛎𝑘+𝛋(𝐱𝑘,𝛄𝑘)]𝑛𝐮)
+ 𝑢𝑚𝑖𝑛,𝑛𝐮

]
𝑇

, i.e. 𝑢𝑚𝑖𝑛,𝑖 ≤

𝑢𝑘,𝑖 ≤ 𝑢𝑚𝑎𝑥,𝑖  ∀𝑖 ∈  {1, … , 𝑛𝐮}. 

Three different parametrizations of feedback control laws were considered: 

1) Affine time invariant (ATI) 
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𝛋(𝐱𝑘, 𝛄) = 𝐊𝐱               (3) 

where 𝐊 = [

𝛾1 … γ𝑛𝐱

⋮ ⋱ ⋮
𝛾𝑛𝐮

… 𝛾𝑛𝐮×𝑛𝐱

], Number of parameters: 𝑛𝐮 × 𝑛𝐱 

2) Affine time varying (ATV) 

𝛋(𝐱𝑘, 𝛄𝑘) = 𝐊𝑘𝐱                 (4) 

where 𝐊𝑘 = [

𝛾𝑘,1 … γ𝑘,𝑛𝐱

⋮ ⋱ ⋮
𝛾𝑘,𝑛𝐮

… 𝛾𝑘,𝑛𝐮×𝑛𝐱

], Number of parameters: 𝑛𝐮 × 𝑛𝐱 × (𝑛𝑘 − 1) 

3) Radial basis function network time invariant (RBFN-𝑛𝑅𝐵𝐹) 

𝜅𝑖(𝐱𝑘, 𝛄) = ∑ 𝜔𝑗𝜙𝑗(𝐱𝑘)𝑛𝑅𝐵𝐹
𝑗=1                 (5) 

       𝜙𝑗(𝐱𝑘) = exp (−0.5(𝐱𝑘 − 𝛍𝑗)
𝑇

diag(𝛌𝑗)(𝐱𝑘 − 𝛍𝑗))           (6) 

where 𝑛𝑅𝐵𝐹  is the number of radial basis functions with parameters [𝜔𝑗 , 𝛍𝑗, 𝛌𝑗]
𝑇

=

𝛄(𝑗−1)(1+2𝑛𝐱)+1:𝑗(1+2𝑛𝐱), Number of parameters: 𝑛𝐮 × 𝑛𝑅𝐵𝐹(1 + 2𝑛𝐱) 

The open-loop case is given by 𝛋(∙) = 𝟎. The nonlinear radial basis function network 

parametrization was taken from Deisenroth and Rasmussen (2011) and allows for 

arbitrarily complex feedback policies by adjusting the number of radial basis functions.   

3. PCE based SNMPC 

The problem defined in Eq.(2) is intractable, since it involves probability and expectations 

on nonlinear functions of 𝛉. PCE can be used to solve this efficiently. Assume we are 

given a nonlinear transformation of independent standard normal variables 𝜁(𝐳) with 

finite second order moments. According to PCE theory 𝜁(𝐳) can be approximated by a 

truncated orthogonal polynomial basis (Owen et al., 2017): 

𝜁(𝐳) ≈ ∑ 𝑎𝛂𝐻𝑒𝛂(𝐳)0≤|𝜶|≤𝑝 = 𝐚𝑇𝚽(𝐳)            (7)  

where 𝐳 ∈ ℝ𝑛𝛉 is a vector of standard normal variables with components 𝑧𝑖~𝒩(0,1), 𝑎𝛂 

are unknown expansion coefficients, |𝛂| = ∑ 𝛼𝑗
𝑛𝛉
𝑗=1 , 𝑝 is the order of truncation, 𝐚 is a 

vector of coefficients 𝑎𝛂 and 𝚽(𝐳) contains 𝐿 =
(𝑛𝛉+𝑝)!

𝑛𝛉!𝑝!
 polynomial elements 𝐻𝑒𝛂(𝐳) of 

the truncated expansion. 𝐻𝑒𝛂(𝐳) are known multivariate Hermite polynomials defined by 

a tensor product of univariate Hermite polynomials: 𝐻𝑒𝛂(𝐳) = 𝐻𝑒𝛼1

(1)(𝑧1) × … ×

𝐻𝑒𝛼𝑛𝛉

(𝑛𝛉)
(𝑧𝑛𝛉

), where 𝐻𝑒𝑗
(𝑖)

 is the univariate Hermite polynomial of order 𝑗 in terms of the 

ith component of 𝐳. Univariate Hermite polynomial can be found in look-up tables.  

We now need to find values for the coefficients 𝑎𝛂 to obtain a good approximation to 

𝜁(𝐳), which is done by using observations of 𝜁(𝐳) at different values of 𝐳. In this report 

we used a Sobol quasi random design to determine the sample points and transform it to 

follow a Gaussian distribution by using the inverse cumulative normal distribution 

function. We will refer to this design as 𝒵 = {𝐳(0), … , 𝐳(𝑛𝑠−1)}, which contains 𝑛𝑠 

sampling points. We then obtain a response for each sample, which gives us 𝐘 =

[𝜁(𝐳(0)), … , 𝜁(𝐳(𝑛𝑠−1))]
𝑇
. The coefficients can be found by least-squares estimation: 
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 𝐚̂ = (𝚿𝑇𝚿)−1𝚿𝑇𝐘                    (8) 

where 𝛹𝑖𝑗 = 𝐻𝑒𝛂𝑗
(𝐳(𝑖)) 𝑖 = 0, … , 𝑛𝑠 − 1, 𝑗 = 1, … , 𝐿 is a data matrix containing the 

polynomial terms in Eq.(7) and 𝐻𝑒𝛂𝑗
 is the jth Hermite polynomial in the series expansion. 

The variance and mean of 𝜁(𝐳) are approximately given by (Mesbah et al., 2014): 

𝔼(𝜁(𝐳)) ≈ 𝑎̂1, Var(𝜁(𝐳)) ≈ ∑ 𝑎̂𝑗
2𝔼𝐿

𝑗=2 (𝐻𝑒𝛂𝑗
2(𝐳))           (9) 

Using PCEs the problem in Eq.(2) can be simplified as follows: 

minimize
𝓾N

𝔼(𝜉𝐽) 

 subject to:                                     

𝐱𝑘+1
(𝑖)

= 𝐟(𝐱𝑘
(𝑖)

, 𝐮𝑘 , 𝛉(𝑖))      ∀(𝑘, 𝑖)  ∈  {0, … , 𝑁 − 1}  × {0, … , 𝑛𝑠 − 1}             (10) 

√Var (𝜁𝑔𝑗𝑘
) (1 − 𝑝𝑗

(𝑘)
) 𝑝𝑗

(𝑘)
⁄ + 𝔼 (𝜁𝑔𝑗𝑘

)  ≤ 0    ∀𝑘 ∈  {1, … , 𝑁} × {1, … , 𝑛𝑔
(𝑘)

} 

𝐚̂𝐽 = (𝚿𝑇𝚿)−1𝚿𝑇𝐘𝐽,   𝐚̂𝑔𝑗𝑘
= (𝚿𝑇𝚿)−1𝚿𝑇𝐘𝑔𝑗𝑘

 

𝔼(𝜉𝐽) = 𝑎̂𝐽,1, 𝔼 (𝜁𝑔𝑗𝑘
) = 𝑎̂𝑔𝑗𝑘,1 

 Var (𝜁𝑔𝑗𝑘
) = ∑ 𝑎̂𝑔𝑗𝑘,𝑚

2 𝔼𝐿
𝑚=2 (𝐻𝑒𝛂𝑚

2 (𝐳)) 

𝐮𝑘
(𝑖)

= 𝛗 (𝛎𝑘 + 𝛋(𝐱𝑘
(𝑖)

, 𝛄𝑘)) ∀𝑘 ∈  {0, … , 𝑁 − 1} 

𝐱0
(𝑖)

= 𝐱(n)    ∀𝑖 ∈  {0, … , 𝑛𝑠 − 1} 

where 𝜃𝑙
(𝑖)

= σ𝑙z𝑙
(𝑖)

+ 𝜇𝑙, 𝐱
(𝑖) represents the state vector of scenario i with uncertain 

parameter 𝛉(𝑖), 𝐘𝐽 = [𝐽(𝑁, 𝐱(n), 𝓾N, 𝛉(0)), … , 𝐽(𝑁, 𝐱(n), 𝓾N, 𝛉(𝑛𝑠−1))]
𝑇

and 𝐘𝑔𝑗𝑘
=

[𝑔𝑗
(𝑘)

(𝐱𝑘
(𝑖)

, 𝐮𝑘
(𝑖)

, 𝛉(0)), … , 𝑔𝑗
(𝑘)

(𝐱𝑘
(𝑖)

, 𝐮𝑘
(𝑖)

, 𝛉(𝑛𝑠−1))] are data matrices to determine the 

required coefficients. It should be pointed out that while 𝐘𝐽 and 𝐘𝑔𝑗𝑘
 change each 

iteration of the optimization algorithm, the sample design 𝒵 remains constant, such that 

(𝚿𝑇𝚿)−1𝚿𝑇  and the 𝔼 (𝐻𝑒𝛂𝑚
2 (𝐳)) can be calculated offline. The probability 

constraints were approximated robustly using Chebyshev inequality, for more 

information see (Mesbah et al., 2014).  

4. Case study 

The case study involves an isothermal semi batch reactor with a second-order 

exothermic reaction taking place; A + B → C. The exact differential equation for the 

case study can be found in Lucia and Paulen (2014). The control input is the feed rate 𝑢 

and the state vector is 𝐱 = [𝐶𝐴, 𝐶𝐵, 𝐶𝐶 , 𝑉]𝑇 , where 𝐶𝑖 are the concentrations of species 𝑖 
and 𝑉 is the reactor volume. The flow rate 𝑢 can be adjusted between 0 and 0.4. The 

initial conditions were set to [𝐶𝐴0, 𝐶𝐵0, 𝐶𝐶0, 𝑉0] = [3,0,0,0.7] and the temperature is kept 

at 70°C. The semi batch reactor is controlled by a shrinking horizon implementation of 

Eq.(10). The objective of the SNMPC problem was set to maximize the average amount 

of 𝐶 at the end of the batch, while keeping the adiabatic temperature below 85°C to 
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prevent uncontrollable behaviour and the concentration of 𝐵 at the final time below 

0.5moldm−3. The probability of constraint violation for both was set to 0.05. The 

resulting OCP was solved employing direct collocation with 10 control intervals and a 

final time of 1h utilizing CasADi in Python (Andersson et al., 2012).  

To gauge the performance of the various feedback policy methods, we ran 100 

simulations based on a Sobol design for 5 different constellations with 4 computed 

online: Open-loop without feedback, ATI, ATV and RBFN with a single radial basis 

function referred to as RBFN-1. A more complex RBFN was computed offline with 10 

radial basis functions referred to as RBFN-10. In Fig.1 a box-plot is shown of the 

attained amount of 

product C and hence the 

higher the amount of C, 

the better the closed-

loop performance. In 

Tab.1 the corresponding 

average computational 

times are shown with 

the number of decision 

variables of the 

optimization problem. 

We can see that the 

open-loop approach has 

the lowest median and 

the fastest 

computational time, 

which is expected since 

it is the most conservative 

and has the least number of 

decision variables. ATI and 

RBFN-1 perform slightly 

better than open-loop 

implementation but, due 

their simplicity, they are 

worse than the others. In 

particular, RBFN-1 is a 

poor choice, since it leads 

to the same performance as 

ATI with larger computational times. ATV on the other hand has the highest median 

production rate, yet it requires also the highest computational time due to its large 

number of decision variables. RBFN-10 is only marginally worse, however has a 

computational time that is significantly lower than the other feedback policy 

approaches. It does however take twice as long as the open-loop approach.  

5. Conclusions 

In conclusion, we investigated different approaches to introduce feedback into a 

SNMPC algorithm. In general, feedback always improves the performance of the 

otherwise open-loop algorithm. For the feedback policies evaluated online it could be 

shown that ATI and RBFN-1 were outperformed by the more complex ATV, however 

ATV carries the largest computational time due to the number of decision variables it 

Table 1 Comparison between number of decision variables 

evaluated online and average evaluation time  

of a single NMPC control step of the feedback policies 

Feedback 

policy 

 No.  decision 

variables 

Evaluation 

time (s) 

ATI  14 5.9 

ATV  46 11.6 

Open-loop  10 0.87 

RBFN-10   10 1.87 

RBFN-1  19 9.58 

 

Figure 1 Box-plot of amount of product for 100 Sobol design 

points using different feedback policy approaches 
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introduces. On the other hand, the pre-computed RBFN-10 managed to perform only 

marginally worse while being significantly faster in terms of computational time. We 

therefore conclude that the use of pre-computed complex feedback control 

parametrizations is an interesting approach to obtain good closed-loop performance 

without introducing a too heavy computational load.  
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Abstract
Nonlinear model predictive control (NMPC) is an attractive control approach to regulate batch
processes reliant on an accurate dynamic model. Most dynamic models however are affected by
significant uncertainties, which may lead to worse control performance and infeasibilities, consid-
ering the tendency of NMPC to drive the system to its constraints. This paper proposes a novel
NMPC framework to mitigate this issue by explicitly taking into account time-invariant stochastic
uncertainties. Parametric uncertainties are assumed to be given by so-called polynomial chaos
expansions (PCE), which constitutes a flexible approach to depict arbitrary probability distribu-
tions. It is assumed that at each sampling time only noisy output measurements are available. The
proposed procedure uses a sparse Gauss-Hermite sampling rule to formulate an efficient scenario-
based NMPC algorithm based on the PCE, while a stochastic nonlinear filter is employed to update
the PCE given the available measurements. The framework is shown to be effective on a challeng-
ing semi-batch fermentation process simulation case study.

Keywords: Chemical process control, Polynomial chaos, Nonlinear filters, Model-based control

1. Introduction
Batch processes are commonly used in many chemical sectors, including pharmaceuticals, bulk
chemicals and biotechnology. Batch processes are operated at unsteady state and are highly non-
linear, which motivates the use of nonlinear model predictive control (NMPC). The performance
of the NMPC algorithm depends strongly on the accuracy of the dynamic model used and inher-
ent uncertainties may lead to constraint violations and worse control actions. If we assume these
uncertainties to be given by known probability distributions, stochastic NMPC (SNMPC) methods
can be used (Mesbah, 2016). The main difficulty in SNMPC lies in propagating stochastic uncer-
tainties through nonlinear system models. Several SNMPC algorithms have been proposed using
different methods to propagate stochastic uncertainties:
• Unscented transformation sampling (Bradford and Imsland, 2018a)
• Polynomial chaos expansions (Fagiano and Khammash, 2012)
• Markov Chain Monte Carlo (Maciejowski et al., 2007)
• Gaussian processes (Bradford and Imsland, 2018b)
• Quasi Monte Carlo methods (Bradford and Imsland, 2017)
• Particle filters (Sehr and Bitmead, 2017)

Most work in SNMPC assumes full state feedback, which is uncommon for real processes. In-
stead, the measurements made at each sampling time are both noisy and incomplete. In this paper
we therefore propose to use a nonlinear filter to update the stochastic uncertainties at each sam-
pling time. The uncertainties are represented by so-called polynomial chaos expansions (PCE),
which allow for complex probability distributions to be given by polynomials of simpler stochas-
tic variables. In addition, we suggest to efficiently formulate the SNMPC problem using a sparse
Gauss-Hermite quadrature rule. The framework is verified on a fermentation case study.
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2. Problem formulation
We aim to control a discrete-time nonlinear equation system with stochastic uncertainties:

x(t +1) = f(x(t),u(t),θ(ξ)), x(0) = x0(θ(ξ)) (1)
y(t) = h(x(t),θ(ξ))+ν (2)

where k is the discrete time, x ∈ Rnx are the system states, u ∈ Rnu denote the control inputs,
θ(ξ) ∈ Rnθ are time-invariant uncertainties, ξ ∈ Rnθ ∼N (0,I) describe standard normally dis-
tributed random variables parametrizing the PCE of θ, f : Rnx ×Rnu ×Rnθ → Rnx represents the
nonlinear dynamic system, y ∈ Rny denote the measurements, h : Rnx ×Rnθ are the output equa-
tions and ν ∈ Rny ∼N (0,ΣΣΣν) is the measurement noise assumed to be zero mean multivariate
normally distributed with known covariance matrix ΣΣΣν. The initial condition x(0) may also be
uncertain and hence is a function of θ(ξ).

The time-invariant uncertainty described by θ are assumed to be given by a known truncated PCE:

θi(ξ) = ∑
0≤|α|≤m

a(i)j φα j(ξ) = aT
i φ(ξ) (3)

where each component θi(ξ) is given by an individual polynomial series with multivariate polyno-
mials φα j(ξ) with coefficients a(i)j . We summarise the coefficients as A = [a1, . . . ,anθ ]. The mul-
tivariate polynomials are given by products of univariate polynomials φα j = ∏

nξ
i=1 φα j i

(ξi) with
φα j i

(ξi) being univariate polynomials of ξi of degree α j i. The vector φ(·) = [φ1(·), . . . ,φL(·)]T
contains the multivariate polynomials of the expansions, m denotes the order of truncation and
|α|= ∑

nξ
i=1 αi. Each polynomial series consists of L =

(nξ+m)!
nξ!m! terms and ai ∈RL represents a vec-

tor of coefficients of these terms. The univariate polynomials are given by Hermite polynomials:

φ j(ξi) = (−1) j exp
(

1
2

ξ 2
i

)
d j

dξ j
i

exp
(
−1

2
ξ 2

i

)
(4)

3. Gauss-Hermite nonlinear model predictive control
Once the uncertainties are defined as PCE as shown in section 2, we aim to exploit this information
together with the dynamic equation system in Eq.(1) to formulate an optimal control problem
(OCP) to be solved iteratively. To achieve this we use Gauss-Hermite quadrature rules to create
several realizations of θ from its PCE representation to formulate a scenario-based MPC problem.
The Gauss-Hermite quadrature rules can be seen to give an approximation to the integral:

E[ f (ξ)] =
∫ ∞

−∞
f (ξ)p(ξ)dξ, p(ξ) = ∏

i
exp(−ξ 2

i )/
√

π (5)

where ξ is a standard normally distributed random variable and E[·] is the expectation operator.

The Gauss-Hermite quadrature rules accomplish this by creating deterministic samples of ξ with
corresponding weights. The approximations of expectation and variances of a function f (ξ) are:

µ f = E [ f (ξ)]≈
Nq

∑
q=1

wq f (ξq), σ2
f = E

[(
f (ξ)−µ f

)2
]
≈

Nq

∑
q=1

wq
(

f (ξq)−µ f
)2 (6)

where ξq and wq are given by the quadrature rule with overall Nq points. The Gauss-Hermite rule
used in this work was taken from Jia et al. (2012), which is a sparse Gauss-Hermite quadrature
rule. These require less samples than the full Gauss-Hermite rules for the same order of accuracy.
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Using Chebyshev’s inequality probability constraints can be robustly reformulated involving only
the mean and variance of the random variable. Let γ be a generic random variable, then

P(γ ≤ 0)≥ 1− ε =⇒ κε σγ + γ̂ ≤ 0, κε =
√

(1− ε)/ε (7)

where ε ∈ (0,1)⊂ R is the probability that γ exceeds 0, γ̂ and σ2
γ are the mean and variance of γ

respectively.

The optimal control problem to be solved can subsequently be stated as follows using the Gauss-
Hermite quadrature rule with Nq points, the dynamic system in Eq.(1), the PCE representation of
θ(·) and the initial condition at time t given as a function of θ(·) as xt(θ(·)):

minimize
U

Nq

∑
q=1

wq J(x(q)(0),U,ξq)

subject to
x(q)(k+1) = f(x(q)(k),u(k),θ(ξq)) ∀(k,q) ∈ Nk×Nq

µg jk +κε σg jk ≤ 0, κε =
√
(1− ε)/ε ∀( j,k) ∈ N(k)

g ×Nk+1

µg jk =
Nq

∑
q=1

wq g(k)j (x(q)(k),θ(ξq)) ∀( j,k) ∈ N(k)
g ×Nk+1

σg jk =
Nq

∑
q=1

wq

(
g(k)j (x(q)(k),θ(ξq))−µg jk

)2
∀( j,k) ∈ N(k)

g ×Nk+1

u(k) ∈ U ∀k ∈ Nk

x(q)(0) = xt(θ(ξq)) ∀q ∈ Nq

(8)

where Nk = {0, . . . ,N−1}, Nk+1 = {1, . . . ,N}, Ng = {1, . . . ,n(k)g }, Nq = {1, . . . ,Nq}, N is the time
horizon, U= {u(0), . . . ,u(N−1)}, the objective is given by the expectation of a nonlinear function
J(xq(0),U,ξq) approximated by the Gauss-Hermite rule, U represents the constraints on u(k) and
x(q) represents the state vector for each sampling point q. The chance constraints are approximated
by Chebyshev’s inequality given in Eq.(7) as nonlinear functions g(k)j (x(q)(k),θ(ξq)) constrained
robustly to be less than 0 with a probability of ε .

4. Polynomial chaos expansion filter
The PCE filter updates θ given the noisy measurements available from Eq.(2) and was first pro-
posed in Madankan et al. (2013). It has further been applied for linear stochastic MPC in Mühlp-
fordt et al. (2016). Let Dt = {y(1), . . . ,y(t)} be the measurements collected up to time t. Bayes’s
rule can be employed to update θ recursively using the previous PCE of θ:

p(θ|Dt) =
p(y(t)|θ)p(θ|Dt−1)

p(y(t)|Dt−1)
(9)

where p(θ|Dt−1) is the prior distribution of θ given observations up to time t − 1, p(y(t)|θ) is
the likelihood y(t) is observed given θ at time t. We defined p(y(t)|θ) = N (h(x(t),θ),ΣΣΣν) as
standard normal distribution in Eq.(2) with mean h(x(t),θ) and covariance ΣΣΣν.

If we take both sides of Eq.(9) times ∏nθ
j=1 θ r j

j and integrate over both sides we obtain:

M+
r =

∫
∏nθ

j=1 θ r j
j p(y(t)|θ)p(θ|Dt−1)dθ

p(y(t)|Dt−1)
(10)

where M+
r =

∫
∏nθ

j=1 θ r j
j p(θ|Dt)dθ and let k = ∑nθ

j=1 r j. Now M+
r refers to the various k-th order

moments with respect to the updated distribution of θ, p(θ|Dt).
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In our case the distribution of θ(ξ) depends on its PCE coefficients A and hence these need to be
updated, see Eq.(3). We can approximate the distribution of p(θ(ξ)|Dt−1) using sampling, since it
is assumed that ξ follows a standard normal distribution. Let θt(ξ) denote the PCE of θ at time t
with coefficients At . Applying a sample estimate to Eq.(10) with a sample design of size Ns given
by {ξ1, . . . ,ξNs}, where ξi ∼N (0,I) we obtain the following:

M(s)+
r =

1
αNs

Ns

∑
i=1

nθ

∏
j=1

(θt−1(ξi))
r j
j p(y(t)|θt−1(ξi)) (11)

where M(s)+
r is the sample approximation of the RHS of Eq.(10) of the posterior moments and

α = 1
Ns

∑Ns
i=1 p(y(t)|θ(ξi)). The sample design was created using Latin hypercube sampling and

the inverse transform of the standard normal distribution.

To update the coefficients At−1 of θt−1 to At to represent θt we use moment matching. It is
possible to determine closed-form expressions of moments of PCE expansions as given in Eq.(3)
in terms of their coefficient, see Dutta and Bhattacharya (2010). The difference between these and
the sample estimate of the posterior moments is then minimized to update the coefficients:

Ât = argmin
At

∑
k≤m
||M+

r (At)−M(s)+
r ||22 (12)

where k = ∑nθ
j=1 r j was defined as the order of the moments and hence m defines the total order of

moments we want to match. M+
r (At) denotes the moments of the PCE expansion as a function of

the coefficients At and Ât are the updated coefficients to match the posterior moments.

5. Case study
The overall framework is summarised in Algorithm 1 for receding horizon SNMPC. First it is
initialized by specifying the problem, including initial coefficients of the PCE expansion of θ.

Algorithm 1: Output feedback SNMPC

Input : Â0, ΣΣΣν, f(·), h(·), x0(θ)
for each sampling time t = 0,1,2, . . . do

1. Determine xt(θt(ξ)) using f(·, ·,θt(ξ)) recursively from an updated initial
condition x(0) = x0(θt(ξ)).

2. Solve SNMPC problem with θt(ξ) and xt(θt(ξ)) and obtain optimal control actions.
3. Apply first part of the control actions to the plant.
4. Measure y(t +1).
5. Apply the PCE filter to update θt(ξ) to θt+1(ξ) by determining the coefficients Ât+1.

end

The case study aims to control a fermentation bioreactor using Algorithm 1. Fermentation is an
important process in the biochemical and pharmaceutical industries. Uncertainties are often con-
siderable and disregarding these may lead to inadequate performance. In this paper we consider a
semi-batch bioreactor with the inlet substrate flowrate as the control variable. The two variables
that are considered uncertain are the inlet concentration of the substrate CS,in and the kinetic pa-
rameter µmax. The dynamic model was taken from Petersen and Jørgensen (2014) and describes
the fermentation of a single cell protein using Methylococcus Capsulatus:

V̇ = F (13a)

ĊX =−FCX/V + exp [µmax(ξ)]
CS

KS +CS +C2
S/KI

(13b)

ĊS =−F(CS− exp [CS,in(ξ)]/V − γs exp [µmax(ξ)]
CS

KS +CS +C2
S/KI

(13c)
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where V is the volume of the reactor in m3, F is the feed rate of substrate in m3/h, CX and CS are
the concentrations of biomass and substrate respectively in kg/m3. The uncertain parameters are
assumed to be given as a PCE in terms of standard normally distributed variables ξ, which were
log-transformed to ensure positiveness. This defines f(·) in Eq.(1) with x = [V,CX ,CS]

T , u = F
and θ(ξ) = [µmax(ξ),CS,in(ξ)]

T . The parameter values are γS = 1.777, KS = 0.021kg/m3 and
KI = 0.38kg/m3. The corresponding output equation is given as follows:

y = Kx+ν, K = diag([1,0,1]) , ν∼N
(
0,diag

(
[3×10−4,3×10−4]

))
(14)

The respective initial PCE expansions are given as, which defines Â0 and θ0(ξ):

µmax(ξ) = log(0.37)+0.04ξ1 +0.02(ξ 2
1 −1)+0.0067(ξ 3

1 −3ξ1) (15)

CS,in(ξ) = log(1.00)+0.04ξ2 +0.02(ξ 2
2 −1)+0.0067(ξ 3

2 −3ξ2) (16)

The objective was set to minimize the batch time with a chance constraint to produce a minimum
concentration of biomass of 10kg/m3 with a probability of 0.05 with 10 control intervals in a
shrinking horizon implementation. The input F was constrained between 0kg/h and 10kg/h.

6. Results, discussion and conclusions
Firstly the simulation was run by setting the parameters of the plant model to [µmax,CS,in] =
[0.41,1.05]. The results of this are shown in Fig. 1. Next the initial parameter PCE of µmax
and CS,in given in Eq.(15) and Eq.(16) were sampled 100 times randomly and used to simulate
the ”true” system according to Eq.(13), for which the results are given in Fig. 2. In each case
Algorithm 1 was then used to control these systems in closed-loop to verify the performance given
the objective and constraints outlined in the previous section. Ns = 200 samples were used for the
PCE filter, see section 4.

In Fig. 1 it can be seen that given the measurement available at t = 1 the initial distribution at
t = 0 moves towards the correct value. With several more updates it then converges to a sharp
distribution at t = 10 due to the relatively low measurement noise. The last row highlights the
working of the algorithm: The lower left plot shows that less and less time is necessary to reach the
required biomass concentration due to the better estimates available of the uncertain parameters,
i.e. it becomes possible to reduce the sampling times as it becomes less and less conservative. In
the second graph we see that the biomass reaches nearly exactly 10 kg/m3 at the final time with
the control inputs shown in the last graph.

In Fig. 2 we see that the batch times of the Monte Carlo simulations vary significantly with batch
times ranging from 70h to 140h, with most batch times around 110h. In the last two graphs it
can be seen that the required biomass of 10 kg/m3 was reached in most simulations despite the
uncertainties present, however in about 7% of the scenarios this was not achieved. This is due to
the parameter update being overconfident from the limited number of samples used. In particular,
it can be seen that two scenarios do not reach even 4 kg/m3, which happens if the parameters
converge to the wrong value due to the limited number of samples used.

In conclusion a novel framework has been proposed by employing PCE to describe parametric
uncertainties and exploiting this uncertainty description in a sparse Gauss-Hermite MPC formu-
lation taking into account these uncertainties efficiently. Noisy measurements were used at each
sampling time to update the PCE of the uncertain parameters and reduce the inherent uncertainties
present significantly. It could be shown that the algorithm is able to achieve the required biomass
in 93% of the scenarios, however the parameter update may be overconfident using 200 samples.
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Figure 1: Run of Algorithm 1 with [µmax,CS,in] = [0.41,1.05]. The first two graph rows show the evolution
of the marginal distribution of the inlet substrate concentration and µmax at t = 0, t = 1 and t = 10. The last
graph row shows the trajectories of the sampling time, biomass concentration and substrate flowrate.

Figure 2: From left to right: Probability density function of batch times, biomass concentration
trajectories and probability density function of final biomass concentrations
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Abstract: Batch processes are ubiquitous in the chemical industry and difficult to control, such that
nonlinear model predictive control is one of the few promising control techniques. Many chemical
process models however are affected by various uncertainties, which can lower the performance and lead
to constraint violations. In this paper we propose a framework for output feedback stochastic nonlinear
model predictive control (SNMPC) to consider the uncertainties explicitly, which are assumed to follow
known probability distributions. Polynomial chaos expansions are employed both for the formulation of
the SNMPC algorithm and a nonlinear filter for the estimation of the uncertain parameters online given
noisy measurements. The effectiveness of the proposed SNMPC scheme was verified on an extensive
case study involving the production of the polymer polypropylene glycol in a semi-batch reactor.
Keywords: Model-based control, Uncertain dynamic systems, Stochastic parameters, Nonlinear filters,
Chemical process control, Output feedback, Stochastic programming, Polynomial chaos expansions

1. INTRODUCTION

Batch processes play a vital role for the production of high
value products, which make-up an important portion of the
revenue in the chemical industry. Batch processes are used
due to their inherent flexibility to produce multiple products
and deal with variations in feedstock, product specifications,
and market demand (Nagy and Braatz, 2003). Most batch
process control methods have focused on tracking recipes with
empirical models as in iterative learning control (Lee and Lee,
2007). Due to the high competitiveness however, there is an
increasing acceptance for advanced control methods.

Model predictive control (MPC) was developed in the late
seventies and refers to a class of advanced control methods
that make explicit use of a dynamic model. Most applications
of MPC have been limited to linear MPC (LMPC), for which
plants are assumed to be weakly nonlinear. Batch processes are
often highly nonlinear and operated at unsteady state. In this
case nonlinear MPC (NMPC) is the method of choice (Nagy
et al., 2007). In addition, NMPC can be used directly to mini-
mize economic costs, which is becoming increasingly of inter-
est, known as economic MPC (EMPC) (Rawlings and Amrit,
2009). NMPC applications based on first principle models are
becoming more popular due to advent of improved optimization
algorithms (Biegler, 2010).

Most dynamic models involve significant uncertainties, which
need to be taken into account explicitly to avoid infeasibilities
and performance deterioration, including parametric uncertain-
ties, external disturbances and state estimation errors. In EMPC
the system is often driven close to the constraints, however
relatively little attention has been paid to handling uncertainty
in EMPC with few exceptions reported (Lucia et al., 2014).

Uncertainty in MPC can be either assumed to lie in a bounded
set or to be stochastic with known probability density functions

(pdf), which leads to robust or stochastic MPC formulations
respectively. Robust NMPC methods include min-max NMPC
and tube-based NMPC, which have been both extended to han-
dle economic objectives in Bayer et al. (2016) and in Bayer
et al. (2014) respectively. Alternatively, several algorithms for
stochastic NMPC (SNMPC) have been proposed. A simple
solution to SNMPC is given by the successive linearization
of the nonlinear system and the subsequent application of
stochastic LMPC approaches, such as stochastic tube-based
MPC (Cannon et al., 2009). Unscented transformations have
been used in Bradford and Imsland (2017b, 2018a) to propagate
uncertainties in a SNMPC application. Both linearization and
unscented transformation are computationally cheap, but are
only applicable to moderately nonlinear systems. A sampling
average approach was used in Bradford and Imsland (2017a)
with variance reduction to reduce the required number of sam-
ples, while in Maciejowski et al. (2007) Markov Chain Monte
Carlo is applied. Both procedures can approximate the SNMPC
problem arbitrarily well with increasing sample size but the
required number of samples quickly becomes intractable. If
it is assumed that the stochastic uncertainties can only take a
discrete set of realizations, then multi-stage NMPC formula-
tions have been proposed (Lucia et al., 2013; Patrinos et al.,
2014). In particular, this methodology has been extensively
applied to EMPC problems (Lucia et al., 2014; Sopasakis et al.,
2017). While nearly all SNMPC algorithms consider full state
feedback, there are several exceptions. The Unscented transfor-
mation SNMPC used in Bradford and Imsland (2017b, 2018a)
are based on feedback from the Unscented Kalman filter, in
Homer and Mhaskar (2018) a Lyapunov based algorithm using
FokkerPlanck equation for uncertainty propagation is combined
with a probabilist high-gain observer for output feedback and
lastly in Sehr and Bitmead (2017) the particle filter is used for
both state estimation and uncertainty propagation.



Most work in SNMPC has been concerned with the applica-
tion of polynomial chaos expansions (PCE) first proposed in
Fagiano and Khammash (2012). PCE have been shown to be
significantly more efficient at propagating uncertainties than
Monte Carlo methods for moderate numbers of uncertain pa-
rameters. The method has been applied by Mesbah et al. (2014)
to an EMPC problem to obtain the required distribution of
crystals of a batch process, which use Chebyshev’s inequality
to formulate the chance constraints. Alternatively, Streif et al.
(2014) uses a sample based method instead on the PCE expan-
sion to approximate the chance constraint, which is less conser-
vative but also more expensive. PCE has further been applied in
stochastic LMPC to great success for which the coefficients are
found using the Galerkin method (Paulson et al., 2014; Lucia
et al., 2015). A major disadvantage of PCE is the inherent expo-
nential scaling with the number of uncertain parameters and the
difficulty of dealing with time-varying uncertainties. Similarly
to PCE it was suggested in Bradford and Imsland (2018b) to use
Gaussian processes instead of orthogonal polynomials, which
has the advantage that it considers the uncertainty from the
approximation itself.

In this paper the PCE NMPC methodology is extended to han-
dle the case of output feedback, i.e. where only noisy mea-
surements of a measured output are available instead of the
full state. To accomplish this, similarly as in the case of PCE
LMPC (Mühlpfordt et al., 2016), we combine PCE NMPC with
a recursive PCE filtering approach. The scheme is verified on
a complex case study of a semi-batch polymerization reaction
directly minimising the required batch time, while fulfilling
several safety and product quality constraints. The paper con-
sists of the following sections. In the next section the problem
to be solved is defined and the main algorithm is introduced.
In section 3 background on PCE is given, in section 4 a PCE
filter is outlined and in section 5 a PCE SNMPC formulation
is described. In section 6 a case study is introduced. Section 7
presents the results and discussion of this case study. Lastly, in
section 8 conclusions are given.

2. PROBLEM SETUP

In this section we outline the problem to be solved, for which
we propose a new framework. Consider a discrete-time nonlin-
ear equation system with stochastic uncertainties:

x(t+ 1) = f(x(t),u(t),θ), x(0) = x0(θ) (1)
y(t) = h(x(t),θ) + ν (2)

where t is the discrete time, x ∈ Rnx are the system states,
u ∈ Rnu denote the control inputs, θ ∈ Rnθ are time-invariant
uncertainties, f : Rnx × Rnu × Rnθ → Rnx represents the
nonlinear dynamic system, y ∈ Rny denote the measurements,
h : Rnx×Rnθ → Rny are the output equations and ν ∈ Rny ∼
N (0,Σν) is the measurement noise assumed to follow a zero
mean multivariate normal distribution with known covariance
matrix Σν. The initial condition x(0) is assumed to be a
function of the same uncertain parameters expressed as x0(θ).

To express the probability distribution of θ we use PCEs; for
background information on PCEs refer to section 3. Let θt(ξ)
correspond to the PCE of θ at time t. It is assumed that we
are initially given a PCE of θ denoted by θ0(ξ). In general
this initial probability distribution will be broad with a large
variance to represent the uncertainty in the value of θ. At
each sampling time t + 1 we measure a value of y(t + 1)
according to Eq.(2), which is then used to update θt(ξ) to

θt+1(ξ) recursively using the PCE filter outlined in section 4
by updating the coefficients of the PCE.

It should be noted that the uncertainty of the current state
estimate x(t) is a consequence of the uncertainty in θ and
can be expressed as a function of it, which we will denote as
x(t) = xt(θ). Often an explicit form of xt(θ) is not available
and instead xt(θ) needs to be understood as the simulation
forward from x(0) = x0(θ) to x(t) = xt(θ) using Eq.(1).

Given the PCE θt(ξ) and the function xt(θ) at each discrete
time t, we wish to control the dynamic system defined by
Eq.(1) subject to chance constraints and a stochastic objective.
To accomplish this we solve a probabilistic finite time-horizon
optimal control problem repeatedly in MPC fashion at time t:
minimize

uN

E(J(N,xt(·),uN ,θt(ξ)))

subject to
x(k + 1) = f(x(k),u(k),θt(ξ)) ∀k ∈ Nk
P(gj(x(k),u(k)) ≤ 0) ≥ 1− ε ∀(k, j) ∈ Nk+1 × Ng
P(gNj (x(N),u(N)) ≤ 0) ≥ 1− ε ∀j ∈ NNg
u(k) ∈ Uk ∀k ∈ Nk
x(0) = xt(θt(ξ))

(3)
where Ng = {1, . . . , ng}, NNg = {1, . . . , nNg }, Nk =
{0, ..., N − 1}, Nk+1 = {1, ..., N}, the expectation of
J(N,xt,uN ,θ) is the objective, N is the time horizon, the
probability of the functions gj : Rnx × Rnu × Rnθ → R over
all times and gNj : Rnx × Rnu × Rnθ → R at the final time
exceeding 0 should be less than ε, the constraints on the inputs
are given by Uk ⊂ Rnu and lastly uN := {u(0), . . . ,u(N −
1)} represents the control inputs.

The problem in Eq.(3) is intractable due to the requirement to
propagate stochastic uncertainties through nonlinear transfor-
mations and in addition the multivariate integral definition of
the chance constraints. Instead, we solve a simplified problem
approximating Eq.(3) using PCEs outlined in section 5. Overall
the algorithm we propose uses PCE to express the uncertainty
θ described in section 3, exploits this uncertainty description
to control the dynamic system in Eq.(1) using PCE SNMPC
introduced in section 5 and lastly uses the measurements from
Eq.(2) to update the uncertainty description utilising a PCE
filter outlined in section 4. The algorithm is summarised below.

Algorithm 1: Output feedback PCE SNMPC
Input : f(x,u,θ), h(x,θ), Σν, θ0(ξ), x0(θ)
for each sampling time t = 0, 1, 2, . . . do

(1) Solve PCE SNMPC problem with θt(ξ) and
xt(θt(ξ)) and obtain optimal control actions

(2) Apply first part of the control actions to the plant
(3) Measure y(t+ 1)
(4) Apply the PCE filter to update θt(ξ) to θt+1(ξ)
(5) Determine xt+1(θt+1) using f(·, ·,θt+1) recursively

from an updated initial condition x(0) = x0(θt+1)
end

3. BACKGROUND: PCE

The generalized polynomial chaos expansion (gPCE) scheme
will be briefly outlined in this section, for more information
refer to Mesbah et al. (2014); Xiu and Karniadakis (2003);



Eldred and Burkardt (2009). A second order process θ(ξ) can
be expressed as the following convergent expansion:

θ(ξ) =
∞∑

j=0

ajφαj
(ξ) (4)

where ξ ∈ Rnξ is a nξ-dimensional random variable with a
specified pdf, aj denotes expansion coefficients and φαj =∏nξ

i=1 φαji
(ξi) denotes multivariate polynomials with φαji

(ξi)
being univariate polynomials of ξi of degree αji.

The univariate polynomials are chosen according to the Askey
scheme based on the probability distribution of the correspond-
ing ξi to satisfy an orthogonality property, e.g. if ξi is a standard
Gaussian random variable with zero-mean and unit variance,
then φαji

(ξi) are chosen as Hermite polynomials. Univariate
Hermite polynomials He with degree j in terms of ξi are:

Hej(ξi) = (−1)j exp

(
1

2
ξ2i

)
dj

dξji
exp

(
−1

2
ξ2i

)
(5)

For these orthogonal polynomials we have the useful property:

〈φi,φj〉 =

∫
φi(ξ)φj(ξ)p(ξ)dξ = δij〈φ2

i 〉 (6)

where δij is the Kronecker delta and p(ξ) is the pdf of ξ.

To approximate θ(ξ) for practical reasons the PCE in Eq.(4)
needs to be truncated:

θ(ξ) =
∑

0≤|α|≤m
ajφαj

(ξ) = aTφ(ξ) (7)

where φ(·) = [φ1(·), . . . ,φL(·)]T contains the multivariate
polynomials of the expansion,m denotes the order of truncation
and |α| =

∑nξ

i=1 αi. The truncated series consists of L =
(nξ+m)!
nξ!m! terms and a ∈ RL represents a vector of coefficients

of these terms.

Next we need to evaluate the coefficients a, which we accom-
plish by using the non-intrusive spectral projection approach
based on the orthogonality property in Eq. (6):

aj =
〈θ(ξ),φj〉
〈φ2

j 〉
=

1

〈φ2
j 〉

∫
θ(ξ)φj(ξ)p(ξ)dξ (8)

The evaluation of the integral in Eq.(8) can be approximated
employing sample-based approaches. Quadrature methods are
the most popular due to their significantly improved conver-
gence rates compared to MC approaches for moderate dimen-
sional problems. Quadrature methods take the following form:
∫
θ(ξ)φj(ξ)p(ξ)dξ ≈ 1

〈φ2
j 〉

Nq∑

q=1

wqθ(ξ
(q))φj(ξ

(q)) (9)

leading to the following sample estimate of the coefficients:

â = w(Θ)TΦ(Ξ) ∗ 〈φ2〉−1 (10)
where ∗ denotes element-wise multiplication, Nq is the to-
tal number of quadrature points, Ξ = [ξ(1), . . . ,ξ(Nq)]T ∈
RNq×nξ represents the quadrature sample design, w(Ξ) =

[w1θ(ξ
(1)), . . . , wNqθ(ξ

(Nq))]T ∈ RNq , wq the quadrature
weights, 〈φ2〉−1 = [〈φ2

1〉, . . . , 〈φ2
L〉] ∈ RL, Φ(Ξ) =

[φ(ξ(1)), . . . ,φ(ξ(Nq))]T ∈ RN×L and the response vector
is given by Θ = [θ(ξ(1)), . . . , θ(ξ(Nq))] ∈ RNq .

The type of quadrature method is again chosen based on the
pdf of ξ. For standard Gaussian distributed ξi Gauss-Hermite

quadrature is chosen. The number of points required depends
on the order of accuracy required and the dimension of ξ. To
integrate polynomials correctly up to degree p, Nq = (p+1)nξ

points are required. This quickly becomes prohibitive, so we
instead use a sparse Gauss-Hermite (sGH) quadrature method
in this work proposed in Jia et al. (2012).

Using the coefficient approximation from Eq. (10) we have a
representation for the random variable θ(ξ) parametrized by ξ.
The polynomial chaos expansion may also be used to represent
multivariate random variables. Let a multivariate stochastic
variable be given by θ(ξ) = [θ1(ξ), . . . , θnθ

(ξ)]T ∈ Rnθ=nξ

with coefficients collected in A = [a1, . . . ,anθ
], which is

parametrized in terms of standard normal variables ξ with the
same dimension. The properties of θ(ξ) are dependent on the
coefficients A of the expansion.

Let each component of θ(ξ) be given by a truncated PCE with
the same order of truncation and the same number of terms L,
then the moments of θ(ξ) have a closed-form expression in
terms of the PCE coefficients. Moments can be defined as:

Mr(A) =

∫ nξ∏

i=1

θrii (ξ)p(ξ)dξ (11)

where r ∈ Rnξ is a vector defining the moments with k =∑nξ

i=1 ri order.

The moments of the PCE expansion with the definition in
Eq.(11) are (Dutta and Bhattacharya, 2010):

Mr(A) =

∫ nξ∏

i=1

(aTi φ(ξ))rip(ξ)dξ (12)

4. PCE FILTER

The state estimation step concerns the update of θt−1(ξ) to
θt(ξ) given the noisy measurements available, in which we
assume that ξ follows a standard normal distribution. The
following outline was taken from Madankan et al. (2013);
Mühlpfordt et al. (2016). Let Dt = {y(1) . . . ,y(t)} be the
measurements collected up to time t and y(t) the most recent
measurement. Bayes’s rule can be employed to update θ(ξ)
recursively as:

p(θ(ξ)|Dt) =
p(θ(ξ)|Dt−1)p(y(t)|θ(ξ), Dt−1)

p(y(t)|Dt−1)
(13)

where p(θ(ξ)|Dt−1) is the prior distribution of θ(ξ) at time t
given all observations up to time t − 1, p(y(t)|θ(ξ), Dt−1) is
the likelihood y(t) is observed given θ(ξ) at time t, which does
not depend on the observations Dt−1 and Dt−1 is therefore
dropped. We define p(y(t)|θ(ξ)) = N (y(t)|h(x(t),θ(ξ)),Σν)
as multivariate normal likelihood with mean h(x(t),θ(ξ)) and
covariance Σν evaluated at y(t). The pdf p(y(t)|Dt−1) is the
total probability of observation y(t) at time t given by:

p(y(t)|Dt−1) =

∫
p(y(t)|θ(ξ))p(θ(ξ)|Dt−1)dθ (14)

Calculating Eq. (14) analytically is difficult and we therefore
use sampling instead. We know the distribution p(θ(ξ)|Dt−1),
since it is assumed that ξ follows a standard normal distribu-
tion. The functions θt−1(ξ) and θt(ξ) are the PCEs corre-
sponding to the pdfs p(θ(ξ)|Dt−1) and p(θ(ξ)|Dt) respec-
tively. Latin hypercube sampling was applied together with the
inverse normal cumulative transformation (Stein, 1987):

α =
1

Ns

Ns∑

s=1

p(y(t)|θt−1(ξ(s))) (15)



where α is the sample estimate of p(y(t)|Dt−.1), Ns is the
sample size and ξ(s) ∼ N (0, I) are the sample points.

The prior distribution p(θ(ξ)|Dt−1) is given by the previous
posterior distribution of θ due to the assumed time-invariance.
If we take both sides of Eq.(13) times

∏nξ

j=1 θ
rj
j and integrate

over both sides we obtain the following:

M+
r =

∫ ∏nξ

j=1 θ
rj
j (ξ)p(y(t)|θ(ξ))p(θ(ξ)|Dt−1)dθ

p(y(t)|Dt−1)
(16)

where M+
r =

∫ ∏nξ

j=1 θ
rj
j (ξ)p(θ(ξ)|Dt)dθ and let k =∑nξ

j=1 rj . Now M+
r refers to the various k-th order moments

with respect to the updated distribution of θ, p(θ(ξ)|Dt).

Now using the sample estimate in Eq.(15) and applying a
further sample estimate to Eq.(16) we obtain:

M (s)+
r =

1

αNs

Ns∑

s=1

nξ∏

j=1

θ
rj
t−1,j(ξ

(s))p(y(t)|θt−1(ξ(s))) (17)

where M (s)+
r is an approximation of the RHS of Eq.(16).

To update θt−1(ξ) we match the moments found in Eq.(17)
with those of the PCE θt(ξ), which are a function of its
coefficients as shown in Eq.(12). The PCE is then fitted by
solving a nonlinear least-squares optimization problem:

Ât = arg min
At

∑

k≤m
||M+

r (At)−M (s)+
r ||22 (18)

where k =
∑nξ

j=1 rj was defined above as the order of the
moments and hence m defines the total order of moments we
want to match. M+

r (At) is parametrized by At as shown in
Eq.(12). The estimated coefficients Ât then define the updated
PCE θt(ξ) as required for Algorithm 1.

5. PCE SNMPC

In this section we formulate an approximate algorithm to solve
the OCP in Eq.(3) using PCEs. We assume the time is t and we
are given the PCE θt(ξ) accounting for all the data available
with the function xt(θ) describing the current state in terms
of θ. The aim is to control the dynamic system in Eq.(1) given
these uncertainty descriptions by reformulating Eq.(3). PCEs in
this regard can be used to obtain accurate mean and variance
predictions of nonlinear transformations, however estimating
the chance constraints remains a difficult problem.

The mean and variance of a PCE expansion in terms of ξ of
a 1-dimensional random variable γ with coefficients a ∈ RL
using the definition in Eq.(12) can be expressed as follows:

E(γ) ≈ a1 (19)

Var(γ) ≈
L∑

i=2

a2iE(Φ2
i (ξ)) (20)

We use Chebychev‘s inequality to robustly reformulate the
chance constraints in terms of only the mean and variance of
the constraint function. Let γ be a generic random variable with
a finite variance, then (Mesbah et al., 2014):

κεσγ + γ̂ ≤ 0, κε =
√

(1− ε)/ε =⇒ P (γ ≤ 0) ≥ 1− ε
(21)

where ε ∈ (0, 1) ⊂ R is the probability that γ exceeds 0, γ̂ and
σ2
γ are the mean and variance of γ respectively.

Next we use results from section 3. In essence we evaluate the
coefficients of a PCE expansion online using a quadrature rule

as shown in Eq.(10). The quadrature sample design is given
by Ξ = [ξ(1), . . . ,ξ(Nq)]T ∈ RNq×nξ with Nq being the
number of sample points. Once these are defined the matrices
Φ(Ξ) = [φ(ξ(1)), . . . ,φ(ξ(Nq))]T and 〈φ2〉−1 can be calcu-
lated offline. Each sample in Ξ represents a separate dynamic
simulation according to Eq.(1), the data from which is then used
according to Eq.(10) to determine the PCE coefficients online.
These are then in turn used to estimate the mean and variance
from Eqs.(20) and (19) to estimate the objective and chance
constraints according to Chebychev‘s inequality in Eq.(3). It
is important to note that the SNMPC algorithm can have a
different order of PCE than θ(ξ). The SNMPC algorithm to
reformulate Eq. (3) can be stated as:

minimize
uN

âJ1

subject to

x(i)(k + 1) = f(x(i)(k),u(k),θt(ξ
(i))) ∀(k, i) ∈ Nk × Nq

κε

L∑

i=2

(
â
gjk
i

)2 E(Φ2
i (ξ)) + â

gjk
1 ≤ 0 ∀(k, j) ∈ Nk+1 × Ng

κε

L∑

i=2

(
â
gNj
i

)2

E(Φ2
i (ξ)) + â

gNj
1 ≤ 0 ∀j ∈ ×NNg

âJ = w(ΘJ)TΦ(Ξ) ∗ 〈φ2〉−1

âgjk = w(Θgjk)TΦ(Ξ) ∗ 〈φ2〉−1 ∀(k, j) ∈ Nk+1 × Ng
âg

N
j = w(ΘgNj )TΦ(Ξ) ∗ 〈φ2〉−1 ∀j ∈ NNg

u(k) ∈ Uk ∀k ∈ Nk
x(i)(0) = xt(θt(ξ

(i))) ∀i ∈ Nq
(22)

where x(i) denotes the state for each scenario i,
w(Θ) = [w1Θ1, . . . , wNq

ΘNq
] with wi being the quadrature

weights and the data matrices ΘJ = [J(N,xt(θt(ξ
(1))

,uN ,θt(ξ
(1))), . . . , J(N,xt(θt(ξ

(Nq)),uN ,θt(ξ
(Nq)))],

Θgjk = [gj(x
(1)(k),u(k)), . . . , gj(x

(Nq)(k),u(k))],
ΘgNj = [gNj (x(1)(N),u(N)), . . . , gNj (x(Nq)(N),u(N))]
Eq.(22) gives the required control inputs for Algorithm 1.

6. SEMI-BATCH REACTOR CASE STUDY

Algorithm 1 outlined in section 2 is applied to a semi-batch
polymerization reactor for the production of polyol from propy-
lene oxide (PO). An extensive model for this process has been
presented in Nie et al. (2013a), which has been used in Jung
et al. (2015) for NMPC and in Jang et al. (2016) for multi-stage
NMPC. A schematic of the process is shown in Fig. 1.

Fig. 1. F is the monomer feedrate, V and T are the volume and
temperature of the liquid in the reactor respectively, W is
water, M is the monomer, Dn and Gn are the dormant and
active product chains with length n respectively.



To reduce the computational times we applied the method of
moments (Rivero, 2005; Nie et al., 2013b) to derive differential
equations for the average molecular weight. In addition, we dis-
regard the balance equations for the unsaturated proportion of
the polymer. Due the importance of temperature control a heat
balance was added, in which perfect temperature control was
previously assumed. This equation can nonetheless be found in
Nie et al. (2013a), where it is used as a constraint. The objective
was set to minimize batch time (tf [s]) by varying the monomer
feed rate F [mol/s] and the cooling water temperature TC [K]
to achieve a number average molecular weight (NAMW ) of
450g/mol and ensure that the amount of the monomer (PO)
contained in the reactor does not exceed 120ppm. During this
operation the reactor temperature T [K] is constrained to re-
main below 420K. The chance of constraint violation was set
to 0.1. We assume the amount of catalyst (nC [mol]) and the
pre-exponential coefficient of the propagation kinetic constant
(Ap[m3/mol/s]) to be uncertain and given by a PCE. Mea-
surements during the reaction are the pressure (P [bar]) and
temperature (T [K]) of the reactor. For discredization orthogonal
collocation was employed. The optimization problems for the
PCE SNMPC and PCE filter were solved using Casadi (An-
dersson et al., 2018) in conjunction with IPOPT (Wächter and
Biegler, 2006). The control problem to be solved is summarised
in Tab. 1. The missing parameter values and dynamic equation
system can be found in Nie et al. (2013a).

Table 1. Specifications of control problem
States (x) m[g], PO[mol],W [mol], T [K],

X0 [mol], γ0[mol], γ1[mol]
Outputs (y) P [bar], T [K]
Output noise Σν = diag(0.25, 0.01)
Inputs (u) F [mol], TC [K]
Uncertainties Ap[m3/mol/s], nC [mol]
Objective minimize tf [s]
Path constraints T [K]− 420 ≤ 0
End constraints 450− NAMW[g/mol] ≤ 0, PO[ppm]− 120 ≤ 0
Probability ε = 0.1
Input constraints 0 ≤ F [mol/s] ≤ 10, 298.15 ≤ TC [K]

PCE SNMPC PCE order = 3, sGH accuracy = 2, sGH manner = 1
PCE filter Samples = 800, Moments considered = 5, PCE order = 3
Discredization N = 12, Degree = 5
Initial PCE AP 9.05 + 0.25ξ1 + 0.13(ξ1 − 1)2 + 0.04(ξ31 − 3ξ1)
Initial PCE nC 6.91 + 0.25ξ2 + 0.13(ξ2 − 1)2 + 0.04(ξ32 − 3ξ2)

Reactor specs. V = 17m3, UA = 1.5× 104W/m2/K
Initial cond. m(0) = 1.6× 106g, PO(0) = 104mol,

W (0) = 103mol, X0(0) = 0mol,
T (0) = 378.15K, γ0(0) = γ0(1) = 104mol

7. RESULTS AND DISCUSSION

Algorithm 1 outlined in section 2 was verified on the case study
defined in the previous section firstly by running the NMPC
on a specific realization of θ for plant model, in our case
[Ap, nC ] = [7200m3/mol/s, 1700mol], significantly different
from the nominal values [8504m3/mol/s, 1000mol]. The re-
sults of this are shown in Fig. 2. Firstly, we can see from the first
two row of graphs that the parameters are significantly better
approximated at the final time than initially, which leads to a
large reduction in uncertainty shown by sharper distribution in
both cases. Nonetheless while little uncertainty remains of the
value for Ap, nC has still a high uncertainty with a clear bias
towards a lower value. This is due to the influence of the prior,
which assumed nC to be around 1000mol. The next three rows
of graphs show the control inputs and trajectories of constraints
and objective. We can see that generally the batch time becomes

less and less, which has two reasons. Firstly, the uncertainty
is reduced at every sampling time making the algorithm less
conservative and in addition the estimate of the amount catalyst
is corrected upwards, which leads to higher NAMW in less time
and higher consumption of monomer. First less monomer is fed,
since the reactor starts with high concentrations of monomer to
ensure the temperature constraint. Thereafter, the monomer is
fed in at a maximum rate to reach the required NAMW in min-
imum time. Lastly, the monomer feedrate is reduced to 0, since
at the final time the ppm needs to be less than 120. In this run
the NAMW reaches a value of 451g/mol, while the monomer
concentration becomes 36ppm. The relative conservativeness
particularly with regards to the amount of monomer is due to
the bias of the amount of catalyst to a lower value than the true
value. The cooling water temperature is lowest at the beginning
when the reaction rate is maximum, while at the end the cooling
water temperature is relatively high since the reaction rate is
close to zero due to the low monomer concentration.

Next the approach was applied to 100 MC samples of the plant
according to the initial PCE representations of the uncertainties
given in Tab. 1. We compare it to a NMPC approach, which
uses the PCE filter to update the parameters, but ignores the
distribution of the uncertain parameters and instead uses the
mean value as the current best estimate. The first graph shows
that the SNMPC variant is more conservative with on average
longer batch times, which is expected since it accounts for
the uncertainty. The next two graphs highlight the problem of
ignoring the uncertainty on the parameters. For the SNMPC
approach all of the scenarios obtain a NAMW larger than 450
and only 4% of the scenarios have a ppm larger than 120. This
can be seen by the flat pdfs with nearly all the area of the
curve in regions required by the chance constraints. For the
NMPC scheme however the distributions are peaked around the
required value with only 57% of scenarios reaching the required
NAMW and 51% of scenarios exceeding 120ppm. Lastly, tem-
perature control for both approaches is good showing that the
uncertainties have little effect on the heat balance.

8. CONCLUSIONS

In conclusion, a novel algorithm for output feedback SNMPC
has been proposed by employing PCE for both control and
filtering. The SNMPC problem involved both objective and
probability constraints based on general nonlinear functions.
A challenging semi-batch reactor case study showed that the
SNMPC framework is able to regulate the process with plant
parameters vastly different from the nominal values. It managed
to estimate more accurate parameter values, while still account-
ing for the remaining uncertainty adhering the constraints. In
addition, it was shown that taking into account the uncertainty
of the parameters is important even after the updates, since it
otherwise leads to more than 50% of constraint violations of
the end-point constraints.
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Fig. 2. Probability densities at initial and final time for both
uncertainties and state trajectories for a plant model with
[Ap, nC ] = [7200m3/mol/s, 1700mol]

Fig. 3. Probability densities of batch time, NAMW, ppm of
monomer at final time and temperature trajectories of
NMPC and SNMPC based on 100 MC simulations
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Output feedback stochastic nonlinear model predictive control of a
polymerization batch process

Eric Bradford1, Marcus Reble2, and Lars Imsland3

Abstract— Nonlinear model predictive control (NMPC) is one
of the few methods that can handle multivariate nonlinear con-
trol problems while accounting for process constraints. Many
dynamic models are however affected by significant stochastic
uncertainties that can lead to closed-loop performance problems
and infeasibility issues. In this paper we propose a novel
stochastic NMPC (SNMPC) algorithm to optimize a probabilis-
tic objective while adhering chance constraints for feasibility in
which only noisy measurements are observed at each sampling
time. The system predictions are assumed to be both affected by
parametric and additive stochastic uncertainties. In particular,
we use polynomial chaos expansions (PCE) to expand the
random variables of the uncertainties. These are updated using
a PCE nonlinear state estimator and exploited in the SNMPC
formulation. The SNMPC scheme was verified on a complex
polymerization semi-batch reactor case study.

I. INTRODUCTION

Batch processes play a vital role for the manufacture
of high value products in many sectors of the chemical
industry, such as pharmaceuticals, polymers, biotechnology,
and food. The main reason for the continued use of batch
processes is their inherent flexibility to produce multiple
products and deal with variations in feedstock, product spec-
ifications, and market demand. The control of batch reactors
is often challenging due to their frequently highly nonlinear
behaviour and operation at states that are not steady states.
Therefore, there is an increased acceptance in industry for the
application of nonlinear model predictive control (NMPC) to
address these challenges [1].

Model predictive control (MPC) is an advanced control
method that has been employed to a significant extent in
industry due to its ability to deal with multivariate plants and
process constraints. MPC solves an optimal control problem
(OCP) based on an explicit dynamic model at each sampling
time to determine a finite sequence of control actions [2].
Due to various uncertainties however the dynamic system
behaviour may be significantly different from the predicted
behaviour of the dynamic model. This may lead to con-
straint violations and a worse control performance. If we
assume the uncertainties to lie in a bounded set, robust MPC
(RMPC) methods are available to deal with this problem
[3]. For robust NMPC, min-max NMPC [4] and tube-based
NMPC [5] have been proposed among others. While these
approaches can give stability and performance guarantees in

1 E. Bradford and 3 L. Imsland are with the Faculty of
Information Technology and Electrical Engineering, Department
of Engineering Cybernetics, NTNU, 7491 Trondheim, Norway
{eric.bradford,lars.imsland}@ntnu.no

2 M. Reble is with BASF SE, 67056 Ludwigshafen, Germany
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the worst-case, the probability of occurrence of the worst-
case realization may be very small and hence lead to a too
conservative solution [6].

Alternatively stochastic MPC (SMPC) may be employed,
for which the uncertainties are given by known probability
density functions (pdf). Constraints and objective in this
context are addressed in a probabilistic sense, allowing for
a pre-defined level of constraint violations in probability
and thereby alleviating the previously mentioned problem
by trading-off risk with closed-loop performance [6]. SMPC
has been largely focused on linear systems [7], such as
tube-based SMPC [8], scenario-based SMPC [9] and SMPC
using affine-parametrizations [10], while stochastic NMPC
(SNMPC) has received relatively little attention.

The main difficulty of SNMPC is propagating continuous
stochastic uncertainties through nonlinear equations with-
out being prohibitively computationally expensive. Several
methods have been proposed for approximating this case,
some of which have been successfully applied to formulate
SNMPC approaches: Unscented transformations [11], Poly-
nomial chaos expansions (PCE) [12], Quasi Monte Carlo
(MC) [13], Markov Chain MC [14], Gaussian processes [15],
Gaussian mixtures (GM) [16], Fokker-Planck [17], lineariza-
tion [18], and particle filters [19]. The control of systems
with discrete stochastic uncertainties has been addressed in
[20]. Most SNMPC work is based on full state feedback,
but there are several algorithms that have been proposed for
output feedback. The unscented transformation work in [11]
assumes feedback from the Unscented Kalman filter, in [21]
a probabilistic high-gain observer is proposed to be jointly
used with a continuous-time SNMPC formulation and lastly
[19] use the particle filter equations for both state estimation
and uncertainty propagation.

PCE has received a lot of attention for SNMPC, which
can be seen as a sampling-based MPC algorithm to approx-
imate both probabilistic constraints and objectives. In [12]
PCEs are used to approximate objectives and constraints
in expectation. The work by [22] extends the approach to
include chance constraints by using Chebyshev’s inequality,
while in [23] the chance constraints are instead approximated
using MC sampling. This leads to computationally more ex-
pensive, but less conservative approximations of the chance
constraints. PCE are only able to represent time-invariant un-
certainties, which causes problems with commonly assumed
time-varying uncertainties. This issue has been addressed in
[24] for additive noise and in [25] for non-additive noise by
using conditional probability rules to essentially deal with
time-varying and time-invariant uncertainties separately.



Apart from SNMPC, PCEs have also been extensively
used for nonlinear filtering. Firstly, PCEs can be used as
a cheap surrogate to obtain mean and covariance estimates
of nonlinear transformations. This has been applied to yield
various PCE Kalman filters (KF) for nonlinear estimation
problems, including a PCE ensemble KF [26] and a PCE
extended KF [27]. Apart from the PCE KFs, several authors
have applied Bayes’ rule directly to the PCE expansion to
attain the posterior distribution of the states. In [28] PCEs
are used to propagate uncertainties, from which the moments
are fitted to a GM and used in Bayes’ rule. Similarly in
[29] the same procedure is used, however the update is
carried out using linear update laws considering higher order
moments. Using sampling the posterior moments of a PCE
expansion can be obtained from Bayes’ rule and used to fit
a posterior PCE expansion by updating the coefficients as
shown in [30]. The method in [31] similarly to [30] uses
posterior moments from Bayes’ rule, but accounts for time-
varying additive disturbances and uses the PCE in addition
for uncertainty propagation. [32] propose to use PCEs for
uncertainty propagation in conjunction with a particle filter.

In this paper we extend the work in [33] that proposes a
SNMPC algorithm for output feedback using the nonlinear
filter proposed by [30] and a PCE SNMPC algorithm as in
[22]. In the previous work additive process noise was ignored
due to the issue time-varying uncertainties cause for PCE
based methods. To address these issues we extended the
approach in [30] to be able to handle additive disturbance
noise and in addition formulate an efficient SNMPC algo-
rithm using a sparse Gauss-Hermite (sGH) sampling rule.
The framework is verified on an extensive case study of a
semi-batch polymerization reaction, for which we directly
minimise the required batch time subject to safety and
product quality constraints. The paper is comprised of the
following sections. In the subsequent section a general prob-
lem definition is given and the main algorithm is introduced.
In section 3 we give some background on PCE. In section
4 the PCE state estimator is outlined, while in section 5 we
introduce the Gauss-Hermite SNMPC formulation. Section
6 defines the case study, while in section 7 the results and
discussions of the case study are presented. Lastly, in section
8 conclusions are given.

II. PROBLEM SETUP
The problem to be solved is outlined in this section.

Consider a discrete-time system of nonlinear equations with
stochastic parameters and additive disturbance noise:

x′t+1 = f ′(x′t,ut) + wt, x′0 = x′0(ξ) (1)
yt = h′(x′t) + νt (2)

where t is the discrete time, x′ = [x,θ]T is an augmented
state vector, x ∈ Rnx are the system states, θ ∈ Rnθ are
parametric uncertainties, u ∈ Rnu denote the control inputs,
f ′(x′t,ut) = [f(x′t,ut),θt]

T are the dynamic equations for
the augmented state vector, f : Rnx+nθ×Rnu → Rnx repre-
sents the nonlinear dynamic system for the states, y ∈ Rny

denote the measurements, h : Rnx+nθ → Rny are the output

equations, ν ∈ Rny ∼ N (0,Σν) is additive measurement
noise assumed to follow a zero mean multivariate normal
distribution with known covariance matrix Σν, and w ∈
Rnx+nθ ∼ N (0,Σw) is additive disturbance noise assumed
to follow a zero mean multivariate normal distribution with
known covariance matrix Σw. The initial condition x′0 is as-
sumed to follow a known probability distribution represented
by a PCE with ξ ∈ Rnx+nθ ∼ N (0, I). For background
information on PCEs refer to section III.

To approximately represent the probability distribution of
x′t at each discrete time we use PCEs. Let x′t(ξ) correspond
to the PCE of x′ at time t. It is assumed that we are
initially given a PCE of x′ denoted by x′0(ξ) as shown
in Eq.1. Usually this initial probability distribution will
be broad with a relatively large variance representing the
uncertainty of the initial states and uncertain parameters.
At each sampling time t + 1 we measure yt+1 given by
Eq.(2). This measurement is then used to determine x′t+1(ξ)
by updating the PCE representation of x′t(ξ) using Bayes’
rule. The nonlinear filter using PCEs is outlined in section
IV. Given the PCE x′t(ξ) at each discrete time t, we wish
to control the dynamic system defined by Eq.(1) subject to
chance constraints and a stochastic objective. To accomplish
this we solve a probabilistic finite time-horizon optimal
control problem repeatedly in MPC fashion at each time t:

minimize
UN

E(J(N,x′t(ξ),UN ))

subject to
x′k+1 = f ′(x′k,uk) + wk ∀k ∈ Nk
P(gj(x

′
k,uk) ≤ 0) ≥ 1− ε ∀(k, j) ∈ Nk+1 × Ng

P(gNj (x′N ,uN ) ≤ 0) ≥ 1− ε ∀j ∈ NNg
uk ∈ Uk ∀k ∈ Nk
x′0 = x′t(ξ)

(3)
where Ng = {1, . . . , ng}, NNg = {1, . . . , nNg }, Nk =
{0, ..., N − 1}, Nk+1 = {1, ..., N}, the expectation of
J(N,x′t(ξ),UN ) is the objective, N is the time horizon,
the probability of the functions gj : Rnx+nθ × Rnu → R
over all times and gNj : Rnx+nθ × Rnu → R at the final
time exceeding 0 should be less than ε, the constraints on
the inputs are given by Uk ⊂ Rnu , and lastly UN :=
[u0, . . . ,uN−1] represents the control inputs.

The problem in Eq.(3) cannot be solved exactly since it
requires the propagation of stochastic uncertainties through
nonlinear transformations and involves chance constraints,
which require the evaluation of multivariate integrals. In-
stead, a simplified problem is formulated in section V
approximating Eq.(3) using a sparse Gauss-Hermite rule.
Overall we propose to use PCEs introduced in section III
to represent the probability distributions of the states xt
and the uncertain parameters θt jointly denoted as x′t at
each sampling time t. The SNMPC algorithm formulation
in section V exploits this uncertainty description to control
the dynamic system in Eq.(1), while the measurements from
Eq.(2) are utilised to update the PCE presentation of x′t



recursively as outlined in section IV. The proposed algorithm
is summarised below as Algorithm 1.

Algorithm 1: Output feedback PCE SNMPC
Input : f ′(x′,u), h(x′), Σν, Σw, x′0(ξ)
for each sampling time t = 0, 1, 2, . . . do

1) Solve PCE SNMPC problem (3) with x′t(ξ) and
obtain optimal control actions.

2) Apply the first control action to the plant.
3) Measure yt+1.
4) Apply PCE filter to update x′t(ξ) to x′t+1(ξ).

end

III. BACKGROUND: PCE

The polynomial chaos expansion (PCE) scheme will be
briefly outlined in this section, for more information refer to
[22], [34], [35]. In this work PCEs are used as an efficient
means to represent random variables. It can be shown that a
random variable γ with finite second order moments can be
expressed as a convergent series expansion:

γ(ξ) =
∞∑

j=0

ajφαj (ξ) (4)

where ξ ∈ Rnξ ∼ N (0, I) is a nξ-dimensional random
variable following a standard normal distribution with zero-
mean and unit variance, aj denote expansion coefficients
and φαj =

∏nξ

i=1 φαji(ξi) are multivariate polynomials with
φαji(ξi) being univariate polynomials of ξi of degree αji.

The univariate polynomials are chosen to satisfy an or-
thogonality property according to the pdf of ξ, which in the
case of standard Gaussian random variables are given by
Hermite polynomials. Hermite polynomials He with degree
j in terms of ξi can be expressed as:

Hej(ξi) = (−1)j exp

(
1

2
ξ2i

)
dj

dξji
exp

(
−1

2
ξ2i

)
(5)

These orthogonal polynomials have the useful property:

〈φi,φj〉 =

∫
φi(ξ)φj(ξ)p(ξ)dξ = δij〈φ2

i 〉 (6)

where δij is the Kronecker delta and p(ξ) is the pdf of ξ.
To approximate γ(ξ) for practical reasons the PCE in

Eq.(4) needs to be truncated:

γ(ξ) =
∑

0≤|αj |≤m
ajφαj (ξ) = aTφ(ξ) (7)

where φ(·) = [φ1(·), . . . ,φL(·)]T contains the multivariate
polynomials of the expansion, m denotes the order of trun-
cation, and |αj | =

∑nξ

i=1 αji. The truncated series consists
of L = (nξ+m)!

nξ!m! terms and a ∈ RL represents a vector of
coefficients of these terms.

From Eq.(7) we have a PCE representation of γ
parametrized by ξ. PCE may also represent multivari-
ate random variables as we require for x′. Let a

multivariate stochastic variable be given by γ(ξ) =
[γ1(ξ), . . . , γnγ (ξ)]T ∈ Rnγ=nξ with coefficients collected
in A = [a1, . . . ,anγ ], which is parametrized in terms of
standard normal variables ξ with the same dimension. The
properties of γ(ξ) are dependent on the coefficients A of
the expansion. Let each component of γ(ξ) be given by a
truncated PCE with the same order of truncation and the
same number of terms L, then the moments of γ(ξ) have
a closed-form expression in terms of the PCE coefficients.
The statistical moments of γ can be defined as:

Mr(A) =

∫ nξ∏

i=1

γrii (ξ)p(ξ)dξ (8)

where r ∈ Rnξ is a vector defining the moments with k =∑nξ

i=1 ri being the overall order.
The moments of the PCE expansion with the definition in

Eq.(8) are [29]:

Mr(A) =

∫ nξ∏

i=1

(aTi φ(ξ))rip(ξ)dξ (9)

IV. PCE STATE ESTIMATOR

The general outline for the PCE filter was taken from [30],
[36], however these works do not consider additive distur-
bance noise. Let Dt = {y1 . . . ,yt} be the measurements
collected up to time t and yt the most recent measurement.
The state estimation step concerns the update of the states
given the noisy measurements available. In our algorithm the
uncertainties x′t are given by PCEs. In particular, let x′t−1(ξ)
refer to the previously estimated PCE. Bayes’s rule can be
employed to update x′ from x′t−1|Dt−1 to x′t|Dt recursively
as follows:

p(x′t|Dt) =
p(x′t|Dt−1)p(yt|x′t, Dt−1)

p(yt|Dt−1)
(10)

Next we define each term on the RHS of Eq.(10), which are
dependent on the dynamic and measurement equation.

1) p(x′t|Dt−1): Prior distribution of x′t given the previous
measurements Dt−1, which can be expressed as:

p(x′t|Dt−1) =

∫
p(x′t|x′t−1)p(x′t−1|Dt−1)dx′t−1 (11)

where p(x′t|x′t−1) = N (x′t|f ′(x′t−1,ut−1),Σw) is a multi-
variate normal pdf with mean given by the dynamics defined
in Eq.(1) and the covariance by the disturbance noise evalu-
ated at xt. It should be noted that without disturbance noise
p(x′t|Dt−1) =

∫
δ(x′t− f ′(x′t−1,ut−1))p(x′t−1|Dt−1)dx′t−1.

2) p(yt|x′t, Dt−1): The pdf of the current measurement
yt being observed given x′t, which can be given as follows:

p(yt|x′t, Dt−1) = N (yt|h(x′t),Σν) (12)

3) p(yt|Dt−1): Total probability of observation yt given
previous measurements can be expressed as:

p(yt|Dt−1) =

∫
p(yt|x′t, Dt−1)p(x′t|Dt−1)dx′t (13)



If we take both sides of Eq.(10) times
∏nξ

j=1(x′tj)
rj and

integrate over both sides with respect to x′t we obtain:

M+
r =

∫ ∏nξ

j=1(x′tj)
rjp(yt|x′t, Dt−1)p(x′t|Dt−1)dx′t

p(yt|Dt−1)
(14)

where from Eq.(10) M+
r =

∫ ∏nξ

j=1(x′tj)
rjp(x′t|Dt)dx

′
t and

k =
∑nξ

j=1 rj . Now M+
r refers to the various k-th order

moments of the updated distribution of x′t, p(x
′
t|Dt).

Next we will deal with the approximation of the RHS
of Eq.(14). Evaluating the various multivariate integrals
required analytically is difficult and we therefore apply
sampling. We are given a PCE expansion at time t−1,
x′t−1(ξ), corresponding to the pdf p(x′t−1|Dt−1) in Eq.(11).
This distribution can be readily sampled, since ξ follows a
standard normal distribution. Apart from sampling ξ, we also
require samples of the disturbance w to deal with the inte-
grals over both xt−1 and xt. It should be noted that Gauss-
Hermite rules were not used for the sampling, since these
showed poor convergence due to the high nonlinearity of the
likelihood functions. Latin hypercube sampling was applied
instead with the inverse normal cumulative transformation to
improve the convergence rate over MC [37]:

α =
1

Ns

Ns∑

s=1

N (yt|h(x′t
(s)

),Σν) (15)

where α is the sample estimate of p(y(t)|Dt−1), x′t
(s)

=
f ′(xt−1(ξ(s)),ut−1) + w(s), Ns is the sample size, ξ(s) ∼
N (0, I) and w(s) ∼ N (0,Σw) are the sample points.

Now using the sample estimate in Eq.(15) and applying a
further sample estimate to Eq.(14) we obtain:

M (s)+
r =

∑Ns
s=1

∏nξ

j=1 (x′tj(ξ
(s)))rjN (yt|h(x′t

(s)
),Σν)

αNs
(16)

where M (s)+
r is an approximation of the RHS of Eq.(14).

To update x′t−1(ξ) we match the moments found in
Eq.(16) with those of the PCE x′t(ξ), which are a function
of its coefficients as shown in Eq.(9). The PCE is then fitted
by solving a nonlinear least-squares optimization problem:

Ât = arg min
At

∑

k≤m
||M+

r (At)−M (s)+
r ||22 (17)

where k =
∑nξ

j=1 rj was defined above as the order of the
moments and hence m defines the total order of moments we
want to match. M+

r (At) is parametrized by At as shown in
Eq.(9). The estimated coefficients Ât then define the updated
PCE x′t(ξ) as required for Algorithm 1.

V. SPARSE GAUSS HERMITE SNMPC
In this section we outline a SNMPC formulation to ap-

proximately solve the OCP stated in Eq.(3). The problem of
controlling a dynamic equation system given by Eq.(1) with
initial conditions represented by PCEs and additive time-
varying disturbance noise has been addressed in [24]. In
this section we propose to use a similar approach with some
changes. In [24] the initial conditions and parametric uncer-
tainties are propagated by using PCEs, while the disturbance

noise is propagated using linearization. We use a sGH rule
instead of PCEs, which is significantly cheaper at estimating
the mean and variance of nonlinear transformations. The
GH sampling rule is particularly well-suited for uncertainties
described by PCEs, since these are parametrized by standard
normal distributed variables. In addition, it can be seen in
[38] that for the same sample size the accuracy between GH
sampling rules and PCE approximations is nearly identical.

In this work we use a sGH quadrature rule proposed in
[39] to approximate mean and variance of the constraint and
objective functions, which create a deterministic sample of
ξ with corresponding weights. The sGH approximations of
expectation and variances of a function q(ξ) are:

E [q(ξ)] ≈ µq =

Nq∑

q=1

wqq(ξq) (18)

E
[
(q(ξ)− µq)2

]
≈ σ2

q =

Nq∑

q=1

wq
(
q(ξq)− µq

)2
(19)

where ξq and wq are given by the sGH quadrature rule with
overall Nq points. µq and σ2

q are the sGH mean and variance
approximation respectively.

The above approximation is utilised to account for the
contribution of the initial PCE x′t(ξ), while the time-varying
uncertainty w is accounted for by using linearisation. This
is necessary, since w is time-varying and hence each wt is
a separate random variable leading otherwise to a too high
dimension for sGH. Employing the law of total expectation
we can deal with the uncertainties using sGH for x′t(ξ) and
w using linearization, which can be stated as [31]:

E[q(x′t,w)] = Ex′
t
[Ew[q(x′t,w)|x′t]] (20)

Var[q(x′t,w)] = Ex′
t
[Varw[q(x′t,w)|x′t]]+

Varx′
t
[Ew[q(x′t,w)|x′t]] (21)

By approximating the inner expectation and variance over
w using linearisation, we arrive at:

E[q(x′t,w)] ≈ Ex′
t
[q(x′t,µw)] (22)

Var[q(x′t,w)] ≈ Ex′
t
[QΣwQT ]+

Varx′
t
[q(x′t,µw)] (23)

where µw denotes the mean of w, Q = ∂q
∂w |x′

t,µw
and Σw

is the covariance of w.
The remaining expectation and variances can then be

approximated by creating samples of x′t using the sGH rule.
Chance constraints are multivariate integrals that are very
difficult to estimate online. We use Chebychev‘s inequality
to robustly reformulate the chance constraints in terms of
only the mean and variance of the constraint function. Let γ
be a random variable with a finite variance, then [22]:

κε

√
σ2
γ + γ̂ ≤ 0, κε =

√
(1− ε)/ε⇒ P (γ ≤ 0) ≥ 1− ε

(24)
where ε ∈ (0, 1) ⊂ R is the probability that γ exceeds 0, γ̂
and σ2

γ are the mean and variance of γ respectively.



Next we state the finite-horizon stochastic OCP problem
that approximates Eq.(3) using the above results. For the
SNMPC algorithm we use linearization to account for and
propagate the uncertainty of w similar to an extended
Kalman filter based NMPC algorithm [1]. This is carried
out for each sample generated by the sGH rule and the
overall mean and variance of the objective and constraint
function are then found using the law of total expectation.
The chance constraints are then further approximated using
Chebychev‘s inequality in Eq.(24). First we create a sGH
quadrature sample design with Nq points, {ξ1, . . . ,ξNq}
each with corresponding weights wq . Assuming we are at
time t and are hence given a PCE representation x′t(ξ), the
SNMPC problem can be stated as follows:

minimize
UN

Nq∑

i=1

wqJ(N,x′t(ξi),UN )

subject to

µ
(i)
x′,k+1 = f(µ

(i)
x′,k,uk) ∀(k, i) ∈ Nk × Nq

Σ
(i)
x′,k+1 = F

(i)
k Σ

(i)
x′,kF

(i)T
k + Σw ∀(k, i) ∈ Nk × Nq

µ(k)
gj + κεσ

(k)
gj ≤ 0 ∀(k, j) ∈ Nk+1 × Ng

µgNj + κεσgNj ≤ 0 ∀j ∈ Ng
uk ∈ Uk ∀k ∈ Nk
µ
(i)
x′,0 = x′t(ξi) ∀i ∈ Nq

(25)
where µ

(i)
x′,k and Σ

(i)
x′,k+1 represent the mean and covariance

of x′k for sample i, F
(i)
k = ∂f ′

∂x′ |µ(i)

x′,k,uk
denotes the

linearised dynamic equation system at time k for sample
i, µ

g
(k)
j

=
∑Nq
i=1 wigj(µ

(i)
x′,k,uk) is the mean of the

constraint g
(k)
j , σ2

g
(k)
j

=
∑Nq
i=1 wiG

(i)

g
(k)
j

Σ
(i)
x′,kG

(i)T

g
(k)
j

+

∑Nq
i=1 wi

(
gj(µ

(i)
x′,k,uk)− µ2

g
(k)
j

)2

is the variance

of constraint g
(k)
j , G

(i)

g
(k)
j

=
∂gj
∂x′ |µ(i)

x′,k,uk
is the

Jacobian matrix for the constraint g
(k)
j for sample

i, µgNj =
∑Nq
i=1 wig

N
j (µ

(i)
x′,N ,uN ) is the mean of

constraint gNj , σ2
gNj

=
∑Nq
i=1 wiG

(i)T

gNj
Σ

(i)
x′,kG

(i)

gNj
+

∑Nq
i=1 wi

(
gj(µ

(i)
x′,k,uk)− µ2

gNj

)2
is the variance of

constraint gNj and lastly G
(i)T

gNj
=

∂gNj
∂x′ |µ(i)

x′,N ,uN
is the

Jacobian matrix for constraint gNj for sample i.
Solving Eq.(25) at each time t gives the required control

inputs for Algorithm 1.

VI. CASE STUDY

The algorithm outlined in section II is employed for the
control of a semi-batch polymerization reaction involving the
production of polyol from propylene oxide (PO) in a shrink-
ing horizon fashion. A schematic of the process is shown in
Fig. 1. A complex model for this process has been proposed
in [40], which was employed in [41] for NMPC and in [42]

Fig. 1. F is the monomer feedrate, V and T are the volume and temperature
of the liquid in the reactor respectively, W is water, M is the monomer, Dn

and Gn are the dormant and active product chains with length n respectively.

for multi-stage NMPC. The computational times reported
in these papers is relatively high at around 30 seconds to
minutes. This is due to the model being highly nonlinear and
requiring a separate balance equation for each polymer with
a specific chain length. To reduce computational times we
therefore simplified the model using the method of moments
[43] to derive differential equations for the average molecular
weight. Further, we disregard the balance equations for the
unsaturated proportion of the polymer and assume that there
is no water or methanol present in the reactor initially. In
the aforementioned work perfect temperature control was
assumed. We added a heat balance in this work due to the
importance of temperature control for safety reasons. The
simplified ordinary equation system can be stated as follows:

ṁ = FMWPO, m(0) = m0(ξ) (26a)

Ṫ =
(−∆Hp)kpnCPO

V mCpb
− UA(T − TC)

mCpb

− FMWPOCpf (T − Tf )

mCpb
, T (0) = T0(ξ) (26b)

˙PO = F − nC(kp + kt)PO
V

, PO(0) = PO0(ξ) (26c)

γ̇1 =
kpnCPO

V
, γ1(0) = γ10(ξ) (26d)

where m[g] is the liquid mass in the reactor, F [mol/s] is
the feed rate of the monomer, T [K] is the temperature of
the reactor, PO[mol] is the amount of monomer and γ1 is
the first moment and hence the average molecular weight of
the polymer chains, MWPO = 58.08g/mol is the molecular
weight of PO, ∆Hp is the enthalpy of the propagation
reaction, kp = Ap exp(−EAp/RT ), nC is the amount of
catalyst, V is the volume of the liquid in the reactor, Cpb
and Cpf are the heat capacities of the bulk liquid and
the monomer feed respectively, kt = At exp(−EAt/RT )
and TC [K] is the cooling water temperature. m0(ξ), T0(ξ),
PO0(ξ), and γ10(ξ) are the initial PCE expansions of the
states m, T , PO, and γ1 respectively.

The missing parameter values including the vaporliq-
uid equilibrium equations and temperature correlations can
be found in [40]. The aim of the control algorithm is
to minimize the required remaining batch time (tf [s])
to achieve a specified number average molecular weight



(NAMW[g/mol]) of the final product of 350g/mol and
ensuring that the amount of monomer (PO) at the end of the
batch does not exceed 1000ppm. The definitions NAMW can
be found in [40], which requires the zeroth moment γ0[mol].
Due the assumptions made this zeroth moment is a constant
in the defined problem and given in Tab. I. For safety reasons
the reactor temperature T [K] is constrained to remain below
420K. The control variables are the monomer feed rate
F [mol/s] to the reactor and the cooling water temperature
TC [K]. The chance of constraint violation was set to 0.05.
Apart from the uncertainty of the states, the variables pre-
exponential coefficient of the propagation kinetic constant
(Ap[m3/mol/s]) and the heat transfer coefficient (UA[W/K])
were assumed to be uncertain and added to the state vector
as shown in Eq.(1). Measurements during the reaction are
the pressure (P [bar]) of the reactor, the temperature (T [K])
of the reactor, and the amount of monomer (PO[mol]). The
discretization of Eq.(26) was carried-out utilising orthogonal
collocation. The resulting optimization problems for both the
sGH SNMPC problem and the PCE state estimator were
solved using Casadi [44] in conjunction with IPOPT [45].
The control problem to be solved is specified in Tab. I.

TABLE I
SPECIFICATIONS OF CONTROL PROBLEM

Augmented state (x′) m[g],PO[mol], T [K], γ1[mol]
Disturbance noise Σw = diag(0, 0, 1, 2, 50, 200)
Outputs (y) P [bar], T [K], PO[mol]
Output noise Σν = diag(0.25, 0.001, 1000)
Inputs (u) F [mol], TC [K]
Uncertainties Ap[m3/mol/s], nC [mol]
Objective minimize tf [s]
Path constraints T [K]− 420 ≤ 0
1st end constraint 350− NAMW[g/mol] ≤ 0
2nd end constraint PO[ppm]− 1000 ≤ 0
Probability ε = 0.05
Input constraints 0 ≤ F [mol/s] ≤ 10, 298.15 ≤ TC [K]
sGH SNMPC sGH accuracy = 2, sGH manner = 1
x′-PCE PCE order = 2
PCE filter Samples = 4000, Moments considered = 4
Discretization N = 8, Degree = 5
Initial PCE m0(ξ) 1537710
Initial PCE PO0(ξ) 10000 + 1000ξ2
Initial PCE T0(ξ) 378.15 + 4ξ3
Initial PCE γ10(ξ) 10000 + 500ξ4
Initial PCE AP 0(ξ) 8504 + 1000ξ5
Initial PCE UA0(ξ) 40000 + 4000ξ6
Reactor specs. VR = 17m3, nC = 1000mol, γ0 = 10000mol

VII. RESULTS AND DISCUSSIONS

In this section we verify Algorithm 1 by applying it to
the previously specified control problem. First we run the
algorithm on a specific realization of the initial uncertainties
on x′ as specified by the initial PCE in Tab. I, which is as fol-
lows: x′ = [1537710, 12371, 375.2, 9855, 10100, 36301]T .
The disturbances w and measurement noise ν are randomly
sampled. The results of this run are shown in Fig. 2.

The two graphs in the first row of Fig. 2 show the evolution
of the pdf of the two uncertain parameters Ap and UA
from its PCE. Firstly, it can be seen that both parameters
are significantly better approximated at the final time than

initially through the measurement updates. In particular, the
distribution of Ap starts out at around 7500, but thereafter
rapidly approaches its true value shown by the vertical black
line at around 10000. Nonetheless some bias remains towards
a lower value, however with some probability to take its
true value or higher. UA on the other hand does not have
such a bias and converges quickly to its true value, but the
distribution remains relatively broad due to influence of the
disturbance and measurement noise. The next two rows show
the trajectories of the 4 states as a continuous blue line, while
the black crosses and error bars represent the state estimates
with a 95% confidence interval of the PCE expansion. The
mass and monomer have near exact state estimates due to the
assumed low disturbance noise. The monomer has a slight
deviation initially but quickly converges to the true trajectory
once the first measurement becomes available. The ppm of
the monomer at the final time was found to be 916 and
hence 84 less than required. This can be explained by the
underestimation of Ap, which means the SNMPC will run
longer to ensure a sufficiently low ppm is reached. Temper-
ature has some significant uncertainty, which is accounted
for in the SNMPC algorithm to not violate the constraint to
remain below 420K. Lastly, the first moment over-shoots the
constraint required to reach 350mol/g NAMW and instead
reaches a NAMW of 385mol/g. This can again be explained
by the underestimation of Ap and hence increasing the batch
time to reach the required NAMW and ppm in at least 95%
of possible cases. This can also be seen in the graph in the
last row, where at first the sampling time decreases due to
less uncertainty but then increases again to ensure the end-
point constraints. In the 4th row the control inputs are shown,
which are as expected. First the feed rate of the monomer
is set to the maximum before it is set to zero to ensure a
low ppm a the end of the batch process. The reaction rate
is highest initially at which point the cooling temperature is
at its lower bound and after which only moderate cooling
temperatures are required to prevent constraint violations of
the reactor temperature.

Next we ran 100 MC simulations of the control problem.
This is compared to 100 MC simulations of a nominal NMPC
algorithm using the mean value of the PCE expansion as state
estimate from the PCE state estimator, but ignoring the shape
of the probability distribution otherwise. This is done to show
the importance of accounting for the inherent uncertainty
in the problem. The results of these MC simulations are
highlighted in Fig. 3. The first graph illustrates that while
the nominal NMPC method manages in only 49% of cases
to realize the required NAMW, the SNMPC approach due
its increased conservativeness manages to fulfil the NAMW
constraint in 99% of the simulations. Similarly the second
graphs shows that the SNMPC approach manages to reduce
the amount of monomer below the required threshold of
1000 ppm in 97% of realizations, while the nominal NMPC
adheres this end-point constraint in only 52% of the simu-
lations. The next graph shows that this increased robustness
comes at the price of on-average longer batch times. The
nominal NMPC took on average 4800 seconds, while the



Fig. 2. First row shows the pdfs at t = 0, 2, 5, 8 for Ap and UA, 2nd
and 3rd row show the trajectories of the states with the corresponding state
estimates as black-crosses with 95% confidence intervals, 4th row illustrates
the control inputs and the last row the changes in the sampling time.

SNMPC had average batch times of 9300 seconds. The final
graphs illustrate significantly better temperature control of
the SNMPC approach compared to the nominal NMPC.
In particular at the beginning ignoring the uncertainty of
the overall heat transfer coefficient UA leads to constraint
violations of up to 30K, while later on not accounting for
the disturbance also leads to constraint violations for nominal
NMPC method. The SNMPC method on the other hand
shows close to no constraint violations.

VIII. CONCLUSIONS

In conclusion, we have presented a new algorithm for
output feedback SNMPC that utilises a PCE nonlinear state
estimator to approximate the probability distribution of states
and uncertain parameters at each sampling time. This PCE
representation is then exploited in a SNMPC formulation to
account for both the initial value uncertainty using a sGH
sampling rule and additive disturbance noise employing lin-
earisation. Objectives and constraints were based on general
nonlinear functions. A semi-batch reactor case study verified

Fig. 3. Probability densities of NAMW, ppm of monomer, and batch time
at final time and temperature trajectories of SNMPC and nominal NMPC
based on 100 MC simulations

that the SNMPC framework is able to control the system with
large initial uncertainties and additive disturbance noise. The
PCE nonlinear state estimator is shown to able to accurately
update the distribution of the states and uncertain parameters,
while considering the uncertainty information from the dis-
tribution to avoid constraint violations. Furthermore, it was
shown that ignoring the uncertainty informations leads to
50% constraint violations of the end-point constraints and
large overshoots of the temperature path-constraint.
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