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Abstract

This thesis presents research on efficient, massively parallel methods and
algorithms related to short-term forecasting of drift trajectories in the ocean.
The topic has clear societal applications and is an important tool for, e.g.,
search-and-rescue operations at sea, planning of oil-spill cleanup, and early
collision detection between icebergs and offshore installations.

In this work, we investigate computational techniques that can be used
complementary to the operational methods already in place today. The
traditional approach is to use complex ocean models, of which it is only
feasible to run a small ensemble. Due to large uncertainties in initial con-
ditions for oceanographic simulations, however, we propose to use simpli-
fied ocean models that capture the relevant physics on short time horizons.
We base our simplified ocean models on the rotational shallow-water equa-
tions, simulated using an explicit, high-resolution, finite-volume scheme.
Since such schemes can be implemented to run efficiently on the graphics
processing unit (GPU), we can afford to run a large ensemble of simplified
ocean models. Furthermore, we investigate nonlinear data-assimilation
techniques, such as particle filters, that enable us to use available obser-
vations of the ocean state to reduce the uncertainty in the ensemble. Our
hope is that this approach, possibly in combination with the operational
methods, can give a more complete picture of the uncertainties in the fore-
casted drift trajectories.

The thesis consists of an introductory part plus five scientific papers.
The first two papers assess enabling technologies and methods needed for
our approach to forecasting of drift trajectories. This includes evaluating
numerical schemes for their suitability to capture oceanographic shallow-
water flow, and assessing programming environments for GPU comput-
ing. The third paper presents a massively parallel algorithm for applying
the recently proposed implicit equal-weights particle filter to a shallow-
water model for forecasting of drift trajectories. In the fourth paper, we
present a framework for running efficient oceanographic simulations us-
ing a modern finite-volume scheme initiated from operational ocean circu-
lation forecasts. Finally, the fifth paper explores the possibility of using a
very large ensemble with 10 000 members along with a basic particle filter
method for ensemble prediction of drift trajectories.
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Part I

Background





Chapter 1

Introduction

This thesis explores topics related to forecasting drift trajectories in the
ocean. It is a continuation of a research activity at the Department of Math-
ematics and Cybernetics at SINTEF Digital, focusing on applying modern
high-resolution schemes to various applications of shallow-water flows, an
activity that has been ongoing for the last 15 years (see, e.g., [61, 8, 82]). The
research conducted herein therefore builds on solid experience of develop-
ing such numerical methods and researching efficient algorithms for solv-
ing them on graphics processing units (GPUs). With this work, we extend
this activity into the ocean by expanding our knowledge in oceanography,
and diving into the, for us until now, relatively unknown world of data
assimilation. This thesis presents three years of research and new experi-
ences in that aspect.

1.1 Background

Precise short-term predictions of drift trajectories in the ocean have sev-
eral important applications [21]. First of all, they are crucial to limit search
regions during search and rescue operations at sea [7]. In the oil sector,
increased activity in the Barents Sea makes installations more prone to col-
lisions with icebergs, and forecasts of their trajectories can have a central
role in the decision making for evacuating a platform and stop production.
Also in case of oil spill, trajectory prediction tools are essential for planning
the placement of lenses during oil spill cleaning up [78].

The dynamics of the ocean has many similarities with the atmosphere
and consists of currents driven by high and low pressure systems, temper-
ature and salinity gradients, the rotation of the earth, the topography of the
sea floor and coast line, and the weather (see [30] or any other textbook on

1



2 Introduction

atmosphere-ocean dynamics). By carefully building mathematical models
of the dynamical state of the ocean and the influences from these factors, it
is possible to predict future states of the ocean in much the same way as we
calculate the weather forecast. Besides mathematical modelling and simu-
lation, the third main ingredient in ocean forecasting is data assimilation.
This is a mathematical technique used to continuously improve the initial
conditions of the forecast (the situation right now from which we start the
forecast simulation) by incorporating measurements from weather stations
and observations made from instruments such as radar and satellites.

Even though ocean forecasting is conceptually very similar to weather
forecasting, the problem is much harder to solve for two main reasons.
First, there are very few observations of the ocean1, which makes it much
harder to give a precise description of the initial state from which to pro-
duce a forecast [35]. Second, the horizontal scales of the features of the
ocean are much smaller than their atmospheric relatives. High- and low-
pressure systems in the atmosphere typically have a horizontal length scale
of 1000 km, whereas similar systems in the ocean are on the scale of 25–50
km. This means that we need to use a higher horizontal resolution for
the ocean models compared to what is used in corresponding atmospheric
models if we wish to obtain the same level of detail in both. On the other
side, the ocean dynamics is slower and thereby plays on a longer time scale
compared to the dynamics in the atmosphere.

Whereas the drift trajectory for an object sufficiently deep (> 15 m)
beneath the ocean surface can be simulated reasonably well just from the
ocean currents, wind and waves also need to be considered for objects at
the surface [21]. The wind forcing, for instance, influences both the up-
permost ocean layer via Ekman transport and the object directly, whereas
surface waves contribute with so-called Stokes drift, caused by the net for-
ward motion of the waves. Furthermore, the shape of the object and the ex-
act depth are important factors that determine the influence of each of these
forces, as illustrated by the real-life drifter experiments in Figure 1.1 [81].
Half-submerged spherical drifters are strongly influenced by wind forcing
and hence follow very different trajectories compared to fully submerged
cross-shaped drifters, for which the wind forcing is negligible. This is also
one of the reasons why it is hard to predict the trajectories for icebergs [13].

In Norway, the Norwegian Meteorological Institute (MET Norway) has

1According to a lecture I attended on ocean data assimilation at the data assimilation
course at ECMWF (the European Centre for Medium-Range Weather Forecasts), the num-
ber of observations of the ocean is less than 1% of the number of observations of the atmo-
sphere.
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Figure 1.1: Two different drifters and their experimental drift trajectories. The
iSphere drifters (to the right with blue trajectories) are spherical and half sub-
merged, whereas the CODE drifters (left and in red) have drouges that are to-
tally submerged. Both are influenced by the currents in the uppermost part of
the ocean, but the iSphere drifters also experience a contribution from wind and
waves. Figure by Röhrs and Christensen [81], published under the creative com-
mons CC BY-NC-ND 4.0 license.

the national operational responsibility for providing forecasts of ocean cur-
rents and drift trajectories. Ocean currents are predicted using the Regional
Ocean Modeling System (ROMS) [86], which models the three-dimensional
dynamics of the ocean. It is run on a daily basis for three different areas,
each with different horizontal resolution, and is very computationally de-
manding. For instance, the NorShelf model system [79] runs ROMS on an
area covering the Norwegian continental shelf using 2.4 km horizontal res-
olution (900× 350 grid points) and 42 vertical layers, while also assimilat-
ing all available and relevant observations. Drift trajectories, however, are
computed through the light-weight OpenDrift software [23], which reads
the resulting ocean forecast along with the relevant weather forecast, and
uses these to simulate drift trajectories for objects of different characteris-
tics. Since there are uncertainties in the forecasts and in the initial positions
of each object, OpenDrift can run ensembles of trajectories, using slightly
perturbed versions of the input forcing fields (currents, winds, waves, etc.).
The system is, however, unable to use potential new observations to influ-
ence the forcing fields, as it just passively applies the ocean states.
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1.2 The aim of this thesis

The aim of this thesis is to investigate an alternative approach to forecast-
ing drift trajectories in applications that essentially are short-term prob-
lems and thus require forecasts to be valid for a time span from a few
hours and up to a few days. Within this time range, the horizontal cur-
rents can be estimated by a simplified ocean model based on the shallow-
water equations. These equations can be solved much more efficiently for
three reasons. First, they are less complex and therefore typically require
fewer mathematical operations to be evolved forward in time. Second,
they use a two-dimensional instead of a three-dimensional representation
of the ocean state and fewer physical parameters, meaning that there are
less data to process. And third and foremost, the shallow-water equations
are purely hyperbolic and can therefore be solved using explicit methods,
in contrast to the primitive equations which also contain elliptic parts that
induce the solution of linear equation systems. This means that the simpli-
fied model can be simulated very efficiently by the use of graphics process-
ing units (GPUs) [34, 12]. An additional advantage of the simplified mod-
els is that they contain fewer balance relations than the full ocean states,
and therefore are easier to perturb. Because of this, we can afford to run an
ensemble of such models, each starting from slightly different initial data
or using slightly different parameters. We can thereby get a probabilistic
prediction of the ocean currents, which again can be used for ensemble-
based forecasts of drift trajectories.

Figure 1.2 shows the difference between a single deterministic forecast
to the left and an ensemble-based probabilistic forecast to the right for a
drift trajectory over 72 hours. The ensemble forecast is here run with 50 en-
semble members. Each trajectory is plotted with a light blue line, whereas
the dark blue lines represent the ensemble mean trajectories for the three
drifters. The probabilistic forecast reveals that there is a considerable un-
certainty in how far the two lowermost drifters will drift, whereas the up-
permost drifter has a much lower variance.

As in operational ocean forecasts, we aim to assimilate relevant obser-
vations of the ocean into the ensemble through suitable data-assimilation
techniques. Since the ocean evolves through nonlinear dynamics, and since
there are few available observations, nonlinear data-assimilation techniques
such as particle filters appear attractive [94]. Several new particle filters
have been proposed lately [95], and herein we will explore one of those
new methods with respect to the problem of drift trajectory predictions.

In summary, our approach is to trade physical complexity with bet-
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Figure 1.2: Examples of deterministic (left) and probabilistic ensemble-based
(right) forecasts for drift trajectories for three drifters located in Northern Norway.
Each ensemble member is plotted with a light blue trajectory, whereas the darker
blue trajectories represent ensemble means. The background shows the water ve-
locity for the initial conditions, the axes are in km relative to the computational
domain, and north is towards the upper left.

ter uncertainty quantification through an ensemble of simplified models
and nonlinear data-assimilation techniques. This approach is not meant
to replace the drift trajectory forecasts used operationally today, but rather
serve as a complementary solution. Furthermore, our algorithms and sim-
ulation frameworks can be run on modern commodity-level GPUs and
powerful laptops, and do therefore not require access to supercomputers.
This makes it possible to use our approach to run updated forecasts di-
rectly from a vessel using in-situ observations.

The following chapters give brief overviews of each of the three scien-
tific disciplines the thesis is built upon. In Chapter 2, we show how the
shallow-water equations can act as a simplified ocean model. We start by
giving an overview of the physical model that describes the dynamics of
the ocean, before introducing the simplified model and outlining the most
common numerical methods for simulating this model. Chapter 3 gives
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a basic introduction to how the GPU can be used as an an accelerator for
high-performance computing in general, and simulation of the shallow-
water equations in particular. Finally, Chapter 4 discusses how observa-
tions can be incorporated into such a mathematical model using data as-
similation. Here, we start from the fundamental Bayes theorem and give
an overview of the different data assimilation methods based on it. This
leads us to take a closer look at particle filters, which is the data assim-
ilation technique used in this work. Chapter 5 outlines the contributions
presented through this thesis. We show how the scientific disciplines in the
previous sections are combined for forecasting drift trajectories, and how
the different papers written during these three years build on each other
for solving the problem. We then discuss the individual papers that make
up this thesis. Chapter 6 summarizes the work and points to the opportu-
nities ahead. Part II contains the five scientific papers in full.



Chapter 2

Simplified Ocean Models and
Numerical Methods

This chapter aims to give some background on the shallow-water equa-
tions used as a simplified ocean model. The equations have a central role
in this thesis and are used in all five papers. We start off by giving a brief
introduction to the so-called primitive equations, which are the engine for
several operational ocean models, before describing how we can simplify
them to become the shallow-water equations. Finally, we outline the basic
concepts and ideas behind two of the most common classes of numerical
methods used for solving them in a rotational frame of reference.

2.1 Modern operational ocean models

Modern operational ocean models [55, 86] are typically based on solving
the so-called primitive equations, which are centered around three impor-
tant balance relations:

• conservation of mass,

• conservation of momentum, and

• conservation of tracer properties.

The first ensures that water can not appear or disappear by itself, and it is
referred to as the continuity equation. The Navier-Stokes equations are the
basis for describing conservation of momentum of fluids, and in oceanog-
raphy it is common to apply some relevant approximations: The hydro-
static approximation assumes that vertical momentum depends only on

7



8 Simplified Ocean Models and Numerical Methods

the balance between the gravitational force and the vertical gradient of the
pressure; and the Boussinesq approximation, which assumes that varia-
tions in density are small compared to density itself and therefore negligi-
ble [77]. The Boussinesq approximation is equivalent to assuming that the
fluid is incompressible, meaning that the equation for conservation of mass
now also conserves volume. The final balance relation conserves salinity
and temperature. These properties are transported by the fluid velocity but
also influence the fluid motion as they affect the water density, thus creat-
ing buoyancy forces which represent the baroclinic signals in the ocean.1

Finally, to successfully solve the equations, we need to enforce suitable
boundary conditions, such as no flow through the ocean floor and a kine-
matic boundary condition describing the level of the free surface [77].

Some major examples of operational ocean models that are based on the
primitive equations are the Regional Ocean Modeling System (ROMS) [86],
the Nucleus for European Modelling of the Ocean (NEMO) [55], and the
Hybrid Coordinate Ocean Model (HYCOM) [3, 17]. They use sophisticated
numerical models for solving the primitive equations, with an emphasis on
balancing the conserved variables, resolving the dynamical processes, and
obtaining good computational performance. This involves staggered grids,
where the discretized variables are defined in different points in space, and
time-splitting techniques for resolving both the diffusive and non-diffusive
processes. Furthermore, different strategies are used to split the problem
into vertical layers, which is a non-trivial challenge considering that the
ocean depth changes from several thousand to only a few meters (see dis-
cussion of this topic in [86]).

In addition to simply solving the primitive equations, operational mod-
els must also be coupled with advanced data assimilation methods. In
this way, they can combine yesterday’s forecast with the most recent ocean
observations to compute an improved starting point for tomorrow’s fore-
cast. For example, both ROMS and NEMO are developed with capabili-
ties to run data assimilation using 4D-VAR [60, 59], whereas the TOPAZ
model, which is a 12–16 km resolution HYCOM-based coupled ocean and
sea ice model, uses ensemble Kalman filters to assimilate observations for
the North Atlantic [100]. This, of course, increases the computational load
on the system. We will come back to different data assimilation methods
in Chapter 4.

As the purpose of operational models is to provide regular ocean fore-

1In the ocean, baroclinicity is a state in which the pressure gradient is unaligned with
the depth gradient. This can be caused by variations in temperature or salinity, which cause
variations in density, which again leads to variations in pressure.
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casts, they must run on a regular basis with only a limited amount of time
available for providing the results. Computational performance is there-
fore of uttermost importance to ensure that the forecast is available in a
timely matter, i.e., simulations must run faster than the real-world events.
Additional benefits from more efficient models are that they allow for finer
grid resolutions that can improve the details and accuracy in the forecasts,
and that they free up resources that can be used to assimilate more observa-
tions into the models and thus obtain improved initial conditions. Another
alternative for taking advantage of improved computational efficiency is
by generating probabilistic ensemble-based forecasts through running the
model multiple times.

Due to the computational complexity of ocean models and finite amount
of computational capacity, it is infeasible to have both high grid resolution
and global coverage, and most operational systems therefore concentrate
on specific regions. Still, it is important to model changes in the ocean state
that enter the domain during the simulation time range, such as tides or
storm systems. A common technique for this is to have local or regional
models with fine grid resolution nested within other models covering a
larger domain with coarser resolution. As an example, two of the oper-
ational models for Norway, NorKyst-800 and NorShelf, both use nested
boundary conditions from the forecasts provided by TOPAZ [79].

In two of the papers in this thesis, we use the NorKyst-800 model sys-
tem [2] as a reference solution (Paper IV) or to simulate a true ocean state
that we wish to predict (Paper V). It runs the ROMS model on a domain
covering the complete Norwegian coast. It uses a horizontal grid with
resolution of 800 m× 800 m and 42 vertical layers. As an illustration of
the computational complexity of such a simulation, computing a single 24
hour forecast of this domain takes 45 minutes when using 256 CPUs2, and
it is the results from such simulations that are used as input for drift trajec-
tory predictions.

2.2 Simplified ocean models

In this work, we aim to investigate the use of simplified ocean models to
forecast drift trajectories. The idea is to trade some of the physics to ob-
tain faster simulations and then utilize the enhanced computational per-
formance to run a large ensemble of ocean models to obtain probabilistic

2Personal communications with Kai Christensen, Head of Division for Ocean and Ice,
Norwegian Meteorological Institute, October 2019.
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forecasts.
As our simplified ocean model, we use the shallow-water equations in a

rotating frame of reference, which can be derived from the primitive equa-
tions by imposing some further approximations and assumptions. First of
all, the fluid density is assumed to be uniform everywhere, meaning that
the variations in salinity and temperature no longer contribute to the dy-
namics and can be dropped. This also means that the pressure gradient be-
comes independent of depth. We further assume that vertical velocities are
negligible compared to horizontal, and integrate the equations from the sea
floor to the free ocean surface. Since the pressure now only depends on the
ocean depth, the equations capture barotropic dynamics only. Examples
of barotropic waves are fast gravity-driven waves, such as tides, and slow
rotation-driven waves, such as Rossby waves. Baroclinic signals, however,
that originate from pressure differences caused by changes in salinity or
temperature, are neglected. Still, the shallow-water equations are a clas-
sical set of reduced or simplified equations for describing both the ocean
and atmosphere. For a detailed derivation of both the primitive and the
shallow-water equations, see Røed [77].

The shallow-water equations are given by



η
hu
hv




t

+




hu
hu2 + 1

2 gh2

huv




x

+




hv
huv

hv2 + 1
2 gh2




y

=




0
f hv
− f hu


+




0
ghHx
ghHy


 , (2.1)

and this set of equations is an example of a nonlinear, first-order, quasilin-
ear, hyperbolic conservation law that conserves the deviation of the sea-
surface from an equilibrium state η, and the momentum of the water hu
and hv along the x and y axes, respectively. The dynamics is driven by the
gravity g over a varying bathymetry, here represented by the equilibrium
depth H, and the Coriolis forces due to the Earth’s rotation, represented
by the Coriolis parameter f . Furthermore, h = H + η describes the actual
depth of the water column, and the subscripts t, x and y denote derivatives
with respect to time and space. Figure 2.1 illustrates the various variables,
simplified to one dimension.

By defining the vector of conserved variables q = [η, hu, hv]T, we can
write (2.1) on vector form as

qt + F(q)x + G(q)y = SC(q) + SH(q), (2.2)

in which F and G are flux functions in x- and y-direction, respectively, and
SC and SH are source terms accounting for the Coriolis force and changing
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huh

η

H

Figure 2.1: The one-dimensional relationship between the equilibrium water
depth H, the deviation from mean sea-surface level η, the total water depth h,
and the momentum hu.

bathymetry, respectively. Note that for more realistic simulations, it is pos-
sible to include more source terms for other external forces. In Paper IV, for
example, we also include source terms for the friction along the sea floor
and the wind stress that acts on the ocean surface.

It should be noted that (2.1) is not the only way to formulate the shallow-
water equations. In the oceanographic community, for instance, it is com-
mon to write them as

∂tU +∇H ·
(

UU
h

)
+ f k×U = −gh∇H(h− H),

∂th +∇H ·U = 0,
(2.3)

in which U is the three-dimensional vector containing the momentum (but
with zero in the vertical component), ∇H is the horizontal gradient oper-
ator, and k is the vertical unit vector. Paper I demonstrates that (2.3) is
equivalent to (2.1).

2.3 Numerical methods for the shallow-water equa-
tions

In total, we have used four different numerical schemes for solving the
shallow-water equations in this thesis. Paper I discusses them and com-
pares their abilities to capture different oceanographic phenomena. In the
following, we place the schemes within the field of numerical mathematics
and quickly review their basic ideas and underlying concepts. We con-
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sider the schemes in pairs, as they belong to the following two classes of
numerical methods:

Finite-difference methods: Classic approach in which function derivatives
are approximated locally by differences in function point values de-
fined over a structured spatial mesh. Still commonly used within
oceanography and meteorology.

Finite-volume methods: Solve the problem on a grid by using the conser-
vation law (posed on integral form) to compute fluxes between cells.
Commonly used for solving the non-rotational shallow-water equa-
tions in the field of hydrology.

The full details for each of the numerical schemes can be found in the ref-
erences provided when each scheme is mentioned. For a comprehensive
introduction to these methods, however, see Røed [77] for finite-difference
methods and LeVeque [53] or Toro [93] for finite-volume methods.

Finite-difference methods on C-grids

The finite-difference method is a classical numerical technique for solving
partial differential equations and is based on approximating derivatives by
the use of Taylor series. For a reasonably smooth function f (x), its value at
a point x0 + ∆x can be approximated by the Taylor series

f (x0 + ∆x) = f (x0) +
∞

∑
n=1

1
n!

f (n)(x0)∆xn

= f (x0) + f ′(x0)∆x +
1
2

f ′′(x0)∆x2 +O
(
∆x3) ,

(2.4)

in which f (n)(x0) is the n’th order derivative of f with respect to x evalu-
ated at the point x0, and O(∆x3) denotes terms of order three or higher in
∆x. If we know the function values of f at x0 and x0 ± ∆x, we have three
different options for approximating f ′(x0) as illustrated by Figure 2.2. By
reordering (2.4) directly, we can get the approximation

f ′(x0) =
f (x0 + ∆x)− f (x0)

∆x
+O(∆x), (2.5)

when the higher order derivatives are included in O(∆x). Similarly, we
can use the Taylor series around the point x0 − ∆x to express

f ′(x0) =
f (x0)− f (x0 − ∆x)

∆x
+O(∆x). (2.6)
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x

f (x)

x0x0 − ∆x x0 + ∆x

Figure 2.2: Illustration of how the derivative of the dotted function f (x) is ap-
proximated at point x0 by the use of forward differences (red line), backward dif-
ferences (blue line), and central differences (green line). Note that it is the slope of
f (x) that is interesting, and not its function value at x0.

By neglecting the higher-order terms in (2.5) and (2.6), we call the two ex-
pressions the forward and backward difference approximations, respec-
tively. Both are first-order approximations, as the leading reminder term
is O(∆x). By subtracting the Taylor series around x0 − ∆x from the Taylor
series around x0 + ∆x, we get an approximation for f ′(x0) in which all odd
ordered terms cancel, as

f ′(x0) =
f (x0 + ∆x)− f (x0 − ∆x)

2∆x
+O(∆x2). (2.7)

This is called a central difference approximation and it is of second order.
These are only the simplest finite-difference approximations available, and
higher-order approximations can be made by other combinations of Taylor
series.

When using the finite-difference method to solve a partial differential
equation, we first discretize the domain onto a grid on which we will solve
our equation. Here, we will assume a regular grid with the distance ∆x
and ∆y between grid points in each direction. We then use approximations
obtained from Taylor series to estimate the spatial derivatives at each grid
point based on values of its neighbouring grid points. Similarly, we dis-
cretize t into time steps of length ∆t and approximate the time derivatives
to be able to evolve the equation forward in time. It is important to take
care in the choice of discretization methods, as different approximation
schemes have different advantages and disadvantages. We will next briefly
mention the two finite-difference methods that we use in Paper I. For an
in-depth discussion on the qualities of different finite-difference schemes
for oceanographic applications, see Røed [77].
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Figure 2.3: Grid with lattice-A structure to the left and lattice-C structure to the
right.

In atmospheric and oceanographic applications, it is common to use
staggered grids to solve the shallow-water equations in (2.1). Figure 2.3
shows a staggered lattice-C grid along with the non-staggered lattice-A
grid [57]. In the lattice-C grid, all of the three conserved variables are
located at different grid points, with hu located 1

2 ∆x to the right and hv
located 1

2 ∆y above the corresponding η and H values. The main motiva-
tion for using such a staggered grid is that it becomes more convenient to
define boundary conditions compared to when using a lattice-A grid. An-
other advantage is that it becomes very easy to express the equation for
mass conservation (first row of (2.1)) using central differences:

ηn+1
j,k = ηn

j,k −
∆t
∆x

(
(hu)n

j,k − (hu)n
j−1,k

)
− ∆t

∆y

(
(hv)n

j,k − (hv)n
j,k−1

)
. (2.8)

Here, we have used a forward difference approximation in time, giving an
explicit scheme, which, unlike an implicit scheme, does not involve solving
any linear system.

The first finite-difference scheme that we apply in this thesis is the
forward-backward linear scheme (FBL) [87], which is used to solve the lin-
earized shallow-water equations:

ηt + (hu)x + (hv)y = 0,
(hu)t + gHηx = f hv,
(hv)t + gHηy = − f hu.

(2.9)
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For each of the equations, we approximate both the derivatives and the
other variables according to the grid locations of the time derivative. That
is, in the equation for (hv)t in (2.9), we approximate H as the average of
the two H values above and below of each hv location, and represent ηx
by central differences by using the same corresponding two point values
of η. Similarly, f hu is approximated by the mean of the four hu values
surrounding each hv grid point. Using a forward difference approximation
in time, the last line of (2.9) thereby becomes

(hv)n+1
j,k = (hv)n

j,k − ∆t f hv
n
j,k +

∆t
2∆y

g
(

Hj,k+1 + Hj,k
) (

ηj,k+1 − ηj,k
)

, (2.10)

in which

f hv
n
j,k =

1
4

(
fk(hv)n

j,k + fk+1(hv)n
j,k+1 + fk(hv)n

j−1,k + fk+1(hv)n
j−1,k+1

)
.

(2.11)
Here, we have discretized the Coriolis parameter based on an assumption
that the y-axis points towards north, but as exemplified in Paper IV, this
is not always the case. The discretization for (hu)t follows the same ap-
proach as for hvt, whereas the equation for ηt uses the scheme in (2.8).
Note that all spatial approximations are based on second-order central dif-
ferences. To solve (2.9) in time, the FBL scheme solves the three equations
in turn, while always using the most recent values of each variable. That
is, we start by obtaining (hu)n+1 from [(hu)n, (hv)n, ηn], then (hv)n+1 from
[(hu)n+1, (hv)n, ηn], and finally ηn+1 from [(hu)n+1, (hv)n+1, ηn]. The first
step is therefore a forward difference, whereas the last step becomes a back-
ward difference. This means that the full scheme is of first order in time.

The next scheme is a classic leap-frog scheme called centered-in-time,
centered-in-space (CTCS) (see [76]). It solves the full nonlinear equations
in (2.1) using central differences in space. This is similar to the FBL scheme,
but the CTCS scheme becomes more complicated and involves a larger
number of grid points due to the nonlinear terms. In time, all three equa-
tions are solved independent of each other with central differences, mean-
ing that CTCS is of second order in both time and space. As an example,
the equation for η becomes

ηn+1
j,k = ηn−1

j,k −
2∆t
∆x

(
(hu)n

j,k − (hu)n
j−1,k

)
− 2∆t

∆y

(
(hv)n

j,k − (hv)n
j,k−1

)
.

(2.12)
A drawback for the CTCS scheme is that it is known to suffer from nonlin-
ear instabilities [69, 74, 77]. It is therefore common to add an eddy viscosity
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term that introduces artificial diffusion to dampen accumulation of short
waves. This term depends on the grid size, and is therefore in practice
treated as a tuning parameter.

These two methods represent the traditional numerical models used
in meteorology and oceanography, and the FBL scheme was, for instance,
used for storm-surge predictions in the end of the 1970s [56]. Even though
today’s operational methods rely on more complex mathematical models
together with more complex numerical discretizations, these methods are
relatively inexpensive to run and therefore still of interest in the context of
ensemble predictions using simplified models. For a full description of the
two schemes, see Røed’s book [77] or report [76].

In general, the main drawback for the FBL and CTCS schemes is that
they break down in the presence of discontinuities. The methods have
nonetheless been popular in oceanography and meteorology, as disconti-
nuities rarely appear in these applications. In other applications that can
be modelled by shallow-water equations, such as simulations of tsunamis
or dam breaks, it is essential to capture the development of discontinuities
accurately. These applications have been the motivation for a whole class
of so-called high-resolution finite-volume schemes. We therefore turn our
attention to one recently suggested scheme that has been developed for
oceanographic applications.

High-resolution finite-volume methods on A-grids

Finite-volume methods are closely related to the general expression of a
hyperbolic conservation law, such as (2.2). When deriving conservation
laws, it is common to consider a control volume and make sure that the
change of mass (or any other conserved physical quantity) within the con-
trol volume matches the mass that travels through the volume boundary
(in the form of flux terms) and mass that appears/disappears internally in
the volume (through source terms) within a short time span.

In the formulation of finite-volume methods, we discretize the spatial
domain into grid cells of finite size and let each cell represent its own con-
trol volume. For the methods considered herein, we use a regular Cartesian
grid with cells sizes ∆x×∆y, and discretize the conserved variables q from
(2.2) in cell (j, k) by cell average values Qj,k. Note that this implies a non-
staggered lattice-A grid. Next, we aim to discretize the fluxes on the cell
faces, and use the fact that the flux terms in F only contribute to changes
across the cell faces with normal vectors in x-direction, and similarly, the
fluxes in G only contribute to changes across faces with normal vectors
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Figure 2.4: Cell values Q, source terms S and fluxes F and G for finite-volume
methods defined on a regular Cartesian grid.

along the y-axis. We can therefore write (2.2) in semi-discretized form as

∂Qi,j

∂t
= −Fi+1/2,j − Fi−1/2,j

∆x
− Gi,j+1/2 −Gi,j−1/2

∆y
+ S(Qi,j), (2.13)

with both source terms combined into S, as illustrated in Figure 2.4.
Herein, our primary interest is in so-called high-resolution schemes,

which offer second or higher order spatial accuracy on smooth parts of
the solution, and at the same time are free of the spurious oscillations that
are typically observed near discontinuities in classical finite-difference or
finite-volume schemes. Many high-resolution methods are constructed ac-
cording to the so-called REA algorithm. Starting from the cell-averaged
discrete values, we first reconstruct a piecewise polynomial approximation
inside each cell. We then set this approximation as initial data and evolve
the conservation equation forward in time, exactly or approximately, be-
fore we average the resulting function over the grid so that our represen-
tation of the unknown solution again is a set of cell averages. There are,
however, large differences between the various schemes in how they re-
construct point values, compute fluxes, and evolve the approximate solu-
tion [53, 93].

In this work, we use two different high-resolution schemes of second
order. Both are based on the same philosophy and follow the steps illus-
trated in one dimension in Figure 2.5. As all REA-type schemes, they start
from the discretized values Qj in (b), which represent cell averages of the
continuous state shown in (a). The bathymetry is, however, represented by
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H
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j+1/2
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(e)

Qn+1
j
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Figure 2.5: Illustrative description of the finite-volume schemes used in this work
in one dimension. (a) Continuous variables with (b) their piece-wise constant,
cell-averaged equivalents. (c) Reconstruction of the slope of Q, leading to (d) a
reconstruction of point values at the cell faces and (e) fluxes on the cell faces. (f)
New average cell values are then found at the next time step. This illustration is
based on figures from Brodtkorb et al. [12].

a piecewise bilinear function defined by values at the intersections Hj+1/2
(or Hj+1/2,k+1/2 in two dimensions).

In Figure 2.5 (c), we compute the slopes (Qj)x of a piecewise linear re-
construction, with the aim of finding the state values at the face as seen
from each cell. This must be done without introducing spurious oscilla-
tions in the solution. Straightforward use of backward, forward, or central
differences to compute the slopes (see Figure 2.2), may induce overshoots
or undershoots in the reconstructed functions near discontinuities or ex-
treme points, which may develop into spurious oscillations. Instead of
using the finite-difference candidates directly, we therefore use a nonlinear



2.3. Numerical methods for the shallow-water equations 19

(a) (b)

Figure 2.6: Applying a non-oscillatory limiter function to the forward (red)
and backward (blue) finite-difference approximations for the slopes in the given
points. All candidates are shown in (a), whereas (b) shows the resulting slopes
only. Note that both candidates lead to oscillations in the fourth cell, and we
therefore chose a zero-slope instead.

combination to ensure that the total variation of the reconstructed func-
tion does not increase, i.e., ensure the so-called total-variation-diminishing
(TVD) property [36, 92]. The nonlinear function is commonly referred to as
a limiter. Figure 2.6 shows an example of a limiter using the forward and
backward approximations in red and blue, respectively. Here, we see that
the dashed approximations lead to over- or undershoots compared with
the cell averages, whereas the solid lines do not. For the lowermost cell
(number four from the left), both forward and backward approximations
give undershoots, and we use a zero slope instead.

Using the slopes (Qj)x, we find the state values at each side of each
face as seen from the left and right, denoted in Figure 2.5 (d) by Ql

j+1/2
and Qr

j+1/2, respectively. The fluxes Fj+1/2 in (e) are computed through a
central-upwind scheme [50],

Fj+1/2 =
a+j+1/2F

(
Ql

j+1/2

)
− a−j+1/2F

(
Qr

j+1/2

)

a+j+1/2 − a−j+1/2

+
a+j+1/2a−j+1/2

a+j+1/2 − a−j+1/2

(
Qr

j+1/2 −Ql
j+1/2

)
,

(2.14)

in which a+ and a− are the largest positive and negative wave speeds at
the interface, given by

a+j+1/2 = max
{

ul
j+1/2 +

√
ghl

j+1/2, ur
j+1/2 +

√
ghr

j+1/2, 0
}

,

a−j+1/2 = min
{

ul
j+1/2 −

√
ghl

j+1/2, ur
j+1/2 −

√
ghr

j+1/2, 0
}

.
(2.15)
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The fluxes in (2.14) are therefore found by using the local one-sided direc-
tions of the flow.

The schemes extend directly to two dimensions as the fluxes in G can be
found independent of the fluxes in F. Finally, to get updated cell-average
values, we use a strong stability-preserving Runge-Kutta method for the
time evolution [31]. The simplest such method, which is used to illustrate
the new cell averages in (f), is the standard first-order forward Euler

Qn+1
j,k = Qn

j,k + ∆tR(Qn)j,k, (2.16)

in which R(Q) denotes the right-hand side of (2.2). Throughout this work,
however, we use the second-order method

Q∗j,k = Qn
j,k + ∆tR(Qn)j,k,

Qn+1
j,k =

1
2

(
Qn

j,k +
(

Q∗j,k + ∆tR(Q∗)j,k

))
.

(2.17)

Note that the second-order scheme in (2.17) can be described as the average
between Qn and Qn+2, if Qn+2 is found using the first-order scheme in
(2.16).

Both the finite-volume schemes we use herein are well-balanced with
respect to certain steady-state solutions. A steady state is described by
qt = 0, meaning that the state (recall that q = [η, hu, hv]T) does not change
over time. A lake at rest, with a perfectly flat and still surface with no water
movements, is a trivial example of a steady-state. As long as there are no
external forces, this situation should not change, regardless of how com-
plex the bathymetry is. Well-balanced schemes are schemes that maintain
such steady-states, and the well-balanced property is therefore important
to avoid spourious oscillations. Numerically, we obtain this property by
ensuring that the flux reconstructions and the discretizations of the source
terms are perfectly balanced for the steady-state solution.

The scheme proposed by Kurganov and Petrova [49] (building on [48]
and used in Paper IV under the abbreviation KP) for non-rotational shallow-
water problems is designed in this way and is well-balanced for the lake
at rest steady-state solution in the presence of discontinuous bathymetry.
The other finite-volume scheme used in this thesis, was proposed by Cher-
tock et al. [19] (CDKLM). It is well-balanced with respect to the geostrophic
balance, which is a non-trivial rotating steady-state solution described by

f hv− gh
∂η

∂x
= 0,

− f hu− gh
∂η

∂y
= 0.

(2.18)
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An example of this steady-state solution is a bump with a rotational mo-
mentum that balances the gravitational forces and thereby traps the water,
avoiding a radial wave. To balance this steady state, CDKLM reconstructs
η based on the change in potential energies, in which (2.18) plays an impor-
tant role. Due to this special reconstruction, this scheme is very well suited
for oceanographic applications, and in Paper IV we demonstrate how the
scheme can be extended to run simulations on real-world operational do-
mains and initiated by operational ocean forecast data.

In summary, high-resolution finite-volume methods have several qual-
ities that are attractive for oceanographic applications. Our motivation
for studying such schemes in this thesis, is therefore to assess whether a
scheme such as CDKLM can compete with the traditionally used finite-
difference schemes for oceanographic physics. One advantage of the high-
resolution schemes is that they are more robust, meaning that if a discon-
tinuity should develop, the schemes do not break down. Another is that
they do not require any tuning parameters, such as the eddy viscosity term
required by CTCS. Furthermore, finite-volume methods can be used effi-
ciently for adaptive mesh refinement [83], so that we can run simulations
with increased resolution in areas where interesting features evolve. This
would also enable us to run simulations with high spatial resolution in
coastal areas while having lower resolution out in the open sea.
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Chapter 3

High-Performance Computing
using GPUs

One reason for choosing the shallow-water equations as the basis for a
simplified ocean model, is that they can be simulated very efficiently on
massively parallel hardware, such as GPUs (see, e.g., [33, 12, 24, 9, 67, 71,
39]). In this chapter, we give a brief introduction to the GPU by follow-
ing its development from a pure specially designed graphics processor,
via high-performance accelerator for massively parallel computations, and
now emerging as a specially designed machine learning number crusher.
We continue by demonstrating how the finite-volume methods from Sec-
tion 2.3 can take advantage of the fine-granular parallelism, as this is what
enables us to run large ensembles of simplified ocean models. Through-
out the work with this thesis, we have taken great advantage of using
a programming environment that enables us to develop highly efficient
code for performance-critical algorithms, but still supporting rapid proto-
typing, script-based pre- and post-processing, and flexible programming
of the simulation program flow. We therefore finish this chapter with a
discussion of modern code development for high-performance computing
(HPC) applications.

3.1 General-purpose computations on GPUs

Whereas the central processing unit (CPU) is the general-purpose brain of
the computer and is designed to execute any kind of instructions, the GPU
was initially designed specifically for graphics processing. The most im-
portant driving factor for the development of the GPU has therefore been

23
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the gaming industry, meaning that it was important to create a processor
that as efficiently as possible could update the color values of all pixels in
a scene according to the player’s actions. Important design criteria was
therefore

• that high throughput was more crucial than high numerical preci-
sion, since values eventually would be represented by colors only;

• a high degree of parallelism, as the updated color of every pixel could
be computed independently from the updated colors of all other pix-
els;

• parallel processing of the type single-instruction, multiple-data, since
the algorithm for updating pixel values often was the same across a
large number of pixels;

• that there was a limited set of operations and data types that are im-
portant for a large number of graphics processing algorithms.

This resulted in a device consisting of a large number of computational
cores with efficient single-precision arithmetics and a limited instruction
set, high memory bandwidth, and cores that operate in groups for efficient
data management and execution of instructions.

By targeting the gaming market, the GPUs became inexpensive com-
pared to other computational hardware with similar throughput capabili-
ties. This triggered the question whether it would be possible to use GPUs
for other kinds of computationally intensive problems as well. Following
Larsen and McAllister [51], who first demonstrated that the GPU could
be used for matrix-matrix multiplication in 2001, a wide effort was made
to take advantage of the GPU for various scientific computing problems.
Hagen et al. [33] presented in 2005 the first GPU-based implementation of
an explicit high-resolution finite-volume scheme for solving the shallow-
water equations. Simultaneously, a large number of programming lan-
guages were proposed to facilitate general-purpose computations on the
GPU (for details, see [64, 65, 10] and references therein). The two program-
ming platforms CUDA [62, 84] and OpenCL [44] were introduced in 2007
and 2009, respectively, and became the best alternatives. They offered ma-
ture, portable, and stable programming environments for general-purpose
GPU (GPGPU) computing, and thereby accelerated the research on GPU-
accelerated numerical algorithms.

Along with the popularity and success of GPU computing, a new class
of GPUs, such as Nvidia’s Tesla series, targeting the HPC market has been
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released. The main advantage over commodity-class gaming GPUs is that
the HPC GPUs offer a higher capacity for processing double-precision arith-
metics, which is considered a requirement for many problems in scientific
computing. Their main disadvantage is a considerably higher price, driven
by the fact that the HPC market operates on a different monetary scale than
the gaming market. The HPC GPUs have become a huge success, as can
be seen by their representation on the Top 500 list, which ranks the best
supercomputers in the world with respect to number of floating-point op-
erations per seconds (FLOPS) [58].

Many algorithms within machine learning and artificial intelligence de-
pend on processing large amounts of training data to build models that can
be used to make inference from new unknown data. The GPU has played a
central role in the recent development boost in these fields by enabling the
high computational throughput that has made this development feasible
(see, e.g., [47]). Since such algorithms can be further accelerated by the use
of low-precision arithmetics [32, 22], the latest Nvidia V100 model has now
been designed with new tensor cores especially designed for accelerating
machine-learning algorithms [63]. The GPU has thus transformed from
a special-purpose graphical processor, via a general-purpose accelerator,
and now towards a special-purpose machine-learning number cruncher.

GPUs also have a role to play within the field termed as green comput-
ing. Even though GPUs typically have a higher power consumption than
CPUs,1 GPUs are able to deliver more FLOPs per watt and have therefore
been shown to increase the energy efficiency compared to multi-core CPUs
(see, e.g., [42, 70, 25]). This is also reflected by the Green 500 list [29], which
is released in parallel with the Top 500 list, ranking the supercomputers
according to their power efficiency. This list is typically dominated by su-
percomputers that use GPUs, and on average, we find GPUs in eight of the
top ten entries in all six lists published from 2017 to 2019, whereas the same
number in the regular Top 500 list is only four. In Paper II, we investigate
this aspect of GPU computing further by comparing the power efficiency
between CUDA and OpenCL, and between a range of different GPUs.

3.2 The shallow water equations on GPUs

Simulation of hyperbolic conservation laws using explicit numerical schemes
is a perfect application for general-purpose GPU computing [34], and sev-

1Using the CPUs and GPUs found in the new supercomputer system Saga at NTNU as
an example, we can find that the Intel Xeon-Gold 6126 CPUs have a power draw of 125 W,
whereas the the Nvidia P100 GPUs draw 250 W.
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eral papers have been written on efficient simulation of the shallow-water
equations on GPUs (see, e.g., [33, 12, 24, 9, 67, 71, 39]). We will shortly ex-
plain the general implementation strategy, but first we have to take a quick
look at the programming model for CUDA and OpenCL.

CUDA and OpenCL are in many ways very similar to each other and
are both based on the same programming model. The terminology, how-
ever, differs, and in the following we will use that of CUDA. Functions im-
plemented to run on the GPU are called kernels and are executed on a 1D,
2D or 3D grid of threads, that again are grouped in blocks. You can think
of the blocks as a domain-decomposition of the grid. Threads within the
same block are executed in parallel and can communicate and share data
through the shared memory, which can be thought of as a programmable
cache. For instance, if multiple threads need to read an overlapping data
block from the global GPU memory, it is in general more efficient that the
threads cooperate to read the data into shared memory first and afterwards
access all required data individually from the shared memory, instead of all
threads reading all data from the global memory. A grid can consist of a
lot more threads than the number of available GPU cores, and the blocks
are therefore executed asynchronously on the GPU with as many blocks in
parallel as the GPU’s resources permit. Limiting factors can be the num-
ber of physical computing cores, number of registers, amount of shared
memory, etc. A consequence of this is that it is not possible to synchronize
between threads in different blocks during a kernel execution. Synchro-
nization across all threads can therefore only be made in-between different
kernel launches.

To efficiently implement the shallow-water equations on GPUs, we use
a direct translation from a finite volume grid cell to a GPU thread, or simi-
larly from a finite-difference grid point to a thread. This means that in our
shallow-water implementations, each thread is responsible for updating a
single value for each of η, hu and hv. In Figure 3.1, we show the data de-
pendencies for each of the steps in a single iteration using any of the two
finite-volume schemes from Section 2.3 in one dimension. We use a first-
order Runge-Kutta method for simplicity. Contrary to in Section 2.3, we
start from the result and follow the steps, and thus the data dependency, in
reverse order. We compute the final cell averages Qn+1 by using two values
of F defined on the faces. These are again found independently from the
reconstructed point values Ql and Qr, which again depend on the cell val-
ues Qn and slopes Qx in the two cells on each side of the face. The slope Qx
finally depends on the value Q in its own cell and in the two adjacent cells.
The total data dependency, often called the stencil, for Qn+1

j is therefore the
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Figure 3.1: Shared memory usage for a GPU implementation of the
one-dimensional shallow-water equations using high-resolution finite-volume
schemes. To the right in the memory buffers we see the complete data depen-
dency for a single output value and to the left we see the dependency for each
computational step.

five values from Qn
j−2 to Qn

j+2.
In addition to the data dependencies, Figure 3.1 exposes the parallel

potential in each of the computational steps. For each step, each computed
value can be found independently from all of the other computed values,
even though their data dependencies overlap. This is exactly the kinds of
operations for which GPUs excel: Parallel operations on aligned data with
common mathematical operations and data dependency patterns.

We split the domain we want to simulate into blocks consisting of bx
threads, so that each will be responsible for computing bx values of Qn.
In the example in Figure 3.1, we have bx = 5. All bx threads in the block
cooperate to read the bx + 4 values of Qn into the shared memory, so that
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all these values are available to all threads. When all values are read, the
threads can cooperate to compute bx + 2 values for Qx, which are then writ-
ten to shared memory. The threads can then use their neighbour’s results
to compute Ql and Qr, followed by the bx + 1 values of F. Finally, each
thread computes its dedicated Qn+1 value and write it to the main global
memory on the GPU. Note here, that we need to synchronize the threads
between each computational step (except between Ql and Qr), so that a
thread does not start evaluating the next step before its data dependen-
cies are ready. There are, however, no need for synchronization between
blocks, meaning all these operations can be programmed within a single
kernel function.

Figure 3.2 shows the CUDA block structure in the two-dimensional
case. Here, the data dependency for a single cell takes the shape of a plus-
sign, reaching two cells in all four directions as illustrated by the two ex-
amples in red. We have highlighted two of the blocks in blue with the
combined data dependency for each of them in a lighter color, showing the
overlapping buffers read by each block. Since it is expensive when threads
in the same block follow different instruction branches due to conditional
branching, we want to impose the same mathematical operations on cells
close to the boundary as we do elsewhere. We achieve this by using ghost
cells, shown as the two outermost cell layers in Figure 3.2, and we initialize
them so that the fluxes on the actual boundary evaluate to their appropri-
ate boundary conditions. The strategy outlined here is also highly suitable
for the finite-difference schemes discussed in Section 2.3, and their stencils
are shown in Figures 3 and 4 in Paper I.

Numerical precision

The use of double-precision floating-point numbers is the default choice
when developing numerical simulation software. However, if we can use
single-precision arithmetics instead, both the storage and computational
requirements are reduced by a factor two. This applies for applications
using the CPU and high-performance GPUs.2 When using commodity-
level GPUs, however, the performance gain is considerably higher. For
instance, the Nvidia GeForce GTX 780, which has been used extensively
during the work for this thesis, has 24 times better theoretical peak per-

2Double-precision floating-point numbers use eight bytes to represent numbers, con-
trary to only four bytes which are used for single-precision. Double-precision therefore
increases memory requirement, but also improves the accuracy of how well numbers are
represented by the computer.
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Figure 3.2: The two-dimensional block structure for shallow-water simulation on
the GPU. The dark blue areas show the computational domains for two different
blocks, with their data dependencies in light blue. The stencil for solving the
equation in a single cell is shown in red.

formance with single-precision compared to double-precision. By imple-
menting the numerical algorithms so that precision-related rounding er-
rors are smaller than the discretizations errors in the our numerical ap-
proximations, we manage to increase the computational performance sig-
nificantly. Brodtkorb et al. [11] have previously shown that single-precision
is sufficient for simulations of the shallow-water equations on non-rotating
domains for dam-break simulations, and we have herein built on that ex-
perience.

Recently, the use of single-precision arithmetics has gained more atten-
tion also within the atmospheric and oceanographic communities. For in-
stance, Vana et al. [96] showed that the ECMWF’s Integrated Forecast Sys-
tem could gain 40% computational efficiency from using single-precision
without any reduction in the forecast accuracy. Furthermore, Hatfield et
al. [37] demonstrated that by first reducing the memory requirement by us-
ing reduced-precision arithmetics for an ensemble forecast, and then rein-
vesting the now available memory into a larger ensemble, they were able
to improve their forecast skills of a simplified atmospheric model.
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3.3 Efficient development of modern HPC code

Conventional wisdom says that if you want to develop computationally
efficient numerical software, you need to write your code in a strongly
typed, compiled programming language, such as C/C++ or Fortran. In
these languages, you are required to specify data types of variables and
memory allocations, and you thereby have a lot of control over low-level
features that are crucial for optimal performance. Furthermore, as compi-
lation is a stand-alone operation separate from running the program, the
compiler can carry out additional optimizations while translating the code
into machine-readable instructions. The downside of using such program-
ming languages is that you need to specify all these details, making code
development both cumbersome and error prone. Also, testing of new func-
tionality can be tedious, since you need to recompile and run a complete
program to see if the new functionality works as expected.

On the other hand, higher-level, weakly typed and interpreted lan-
guages, such as Python, offer a more flexible programming environment.
For instance, you do not need to specify data types for your variables, and
you can test separate lines of code on the fly, since interpreted languages
can be executed line by line. This freedom comes in general at the cost of
performance. Since the code is interpreted on the fly, there is limited time
for the compiler to carry out any extra optimizations. Furthermore, since
we do not have direct control of data types and memory allocations, the
memory management will be handled by the Python interpreter, meaning
that for programs where this is important for performance, we have fewer
tuning possibilities.

An important thing to keep in mind when it comes to efficient numer-
ical software, is that not all parts of the code need to have the same level
of optimization. Most often, the majority of the execution time is spent on
a limited part of the code only. Typically, this is the so-called inner loop,
in which we repetitively solve the model equations through the numeri-
cal scheme. All simulations we consider in this work are of this nature,
and the performance of these simulations depends almost completely on
the performance of the inner loop. We can therefore use a compiled lan-
guage with access to low-level features for the performance-critical inner
loop and Python for orchestrating the program flow, and thus get the best
of both worlds. We use CUDA to write efficient simulation code for the
of the shallow-water equations, and access the CUDA kernels along with
the complete CUDA API from Python through the PyCUDA package [45],
which gives us full control of all memory allocations and computations
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carried out on the GPU. We then write the simulation loop and all the pre-
and post-processing of simulation data in Python with all the advantages
that an interpreted environment has to offer.

In addition to using Python, we have developed all code in this project
by using Jupyter Notebooks [46] as a rapid prototyping platform. The note-
books offer a programming environment that resembles a lab journal, and
it supports the writing of code and text in the same interactive document
along with figures generated through Python’s Matplotlib package [43].
An efficient software-development technique, in my experience, is to pro-
totype new functionality directly in the interactive notebook environment
until the code produces the desired results. We can then clean the code
while ensuring it is still correct within the notebook, and finally move the
code into a suitable Python module. Similarly for GPU code, it can be ef-
ficient to prototype a serial version in Python to obtain a correct but slow
version, before turning to CUDA to implement the proper parallel version
of the code. The Python version will thereafter not be used for simula-
tions, but is still a valuable asset for regression testing and debugging pur-
poses. In Paper II, we include a more detailed discussion concerning this
approach for developing efficient GPU-accelerated simulators.
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Chapter 4

Data Assimilation

Computational simulation of geophysical processes will always contain er-
rors. From a simulation perspective, we know that all mathematical mod-
els to some extent represent idealized and simplified descriptions of the
real world. We make assumptions that allow us to neglect certain pro-
cesses and simplify others, just to be able to describe the physics as a set of
equations. Next, to simulate the equations, we need to discretize them onto
a suitable grid using a numerical method, such as described in Chapter 2.3.
This introduces numerical discretization errors, both in the approximations
of derivatives and because the solution is only represented by a finite num-
ber of values related to the grid. Finally, when running the simulation, the
computer can only represent the numbers to a certain precision.

We can keep control of some of these errors. For instance, we know
the precision of floating-point numbers used by the simulation software,
and in some cases we can get rigorous error bounds on the discretization
methods through numerical analysis. We can also check whether or not
our simulation complies with the assumptions for the mathematical model
we use. What we can not control as easily is the accuracy in the initial con-
ditions when we want to run real-world simulations, and such simulations
can never become more accurate than the accuracy of the initial conditions.
For oceanographic applications, for instance, it is impossible to obtain an
accurate description of the currents, temperature and salinity throughout
a typical simulation area at a given point in time. Furthermore, there are
uncertainties related to the exact topography of the sea floor, the amount
of wind acting on the uppermost layer, and parametrization of processes
that are too small to be represented by the computational grid. All we have
available, is typically sparse and uncertain observations of the ocean and
simulated estimates on the present ocean state.

33
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In this chapter, we look into the techniques known as data assimila-
tion, which combine uncertain observations with uncertain simulations to
reduce the overall uncertainty in the results. Some of the description of
particle filters in Section 4.3 follows Section 2 of Paper III.

4.1 Uncertainty quantification

In the presence of uncertain initial conditions, boundary conditions, and
model parameters, it is hard to know how accurate the results from a sin-
gle simulation experiment are. Even if we should know the uncertainties
of the initial state of the system, it is still not trivial to model how these
uncertainties develop in time. The aim of uncertainty quantification is to
measure the errors in simulation results, and one way to achieve this is
through Monte Carlo simulations. Instead of running a single simulation,
a Monte Carlo simulation consists of running an ensemble of many simula-
tions, in which each simulation run uses slightly different random samples
of initial conditions and parameters. From the results of all these simula-
tions, we can find the statistically most likely result through the mean of
all the simulated states, whereas the uncertainty of the simulation can be
represented through the variance of the ensemble members.

In mathematical terms, we use ψn to denote the state vector at time tn.
The state vector contains all the variables in our simulation, meaning that
for the discretized shallow-water model discussed in Chapter 2.3, the state
vector will be

ψn = [ηn
j,k, (hu)n

j,k, (hv)n
j,k]

T ∈ RNψ , (4.1)

for all indices j, k in the grid. If the computational grid consists of nx × ny
cells, the size of the state vector becomes Nψ = 3nxny. The ensemble is then
a set of state vectors, {ψn

i }i=1,...,Ne , in which Ne is the number of ensemble
members.

We aim to initialize the ensemble so that it reflects the uncertainty in the
initial conditions and model parameters, meaning that the set {ψ0

i }i=1,...,Ne

becomes a discrete representation of the probability distribution of these
uncertainties. We can thereby write the probability density function (pdf) of
the initial state in terms of the ensemble as

p(ψ0) =
1

Ne

Ne

∑
i=1

δ
(
ψ0 −ψ0

i
)

, (4.2)

in which δ(ψ) is the Dirac-delta function, evaluating to one if ψ = 0
and zero otherwise. By using the numerical simulator that represents our
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(a) (b)

Figure 4.1: The different between (a) a single deterministic forecast and (b) a prob-
abilistic ensemble forecast. Even though the initial conditions have a known and
regular pdf, the dynamics in the model can create an irregular pdf for ψn.

model, we can evolve each ensemble member independently in time, as

ψn
i = M

(
ψn−1

i

)
+ βn

i , (4.3)

for i = 1, ..., Ne. Here, M is the model operator, which represents the numer-
ical scheme that evolves the solution from tn−1 to tn, and βn

i is an optional
model error which can be used to represent the uncertainty in the model
through a random perturbation of the state vector. This lets us express the
pdf of the simulation results at time tn in the same way as (4.2):

p(ψn) =
1

Ne

Ne

∑
i=1

δ (ψn −ψn
i ) . (4.4)

Figure 4.1 shows a deterministic forecast compared to a probabilistic Monte
Carlo forecast. Statistical information about the solution can then be ob-
tained from this pdf, such as an estimate for the mean

E [ψn] =
1

Ne

Ne

∑
i=1

ψn
i , (4.5)

and the variance

Var (ψn) =
1

Ne − 1

Ne

∑
i=1

(ψn
i − E [ψn]) (ψn

i − E [ψn])T . (4.6)

This enables us to say something about the trustworthiness and uncer-
tainty of the simulation as a whole.
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Figure 4.2: Temperature observations from Netatmo weather stations in and
around Oslo. There are dense observations within the city and in the suburbs, but
few in the forests. Even with a large number of observations we only observe parts
of the state vector. Screenshot from https://weathermap.netatmo.com/.

4.2 The data assimilation problem

For some applications, partial observations of the system state that we sim-
ulate become available within the simulation time range. The problem of
numerical weather prediction, or simply weather forecasting, is a perfect
example of this, as weather stations continuously make measurements (ob-
servations) of the atmosphere in the form of ground temperature, precip-
itation, wind, humidity, etc. The weather stations do, however, only pro-
vide observations at certain locations, and then only close to the ground.
Even through the use of personal weather stations, e.g., those produced by
Netatmo, it is still not possible to observe the full state vector for the atmo-
sphere. Figure 4.2 shows a map that illustrates the density of observations
from such weather stations in the Oslo area. There are a large number
of weather stations in the populated areas, but no observations of the at-
mosphere in the forests. This illustrates that even though there are many
observations of the atmosphere, these are not sufficient to create complete
initial conditions. Furthermore, if we have an observation in a single grid
cell, we can still get problems from using that observation directly in our
state vector. First of all, we do not necessarily know that the observation
is correct, but it could also lead to a situation that is not physically con-
sistent with the surrounding grid values, and this could negatively impact

https://weathermap.netatmo.com/
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the simulation results in the next time steps.
In contrast to the relatively densely observed atmosphere, there are

very few observations of the ocean [35]. An important observational tool
in the ocean is the fleet of Argo drifters. They can control their buoyancy
but not their horizontal transport, and are therefore deep-diving, passive
drifters that collect measurements of the ocean currents and make depth
profiles of salinity and temperature [85]. Other observations are made by
satellites that measure sea-surface temperature and sea-surface elevation,
but only as long as the weather is good [52]; moored buoys, such as the
acoustic Doppler current profiler, that observe the current throughout the
entire vertical water column at their location [35, 102]; high-frequency (HF)
radars, which are installed in pairs at the coast and are used to observe the
surface current [73]; and seals with sensors strapped to their heads [80]. In
this work, we base our observations on the GPS positions of drifters that
passively follow the ocean currents at a constant depth close to the ocean
surface, and that can be dropped in the ocean at suitable locations during,
e.g., a search-and-rescue mission.

Returning to the mathematics, we denote an observation at time tn by

yn = H (ψn
true) + εn. (4.7)

Here, ψtrue is the true, but unknown, state of the system and H is the ob-
servation operator that transforms some of the state variables to the ob-
servation vector y. We use Ny as the size of y. In addition, we have an
observation error ε. It represents not only the instrumental uncertainty,
but also the representation error, which says something about how represen-
tative the observation is for the underlying state variables. We typically
assume ε ∼ N(0, R), meaning that the observation error is Gaussian dis-
tributed with mean zero and some covariance matrix R.

With the observation in (4.7), we can improve our probability estimate
of the state through Bayes theorem, which lets us express the conditional
pdf of the state given the observation, as

p(ψn|yn) =
p(yn|ψn)p(ψn)

p(yn)
. (4.8)

Here, we recognize p(ψn) from (4.4), which we now call the prior distribu-
tion as this is our pdf of the state prior to using the observation. Further-
more, p(yn|ψn) is the likelihood and can be interpreted as the probability of
observing yn if we assume that ψn is the true state of the system. The de-
nominator p(yn) is called the marginal probability and is the probability that
we observe the value yn. However, since yn is fixed at each observation
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(a) (b)

(c)

Figure 4.3: Illustration of Bayes theorem. By the use of (a) the prior distribution
p(ψn) and (b) the likelihood p(yn|ψn), we can find (c) the posterior distribution
p(ψn|yn).

time tn, p(yn) will be the same for all possible states ψn, and it is therefore
common to consider the marginal probability as a normalization constants.

Figure 4.3 illustrates how Bayes theorem works. In (a) we have the
prior distribution p(ψn) represented by our ensemble. We then have an
imperfect observation yn in (b), and for each possible state value, we find
the likelihood for observing yn from that state. By combining (multiplying)
these two pdfs, we get the posterior distribution in (c), which is a better
probability distribution for the true state than p(ψn).

Bayes theorem in (4.8) is the backbone of the data assimilation problem.
For geophysical applications there are mainly three different methods for
solving it:

Ensemble Kalman filters [28, 97]: Solves (4.8) analytically under the as-
sumption of Gaussian errors and linear model and observation op-
erators, and uses the ensemble to represent the uncertainty in the
model.

Variational methods [4, 6, 59]: By assuming that the errors in the model
and observations are Gaussian, (4.8) can be solved as an optimization
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problem. This is the most commonly used data assimilation tech-
nique in operational weather prediction systems.

Particle filters [72, 95, 94, 97]: Nonlinear data assimilation methods that use
a direct ensemble approach for solving (4.8). The filters assign weights
to the ensemble members according to their likelihoods, and discards
unsuccessful members in exchange for duplication (resampling) of
successful ones.

We will now briefly look at the concepts behind ensemble Kalman fil-
ters and variational methods as these are the most commonly used data-
assimilation methods. We will thereafter devote a longer section on particle
filters, as they are the most relevant data assimilation method to this thesis.

Ensemble Kalman filters

The ensemble Kalman filter (EnKF) [28] is perhaps the most widely used
ensemble-based data assimilation method in the geosciences. It builds on
the Kalman Filter, which solves the data assimilation problem analytically
under certain assumptions. As long as we have Gaussian model errors and
observation errors, and linear model and observation operators, the poste-
rior distribution in (4.8) will also be Gaussian N(ψn,a, Pn,a), with mean and
covariance given by

ψn,a = ψn, f + K
(

yn − Hψn, f
)

(4.9)

and
Pn,a = (1− KH) Pn, f , (4.10)

respectively. Here, ψn, f and Pn, f are the mean and covariance, respectively,
of the prior distribution, which is often called the forecast. The posterior
state ψn,a, on the other hand, is called the analysis. Furthermore, K is the
Kalman gain, defined by

K = Pn, f HT
(

HPn, f HT + R
)−1

. (4.11)

The main challenge in the Kalman filter is to define the covariance matrix
Pn, f for the state vector.

Evensen [27] suggested that the forecast mean and covariance matrix
could be estimated through an ensemble. By replacing ψn, f with

ψ
n, f

=
1

Ne

Ne

∑
i=1

ψ
n, f
i , (4.12)
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and computing the estimate for the variance as

Pn, f =
1

Ne − 1

Ne

∑
i=1

(
ψ

n, f
i −ψ

n, f
) (

ψ
n, f
i −ψ

n, f
)T

, (4.13)

we can use (4.9) to update each ensemble member individually, and we
hence get {ψn,a

i }i=1,...,Ne . Note that (4.10) is no longer needed, as the co-
variance for the analysis automatically will be updated through the new
ensemble states.

This original version of the EnKF faced two problems in particular, and
the first was that it gave a too narrow posterior distribution. It was there-
fore suggested that an observation error should be sampled independently
for each ensemble member and added to Hψn, f in (4.9), so that the uncer-
tainty in the observation was better represented [14, 40]. This method is
now known as the stochastic ensemble Kalman filter. The second prob-
lem is that when the dimension of the state vector becomes large, the co-
variance matrix Pn, f becomes enormous since it is of size Nψ × Nψ. Var-
ious techniques based on localization [40, 41] and/or square-root trans-
forms [68] of the covariance matrix are used to reduce this storage require-
ment.

For a full introduction to ensemble Kalman filters, see Evensen [28],
or for a recent review of a wide variety of different methods, see Vetra-
Carvalho et al. [97].

Variational methods

Variational methods are the data assimilation technique of choice in most
operational numerical weather prediction systems (see, e.g., [4, 6], or for
an oceanographic application [59]). This is because they traditionally are
not ensemble-based, and can be applied to a single simulation run. They
solves (4.8) (Bayes theorem) as an optimization problem by assuming that
the observation error is Gaussian ε ∼ N(0, R), and that the forecasted prior
state, ψ f , has a Gaussian background error covariance matrix B. The most
powerful method is 4DVar, which is applied to the state’s development
over a time range that includes several different observations.

With these assumptions, the 4DVar method consists of solving (4.8) by
writing out the Gaussian form of the posterior, as

p(ψ|y) ∝ p(y|ψ)p(ψ) = exp (−J(ψ)) , (4.14)
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with, if we have observations at K different time steps,

J(ψ) =
1
2
(ψ−ψ f )TB−1(ψ−ψ f )

+
1
2

K

∑
n=0

(yn − Hn (Mn (ψ)))T R−1 (yn − Hn (Mn (ψ))) ,
(4.15)

The analysis state ψa is here the state that maximizes p(ψ|y), which is the
state that minimizes J(ψ). We therefore find ψa as the solution of

∇J(ψ) = B−1(ψ−ψ f )

−
K

∑
n=0

Mn,T Hn,TR−1 (yn − Hn (Mn (ψ))) = 0.
(4.16)

The solution is a state that manages to balance its influence from the fore-
casted state ψ f and the observations yn for n = 1, ..., K, while following the
development defined by the model.

To solve this, we need the adjoint of the tangent linear model MT, which
makes this method much more complex to implement than, e.g., the EnKF.
An alternative is also to use a 3DVar method, in which the optimization
problem is defined and solved only for one observation time step at the
time. Still, we need to define a background covariance matrix B, and one
way to do so is by using a hybrid ensemble Kalman-variational approach
for representing B through an ensemble [54].

Even though the variational methods are not used in this thesis, I have
chosen to mention them due to their robustness and success in complex
operational weather forecasting models.

4.3 Particle filters

Contrary to other data assimilation methods, such as ensemble Kalman fil-
ters or variational methods, particle filters (see [72, 94, 95] and references
therein) make no assumptions of Gaussian probability distributions or lin-
earity of the model or observation operators. They are therefore often de-
scribed as fully nonlinear data assimilation methods.

Standard particle filters are ensemble-based techniques that use a direct
evaluation of Bayes theorem. Similarly to the ensemble representation of
the prior distribution in (4.4), we use the ensemble members to evaluate
the likelihood as well. Bayes theorem from (4.8) can then be written as

p(ψn|yn) ∝
Ne

∑
i=1

wn
i δ(ψn −ψn

i ), (4.17)
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in which wn
i are weights given by

wn
i =

p(yn|ψn
i )

∑Ne
j=1 p(yn|ψn

j )
. (4.18)

The weight for each ensemble member1 is the normalized evaluation of its
likelihood p(yn|ψn

i ) and represents its relative importance in the ensemble.
As an example, if the observation error in (4.7) is Gaussian ε ∼ N(0, R),
the weight for ensemble member ψi becomes

wn
i ∝ exp

(
− 1

2 (y
n − H (ψn

i ))
T R−1 (yn − H (ψn

i ))
)

. (4.19)

Note that whereas the Monte Carlo forecast in (4.4) represents a straight
forward discrete pdf, (4.17) is a weighted discrete pdf.

Figure 4.4 (a)-(b) illustrates this technique, which is called importance
sampling. In (a), we start with the initial ensemble in which all members
are independently sampled within the uncertainty of the initial conditions.
At this point, all ensemble members have the same weight w0

i = 1/Ne.
We evolve the ensemble members independently forward in time without
changing their weights, just as in a Monte Carlo simulation, which gives
us the discrete pdf for p(ψn). We then, in (b), use the observation yn and
the observation uncertainty, as shown in green, and evaluate new weights
for the ensemble members according to (4.18).

At this point, we have several ensemble members that have weights
very close to zero, and if we continue by evolving the ensemble to the next
observation, we can expect that the states will spread even more, resulting
in even fewer members located close to the next observations. This leads
to filter degeneracy, which means that the ensemble eventually will have all
its weight distributed on very few (or just a single) ensemble members and
therefore loose all its statistical information.

Standard particle filters using sequential importance resampling

To avoid the degeneracy, we can apply sequential importance resampling (SIR)
at each observation time. Since ensemble members with very low weights
have a very small contribution to the total pdf, it is a waste of computa-
tional resources to keep evolving them. Instead, it would be beneficial to
have a larger number of ensemble states in the high-probability areas close
to ensemble members with high weights. This can be achieved by resam-
pling the ensemble members based on their weights. Figure 4.4 (c) shows

1Note that ensemble members are called particles in the particle filter literature.
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(a) (b)

(c)

Figure 4.4: Particle filter using sequential importance resampling. We start by (a)
evolving an ensemble of equally weighted members forward in time until we have
an observation. We then (b) re-evaluate their weights according to the observation
and its uncertainty (shown in green), and (c) resample the ensemble based on
these weights so that we again get an ensemble of equally weighted members.

such resampling based on the weights in (b). After resampling, we reset the
weights back to wn

i = 1/Ne for all ensemble members and can once again
evolve them to the next observation time. Note that if we do not have any
stochastic model error (if β = 0 in (4.3)), we need to perturb the resam-
pled ensemble states to avoid that we have multiple ensemble members
that follow the exact same development. Several different schemes exists
for doing the resampling, and the interested reader can find an overview
in van Leeuwen [94].

The main advantage of the SIR particle filter compared to, e.g., ensem-
ble Kalman filters, is that we never manipulate the state vector of successful
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ensemble members. This means that the posterior ensemble will consist of
states that are consistent with respect to the physics of the model, or slight
perturbations of such states.

The great disadvantage, however, is that even with resampling, the par-
ticle filters are very prone to collapse when the dimension of the observa-
tion Ny is large [89, 90, 94]. When the number of independent observations
increases, more ensemble members are likely to end up in the tail of the
likelihood, meaning that significant weight will be distributed on fewer
particles. The normalized weights will often then be almost one for a sin-
gle ensemble member, meaning that they are almost zero for all the others.
This has the consequence that the posterior again looses all statistical value,
and this problem is known as the curse of dimensionality.

Particle filters with proposal densities

In recent years, much work has been invested into designing particle filters
that avoid the curse of dimensionality (see the recent review paper by van
Leeuwen et al. [95]), and a common technique is to use proposal densities.
The idea is to change the prior distribution, so that instead of evolving the
ensemble states as before, we evolve them according to a proposal distribu-
tion and then compensate for this by altering their weights.

First of all, if we have a Gaussian model error β ∼ N(0, Q), with Q as
the model error covariance matrix, we see from (4.3) that the model step
can also be regarded as a random sample from a Gaussian distribution

ψn
i ∼ N

(
M
(

ψn−1
i

)
, Q
)

. (4.20)

We can therefore consider the prior distribution to be Markovian2. Fur-
thermore, if all ensemble members at time tn−1 have the same weight, we
can write (4.4) as

p(ψn) =
1

Ne

Ne

∑
i=1

p(ψn|ψn−1
i ). (4.21)

Instead of evolving the ensemble members by sampling them from
(4.21), we want to draw them from a proposal density q. The only require-
ments for q is that it needs to have equal or larger support than p(ψn|ψn−1

i ),
and that it is reasonably simple to sample from it. Besides that, we have
large freedom in how we design q. It is therefore possible to choose a pro-
posal density that is conditioned on the observation yn and all other en-
semble states ψn−1

1:Ne
. Thus, we can, as illustrated by Figure 4.5, use both the

2The state ψn depends on ψn−1, but not on any previous time steps.
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Figure 4.5: Using a proposal density to force the ensemble members to become
more similar to the observation during model evolution of the final time step.

observation and the spread in the ensemble to manipulate the ensemble
states during the last time step before the observation in such a way that
we avoid collapse. Since each ensemble state ψn−1

i is positioned differently
from observation, we can have different proposals for each member, so that
the proposal for ensemble member i takes the form of qi(ψ

n|ψn−1
1:Ne

, yn). By
using this proposal, the prior distribution becomes

p(ψn) =
1

Ne

Ne

∑
i=1

p(ψn|ψn−1
i )

qi(ψn|ψn−1
1:Ne

, yn)
qi(ψ

n|ψn−1
1:Ne

, yn). (4.22)

By using Bayes theorem from (4.8) we get

p(ψn|yn) =
1

Ne

Ne

∑
i=1

p(yn|ψn)p(ψn|ψn−1
i )

p(yn)qi(ψn|ψn−1
1:Ne

, yn)
qi(ψ

n|ψn−1
1:Ne

, yn). (4.23)

Now, by sampling ψn
i ∼ qi(ψ

n|ψn−1
1:Ne

, yn), the posterior once again becomes

p(ψn|yn) =
Ne

∑
i=1

wn
i δ(ψn −ψn

i ), (4.24)

but now, the weights are found by

wn
i =

p(yn|ψn
i )p(ψn

i |ψn−1
i )

Ne p(yn)qi(ψ
n
i |ψn−1

1:Ne
, yn)

. (4.25)
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By minimizing the variance among the weights, the optimal proposal den-
sity is found to be qi(ψ

n|ψn−1
1:Ne

, yn) = p(ψn|ψn−1
i , yn) [26]. In the case of a

linear observation operator H, and Gaussian model and observation errors
given by β ∼ N(0, Q) and ε ∼ N(0, R), respectively, this optimal proposal
density is equivalent to N(ψ

n,opt
i , P), with

ψ
n,opt
i = M

(
ψn−1

i

)
+ QHT

(
HQHT + R

)−1 (
yn − HM

(
ψn−1

i

))
(4.26)

and
P =

(
Q−1 + HTR−1H

)−1
. (4.27)

Note that ψ
n,opt
i has large similarities with ψa,n

i used by the ensemble Kalman
filter in (4.9). The great difference is that we here use the covariance ma-
trix Q for the model error, whereas in the ensemble Kalman filter we use
the covariance matrix Pn, f for the state itself, which in general is harder to
model. Even though this proposal gives a minimal variance among the en-
semble weights, it has been shown that it is still not sufficient for avoiding
ensemble collapse [89, 90, 1].

A solution to the problem has been suggested in form of the implicit
equal-weights particle filter (IEWPF), first by Zhu et al. [101] and later
improved with a two-stage update by Skaugvold et al. [88]. The origi-
nal IEWPF uses a similar but not identical proposal distribution as the im-
plicit particle filter [20], and is the first particle filter that produces uniform
weights even in high-dimensional systems. It does, however, have some
problems, as it pushes ensemble members further from the observation
when the ensemble size is increased, and also under-estimates the spread
in the ensemble in low-dimensional numerical experiments. The two-stage
scheme alleviates these issues, with the new ensemble members chosen as

ψn
i = ψ

n,opt
i + P1/2

(
α1/2

i ξi + β1/2νi

)
. (4.28)

Here, we sample vectors ξi, νi ∼ N(0, I) in such a way that they are or-
thogonal, and choose scaling parameters α and β implicitly such that all
ensemble members get weights that are equal to the mean of the optimal
proposal weights.

The two-stage IEWPF is a central component of Paper III. In that paper,
we design a model error covariance structure Q for perturbing the simpli-
fied ocean state modelled by the shallow-water equations. Furthermore,
our choice of covariance structure enables a massively-parallel implemen-
tation of the two-stage IEWPF, so that we can assimilate drifter observa-
tions before making forecasts of their drift trajectories.



Chapter 5

Thesis Contribution and
Summary of Papers

Efficient forecasting of drift trajectories in the ocean is a highly interdis-
ciplinary problem and the research reported in this thesis builds on four
scientific disciplines and topics: numerical mathematics, data assimilation,
GPU computing, and oceanography. Several of the papers written during
this thesis therefore aim to contribute to more than one of these. Still, all
papers are products of all four disciplines, even though this is not explicitly
stated in each of them.

The scientific contributions in this thesis are divided on three different
levels, as shown in Figure 5.1.

Overview papers: These papers evaluate existing methods for new or more
advanced applications.

Paper I: We compare modern finite-volume schemes against tradi-
tional finite-difference schemes for oceanographic applications.

Paper II: We show that Python offers a highly suitable programming
environment for rapid development of high-performance GPU
code, and present results for computational performance and
energy efficiency for code written in both CUDA and OpenCL
across a wide range of different GPUs.

Proof of concept: This paper presents the suitability of a state-of-the-art
method for new and more advanced applications.

Paper III: We use the implicit equal-weights particle filter to assim-
ilate drifter observations into a rotating shallow-water model,
and investigate how this improves forecasts of drift trajectories.
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Paper I Paper II

Overview papers

Paper III

Proof of concept

Paper IV Paper V

Operational-level applications

Numerical mathematics

Data assimilation
GPU computing

Oceanography

Figure 5.1: An overview of the papers included in this thesis. All four topics are
relevant to all papers, but we have highlighted those that are most relevant for
each of them. The arrows indicate how the results from some papers are used to
realize the research in others.

Operational-level applications: These papers take modern methods out
of idealized settings and extend them to tackle challenges found in
operational settings.

Paper IV: We extend a modern finite-volume scheme to enable oceano-
graphic simulations of real-world domains through initializa-
tion from operational ocean forecasts.

Paper V: We investigate the use of very large ensembles of simplified
ocean models for applying a SIR particle filter to forecast drift
trajectories.

As indicated by the arrows in Figure 5.1, some of the papers build
on the results from others. The overview papers (Paper I and Paper II)
have been used to review suitable numerical methods and GPU comput-
ing technologies that are further used in the three other papers, whereas
the Paper V applies the full simulation framework presented in Paper IV
and some components from the data assimilation code and the model error
developed during the work for Paper III.
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Code releases and reproducible science

Reproducibility is one of the fundamental aspects of the scientific method,
as scientific results only have value if they can be replicated independently
by others. In this thesis, all results rely on computer code, and simula-
tion frameworks and numerical experiments can rarely be described in
sufficient detail in a research paper to enable others to replicate the re-
sults purely from the written information (see, e.g., [99]). Releases and
publications of the software that produces the presented results are there-
fore an important contribution from this thesis. In addition to the simu-
lation frameworks, each release also includes Jupyter notebooks used for
pre- and post-processing of experiments, so that all figures easily can be
recreated. Furthermore, all software is released under an open source li-
cense, the GNU Public Licence version 3 (GPLv3), and the latest version of
the complete code base can be found at https://github.com/metno/
gpu-ocean.

In the following pages, we give individual summaries of each paper,
followed by a short discussion of the work and description of the corre-
sponding software.

https://github.com/metno/gpu-ocean
https://github.com/metno/gpu-ocean


Paper I

Evaluation of Selected Finite-Difference and Finite-Volume
Approaches to Rotational Shallow-Water Flow

Håvard Heitlo Holm, André Rigland Brodtkorb, Göran Broström, Kai H.
Christensen, Martin Lilleeng Sætra

Communications in Computational Physics, volume 27, number 4, pages
1234–1274, 2020

DOI: 10.4208/cicp.OA-2019-0033

The aim of this work was to investigate different numerical schemes
that can serve as a simplified ocean model. The central question for this pa-
per (although not explicitly stated in the paper) was whether the modern
high-resolution, finite-volume scheme suggested by Chertock et al. [18],
here abbreviated CDKLM, could match the classical, leapfrog, centered-in-
time, centered-in-space (CTCS) finite-difference schemes, which has com-
monly been used in the oceanographic communities. Furthermore, we
included the finite-volume scheme by Kurganov and Petrova (KP) [49],
which we modified with a naı̈ve discretization of the Coriolis forces to
make it applicable to rotational flow. As mentioned in Section 2.3, the
main difference between the KP and CDKLM schemes is that the CDKLM
scheme is well-balanced with respect to the geostrophic balance, whereas
the KP scheme is well-balanced with respect to lake-at-rest. Finally, we also
included the finite-difference, forward-backward linear (FBL) scheme [87]
in the comparison. Even though this scheme only solves the linearized
shallow-water equations, it is interesting because of its simplicity and po-
tential for very efficient simulations.

The comparison was made by running all four schemes on a set of
seven test cases designed to capture relevant oceanographic physics for
problems such as storm surge and drift trajectory modelling. This includes:

Rossby adjustment: Disturbance in the sea-surface that adjusts to a non-
trivial rotating steady-state solution.

Kelvin waves: Fast barotropic waves (such as the tides) that travel along
the coast line.

Rossby waves: Slow barotropic waves that are caused by spatial varia-
tions in potential vorticity, either from a sloping bathymetry (result-
ing in topographic Rossby waves) or a Coriolis beta-model (planetary
Rossby waves).
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Figure 5.2: Planetary Rossby waves for the four different numerical schemes,
driven by a linear Coriolis force along the y-axis. The case is initialized by zero
momentum and a bump in the central right part of the domain.

Figure 5.2 shows the sea-surface elevation after simulation of planetary
Rossby waves. The test case is initialized with a bump east in the domain
and results in Rossby waves propagating from east to west, while wave
energy slowly propagates eastwards. Furthermore, we include a test that
demonstrates the primary advantage of the finite-volume schemes, which
is capturing discontinuous solutions. These results are well-known, as the
finite-difference schemes are based on a formulation of the shallow-water
equations that are only conservative for smooth solutions and therefore
unable to capture shocks. We also compare computational performance
and numerical convergence.

Our results show that the CTCS scheme performs well in cases dom-
inated by geostrophic balances, such as Rossby adjustment and Rossby
waves, but we were not able to show correct dispersion for large gravity-
driven waves. Furthermore, the KP scheme is too diffusive due to its naı̈ve
discretization of the Coriolis forces, and the well-balanced reconstruction
of CDKLM makes it perform better than KP on all tests. The conclusion
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is that CDKLM is the superior scheme for gravity-driven motion, such as
Kelvin waves, but still has some minor potential for even better treatment
of rotational motion compared to CTCS. As expected, we see that the FBL
scheme manages to capture all linearized physics and runs one order of
magnitude faster than CDKLM.

Comments

The results from this paper made us confident to proceed with our attempt
to use modern high-resolution finite-volume methods, here through the
CDKLM scheme, in the role of a simplified ocean model that can eventu-
ally be used to forecast drift trajectories. We see, however, that it is impor-
tant to use methods that are well-balanced with respect to the rotational
physics, as we observe that the KP scheme is diffusive and looses some of
the rotational energy.

Most surprising among the results from this paper, however, is that
the CTCS scheme demonstrates a slow-down during simulations of Kelvin
waves, even though the theory states that the wave crest should be slightly
faster than the trough. We spent significant time debugging the CTCS
scheme and discussed these counter-intuitive results with Lars Petter Røed,
who has worked extensively with such schemes. Together, we found an
explanation to this behavior, which is outlined in Section 4.4 in the paper.
After the paper got accepted, Røed came back to us after implementing
the Kelvin waves test case himself, and his new results showed that the
crest gained speed, which is contrary to our results but more in accordance
with theory. The consequence of the expected behavior, however, is that
a shock builds up in the front of the wave, causing CTCS to break down,
since it is unable to simulate discontinuities. This means that even with
these new results, our conclusion of proceeding with the CDKLM scheme
is unaltered.

A similar study has been carried out by Pankratz et al. [66]. They com-
pared a fourth order high-resolution finite-volume scheme against a first
and a second order ”oceanographic” finite-difference scheme, for simula-
tions of large eddies and barotropic jets. In their conclusions, they high-
light that the finite-volume scheme is much more stable but also more ex-
pensive compared to the finite-difference schemes. Overall they show, as
we do, that modern high-resolution finite-volume schemes can be used for
oceanographic applications.

Since the main aim of this work was to evaluate the suitability of dif-
ferent numerical schemes in the role of simplified ocean models, the paper
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focus mostly on the numerical results without going into a deep math-
ematical analysis of the chosen schemes. A more thorough analysis of
geostrophic adjustment through a comparison of the exact and discrete
dispersion laws (see, e.g., [5, 15]) could therefore be considered in a future
work.

Software

We have released the software as supplementary material, registered with
the DOI 10.5281/zenodo.3204200. This release contains the source code
with the implementations of the four numerical schemes and Jupyter note-
books for running the test cases and plotting the results.

http://www.doi.org/10.5281/zenodo.3204200


Paper II

GPU Computing with Python: Performance, Energy Efficiency and
Usability

Håvard Heitlo Holm, André Rigland Brodtkorb, Martin Lilleeng Sætra
Computation, volume 8, number 1:4, 2020

(Special issue on Energy-Efficient Computing on Parallel Architectures)
DOI: 10.3390/computation8010004

High-performance computing (HPC) applications in general, and GPU-
accelerated code in particular, are traditionally implemented in relatively
low-level programming languages, such as C/C++ or Fortran. The most
important thing for performance, however, is that the main computational
engine of the application is implemented to run as efficiently as possible
(see discussion in Section 3.3). The topic of this paper is therefore to eval-
uate the usability of accessing the GPU through Python. We also evaluate
the performance and energy efficiency of such applications using Python
packages for the two most common GPU programming models (PyCUDA
vs PyOpenCL [45]), across different GPUs (HPC GPUs, commodity-level
gaming GPUs, and laptop GPUs), and for different levels of code optimiza-
tion (first implementations vs optimized code). To evaluate these aspects,
we use the three most promising numerical schemes from Paper I: FBL,
CTCS, and CDKLM, which in the paper are described as the linear, nonlin-
ear, and high-resolution schemes, respectively.

Our findings show that any reductions in computational efficiency in-
duced by using Python instead of C++ for accessing CUDA and OpenCL
kernels is negligible. Moreover, we find that applications written in CUDA
and OpenCL, and tuned to an equivalent optimization level, most often
show the same computational performance on the same GPU. We further
observe that the effect of doing profile-driven code optimization varies
substantially between different GPUs. These last two findings are elabo-
rated in Figure 5.3, which shows relative computational performance for
four different versions of the three numerical schemes across seven differ-
ent GPUs. Similarly, we also found that the energy consumption did not
depend on whether we use CUDA or PyOpenCL, but rather that compu-
tationally efficient code in general seems to also be energy-efficient code.
Optimal energy efficiency, however, is not obtained at optimal computa-
tional efficiency, and therefore requires specific tuning of the code and GPU
parameters.

Finally, the paper evaluates the usability of PyCUDA and PyOpenCL
for rapid development of GPU code through Python. Whereas both Python
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Figure 5.3: Computational performance for the three different numerical schemes
on seven different GPUs. Each figure shows benchmark results for the original
and optimized versions of each scheme in both CUDA and OpenCL, showing that
the effect of optimization varies a lot among GPUs, but is more or less invariant
to the choice of using CUDA or OpenCL.

packages cover the complete underlying APIs of CUDA and OpenCL, the
CUDA platform has a more extensive ecosystem compared to OpenCL. For
instance, CUDA offers better tools for profiling and a more integrated se-
lection of libraries through its software development kit (the CUDA SDK),
whereas PyOpenCL relies on third-party libraries. We consider this to be
of grater value than the opportunity to run the code on all types of GPUs
and CPUs, which is the main advantage of OpenCL over CUDA.

Comments

This paper is an extended version of a conference paper [38] that has been
accepted for publications in the Proceedings of the International Conference on
Parallel Computing, ParCo2019, and that was presented in the mini-symposium
on “Energy-efficient Computing on Parallel Architectures (ECO-PAR)” dur-
ing the conference. Afterwards, we were invited to contribute an extended
version (this paper) to an upcoming special issue journal on Energy-Efficient
Computing on Parallel Architectures.

Even though GPUs are well known to have great potential in energy-
efficient computing, we had no prior experience working with this topic.
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In general, HPC facilities have a very large power consumption. The most
powerful supercomputer on the November 2019 Top 500 list [58] uses the
same amount of energy in 75 minutes alone as an average household in
Oslo consumed during the year 2012 [91]. An increased focus on energy-
efficient computing could therefore be both prudent and timely. Contribut-
ing to this mini-symposium and the up-coming journal special issue has
therefore been an interesting additional aspect to the main topic of this
thesis.

Two of the results from this paper have had a direct impact on the sub-
sequent work in this thesis. First and foremost, the experiences from work-
ing in PyOpenCL made us change our choice of GPU computing platform
from PyOpenCL to PyCUDA. Even though our GPU programming experi-
ence was mainly from working in CUDA, we wanted to develop the code
for this project in OpenCL, which is a more open platform that supports
execution on any GPU and even on CPUs. It is, however, hard to profile
OpenCL applications, as profiling in OpenCL requires that we explicitly
add hardware counters to the source code instead of simply running the
original program through a profiler, such as Nvidia Visual Profiler, which
is available for CUDA. The advantage of running the code on multiple
platforms turned out to be of less importance, as we did not have access to
AMD hardware, even though we knew that including a non-Nvidia GPU
in our experiments would improve the paper significantly. By taking the
cost of porting our initial simulation code from (Py)OpenCL to (Py)CUDA,
we were rewarded by working in a richer software environment. The sec-
ond impact from writing this paper was that we got significantly faster
code through the profile-driven code optimization carried out for the ex-
periments. This improved all aspects of the later papers, both in the context
of rapid prototyping and through making it feasible to run larger ensem-
bles for Papers III and V.

Software

The experiments presented in this paper evaluate multiple versions and
optimization levels of the same software. The scripts running these experi-
ments therefore rely on cloning and checking out all of these versions from
the git repository it is assumed to be ran from. For this reason, a software
release outside of the git repository is of limited value for reproducing this
work, and we decided not to release it in a permanent repository.

The code can still be accessed from our Github repository at https:
//github.com/metno/gpu-ocean. All experiments in the paper can
be run from the dedicated branch named paper/energy-efficiency.

https://github.com/metno/gpu-ocean
https://github.com/metno/gpu-ocean


Paper III

Massively Parallel Implicit-Equal Weights Particle Filter for Ocean
Drift Trajectory Forecasting

Håvard Heitlo Holm, Martin Lilleeng Sætra, Peter Jan van Leeuwen
Journal of Computational Physics: X, volume 6, number 100053, 2020.

DOI: 10.1016/j.jcpx.2020.100053

The paper targets the main topic of this thesis by investigating nonlinear
data assimilation of drifter and mooring observations in a shallow-water
model for forecasting drift trajectories. We present a massively-parallel
GPU implementation of the implicit equal-weight particle filter (IEWPF)
and demonstrate our simulation system on a challenging test case contain-
ing near-realistic chaotic instabilities. This is the first massively parallel
implementation ever of such a particle filter, and also the first time that
IEWPF has been applied to a high-dimensional geophysical application.

The key element for enabling an efficient parallel implementation of
IEWPF is to define a local covariance structure Q to the stochastic model
error. We therefore present an embarrassingly parallel algorithm for ap-
plying such a covariance structure to normal distributed random numbers.
Our choice of Q is made to adhere to the geostrophic balance and has a lo-
cal computational structure that is also flexible with respect to correlation
radius. The paper contains detailed descriptions of all stages of the IEWPF
algorithm, and we demonstrate how the choice for Q has an impact in ev-
ery algorithmic step.

The paper presents numerical experiments using an ensemble of sim-
plified ocean states to capture near-realistic currents. The experiments are
initialized from an unstable steady state consisting of two geostrophic jets,
in which a minimal disturbance of the state leads to a chaotic instability.
This means that ocean states that are perturbed in slightly different ways
will have very different developments. A Monte Carlo simulation there-
fore results in a smooth ensemble mean, as shown at the top of Figure 5.4.
We then use a single simulation as the true state, from which we make ob-
servations from 240 anchored moorings in a grid pattern and from 64 free
drifters. Since the truth is simulated using the same model as we use to
make forecasts, these experiments are so-called identical twin experiments.
The middle and bottom rows of Figure 5.4 show the ensemble means after
assimilating observations from the drifters and moorings, respectively. The
drifter observations help the ensemble capture some of the main curves in
the two jets, whereas the observations from the moorings lead to an en-
semble mean with very fine details. Even though the mooring experiment
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Figure 5.4: Ensemble mean of the sea-surface level (η), jet flow (hu), and cross-
jet flow (hv) after no data assimilation (top), assimilation of drifter observations
(middle row), and observation of mooring data (bottom). The axes are in km.

uses observations of approximately 0.1% of the state space, the resulting
ensemble mean is almost indistinguishable from our synthetic true state.

Based on the results in Figure 5.4, we proceed by making ensemble
forecasts of drift trajectories, as shown in Figure 5.5. The Monte Carlo ex-
periment gives a large spread from the very beginning, whereas observa-
tions from the drifters show reasonable forecasts with reduced uncertainty
during the first 12–24 hours. The forecast produced after assimilating ob-
servations from the moorings, however, is exceptionally good for the entire
forecast period up to three days.

Additionally, we find that the forecast quality varies significantly when
using observations from only half of the domain, depending on whether
we observe one jet completely or two jets partially. We also show indica-
tions of good statistical quality of our results, based on rank histograms
resembling uniform distributions. As expected, we confirm that the stan-
dard particle filter leads to ensemble collapse for the same ensemble sizes
as used in the numerical experiments. Finally, we include an analysis of
computational performance and bottlenecks of the experimental setup.
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Figure 5.5: Ensemble forecast of drift trajectories starting from the states in Fig-
ure 5.4, shown after one, two and three days. Light blue lines are the ensemble
trajectories, dark blue is the ensemble mean, and red is the truth.

Comments

Even though we demonstrate a successful application of IEWPF on com-
plex simulations using a shallow-water model, there is still room for im-
provement. One of the weaknesses of IEWPF seems to be its dependency
on the covariance structure Q of the model error. With our choice of Q,
the particle filter corrects the ocean state by adding a dipole structure (a
positive and negative bump rotating in opposite directions) centered on
the observation. This will assimilate the observation into the state at the
correct location, but seems sometimes to give a worse representation of the
true state in the surrounding area. We believe this might be a reason for
why the assimilation of drifter observations has relatively little effect on
the true state, as the location of the observations changes all the time and
thereby causing side effects to harm recently corrected grid cell values.

Another interesting future work would be to account for a varying
bathymetry and land mask to enable experiments in fully realistic domains,
such as those considered in Paper IV and Paper V. This could be achieved
by modifying and improving the IEWPF algorithm presented in the pa-
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per, or by finding a way to loosen up this requirement. Some alternatives
for the latter option are mentioned in the paper, such as using a reduced
gravity model or a multilayered system.

A missing, but interesting aspect would be to extend the numerical ex-
periments by comparing the IEWPF against a suitable ensemble Kalman
filter (EnKF), with regards to both forecast quality and computational re-
quirements. Since EnKF uses covariance structures found in the ensemble
states, we will avoid the problem of choosing a single covariance structure.
On the other hand, we can expect a negative impact on computational per-
formance because of the ensemble-wide data dependency for computing
these covariance structures.

Software and data

The source code for the software and experiments described in this paper is
released as supplementary material, registered under the DOI 10.5281/zen-
odo.3458291.

Replication of the experiments relies on access to the synthetic true state
and the initial states for the ensemble members. Our raw simulation results
are also of interest, as we show trajectory forecasts for only a selection
of drifters in the paper, and other post-processing methods might reveal
new interesting interpretations of the results. All these datasets are there-
fore released as supplementary material as well, registered under the DOI
10.5281/zenodo.3457538.

http://www.doi.org/10.5281/zenodo.3458291
http://www.doi.org/10.5281/zenodo.3458291
http://www.doi.org/10.5281/zenodo.3457538


Paper IV

Real-World Oceanographic Simulations on the GPU using a
Two-Dimensional Finite Volume Scheme

André Rigland Brodtkorb, Håvard Heitlo Holm
Preprint: arXiv:1912.02457, 2019

In review

In this paper, we present a simulation framework for solving the rota-
tional shallow-water equations based on a modern high-resolution finite-
volume method (the CDKLM scheme). The framework can be used di-
rectly with real-world data from operational ocean forecasts to run light-
weight, GPU-accelerated ocean simulations. The code is based on the CD-
KLM simulator, which was first implemented for Paper I and later opti-
mized in Paper II. In this work, we extend the scheme with several features
required for running real-world ocean simulations. The extensions include
spatially varying north vector and Coriolis term, moving wet-dry inter-
face, a static zero-flux landmask, bottom friction, wind forcing, boundary
conditions for nesting the simulation into a larger model, and an efficient
reformulation that makes the scheme well-suited for execution on GPUs.

We demonstrate the framework through three numerical experiments
on different sections along the Norwegian coast: first, a section of the Nor-
wegian Sea completely without interaction with land; then, an area around
the Lofoten islands with a very complex land mask (see Figure 5.6); and fi-
nally, we simulation the complete coast of Norway. All experiments use
initial, boundary, and forcing data, along with bathymetry and landmask,
from operational ocean forecasts issued by the Norwegian Meteorologi-
cal Institute. These forecasts are generated through a three-dimensional
ROMS model, but the forecast files are still distributed with an additional
vertically-integrated momentum field.

Each of the three experiments are run with original, double, and half
resolution compared to the reference forecast. The results show that the
high-resolution simulations manage to maintain more of the fine struc-
tures that are present in the reference solutions, whereas the low-resolution
simulations smear out the details and are dominated by grid effects. We
also report tidal forecasts for selected locations along the Norwegian coast,
which are general in good agreement with the reference forecast, and show
that even with several of the new extensions, we obtain the expected nu-
merical convergence.

61



62 Thesis Contribution and Summary of Papers

1150 1200 1250 1300 1350 1400 1450 1500

400

450

500

550

N
or

K
ys

t-
80

0

0.
4

0.40.6

0.8

1.0

1.
2

1
.4

1150 1200 1250 1300 1350 1400 1450 1500

400

450

500

550

−2 −1 0 1 2

η [m]
0.0 0.1 0.2 0.3 0.4

particle velocity [m/s]

NorKyst-800 23

1150 1200 1250 1300 1350 1400 1450 1500

400

450

500

550

600

H
ig

h
re

so
lu

ti
on

0.40.40.6

0.8
0.8

0
.8

1
.0

1.
0

1
.2

1
.4

1150 1200 1250 1300 1350 1400 1450 1500

400

450

500

550

600

−2 −1 0 1 2

η [m]
0.0 0.1 0.2 0.3 0.4

particle velocity [m/s]

lofoten highres 23

1150 1200 1250 1300 1350 1400 1450 1500

400

450

500

550

600

O
ri

gi
n

al
re

so
lu

ti
on

0.4

0.6

0.8
0.8

0.8

1
.0

1.
0

1
.2

1.
4

1
.6

1150 1200 1250 1300 1350 1400 1450 1500

400

450

500

550

600

−2 −1 0 1 2

η [m]
0.0 0.1 0.2 0.3 0.4

particle velocity [m/s]

lofoten original 23

Figure 5.6: Comparison between the NorKyst-800 reference solution (top row)
and our simulation framework running with double resolution (mid row) and
the same resolution (bottom row) as NorKyst. The left column shows sea level η,
whereas the right column shows particle velocity. The domain shows the area sur-
rounding the Lofoten islands in Northern Norway (see also Figure 8 in Paper IV)
with the lines representing latitude and longitude. North points up towards the
right.

Comments

Many numerical methods are often presented and demonstrated on rela-
tively simple experiments. This paper therefore aims to lift the CDKLM
scheme towards an operational level, describing all additional complexi-
ties encountered on the way. Furthermore, the main motivation behind
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the paper is to explore how well the shallow-water equations and the CD-
KLM scheme are able to capture short-term oceanographic physics when
applied to real-world data. This paper is therefore also central to the main
topic of this thesis.

One interesting question arising from this study, is what happens to
features that are built up and driven by baroclinic instabilities. Recall that
barocline dynamics are driven by pressure gradients due to variations in
temperature and salinity, which are not modelled by the shallow-water
equations. As can be seen in Figure 5.6, the reference solution contains
a string of eddies crossing diagonally through the domain from the top
and towards the right (in east-northeast direction). Our high- and normal
resolution results still manage to preserve a similar structure after 24 hours
of simulation, and it could therefore be interesting to study more closely
what happens to these structures during the first simulated hour, and how
representative our solution is to the actual ocean currents.

It should be noted that for large domains, e.g., the complete domain
of the operational ocean forecast, the use of Cartesian grids introduce an
error as the curvature of the Earth is not taken into account. A viable tech-
nique that avoids this error is to discretize the shallow-water equations on
a spherical grid based on lat-lon coordinates [16]. Our main motivation,
however, is to investigate in methods suitable for short-term predictions of
drift trajectories. As these are local problems, we aim to use this framework
on domains that are smaller than those shown in the the examples of this
paper, and for which Cartesian discretizations are sufficiently accurate.

The reformulation of the original CDKLM scheme to make it suitable
for GPU implementation, was developed early during this Ph.D. project,
and has already been used in Papers I – III. However, since this reformu-
lation has not been directly relevant to the main topics of those papers, it
was not published until in this paper.

Software

The source code for the framework presented in this paper is currently
available in revision 7281301a3a286351b6e857add12c2fbd0165b229
of the gpu-ocean repository on Github, https://github.com/metno/
gpu-ocean. We plan to release this software on Zenodo to get a DOI, sim-
ilarly to Papers I, III, and V, pending possible acceptance of the paper.

https://github.com/metno/gpu-ocean
https://github.com/metno/gpu-ocean


Paper V

Data Assimilation for Ocean Drift Trajectories Using Massive
Ensembles and GPUs

Håvard Heitlo Holm, Martin Lilleeng Sætra, André Rigland Brodtkorb
Accepted for publication in the proceedings of the conference

Finite Volumes for Complex Applications IX, 2020

This final paper presents forecasts of drift trajectories after using fully
nonlinear data assimilation on massive ensembles of simplified ocean mod-
els. We base our ocean models on the framework presented in Paper IV,
and use mpi4py, a Python package for parallelization using the MPI mes-
sage passing interface, to run a large ensemble across multiple processes
and GPUs. We demonstrate this extended framework by running ensem-
bles with up to 10 000 ensemble members on a Nvidia DGX-2 server that
contains 16 Nvidia V100 GPUs. Since we can run ensembles this large, we
now use a particle filter based on sequential importance resampling (SIR),
but to avoid the curse of dimensionality, we are still restricted to a low
number of observations.

Contrary to in Paper III, we do not base the observations on an iden-
tical twin simulation, but rather create synthetic drift data using the op-
erational drift trajectory simulator OpenDrift [23] with operational ocean
forecasts. Even though we configure OpenDrift to only use the vertically
integrated ocean currents, the truth is generated by a different and more
complex physical model compared to the one used for our ensemble. Fig-
ure 5.7 shows an overview of the experimental setup presented in this pa-
per, along with an illustration of the SIR particle filter.

We present three different numerical experiments, in which we first run
48 hours of data assimilation, followed by 24 hours of trajectory forecast
for four drifters. The first is a pure Monte Carlo simulation, in which we
do not use any observations. The second and third experiments assimilate
observations from the four drifters every 30 and 5 minutes, respectively.
We find that the use of observations improves the quality of the trajectory
forecast, and observations every five minutes leads to a better forecast than
observations every 30 minutes. We do, however, also observe that the en-
semble struggles to capture the true drift trajectories in areas dominated
by barocline dynamics, even with short data assimilation windows.
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Comments

This paper combines all the aspects of this thesis and demonstrates a proof-
of-concept for the use of a massive ensemble of GPU-accelerated simplified
ocean models along with nonlinear data assimilation for prediction of drift
trajectories. Based on this conference paper, we see several possibilities
for extending this work with a more detailed description of the parallel
algorithms and data assimilation framework, as well as running more ex-
periments to facilitate for a deeper discussion concerning the results.

First, it would be interesting to run a large number of experiments us-
ing observations from an increasing number of drifters to look at the re-
sampling statistics. Snyder et al. [89] show that in order to avoid collapse,
the ensemble size needs to scale exponentially with the number of drifters.
This means that even with 10 000 ensemble members, we should still not
expect to be able to use a large number of drifters for observations. Another
interesting aspect would be to explore whether our framework works bet-
ter in certain areas compared to others. Could we, for instance, make more
accurate forecasts if we run a similar experiment in the Barents sea, which
is dominated by barotropic flow and therefore, in theory, better captured
by our model? A third aspect that could be improved is the parallel ex-
ecution of ensemble members residing on the same GPU. This way, we
can increase the utilization of the GPU resources and achieve even faster
simulations. We also know that we could decrease communication costs
by using direct GPU-to-GPU communication for GPUs that are located on
the same compute node, but this is a less pressing issue, since communi-
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cation is not a bottleneck in the current experiments. Furthermore, since
SIR particle filters make no assumptions on the probability distributions in
the problem, we are free to explore any covariance structure for the model
error that we want. We can even apply different model error distributions
to different ensemble members, and let the particle filter resample those
structures that best fit with the observations.

Finally, we note that the implementation strategy we have used for run-
ning an ensemble on multiple nodes with MPI is highly flexible. We there-
fore expect no major challenges in also using the same parallel framework
for data assimilation experiments using IEWPF on multiple GPUs.

Software

Full source code for the simulation code and numerical experiments de-
scribed in this paper is released as supplementary material, registered un-
der the DOI 10.5281/zenodo.3591850.

http://www.doi.org/10.5281/zenodo.3591850


Chapter 6

Summary and Outlook

This thesis has focused on topics related to short-term forecasting of drift
trajectories in the ocean. Today, the Norwegian Meteorological Institute is-
sues such forecasts operationally by the use of complex three-dimensional
ocean models and dedicated drift trajectory software. We have here inves-
tigated a complementary approach, based on the following aspects of the
problem. First of all, the large uncertainties in initial conditions make real-
world ocean forecasts a challenging problem. Instead of running a single
complex and computationally intensive simulation, we have investigated
using a large ensemble of simplified ocean models, thereby hoping to trade
some of the model accuracy into better uncertainty quantification. Sec-
ond, we have used data assimilation to improve the probabilistic forecast-
ing through assimilating observations of the ocean into such an ensemble.
Since the model is highly nonlinear and there are few observations, par-
ticle filters arise as good candidates. Finally, it is challenging to initialize
ensembles of three-dimensional ocean models, as they are hard to perturb
in a physically consistent way. Simplified models based on the shallow-
water equations are, on the other hand, easier to perturb, which enables us
to more easily initialize such ensembles.

The most central contributions in this thesis are:

• Assessment of the applicability of a modern, high-resolution finite-
volume scheme for solving the rotating shallow-water equations to
oceanographic problems, and development of a framework based on
this scheme for simulations using real-world data from operational
ocean forecasts.

• Massively parallel implementation of a recent state-of-the-art particle
filter, assimilating drifter observations into an ensemble of simplified
ocean models.
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• Evaluation of performance and energy efficiency of equivalent ver-
sions of untuned and optimized numerical schemes in CUDA and
OpenCL across seven different GPUs, and a usability study of the
Python programming environment for efficient development of high-
performance GPU code.

Future work

As this thesis is highly interdisciplinary, it is possible to build on this work
in multiple directions. The most immediate and relevant directions for
improving our current framework for drift trajectory forecasting, how-
ever, seem to be through improving the model by introducing a two-layer
model, exploring alternative model error distributions, and/or testing other
data assimilation methods.

Extending the simplified ocean model

In this work we have used a purely barotropic simplified ocean model
based on vertically-averaged ocean currents, and the numerical experi-
ments in Paper IV show that this works well for tidal forecasts. When
forecasting real-world drift in the uppermost layers of the ocean, however,
this simplification is not necessarily very accurate, as currents in this layer
often are stronger than the vertical mean. Additionally, neglecting baro-
clinic processes can also lead to inaccuracies in the short-term predictions,
as we see from some of the experiments for drift forecast in Paper V.

One way of improving both these factors is by using a two-layer shallow-
water model (see, e.g., [76]). Such a model consists of two shallow-water
equations stacked on top of each other, with the lower one having a mod-
ified pressure term and slightly higher density than the upper one, while
also acting as a time-dependent bathymetry for the upper layer. The layers
also interact through shear stress at their interfaces. This model can simu-
late baroclinic responses if the thickness of the lower layer increases while
the thickness of the upper layer decreases, and might lead to more realistic
modelling of the relevant ocean currents for drift modelling.

Another alternative to the two-layer model is also the 1.5-layer model,
in which we assume that we have a relatively thin upper layer on top of a
thick lower layer. In this model, the motion of the lower layer is neglected,
and we use a reduced gravitational force to account for the pressure differ-
ences between the two layers. This model is therefore very similar to the
regular shallow-water equations, and a low-hanging fruit for future work
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would be to compare this model with our current approach for forecasting
drift trajectories.

Model error covariance structures

As discussed in the summary of Paper III in Chapter 5, the assimilation
of observations through the IEWPF algorithm depends strongly on the
covariance structure for the model errors. Further research to find im-
proved or more realistic covariance structures might therefore improve
how IEWPF assimilates observations into the ensemble states.

A similar direction is to use SIR particle filters to explore different forms
of model perturbations. Since the data assimilation step in SIR is indepen-
dent of the model errors used, the framework developed for Paper V can
serve as a flexible testing ground for such work. Some ideas for possible
perturbations are to change the tidal signal through the boundary condi-
tions, use different wind forcing, or perturb the bathymetry. An initial idea
from the early stages of the project was to perturb the locations of ocean
eddies, as they have a large impact on drift trajectories, but more research
is needed to come up with a good strategy for achieving this in practise.

An alternative could also be to experiment with the use of machine-
learning techniques to learn the missing physics in the simplified ocean
model [98]. As training data, we could possibly run large numbers of sim-
ulations using our shallow-water model and compare the results with cor-
responding operational ocean forecasts.

Alternative data assimilation methods

In this work, we have applied two different particle filters for assimilat-
ing observations from drifters: the traditional particle filter using SIR, and
the recently proposed IEWPF. The search for new and better ways to avoid
the curse of dimensionality is, however, an active research topic with sev-
eral proposals for improved particle filters every year, as illustrated by the
recent review paper by van Leeuwen et al. [95]. It would therefore be inter-
esting to try other particle-filter techniques on this problem as well, such
as, e.g., hybrid methods between ensemble Kalman filters and particle fil-
ters [75], for comparison against IEWPF.
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Abstract

The shallow-water equations in a rotating frame of reference are important for capturing geophysical flows in the
ocean. In this paper, we examine and compare two traditional finite-difference schemes and two modern finite-volume
schemes for simulating these equations. We evaluate how well they capture the relevant physics for problems such
as storm surge and drift trajectory modelling, and the schemes are put through a set of six test cases. The results are
presented in a systematic manner through several tables, and we compare the qualitative and quantitative performance
from a cost-benefit perspective. Of the four schemes, one of the traditional finite-difference schemes performs best
in cases dominated by geostrophic balance, and one of the modern finite-volume schemes is superior for capturing
gravity-driven motion. The traditional finite-difference schemes are significantly faster computationally than the
modern finite-volume schemes.

1 Introduction
In this paper, we examine four different numerical schemes for the shallow-water equations in a rotating frame. These
equations are important for a range of application areas, including simulation of the ocean and atmosphere. We focus
on oceanographic simulations, in which the equations can capture the short-term ocean dynamics that are important
for e.g., storm surge predictions. Our aim is to evaluate the suitability of the numerical schemes for use in an ensemble
prediction system with data assimilation. One example is the propagation of long waves in an ocean basin sufficiently
large so that the motion is constrained by geostrophy, and where we need to consider the effects of topography and
nonlinearity, e.g. in the Barents Sea, which is fairly shallow but have large tidal range. We emphasize that we do not
seek realistic solutions of the ocean dynamics for specific regions here, but rather aim to compare the various schemes
using a range of parameters relevant for such dynamics.

In the early days of computational oceanography, finite-difference schemes were popular to simulate the rotational
shallow-water equations. With increasing computational power, more complex physics, grids, and new discretization
methods have appeared. Today’s state-of-the-art ocean circulation models are sophisticated 3D simulations that capture
a lot of the physical driving forces of the ocean currents, yet these models are computationally demanding and therefore
allow only a limited number of ensemble members to be run in reasonable time.

We revisit two finite-difference schemes from early computational oceanography and compare these against two
modern finite-volume schemes. One of ourmotivations for comparing finite-volume andfinite-difference discretizations

∗Corresponding author: havard.heitlo.holm@sintef.no
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is that there has been recent developments in the finite-volume community for the rotating shallow-water equations,
and we want to evaluate these from a cost-benefit perspective against well-known models.

The dominant force balance in the equations implies a nonzero current as a steady state, as the pressure gradient
needs to be balanced by the Coriolis forces (so-called geostrophic balance). This is very different from problems in
which the Earth’s rotation can be ignored, where a typical steady state would imply zero velocities, often referred to as
"lake-at-rest". This difference has important implications for the discretization of numerical schemes, and has been one
of the driving factors in the development of modern high-resolution finite-volume methods which are well-balanced
according to such steady-state solutions.

The four selected schemes in this work are all based on Cartesian grids, and are selected both because they
capture the important geostrophic balance required for short-term predictions, and because they are very well suited for
implementation on the GPU. Our long-term goal is to run large ensembles of such models, initialized and downscaled
from operational 3D circulation models, on the GPU. These large ensembles can then be used on-demand to provide
uncertainty estimates in predictions of storm surge or in drift trajectory modelling. The four numerical schemes we
examine are:

FBL The Forward-Backward-Linear (FBL) finite-difference scheme on an Arakawa C grid [1] is based on a lineariza-
tion of the shallow-water equations, and can therefore only represent the linear physics of ocean circulation.
However, due to its simplicity it is very efficient and is therefore included to be evaluated from a cost-benefit
perspective.

CTCS The Centered-in-Time Centered-in-Space (CTCS) scheme is a classic finite-difference leapfrog scheme on
an Arakawa C grid. It is arguably one of the simplest numerical schemes used for geophysical flows, and is
well-known and suited for geostrophically balanced flows. It is hence adequate as a reference to compare the
finite-volume schemes against.

KP The high-resolution finite-volume Kurganov-Petrova scheme [2] has traditionally been used for modelling fast
waves in non-rotating reference frames (e.g., dam break problems), and efficient implementations on heteroge-
neous platforms have been demonstrated [3]. In this work, we have added a naïve discretization of the Coriolis
force, and the scheme illustrates the benefits and drawbacks of such an approach.

CDKLM The high-resolution finite-volume scheme introduced by Chertock et al. [4] is similar to the KP scheme,
but it is specifically tailored to capture steady states which are in geostrophic balance. It represents a modern
finite-volume scheme tailored to oceanographic applications.

We have evaluated these numerical schemes using a set of six test cases that contain important components of the
transient barotropic (“fast”, see Section 2) dynamics. The test cases are relevant for shelf seas or basin scale applications,
and include both fast moving (Kelvin) and slow moving (Rossby) waves. The latter is particularly interesting since
we obtain essentially the same wave phenomena from latitudinal variations in the Coriolis parameter compared with
equivalent variations in topography. This provides a robust test of the higher-order schemes.

The rest of this paper is structured as follows. The remainder of this section mentions some relevant related work.
Section 2 introduces the rotational shallow-water equations in an oceanography setting and describes the mathematical
model from both the oceanographic and the finite volume perspective. Section 3 outlines the selected numerical
schemes, followed by a detailed description of the test cases and results in Section 4. Finally, the paper is summarized
in Section 5. As we anticipate some readers may not be familiar with all concepts of geophysical fluid dynamics, we
provide some underlying theory in A.

The software used herein has been designed to be suitable for a high-performance ensemble prediction system with
non-linear data assimilation. The test cases we use are comprehensively described and tailored to be reproducible for
other researchers using the current simulation framework or other codes, and the numerical schemes are implemented
on the GPU for efficiency. Both the full source code and relevant test case setups are available as supplementary
material.
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Related work
There has been a substantial effort in designing numerical schemes for the shallow-water equations using various
approximation methods (e.g., finite volume [5, 6], finite difference [7, 8], lattice Boltzmann [9], and discontinuous
Galerkin [10, 11]). The finite-volume community has recently shown an interest in rotational shallow-water flows (i.e.,
flows under the influence of the Coriolis force). This has led to the development of schemes that is well-balanced
with respect to the geostrophic balance [4], and not only with respect to the lake-at-rest solution [12]. Furthermore,
some of these higher-order numerical schemes are particularly suitable for implementation on massively data parallel
architectures like the GPU [13, 14, 15, 3, 16]. Some mature software packages, such as Clawpack [17], also have GPU
implementations of some finite-volume schemes [18], and several commercial packages, such as TUFLOW [19] and
MIKE [20], have GPU support.

An implementation of any numerical scheme should be verified against appropriate analytical solutions, or validated
against specially designed test cases or real-world data. For the non-rotating shallow-water equations, there are several
well-established reference solutions for specific physical phenomena, see e.g., [21, 22, 23, 24, 25, 26, 27, 28]. In the
case of rotating shallow-water flow, a notable test set is described by Williamson et al. [29], and includes both analytic
and high-resolution reference solutions to seven test cases defined on the sphere. The test set has also been suggested
extended by Galewsky et al. [30]. Comblen et al. [31] used a set of eight test cases for evaluating five different pairs of
finite-element methods for solving the rotational shallow-water equations on a flat two-dimensional domain. A similar
approach with six test cases was used by Tumolo et al. [32] to evaluate their discontinuous Galerkin method for solving
the same problem.

2 The Rotating Shallow-Water Equations
The shallow-water equations describe flows in "shallow" water, meaning that the horizontal scales of the problem are
much larger than the water depth, and are here considered on a rotating domain. The equations can describe important
physical processes found in the ocean, such as tide propagation, storm surge, and wave phenomena such as inertial
oscillations, Kelvin waves, and Rossby waves induced by changes in bottom topography or in the Coriolis force. It is
commonly assumed that the pressure distribution is hydrostatic and that the vertical acceleration can be neglected. The
pressure at any specific point is then simply a function of the water density and the height of the water column above
it. For some physical processes, such as large-amplitude or higher-mode internal waves, the hydrostatic approximation
cannot be used, but in general the approximations involved do not lead to significant errors for barotropic flows. Strictly
speaking, barotropic motion is characterized by coincidental surfaces of constant pressure and constant density, but
can be thought of as motion with negligible vertical shear. The opposite case gives rise to baroclinic motion, and
examples here include internal waves and instabilities that can develop into ocean eddies. In general, barotropic signals
propagate much faster than baroclinic signals, which is a challenge in numerical ocean circulation models, because
the temporal resolution required for numerical stability can differ by one or two orders of magnitude. This problem is
typically overcome by using so-called mode splitting, with different time-step sizes for the integration of the barotropic
and baroclinic components, respectively (e.g., [33]).

The shallow-water equations are often expressed differently by those working with hyperbolic conservation laws
and those working with ocean modelling, even though the starting point in both cases is the Navier-Stokes equations.
Both communities use equations in flux form that are essentially hyperbolic, but in the oceanographic community it is
customary to keep all forcing terms separate from the conservation of momentum. On the other hand, the community
working with hyperbolic conservation laws typically include parts of the forces due to pressure gradients in the flux
term, and this results in a different set of forcing terms in the equations.

In this section, both formulations of the shallow-water equations are presented, andwe showhow they are equivalent.
For simplicity, viscous terms due to surface and bottom stresses, and variations in the atmospheric forcing are ignored.
Both formulations are essentially based on vertical integration of the governing equations, with kinematic boundary
conditions prescribing no flow normal to fixed boundaries and a moving free surface.
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Figure 1: Relationship between variables h, H, η, hu and B, appearing in the two formulations of the shallow-water
equations, here shown in one dimension.

2.1 Classical Formulation as Hyperbolic Conservation Laws
In the context of hyperbolic conservation laws (e.g., [6]), the shallow-water equations are derived by considering
conservation of mass and momentum. The starting point is the Navier-Stokes equations, which are depth integrated
under the assumptionsmentioned above. Among thoseworkingwith finite-volumemethods for hyperbolic conservation
laws, the shallow-water equations are often written as


h

hu
hv

 t
+


hu

hu2 + 1
2gh2

huv

 x
+


hv

huv
hv2 + 1

2gh2

y
=


0

f hv
− f hu


+


0

−ghBx

−ghBy


. (1)

Here, h is water depth, and u and v denote water velocity in x- and y-direction, respectively. The conserved variables
hu and hv represent the volume transport, also referred to as discharge or momentum. The source terms on the
right-hand-side represent the Coriolis force caused by the rotation of the Earth and acceleration due to gravity over a
varying bathymetry. The bathymetry is described by B(x, y) as elevation above a reference level.

In the present applications, water depth h can often be in the range of 1000 meters, while the change in surface
elevation across time-steps is typically only a few centimeters, resulting in five orders of magnitude difference. For
better numerical representation, we can rewrite the problem in terms of the deviation η from equilibrium water depth.
Denoting equilibrium water depth as H, so that h = η + H, (1) becomes


η
hu
hv

 t
+


hu

(hu)2
H+η +

1
2g(H + η)2
(hu)(hv)
H+η

 x
+


hv

(hu)(hv)
H+η

(hv)2
H+η +

1
2g(H + η)2

y
=


0

f hv
− f hu


+


0

g(H + η)Hx

g(H + η)Hy


. (2)

Here, we have used the fact that H is independent of time and that the slope of H and B have opposite signs.
Relationships between all the introduced variables are shown in Figure 1 for the one-dimensional case.

By denoting the vector of conserved varibles as q = [η, hu, hv]T , we can write (2) in vector form as

qt + F(q)x + G(q)y = Sf (q) + SH (q,∇H), (3)

in which F and G represent fluxes along the abscissa and ordinate, respectively, and Sf and SH are the Coriolis and
bed slope source terms, respectively.

2.2 Classical Formulation in Physical Oceanography
Within the physical oceanography community, the shallow-water equations are typically derived by using the continuity
equation along with the Navier-Stokes equations [7]. After vertical integration of the governing equations and
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application of the kinematic boundary conditions, we end up with the following form for the shallow-water equations:

ηt + ∇H · U = 0, (4)

Ut + ∇H ·
(
UU

h

)
= −gh∇Hη − f k × U + A∇2HU . (5)

The horizontal divergence is denoted ∇H = [i ∂∂x , j ∂∂y ,0]T . Here, i and j are the horizontal unit vectors, whereas k

is the vertical unit vector. Further, the vector U is the depth integrated volume transport, U = [hu, hv,0]T . The final
term represents an explicit parametrization of a diffusive process that is sometimes used to avoid nonlinear numerical
instabilities when the equations are solved with e.g., the classical leapfrog finite-difference method considered herein.
The constant A is referred to as the eddy viscocity parameter. In (4) and (5), vertical shear stresses caused by bottom
friction and wind drag on the surface are ignored.

By examining the two different formulations of the shallow-water equations, we observe that (4) is equal to the first
row of (2), since

ηt + ∇H · U = ηt + (hu)x + (hv)y = 0.

A closer look at the second nonlinear term of (5) reveals that

∇H ·
(
UU

h

)
= ∇H · 1

h


(hu)2 (hu)(hv) 0
(hu)(hv) (hv)2 0

0 0 0


=


(hu2)x + (huv)y
(huv)x + (hv2)y

0


,

in which we can recognize the non-gravity driven flux terms from the second and third row of (1). Next, we consider
the gravity induced flux terms and the bathymetry source term in x-direction from (1), moving the source term to the
left-hand side. By using h = η + H and the fact that ∇HH = −∇H B, these two terms can be written as(

1

2
gh

)
x

+ ghBx = gh(ηx + Hx) + ghBx = ghηx,

which we recognise on the right-hand side of (5). The same manipulation applies in y-direction. If we ignore the eddy
viscosity term, and since

f k × U = [− f (hu), f (hv),0]T ,
we see that the first and second row of (5) correspond to the second and third row of (1). The third row of (5) represents
the vertical momentum, which is zero on both sides of the equation.

The eddy viscosity A∇2HU in (5) is not represented in (1). This is because it is related to stability issues in the
leapfrog finite-difference scheme [34], an issue not present with the finite-volume schemes for which the formulation
(1) is used.

3 Numerical Schemes
In the following, we give an overview of four different numerical schemes for solving the rotational shallow-water
equations. The first two schemes are finite-difference methods, and the latter two are high-resolution finite-volume
methods, in which the term high-resolution refers to the schemes’ ability to accurately capture discontinuities. At
the end of this section we describe three boundary conditions, and discuss the main differences between the selected
schemes.

3.1 Forward-Backward Linear Scheme
The first scheme is the Forward-Backward Linear (FBL) finite-difference scheme, first presented by Sielecki [35]. It
considers η, U = hu, and V = hv, in which U and V are used for the volume transport to provide a more compact
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Figure 2: The discretized conserved variables on a staggered lattice C grid.

notation. The scheme is based on the linearized equations

ηt = −Ux − Vy,

Ut − f V = −gHηx,

Vt + f U = −gHηy,
(6)

arising from scalar linearization of (4) and (5). The name of the scheme reflects the first-order discretization used in
time, while second-order central differences are applied in space [36].

To write out a finite-difference method for (6), consider a regular Cartesian discretization on a rectangular domain.
Let ∆x and ∆y be the distance between each point in the grid, and define xj = j∆x for j = 0, ...,Nx , and yk = k∆y
for k = 0, ...,Ny . The variables η, U, and V are defined according to a lattice C grid, as defined by Mesinger and
Arakawa [1] and shown in Figure 2. The discretized variables then become

ηnj ,k = η(xj −
1

2
∆x, yk − 1

2
∆y, tn),

Un
j ,k = U(xj, yk − 1

2
∆y, tn),

Vn
j ,k = V(xj − 1

2
∆x, yk, tn),

(7)

in which tn is time-step n.
The finite-difference method uses an asymmetric update in time, in which each of the variables are updated based

on the most recent available state of the others. The FBL scheme is then given as

Un+1
j ,k = Un

j ,k + ∆t f V
n

j ,k +
∆t

2∆x
g

(
Hj+1,k + Hj ,k

) (
ηnj+1,k − ηnj ,k

)
,

Vn+1
j ,k = Vn

j ,k − ∆t f U
n+1

j ,k +
∆t

2∆y
g

(
Hj ,k+1 + Hj ,k

) (
ηnj ,k+1 − ηnj ,k

)
,

ηn+1j ,k = η
n
j ,k −

∆t
∆x

(
Un+1

j ,k −Un+1
j−1,k

)
− ∆t
∆y

(
Vn+1
j ,k − Vn+1

j ,k−1
)
,

(8)

in which

f U
n

j ,k =
1

4

(
fk− 1

2
Un

j ,k + fk− 1
2
Un

j−1,k + fk+ 1
2
Un

j−1,k+1 + fk+ 1
2
Un

j ,k+1

)
,

f V
n

j ,k =
1

4

(
fkVn

j ,k + fkVn
j+1,k + fk+1Vn

j+1,k−1 + fk+1Vn
j ,k−1

)
.

(9)

Since the Coriolis force varies with the latitude only, the discrete values of the Coriolis force is denoted as fk = f (yk).
The grid values required for each of these stencils are shown in Figure 3.

The scheme requires that initial conditions for η, U, and V are given at t = t0, as well as boundary conditions for
U at x = 0 and x = Nx∆x, and for V at y = 0 and y = Ny∆y for t ≥ t0. In the ocean the fastest signals are due to
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(a) Stencil for η j ,k . (b) Stencil forUj ,k . (c) Stencil forVj ,k .

Figure 3: Finite-difference stencils for the FBL scheme. Blue circles represent η, while orange horizontal ellipses and
green vertical ellipses represent U and V , respectively. Note that the water depth H is collocated with η.

barotropic shallow-water waves, propagating with speed |u| + √gHmax , in which Hmax is the maximum equilibrium
water depth. Since the fluid velocities |u| are usually at least one order of magnitude smaller than the gravitational
term, the relevant Courant-Friedrich-Levy (CFL) condition in for FBL becomes

∆t ≤ min(∆x,∆y)√
2gHmax

. (10)

3.2 Centered-in-Time, Centered-in-Space Scheme
The centered-in-time, centered-in-space (CTCS) finite-difference scheme discretizes the full nonlinear equations given
in (4) and (5), using the same staggered grid as FBL. It is a leapfrog scheme, and can be summarized by the stencils

ηn+1j ,k = η
n−1
j ,k −

2∆t
∆x

(
Un

j ,k −Un
j−1,k

)
− 2∆t
∆y

(
Vn
j ,k − Vn

j ,k−1
)
,

Un+1
j ,k =

1

Bx
j ,k

[
Un−1

j ,k + 2∆t
(

f V
n

j ,k +
1

∆x
Nx
j ,k +

1

∆x
Px
j ,k + AE x

j ,k

)]
,

Vn+1
j ,k =

1

By
j ,k

[
Vn−1
j ,k + 2∆t

(
− f U

n

j ,k +
1

∆y
Ny
j ,k
+

1

∆y
Py
j ,k
+ AEy

j ,k

)]
.

(11)

The factors f U and f V are the same as for the FBL scheme, given in (9), while the N and P terms handle the momentum
fluxes and gravity pressure terms, respectively. The terms E and B are all used to handle the eddy viscosity term, and
the interested reader can find details of the full scheme in Røed [36]. Unlike the FBL scheme, CTCS is symmetric
in time and space, as all three variables are updated independently for each time-step, allowing all three stencils to be
computed in parallel within each time-step.

The complete set of grid values required for each of these stencils is shown in Figure 4. In addition to the
boundary conditions required for the FBL scheme, it is also necessary to define values for η and U at y = − 1

2∆y and
y = (Ny +

1
2 )∆y, and correspondingly for η and V at x = − 1

2∆x and x = (Nx +
1
2 )∆x. Since the stencil also includes

terms from t = tn+1, initial conditions for both t0 and t−1 are required.
The stability of the CTCS scheme is restricted under half the CFL criterion (10) as the FBL scheme [8]. Additionally,

the CTCS scheme is known to suffer under nonlinear instability [37, 38, 8]. The nonlinearity of the equations allows
energy to be redistributed between waves of different wave lengths, causing energy to be transferred from long waves
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(a) Stencil for η j ,k . (b) Stencil forUj ,k . (c) Stencil forVj ,k .

Figure 4: Finite-difference stencils for the CTCS scheme. Blue circles represent η, while orange horizontal ellipses
and green vertical ellipses represent U and V , respectively.

to shorter ones. As the solution on the discrete grid is unable to represent waves with wave lengths shorter than 2∆x,
waves with wave lengths between 2∆x and 4∆x tend to increase in amplitude, and eventually lead to unstable solutions.
The eddy viscosity term, controlled empirically through the A parameter, introduces artificial diffusion into the scheme,
damping the shorter waves and avoiding the solution to be dominated by strong short waves.

3.3 Kurganov-Petrova Scheme
The Kurganov-Petrova 2007 (KP) scheme [2] is a high-resolution finite-volume scheme [6], and is based on the
full nonlinear equations (2). The flux terms are computed by a well-balanced, positivity-preserving, central-upwind
method. This means that the flux balances the bathymetry source terms so that lake-at-rest solutions are preserved,
even in the presence of discontinuous bathymetry. The scheme ensures that the water depth always is non-negative,
which is important at wet-dry interfaces. The scheme has built-in numerical diffusion, and hence does not have the
same problem with nonlinear instabilities due to build-up of energy at the smallest spatial scales, as is the case with
CTCS.

KP can be written as

dQ j ,k

dt
=Sf (Q j ,k) + SH (Q j ,k,∇H) − [

F(Q j+1/2,k) − F(Q j−1/2,k)
]

− [
G(Q j ,k+1/2) − G(Q j ,k−1/2)

]
,

:=R(Q)j ,k .
(12)

Here Q j ,k is the vector of conserved variables averaged over the grid cell centered at (( j + 1
2 )∆x, (k + 1

2 )∆y), for
j = 0, ...,Nx − 1 and k = 0, ...,Ny − 1. Further, Sf and SH are discretized Coriolis and bed slope source terms,
respectively, and F and G represent numerical flux functions.

The scheme consists of the following steps: From the averaged cell values, a piecewise bilinear polynomial of Q is
reconstructed by using the generalized minmod limiter. The slope allows us to evaluate Q at each side of every face,
and the central-upwind numerical flux function is used to compute F and G. The solution is then evolved in time, by
using a second-order, strong stability preserving Runge–Kutta method [39]:

Q∗j ,k = Qn
j ,k + ∆tR(Qn)j ,k,

Qn+1
j ,k =

1
2Q

n
j ,k +

1
2

[
Q∗j ,k + ∆tR(Q∗)j ,k

]
.

(13)
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Figure 5: Stencil for the KP and CDKLM schemes. Blue circles represent η, while orange horizontal ellipses and
green vertical ellipses represent U and V , respectively.

Here, ∆t, is restricted by a CFL-condition which ensures that disturbances travel at most one quarter of a grid cell per
time-step,

∆t ≤ 1

4
min




∆x

maxΩ
���u ± √

g(H + η)
��� ,

∆y

maxΩ
���v ± √

g(H + η)
���


. (14)

The results from (13) are again averaged cell values at time tn+1. In general, this is called a REA-algorithm [6], named
after the steps reconstruct, evolve, and average. The KP scheme was originally designed to solve the non-rotating
shallow-water equations. It is therefore worth noting that the discretization of the Coriolis source term here is made
naïvely, as

Sf (Q j ,k) = [0, f (hv)j ,k,− f (hu)j ,k]T .
Further details can be found in Kurganov and Petrova [2], and a GPU implementation is presented by Brodtkorb et
al. [3].

The stencil for the KP scheme is shown in Figure 5. Note that no variables are defined on the exact domain
boundary. Instead, boundary conditions on all three conserved variables are required to be defined in two layers of
ghost cells surrounding the computational domain. To start the simulation, initial conditions must be defined at t = t0.

3.4 The CDKLM Scheme
The fourth scheme considered in this paper is a novel high-resolution finite-volume scheme, presented by Chertock et
al. [4] (CDKLM). It is similar to the KP scheme with respect to the numerical formulation of flux terms, and is based
on the same semi-discrete form as in (12).

Whereas KP is designed to be well-balanced with respect to the steady-state, lake-at-rest solution, the CDKLM
scheme aims to be well-balanced with respect to the steady-state solution given by the geostrophic balance, from (33).
This is achieved by introducing reconstruction variables R = [u, v,K, L]T . Here, K and L are Coriolis potentials given
by

K := g(η − fv), L := g(η + fu), (15)

in which [ fu, fv]T are the primitives of the Coriolis force, defined through their derivatives,

( fv)x :=
f
g
v, ( fu)y :=

f
g

u. (16)

The CDKLM scheme follows a similar REA-algorithm as the KP scheme, but instead of basing the reconstruction
on Q, the scheme reconstructs a piecewise bilinear polynomial of R. Piecewise reconstructions of η, u, and v are then
obtained from the reconstructed R, and used to evaluate central-upwind numerical fluxes. These are used to update Q
in time through a sufficiently accurate total-variation-diminishing Runge–Kutta method.
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In summary, the CDKLM scheme uses the same numerical flux function and reconstruction methodology as the
KP scheme, but takes the Coriolis forces into account for properly representing known steady-state solutions. Both
these schemes are considered to investigate whether the more complex handling of the Coriolis forces pays of in terms
of better simulation results. The shape of the stencil for the CDKLM scheme is similar to the one for KP, shown in
Figure 5. Because of this, the requirement to initial and boundary conditions are the same for the two schemes, as well.

3.5 Boundary Conditions
All schemes in the simulation framework support three different boundary conditions: reflective wall-, periodic-,
and open-boundary conditions. All three are implemented by modifying the solution in the ghost cell region, which
constitute of a band of cells or grid points encircling the original computational domain. As a minimum, the ghost cell
region is required to be large enough so that the outermost grid points in the original domain can be computed with
the chosen stencil. In general, boundary conditions are more conveniently implemented using staggered grids where
the grid points for the velocity components and the pressure (or free surface) do not coincide. Staggered grids are also
very useful to maintain the geostrophic balance, so that difference schemes for the components of the pressure gradient
are centered at the relevant (u, v) velocity grid points.

The reflective wall boundary condition is designed to preserve mass and momentum within the original domain.
This is achieved by creating an ingoing momentum in the ghost region equal to the outgoing momentum in the interior.
Let xW be the location of the western boundary, so that x = xW + x̂ is in the interior of the domain for some x̂ > 0.
Reflective wall boundary conditions are obtained by setting the values in the ghost region according to

η(xW − x̂) = η(xW + x̂),
hu(xW − x̂) = −hu(xW + x̂),
hv(xW − x̂) = hv(xW + x̂).

(17)

Note that the condition on hu implies that hu(xW ) = 0, so that no water is allowed to leave the domain. The same
principle applies in the y-direction.

Periodic boundary conditions make flow reaching one boundary reappear on the opposite boundary. Let φ be any of
the conserved variables, and let xW and xE be the location of the western and eastern boundary, respectively. Periodic
boundary conditions are then defined as

φ(xW − x̂) = φ(xE − x̂), (18)

for x̂ > 0, so that xW − x̂ is in the ghost region. Note that for staggered grids, discharge on the boundary needs to be
computed by the stencil, expanding the computational domain with one extra row and column for v and u, respectively.

Regional ocean circulation models that cover limited areas require open boundary conditions in which external
solutions can be imposed in such a way that external signals can propagate freely into the model domain and signals
generated in the interior can propagate freely out of the domain [40]. To maintain the explicit and parallel structure
of the simulation code, a flow relaxation scheme [41, 42] is used. Let ψext be the exterior solution far away from the
interior domain. Define a ghost cell region consisting of NG ghost cells, where NG is larger than required by the shape
of the numerical stencil. At each time-step, the stencil is applied to all cells having a sufficient number of neighbouring
cells. The flow relaxation scheme relaxes the obtained solution in all ghost cells towards ψext ,

ψ = (1 − α)ψ∗ + αψext . (19)

Here, ψ∗ is the solution from the numerical stencil, and α is a relaxation factor, so that α = 0 at the boundary and α = 1
in the outermost ghost cell. In this paper, the size of the ghost cell region is chosen to be NG = 10 for all schemes,
along with relaxation parameter

α = 1 − tanh

(
1 − i

3

)
, (20)

for i = 0, ...,NG − 1.
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Table 1: Comparison of properties of the four numerical schemes. The ghost cell region corresponds to how many
rows of ghost cells for η you need to implement wall boundary conditions. The initial conditions row shows that CTCS
needs the conserved variables for two time-steps.

Numerical Scheme
FBL CTCS KP CDKLM

Underlying equation Linearized Nonlinear Nonlinear Nonlinear
Coriolis discretization Intrinsic Intrinsic Naïve addition Intrinsic
Conservative Yes Yes Yes Yes
Discretization method Finite difference Finite difference Finite Volume Finite Volume
Grid Arakawa C Arakawa C Arakawa A Arakawa A
Order in space 2 2 2 2
Order in time 1 2 2 2
Ghost cell region 0 1 2 2
Initial conditions 1 (t0) 2 (t0, t−1) 1 (t0) 1 (t0)
CFL-condition relative to ∆x/c0 1/√2 1/(2√2) 1/4 1/4
Relative numerical complexity Simple Fairly simple Fairly complex Complex

3.6 Discussion
Table 1 gives a structured comparison of the four numerical schemes discussed above. The scheme that stands out
the most is FBL, as it only solves the linearized equations, but it is still of interest due to its simplicity, and thereby
its computational efficiency. The KP scheme is also notably different from the others, with its naïve discretization
of the Coriolis forces. It is included in this study as it is interesting to investigate the differences between a scheme
that is well-balanced with respect to lake-at-rest (KP), and a slightly more computational intensive scheme that is also
well-balanced with respect to the geostrophic balance (CDKLM). All three nonlinear schemes are of second order in
both time and space, while FBL is only first order in time.

On the practical side, there is a difference in the data dependency for the four schemes. We see that the finite-
difference schemes have a smaller ghost cell region than the finite-volume schemes, and a consequence of this is that
the boundary conditions are easier to implement for CTCS and FBL compared to for KP and CDKLM. Also, since the
finite-difference schemes use an Arakawa C grid, it is easier to prescribe the momentum on the boundary than for the
finite volume schemes which use an A grid. On the other hand, CTCS requires the state of the two previous time-steps
in order to evolve, whereas the other three schemes require only one. A final advantage for the finite-difference schemes
is that they allow for a larger time-step compared to the finite-volume schemes.

4 Test Cases and Results
In this section we evaluate the quality and behavior of the four numerical schemes described in Section 3 through a set
of six test cases. The test cases focus on the intrinsic dynamics of shallow-water flows in a rotating reference frame, and
we ignore the impact of atmospheric pressure, and friction caused by bed and wind shear stresses. It should be noted
that although we study barotropic dynamics here, the equations are formally identical to the ones in so-called 1.5-layer
models for a well mixed upper ocean layer above a deep ocean layer at rest [8]. A 1.5-layer model setup would in some
cases provide for more geophysically relevant examples, e.g. Cases B and C, which in their present implementation
have unrealistically large domains. We begin with non-rotating properties of the schemes in Case A, before we study
the transient development arising from an initial disturbance in the sea surface elevation, investigating the so-called
geostrophic (or Rossby) adjustment problem [43] in Cases B and C. We then look at Kelvin waves in Case D, in which
fast moving shallow-water waves are trapped along the coast by the Coriolis force. The final two test cases, E and F,
focus on Rossby waves caused by the dynamics in the potential vorticity, driven by variation in the Coriolis force and
in the bathymetry, respectively. The physics behind the oceanographic test cases are described in more detail in A, but
the essential points are summarized for each case for convenience.
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Figure 6: Case A: SWASHES test case 4.1.1 "dam break on a wet domain", comparing the result from four different
numerical schemes to the analytic solutions. Whereas the KP and CDKLM schemes are able to capture the shock
solution, FBL becomes unstable, and the CTCS scheme gives different results for different choices for A. Here we
have used A = 0.1, but no values of A give the analytic results.

4.1 Case A: Traditional Non-Rotating Shallow-Water Benchmarks
Our first benchmark case is described in SWASHES [21] and is a classical dam break case for non-rotational physics.
The first part is "lake-at-rest with an immersed bump" [21, Sec. 3.1.1], which validates that the numerical scheme is
able to preserve a calm lake on top of a non-constant bathymetry without any initial momentum. All four schemes pass
this test.

The second part is a one-dimensional "dam break on a wet domain without friction" [21, Sec. 4.1.1], which validates
the scheme’s ability to capture shocks. The initial conditions consist of a step function in η with zero momentum,
shown along with the simulation results in Figure 6. The analytic solutions [21] are given as black solid lines in the plot.
This test case clearly shows that the finite-volume schemes are able to capture the shock with high precision, whereas
the finite-difference schemes fail. The FBL scheme results in unstable oscillations, while CTCS gives various incorrect
results for different choices for the eddy viscosity parameter A. High values for A gives a solution that resembles the
initial state, and very low values for A results in unstable solutions. This is expected, given that FBL and CTCS with
A = 0 have no numerical diffusion, causing the schemes to break down in the presence of shock solutions. KP and
CDKLM, on the other hand, have built-in numerical diffusion in their numerical fluxes, and are designed to capture
discontinuities. Oceanographers are often not too concerned with shock solutions, as these are not part of the most
important physics of oceanography, and this test illustrates that the finite difference schemes considered here are not
designed with shocks in mind.

4.2 Case B: Rossby Adjustment
In this test case, and in Case C, we look at Rossby adjustment, a smooth dam break problem with rotation, in which
an initial surface elevation in a limited area adjusts itself under gravity towards equilibrium. The case is designed to
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Figure 7: Case B: Steady-state results for Rossby adjustment on a flat bathymetry. The initial condition for η is shown
in black. All simulators give results close to the reference solution, with slightly better results for FBL and CTCS than
for KP and CDKLM.

trigger a gravitational wave moving radially outwards from the center, similar to a radial dam break. Due to the rotation,
parts of the fluid will become trapped within a length scale of the Rossby radius LR = c/ f from the initial disturbance.
Here, c =

√
gH is the phase speed of free gravitational waves, and the basic balance will be the geostrophic solutions

(33). In this case, f is considered to be constant, whereas variations in rotation and topography will be considered in
cases E and F.

The Rossby adjustment problem investigates a scheme’s ability to obtain and preserve steady-state solutions given
by the geostrophic balance (33). We have a constant bathymetry, H(x, y) = H0, and the initial state of the surface is
formed as a bump,

η(x, y, t0) = 1

2
η0

[
1 + tanh

(
−
√
(x − x0)2 + (y − y0)2 + D

L

)]
, (21)

in which D, L, and η0 are related to the width, steepness, and maximum height of the bump, respectively. The center
of the bump is positioned at (x0, y0), and the initial momentum is zero,

hu(x, y, t0) = hv(x, y, t0) = 0. (22)

The boundary conditions are set to allow gravity waves to leave the domain according to (19) and (20), and the solution
should converge to a steady state consisting of a wide rotating bump (satisfying the Klein-Gordon equation (67) in A).

The domain consists of 800 × 1000 cells with ∆x = ∆y = 50 km. The depth is chosen to be H = 1000 m, and the
full set of parameters are listed in Table 2, along with D = 50∆x, L = 15∆x and η0 = 0.2 m for (21). The steady-state
solutions along y = y0 at time T are shown in Figure 7. The reference solution is obtained by solving the Klein-Gordon
equation (67) by a finite-difference approach, with the given initial condition and η = 0 along the boundaries. All four
schemes qualitatively capture the same steady-state solution defined through the geostrophic balance.

The relative discrepancy between the simulated results and the solution of the Klein-Gordon equation, is shown
in Figure 8. The finite-volume schemes are off by up to 4%, and the staggered finite-difference schemes are within
machine precision of the reference.

Figure 9 explores the radial symmetry of the steady-state solutions. The dense collection of bright yellow dots
represent values of η at grid points in a straight eastward line from (x0, y0), whereas darker blue dots represent all other
grid point values. The x-axis represents the Euclidean distance from (x0, y0). Perfect radial symmetry would result
in all the blue dots disappearing behind the yellow dots. Small deviations are present for all schemes, with CTCS
and FBL being slightly better than CDKLM and KP. It should also be noted that we have observed small numerical
oscillations in the steady-state solution produced by CDKLM, which we have not been able to reproduce for the other
non-steady-state test cases.
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Figure 8: Case B: Discrepancy between the obtained steady-state solutions and the reference solution for the Rossby
adjustment problem. The KP and CDKLM schemes obtain a steady state with a relative error of 4% compared with
the reference solution. The CTCS and FBL schemes capture the reference solution with machine precision.

Figure 9: Case B: Radial symmetry at geostrophic balance, obtained from the Rossby adjustment problem on flat
bathymetry. The bright yellow line is the η-values obtained along a straight line eastwards from the center of the
domain, while the darker blue area consists of a scatter plot of all η-values radially distributed from the same center
point. Deviations of the blue scatter from the yellow line indicate radial asymmetry. It is therefore clear that FBL and
CTCS are slightly better than KP and CDKLM at preserving radial symmetry.
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Figure 10: Case C: Relative height of the Rossby adjustment steady state η obtained by the different schemes for
different depths, compared with a reference solution. The FBL and CTCS schemes give good match, whereas the KP
and CDKLM schemes have slightly too low steady state bumps for large depths.

4.3 Case C: The Adjustment Problem for Variable Rossby Radius of Deformation
This case checks the schemes ability to capture how the Rossby radius of deformation in Case B depends on water
depth. We vary H0 from 100 to 5000 m, and study the ratio between the maximum steady state surface elevation and
the maximum initial surface elevation. Initial and boundary conditions are the same as for Case B.

The phase speed c of free gravity waves increases with depth, and hence the Rossby radius LR = c/ f also increases.
The relevant parameter here is the ratio between the horizontal scale of the initial surface elevation and the Rossby
radius. With increasing depth, the Rossby radius increases compared with the fixed initial disturbance. This means
that more potential energy is converted to kinetic energy in the form of gravitational waves that propagate away. The
geostrophically balanced steady-state solution therefore becomes distributed over a larger area. We would expect that
the maximum surface elevation in the steady-state solution decreases as the depth and the Rossby radius increases.
Such reduction is exactly what is seen when calculating the reference solution for different water depths using the same
method as in Case B.

Figure 10 shows the experimental results for all four numerical schemes. The FBL and CTCS schemes result in
almost identical steady-state solutions for all values of H0, with a very good match to the reference solution. The
finite-volume methods on the other hand, give slightly lower steady-state solutions for the surface elevation for the deep
cases. This difference indicates that the finite-volume methods may be more diffusive. We will discuss this possibility
in relation to Cases E and F.

4.4 Case D: Kelvin Waves
Kelvin waves are shallow-water waves trapped along the coast that propagate with the cost on their right / left side
on the the northern / southern hemisphere. For this case, we consider a rectangular domain with constant depth, wall
boundary conditions, (17), along the southern and northern boundaries, and a periodic boundary condition, (18), over
the east-west boundary. The initial state consists of a wave trapped at the southern boundary and travelling eastwards.
The initial surface elevation is

η(x, y, t0) = η0
2

exp

(
−
√
(y − y0)2

LR

) [
1.0 + tanh

(
−
√
(x − x0)2 + LR

LR/3

)]
, (23)
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and the momentum is based on the geostrophic balance, (33), expressed with respect to the conserved variables as

hu(x, y) = −gH
f
∂η

∂y
and hv(x, y) = gH

f
∂η

∂x
. (24)

In the case of Kelvin waves, the momentum is balanced according to (24) along the barrier, where hv is set to zero.
Using (23), we get that

hu(x, y, t0) =
√
gH · sign(y − y0)η(x, y, t0), (25)

hv(x, y, t0) = 0. We let (x0, y0) = (2 502.5 km,−5 km), which is chosen so that the maximum height of the wave is in
a cell center in the middle of the domain in x-direction, and the wave height is still increasing in the y-direction as it
meets the southern boundary. The amplitude of the wave is given by η0, and we will use two different values for η0 in
this test case. All other parameters are listed in Table 2.

From linear wave theory, as discussed in A, Kelvin waves are standing waves travelling with speed
√
gH along the

coast. By selecting a small amplitude, η0 = 0.05 m, we expect approximately linear behavior even from the nonlinear
equations, and the period in our domain becomes T = ∆xNx/

√
gH. Figure 11 shows the resulting Kelvin waves for all

four schemes as cross sections along the x-axis, focusing on the middle section of the domain after one, five and ten
periods. The solid lines represent η(x, 12∆y, t) along the southern boundary and the dotted lines show η(x, (30+ 1

2 )∆y, t)
some distance away from the boundary. The waves have momentum towards the right. We see that FBL, CTCS and
CDKLM give close linear advection as expected. If we look carefully, however, we note that there are tendencies of
oscillation at t = 10T , with a wave building up on the front of the wave, and a depression just behind the wave. This is
a typical artifact of such schemes [44], and is exaggerated for coarser resolutions. The KP scheme also maintains the
periodicity in the solution, but the amplitude of the Kelvin wave is decreasing, and an edge builds up behind the wave.
This is most likely caused by the naïve discretization of the Coriolis forcing term.

Next, we look at Kelvin waves with a larger amplitude by setting η0 = 2.0 m, and these results are shown in
Figure 12. As expected, the FBL scheme produces the same periodic solution as for the small amplitude wave, as
it solves the linearized equations. The other three schemes solve the nonlinear equations where the wave speed is a
function of the full depth H + η (meaning that the particle velocity is expected to larger on the crest of the wave),
and we expect that the wave should sharpen towards a shock with time. This is the behavior observed by the KP
and CDKLM schemes, shown in the two lower panels of Figure 12, and the same tendency can also be observed for
CDKLM in Figure 11. CTCS, on the other side, is not able to produce this solution, and instead produces a solution
with the opposite behavior, as seen in the second panel of Figure 12. Here, the crest of the wave is travelling slower due
to numerical dispersion, which is a known property of the CTCS scheme [45, 8]. The consequence is that the phase
speed slows down, and generates a shock behind the wave. We have been able to reproduce this behaviour for a wide
range of values for the eddy viscosity parameter, A, and since CTCS is unable to maintain shock solutions, the shock
results in spurious oscillations.

In total, we see that the FBL, KP and CDKLM schemes behave as expected from a physical point of view, and
CTCS behaves as expected from a numerical point of view. The finite-volume methods are better at maintaining
fast-travelling waves than the CTCS scheme. It should also be noted that the behavior from the results in Figure 12 can
be reproduced for pure gravity waves in non-rotating domains as well.

4.5 Case E: Planetary Rossby Waves
The two last test cases focus on dynamics related to potential vorticity, which is defined as the total vertical vorticity
divided by the total water depth. The total vorticity can be split into two parts: one dominating planetary part caused
by Earth’s rotation and a relative part caused by the local vorticity of the flow in the rotating reference frame. The
potential vorticity expresses the angular momentum of a material water column, and its conservation causes the spin
of a water column to increase if the column is stretched vertically and vice versa. Large-scale changes in the relative
vorticity are due to horizontal wind shear and are important for the basin-scale circulation in the oceans. Changes in the
relative vorticity can also occur on smaller scales when a column of water is advected into deeper or shallower areas.
Changes in the planetary vorticity occurs when a water column is advected either northwards or southwards because
the vertical component of the Earth’s rotation (the Coriolis parameter f ) is different. In non-dissipative systems, and
in the absence of atmospheric forcing, the potential vorticity is conserved.
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Figure 11: Case D with small waves: Small amplitude Kelvin waves travelling along the southern wall boundary, in
a east-west periodic domain. The solid lines represent values of η along the boundary, while the dotted lines show η
30 grid cells into the domain. The initial state and the solution after one, five and ten periods are plotted. The small
amplitude of the wave gives approximately linear behavior for all four schemes, but we see that the wave produced by
the KP scheme is decreasing with an unnatural edge at the back of the wave.
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Figure 12: Case D with large waves: Kelvin waves travelling along the southern wall boundary, in a east-west periodic
domain. The solid lines represent values of η along the boundary, while the dotted lines show η 30 grid cells into the
domain. The initial state and the solution after one, five and ten periods are plotted. The figure shows that FBL gives
results according to linear wave theory. In the nonlinear equations, the top of the wave is expected to have a higher
phase speed than the slopes of the wave, causing a shock to be slowly generated. This behavior is well captured by the
KP and CDKLM schemes, but the CTCS scheme is slowed down due to numerical dispersion.
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Disturbances in the vorticity may induce a class of waves referred to as Rossby waves. If changes in the vorticity
are associated with varying bathymetry, we obtain so-called topographic Rossby waves that propagate along lines of
constant depth. Alternatively, we can obtain planetary Rossby waves for which gradients in the local rotation rate f
determine the propagation characteristics. These waves have a primary component in the zonal direction, and a brief
description of the relevant (linearized) theory is provided in A.

Planetary Rossby waves depend on variations in the local rotation rate f . In these test cases, we consider a
beta-plane model of the Coriolis force, given by

f (y) = f0 + β (y − y0) . (26)

Here, f0 is the Coriolis force at y0, defined as f0 = 2ω sin(φ0), in which ω = 2π/(24 hours) is the angular velocity of
the Earth and φ0 is the latitude at y0. The parameter β is hence

β =
∂ f
∂y
=

2ω

R
cos(φ0),

in which R is the radius of the Earth.
In the following test case, y0 is chosen at approximately 33◦ north in the center of the domain, giving the values

for f0 and β presented in Table 2. The domain is chosen to consist of 400 × 400 cells with ∆x = ∆y = 20 km, with a
depth of H = 25 m. The initial disturbance is a Gaussian bump,

η(x, y, t0) = η0 exp

{
−(x − x0)2 + (y − y0)2

r0

}
, (27)

with η0 = 0.25 m, (x0, y0) = (0.8∆xNx,0.5∆yNy), and r0 = 2.5 · 106 m2. To avoid that most of the potential energy
from the bump results in gravity waves, the initial momentum is constructed by inserting (27) into the geostrophic
balance (24). The initial momentum then becomes

hu(x, y, t0) = 2
gH(y − y0)

f0r0
η(x, y, t0), (28)

and
hv(x, y, t0) = −2

gH(x − x0)
f0r0

η(x, y, t0). (29)

Flow relaxation boundary conditions are used, and all parameters are summarized in Table 2.
Simulation results of planetary Rossby waves from all four schemes are shown in Figure 13. The right-hand panels

show the final state of η at time t = 6.0 · 106 s, corresponding to approximately 70 days (60 000 time-steps). From the
initial disturbance, we can see the Rossby waves propagating westwards, with significant components in the north-south
direction. All schemes tend to generate Rossby waves with larger amplitudes to the north than to the south, where
the Coriolis force is weaker. The left-hand side panels in Figure 13 are Hovmöller diagrams, which illustrate how the
waves develop and propagate along the x-axis at y = y0 over time. From these diagrams we may note that the Rossby
waves propagate from east to west as theory predicts. This can be seen from the lines of constant phase that extend
upwards to the left. We also see that there are two dominating modes with different phase speeds, and that the wave
energy slowly propagates eastwards; that is, the x-components of the group and phase velocities have different signs.

Because the test case is two-dimensional, there are no simple analytical solutions to use as reference. We would,
however, expect the CTCS scheme to perform quite well, since this scheme is specifically tailored for problems such
as the one considered here. We note in particular that the KP scheme has a much higher dissipation rate than the other
schemes. This may be caused by the naïve discretization of the Coriolis source terms in the KP scheme.

4.6 Case F: Topographic Rossby Waves
The wave phenomena shown in Case E can also be produced by varying the bottom topography rather than the Coriolis
force, and is then called topographic Rossby waves. We have here chosen parameter values so that the topographic
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Figure 13: Case E: Long-term simulation results when investigating planetary Rossby waves caused by a linear Coriolis
parameter. The left-hand figures show Hovmöller diagrams located along y0. The figures at the right-hand side show
η after the last time-step, with the cross section at y0 illustrated with a white line. Note that KP has a more dissipative
solution than the others, as the eastwards energy is lost in this scheme. Note also that the solutions are not symmetric
about y0.
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Rossby waves should (roughly) correspond to the planetary Rossby waves considered above. The bathymetry is
modelled as a linear function of the form

H(x, y) = H0 [1 − α(y − y0)] . (30)

Here, y0 and H0 are chosen to be the same as for the case with planetary Rossby waves, and we use constant f (y) = f0.
The slope parameter for the bottom, α, is chosen according to the Coriolis force in the above case, so that α = β/ f0
(see A for details). The domain, and boundary and initial conditions are chosen to be the same as in the planetary case.

Simulation results for the topographic Rossby waves are shown in Figure 14, with Hovmöller diagrams on the
left-hand side and η after the last time-step on the right-hand side. Again, there is no simple analytical solution to use
as reference, and we cannot expect the topographic and planetary Rossby wave cases to be identical. The solutions are
qualitatively similar, with westward propagating waves (two main modes) and eastward propagating wave energy, but
the solutions are more symmetric across the centerline y = y0.

The three schemes FBL, CTCS, and CDKLM give results that are quite similar to each other, while the KP scheme
is dissipative in the same way as for the planetary Rossby waves. The overall amplitudes are somewhat smaller for
CDKLM than for the two staggered schemes.

4.7 Numerical Order and Performance
We have determined the numerical order of convergence for the four different numerical schemes. The test case is
a smooth problem that avoids the formation of shocks during the simulation period and consists of an initial radial
cosine bump at the center of the domain with zero momentum and wall boundary conditions. The domain measures
512× 512 km, with a gravitational coefficient of 9.81 m/s2, a Coriolis coefficient of 0, and constant depth H0 = 50 m.
The radial cosine bump is defined as

ηj ,k =

{
1
2ηmax

(
1 + cos

(
r
c π

) )
, ∀ r ≤ c

0, ∀ r > c,

in which ηmax = 1.0 cm, r is the distance from the center of the domain, and c is the radial size of the bump, in our case
60% of the domain width. For the finite-volume schemes, we start by generating a fine scale initial η, and integrate the
variables over the coarse grid cells to make sure we solve the exact same initial conditions. For the finite-difference
schemes we simply evaluate the point values on the cosine bump. We then simulate until t = 30 minutes, and compute
the difference between the fine scale reference and the coarse scale simulation. The reference is generated by simulating
on a fine mesh, and the fine-scale solution is then coarsened using the same method as for the initial conditions. The
error norms have been computed in double precision.

The results are shown in Figure 15, showing second-order convergence for all schemes except FBL, as expected. It
should be noted that CTCS is a leapfrog scheme that is only second order accurate every other time-step (see e.g., [8]).

Practical oceanographic simulation is demanding on computational capacity, and it is therefore important that
the numerical schemes allow for fast and efficient implementations, especially for ensemble-based simulation. It has
previously been shown that explicit finite-difference and finite-volume schemes, such as those considered herein, have
an inherent parallelism that can readily be exploited inmany-core computing [13, 14, 15, 3, 16]. The actual performance
of each scheme will in general vary upon the specific simulation case, domain size, hardware, and level of optimization,
and we therefore choose to normalize all performance values with respect to the fastest non-linear scheme (CTCS). To
evaluate the computational performance we run the above case on a grid consisting of 2048×2048 cells for t = 24 hours,
using a time-step that incorporates each scheme’s CFL condition respectively, with a Courant number of 0.9. All the
schemes have been been optimized to a comparable level, and are run with optimal configurations [46]. By comparing
the wall clock time for each scheme, we see that CTCS completes the simulation roughly 4.3× and 5.7× faster than KP
and CDKLM, respectively. By looking at iterations per second, we see that KP and CDKLM requires 3× and 4× as
much time for each time-step, respectively, compared to CTCS. Note that the difference between these two measures
corresponds to the difference in CFL conditions between CTCS and the two finite-volume schemes. The linearized
equations solved by FBL runs 60% faster than CTCS, and this is mainly due to the differences in their CFL conditions.
In terms of memory requirement, all three non-linear schemes store the state vector [η, hu, hv] for two successive
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Figure 14: Case F: Long-term simulation results for topographic Rossby waves caused by the bathymetry given in
(30). Hovmöller diagrams for y0 are shown to the left, and η at the last time-step to the right. The white lines on
the right-most figures illustrate the cross section at y0. The solutions for FBL, CTCS, and CDKLM are very similar,
whereas KP is more dissipative. The results here are more symmetric around y0 than the planetary Rossby waves in
Case E.
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Figure 15: Numerical order of convergence for the four different schemes for η, displaying the expected L1, L2, and
L∞ error convergence rates (first order for FBL, and second order for the rest). The median of the L1 convergence
rate over the interval is 1.11, 2.09, 1.79, and 1.78 for FBL, CTCS, KP and CDKLM, respectively. The numerical L2

convergence is 1.11, 1.94, 1.77, and 1.77, and for L∞ the numerical convergence rate is 1.13, 1.70, 1.68, and 1.61.
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Table 3: Comparison of numerical schemes, based on quantitative and qualitative properties. The rows are grouped as
follows: General characteristics, oceanographic characteristics, and computational characteristics. The performance-
related values are obtained from running a case consisting of 2048 × 2048 cells, and are normalized with respect to
CTCS.

Numerical Scheme
FBL CTCS KP CDKLM

Preserve lake-at-rest Yes Yes Yes Yes
Accurately capture shocks No No Yes Yes
Case B and C: Rossby adjustment Good Good Fairly good Fairly good
Case D: Kelvin waves Good Medium Medium Good
Case E: Planetary Rossby waves Good Good Medium Good
Case F: Topographic Rossby waves Good Good Medium Good
Numerical L2 convergence rate 1.11 1.94 1.77 1.77
Relative simulation wall time 0.4 1.0 4.3 5.7
Relative iterations per second 1.25 1.0 0.33 0.25
Memory req. for 2048 × 2048 cells 64.1 MB 112.3 MB 128.5 MB 128.5 MB

time-steps, whereas FBL only requires the state for one time-step. The finite-volume schemes are also implemented
by storing the equilibrium depth H at both the cell centers and cell intersections, whereas the finite-volume schemes
store H in the cell centers only. All these performance measures are summarized in Table 3.

4.8 Comparison
Table 3 summarizes the four schemes for the presented test cases. The table is divided into three groups, where the
first group is related to general characteristics valid for rotational and non-rotational settings alike. The second group
covers the oceanographic aspects, and the third reports on the numerical implementation.

All schemes conserve mass and momentum within the domain, and preserve lake-at-rest solutions. The finite-
difference schemes, however, break down for solutions containing shocks. Even though shock solutions do not naturally
occur in the ocean, the dam break test has been included here as it is highly useful to be aware of such limitations for
the schemes at hand.

In the second group, we see that FBL and CTCS are able to capture the Rossby adjustment steady-state solution
better than KP and CDKLM. All schemes except for KP are able to represent Kelvin waves of small amplitudes
according to linear wave theory. Larger differences are seen as the amplitude is increased so that nonlinearities
dominate the simulations. The finite-volume schemes capture the physical expected solution, with a shock forming in
front of the wave. CTCS, however, gives a solution where the crest of the wave is slowed, resulting in a shock behind
the wave. FBL maintains a linear solution, as is expected by the scheme. In the cases of planetary and topographic
Rossby waves, FBL, CTCS and CDKLM give qualitatively the same solutions in accordance with theory, whereas KP
is significantly more dissipative.

The final group considers computational aspects of the schemes. We note that the performance of CTCS is
significantly better than KP and CDKLM, mainly due to more efficient scheme, and partly due to less strict CFL
conditions. Finally, we note that all four schemes obtain the expected numerical order.

5 Summary and Conclusions
We have in this paper evaluated four numerical schemes for solving the rotational shallow-water equations by looking
at six oceanographic test cases. The test cases have been chosen based on oceanographic concepts important for
transient flow, and investigate each scheme’s ability to produce and maintain geostrophic steady-state solutions (Rossby
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adjustment), capture fast coastal waves (Kelvin waves), and capture slow waves due to variations in the potential
vorticity (Rossby waves). Two of the selected numerical schemes are the traditional finite-difference methods FBL
and CTCS, evaluated on staggered grids arising from the oceanographic community. The last two schemes, KP and
CDKLM, are recent finite-volumemethods that have been developed within the community working on high-resolution
schemes for more general hyperbolic conservation laws. These schemes have been chosen as they all have favorable
properties with respect to doing ensemble-based simulations, e.g., for storm surges, and/or data assimilation for drift
prediction.

Our findings show that the FBL scheme gives the expected linear results for all test cases, and is the most
computational efficient scheme due to its simplicity. For the full nonlinear equations, we see that CTCS performs well
in cases dominated by geostrophic balance, such as Rossby adjustment and Rossby waves, but gives incorrect dispersion
for large gravity-driven waves. The naïve discretization of the Coriolis force in the KP scheme results in a too diffusive
scheme, causing it to perform worse than the CDKLM scheme for all test cases. The CDKLM scheme, although more
expensive than KP, gives good results on all test cases, and is shown to be superior for capturing gravity-driven motion,
such as the Kelvin waves, but there are still potential for even better treatment of the geostrophic balances.
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A Oceanographic Background
The purpose of this appendix is to provide a physical outline of the planetary and topographic Rossby waves and
the Rossby adjustment problem. All cases start with a “disturbance” in sea surface height and develop under strong
dominance of the rotation. For the Rossby adjustment, one reaches a steady state, whereas the Rossby waves will
create waves propagating out from the origin of the disturbance. Notably, the restoring force for rotationally dominated
large waves is conservation of total potential vorticity. The following description can be found in several text books on
large-scale fluid dynamics, but is provided here for the convenience of the readers.

A.1 Coriolis force
The Coriolis parameter is defined as

f = 2Ω sin(φ), (31)

in which Ω is the Earth’s rotation rate and φ is the latitude. Hence | f | is zero at the equator and attains its maximum
values on the poles. Denoting the horizontal velocity components (u, v) in the west-to-east (x) and south-to-north (y)
directions, respectively, the Coriolis force per unit density is

F(x)
f
= f v,

F(y)
f
= − f u.

(32)

The dominating force balance in the ocean is the geostrophic balance, which equates the pressure gradient force
and the Coriolis force. For barotropic flows, the pressure gradient force is due to surface tilt. If we define the surface
coordinate as z = η(x, y, t), the barotropic geostrophic balance is then expressed mathematically as

− f v = −g ∂η
∂x
,

f u = −g ∂η
∂y
,

(33)

in which g is the acceleration due to gravity.

A.2 Potential Vorticity
By neglecting friction and the nonlinear term in the pressure gradient, the equations for barotropic velocities vh = (u, v)
and continuity read

∂u
∂t
+ u

∂u
∂x
+ v

∂u
∂y
− f v = −g ∂η

∂x
, (34)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ f u = −g ∂η

∂y
, (35)

∂η

∂t
+

∂

∂x
[(H + η)u] + ∂

∂y
[(H + η)v] = 0. (36)

Taking the curl of (34) and (35), we obtain

d
dt
(ζ + f ) = −(ζ + f )

(
∂u
∂x
+
∂v

∂y

)
, (37)

where d/dt ≡ ∂/∂t + u(∂/∂x) + v(∂/∂y) is the total derivative and ζ = ∂v/∂x − ∂u/∂y is the vertical component of
the vorticity. (37) describes conservation of angular momentum. If depth does not change in time, we can rewrite (36)
as

d
dt
(H + η) = −(H + η)

(
∂u
∂x
+
∂v

∂y

)
. (38)
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Note the similarities between (37) and (38): both the vorticity and the total height of a material water column depend
on the convergence/divergence of the flow field. Combining these equations, we find that

d
dt

(
ζ + f
H + η

)
= 0. (39)

The potential vorticity (ζ + f )/(H + η) is a conserved quantity in non-dissipative flows in a rotating reference frame.
To clarify any discussion when using potential vorticity, ζ is generally referred to as the relative vorticity, and f as
the planetary vorticity. (39) implies that the flow will tend to follow contours of constant f /H, since these are the
dominating terms in geophysically relevant cases.

A.3 Kelvin waves
Waves influenced by earth rotation and “leaning” on a topography are known as Kelvin waves, and are very important
for explaining a number of phenomena such as tides and coastal transports. Here we will accordingly consider a simple
derivation of the main characteristics of these waves. Observations reveal that the velocity parallel to the coast is much
larger than the velocities perpendicular to the coast. Assuming a coast along the x-axis and that V � U (and assuming
U, V have similar time scales) and that nonlinear terms are small we find the following governing equations from (34)
and (35)

∂U
∂t
= −gH

∂η

∂x
, (40)

f U = −gH
∂η

∂y
, (41)

∂η

∂t
+
∂U
∂x
= 0. (42)

Combining (40) and (42) gives
∂2η

∂t2
− gH

∂2η

∂x2
= 0, (43)

which shows that this system behaves as a wave solution moving with speed c0 = ±
√
gH in the x-direction (later

analysis will show that waves can only travel in positive x-direction). Combining (41) and (42) shows that the wave
structure is governed by

∂η

∂t
− gH

f
∂2η

∂x∂y
= 0. (44)

Here it may be noted that the parameter group in (43) can be written as the wave speed times the Rossby radius LR,

LR =

√
gH
f
=

c0
f
, (45)

such that
∂η

∂t
− LRc0

∂2η

∂x∂y
= 0. (46)

The fact that the solution behaves as a wave in the x-direction, implies that the solution can be written as

η = G(y)F(x, t). (47)

Thus, (46) gives

G
∂F
∂t
− LRc0

∂G
∂y

∂F
∂x
= 0, (48)

or
∂F/∂t

c0∂F/∂x
= LR

∂G/∂y
G

. (49)
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The solutions are of the form
η ∝ ey/LR F(x + c0t) + e−y/LR F(x − c0t). (50)

Assuming that our solution must be limited as y → ∞ implies that the solution with positive exponent must be
zero. Thus, for problems unbounded in the y-direction

η = e−y/LR F(x − c0t),
u =

g

f LR
F(x − c0t). (51)

These waves – referred to as Kelvin waves – travel in positive x-direction requires a coast on the right of their travel
directions (for the northern hemisphere). Due to the rotation they are trapped within the Rossby radius from the coast.

A.4 Rossby Waves
Rotating systems support potential vorticity waves, or so-called Rossby waves. The dynamics of Rossby waves can
more easily be studied when we assume η = 0, that is, using a rigid lid approximation. We may then introduce a stream
function ψ such that

Hu = −∂ψ
∂y

, (52)

Hv =
∂ψ

∂x
, (53)

which by definition fulfills the continuity equation

∂

∂x
(Hu) + ∂

∂y
(Hv) = 0. (54)

The conservation equation for potential vorticity, (39) with the rigid lid approximation, becomes

1

H
∂ζ

∂t
+ u

∂

∂x

(
f
H

)
+ v

∂

∂y

(
f
H

)
= 0, (55)

under the assumption f � ζ . Using the definitions of the vorticity and stream function, the conservation of vorticity
reads (see also [48], Eq. 10.12.4, p. 409)

∂

∂t

[
∂

∂x

(
1

H
∂ψ

∂x

)
+

∂

∂y

(
1

H
∂ψ

∂y

) ]
+

f
H2

[
∂H
∂x

∂ψ

∂y
− ∂H
∂y

∂ψ

∂x

]
+

1

H2

[
∂ f
∂x

∂ψ

∂y
+
∂ f
∂y

∂ψ

∂x

]
= 0. (56)

Let us consider the case with H = H(y) and f = f0+ βy, where the latter is the so-called beta-plane approximation.
Then ∂ f /∂y = β, and (56) becomes

∂

∂t

[
1

H

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
− 1

H2

∂H
∂y

∂ψ

∂y

]
− f

H

[
1

H
∂H
∂y
+
β

f

]
∂ψ

∂x
= 0. (57)

To investigate Rossby wave dispersion further, we assume that the depth is given by the function H = H0 exp(−αy).
We also assume a wave solution ψ = A exp[i(k x + κy − ωt)], where A is a constant and κ = l + iγ is a complex wave
number in the y-direction. From (57) we obtain the dispersion relation

κ2 − iακ +
(

k
ω
(α f + β) + k2

)
= 0. (58)

From the complex part we obtain γ = α/2. The real part yields the dispersion relation

ω = − k(α f + β)
k2 + l2 + (α/2)2 . (59)
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With α , 0 and β = 0, we have topographic Rossby waves, whereas with α = 0 and β , 0, we have planetary Rossby
waves.

From (58), we see there is a close similarity between these types of Rossby waves when α f = β, in particular for
small α2 � k2, l2. The zonal (x) component of planetary Rossby waves always propagate from east to west, while the
topographic Rossby waves in the examples shown here propagate with shallow-water on their right. The group velocity
and the energy propagation generally depends on the wave number, but can be in either direction.

A.5 Rossby Adjustment
The derivation of the equations describing the end state in the case of Rossby adjustment takes a different path. The
linearized basic shallow-water equations read

∂U
∂t
− f V = −gH

∂η

∂x
, (60)

∂V
∂t
+ f U = −gH

∂η

∂y
, (61)

∂η

∂t
+
∂U
∂x
+
∂V
∂y
= 0. (62)

Here, (U,V) = (hu, hv) is the volume transport. To simplify the derivation we assume that the depth is constant.
We aim to find a single equation for η, and take the divergence of (60) and (61), and the time derivative of (62).

We can then eliminate U and V and obtain

∂2η

∂t2
+ ∇ · (c20∇η) + H f ζ = 0, (63)

in which c20 = gH. An equation for the vorticity can be obtained by taking the curl of (60) and (61), and combining
with the continuity equation (62):

H
∂ζ

∂t
− f

∂η

∂t
= 0. (64)

Using (64) to eliminate ζ in (63), we obtain (see also [7], Eq. 3.6.9, p. 69)

∂

∂t

[ (
∂2

∂t2
+ f 2

)
− ∇ · (c20∇η)

]
= 0. (65)

It is straightforward to integrate this equation in time, and assuming zero initial velocities and that η = η0, we have

∂2η

∂t2
− c20∇2η + f 2(η − η0) = 0. (66)

The transient solution to this equation describes long surface waves modified by rotation, usually referred to as Poincaré
waves. The steady solution η̄ is the result of adjustment to the local rotation as a permanent modification of the mean
surface level with velocities in geostrophic balance. This process is referred to as Rossby adjustment. The steady state
is found by solving the Klein-Gordon equation that results from removing the time dependence in (66):

−c20∇2η̄ + f 2(η̄ − η0) = 0. (67)

The length scale given by LR = c0/ f is the Rossby radius of deformation, within which a disturbance will be trapped
by rotation and the steady-state solution will be dominated by a geostrophic balance.
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Abstract
In this work, we examine the performance, energy efficiency and usability when using Python for developing HPC

codes running on the GPU. We investigate the portability of performance and energy efficiency between CUDA and
OpenCL; between GPU generations; and between low-end, mid-range and high-end GPUs. Our findings show that
the impact of using Python is negligible for our applications, and furthermore, CUDA and OpenCL applications tuned
to an equivalent level can in many cases obtain the same computational performance. Our experiments show that
performance in general varies more between different GPUs than between using CUDA and OpenCL. We also show
that tuning for performance is a good way of tuning for energy efficiency, but that specific tuning is needed to obtain
optimal energy efficiency.

1 Introduction
GPU computing was introduced in the early 2000s, and has since become a popular concept. The first examples were
acceleration of simple algorithms such as matrix-matrix multiplication by rephrasing the algorithm as operations on
graphical primitives (see e.g., [2]). This was cumbersome and there existed no development tools for general-purpose
computing. However, many algorithms were implemented on the GPU as proof-of-concepts, showing large speedups
over the CPU [3]. Today, the development environment for GPU computing has evolved tremendously and is both
mature and stable: Advanced debuggers and profilers are available, making debugging, profile-driven development,
and performance optimization easier than ever.

The GPU has traditionally been accessed using compiled languages such as C/C++ or Fortran for the CPU code,
and a specialized programming language for the GPU. The rationale is often that performance is paramount, and that
compiled languages are therefore required. However, for many GPU codes, most of the time is spent in the numerical
code running on the GPU. In these cases, we can possibly use a higher-level language such as Python for the program
flow without significantly affecting the performance. The benefit is that using higher-level languages might increase
productivity [4]. PyCUDA and PyOpenCL [5] are two Python packages that offer access to CUDA and OpenCL from
Python, and have become mature and popular packages since their initial release nearly ten years ago.

Herein, we compare the performance, energy efficiency, and usability of PyCUDA and PyOpenCL for important
algorithmic primitives found in many HPC applications [6]: a memory bound numerical simulation code and a
computationally bound benchmark code. The memory bound code performs simulation of the shallow-water equations
using explicit stencils [7, 8], and represents a class of problems that are particularly well suited for GPU computing [9,
10, 11, 12, 13]. The computationally bound code computes the Mandelbrot set, and we use it to explore limitations of
using Python for GPU computing.

∗Corresponding author: havard.heitlo.holm@sintef.no
This paper is an extended version of our paper published in International Conference on Parallel Computing (ParCo2019) [1]
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We show that accessing the GPU from Python is as efficient as from C/C++ in many cases, demonstrate how
profile-driven development in Python is essential for increasing performance for GPU code (up to 5 times), and show
that the energy efficiency increases proportionally with performance tuning. Finally, we investigate the portability of
the improvements and power efficiency both between CUDA and OpenCL and between different GPUs. Our findings
are summarized in tables that justify that using Python can be preferable to C++, and that using CUDA can be preferable
to using OpenCL. Our observations should be directly transferable to other similar architectures and problems.

2 Related Work
There are several high-level programming languages and libraries that offer access to the GPU for certain sets of
problems and algorithms. OpenACC [14] is one example which is pragma-based and offers a set of directives to
execute code in parallel on the GPU. However, such high-level abstractions are typically only efficient for certain
classes of problems and are often unsuitable for non-trivial parallelization or data movement. CUDA [15] and
OpenCL [16] are two programming languages that offer full access to the GPU hardware, including the whole memory
subsystem. This is an especially important point, since memory movement is a key bottleneck in many numerical
algorithms [6] and therefore has a significant impact on energy consumption.

The performance of GPUs has been reported extensively [17], and several authors have shown that GPUs are
efficient in terms of energy-to-solution. Huang et al. [18] demonstrated early on that GPUs could not only speed up
computational performance, but also increase power efficiency dramatically using CUDA. Qi et al. [19] show how
OpenCL on a mobile GPU can increase performance of the discrete Fourier transform by 1.4 times and decrease the
energy use by 37%. Dong et al. [20] analyze the energy efficiency of GPU BLAST which simulates compressible
hydrodynamics using finite elementswith CUDAand report a 2.5 times speedup and a 42% increase in energy efficiency.
Klôh [21] report that there is a wide spread in terms of energy efficiency and performance when comparing 3D wave
propagation and full waveform inversion on two different architectures. They compare an Intel Xeon coupled with an
ARM-based Nvidia Jetson TX2 GPU module, and find that the Xeon platform performs best in terms of computational
speed, whilst the Jetson platform is most energy efficient. Memeti et al. [22] compare the programming productivity,
performance, and energy use of CUDA, OpenACC, OpenCL and OpenMP for programming a system consisting of
a CPU and GPU or a CPU and an Intel Xeon Phi coprocessor. They report that CUDA, OpenCL and OpenMP have
similar performance and energy consumption in one benchmark, and that OpenCL performs better than OpenACC
for another benchmark. In terms of productivity, the actual person writing the code is important, but OpenACC and
OpenMP require less effort than CUDA and OpenCL, and CUDA can require significantly less effort than OpenCL.

Previous studies have also shown that CUDA and OpenCL can compete in terms of performance as long as the
comparison is fair [23, 24, 25, 26], and there have also been proposed automatic source to source compilers that report
similar results [27, 28]. We do not know of any other established literature that thoroughly compares the performance,
usability and energy efficiency of CUDA and OpenCL when accessed from Python.

3 GPU Computing in Python
In this work, we focus on using Python to access the GPU through CUDA and OpenCL. These two GPU programming
models are conceptually very similar, and both offer the same kind of parallelism primitives. The main idea is that
the computational domain is partitioned into equally sized subdomains that are executed independently and in parallel.
Even though the programming models are similar, their terminology differs slightly, and in this paper we will use that
of CUDA. A full review is outside the scope of this work, but can be found in [29, 30]. The following sections give
an overview of important parts of CUDA and OpenCL, and discuss their respective Python wrappers. We give a short
introduction to using them from C++ and Python, and compare the benefits and drawbacks of both approaches.

3.1 CUDA
CUDA [15] (Compute Unified Device Architecture) was first released in 2007, and is available on all Nvidia GPUs as
Nvidia’s proprietary GPU computing platform. It includes third-party libraries and integrations, the directive-based
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OpenACC [14] compiler, and the CUDA C/C++ programming language. Today, five of the ten fastest supercomputers
(including number one) use Nvidia GPUs, as well as nine out of the ten most energy-efficient [31].

CUDA is implemented in the Nvidia device driver, but the compiler (nvcc) and libraries are packaged in the CUDA
toolkit and SDK.1 The toolkit and SDK contain a plethora of examples and libraries. In addition, the toolkit contains
Nvidia Nsight, which is an extension for Microsoft Visual Studio (Windows) and Eclipse (Linux) for interactive GPU
debugging and profiling. Nsight offers code highlighting, unified CPU and GPU trace of the application, and automatic
identification of GPU bottlenecks. The Nvidia Visual Profiler is a stand-alone cross-platform application for profiling
of CUDA programs, and CUDA versions for debugging (cuda-gdb) and memory checking (cuda-memcheck) also exist.

3.2 OpenCL
OpenCL [16] (Open Compute Language) is a free and open heterogeneous computing platform that was initiated by
Apple in 2009, and today the OpenCL standard is maintained and developed by the Khronos group. Whilst CUDA is
made specifically for Nvidia GPUs, OpenCL can run on a number of heterogeneous computing architectures including
GPUs, CPUs, FPGAs, and DSPs. The OpenCL API is defined in a common C/C++ header, and a runtime library (ICD
loader) redirects OpenCL calls to the appropriate device driver by using an installable client driver (ICD), specific to
each architecture. The actual OpenCL is therefore implemented in each vendor’s device driver. Contrary to CUDA,
there is no common toolkit, but there are several third-party libraries.2

Profiling an OpenCL application can be challenging, and the available tools vary depending on your operating
system and hardware vendor.3 It is possible to get timing information on kernel and memory transfer operations by
enabling event profiling information and adding counters explicitly in your source code. This requires extra work and
makes the code more complex. Visual Studio can measure the amount of run time spent on the GPU, and CodeXL [32]
can be used to get more information on AMD GPUs. CodeXL is a successor to gDebugger which offers features
similar to those found in Nsight in addition to power profiling, and is available both as a stand-alone cross-platform
application and as a Visual Studio extension. While it is possible to use Visual Profiler for OpenCL, this requires the
use of the command-line profiling functionality in the Nvidia driver, which needs to be enabled through environment
variables and a configuration file. After running the program with the profiling functionality in effect, the profiling
data can be imported into Visual Profiler. Intel Code Builder (part of Intel SDK for OpenCL Applications [33]) and
Intel Vtune Amplifier [34] can also be used for OpenCL debugging and profiling, but these tools only support Intel
CPUs and Intel Xeon Phi processors.

One disadvantage of OpenCL is that there are large differences between the OpenCL implementations from different
vendors, and good performance is likely to rely on vendor-specific extensions. One example is that OpenCL 2.2 is
required for using C++ templates in the GPU code, but vendors such as Nvidia only support OpenCL version 1.2. It
should also be mentioned that OpenCL has been deprecated in favour of Metal [35] by Apple in their most recent
versions of Mac OS X.

3.3 GPU Computing from Python
Researchers spend a large portion of their time writing computer programs [36], and compiled languages such as
C/C++ and Fortran have been the de facto standard within scientific computing for decades. These languages are well
established, well documented, and give access to a plethora of native and third-party libraries. C++ is the standard
way of accessing CUDA and OpenCL today, but developing code with these languages is time consuming and requires
great care. Using higher-level languages such as Python can significantly increase development productivity [4, 37].
However, it should be mentioned that the OpenCL and CUDA kernels themselves are not necessarily made neither
simpler nor shorter by using Python: The productivity gain comes instead from Python’s less verbose code style for
the CPU part of the code. This influences every part of the host code, from boilerplate initialization code and data
pre-processing, to CUDA/OpenCL API calls, post-processing, and visualization of results.

Since Python was first released in 1994, it has gained momentum within scientific computing. Python is easy to
learn, powerful, and emphasizes readability of code. All together, this allows for efficient prototyping of code, but

1Available at https://developer.nvidia.com/cuda-zone
2For a list of OpenCL resources, see https://www.khronos.org/opencl/resources
3An extensive list of OpenCL debugging and profiling tools can be found at https://www.khronos.org/opengl/wiki/Debugging_Tools
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unfortunately often at the expense of performance. Since Python is an interpreted language, it does not have the speed
of C/C++ and Fortran. For example, a for loop in C/C++ or Fortran will execute at great speed, whilst this construction
is relatively slow in Python. This is acceptable for many application areas, but for computationally intensive codes it
becomes a showstopper.

A popular approach to combining the speed of compiled code with Python is to have the program flow written in
Python, and the performance critical inner loop in a compiled language. The performance critical code can then be
called from Python, using e.g., SWIG wrappers, Numba [38] or Cython [39]. The following example illustrates this
by computing C = A′A with DGEMM from the BLAS library supplied with SciPy:

1 import numpy as np
2 import scipy.linalg.blas as blas
3 N = 2048
4 A = np.ones((N,N))
5 C = blas.dgemm(alpha=1.0, a=A.T, b=A)

Even though Python can be relatively slow, most of the time in this example is spent in the very efficient BLAS
library, giving good overall performance. This approach thus offers the speed of compiled code together with the
productivity of a high-level language. We can in a similar way execute GPU code from Python, and our experiments
show that this gives good overall performance. Hence, Python can also be a viable option for production-level code,
not only for experimental code and prototypes.

There are several libraries that today offer access to the GPU from Python. One class of libraries are such as
OpenCV [40] that offers GPU acceleration of algorithms within a specific field. Such libraries are outside the scope
of this work, as we focus on general-purpose GPU computing. In addition to these types of libraries, Numba [38]
and CuPy [41] are general-purpose programming environments in Python that offer full access to the GPU. However,
the GPU programs in Numba are written as Python functions, and the programmer has to rely on Numba for efficient
parallelization of the code. While such a design lowers the bar for developers to write code that executes on the
GPU, details that are crucial for obtaining the full potential performance might be lost in the abstraction. Additionally,
Numba is missing support for dynamic parallelism and texture memory. CuPy also offers functionality to define the
GPU functions in terms of Python code, but additionally supports raw kernels written in native CUDA.

PyCUDA and PyOpenCL [5] are Python packages that offer access to CUDA and OpenCL, respectively. Both
libraries expose the complete API of the underlying programming models, and aim to minimize the performance
impact. The GPU kernels, which are crucial for the inner loop performance, are written in native low-level CUDA
or OpenCL, and memory transfers and kernel launches are made explicit through Python functions. The result is an
environment suitable for rapid prototyping of high-performing GPU code. Listing 1 shows a minimal example for
filling an array with the numbers 1 to N . The first four lines import PyCUDA and numpy. Lines six to ten hold
the CUDA source code (written in CUDA C/C++), and compiles it using the SourceModule interface. Line eleven
retrieves a handle to the kernel so that we can call the GPU function from Python. Line 14 allocates data in Python using
numpy, which is then handed over to the GPU kernel in line 15. This manages automatic uploading and downloading
of data from the GPU through the drv.Out class. The example shows how PyCUDA can be used to run a GPU kernel
in less than 20 lines of code. The equivalent C++ code would be far longer.

PyCUDAandPyOpenCL can be installed using popular packagemanagers such as apt-get, pip, and conda. However,
the fact that they also require that CUDA and OpenCL are properly installed makes things a bit more complicated. The
installation procedure on Windows is especially tricky, and it can be a challenge to install the packages successfully.
On Linux, a challenge with OpenCL is that Nvidia only supports version 1.2, whilst PyOpenCL tries to compile with
version 2.0 by default when it is installed with pip. This results in runtime crashes when loading the PyOpenCL
package. The solution is to manually compile the package, which can be cumbersome. An alternative is to use the
packages in apt-get, but these are often very outdated. For PyCUDA, however, we have experienced less difficulties
installing on Linux.

PyOpenCL ships with integration for Jupyter Notebooks [42], which enables rapid prototyping in an interactive
REPL environment4. Using the Jupyter Notebook for prototyping is extremely efficient, and our development cycle
has typically been as follows:

4REPL stands for read-eval-print loop, and is a class of interactive development environments where you execute the code as you write it.
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Listing 1: Programming example that shows how to fill an array with the numbers 1 to N using PyCUDA. The
corresponding C++ code is much longer.

1 import pycuda.autoinit
2 import pycuda.driver as drv
3 import pycuda.compiler as compiler
4 import numpy as np
5
6 module = compiler.SourceModule("""
7 __global__ void fill(float *dest) {
8 int i = blockIdx.x*blockDim.x+threadIdx.x;
9 dest[i] = i+1;
10 } """)
11 fill = module.get_function("fill")
12
13 N = 200
14 cpu_data = np.empty(N, dtype=np.float32)
15 fill(drv.Out(cpu_data), block=(N,1,1), grid=(1,1,1))
16 print(cpu_data)

1. Prototype and develop code in a Jupyter Notebook.

2. Clean up code in notebook.

3. Move code from notebook to separate Python modules.

The first stage often entails developing the idea and concept interactively, making test programs, and plotting interme-
diate and final results. Then, when we have a first implementation, we continue by cleaning up the code and making
it suitable for moving into a separate Python module. The tests are added to an appropriate continuous integration
environment.

Unfortunately, we have experienced that OpenCL occasionally crashes at random within the Jupyter Notebook
environment. After a significant amount of debugging, we discovered that the context was not properly cleaned up,
and variables that went out of scope were not properly deallocated, thereby causing crashes for longer Jupyter sessions.
Unfortunately, these crashes demanded a reload of the GPU driver, which typically means rebooting the system. Our
solution was simply to add explicit invocation of Python’s garbage collector after dereferencing the variables pointing
to GPU main memory.

After having worked with CUDA in the Jupyter Notebook, we discovered that similar problems were also present
here. However, because CUDA is somewhat stateful, it uses a stack of contexts and this stack was not properly cleaned
up. Our solution was in this case to write a context manager that performed the correct pushing and popping of the
CUDA context stack. After having addressed these shortcomings of PyCUDA and PyOpenCL, we have not experienced
any crashes caused by the interplay with the Jupyter Notebook.

3.4 C++ Versus Python
The GPU can be accessed both from C++ and Python, and these two approaches have their own benefits and drawbacks.
In this section we will examine how a computationally bound application – computing the Mandelbrot set – can be
implemented in the four combinations: C++ and CUDA; C++ and OpenCL; Python and CUDA; and Python and
OpenCL.

The Mandelbrot set M consists of all complex points c in which

zn+1 = z2n + c
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Figure 1: Mandelbrot set colored using continuous coloring. Each complex coordinate c is determined as within the
set if the expression zn+1 = z2n + c does not diverge after a given set of iterations. The number of iterations performed
for each thread is shown here using a continuous color scale. Locations close to the boundary perform many iterations,
whilst only a few iterations are required far away. It is evident that threads in close proximity may perform very different
number of iterations.

remains bounded as n → ∞. In practice, one typically initializes a complex number c and z0 = 0, and iterates until
|zn+1 | ≥ 2 or an upper limit of iterations has been reached:

/ / Loop u n t i l i t e r a t i o n s o r u n t i l i t d i v e r g e s
wh i l e ( | z | < 2 . 0 && n < i t e r a t i o n s ) {

z = z∗z + c ;
++n ;

}

Our application consists of a GPU kernel which first initializes the complex coordinate, c, based on the position
of each thread in the computational grid. Each thread then executes a loop as shown above before the output value
for the thread is written to main memory. If we allow e.g., 1000 iterations, a single thread may perform up-to 1000
iterations of the above while-loop before it writes a single number to main GPU memory. However, as Figure 1 shows,
the number of actual iterations performed by each thread varies dramatically, even between threads located close to
each other. Between CUDA and OpenCL, the kernel code is close to identical, with only syntactic differences (see also
Table 3). The actual kernel that runs on the GPU is the same for both the C++ and the Python variants, and difference
between them are therefore found in the host code only.

The host code is responsible for allocating output data on the GPU, launching the kernel, and downloading the
result from the GPU to the CPU. To benchmark the different variants, we compute the Mandelbrot set for different
extents and measure how much time the CPU and GPU uses for different sections of the code. It should be noted
that the overhead of running a traditional Python for-loop is significant, but can be reduced using e.g., so-called list
comprehensions.

Table 1 shows a summary of our benchmarks. It shows clearly that the kernel launch overhead is larger for Python
than for C++, but it becomes negligible when compared to the kernel execution time. Thus, for kernels that last more
than a few ms there will be little performance benefit of using C++, and Python will typically be equally fast. The
reason for this is that the CPU in both cases simply will be waiting for the GPU to complete execution for most of the
time and the performance difference will be completely masked. This is in particular shown here in the “Wall time”
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Table 1: Performance of CUDA and OpenCL for the Mandelbrot application from both Python and C++. The code
was run on an Nvidia Tesla M2090 GPU to compute fifty consecutive zooms onto the point −0.75 + 0.1i with a
maximum of 5000 iterations. OpenCL 2.0 is available in the host section of the code, but the device section must
still use OpenCL 1.2 for the C++ version. The development time is set subjectively by the authors and the lines of
code metric contains only the CPU code related to the actual GPU kernel launch. On Windows we were unable to get
asynchronous execution with OpenCL on several different machines, Python versions and GPU driver versions. We
have not been able to pinpoint the cause of this, and suspect that asynchronous execution of OpenCL in Windows is not
fully supported. We have used page locked memory with CUDA, whilst this was not easily available through OpenCL
for the download. The overhead for OpenCL therefore includes the transfer as it cannot be run concurrently with other
operations.5 The wall time includes all the time the CPU spends from launching the first kernel to having completed
downloading the last result from the GPU.

C++ Python
CUDA OpenCL CUDA OpenCL

API version 10.0 1.2 / 2.0 10.0 1.2
Development time Medium Medium Fast Fast
Approximate lines of code 145 130 100 100
Compilation time ∼ 5 s ∼ 5 s ∼ 5 s Interactive
Kernel launch overhead 13 µs 318 µs 19 µs 377 µs
Download overhead 9 µs 4007 µs 52 µs 8872 µs
Kernel GPU time 480 ms 446 ms 478 ms 444 ms
Download GPU time 4.0 ms 3.9 ms 4.0 ms 8.8 ms
Wall time 24.2 s 22.5 s 24.1 s 22.7 s

row, which shows no practical difference between C++ and Python. In fact, for CUDA the Python variant executes
marginally faster. Our explanation to this is that PyCUDA automatically sets the compilation flags for nvcc for the
specific GPU, yielding more optimized code.

One interesting difference between CUDA and OpenCL from Python is that the compilation time differs. PyCUDA
uses nvcc to compile and link an executable in a similar fashion to a regular C++ program. PyOpenCL on the other
hand, simply hands over the OpenCL kernel source code to the OpenCL driver which compiles it on-the-fly. We
expect that incorporation of the recent Nvidia runtime compilation library (NVRTC) into PyCUDA will alleviate this
shortcoming.

If we compare the other metrics, we see that both the development time and number of lines of code is significantly
better for Python. Of particular note is that debugging and visualizing results becomes interactive when using Python
and Jupyter Notebooks, thereby increasing the development efficiency dramatically. This is done using standard tools
such as Matplotlib [43], making it extremely easy to visualize and explore results. In C++, on the other hand, the only
way to reasonably explore the results is through file output (e.g., CSV) and plotting using third-party tools.

4 Porting, Profiling, and Benchmarking Performance and Energy Efficiency
We now describe the process of porting code between PyOpenCL and PyCUDA, and optimizating the PyCUDA
versions through profile-driven development. We consider simulation of the shallow-water equations using three
different numerical schemes:

• a linear finite difference scheme,

• a nonlinear finite difference scheme, and

5It should be noted that OpenCL should support efficient pinned memory transfers, but we were unable to get this to work using several driver
versions on several different machines. We therefore report the observed transfer times without pinned memory.
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Table 2: A list of the GPUs used in this work. The profile-driven development was carried out on the 840M and
GTX780, and the reminding high-end GPUs were used for performance benchmarking. We have used the 840M,
GTX780, P100 and V100 for benchmarking power efficiency. Note that the performance in gigaFLOPS is for single
precision. The K80 GPU consists of two processors on the same card and has a boost feature for temporarily increasing
the clock speed to increase performance to 2 × 4368 gigaFLOPS.

Model Class Architecture
(year)

Memory GigaFLOPS Bandwidth Power device

Tesla
M2090

Server Fermi
(2011)

6 GiB 1331 178 GB/s N.A.

Tesla
K20

Server Kepler
(2012)

6 GiB 3524 208 GB/s N.A.

GeForce
GTX780

Desktop Kepler
(2013)

3 GiB 3977 288 GB/s Watt meter

Tesla
K80

Server Kepler
(2014)

2 × 6 GiB 2 × 2795 2 × 240 GB/s N.A.

GeForce
840M

Laptop Maxwell
(2014)

4 GiB 790 16 GB/s Watt meter

Tesla
P100

Server Pascal
(2016)

12 GiB 9523 549 GB/s nvidia-smi

Tesla
V100

Server Volta
(2017)

16 GiB 14899 900 GB/s nvidia-smi

• a high-resolution finite volume scheme.

The schemes are used for simulating real-world ocean currents, and two of them have been used operationally in the
early days of computational oceanography. All three schemes are essentially stencil operations with an increasing level
of complexity, and their details are summarized in Holm et al. [8].

The numerical schemes are algorithmically well suited for the GPU, but little effort has been made to thoroughly
optimize the codes performance on a specificGPU. It is well known in the GPU computing community that performance
is not portable between GPUs, neither for OpenCL nor CUDA, and automatically generating good kernel configurations
is an active research area (see e.g., [44, 45, 46]). We start by porting the three schemes to CUDA, before using the
available profiling tools for CUDA to analyze and optimize each scheme. The obtained optimizations are then also
back-ported into the original OpenCL code. The profiling and tuning is carried out on a laptop with a dedicated
GeForce 840M GPU, representing the low-end part of the GPU performance scale, and on a desktop with a mid-range
GeForce GTX 780 GPU representing a typical mid-range GPU. We compare the performance of the original and
optimized implementations with PyCUDA and PyOpenCL using seven GPUs listed in Table 2, which also includes
several high-end server GPUs.

4.1 Porting from PyOpenCL to PyCUDA
The porting process requires changing both the kernel code that runs on the GPU, and the API calls in the CPU code.
The kernels will in most cases run and produce correct results after a simple change of keywords. The CPU API calls,
however, are quite different between CUDA and OpenCL, and require more attention. This includes handling devices,
contexts and streams, compiling and linking kernels, setting kernel arguments, execution of kernels, and memory
transfers between the CPU and GPU (or between GPUs).

A difficulty in the porting process is that it involves a significant amount of changes that all must be completed
before it is possible to successfully compile, run and test the code. The Python interpreter and the CUDA compiler can
be helpful in the porting process, as they will indicate the locations where code needs to be altered. A summary of key
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Table 3: Keywords, functions and API calls in CUDA and OpenCL. In many cases a simple search and replace is
sufficient to translate a program.

CUDA OpenCL
Function qualifiers

__global__ __kernel
__device__ N/A

Variable qualifiers
__constant__ __constant
__device__ __global
__shared__ __local

Indexing
gridDim get_num_groups()
blockDim get_local_size()
blockIdx get_group_id()
threadIdx get_local_id()
blockIdx*blockDim+threadIdx get_global_id()
gridDim*blockDim get_global_size()

Synchronization
__syncthreads() barrier()
__threadfence() N/A
__threadfence_block() mem_fence()

API calls
kernel<<<...>>>() clEnqueueNDRangeKernel()
cudaGetDeviceProperties() clGetDeviceInfo()

differences between CUDA and OpenCL, which directly correspond to the steps below, can be found in Table 3. The
steps needed to port our simulator from PyOpenCL to PyCUDA should also be applicable for porting other codes:

1. Import PyCUDA instead of PyOpenCL.

2. Change API calls from PyOpenCL to PyCUDA, paying extra attention to context and stream synchronization.

3. Adjust kernel launch parameters. Block sizes for PyCUDA need to be 3D and global sizes are given in number
of blocks instead of total number of threads.

4. Use CUDA indexing in the kernels. Note that gridDim needs to be multiplied with blockDim to get the
CUDA-equivalent of OpenCL get_global_size().

5. Search and replace the remaining keywords in the kernels. Note that GPU functions in OpenCL have no special
qualifier and that GPU main memory pointers need no qualifier for function arguments in CUDA.

Even though it might be straightforward to port codes between CUDA and OpenCL, there is a large difference in
availability of native and third-party libraries. Built-in and specialized functions and data types (e.g., float3) are also
different between CUDA and OpenCL (and between Nvidia and AMD). If your code makes use of libraries or built-in
functions and data types, the porting process will be more involved as substitutes must be found or implemented.

A difference of practical interest is that CUDA uses the (nvcc) compiler for compilation of the GPU code, whilst
OpenCL uses the OpenCL driver. The CUDA compiler is a separate program that performs compilation of both CPU
and GPU code and links these together into a single file. This process can take a significant amount of time, ranging
from seconds to minutes depending on how complex the code is. OpenCL, on the other hand, uses the OpenCL driver
for compilation, and this process is very fast in our experience. Both CUDA and OpenCL cache their compilations, so
this only applies to the first time a kernel is being used. When developing GPU kernels, however, it becomes noticeably
slower to work with the compilation times of PyCUDA.
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Figure 2: Example of a shallow water simulation for oceanographic purposes with our code. The left figure shows
the sea-surface level, whereas the right figure shows the particle velocity. The simulation covers the North Sea around
the southern part of Norway, with Denmark in the lower right corner. The axes shows distances in km, and the grid
consists of 1550 × 950 cells of size 400 m × 400 m. The simulation here is initialized from operational data provided
by the Norwegian Meteorological Institute.

4.2 Profile-Driven Optimization
The shallow-water equations consist of three coupled nonlinear partial differential equations that describe conservation
of mass and momentum. In our case, they are formulated using η, the surface deviation from the equilibrium water
level, and volume transport hu and hv along the abscissa and ordinate, respectively. Source terms represent varying
bathymetry and the Coriolis forces, which takes into account that we solve the equations on a rotating sphere. The
equations can be used to model gravitational waves, in which the governing motion is horizontal such as e.g., the
ocean [7, 8]. An oceanographic simulation scenario using our simulator is shown in Figure 2.

We started the analysis of the three different numerical schemes using the Nsight extension in Visual Studio and
the standalone Visual Profiler application in the exact same manner as if we were profiling from C/C++. NSight was
run on a laptop with a GeForce 840M GPU in Windows, and the Visual Profiler on a desktop with a GTX 780 GPU in
Linux. Our workflow started by profiling the code, identifying the performance bottleneck, optimizing the bottleneck,
and finally profiling to determine if the optimization was successful [47]. To ensure that our optimizations do not
introduce errors in the code, we frequently run integration and regression tests against reference solutions.

An important performance parameter for GPUs is the domain decomposition determined by the block size. CUDA
decomposes the work into a grid with equally sized blocks, and all blocks are executed independently. At runtime, the
GPU takes the set of blocks and schedules them to the different cores within the GPU. Using a too small block size
will under-utilize the GPU, and using a too large block size will similarly exhaust the GPU’s resources. Figure 3 shows
how the block size has a major impact on performance for three different GPUs, and also illustrates that finding the
best block size can be difficult. Because of this, we experimentally obtain the optimal configuration for each scheme
before starting profiling, and again after the code has been optimized.

4.2.1 The High-Resolution Finite Volume Scheme

The first numerical schemewe consider is a high-resolution finite-volumemethod, which is designed to bewell-balanced
with respect to steady-state solutions in geostrophic balance [48]. The scheme reads the physical variables, (η, hu, hv),
from GPU main memory, reconstructs an intermediate set of four geostrophic equilibrium variables, calculates inter-
cell fluxes, and finally sums up the fluxes and writes the result back to GPU main memory. Each of the steps are stencil
operations building on top of each other, and the kernel relies heavily on the use of shared memory for storing and
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Figure 3: Heat map of performance as a function of block width and block height for selected sizes for the high-
resolution scheme on three different GPUs. Notice that even though the performance patterns have similarities, the
performance on the V100 would be suboptimal if the optimal configuration from the GTX780 is used. The performance
increase is 2–5× for all three GPUs from the slowest to the fastest block size.

sharing intermediate results. The integration in time is based on a second-order strong stability preserving Runge-Kutta
method, which means that the kernel is called twice for every iteration.

The first Nsight analysis of the high-resolution scheme indicates that the occupancy is very low at only 25%. The
occupancy is a measure of howmany threads are resident in the cores of the GPU simultaneously, and roughly translates
to how well the GPU can hide memory latencies. As the GPU has restricted resources when it comes to the amount
of shared memory, number of registers, etc., the occupancy is reduced if each block uses many of these resources. In
our case, the limiting factor is the use of shared memory. By reducing the amount of shared memory used by each
block, we can expect to get more blocks resident simultaneously on the GPU, which most likely will increase memory
throughput and thereby increase performance.

Through six consecutive iterations, we progressively reduced the shared memory by 65% with the following steps
(see Figure 4):

1. Recomputing bathymetry in cell intersections instead of storing Hm.

2. Recomputing face bathymetry instead of storing RHx and RHy .

3. Reusing buffer for physical variables Q for storing the reconstruction variables R.

4. Recomputing fluxes along the abscissa instead of storing F.

5. Recomputing fluxes along the ordinate instead of storing G.

6. Reusing the buffer for derivatives along the abscissa, Qx , and derivatives along the ordinate, Qy .

In the third and sixth steps we managed to reuse other shared memory buffers by reordering the execution flow of the
code, and for all other cases we relied on re-computation. This essentially means that we prefer recomputing results
rather than storing and sharing them between threads, thus trading extra computation for less memory storage.

The first seven groups in Figure 4 show the impact of the shared memory on performance. The first few buffers we
removed were insufficient to increase the occupancy, because it would not free enough space for another resident block
per core. However, after stage three there was space for one extra block, and the occupancy increased. After all six
iterations occupancy increased to 56%, memory bandwidth utilization increased by a factor 1.8, and gigaFLOPS more
than doubled. It should be noted that memory throughput is the important factor here, both since our kernel is memory
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Figure 4: Different optimization stages for the high-resolution kernel showing performance normalized with respect
to the original version. Notice that the different optimization strategies impact the performance very differently for
different architectures. The platform we profiled on was the 840M GPU, yet the highest performance gain was for the
K20 and GTX780 GPUs with over 5× improvement.

bound and because our re-computations artificially increase the number of floating point operations performed by the
kernel by 20%.

The next limiting factor was the number of registers (variables) used by the kernel. First, we removed all variables
related to debugging, and packed four boolean kernel arguments into a single integer using bit operations. Finally,
we removed several temporary variables by aggregating these as soon as possible into the final computed flux. The
compiler is already very good at optimizing register use, but using the above optimizations reduced the number of
registers per thread from 49 to 47, which was sufficient to increase occupancy from 56% to 62%.

Compilation flags can also be used to increase performance with relatively little effort, as can be seen in Figure 4.
Here, we used the �-use_fast_math flag which enables using fast, albeit less precise, mathematical functions for
operations such as exponential and square roots. This gave a dramatic effect and increased memory throughput by
a factor of 3.9 relative to the original version. This is not only because the mathematical functions execute faster,
but perhaps more importantly because the fast mathematical functions use less register space, reducing from 47 to 40
registers per thread. This increased occupancy to 69%, and left shared memory as the bottleneck once again. In our
case, the use of fast mathematical functions is sufficiently accurate, but these compilation flags can ruin the correctness
of a program and should be used with care. Other important flags to consider are flags that determine the maximum
amount of register and specify cache configurations. After having optimized the kernel, our block size is probably no
longer the optimal, and we rerun the block size optimization.

The performance increased by a factor 3.5 on the 840M, and 5.5 on the GTX 780 after these optimization steps.
One surprising point is that the optimization steps have very different effect on different architectures. For example,
the K20 and GTX780 increased to over 5 times the performance, whereas the K80, P100 and V100 increased by only
half of that. Some steps also actually decrease the performance on one GPU, whilst having a positive effect on others.
This was especially noticeable with our attempts at optimizing register use. It should still be noted that none of the
optimizations steps that reduced shared memory usage led to a slowdown on any of the GPUs, even though these steps
increased the computational workload per thread.

4.2.2 The Nonlinear Finite Difference Scheme

Our second scheme is a nonlinear second-order classical leapfrog scheme, also called centered-in-time centered-in-
space. In this scheme, the three physical variables are defined on a staggered grid, and are updated using separate
kernels. Each kernel reads all three variables from GPU main memory, performs computations, and writes back the
result. The computational work in these three kernels is significantly less than for the high-resolution scheme, making
this scheme even more memory bound. However, this also means that only four shared memory buffers are needed
(three for the variables from the current time step and one for the constant depth). The initial profiling shows that the
occupancy is 100% for all three kernels.

Due to its simplicity, this type of kernel leaves less headroom for optimization than the aforementioned high-
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Figure 5: Four screenshots from the Nvidia Visual Profiler, illustrating the effect of optimizations for the nonlinear
scheme. The top figure shows the original performance, and in the second we introduce multiple streams so that the
three physical variables can be computed independently. In the third figure we reduce the number of blocks that are
needed for the boundary condition kernels, and finally we compute all three variables within one kernel in the bottom
figure. The horizontal time scale is about 7 ms and equal for all four figures, and shows that computing all variables in
a single kernel gives the highest performance gain.

resolution scheme. For example, the compilation flag �-use_fast_math, which had a dramatic effect for the
high-resolution scheme, has only a marginal effect on this kernel because it performs less mathematical operations
and uses few registers already. One thing that we can optimize, however, is to use concurrent kernel execution, since
all three variables can be updated simultaneously. Unfortunately, each kernel already occupies all available resources
on the GPU, and therefore the effect turns out to be marginal, as shown in Figure 5. The figure also shows that the
boundary condition kernels took too long time, and directed our attention to them. These could with relative ease be
optimized to take an insignificant amount of time.

Because we launch three kernels to update the variables, we read the variables η, hu and hv multiple times from
GPU main memory for every iteration. By carefully gathering these kernels into one, we can reduce the number of
variables read and written from GPU main memory from 16 to ten. After this optimization, our profiling shows a 36%
decrease in memory traffic, compared to the theoretical 37.5%. This directly translates to an equivalent improvement
in performance, as shown in the lower panel of Figure 5.

By merging the three kernels into one, the occupancy decreased to 62.5%, as each thread now requires more
registers. Several attempts were made to reduce this number, but none of our attempts helped the compiler to do
a better job. One way of forcing fewer registers is to set the �-maxrregcount compilation flag. However, this
implies that registers are spilled to local memory (cache on the GPU), and even though the occupancy increases, the
actual performance decreases. The final results from optimizing the nonlinear scheme is shown in Figure 6, and the
optimizations increase performance of the CUDA versions by between two to three times on all seven GPUs.

4.2.3 The Linear Finite Difference Scheme

The final scheme solves the linearized shallow-water equations using a forward-backward linear finite-difference
scheme [49] and is asymmetric in time. It consists of three simple kernels, in which the most recent results are always
used (similarly to Gauss-Seidel iteration):

hun+1 ← F(ηn, hvn, hun),
hvn+1 ← G(ηn, hvn, hun+1),
ηn+1 ← H(ηn, hvn+1, hun+1).

In order to reduce the amount of memory read from GPU main memory, we apply the same strategy as for the
nonlinear scheme and carefully combine all three kernels into one. Since the execution order has to comply with the
data dependencies, we need to read extra input data (referred to as ghost cells or computational halo) for all variables
at time step n. We then compute hun+1, hvn+1, and finally ηn+1. Our profiling shows that this reduced the amount of
memory read and written to GPU main memory by 50%.
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The profiling now tells us that memory dependencies are the main bottleneck, and that the GPU has no eligible
instructions for about 60% of the cycles. Without a major redesign of the algorithm, there is typically little we can do
to improve the kernel further, but for completeness we added the �-use_fast_math compilation flag. However, since
the kernel is simple and heavily memory bound the flag had a negligible impact.

The overall performance increase is more than two times for the laptop 840M GPU and the server V100 GPU,
but only around 40% for the others. It should also be noted that this kernel is the one with the smallest negative
performance impact when moving from OpenCL to CUDA.

4.3 Backporting Optimizations to OpenCL
To do a fair comparison of the performance of PyCUDA and PyOpenCL, we need to back-port our optimizations to
PyOpenCL. As most of the optimizations are carried out in the CUDA source code, it is a relatively simple matter of
copying the optimized code into the original OpenCL kernels, and update the code according to Table 3. In the Python
code, the loading of the separate kernels for the linear and nonlinear schemes are replaced by the new merged kernels,
and the input arguments are updated to correspond to these optimizations. Active and appropriate use of a version
control system and regression testing is crucial in this work.

Porting compiler flags can in general be a greater challenge, as there are no one-to-one overlap between the compile-
time options for the two languages. However, in our case only the �-use_fast_math compilation flag is used in the
final PyCUDA version, and it has a matching counterpart, -cl-fast-relaxed-math, that is passed to PyOpenCL’s
API when compiling the kernels.

4.4 Comparing Performance
The overall performance gain of our optimization is shown in Figure 6, where all results are given in megacells
per second normalized with respect to the original PyOpenCL implementation in the left-hand column and GPU
bandwidth (see Table 2) in the right-hand column. The original porting from PyOpenCL to PyCUDA gave a noticeable
reduction in performance for the high-resolution scheme on all GPUs. After careful examination, we attribute this to
different default compilation flags in PyCUDA and PyOpenCL: In PyCUDA, the fast-math flag was shown to double
the performance for the high-resolution scheme, while we found that it gave less than 5% performance gain with
PyOpenCL. Note that the slowdown in the original porting is much less for the linear and nonlinear schemes, as these
schemes contain fewer complex mathematical operations, and we instead observe a varying effect on performance of
porting the original OpenCL code to CUDA. When examining the numerical schemes one by one, we see that the
optimizations performed for the high-resolution scheme appears to be highly portable when back-ported to PyOpenCL
for all GPUs. For the tuned nonlinear scheme, however, we see that the 840M and V100 GPUs give significantly higher
performance using CUDA than OpenCL. Finally, for the linear scheme, the performance is similar for all GPUs, and
only the 840M and V100 GPUs benefit significantly from the optimization effort. In total, we see that certain scheme
and GPU combinations result in a significant speedup for CUDA over OpenCL, but we cannot conclude whether
this is caused by differences in driver versions or from other factors. We are therefore not able to claim that CUDA
performs better than OpenCL in general. When looking at the performance normalized with respect to the specific
GPU bandwidth, we see that the 840M laptop GPU offers the highest performance for all schemes, followed by the two
most recent high-end GPUs, the V100 and P100.

4.5 Measuring Power Consumption
We measure power consumption in two ways. The first method is by using the nvidia-smi application, which can be
used to monitor GPU state parameters such as utilization, temperature, power draw, etc. By programmatically running
nvidia-smi in the background during benchmark experiments, we can obtain a log containing a high-resolution power
draw profile for the runtime of the benchmark. The downside of using nvidia-smi is that information about power draw
is only supported on recent high-performance GPUs, and we have therefore only benchmarked the power consumption
with nvidia-smi on the two most recent Tesla GPUs, the P100 and V100. Further, nvidia-smi monitors the energy
consumption of the GPU only, meaning that we do not have any information about energy consumed by the CPU. For
each experiment, nvidia-smi is started in the background exactly 3 s before the benchmark, and is configured to log the
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Figure 6: Performance of original, ported, and optimized kernels measured in megacells per second. The left column is
normalized with respect to original performance, and the right column with respect to the theoretical GPU bandwidth.
Notice that there is relatively little difference between CUDA and OpenCL, whilst there is a significant difference in
how effective the tuning is for the different architectures. Furthermore, there is a significant loss of performance when
porting from OpenCL to CUDA in our original approach for the high-resolution and nonlinear schemes. From our
experience, this relates to how the two languages optimize mathematical expressions with and without the fast math
compilation flags. Also notice that the 840M, V100 and P100 GPUs achieve the best performance relative to the GPU
bandwidth.
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power draw every 20 ms. This background process is stopped again exactly 3 s after the end of the simulation. This
approach allows us to measure the energy consumption of the idle GPU both before and after each benchmark, and
we ignore the idle sections when computing the mean and total power consumption for each experiment. All results
presented here are with the idle load subtracted from the experiment results.

The second method is to measure the total amount of energy used by the entire computer through a watt meter.
The use of the watt meter requires physical access to the computer, and we are therefore restricted to do measurements
on the laptop and desktop, containing the GeForce 840M and GeForce GTX780 GPUs, respectively. The watt meter
offers no automatic logging or reading, but displays the total power used with an accuracy of 1 Wh. To get sufficiently
accurate readings we need to run each benchmark long enough to keep the GPU busy for approximately one hour, after
which we read the total and mean power consumption for each experiment. Before and after each benchmark, we also
record the background power of the idle system, and the maximum recorded power during the experiment, to monitor
whether the operating system is putting any non-related background load on the computer. It should also be noted that
the battery was removed from the laptop during these experiments. Similarly to the first method, we subtract the idle
loads from the result of each experiment, but note that the addition increased load from the CPU will still be included.

4.6 Comparing Energy Efficiency
Figure 7 shows the results from the power efficiency experiments using the watt meter on the laptop (840M) and desktop
(GTX780). The top row repeats the results for computational performance also shown in Figure 6 for the relevant
GPUs, whereas the second row show the normalized mean power consumption with respect to the original OpenCL
versions. The first thing we notice is that CUDA seems to require less power on the 840M compared to OpenCL for
all versions of the three schemes. On the GTX780, however, there are no differences between the two programming
models for equivalent versions. In fact, only the tuned high-resolution scheme seems to be different from the others
(using about 30% more power), and this behavior can also be seen on the 840M. The power efficiency of the three
schemes is shown in the bottom row in Figure 7, and we see that on the 840M the tuned CUDA versions are the most
power efficient. This is because CUDA is both more efficient and uses less power on this system. On the GTX780,
CUDA and OpenCL have equivalent power efficiency for all tuned schemes.

The results for the Tesla P100 and Tesla V100 are shown in Figure 8. The top row shows the computational
performance in megacells per second, repeating the results from Figure 6. The second row shows the mean power
used by each version of the three schemes. Note here that on the V100, both CUDA versions for the nonlinear scheme
use 60–90% more power than the OpenCL versions, which is the opposite result compared to the 840M results. For
both the linear and high-resolution schemes, the results do not differ significantly in favor of either CUDA or OpenCL,
but the tuned OpenCL version uses slightly more power for the high-resolution scheme. When we consider the power
efficiency in the bottom row, we see that the tuned CUDA versions are the best versions for all schemes. In particular
for the nonlinear scheme, this is mostly due to the large difference in computational efficiency between CUDA and
OpenCL for this particular scheme on this particular GPU. For the P100, however, the mean power consumption is
almost the same for all versions of each scheme, except for the high-resolution scheme which has an increased mean
power consumption for the tuned versions. The increase in mean power consumption is however less than the increase
in computational performance, and the high-resolution scheme also has a higher energy efficiency when tuned.

In general, we observe that all experiments show a mean power usage within about 30% of the original OpenCL
versions, with the exception of the nonlinear scheme on the V100. On the other side, the computational performance
increases up to 5 times (the high-resolution scheme on the GTX780). This shows that the most important factor for
improving power efficiency is to increase computational performance.

4.7 Tuning Block Size Configuration for Energy Efficiency
In the previous section, all benchmarks were configured using the optimal block size configuration for computational
efficiency. Here, we analyze how sensitive power efficiency is to the block size configuration, and whether there is
other optimal configurations if we aim for power efficiency instead of computational performance.

Figure 9 shows benchmark results for the three different schemes for a wide range of block size configurations.
The top row shows computational efficiency, in terms of computed megacells per second, and confirms how sensitive
the performance for all three schemes are to different configurations, similarly to the results from Figure 3. The
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Figure 7: Comparison of original, ported and optimized codes measured in megacells per second (top row), mean
power usage (mid row), and megacells per joule (bottom row), normalized with respect to the original OpenCL
implementation, for the laptop (840M) and desktop (GTX780) GPUs. The power is measured through a watt meter,
and represents the power consumed by the entire computer. Note that the CUDA versions requires less power than
the OpenCL versions on the 840M, whereas there are no differences between equivalent versions on the GTX780. In
terms of power efficiency, CUDA is more efficient than OpenCL on the M840, whereas the GTX780 gives the same
power efficiency.
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Figure 8: Comparison of original, ported and optimized codes measured in megacells per second (top row), mean
power usage (mid row), and megacells per joule (bottom row), normalized with respect to the original OpenCL
implementation, for the Tesla P100 and V100 GPUs. The power is measured through nvidia-smi, and represents the
power consumed by the GPU only. On the V100, there are only minor differences in mean power consumption between
different versions of the linear and high-resolution scheme, but CUDA uses more power than OpenCL for the nonlinear
scheme. CUDA is, however, more power efficient than OpenCL for all three tuned schemes on this GPU. On the P100,
the mean power consumption is equal for all versions of the linear and nonlinear schemes, which means that power
efficiency becomes equivalent to computational efficiency. For the high-resolution scheme we see that the mean power
consumption increases for the tuned codes, but the computational performance increases more, meaning that the power
efficiency is still improved by 30–40%.
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Figure 9: Computational performance (top), mean power consumption (middle), and energy efficiency (bottom) for
the three numerical schemes for different block size configurations on the Tesla P100 GPU. Notice that all three
measures change rapidly and unpredictably between the different configurations, and that there does not seem to be
a direct translation between high computational performance and the mean power consumption. The bottom row
shows that it is just as important to tune for optimal block size configuration when optimizing for energy efficiency
as when optimizing for computational performance, and that these two objectives cannot be expected to be fulfilled
simultaneously.
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optimal configurations with respect to computational efficiency are (16,16), (16,4) and (32,8) for the linear, nonlinear
and high-resolution scheme, respectively. The second row shows the mean power consumption for each execution.
By comparing the heat map of mean power usage with the computational efficiency, we see that high computational
performance does not necessarily translate into high mean power consumption. As a specific example, the most
efficient configuration for the linear scheme has a lower mean energy consumption than half of the configurations.
The final row of Figure 9 shows energy efficiency with respect to block size configuration, and again we see that
the results do not follow an easily predictable pattern across the different block sizes. Notice how the most energy
efficient block sizes ((32,24) for the linear and nonlinear scheme, and (32,32) for the high-resolution scheme) can
be recognized as configurations that have particularly low mean power consumption and are less than medium fast.
None of the most computational efficient configurations are among the very best configurations in terms of energy
efficiency. These results show that block tuning for computational efficiency and for energy efficiency are not the same.
However, because a performance tuned code has a lower time-to-solution, we can in general claim that performance
tuning increases the power efficiency proportionally to performance.

5 Summary
We have presented our experiences from working with CUDA and OpenCL from Python for an extensive period of
time6. Our conclusion is that using Python is as computationally efficient as C++ for our use, and we believe this to
be true for many other application areas as well. We have also benchmarked three different OpenCL codes, our ported
code in CUDA, our optimized CUDA code, and finally our OpenCL code with optimizations found using the CUDA
tools. Our results are shown for seven different GPUs, thus representing many of the GPU architectures in use today.
Finally, we have looked at the power consumption for all versions of the code and the potential for tuning for energy
efficiency.

One of our most important findings is that working with Python is significantly faster than using C++, as we
have previously done. We notice that the amount of research we are able to do in the same amount of time increases
dramatically, and that the code quality is higher with fewer bugs and crashes. The combination of PyCUDA/PyOpenCL
and the Jupyter Notebook led to a very productive development environment after addressing the initial crashes that
forced us to reboot often. For our application area, the overhead of using Python becomes negligible with respect to
performance.

The original motivation for using OpenCL was to support GPUs and similar architectures from multiple vendors.
Our motivation for changing from OpenCL to CUDA was because of the better software ecosystem for CUDA, and we
have been very happy with our decision. CUDA appears to be a much more stable and mature development ecosystem
with better tools for development, debugging and profiling for our hardware.

We found it interesting that our initial port from OpenCL to CUDA imposed a performance penalty, due to different
default compiler optimizations. Even though some authors have reported OpenCL to be slower than CUDA, we find
no conclusive results that support this in general. The performance gain varied much more with the GPU being used
than whether we used CUDA or OpenCL. In most of our experiments, tuned versions of CUDA and OpenCL was
found to have the same computational performance, with a few examples showing CUDA being faster than OpenCL.
Additionally, we found that the performance gain of a single optimization strategy will have vastly different effects
on the run time for different GPUs. Even though we profiled and optimized mainly using a laptop GPU, the highest
relative performance gain was for a server class and a desktop class GPU (the high-resolution scheme on the GTX780
and K20).

There does not seem to be any clear relationships between the power consumption when comparing different
schemes, optimization levels, GPUs, and programming models. When we consider power efficiency, we see that
CUDA performs better than OpenCL for all tuned schemes on the Tesla V100 and GeForce 840M GPUs, whereas
there are much smaller differences on the GeForce GTX780 and Tesla P100 GPUs. When we examine the impact of
performance tuning on power efficiency, there appears to be a systematic and clear relationship: A fast code is a power
efficient code.

In terms ofmean power consumptionwe find no clear relationshipswhen comparing different schemes, optimization

6The authors have worked with GPU computing from C++ for over ten years, and over four years from Python
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levels, GPUs, or programming models, but it seems to be just as important to consider block size configurations, as we
measure a factor two difference between the lowest and highest mean power for different configurations. We also see
that optimizing block size for power efficiency is not necessarily the same as optimizing for computational efficiency.
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Abstract

Forecasting of ocean drift trajectories is important for many applications, including search and rescue operations,
oil spill cleanup and iceberg risk mitigation. In an operational setting, forecasts of drift trajectories are produced based
on computationally demanding forecasts of three-dimensional ocean currents. Herein, we investigate a complementary
approach for shorter time scales by using the recently proposed two-stage implicit equal-weights particle filter applied
to a simplified ocean model. To achieve this, we present a new algorithmic design for a data-assimilation system in
which all components – including the model, model errors, and particle filter – take advantage of massively parallel
computing architectures, such as graphical processing units. Faster computations can enable in-situ and ad-hoc model
runs for emergency management, and larger ensembles for better uncertainty quantification. Using a challenging test
case with near-realistic chaotic instabilities, we run data-assimilation experiments based on synthetic observations
from drifting and moored buoys, and analyse the trajectory forecasts for the drifters. Our results show that even
sparse drifter observations are sufficient to significantly improve short-term drift forecasts up to twelve hours. With
equidistant moored buoys observing only 0.1% of the state space, the ensemble gives an accurate description of the
true state after data assimilation followed by a high-quality probabilistic forecast.

1 Introduction
Prediction of drift trajectories in the ocean has many applications that are important to society and the environment.
Examples include search and rescue operations, recovering objects lost at sea, planning of boom placements for oil spill
cleanup, and preventing collisions between icebergs and offshore installations. To produce high-quality drift trajectory
forecasts, it is important to have a good representation of ocean currents. This is not an easy task, as ocean currents
have large natural variability and there are typically few available observations. Furthermore, the size of ocean low-
and high-pressure systems, so-called eddies, is much smaller than their atmospheric counterparts, and it is challenging
to place them correctly in typical grid resolutions used by operational ocean models today.

The operational approach for drift trajectory prediction is to use the currents from the most recent ocean forecasts
directly [1]. These are imported from computationally expensive ocean circulation models, such as ROMS [2], which
solve the dynamic state of the ocean in three dimensions. Typically, a large portion of the simulation run-time is
spent on the data assimilation, which uses available real-world observations to correct the modeled ocean states that
serve as initial conditions for the next forecast. Common forecast ranges for ocean circulation models are three to five
days. Operational drift trajectory forecasts at the Norwegian Meteorological Institute (MET Norway) are produced by
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OpenDrift [1], which is an offline trajectory model that reads the ocean current forecasts to predict drift trajectories.
Although OpenDrift is computationally efficient, the ocean circulation models still require access to supercomputers.

This paper explores the option of using a recently proposed particle filter method applied to a simplified ocean
model for efficient drift trajectory forecasting. The aim is to build a data-assimilation system that can run efficiently
on commodity-level desktop computers, and also be extendable to supercomputers. We achieve this by using a
simplified ocean model and a data-assimilation method that both are able to take advantage of massively parallel
accelerator hardware, such as the graphical processing unit (GPU). This work is not intended as a substitute of current
operational systems, but as a complementary approach, in which the predicted currents may even be updated with
in-situ observations, e.g., during ongoing search and rescue operations. Furthermore, by enabling research models to
run on individual desktop and laptop computers, researchers are able to do more rapid prototyping. At the same time,
this work will contribute to more efficient simulations also on supercomputers, since all algorithms may be extended
to run on multiple GPUs and compute nodes.

The paper is organized as follows: We start by highlighting our contributions and reviewing related work relevant
for Lagrangian data assimilation with accelerated particle filters. In Section 2, we describe the data-assimilation
problem and summarize the key concepts of so-called proposal-distribution particle filters. We present the simplified
ocean model and model errors in Section 3, whereas Section 4 offers a detailed description of an algorithm for
running the chosen particle filter on this model. The latter two sections also discuss how the GPU is used for efficient
implementation of the computationally intensive components. In Section 5, we present numerical experiments of drift
trajectory ensemble forecasts, using an identical-twin experiment setup designed to resemble real-world ocean currents
and with configuration inspired by operational systems. Furthermore, we show and discuss the statistical validity of
the forecasts and examine the computational performance of the simulations. Finally, Section 6 contains a summary
and concluding remarks.

Paper contribution Wepresent an efficient GPU-accelerated data-assimilation system based on the recently proposed
implicit equal-weights particle filter (IEWPF) applied to simplified ocean models described by the rotating shallow-
water equations. The data-assimilation algorithm, the numerical scheme for evolving the ocean model, and the
algorithm for sampling locally correlated, well-balanced random model errors are all designed to take advantage of
massively parallel architectures. The data-assimilation system is tailored for observations of the ocean current obtained
from either free drifting buoys or moored buoys. We show numerical experiments for assimilating a challenging test
case with near-realistic chaotic behavior, along with drift trajectory forecasts. The results show that by assimilating
approximately 0.1% of the state space, the posterior ensemble mean strongly resembles the true state in the entire
domain, thus enabling an accurate drift trajectory forecasts. This is also the first time that the IEWPF method is applied
to high-dimensional geophysical problems. Furthermore, we show that the particle filter has well-behaved statistical
properties, and that the computational efficiency of the data assimilation is well-balanced with respect to the model.
To the best of our knowledge, there exists no previous massively parallel implementations of a state-of-the-art particle
filter applied to a high-dimensional geophysical system.

Related work Particle filters, and more generally Sequential Monte Carlo (SMC) methods, constitute a large class
of numerical methods for statistical inference. It is well-known that the standard particle filter is prone to degeneracy
in high-dimensional systems [3, 4, 5], and there have been several attempts at designing particle filters without this
limitation. A few such particle filters have been used on high-dimensional, near-realistic applications in the geosciences.
Ades and van Leeuwen [6] use the equivalent-weights particle filter on a high-dimensional, simplified, ocean model
based on the barotropic equations, showing that it is possible to avoid the degeneracy problem in high-dimensional
systems, at the cost of a biased estimate. Although the scheme performed well, the bias grows with ensemble size.
Poterjoy, Sobash and Anderson [7] use a local particle filter on a weather research and forecasting model, in which
the bootstrap particle filter is applied locally to observations, and particle states are merged in state space between the
locations of the observations. However, it remains problematic to glue particles from these local updates together to
full particles that span the whole model domain. The smoothing needed can easily destroy delicate balances in the
flow. Furthermore, the minimum size of the local areas is set by physical length-scale constraints, typically meaning
that too many observations are within a local domain to avoid degeneracy. In practise, a minimum weight value is set,
meaning that not all information is extracted from the observations. Hence, also localisation is not solving the problem.
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A recent review by van Leeuwen et al.[8] discusses most recent developments on particle filters for high-dimensional
geophysical systems.

Several implementations of standard particle filters for parallel architectures such as GPUs exist, but mainly within
other scientific disciplines than geosciences. Lopez et al. [9] present GPU-implementations of a particle filter (with
sequential importance resampling) and auxiliary particle filter to detect anomalies in manufacturing processes, and
show sufficient performance for real-time application. Gelencsér-Horváth et al. [10] introduce a modified cellular
particle filter with Metropolis resampling on the GPU for real-time applications. LibBi [11] is a software package for
state-space modelling and Bayesian inference capable of utilizing GPUs. Several particle filters are implemented in
LibBi, e.g., particle Markov Chain Monte Carlo (pMCMC) and SMC2. Other methods in LibBi include the Extended
Kalman Filter (EKF) and parameter optimisation routines. Bai and Hu [12] demonstrate particle filter-based data
assimilation for simulation of wildfire spread, with parallel sampling and weight computation based on the MapReduce
programming model. In a more recent work, Bai et al. [13] describe more efficient routing of particles between
processing units in the resampling step of a distributed particle filter.

Other data-assimilation methods have also been subject to GPU-accelerations. Blattner and Yang [14] give a
performance study of a GPU-implementation of the local ensemble transform Kalman filter, Wei and Huang [15]
explore a GPU-based implementation of the EKF, and Quinn and Abarbanel [16] present a general path integral Monte
Carlo approach applied to a neuron model. They all report massive speed-ups on the order 100-1000 over CPU
implementations. Theoretical speed-up based on hardware specifications for FLOPS and memory bandwidth is on the
order 10 [17].

Assimilation of Lagrangian data is challenging due to the potential complexity of the trajectories and the need
for transforming the data into Eularian velocity data (for fixed-grid or spectral numerical models). Apte, Jones
and Stuart [18] use particle smoothing for assimilating Lagrangian data from drifters and present three methods for
sampling from the exact posterior probability density function based on the Langevin equation and the Metropolis-
Hastings algorithm. Their methods are shown to produce better results than the ensemble Kalman filter using perturbed
observations. Spiller, Apte and Jones [19] use both particle filtering and smoothing (exact posterior sampling) for
assimilating Lagrangian data from gliders and drifters. They propose a new observation operator to deal with the
high uncertainty in the locations of the observations. Spiller et al. [20] investigate the divergence of a particle
filter for the point-vortex model. They introduce backtracking particle filters and show that the filters outperform
EKF for the two-point vortex system. Other methods than particle filters and smoothers have also been successfully
implemented [21, 22, 23, 24, 25].

2 The data-assimilation problem
There are many potential sources for errors in the simulation of atmospheric and oceanographic processes. These
errors may arise from physical processes missing in the mathematical model, discretization errors in the numerical
method, sub-grid effects that can not be resolved in the discretized model, and uncertainties in model parameters, initial
conditions, forcing and boundary conditions. Hence, we do not only wish to simulate the behavior of the unknown
physical state, denoted by ψ, but rather its probability density function (pdf), p(ψ). As geophysical applications tend to
be very high-dimensional and driven by nonlinear processes, an analytic description of p(ψ) is generally unobtainable,
and an ensemble-based Monte-Carlo simulation is one way to measure the uncertainties in the system. In its simplest
form, ensemble-based statistical simulation consists of a set of Ne independent state vectors {ψi}i=1,...,Ne , which
are initialized according to uncertainties in the model parameters and initial conditions. The state of each ensemble
member is then simulated independently according to the model equation,

ψn
i = M

(
ψn−1
i

)
+ βn−1

i , for n = 1,2, ..., (1)

in which the model M evolves the solution deterministically from time tn−1 to tn, and βn−1
i is an optional stochastic

variable that represents realizations of the errors in the model. The pdf of the system can then be represented through
the statistical properties of the resulting ensemble, e.g., as

p(ψn) = 1

Ne

Ne∑
i=1

δ
(
ψn − ψn

i

)
, (2)
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in which δ is the Dirac delta function.
If an observation yn of the system is available at time tn, this information can be used to improve the obtained

probability density. Typically, the observation is also influenced by uncertainty, as

yn = H
(
ψn
true

)
+ εn, (3)

in which H is the observation operator that maps the true state ψn
true to observation space and εn is a stochastic

observation error. The observations typically only cover parts of the system, so that the size of the observation vector
(denoted Ny) is smaller than the size of state vector (denoted Nψ). This is particularly true for geophysical systems, for
which it is normal that Ny � Nψ (e.g., y can be the value and direction of the ocean current at a single point in space
and time). Because of this, we can not simply replace the observed parts of ψn with the values in yn directly, and we
have to consider the conditional pdf p (ψn |yn). The data-assimilation problem consists of finding this conditional
density, and its fundamental building block is Bayes theorem:

p(ψn |yn) = p(yn |ψn)p(ψn)
p(yn) . (4)

The original pdf p(ψn) is here termed the prior probability, as it represents our understanding of the system prior to
assimilating the information in the observation. The likelihood p(yn |ψn) expresses the probability of observing yn

under the assumption that ψn is the true state of the system. The marginal probability p(yn), i.e., the probability of
observing yn, acts mainly as a normalization constant and ensures that the resulting posterior probability density is a
pdf.

2.1 Standard particle filter
The standard particle filter is an ensemble-based data-assimilation technique that uses a direct evaluation of Bayes
theorem. Each particle (equivalent to an ensemble member), ψi , is assigned a weight wi that gives the relative
importance of that particle in the ensemble. Typically, all Ne particles are initialized with weight w0

i = 1/Ne, as they
are sampled independently from the pdf of the initial conditions, p(ψ0). Each particle is then simulated independently
according to (1) until observation time tn. By applying (4) directly with (2) as the prior density, and by considering
the marginal probability as a normalization constant, the posterior distribution is expressed as

p(ψn |yn) ∝
Ne∑
i=1

p(yn |ψn
i )∑Ne

j=1 p(yn |ψn
j )
δ(ψn − ψn

i )

=

Ne∑
i=1

wn
i δ(ψn − ψn

i ).
(5)

Here, the likelihood is used to update the weights wn
i for each particle, so that the posterior is represented by a weighted

discrete distribution. We can evaluate the likelihood if we know the pdf for the observation. For instance, if the
observation error is Gaussian, εn ∼ N(0,R), the weight for particle ψi becomes

wi ∝ exp

[
−1
2

(
yn − H(ψn

i )
)T R−1

(
yn − H(ψn

i )
) ]
. (6)

As some particles inevitably end up with very low weights, they no longer carry significant statistical value. To
improve the statistical coverage in the high-probability regions, the ensemble is resampled according to the weight
distribution in (6), so that {ψn

i }i=1,...,Ne ∼ p(ψn |yn). All weights for the resampled particles are then reset to 1/Ne.
This is known as sequential importance resampling. Several schemes can be used for this resampling [4], and in this
work we consider the residual resampling scheme [26]. Note that if the model (1) has β = 0, it is important that
duplicated particles are given a perturbation to avoid ensemble collapse and completely overlapping particle trajectories.
With a stochastic model, however, exact duplications will evolve differently through independent realizations of βi .
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One of the main advantages of the standard particle filter is that it preserves all physical properties throughout the
simulation, as the final particles are generated from successful simulation runs and not throughmanipulation of the state
vectors. A drawback, however, is that the ensemble is prone to collapse when the dimension of the observation space
increases [3, 4, 5]. In high-dimensional systems, all particles end up in the tail of the likelihood, with the consequence
that only very few particles (perhaps even just one) gain a much higher weight than all others. The distribution then
collapses as all Ne particles are resampled from few (or a single) particles that have non-zero weights. This problem
is often referred to as the curse of dimensionality.

2.2 The implicit equal-weights particle filter
One technique used for overcoming the curse of dimensionality is to sample the states ψn

i from a proposal density, q,
with an appropriate compensation in the weights. First, (1) shows that the pdf of the state at time tn is related to that
of the previous time by the Markovian property

p(ψn) =
∫

p(ψn |ψn−1)p(ψn−1) dψn−1 ≈ 1

Ne

Ne∑
i=1

p(ψn |ψn−1
i ), (7)

where we assumed that all particles have the same weight at time tn−1. In the standard particle filter, we draw the
evolution of the particle from p(ψn |ψn−1

i ), which is equivalent to solving the model equation for one time step. We
can choose it differently, by first multiplying and dividing the argument of the integral by a proposal density q and then
draw the particle evolution from that density,

p(ψn) = 1

Ne

Ne∑
i=1

p(ψn |ψn−1
i )

qi(ψn |ψn−1
1:Ne

, yn)qi(ψ
n |ψn−1

1:Ne
, yn). (8)

We have large freedom in how to choose q, but the support of q is required to be equal to or larger than the support of
p(ψn |ψn−1

i ), and it should preferably be easy to sample from. Here, the proposal is chosen to be conditioned on the
observation yn and all particle states at the previous time step, ψn−1

1:Ne
, and it depends on the parent state ψn−1

i via index
i. Using the proposal density in Bayes theorem (4) gives us

p(ψn |yn) = 1

Ne

Ne∑
i=1

p(yn |ψn)p(ψn |ψn−1
i )

p(yn)qi(ψn |ψn−1
1:Ne

, yn)qi(ψ
n |ψn−1

1:Ne
, yn). (9)

By now sampling ψn
i ∼ qi(ψn |ψn−1

1:Ne
, yn), the posterior becomes

p(ψn |yn) =
Ne∑
i=1

wn
i δ(ψn − ψn

i ), with wn
i =

p(yn |ψn
i )p(ψn

i |ψn−1
i )

Nep(yn)qi(ψn
i |ψn−1

1:Ne
, yn) . (10)

One choice of q is the optimal proposal density [27], in which qi(ψn |ψn−1
1:Ne

, yn) = p(ψn
i |ψn−1

i , yn). By considering
a linear observation operator H and Gaussian model and observation errors, β ∼ N(0,Q) and ε ∼ N(0,R), the optimal
proposal density is equivalent to N(ψn,a

i ,P), with

ψn,a
i = M(ψn−1

i ) +QHT
(
HQHT + R

)−1
dni (11)

and
P =

(
Q−1 + HT R−1H

)−1
, (12)

in which
dni := yn − HM(ψn−1

i ) (13)
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is called the innovation for particle i. The proposal is optimal in the sense that it gives optimal variance in the weights
for proposals of the form q(ψn |ψn−1

i , yn), but as it turns out, it is not sufficient to avoid ensemble degeneracy [3, 5, 28].

The main particle filter we will use in this work is an extension of the implicit equal-weights particle filter (IEWPF).
In the IEWPF [29], q is chosen similar but not identical to the implicit particle filter [30] by choosing the new particles
as

ψn
i = ψ

n,a
i + α

1/2
i P1/2ξi, (14)

in which ξi is a draw from the standard multivariate Gaussian distribution ξi ∼ N(0, I) and αi is a function of both ξ
and ψn−1

i . Furthermore, we choose αi such that the weights of all particles become equal to a target weight, which
is equal to the lowest optimal proposal weight of all the particles. This choice is needed to ensure that we keep all
particles in the ensemble, but comes with two drawbacks. Firstly, when the number of particles increases, the worst
particle will be located further and further away from the observations, so the scheme enforces all particles to move
further away from the observations. Secondly, numerical experiments show that the spread of the particles becomes
underestimated in low-dimensional systems (its behaviour in high-dimensional systems is harder to assess as we do not
know the true answer). Not withstanding these negatives, the IEWPF is the first particle filter that has uniform weights
in high-dimensional systems.

To alleviate these two issues, Skauvold et al. [31] extended the scheme by proposing an update equation for each
particle of the form:

ψn
i = ψ

n,a
i + α

1/2
i P1/2ξi + β1/2P1/2νi, (15)

in which νi is a second random vector νi ∼ N(0, I) and β is a covariance scaling parameter common to all particles. The
introduction of the new term enables us to remove the underestimation of the particle spread by tuning β. Furthermore,
we can choose αi and β such that the target weight is equal to the mean of the optimal proposal weights. The
consequence of this choice is that the particles are not forced away from the observations when the ensemble size
increases. With this, both problems are solved, and this new scheme is the basis for our numerical experiments. Details
of the scheme are given in A.

3 Simplified ocean model for massively parallel architectures
Traditional ocean circulation models [2, 32] are generally written to resolve as many of the physical processes in the
ocean as possible, and typically consider conservation of mass, momentum, energy, and tracers (salt and temperature)
in three dimensions. This makes them very computationally demanding and limits the feasible number of ensemble
members. The number of members in an operational ensemble prediction system today is usually between 10 and
100. Instead of a full three-dimensional ocean circulation model, we assume that the vertical velocities are negligible
compared to the horizontal movement, and let the nonlinear shallow-water equations in a rotational domain serve as
a simplified model. Thus, we vastly reduce the state space of the problem. In operational settings, the simplified
model may be initialized based on the most recent ocean state from a traditional ocean circulation model, and be
used to forecast short-term ocean currents. Furthermore, drift of Lagrangian objects in the ocean are typically driven
by the ocean currents, wind, and wave-induced forces (Stokes drift) [33], whereas in this work we only consider the
contribution from the ocean currents.

The shallow-water equations are in the class of hyperbolic conservation laws, which are often solved using explicit
finite-volume methods [34]. This class of problems is well-suited for efficient implementation on massively parallel
hardware, such asGPUs [35, 36, 37]. By also carefully tailoring the data-assimilation algorithms to use local operations,
we are able to run the most computationally demanding parts of the code on the GPU. Control flow and intrinsic serial
operations, however, are still carried out on the CPU. This way, we use each processor type for the task which it is best
suited for. Through this approach, we can efficiently run an ensemble of a simplified ocean model on commodity-level
desktop computers, reducing the requirements for access to supercomputers.

The GPU is an extreme case of a many-core processor, with hundreds or thousands of simple cores. Measured
in floating-point operations per second (FLOPS), a standard desktop GPU surpasses the performance of the top
supercomputer in the world ten years ago [38], and is today roughly ten times as fast as the CPU. GPUs were initially
designed for efficient graphics operations, but have become increasingly popular for general-purpose computing over
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the last 15 years. Due to their design for optimized throughput of data-parallel operations and low prices driven by
the gaming market, they became attractive accelerators when the steadily increasing CPU clock frequency came to
an end [39]. Programming languages such as CUDA and OpenCL, and easy access to highly specialized third-party
libraries1, debuggers and profilers, have further contributed to make them accessible for a wide range of computational
problems.

The programming model of the GPU is accessed through kernels, which are programs written in specialized
languages for running on the GPU in a SIMD/SIMT (Single Instruction, Multiple Data/Threads) fashion. The threads
are organized in blocks, which again are organized in a grid. The grid (and blocks) can be one-, two- or three-
dimensional, and the ideal choice of block-size configuration, denoted by (bx, by), will vary for different kernels and for
different GPUs. Each thread can communicate with other threads in the same block through the shared memory, which
can be described as a programmable cache or scratchpad memory. Communication between threads in different blocks,
however, requires costly global synchronization. The GPU does not share the main CPU memory, and all required
data therefore needs to be explicitly transferred between the GPU and CPU. This operation is relatively expensive and
should be minimized for optimal performance. For a more thorough introduction to GPU computing; see, e.g., Sanders
and Kandrot [40].

To achieve both computational performance and code development efficiency, we treat the computational intensive
part of the code and the program flow in different ways. PyCUDA [41] is a Python package that exposes the complete
CUDA run-time API and allows us to call native GPU kernels written in CUDA directly from Python. This way,
one can write the program flow, as well as pre- and post-processing of the specific applications, in high-level Python,
and at the same time ensure that the computationally expensive simulation loop runs as efficient as possible through
low-level CUDA C/C++. By taking advantage of widely available and popular packages – including NumPy [42] and
matplotlib [43], and environments such as the Jupyter Notebook [44] – the code and experiments can be developed
efficiently through rapid prototyping.

In the remainder of this section we give an overview of the model and the model errors, and show how we utilize
the GPU to increase computational efficiency.

3.1 The simplified ocean model
The shallow-water equations consider three conserved variables; the elevation η of the free ocean surface relative to its
equilibrium level, and the volume transport hu and hv along the abscissa and ordinate, respectively. The equilibrium
depth is given by Heq and is here assumed to be constant, so that the full height of the water column becomes
h = Heq + η. With gravitational acceleration g and Coriolis parameter f , the shallow-water equations can be written

(η)t + (hu)x + (hv)y = 0,

(hu)t +
(
hu2 +

1

2
gh2

)
x

+ (huv)y = f hv,

(hv)t + (huv)x +
(
hv2 +

1

2
gh2

)
y

= − f hu.

(16)

The equations represent a hyperbolic conservation law, and can be written in vector form as

ψt + F(ψ)x + G(ψ)y = Sf (ψ), (17)

for a state vector ψ = [η, hu, hv]T . Here, F and G are flux terms along the absicca and ordinate, respectively, and Sf

consists of the source terms due to the Coriolis forces.
The model operator M(ψ) will be the numerical scheme that solves (16) and evolves the state forward in time. We

use the high-resolution central-upwind scheme proposed by Chertock et al. [45], but with a reformulation that avoids
the expensive recursive formulation of Coriolis potential terms [46]. The scheme is designed to be well-balanced with
respect to the geostrophic balance,

hu = −gHeq

f
∂η

∂y
and hv =

gHeq

f
∂η

∂x
, (18)

1BLAS, RNG, FFT, image and signal processing, collective communication primitives, graph analytics, etc.
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which permits rotating steady-state solutions by balancing the gravitational and Coriolis forces. The numerical scheme
is solved on a Cartesian grid ΩM consisting of NM = nx × ny cells. The size of each cell is ∆x × ∆y, so that the cell
with index ( j, k), containing the value ψj ,k , is the cell centered at

(xj, yk) =
( (

j + 1
2

)
∆x,

(
k + 1

2

)
∆y

)
. (19)

The total size of the state vector ψ then becomes Nψ = 3NM . The time integration is solved by a second-order
strong-stability-preserving Runge-Kutta method, and the storage requirement for the scheme is therefore 2Nψ , as the
full state must be stored for two consecutive time steps.

The step size of the numerical scheme is limited by the CFL condition,

∆tscheme ≤ 1

4
min




∆x

maxΩM

���u ± √
g(Heq + η)

��� ,
∆y

maxΩM

���v ± √
g(Heq + η)

���


, (20)

in which the dominating term is the speed of gravitational waves,
√
g(Heq + η). Even though such waves occur in the

ocean, perhaps most notable through tides, their contribution to drifter motion is limited. Eddies and other rotation-
driven dynamics are much more important, but they operate on longer timescales. Nevertheless, the CFL-condition
in (20) must be satisfied to ensure numerical stability. To run the data-assimilation model on a relevant time scale,
we decouple the model operator M from the time step of the numerical scheme, and let the fixed model time step ∆t
consist of as many ∆tscheme steps as necessary. We evaluate the condition in (20) continuously to adapt ∆tscheme to
the most recent model state, using a Courant number of 0.8.

3.2 Small scale model errors
To account for errors in our model (e.g., missing physics), we introduce small-scale perturbations through the stochastic
variable, β = [δη, δhu, δhv]T , so that β is approximately drawn from N(0,Q). Thismodel error is generated by sampling
a random vector ξ ∼ N(0, I) and applying a covariance operator,

β = Q1/2ξ. (21)

This error is added to the model state after each model time step ∆t. We design the covariance operator based on two
requirements. First, since we aim to implement all components in the data-assimilation system to run efficiently on
massively parallel architectures, we design the covariance operator Q1/2 in terms of local operations. Second, it is
important that the stochastic model error does not introduce discontinuities or non-physical model states to the solution.

To make the perturbation of the ocean surface δη sufficiently smooth, it is generated according to a second-order
auto-regressive (SOAR) function given by

δηj ,k =

nx∑
a=1

ny∑
b=1

Q1/2
SOAR

(
Ωj ,k,Ωa,b

)
ξa,b, (22)

in which
Q1/2

SOAR(Ωj ,k,Ωa,b) = q0

(
1 +

dist(Ωj ,k,Ωa,b)
L0

)
exp

[
−dist(Ωj ,k,Ωa,b)

L0

]
. (23)

Here, q0 is a scaling parameter for the amplitude of δη, L0 is a measure of the correlation length scale, and
dist(Ωj ,k,Ωa,b) is the Euclidean distance between the center of the cells with indices ( j, k) and (a, b). Since the
covariance between points that are far from each other relative to L0 becomes zero, the computational work can be
limited to operate on local data points only, and this satisfies the first design requirement. Equation (22) can then be
written as

δηj ,k =

j+cSOAR∑
a=j−cSOAR

k+cSOAR∑
b=k−cSOAR

Q1/2
SOAR

(
Ωj ,k,Ωa,b

)
ξa,b, (24)
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Cell with cell center in ΩM

Grid point in ΩR

Figure 1: Alignment of nested grids with cΩ = 3. The grid ΩM contains cells and is used for evolving the numerical
model, whereas the grid ΩR contains point values and is used for applying the SOAR function on sampled random
numbers from N(0, I). For best possible assimilation of observations, an offset can be applied to ΩR so that one of its
grid points is co-located with the cell in ΩM in which the observation was made.

in which cSOAR is our cut-off value, tuned so that there is no contribution to δηj ,k from a distance larger than
cSOAR min(∆x,∆y) from cell Ωj ,k . Operations such as (24) are very well suited for implementation on the GPU.

A drawback to the expression in (24) is that the computational work and data dependency of the stencil is tightly
connected to the ratio between L0 and the cell size. To have better control of this workload, we introduce a coarse
random number grid ΩR, on which the standard normal distributed random numbers ξ are sampled, and apply the
SOAR function here. We choose the discretization of ΩR so that we obtain a good trade-off between computational
efficiency of (24), while maintaining a good spread of information within the correlated areas. The coarse grid will
have grid cells of size (∆̃x, ∆̃y) = cΩ(∆x,∆y), where cΩ is an odd number representing the coarseness ofΩR. Values on
ΩR are interpreted as point values, and we denote the number of grid points in ΩR by NR. By requiring that cΩ is odd,
we ensure that the point values defined onΩR are co-located with cell centers ofΩM , as show in Figure 1. Furthermore,
we choose the coarsening factor cΩ so that the cut-off factor in (24) can be chosen as cSOAR = 2. After having obtained
δη on ΩR through (24), we use bicubic interpolation, denoted by the operator IΩ, to obtain cell-averaged values on
ΩM .

To avoid that the perturbation β produces non-physical model states (the second design requirement), we use (18)
to ensure that β is in geostrophic balance. By discretizing (18) with central differences on the ΩM grid, δhu and δhv
are found from δη by

δhu j ,k = −
gHeq

f
δηj ,k+1 − δηj ,k−1

2∆y
and δhvj ,k =

gHeq

f
δηj+1,k − δηj−1,k

2∆x
. (25)

This operation is denoted by Q1/2
GB

. It should be noted that the derivatives of δη are approximated by (25), even though
they are analytically available directly from the bicubic interpolation. The reason is that geostrophic balance is only
maintained by the numerical scheme with respect to the grid resolution. The bicubic surface, however, is continuously
defined and will typically contain oscillations on sub-grid scale, meaning that the derivatives of the bicubic surface
often will not be represented by the discrete values on the grid. The central differences in (25) are therefore better
suited for generating a model state that is in balance under the numerical scheme.

Evaluating the complete model error now consists of four operations,

β = Q1/2ξ = Q1/2
GB

IΩQ1/2
SOARξ, (26)

in which the first step is to sample ξ ∼ N(0, I). Note that Q1/2
GB

and Q1/2
SOAR are linear operators, whereas IΩ is a
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Figure 2: The small scale model perturbation β = [δη, δhu, δhv]T is generated by first sampling random numbers from
a standard normal distribution ξ ∼ N(0, I) on the coarse grid ΩR. We then give the random field a covariance structure
according to the SOAR function Q1/2

SOAR
, before interpolating the coarse random field onto the fine model grid ΩM

through IΩ to get δη. Finally, we calculate the corresponding momentum δhu and δhv to impose geostrophic balance.

nonlinear stencil. The input and output for each of the operations are

Q1/2
SOAR : ΩR → ΩR,

IΩ : ΩR → ΩM ,

Q1/2
GB

: ΩM → 3 ×ΩM ,

(27)

making the covariance operator act as
Q1/2 : ΩR → 3 ×ΩM . (28)

These operations are illustrated in Figure 2. First, the random field ξ is sampled on the coarse grid ΩR, and the SOAR
operator Q1/2

SOAR is applied to generate a coarse correlated field. Then, the correlated field is interpolated onto the
computational grid ΩM using IΩ, and δhu and δhv are computed to be in geostrophic balance with respect to δη.

It should be noted that our choice of the model error leads to a non-symmetric square root Q1/2, and that this
implementation-oriented definition of Q1/2 makes use of significantly fewer random numbers than variables in the
state vector. Using cΩ = 3, illustrated in Figure 1, as an example, we sample one random number for every nine η
variables, and none for hu and hv, since δhu and δhv are computed from (25). This results in one random number
for every 27 state variables. To justify why Q is a covariance matrix, we can imagine that all 3 × ΩM variables have
a corresponding sampled random number, but all those that are not involved in Q1/2

SOAR are given very small variance
and no correlation to any other variables, so that they become negligible in the above computations. It should finally
be noted that because Q1/2 is a nonlinear operator due to the bicubic interpolation, the β’s are not strictly Gaussian
distributed. This, however, is not a problem as the covariance of the β’s is still symmetric positive semi definite.
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3.3 Efficient implementation of model errors
The SOAR function, bicubic interpolation, and geostrophic balance are all local stencil operations that are simple to
parallelize, as each element of their output can be found independently from all other output elements. Generation
of random numbers ξ can further be done through the cuRAND library available through the CUDA toolkit. The
sampling of β is therefore well-suited for implementation on the GPU.

The SOAR function in (24) with cSOAR = 2 consists of a stencil operation depending on 5×5 input values centered
on the target cell. We use one GPU thread per output element. To minimize the amount of data read from global
memory, all threads within the same block cooperate to read the collectively required input data into shared memory.

In the bicubic interpolation IΩ, each value in the fine grid ΩM depends on the 4 × 4 points in the coarse grid
ΩR that surrounds its position. This means that the cΩ × cΩ output values that are located between the same four
coarse grid points have overlapping data dependencies. We still apply one GPU thread per output element, and obtain
geostrophically balanced δhu and δhv within the same kernel. Each block computes (bx + 2) × (by + 2) values of δη
and stores them temporarily in shared memory, so that bx × by values of δhu and δhv efficiently can be computed using
(25).

The memory footprint of obtaining β is two buffers of size NR, holding ξ and the result from Q1/2
SOARξ, respectively.

The memory footprint of the random number generator comes in addition to this. Note that we never store β itself, but
add it directly into the state vector ψ.

3.4 Synthetic truth and observations
The experiments in this paper are so-called identical twin experiments, meaning that the same model equations are
used to generate the synthetic true state and to evolve the ensemble. The true state ψtrue is generated from a known set
of initial conditions by running the numerical scheme with stochastic model errors as described above. Furthermore,
ND Lagrangian drifters (drifting buoys) are simulated to be advected passively along the ocean current according to a
simple forward Euler integration scheme.

Our data-assimilation experiments make use of two types of observations. The first type is based on “GPS” tracking
of drifters, and we denote the position of drifter d at observation time tm by (xm

d
, ym

d
)2. Since the location of a drifter at

a single point in time gives no information about the underlying ocean currents, we use the difference in two subsequent
drifter locations to estimate the drifter velocity, which in our model represents the current. The observation yn

d
then

becomes

ymd =

[
xm
d
− xm−1

d

tm − tm−1
Heq,

ym
d
− ym−1

d

tm − tm−1
Heq

]
+ εmd , (29)

in which εm
d
∼ N(0,R) is the observation error. Note that the observation is chosen to be an estimate of the state

variables hu and hv, but where we have ignored the contribution of the unobserved sea-surface level η. This simplifies
the observation operator H to be the state values in the cell corresponding to the drifter position. If drifter d is observed
at location (xm

d
, ym

d
), and this is a point within cellΩM

j ,k
, the observation operator applied to a particle state ψm

i becomes

H
(
ψm
i , (xmd , ymd )

)
=

[(hum
i )j ,k, (hvmi )j ,k

]T
. (30)

The size of the observation vector becomes Ny = 2ND .
One challenge with the above observation is the unobserved value of the sea-surface level η, as it in general is not

negligible compared to Heq , and therefore introduces a bias in (29). To compensate for this, we use the best available
estimate for η, namely the simulated η for each individual particle, and define the innovation related to drifter d for
particle i as

dmi,d = ymd
Heq + (ηmi )j ,k

Heq
− H

(
ψm
i , (xmd , ymd )

)
. (31)

The second observation type is observations from moored buoys, referred to simply as moorings in the remainder
of the paper, that give Eulerian point measures of the current throughout the entire simulation. To be consistent with

2Note that observations might not be available for each model time step, which is the reason for the use of subscript m to distinguish observation
time step tm from from model time step tn .
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(30) and (31), the mooring observations are provided in terms of hu and hv, but ignoring the contribution from η. The
observation from mooring µ, located at (xµ, yµ) in cell ΩM

j ,k
, is therefore defined as

ymµ =

[
(hum

true)j ,k
Heq

Heq + (ηmtrue)j ,k
, (hvmtrue)j ,k

Heq

Heq + (ηmtrue)j ,k

]
+ εmµ . (32)

As for the drifter observations, the size of the mooring observation vector becomes Ny = 2Nµ, for Nµ moorings.

3.5 Adjoint of the model error operators
Whereas the model error term depends on Q1/2 only, the IEWPF algorithm requires that we apply the full Q operator,
e.g., in (11). This requires us to express Q1/2,T , the adjoint operator for Q1/2 = Q1/2

GB
IΩQ1/2

SOAR. As mentioned in
Section 3.2, Q1/2 is not symmetric for our application. The operator Q1/2

SOAR is linear and symmetric, however, and
therefore its own adjoint Q1/2

SOAR = Q1/2,T
SOAR. The expression for geostrophic balance is close to linear, and Q1/2,T

GB
is

approximated simply by Heq + η ≈ Heq . The bicubic interpolation operator, IΩ, however, is nonlinear and its adjoint
is therefore challenging to express. Our solution to this is to approximate Q1/2,T entirely on the coarse grid ΩR and
define IT

Ω
to be a coarsening operator. The approximate adjoint operator for the model errors is then defined as

Q1/2,T ≈ Q1/2
SOARQ1/2,T

GB
ITΩ, (33)

with

ITΩ : 3 ×ΩM → 3 ×ΩR,

Q1/2,T
GB

: 3 ×ΩR → ΩR,
(34)

and Q1/2
SOAR as in (27), resulting in

Q1/2,T : 3 ×ΩR → ΩR . (35)

The full Q operator is always applied to the adjoint of the observation operator HT , which maps an observation
vector to state space. This means that Q1/2,T

GB
in all practical sense can be considered to operate on hu and hv at a single

grid point only. To preserve the location of these point values, we align the cell containing the observation with a grid
point in the coarse grid, by applying an offset on the location of grid points of ΩR. The observation values can then be
mapped directly from their position in ΩM to the corresponding location in ΩR. With an observation y = [yhu, yhv]T
located at grid point ΩR

j ,k
, we apply the adjoint geostrophic balance as

(
Q1/2,T

GB
ITΩHT y

)
(l,m)
=




−g
Heq f

1

2∆̃y
yhu if (l,m) = ( j, k + 1),

g
Heq f

1

2∆̃y
yhu if (l,m) = ( j, k − 1),

g
Heq f

1

2∆̃x
yhv if (l,m) = ( j + 1, k),

−g
Heq f

1

2∆̃x
yhv if (l,m) = ( j − 1, k),

0 otherwise,

(36)

for all grid points ΩR
l,m
∈ ΩR.

4 Efficient implementation of the IEWPF scheme
The objective of this section is to present how IEWPF can be efficiently implemented for a shallow-water model with
additive locally defined model errors, using the GPU as a target architecture. The algorithmic nature is not limited
to GPUs, and the following approach can be used on other architectures that take advantage of massively parallel
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operations. Section 2.2 gave a high-level overview of the method, whereas mathematical details important to the
implementation are given in A. This description assumes the use of drifter observations.

In this work, we also rely on using single-precision floating point arithmetic. This has a potentially huge impact on
performance, as some commodity-level GPUs have single- to double precision ratios of up-to 1:323. Hatfield et al. [47]
demonstrate how the accuracy of weather forecasts can be improved through reduced-precision data assimilation. They
ran a Lorenz ’96 “toy” atmospheric model and the ensemble square root filter at double-, single-, and half-precision,
and measured the performance through mean error statistics and rank histograms. By trading reduced precision for
increased ensemble size, the authors could reduce the assimilation error and improve forecast accuracy compared to
double-precision assimilation.

The starting point of our algorithm is an ensemble of forecast states {ψn−1
i }i=1,...,Ne having equal weights at the

time step before an observation yn is available. Each particle is then updated through the following pseudo-code:

1. Obtain the position of the drifter and find the innovations dni .

2. Pull each particle towards the observation according to the mean of the optimal proposal density (11). Simulta-
neously, obtain the value of the φi , which is a measure of the innovation and defined in (A.6).

3. Sample ξi, νi ∼ N(0, I), such that ξi ⊥ νi , and find the sizes of the two random vectors.

4. Find the parameter β and the target weight wtarget .

5. Solve the implicit equation given by (A.8) for αi for each particle.

6. Apply the covariance structures of P to ξi and νi , and calculate the posterior particle states according to (15).

Figure 3 summarizes the algorithm and shows the relevant equations for each step. The algorithm has only a single
synchronization point across all particles at step 4. Further, equations marked in green identify massively data-parallel
operations, for which we can execute efficiently on the GPU. The following subsections give details about each of the
steps just mentioned.

4.1 Observations and innovations
The innovation dni is a measure of how well the observed currents yn are represented by each particle state. To obtain
this value for IEWPF, each particle is evolved forward in time to the observation time tn by the model, ψn, f

i = M(ψn−1
i ),

but without adding the stochastic model error. The observation also contains the location of each drifter, which is used
to look up the relevant parts of the particle state vectors according to (29) and (30).

4.2 Optimal proposal particles
Based on the innovations dni , each particle state is pulled towards the observation according to the mean of their
individual optimal proposal density, given by (11). For simplicity, we start by considering a case with a single drifter
located in cell ΩM

j ,k
. In this case, the matrix S = (HQHT + R)−1 becomes a 2 × 2 matrix only and represents a

combination of the uncertainty or covariance structure from the model error in observation space and the observation
error. Since the correlation pattern that makes up the covariance matrix Q for the model error is the same across
the entire domain, HQHT (and thus also S) becomes independent of the observed drifter position. This means that
S can be computed and stored once and for all ahead of the assimilation loop. For now, we assume S is already
available, and look at how the particle states are pulled towards the observation. Thereafter, we will get back to how S
is pre-computed.

We start by expanding the expression for the mean of the optimal proposal density in (11) by usingQ = Q1/2Q1/2,T :

ψn,a
i = M(ψn−1

i ) +QHT (HQH + R)−1dni
= ψn, f

i +Q1/2
GB

IΩQ1/2
SOARQ1/2

SOARQ1/2,T
GB

ITΩHT Sdni .
(37)

3Nvidia’s GTX series, Maxwell generation GPUs.
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Prior ensemble
{
ψn−1
i

}
i=1,...,Ne

Observation yn

ψn, f
i = M

(
ψn−1
i

)
dni = yn − H

(
ψn, f
i

)

ci = wrest, ψn,a
i = ψn, f

i
For each drifter d:

ψn,a
i += QHdSdn

i,d

ci +=
(
dn
i,d

)T
Sdn

i,d

ξi, ν̃i ∼ N(0, I)
γi = ξ

T
i ξi

Nψ
NR
, ζi = ν̃

T
i ν̃i

Nψ
NR

νi such that νi ⊥ ξi

Step 1: Drifter positions and innovations

Step 2: Optimal proposal pull

Step 3: Perpendicular random vectors

Gather ci, ζi for i = 1, ...,Ne

Obtain and distribute wtarget and β

Step 4: Find target weight – global synchronization

...

c?i = wtarget − ci − (β − 1)ζi
αi =

Nψ
γi

W0

[
− γi

Nψ
e−γi/Nψ e−c

?
i /Nψ

]

ξi = αiξi + βνi
For each drifter d:
ξi = UΣ1/2ξi

ψn
i = ψ

n,a
i +Q1/2ξi

Step 5: Solve implicit equation

Step 6: Posterior particle state

Posterior ensemble
{
ψn
i

}
i=1,...,Ne

...

Implicit Equal-Weight Particle Filter

yn
H(ψn)

dn = yn −H(ψn)

η hu hv

ξi

Contribution from local SVD

Figure 3: An algorithmic overview of one data-assimilation cycle with the implicit equal-weights particle filter.
Operations that consists of massively parallel operations are identified on green background and are implemented on a
suitable architecture (such as the GPU). During the three first stages, each particle can be handled independently. As
stage 4 requires the values of ci and ζi from all particles, this step represents a global synchronization across the entire
ensemble. Thereafter, stages 5 and 6 can again be executed independently.

14



To see how the state of particle i is modified, we go through this expression step-by-step starting from the right. This
process is also illustrated in Figure 4.

Sdni : The innovation is the difference between observed and modelled current at the location of the drifter (Figure 4a).
This measure is scaled by the combined uncertainty from the observation and the model, represented by S.

IT
Ω

HT Sdni : The adjoint observation operator HT acts on the two-dimensional vector Sdni by mapping its two values
into state space at the indices representing hu j ,k and hvj ,k . The coarse grid ΩR is then positioned with an offset
so that the center of the cell ΩM

j ,k
containing the observation is aligned with a point value in the coarse grid

(Figure 4b).

Q1/2,T
GB

IT
Ω

HT Sdni : The adjoint of the geostrophic balance operator spreads the information given by the fields repre-
senting the coarse hu and hv onto a single field representing coarse η (Figure 4c), as described by (36).

Q1/2
SOARQ1/2,T

GB
IT
Ω

HT Sdni : The correlation in the surface elevation given by the SOAR function in (24) is applied
(Figure 4d), as the final part of the adjoint covariance operator Q1/2,T .

Q1/2
SOARQ1/2

SOARQ1/2,T
GB

IT
Ω

HT Sdni : The SOAR function is applied again (Figure 4e), as part of Q1/2.

IΩQ1/2
SOARQ1/2

SOARQ1/2,T
GB

IT
Ω

HT Sdni : We interpolate the result from ΩR to ΩM , which gives us the final modification
applied to η (η in (Figure 4f)).

Q1/2
GB

IΩQ1/2
SOARQ1/2

SOARQ1/2,T
GB

IT
Ω

HT Sdni : The modifications for hu and hv are found according to the geostrophic
balance (Figure 4f) described by (25).

Due to the correlation pattern we have chosen for the model error, all pulls that are added to the particle states are
constructed as dipoles to generate a local geostrophically balanced current in a given direction at a given point, without
making any other assumptions.

Sdni is calculated on the host before it is passed on to a GPU kernel for calculating the adjoint model error
operations Q1/2,T , and this temporary result (Figure 4d) is written into the buffer originally allocated for normal
distributed random numbers, ξ. The remaining operations (applying Q1/2 and adding the result to the current particle
state) are now identical to imposing the covariance structure of the model error for perturbing the particle state, and
this functionality is therefore re-used.

After stepping through the expression in (37), it is also easier to describe how the matrix S is constructed, by first
expanding its definition

S =
(
HQ1/2

GB
IΩQ1/2

SOARQ1/2
SOARQ1/2,T

GB
ITΩHT + R

)−1
. (38)

The observation operator can be considered in matrix form as a Nψ × 2matrix consisting of the value 1 in the positions
corresponding to the state values hu j ,k and hvj ,k in the first and second column, respectively, and zeros elsewhere. The
process just described in list form and depicted in Figure 4 can therefore be followed by replacing Sdni by [0,1]T and
[1,0]T , and applying the observation operator to the final result. This process gives us the two columns of S.

When the observation consists of ND > 1 drifters, we assume that the observations of the drifters are independent
of each other, making R diagonal. By also assuming that the drifters are sufficiently far from each other, the resulting
matrix from HQHT becomes block diagonal, which also means that

(
HQHT + R

)−1 is block diagonal with ND blocks
of the 2 × 2 matrix S from before. The optimal proposal pull is essentially a local manipulation of the particle state, as
seen in Figure 4, and the influence area of this operation is approximately 5∆̃x since we have applied the SOAR function
twice. In the experiments, however, we do not validate the proximity assumptions for the drifters, and contributions
from drifters close to each other are both added to the particle state. This way, the process just described can therefore
be applied at each drifter location independently, as seen in step two of Figure 3.

Note that the expression for ci defined in (A.5) and (A.6) can be calculated almost for free during this step. As each
drifter is handled independently, the contributions from all the drifters are summed as

ci = − log
(
wn−1
i

)
+

ND∑
d=1

dn,T
i,d

Sdni,d . (39)

15



0 25 50 75 100
0

20

40

60

80

100

yn

H(ψn,f)

dn = yn −H(ψn,f)

ΩM

Observation, particle state and innovation

(a) Observation yn, ob-
served forecasted particle
state H(ψn, f ), and the in-
novation dn.

0 10 20
0

5

10

15

20

ΩR

η

0 10 20
0

5

10

15

20

ΩR

hu

0 10 20
0

5

10

15

20

ΩR

hv

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

−1500

−1000

−500

0

500

1000

1500

−1500

−1000

−500

0

500

1000

1500

ITΩH
TSd

(b) Innovation dn scaled with the model and observation uncertainty S in the coarse grid
state space ΩR . The coarse grid has been centered onto the observation position. Note that
η = 0 as the observation contains no information on η.
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(f) The resulting pull in η is obtained by interpolating the previous result with IΩ, and
applying Q1/2

GB
to get the pull for hu and hv.
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Figure 4: The process of constructing the pull used to obtain the optimal proposal particle state, required in the second
step of the IEWPF algorithm. Note that the shown example is exaggerated for illustrative purposes.

Themost computationally efficientway to calculate the optimal proposal pull would include adding the contributions
from all drifters to the coarse grid before applying the second SOAR function and the interpolation, meaning that Q1/2

would only have to be applied once. However, it is essential that the optimal proposal pull is applied at the drifter
position with the precision of the computational grid ΩM , which means that the offset to align the drifter cell to the
coarse grid point might be different for each drifter. A coloring scheme could be constructed to maximize parallel
processing of the drifters, but this performance optimization has not been realized in our implementation.
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4.3 Sampling perpendicular random vectors
The next step is to sample ξi, νi ∼ N(0, I) in such a way that they become perpendicular. This is achieved by first
sampling ξi, ν̃i ∼ N(0, I) independently. We then decompose ν̃i = ν̃i, ‖ + ν̃i,⊥, so that ν̃i, ‖ and ν̃i,⊥ become parallel and
perpendicular to ξi , respectively, meaning that

ν̃i,⊥ = ν̃i − ν̃i, ‖ = ν̃i −
ν̃Ti ξi

ξTi ξi
ξi . (40)

We then scale ν̃i,⊥ to have the same length as ν̃i , and get

νi =

√√
ν̃Ti ν̃i

ν̃Ti,⊥ ν̃i,⊥
ν̃i,⊥. (41)

By using (40) for ν̃i,⊥ in (41), νi can be expressed as

νi =

√
ν̃Ti ν̃i

ν̃Ti ν̃i − ai ν̃Ti ξi
(ν̃i − aiξi) , ai =

ν̃Ti ξi

ξTi ξi
. (42)

This shows that we need to compute the three dot products ξTi ξi , ν̃
T
i ν̃i and ν̃Ti ξi . Since these dot products have

overlapping data dependencies, they can be efficiently found within a single kernel using a common tree-based
reduction approach [48]. Finally, ν̃i can be transformed to νi element-wise and in-place. Note that this process
resembles the Gram-Schmidt orthogonalization process, with preserved vector sizes.

During these computations, we store the values for ξTi ξi and ν
T
i νi = ν̃

T
i ν̃i , as they are needed for the parameters

γi and ζi , respectively, for solving the implicit equation in step 5. However, as discussed in Section 3.2, the normal
distributed random numbers in ξi and νi do not represent the entire state vector. The derivation of the IEWPF algorithm
from Section 2.2 and A assume that ξTi ξ, ν

T
i νi ≈ Nψ ±

√
2Nψ . Since our νi, ξi ∈ RNR , this assumption is not satisfied

directly. To remedy this, we apply an appropriate scaling to the two dot products, and use

γi = ξ
T
i ξi

Nψ
NR

, ζi = ν
T
i νi

Nψ
NR

. (43)

4.4 Target weight and β
To calculate the target weight wtarget and β, we need to obtain ci , γi and ζi for all particles i = 1,2, ...,Ne in the
ensemble. This step represents a global synchronization point in the algorithm. Once all three parameters are provided
by all particles, we can calculate wtarget and β from (A.7) and (A.16), respectively.

4.5 Solving the implicit equation
The final two stages of the algorithm are again independent for all particles. First, c?i is found according to (A.14) and
constitutes the final piece for the implicit equation for αi , given by (A.11). As described in A, the solution for αi is
obtained by using the Lambert W function, which is a scalar operation for each particle.

4.6 Posterior particle states
The final step of IEWPF is to perturb the particles so that they all obtain the target weight, giving the ensemble the
correct posterior variance. We need to apply the covariance structure of P to the random fields νi and ξi , meaning that
we seek an expression for P1/2 in terms of (preferably) local operations. Instead of using P on the form given in (12),
it can be written as

P =Q −QHT
(
HQHT + R

)−1
HQ

=Q1/2
(
I −Q1/2,T HT

(
HQHT + R

)−1
HQ1/2

)
Q1/2,T .

(44)
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Since there is no easy way to express the operator square root of the expression in the parenthesis in (44), we consider
the operations as matrices and seek its singular value decomposition (SVD) by constructing matrices U and V and a
diagonal matrix Σ so that

UΣVH = I −Q1/2,T HT
(
HQHT + R

)−1
HQ1/2

= I −Q1/2
SOARQ1/2,T

GB
ITΩHT SHQ1/2

GB
IΩQ1/2

SOAR .

(45)

This allows us to apply the covariance structure P to a sample ξi ∼ N(0, I) by

P1/2ξi = Q1/2UΣ1/2ξi . (46)

For the computation of the SVD, we consider the case in which ΩM = ΩR, meaning that the interpolation and
coarsening operators are simplified to the identity. Note that this approximation makes the matrix Q1/2 linear, so all
operations are well defined. Starting from the right in the parenthesis expression in (44), we step through the operations
interpreted as matrices and investigate the structure of non-zero values. This process is illustrated for a small domain
consisting of 10 × 10 cells in Figure 5.

Q1/2
SOAR: Symmetric matrix of size NM × NM , describing the covariance structure defined by the SOAR function in

(23) and (24). By using cSOAR = 2, the value in each grid cell is given a correlation with a grid cell block of
size 5 × 5 centered on itself. This means that each row of Q1/2

SOAR has 25 non-zero values (Figure 5a).

Q1/2
GB

Q1/2
SOAR: A 3NM × NM matrix, in which the first NM rows are equal to Q1/2

SOAR. The middle and lower NM

rows are the results from applying a central difference formula on values of Q1/2
SOAR in the y- and x-direction,

respectively. These rows have 35 non-zero values on column indices representing 7× 5 and 5× 7 grid blocks for
the middle and lower matrix block, respectively (Figure 5b).

HQ1/2
GB

Q1/2
SOAR: The observation operation extracts values of the rows representing hu j ,k and hvj ,k only, giving us a

2 × NM matrix with 35 non-zero values for each row (Figure 5c).

SHQ1/2
GB

Q1/2
SOAR: All values are scaled by the matrix S representing model and observation uncertainty. The non-zero

pattern is not affect by this operation (Figure 5c).

HT SHQ1/2
GB

Q1/2
SOAR: The two rows are mapped back into state space, and inserted into an otherwise zero matrix of

size 3NM × NM at the rows with indices representing hu j ,k and hvj ,k (Figure 5d).

Q1/2,T
GB

HT SHQ1/2
GB

Q1/2
SOAR: The adjoint of the geostrophic balance operator maps the rows representing volume trans-

port to the η-field based on adjoint central differences, resulting in an NM × NM matrix. This means that the
row representing hu j ,k has non-zero values in rows representing cells Ωj ,k−1 and Ωj ,k+1, and similarly the row
representing hvj ,k has non-zero data in the row representing Ωj−1,k and Ωj+1,k . There are now four rows with
35 non-zero values each (Figure 5e).

Q1/2
SOARQ1/2,T

GB
HT SHQ1/2

GB
Q1/2

SOAR: Finally, we apply the SOAR function and each of the existing four non-zero rows
are mapped to 25 rows representing a 5 × 5 grid cell block in the resulting matrix. Considering the overlap
between these blocks, we get an NM × NM matrix with 45 non-zero rows, each containing 45 non-zero values.
The rows represent a 7 × 7 grid cell block centered in cell Ωj ,k with a single cell missing in each of the four
corners.

I −Q1/2
SOARQ1/2,T

GB
HT SHQ1/2

GB
Q1/2

SOAR: The final matrix is a NM × NM matrix equal to the identity except for the 45
rows representing the 7 × 7 grid cell block centered in the cell in which the observation was made.

Due to the structure of the problem, the computations for finding the SVD can be greatly simplified by ignoring all
rows that are equal to the identity. To further simplify the structure of the code, we include the corners and consider the
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Figure 5: The non-zero patterns that emerge when computing the parenthesis expression for the covariance P in (44) on
a small domain consisting of 10× 10 cells. (a) The covariance operators Q1/2

SOAR and Q1/2
GB

are interpreted as matrices,
meaning that Q1/2

SOAR becomes a 100 × 100 matrix. (b) After applying Q1/2
GB

we get an extra 200 rows, representing
hu and hv in addition to η in every cell. (c) We extract the rows corresponding to the observation and scale them by
S, before (d) the values are mapped back to state space. (e) We then apply Q1/2,T

GB
, before (f) applying Q1/2

SOAR and
subtracting the result from the identity. (g) We ignore the part that is equal to the identity and are left with a covariance
matrix describing the 7 × 7 cell block centered on the observation. Note that by increasing the domain to 100 × 100
cells, the matrix representing Q1/2

SOAR will become 10 000 × 10 000, but the dense local block (g) will still remain the
same.
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complete 7× 7 grid cell block. This results in a 49× 49matrix described by the above process (Figure 5g), and we can
obtain the SVD from this much smaller matrix instead of from the full covariance matrix. When applying P1/2 to ξi
we can then apply the obtained UΣ1/2 locally according to the observed location of the drifter, before applying Q1/2 to
values defined in the entire domain as before. In fact, if we assume spatially constant equilibrium depth H and Coriolis
parameter f , the structure of the 49 × 49 non-identity block becomes the same for all drifter positions. This enables
us to pre-compute the local SVD matrix ahead of the data-assimilation loop and apply it directly for each observation.
Short-term prediction of drift trajectories is in general a local problem, and a constant Coriolis parameter can therefore
even for real-world cases be a valid assumption. A constant depth, however, is a more restrictive assumption, and if this
is not satisfied, the SVD needs to be computed at each observation. Furthermore, the method outlined here requires
that the locations of the observations are further away from land or a non-periodic boundary than the extent of the
correlation radius.

Now, if we consider a case with ΩM , ΩR, we would need to handle two significant issues. First, the interpolation
would result in a much larger local non-zero structure, and thus a larger local matrix UΣ1/2, requiring more storage,
and becoming more expensive to apply. Second, since ξi and νi are defined for all coarse grid points, we need to use
the same offset for co-locating points across the entire domain. Since the drifters are most likely to be located in cells
that require different offsets, we will not be able to apply the SVD structure accurately on top of all drifters. Because of
these two reasons, we have chosen to define UΣ1/2 on the coarse grid only, also when ΩM , ΩR, which enables us to
apply the 49 × 49 pre-computed matrix UΣ1/2 to the random field. The Q1/2 operator then spreads this information to
all three conserved variables on the computational grid. Since this term structure is applied to values that are sampled
randomly (ξi and νi), the simplification does not introduce significant errors.

Finally, we note that Q1/2 and UΣ1/2 are linear operations. Instead of applying the covariance structure first to ξi
and then to νi , we add the scaled random fields before applying P1/2. The final posterior particle states in (15) are then
obtained by

ψn
i = ψ

n,a
i + P1/2

(
β1/2νi + α

1/2
i ξi

)
. (47)

5 Experimental results
Here, we describe an experimental setup for experimenting with the data-assimilation method discussed in the previous
sections. First, we produce rank histograms to show that the IEWPF method produces statistically sound forecasts
and thereby is a valid method for data assimilation. We continue with drift trajectory forecasts through a series of
experiments using different numbers of observations from drifters and moorings. This is followed by an illustration
of how the standard particle filter collapses for the same case, even when starting from an ensemble that is centered
around the true state with low variance. Finally, we measure the computational performance to determine the workload
in the IEWPF compared to simply advancing the model.

To get a synthetic but near-realistic ocean model state to represent ψtrue, we take inspiration from a test case for
validating shallow-water models on a rotating sphere suggested by Galewsky et al. [49]. This test case describes a
steady-state solution in which an eastward atmospheric jet is balanced by a smoothed step function in the thickness of
the fluid layer due to the sphere’s rotation. When a small perturbation is introduced in η, the jet develops instabilities
after some time and produces a state that is dominated by complex currents and eddies. By running a simulation from
the steady-state but adding random model errors, the case has a chaotic behaviour in which instabilities develop in
different places and in different ways for independent simulation runs. This enables us to produce a challenging test
case with realistic features for data-assimilation experiments.

We transform the Galewsky test case to a flat two-dimensional rectangular domain with a constant Coriolis
parameter. To make the case even more interesting, a second jet is introduced in the opposite direction south of the
original jet, so that the balancing ocean surface ends up at an equivalent level at the northern and southern boundary,
allowing us to use periodic boundary conditions at all four boundaries. We introduce parameters so that the case
represents oceanic flow, rather than atmospheric, and model the domain after the Barents Sea, using a rectangular
domain that covers 1110 km× 666 km, divided into 500× 300 cells with ∆x = ∆y = 2220m. Further, g = 9.806 m/s,
f = 1.405 · 10−4 s−1 (corresponding to 75 degrees north), and a constant equilibrium depth Heq = 230 m. Cross
sections of the initial steady state for η and hu are shown in Figure 6, and the initial condition for hv is zero. The
model time step is chosen as ∆t = 60 s, and the time step in the numerical scheme ∆tscheme is dynamically adjusted
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Figure 6: The cross-section along the y-axis of the steady-state initial conditions for the unstable double jet case.
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Figure 7: A possible model state after 10 days, resulting from running the shallow-water simulation with additive
model errors from the steady-state shown in Figure 6. From left to right, the figures show the surface elevation η, and
the volume transport hu and hv in x- and y-direction, respectively. All x- and y-axes are given in km. The realized
model state displayed here is also used as the true state for the drift forecast experiments in Section 5.2.

according to the CFL-condition in (20) with a Courant number of 0.8. We use a model error amplitude q0 = 2.5 · 10−4,
coarsening factor cΩ = 5, and model error length scale L0 =

3
4 ∆̃x. Figure 7 shows an example of a model state

produced by these parameters after ten simulation days. This is also the true state that is used in the drift trajectory
forecasting experiments in Section 5.2.

In all following experiments we consider observations from drifters and moorings, according to the description in
Section 3.4. The observation error consists of a measurement error and a representation error and is rarely trivial to
quantify in geophysical systems. The measurement error is related to the precision of the instruments that are used
to make the observation, e.g., the precision of the GPS used for drifter experiments, and is typically given by the
instruction handbook for the relevant instrument. The representation error, on the other hand, should reflect how well
the observed measure represents the simulated variables, e.g., how well the mean current along the drifter trajectory
represents the cell-averaged depth-integrated water transport. As we here use an identical twin experiment, we can
consider the representation error to be small, and we assume that the instruments involved have good accuracy. All
experiments hence use R = I.

The true state for our experiments is pre-generated by a single thirteen day simulation, during which drifters and
moorings are added to the model at the start of day three, and imperfect observations from them are written to file
every five minutes. We have used 64 drifters and 240 moorings which are initiated throughout the domain in an 8 × 8
and a 12 × 20 pattern, respectively. The experiments use different subsets of these observations for data assimilation.
The experimental setup is then divided into three phases (see Figure 8):

Day 0–2: Spin-up period to let the ensemble members start to develop independent instabilities in the two jets. We
only perform the spin-up of the ensemble once, so that all experiments start from the same initial ensemble at
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Figure 8: Overview of the drift trajectory ensemble forecast experiments. Before the experiments start, an ensemble of
size Ne is spun up from a common initial state, and regular observations from the synthetic truth is generated (yellow).
Experiments start at day three, with a seven day period of data assimilation, during which the observations are used to
guide the ensemble towards the true state (red). At day 10, there are no more observations, and the ensemble runs a
drift trajectory forecast with the latest observed drifter positions as starting point (green).

the beginning of day three.

Day 3–9: Observations from the pre-generated truth are assimilated into the ensemble.

Day 10–12: This is the forecasting period. Drifters are added to all ensemble members at the observed drifter positions
at the start of day ten. Each ensemble member runs independently to generate three-day drift trajectory forecasts
for all drifters.

We use an ensemble size of Ne = 100 where not stated otherwise, as this size will typically fit on a single desktop with
a commodity-level GPU.

5.1 Rank histograms for IEWPF
Prior to using the IEWPF scheme for forecasting experiments, we aim to evaluate the quality of the method. One
way to do so is by creating a so-called rank histogram by running a large number of independent data-assimilation
experiments, and for each of them find the rank of a chosen observed variable within the ensemble. For instance,
choosing an observed variable hu j ,k , the ensemble members are sorted based on the value of (hui)j ,k + εi , in which
εi ∼ N(0,R) represents the observation error, from lowest to highest. The rank is then the position that the observed
value for hu j ,k takes when inserted into this sorted list. A histogram is then generated from the number of appearances
for each of the Ne + 1 possible ranks over all the forecasting experiments. Since a rank can be considered to be a
sample from the inverse cumulative distribution of the state density function, the rank histogram is expected to be flat
when the data-assimilation method works as intended.

For simplicity of discussion, assume for amoment that there is no observation error and that the posterior distribution
of (hui)j ,k is Gaussian. This corresponds to a high concentration of ensemble members with values close to some
mean value, and gradually fewer ensemble members further away from this mean. The mean value is our best estimate
for (hutrue)j ,k , whereas the spread in the ensemble represents the uncertainty of this estimate. Most likely, the truth
should be close to the mean, but since the density of (hui)j ,k is high around the mean, the resulting rank is sensitive to
small variations of (hutrue)j ,k . On the other hand, there is a chance of finding the truth in the tail of the ensemble as
well. The probability for a tail value to be exactly equal to the truth is very low, but since the density of values in the
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Figure 9: Rank histograms based on 1222 experiments of one hour ensemble forecasts. The rank histograms are
generated for hu and hv at cells (100, y) for y = {0,50,100, ...,250}. The accumulated rank histograms are the sum of
the rank at all these cells, and they are considered independent of each other. Most of the generated rank histograms
resembles uniform distributions, such as for cells (100,50) and (100,150), whereas some are more irregular, such as
for cell (100,250). The accumulated rank histograms are flat.

tail also is low, the truth can take a larger range of values and still obtain the same rank. Ideally, the probability should
be the same for obtaining any rank for any forecast experiment, meaning that the rank histogram created from a large
number of such experiments should resemble a uniform distribution. If the ensemble constantly fails to represent the
uncertainty of the observed state, the histogram takes other forms. For instance, if all ensemble members are too close
to the mean, the ranks corresponding to ensemble values at the tail of the ensemble will be over-represented, creating
a U-shaped rank histogram. This indicates that the ensemble is under-dispersed. On the other hand, a hill-shaped
rank histogram means that the spread in the ensemble forecast is too large to represent the true values, meaning that
the ensemble is over-dispersed. This discussion holds for any posterior distribution, not only Gaussian. For a more
detailed discussion on the interpretation of rank histograms, see Hamill [50].

We generate rank histograms from 1222 data-assimilation experiments using Ne = 40 ensemble members and
observations from independently generated truths every five minutes from the 120 moorings in the western half of
the domain. The ensemble is initialized by a random sample from the hundred spun up initial conditions generated
for the forecast experiments and is run with data assimilation for six hours. We find the ranks from a one hour
ensemble forecast from this state at simulation time three days and seven hours. In this time range, we assume that
variables located 50 cells apart from each other can be considered as independent and have therefore generated rank
histograms for hu and hv at cells (100, y) for y = {0,50,100, ...,250}. Additionally, since these values are assumed to
be independent, an accumulated rank histogram consisting of the sum of all these ranks is created as well. Figure 9
displays a selection of the generated rank histograms. Most of them resemble uniform distributions, such as those
shown for cells (100,50) and (100,150), but there are also some that display a more irregular trend, such as the one for
cell (100,250). The accumulated rank histograms shown in the rightmost column of the figure also resemble a uniform
distribution. In total, these results indicate that our implementation of the IEWPF gives ensemble forecasts with good
statistical quality.

5.2 Drift trajectory forecasting experiments
We now turn to drift trajectory forecasting experiments and compare how well the ensemble manages to represent the
truth using different sets of observations. We start by investigating how well the ensemble is able to capture the true
state at day ten (see Figure 7), by looking at the ensemble means in Figure 10, and ensemble variances in Figure 11.
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We then proceed to look at the drift trajectory forecasts for two selected drifters, shown in Figures 13–15, in which the
dark lines illustrate the drift trajectory obtained in the generated truth. All Figures 10–15 are organized so that each
row corresponds to a single experiment. In Figures 10, 11, and 12, the columns represent the ensemble mean, standard
deviation, and root square error, respectively, of state variables η, hu and hv, from left to right, whereas in Figures 13
- 15 each column shows forecasts for a given time range.

With 64 drifters available, it is infeasible to show and discuss forecast results for all of them, and we have therefore
chosen to illustrate the results using two different drifters. Drifter number 24 represents a drifter that is located in an
area still dominated by one of the jets, and its true drift trajectory follows a smooth path with high velocity. For this
drifter, we look at both the long-term and short-term ensemble forecasts in Figures 13 and 14, respectively. In the end
of this experiment section, we show that this drifter is representative for the majority of drifters. Drifter number 2, on
the other hand, represents a particularly difficult drifter to forecast, as it was at rest at the start of the forecast, before
changing direction. Its long-term forecasts are shown in Figure 15.

5.2.1 Experiment A: No data assimilation

The first experiment is a pure Monte Carlo forecasting experiment, in which all ensemble members run independently
without any knowledge of the truth. Without any observations to guide the ensemble, the entire space of possible model
states that can be reached from the instable initial conditions are explored, and the ensemble mean at day ten, shown
in the top row in Figure 10, illustrates the chaotic nature of the chosen test case. Random perturbations of the state
vector lead to very different developments of cross-jet momentum at different locations in the domain. Even though
individual realizations contain clear cross-jet currents (see Figure 7), the ensemble mean is almost completely smooth,
dominated by two opposing jets in the x-direction and almost no action for hv, and resembles a smoothed version of
the initial conditions. The ensemble standard deviation, shown in the top row of Figure 11, is more or less the same all
over the domain and we see the structure of the true state in the error at the top row of Figure 12.

In the top row of Figure 13, we see that the ensemble forecast suggests that drifter 24 is heading eastward. The
ensemble mean trajectory accurately describes the true trajectory, but the variance in the ensemble is very large,
indicating high uncertainty in the contribution of north/south currents. As time goes on, the forecast diverges to cover
a large portion of the entire domain, as shown in the three day forecast in Figure 14. For drifter 2 the one day forecast in
Figure 15 suggests that there are possible drift trajectories in directions, resulting in an ensemble mean that is statically
located at the drifter’s initial position. As the forecasted trajectories hit the dominant jets, the long-term forecast covers
the diagonal from the northwest to the southeast corner of the domain.

5.2.2 Experiment B: Assimilating data from ten drifters

We now observe the locations of ten drifters, and assimilate the underlying currents based on their movements. The
ten drifters are hand-picked to cover as large portion of the domain as possible, and both drifter 2 and drifter 24 are
included. The second row of Figure 10 shows the ensemble mean at day ten, which is more similar to the mean
obtained using no data assimilation than the true state itself (see Figure 7). There are however some localized patches
of features in the mean for hu, corresponding to the last observed drifter positions. By looking at the model state
standard deviation and error in the second rows of Figures 11 and 12, respectively, the latest drifter positions can be
clearly identified by the areas of very low standard deviation and error in hu and hv. Note, however, that the largest
standard deviation is also found close to the drifters. As we assimilate an observed current by adding a correcting local
dipole at the drifter locations, we might introduce a larger error close to the drifter as a side effect, where opposite
currents are needed for maintaining the geostrophic balance. It is also possible to spot traces of the drifters’ movements
from the patterns in the standard deviation plots, as some of the drifters have tails of low or high standard deviation.

In the short-term forecast in the second row of Figure 13, we see great improvement in the six hour forecast over
the assimilation-free forecast, as almost the entire ensemble of drift trajectories starts moving straight eastwards with
lower spread. The forecast after 12 hours is improved as well, but when turning to the long-term forecast in Figure 14,
it becomes harder to see any significant differences in the forecast quality. The same applies to the forecast for drifter
2 in Figure 15, again with a non-moving ensemble mean trajectory.
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Figure 10: Ensemble means for the state variables sea-surface level (η), jet flow (hu), and cross-jet flow (hv) at
simulation day ten, when the data-assimilation period ends and the forecasting starts. The rows represent the six
forecast experiments. The x- and y-axes are in km, and all figures cover the entire computational domain. The top row
illustrates the chaotic nature of the test case, as the experiment without using data-assimilation results in a steady-state
ensemble mean. Through observations from drifters, some localized details are captured, as seen in rows two and three.
The ensemble mean from the experiment using all mooring observations in row four gives a very good representation
of the true state. The final two rows show the impact of flow-dependent information transport, as only half of the
domain is observed in these experiments.
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Figure 11: Ensemble standard deviation for state variables sea-surface level (η), jet flow (hu), and cross-jet flow (hv) at
simulation day ten, when the data-assimilation period ends and the forecasting starts. The rows represent the six forecast
experiments. All x- and y-axes are in km, and cover the entire computational domain. The top row shows almost equal
standard deviation throughout the domain when no data assimilation is applied. In rows two and three, the assimilated
drifter observations can be clearly seen as local areas with low standard deviation. Row four uses observations from all
moorings, resulting in very low standard deviation throughout the domain. The standard deviation increases between
the moorings when only half of the them are observed, as seen in rows five and six. We also see that there is a large
benefit in observing parts of both jets, contrary to observing one jet fully, as the standard deviation is lower in the fifth
row than in the sixth.
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Figure 12: Ensemble root square error for state variables sea-surface level (η), jet flow (hu), and cross-jet flow (hv)
at simulation day ten, when the data-assimilation period ends and the forecasting starts. The rows represent the six
forecast experiments. All x- and y-axes are in km, and cover the entire computational domain. The top two rows
clearly show the structure of the flow of the true state reflected in the error, and the second and third row show the final
observed drifter positions in the same way as for the standard deviation. When observing all moorings in the fourth
row, the error is small throughout the domain. The final two rows show clearly that the error is smaller when observing
the western half of the domain, contrary to the southern half.
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Figure 13: Short-range ensemble drift trajectory forecasts after six, twelve, and 24 hours for drifter 24, using no data
assimilation (top row), observations from ten drifters (middle row), and observations from all 64 drifters (bottom row).
Trajectories from each ensemble member is shown as a light blue line ending in a small black circle, whereas the dark
blue lines represent the ensemble mean. The red line ending in an x is the true drift trajectory. The values along
the x- and y-axes are given in km, and only the relevant part of the domain is considered. The forecast at six hours
is greatly improved by using observations from ten drifters, but the advantage is almost lost after 24 hours. Further
improvements are made using observations from all 64 drifters. Even though the ensemble mean is perfectly on top of
the true trajectory in the experiment without data assimilation, the spread is very large.

5.2.3 Experiment C: Assimilating data from all 64 drifters

By using observations from all 64 drifters, we see a large change in the ensemble mean at day ten, presented in the
third row of Figure 10. The border between the mean eastward and westward jets in hu is no longer a straight line,
and there are more features seen for hv. Even though some of the features resemble the truth, such as the shape of the
main parts of the eastward current and the location of the north and south bands in hv, there are other features that
are less correct, e.g., the continuity of the north and south bands in hv. As in experiment B, the drifter locations can
be seen from the standard deviation of hu and hv, in the third row of Figure 11, and we also note that there are larger
areas between the drifters with lower standard deviation than before. In the third row of Figure 12, we see that the
overall error is lower than for the previous experiment, meaning that by using observations from an increased number
of drifters we are able to improve the model state in a larger portion of the domain.

By comparing Figures 11 and 12, it can be noticed that the values in the error can be higher than those of the
standard deviation locally. This does not come as a surprise as the error represents a random variable related to the
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Figure 14: Long-range drift trajectory forecasts after one, two and three days for drifter 24. Each row corresponds to
a different set of observations. Each figure shows the entire computational domain, with values in km on both axes.
Forecast trajectories from each ensemble member is shown as a light blue line ending with a small black circle, the
dark blue lines represent the ensemble means, and the red lines ending in x are the true drift trajectory. In this time
range, observations obtained from the drifters are of limited value, as the top three rows are qualitatively similar. The
use of mooring observations in the fourth row, however, makes the forecast very accurate even for as long as three days.
The two last rows show experiments using mooring observations from half the domain, and illustrates the benefit by
partly observing both jets (west moorings), compared to fully observing one jet (south moorings).
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Figure 15: Long-term drift trajectory forecast after one, two and three days for drifter 2. This drifter is particularly
hard to forecast, as it is at a complete stop while changing direction at the start of the forecast. Each figure shows the
entire computational domain, with values in km on both axes. Forecasted trajectories from all ensemble members are
shown in light blue lines ending with a small black circle, the dark blue lines represent the ensemble means, and the red
lines ending in x are the true drift trajectory. The use of drifter observations give a limited improvement in the forecast
on these time ranges, and the ensemble means in the first two experiment are static at the drifter’s initial positions.
Observations of all moorings give a large impact on the forecast quality, as seen in the fourth row, and the forecast
shows a 75% chance of the drifter drifting northwards. The experiments using observations from half the domain only,
give forecasts that show higher probability for southward drift, but there are still a few ensemble members allowing for
northwards drift in both cases.
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true state, whereas the standard deviation is a statistical moment. The domain averages of each field in Figures 11 and
12 are quite similar, however, suggesting that the data assimilation is doing a good job. This can also be confirmed by
the rank histograms in Figure 9, and will be discussed further in relation to the time evolution of the drifter forecasts
in Section 5.2.7.

The short-term forecasts for drifter 24 in the third row of Figure 13 have slightly lower spread compared to using ten
drifters only, as could be expected. At six hours, the forecast is quite confident in the location of the drifter, and there is
less uncertainty in the twelve and 24 hour forecasts as well. By looking at the long-term forecast in Figure 14, however,
the quality drops and is again comparable to the previous two experiments. However, we see that the ensemble mean
trajectory is no longer static, showing that the majority of ensemble members move south-east.

5.2.4 Experiment D: Assimilating data from all 240 moorings

In this experiment, we assimilate observations from all the 240 moorings that are placed equidistantly throughout the
domain. The distances between the moorings are 55 km, corresponding to 25 grid cells. Even though we observe only
approximately 0.1% of the state variable, the observations are dense enough for the covariance structures from two
neighbouring observations to be overlapping, meaning that the observational coverage is quite good. This is also seen
in the ensemble mean after ten days in the fourth row of Figure 10, which is almost indistinguishable from the true
state shown in Figure 7. Both the standard deviation and the error are very low throughout the domain, as seen in the
forth rows of Figures 11 and 12, and even the unobserved variable η is correctly captured by the ensemble. Note again
that both these quantities are of the same size, which indicates that the particle filter works as intended.

The trajectory for drifter 24 shown in Figure 14 is very good, with a very confident forecast and accurate ensemble
mean trajectory even at day three. The trajectory of all ensemble members show the same general characteristics by a
steady eastern flow with a southward bend, disagreeing only slightly on the strength of these currents. The forecast for
the challenging drifter 2 in Figure 15 is also much more accurate than the previous three experiments, but the forecast
has a higher spread than for drifter 24 at day three. Most ensemble members stay close to the initial position during the
first day. The forecast is then divided, with approximately 75% of the drifters moving northwest, and the last quarter
moving southeast. We see that the true trajectory is found among the most likely outcome, to the north. Note that
we do not show the short-term forecast trajectories for this and the following two experiments, since the long-term
forecasts in Figures 14 and 15 show sufficient information to discuss their results.

5.2.5 Experiment E: Assimilating data from moorings in only the western half of the domain

The last two experiments explore how well the ensemble mean is able to represent the true state if observations come
from only half of the domain. We start by using the 120 moorings in the western half only, resulting in the ensemble
mean, standard deviation, and error shown in the fifth rows of Figures 10, 11 and 12, respectively. The first thing to
notice is that the ensemble mean appears to be less smooth than the true state in the observed area. These slightly
noisy features are most dominant in the southwest and northeast corners of the observed area, corresponding to where
unobserved water enters the observed part of the domain. The reason for this can be that the signal flowing into the
observed area likely need a stronger correction by the data-assimilation system, compared to the signal that have been
observed and corrected for some time already. Note especially that the standard deviation and the error in hv is higher
at the jets’ entry points to the observed area, compared to the rest of the observed area. Finally, we point out that the
ensemble means for both hu and hv capture the main features of the truth in the eastern part of the domain as well,
with a much lower error than in the first three experiments, even though this area is never observed. This is due to the
transport of information that is assimilated into the system, along with the currents.

The drift trajectory forecast in Figure 14 is another indication of how well features are kept in the system even after
the assimilation is ended. Drifter 24 starts close to the outflow of the southernmost jet in the western half of the domain,
meaning that its underlying current has been influenced by the assimilation system for some time before the start of
the forecast. This is reflected in the one-day forecast, which is almost as good as the forecast using all moorings, but
the spread in the ensemble increases as we reach the two- and three-day forecasts. Most of the ensemble members still
show the correct characteristics and therefore maintain the flow characteristics even without using further observations.
The forecast also opens up for the possibility that the true drifter can turn north instead of south, but only with a very
small probability, and we see that the ensemble mean trajectory is slightly south of the truth. For drifter number 2,
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however, row five of Figure 15 shows that the ensemble is quite confident that the drifter will move southwards. This
drifter starts just on the outside of the observed area, and between the two dominating jets. Still, the forecast has a
significantly lower spread than the experiments using all drifter observations. The forecast for this drifter turns out to
be wrong, however, as a large majority of the ensemble trajectories are towards the southeast. The forecast does still
leave a small probability for northwards drift, as we know to be the true trajectory.

5.2.6 Experiment F: Assimilating data from moorings in only the southern half of the domain

This time we use observations from the southern half of the domain, capturing only one of the initial jets. These
observations are not sufficient to capture the true state, as can be seen from the obtained ensemble mean in the
lower row of Figure 10. In the observed area, the mean is dominated by small-scale eddies that are not found in the
truth, whereas the unobserved part of the domain hardly have any features at all. From the standard deviation and
error plots in Figures 11 and 12, respectively, we see larger values than in any of the other experiments along the
boundary of the observed area. This experiment illustrates better than the previous one how the ensemble needs to
make larger adjustment on the ensemble members in the outskirts of the observed parts of the domain. Since there is
limited information transport between the observed and unobserved areas, this experiment leads to larger errors than
in Experiment E.

At the start of the drift trajectory forecast, drifter number 24 is just within the observed area, whereas drifter number
2 is just outside. Our choice of drifters should therefore not favour one of the half-domain experiments more than
the other. Still, we see from Figures 14 and 15 that the forecasts produced by observations in the southern half of the
domain have a much larger spread than the forecasts made after using observations in the western half. Particularly,
the long-term trajectory characteristics of drifter 2 are very different from all previous experiments.

5.2.7 Comparison of forecast errors

To show that the forecast results for drifter 24 just discussed are reasonably representative for the majority of drifters,
we investigate general forecasting statistics by defining a forecast error norm. First, let the error in the ensemble forecast
for drifter d at time tn be defined as

Ed(tn) = 1

Ne

Ne∑
i=1

[(
xni,d − xntrue,d

)2
+

(
yni,d − yntrue,d

)2]
. (48)

Furthermore, let the forecast error be the square root of the En
d
mean over all drifters,

E(tn) =
√√√

1

ND

ND∑
d=1

Ed(tn). (49)

Similarly, we define the root-mean-square error RMSE(tn) in the same fashion as (48) and (49), but use the ensemble
mean instead of the true drifter position. A low RMSE indicates low spread in the ensemble forecast, whereas a low
error confirms that the true drifter location is within the low-spread forecast. On the contrary, if the RMSE is low, but
the error is large, the ensemble gives a confident but wrong forecast.

Figure 16 shows how the forecast error E(tn) and RMSE(tn) develop over time for the six different forecast
experiments. The figures to the left (16a and 16c) shows the error when we consider all drifters, and the figures
to the right (16b and 16d) consider only the ten drifters that are used in experiment B. The figures show that good
results are consistently obtained by using observations from all the moorings, as the forecast error for this experiment
is significantly lower than for the others. Also, we see that the error and the RMSE are consistent for all experiments,
which means that the ensemble mean often is a good representation of the true drift trajectory. The exception is the
west moorings experiment, which has a higher error than RMSE relative to the other experiments when considering the
forecast for ten drifters only. The reason for this behavior is that the true trajectory often is forecasted as an ensemble
outlier, such as seen for the west moorings experiment for drifter 2 in Figure 15. When comparing Figures 16c and
16d, we see that this behaviour is slightly over-represented among the ten selected drifters.
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Figure 16: Mean forecast error for all six forecast experiments, considering the forecast for (a) all 64 drifters and (b) only
the ten handpicked drifters used in experiment B. The second row shows RMSE as the comparable measure in terms
of the forecast mean instead of the true drifter trajectory, again for (c) all 64 drifters and (d) the ten handpicked drifters
only. The forecast errors are lowest for the experiment using observations from all moorings, whereas observations of
some drifters do not improve the forecast much compared to the forecast without data assimilation.

In general, the forecasts are best when all moorings are observed, followed by observation of moorings in the west
of the domain (runner-up for long-term forecast), and observations of all drifters (runner-up for short-term forecast).
It is worth noting the differences between the two experiments that use observations from moorings in only half of the
domain. Even though both experiments use the same kind and same number of observations, the west moorings enable
a much better forecast as they observe a larger portion of the information flow over time.

Perhaps more interesting is the relationship between the forecast errors from using observations from ten drifters,
and the forecast errors when using no observations. In Figure 16b, we see that using the drifters give a significantly
better short-term forecast, whereas there is only a slight improvement on the long-term forecast. When the forecast for
all 64 drifters are taken into account, however, we see that the long-term forecast becomes slightly worse by using these
ten observations, compared to using no data assimilation at all. This could be due to our choice of local covariance
structures, which is enforced on the ensemble through the IEWPF method. An observation is assimilated in the
ensemble members through adding a dipole that gives the correct current at the drifter position. A side effect may
be that the dipole induces a wrong current a small distance away from the drifter, causing the forecast for unobserved
drifters at that location to be worse than if no data assimilation had been performed.
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Figure 17: The number of particles guaranteed to be resampled when using a 100-member standard particle filter with
residual resampling, for observations from different numbers of drifters. Blue crosses use the original weights based
on the same uncertainty as the forecast experiments, and the weight is distributed on very few particles even for very
low-dimensional observations. The yellow plus signs show the weight distributions assuming a tenfold increase in the
observation covariance matrix R, but even with less reliable observations, the ensemble collapses for any more than
six observed drifters.

5.3 Collapse of the standard particle filter
Collapse of the standard particle filter for high-dimensional observations is well known in the literature (see [3, 4, 5]).
To illustrate its inefficiency, we look at the weight distribution using observations from a varying number of drifters.

Normalizedweights are calculated using (6), which depends only on the size of the innovation dni and the observation
covariance matrix R, and not the size of the model error covariance matrix Q. Since our experiments start after a three
day spin-up period, the ensemble has the highest variance during the initial data-assimilation cycles. In the IEWPF,
this corresponds to a low target weight during the first iterations, while the ensemble is gradually adjusted according
to the observations. With the standard particle filter, however, the large spread in the spin-up ensemble makes it very
prone to collapse already in the first assimilation cycle. This is indeed what we observe, even with observations from
only a single drifter.

To give the standard particle filter a fair chance, we run an experiment for three simulation days using the IEWPF
method on observations from all 64 drifters, and thus obtain a well-distributed ensemble with a low spread and good
representations of the underlying ocean current at the drifter locations. Under the restriction of fitting on a single
commodity-level GPU, the ensemble size is kept as Ne = 100. The ensemble then runs to the next observation time, and
we calculate the innovation vector using all drifters. We use subsets of the innovation vector to calculate normalized
weights for different numbers of observed drifters. For each observation size, 50 drifter subsets are chosen at random,
and for each subset we find the number of particles that have a normalized weight larger than 1/Ne (in this case, 1%),
which guarantees that the given particle is kept in the ensemble when using residual sampling [26]. Figure 17 shows
the mean number of particles which are guaranteed to be resampled for different observation sizes. The figure shows
that if we observe one drifter only, we can expect about nine drifters to obtain a weight larger than 1/Ne, but already
when observing two drifters we see that this weight level reached by two particles only, which results in an ensemble
collapse. Since the weight distribution depends largely on the size of the observation error, we make the same weight
calculations assuming that the uncertainty in the observations are ten times as larger. The result is that the weight is
distributed on more particles for all the observation sizes, but when observing six or more drifters, most of the weight
is still on only three particles. This experiment clearly confirms how the standard particle filter cannot be used for the
application at hand.
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Figure 18: The pie charts show the distribution of total GPU compute time spent in the different CUDA kernels during
the data-assimilation part of three chosen experiments. To the left, we see that only a small part of the compute time
is spent on generating the model error, and that the time spent in the SOAR function is negligible. The center chart
shows that the overhead from data assimilation on a small drifter set triples the amount of time spent in kernels that do
not contribute to solving the deterministic model. With a large number of moorings, however, the majority of the time
is spent in the interpolation kernel, and other kernels related to the data assimilation also play a significant part of the
compute time, as seen to the right.

5.4 Computational performance
The baseline for evaluating the computational performance of the data-assimilation system is the efficiency of running
just the model, consisting of the numerical scheme for solving the shallow-water equations. The implementation
is based on the same approach as a GPU implementation of a very similar scheme [36], and has been profiled and
optimized to maximize its performance and the occupancy of the GPU. The scheme has also been tuned to use the
optimal block-size configuration applicable to the specific GPU used in this work, an Nvidia GeForce GTX 780. The
efficiency of all other kernels will be evaluated through a comparison to the deterministic model step, to search for
limitations and bottlenecks for relevant applications, such as the experiments in Section 5.2.

We start by evaluating the computational performance of the stochastic model errors by comparing the run-time
required for generating β and deterministically evolving the model one time step. We analyse a benchmark application
using 500 × 300 grid cells, with model errors added every ∆tscheme and a coarsening factor similar to the above
experiments, cΩ = 5. Profiling reveals that 74% of the GPU compute time is spent evaluating the numerical scheme,
22% is spent on interpolation, 1.4% on the SOAR function, and 1.4% on generating random numbers. This indicates
that the implementation of the model error is sufficiently efficient compared to the model step and does not represent a
major performance bottleneck. It should also be noted that whereas the relationship between the deterministic model
step and the interpolation does not change when the number of grid cells is increased, the relative amount of compute
time spent in the other two kernels becomes negligible.

Figure 18 shows the distribution of GPU compute time during some data-assimilation cycles for three of the
experiments from Section 5.2, restricted to Ne = 10 to make it feasible to run short experiments through the profiler.
During these experiments, the model error is added every model time step, which typically consists of eight steps of
the numerical scheme. In the experiment with no data assimilation, the model error amounts to only 4.1% of the GPU
compute time. With assimilation of ten drifters, shown in the center pie chart, the fraction of time spent on interpolation
increases to 11.1%, whereas an additional 2.4% is spent on other assimilation-related kernels. The majority of the time
is nevertheless still spent on the deterministic model step, meaning that there is limited value in optimizing the particle
filter kernels for this problem size. When assimilating all 240 moorings, we reach a situation in which the interpolation
represents 56.1% of the GPU compute time, and a further effort in optimizing the IEWPF implementation should be
considered. Some ideas for this are discussed at the end of this section.

Figure 19 shows the wall clock time for each of the six experiments with Ne = 100, normalized with respect to the
experiment without data assimilation. Note that the additional time spent on the data assimilation per drifter observed
is constant for the mooring experiments. For the drifters, there is a small overhead with 64 drifters, but for ten drifters
the data assimilation takes almost twice as long per drifter as for the mooring experiments. These observations are
well in accordance with the algorithmic complexity outlined in Figure 3.
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Figure 19: Wall clock run-time measured for the data-assimilation part for each of the six forecast experiments,
normalized with respect to the experiment without data assimilation. The lighter color indicates time used on the data
assimilation. The assimilation of observations from ten drifters gives a 12% overhead, whereas using all 240 moorings
adds 160% to the total wall clock time.

The wall clock run-time for simulating one hour of data assimilation, consisting of twelve data-assimilation cycles
for 100 particles, is 41 seconds on the Nvidia GeForce GTX 780. This GPU represents a commodity-level graphics
card, which has been used for five years at the time of writing, and thereby represents a class of GPUs that is widely
available. By upgrading to a modern high-end GPU, such as the Nvidia Tesla P100, we have observed a 3 times speed
up without adjusting any implementation configurations.

The profiler shows that the occupancy (the concurrent utilization of the available resources on the GPU) is 97.3%
for sufficiently large domains, without exposing any clear strategy for further optimization. At this point, the kernel
has already been tuned by balancing occupancy and register spilling to achieve optimal performance. To increase the
performance for the experiments with a large number of observations, the main focus should therefore be on optimizing
the use of the bicubic interpolation kernel. A high-level performance optimization would be to introduce parallel
processing of drifters during the optimal proposal pull, as the interpolation is currently done once per drifter during
this step. This would require that drifters with the same offset configuration are identified, and that those drifters are
color coded according to their location within the domain to avoid overlapping memory access. For this strategy to
be fruitful, the number of drifters must be sufficiently large compared to the number of possible offset configurations,
c2
Ω
, so that the extra computational work required to color code the drifters is compensated by the expected amount of

increased parallelization. This trade-off is less of an issue with mooring observations, as the constant location of the
moorings would mean that the color coding can be pre-computed, rather than updated for every observation time step.

6 Summary and conclusions
We have presented a GPU implementation of the state-of-the-art implicit equal-weights particle filter applied to an
ensemble of simplified ocean models and used it to forecast drift trajectories. The observations are obtained from
the positions of passive drifters and direct ocean current measurements from moored buoys in a synthetic true state.
Forecasts of drift trajectories have been generated for a near-realistic unstable jet experiment, for which the instabilities
develop chaotically due to random model error realizations. All parts of the data-assimilation system (model, model
errors, and particle filter) have been designed to take advantage of fine-grained data parallelism, and we have shown
that the most computationally expensive components of the system are able to efficiently utilize the resources on a
GPU.

We have shown how the forecast quality is improved as more drifter and mooring observations are assimilated
through the forecast experiments. The best results are achieved when information is assimilated from all 240 available
moorings equally distributed throughout the domain. Even though the observations cover only approximately 0.1% of
the state space, the ensemble mean at the start of the forecast is a very good representation of the true state. Since the
ensemble contains a very accurate description of the true ocean currents, the forecast is shown to be both accurate and
confident, even in the long-term up to three days. Two of the experiments assimilated mooring observations from only
the southern half or only the western half of the domain, respectively. As the dominating currents are in the east-west
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direction, these experiments illustrate the importance of considering information transport in the system. The ensemble
mean after the data-assimilation period and the general quality of the drift trajectory forecasts are significantly better
when both the jets were partially observed (west moorings) compared to observations of one full jet (south moorings)
only.

With fewer drifter observations, we have seen that the ensemble is not able to capture the model state with the same
accuracy compared to using lots of moorings. However, the short-term forecasts are significantly improved for the first
12 hours, which is an important time scale for search and rescue operations. The drifter experiments are also more
realistic in terms of equipment than the mooring experiments. In an operational setting, drifters could be released in
the area of interest by, e.g., a search and rescue vessel, to sample relevant observations. With our approach consisting
of an efficient data-assimilation system applied to simplified models, these observations can be used to perform in-situ
drift trajectory forecasts, using the most recent traditional ocean forecasts as starting points.

Although the results from the particle filter are good, some issues remain. Since we assimilate single-point mass
transport, the update takes a dipolar structure in sea-surface height around the observation location. The size of these
dipoles is limited to the length scales in the model error covariances and can be smaller than the length scale of actual
eddies, potentially leading to unrealistic updates some distance away from the observation localtions. This is indeed
what we see when only 10 drifters are present. Different structures for the model errors should improve this issue.

All experiments are conducted with a barotropic ocean model. The resulting currents would not be representative
of realistic situations with strong bottom topography, and hence a reduced gravity set up would be more appropriate.
This is not conceptually different from our current approach and, since this also would allow us to use a larger time
step, it could further contribute to accelerate the model forecasts. A more extensive alternative to a reduced gravity
model would be to extend our method to multilayered systems. But again, no major obstacles are expected for such an
extension. In fact, it might result in a better balance between data assimilation effort and forecast effort.
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A A modified implicit equal-weights particle filter
As mentioned in the main text, the update equation for each particle ψi in the original implicit equal-weights particle
filter (IEWPF) [29] is

ψn
i = ψ

n,a
i + α

1/2
i P1/2ξi . (A.1)

Because ψn,a
i is a deterministic move of the particles according to (11), this is a transformation of coordinates from ψ

to ξ, so we can write

q(ψn |ψn−1
1:Ne

, yn) = q(ξ)dψ
dξ

 . (A.2)

37



The denominator represents the absolute value of the determinant of the Jacobian, and can be found through themapping
between ξi and ψn

i . This mapping is complicated because αi also depends on ξi , but in an up-to-now unknown way.
Using (A.2), the expression for the weights from (10) becomes

wn
i =

p(yn |ψn
i )p(ψn

i |ψn−1
i )

Nep(yn)q(ξ)

dψ
n
i

dξi

 . (A.3)

By assuming that αi only depends on ξi through its magnitude ξTi ξi = γi , (A.3) can be written as the scalar implicit
equation

− log (
wn
i

)
= (αi − 1)γi − 2 log

[
α
Nψ/2
i

�����1 + γi

α
1/2
i

∂α
1/2
i

∂γi

�����
]
+ ci, (A.4)

in which
ci = φi − log

(
wn−1
i

)
(A.5)

and
φi = (dni )T

(
HQHT + R

)−1
dni . (A.6)

The essence of the IEWPF is that in order to ensure a significant weight for all particles, αi is chosen so that all weights
become equal to a target weight, wn

i = wtarget for i = 1, ...,Ne, leading to a nonlinear equation for each αi . See [29]
or the appendix of Skauvold et al. [31] for further details.

It is important to set the target weight such that all particles can reach it. Since a smaller ci leads to a larger weight,
and since ci denotes the best value for the weight that particle i can attain, the target weight has to be related to the
maximum of the ci , and it is chosen as

wtarget = max
i=1,...,Ne

{ci}. (A.7)

By setting − log(wi) = wtarget in (A.4), the expression for αi becomes

(αi − 1)γi − 2 log
[
αNψ/2

�����1 + γi

α
1/2
i

∂α
1/2
i

∂γi

�����
]
= wtarget − ci . (A.8)

This equation is equivalent to

Γ

(
Nx

2
,
αiγi
2

)
= e−c

?
i /2Γ

(
Nx

2
,
γi
2

)
, (A.9)

which can be solved numerically for αi by, e.g., the Newton method, as illustrated by Skauvold et al. [31]. Here, we
use that

c?i = wtarget − ci = max
j=1,...,Ne

{cj} − ci, (A.10)

and Γ(s, x) =
∫ x

0
ts−1e−tdt is the incomplete lower gamma function. Whenever the state space Nψ is large, however,

(A.9) becomes harder to solve as the gamma functions become prone to overflow. In this high-dimensional limit, it is
possible to solve (A.8) analytically in terms of the Lambert W function, as showed by Zhu et al. [29], as

αi = −
Nψ
γi

W0

[
− γi

Nψ
e−γi/Nψ e−c

?
i /Nψ

]
. (A.11)

As pointed out by Skauvold et al [31], only solutions αi < 1 should be accepted, meaning that only the zero branch for
the Lambert W function is considered.

Two weaknesses of the scheme above can be identified. Firstly, for low-dimensional systems it can be shown that
the posterior variance is always underestimated. The other weakness occurs for high-dimensional systems. Since all
particles have to reach the same target weight, and that target weight has to be chosen as the weight of the weakest
particle, the more particles we use the worse the weakest particle will be, so the further away all particles are pushed
from the high likelihood values. So, in high dimensions, although the scheme is useful for small ensemble sizes, it
degenerates at larger ensemble sizes.
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To overcome the above-mentioned challenges, a revised two-stage IEWPF scheme has been proposed [31], which
explores the complete proposal density and does not underestimate the posterior variance. The new update equation is

ψn
i = ψ

n,a
i + β1/2P1/2νi + α

1/2
i P1/2ξi, (A.12)

in which νi is a second random vector νi ∼ N(0, I), and β is a covariance scaling parameter common to all particles.
Using the same assumptions as for the one-stage method, (A.3) can now be written as

log
(
wn
i

)
= (αi − 1)γi + 2β1/2α1/2

i ξTi νi + (β − 1)ζi − 2 log
[
α
Nψ/2
i

�����1 + γi

α
1/2
i

∂α
1/2
i

∂γi

�����
]
+ ci, (A.13)

in which ci is according to (A.5), and ζi = νTi νi . To solve (A.13), νi is constructed to be perpendicular to ξi , making
the cross term between the two random vectors disappear. In the case of large Nψ , and by defining

c?i = wtarget − ci − (β − 1)ζi, (A.14)

(A.13) becomes similar to (A.8), with solution according to (A.11). We require that c?i ≥ 0, which is equivalent to

β ≤ wtarget − ci
ζi

+ 1. (A.15)

This equation shows that the introduction of β allows us to choose a different target weight. By choosing the target
weight to be wtarget = ci , the mean of ci across the ensemble, β can be set to the minimum value of the right-hand-side
of (A.15),

β = min
i=1,...,Ne

{
ci − ci
ζi
+ 1

}
. (A.16)

Since c − ci ≈ Ny ±
√
2Ny and ζi ≈ Nψ ±

√
2Nψ , the parameter β1/2 should remain real as long as Nψ >> Ny , which

holds for our high-dimensional application.
Choosing the target weight equal to the mean of ci , is equivalent to choosing it equal to the mean of the optimal

proposal weights. An advantage with this choice is that the target weight will not vary much when Ne increases. This
is contrary to the one-stage scheme, in which the target weight is equal tomaxi=1,..,Ne {ci}, which becomes larger if Ne

increases. In other words, the one-stage scheme pushes the particles further and further away from the high-probability
regions of the posterior. Because of its choice of wtarget , the two-stage scheme does not have this problem, and is the
method of choice in this paper.
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Abstract

In this work, we take a modern high-resolution finite-volume scheme for solving the rotational shallow-water
equations and extend it with features required to run real-world ocean simulations. Our contributions include a
spatially varying north vector and Coriolis term required for large scale domains, moving wet-dry fronts, a static land
mask, bottom shear stress, wind forcing, boundary conditions for nesting in a global model, and an efficient model
reformulation that makes it well-suited for massively parallel implementations. Our model order is verified using a
grid convergence test, and we show numerical experiments using three different sections along the coast of Norway
based on data originating from operational forecasts run at the Norwegian Meteorological Institute. Our simulation
framework shows perfect weak scaling on a modern P100 GPU, and is capable of providing tidal wave forecasts that
are very close to the operational model at a fraction of the cost. All source code and data used in this work are publicly
available under open licenses.

1 Introduction
The aim of this paper is to simulate realistic oceanographic scenarios using a modern finite-volume scheme on GPUs.
Modern operational ocean models, such as the Regional Ocean Modeling System (ROMS) [1] and the Nucleus for
EuropeanModelling of the Ocean (NEMO) [2], are based on solving the primitive equations that describe conservation
of mass, momentum, temperature, and salinity. Even though these ocean models are heavily optimized, their complex
physical andmathematical propertiesmake them very computationally demanding. TheNorKyst-800model system [3],
for example, is based on the ocean model ROMS and covers the Norwegian coast with 800 m horizontal resolution. It
is run operationally by the Norwegian Meteorological Institute on a daily basis. The complete model consists of 42
vertical layers with 2600 × 900 grid cells each, and a 24 hour forecast takes 45 minutes when using 256 CPUs [4].
It is unfeasible to use such models for flexible on-demand simulations during search-and-rescue operations, oil spills,
heavy lifting at sea, etc. In these cases, fast on-demand simulations based on the shallow-water equations can have a
significant value for decision makers.

We simulate the shallow-water equations in a rotating frame of reference, targeting efficient simulation of ocean
currents based on the operational NorKyst-800 data. Our model equations are essentially two-dimensional simplifica-
tions of the primitive equations and assume constant density and a vertically integrated momentum (see more detailed
derivations in, e.g., Røed [5]). Our work starts with the recent high-resolution finite-volume scheme by Chertock et
al. [6], and extends this scheme to support bottom shear stress, wind forcing, projection-free spatial variations in the
north vector, spatially varying Coriolis parameter, land mask, and a moving wet-dry boundary. We present how to
reconstruct a piecewise bilinear bathymetry from the piecewise constant bathymetry in the NorKyst-800 data, nesting
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of the model into the NorKyst-800 data using linearly interpolated boundary conditions, and generation of both higher
and lower spatial resolution of the initial conditions.

We simulate increasingly challenging scenarios along the Norwegian coast, and compare with reference results from
the operational model. As the shallow-water equations are particularly well suited for tidal and storm-surge predictions,
we also compare our tidal-wave predictions at several locations with the reference dataset and observations. All datasets
and source code used in this work are publicly available under open licenses.1

The rest of the paper is organized as follows: Section 2 gives a high-level description of the shallow-water equations
and how they can be solved numerically. In Section 3, we present all the extensions that are required to tackle relevant
oceanographic problems. The performance and numerical accuracy of our scheme are assessed in Section 4, where we
show perfect weak scaling of the GPU implementation and run a grid convergence test with the new terms introduced
in the scheme. We present operational-grade simulations in Section 5, and finally summarize the work in Section 6.

2 Mathematical formulation
We use the shallow-water equations with source terms to simulate ocean dynamics. Since the equations are purely
barotropic, they are not expected to generate or preserve features such as mesoscale eddies in the long term. These
features arise from baroclinic instabilities, typically caused by variations in temperature and salinity that are not
included in the mathematical model, but the equations are nevertheless capable of capturing the most important physics
required to simulate short-term ocean dynamics. We can write the equations with source terms as


h

hu
hv

 t
+


hu

hu2 + 1
2gh2

huv

 x
+


hv

huv
hv2 + 1

2gh2

y
=


0

ghHx

ghHy


+
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√

u2 + v2/h
−rv
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u2 + v2/h


+


0

f hv
− f hu


+


0
τx
τy


.

(1)

Here, h is water depth, hu momentum along the x-axis, and hv momentum along the y-axis (see also Figure 1).
Furthermore, g is the gravitational acceleration, H is the equilibrium ocean depth measured from a reference sea-
surface level, r is the friction coefficient, f is the Coriolis parameter, and τx and τy are the wind stress along the x-
and y-axis, respectively. In vector form, we can write the equations as

Qt + F(Q)x + G(Q)y = B(Q) + S(Q) + C(Q) +W(Q). (2)

Here, Q = [h, hu, hv]T is the vector of conserved variables and B, S, C, and W are source terms representing varying
bathymetry, bed shear stress, Coriolis force, and wind drag, respectively.

By using a finite-volume discretization on a Cartesian grid to solve (2), we get the following semi-discrete
formulation

∂Q
∂t
= − 1

∆x
[
Fi+1/2, j − Fi−1/2, j

] − 1

∆y

[
Gi, j+1/2 − Gi, j−1/2

]
+ Bi, j + Si, j + Ci, j +Wi, j . (3)

To evolve the solution in time, we use a second-order strong stability-preserving Runge-Kutta scheme [8],

Q∗i, j = Qn
i, j + ∆tM(Qn)i, j

Qn+1
i, j =

1
2

(
Qn

i, j +
(
Q∗i, j + ∆tM(Q∗)i, j

))
,

(4)

1The source code used to create plots and results in this article is available in revision 7281301a3a286351b6e857add12c2fbd0165b229
of the gpu-ocean repository, https://github.com/metno/gpu-ocean, released under GPL version 3. The plots are created using Jupyter
Notebooks [7] in the folder demos/realisticSimulations, and the simulator code itself is under the directory SWESimulators as a Python
module. We have used the NorKyst-800 forecast for 2019-07-16 from the Norwegian Meteorological Institute in this work, available on
https://thredds.met.no/thredds/dodsC/fou-hi/norkyst800m-1h/NorKyst-800m_ZDEPTHS_his.an.2019071600.nc. The observed
sea-surface levels are obtained from Se Havnivå, https://www.kartverket.no/sehavniva/, provided by the Norwegian Mapping Authority,
Hydrographic Service. The data sets are available under the Creative Commons 4.0 BY International license as described on https://www.met.
no/en/free-meteorological-data/Licensing-and-crediting and https://www.kartverket.no/en/data/Terms-of-use/.
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in which M represents the right hand side of (3). The time step is restricted by the CFL condition given by

∆t ≤ 1

4
min




∆x

max
���u ± √

gh
��� ,

∆y

max
���v ± √

gh
���


, (5)

if we assume no Coriolis and wind drag. The dominant term for oceanographic applications is typically the speed of
gravity waves

√
gh, and we use a conservative Courant number less than one in our simulations to account for Coriolis

and wind drag.

2.1 Numerical scheme
The starting point for our simulator is the scheme proposed by Chertock et al. [6], from now on referred to as CDKLM. It
is a modern central-upwind scheme that uses a reconstruction of the physical variables to be able to capture steady-state
solutions important for physical oceanography, and includes source terms for varying bathymetry and Coriolis. The
original paper includes several idealized test cases and examples demonstrating that the steady states in geostrophic
balance are well captured. However, there are several shortcomings that need to be addressed before the scheme can
be used for real-world simulations.

The CDKLM scheme is based on the same principles as the MUSCL scheme [9] to obtain a high-order, total
variation diminishing discretization. For each cell in the domain, we first reconstruct a piecewise (linear) function
for our physical variables (see Figure 1). At the interface between two cells, we evaluate the slope limited function
from the right and left cell, and use these two values to compute the flux across the interface. The scheme uses the
Riemann-solver-free central-upwind flux function,

Fi+1/2 =
a+F(Ql

i+1/2) − a−F(Qr
i+1/2)

a+ − a−
+

a+a−

a+ − a−
[
Qr

i+1/2 −Ql
i+1/2

]
, (6)

to evaluate the numerical flux [10]. Here, a+ and a− are the largest positive and negative wave speeds at the interface,
respectively.

When adding source terms, it becomes challenging to preserve steady states such as “lake at rest”, i.e.,

∂Q
∂t
= 0 if

∂η

∂x
=
∂η

∂y
= hu = hv = 0, (7)

in which η is the sea-surface deviation from a mean equilibrium level, given by

η = h − H. (8)

Kurganov and Levy [11] presented a discretization of the bottom slope source term B(Q) and a matching reconstruction
based on water elevation to capture such steady states. For oceanographic simulation, an important steady state is the
so-called geostrophic balance, in which the angular momentum caused by the rotational reference frame is balanced
by the pressure gradient:

f hv − gh
∂η

∂x
= 0, − f hu − gh

∂η

∂y
= 0. (9)

The novel idea in the CDKLM scheme is to reconstruct the face values Ql
i+1/2 and Qr

i+1/2 based on this geostrophic
balance so that the resulting flux Fi+1/2 also balances the Coriolis force for steady-state solutions. This makes the
scheme suitable for simulating ocean currents in a rotating frame of reference.

3 Efficient simulation of real-world ocean currents
Our simulator is implemented on the GPU for efficiency. Explicit finite-volume schemes normally have an embarrass-
ingly parallel nature, and it is therefore natural to implement them on such massively parallel accelerator hardware
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Figure 1: a) The relationship between the physical variables h, H, η, and hu used in the shallow-water equations, here
shown in one dimension. b) The ocean state is discretized in terms of cell average values, whereas the bathymetry is
defined at the cell intersections. c) We find the slopes of the ocean state within each cell. d) The flux between the cells
is found from two one-sided point values at each interface, as seen from the two adjacent cells.

(see e.g., [12, 13, 14, 15]). We use CUDA [16] coupled with PyCUDA [17] to access the GPU from Python in this
work, and we have previously shown that using Python instead of C++ has a negligible performance impact when used
like this [18]. Using the Python ecosystem for tasks such as pre-processing input data and post-processing results has
significantly increased our productivity, while still maintaining high performance.

A simulation starts by reading initial conditions, forcing terms, and other grid data from NetCDF files hosted by
thredds servers at the Norwegian Meteorological Institute. We continue by initializing the simulator, which internally
allocates memory and uploads initial conditions on the GPU. Finally, the main loop steps the simulator forward in time,
and occasionally (e.g., every simulated hour) downloads and writes results to NetCDF files on disk.

The rest of this section covers additions and improvements to the CDKLMscheme required for simulating real-world
scenarios.

3.1 Efficient parallel formulation of CDKLM
The original CDKLM scheme uses a recursive formulation of the potential energies used for the well-balanced flux
reconstruction. This turns the reconstruction procedure into a global operation with a data-dependency spanning
the whole domain, making the scheme prohibitively expensive on parallel architectures. The recursive expression
can be calculated somewhat efficiently using a prefix sum, as suggested by the authors themselves, but by carefully
reformulating the recursive terms it can also be rephrased as a local operation.

The scheme reconstructs h, hu, and hv on each side of a face to calculate the fluxes in (6). However, to capture the
rotating steady-state solutions in geostrophic balance, the reconstruction is based on the potential energies,

K = g(η − V), L = g(η +U), (10)

instead of physical variables. Here, U and V are the primitives of the Coriolis force, given by

Vx =
f
g
v, Uy =

f
g

u. (11)
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Note that setting Kx = 0 and Ly = 0 is equivalent to the geostrophic balance from (9). In the following, we detail the
reconstruction along the abscissa, but the same derivations apply in the ordinate. The recursive terms appear from the
discretization of U and V , which are defined on the cell faces as

Vi+1/2, j = Vi−1/2, j +
∆x
g

fi, jvi, j, V−1/2, j = 0. (12)

The Coriolis parameter fk , j is allowed to change both along the x and y axis, even though f only varies with latitude.
This is because we will use a spatially varying latitude, as described in more detail in Section 3.7. Values of V in the
cell centers are obtained by taking the mean of the face values, so that the cell-average value of K from (10) becomes

Ki, j = g

(
ηi, j − 1

2

(
Vi+1/2, j + Vi−1/2, j

) )
. (13)

By reconstructing the (limited) slopes of K within each cell, the face values of h are found by combining (13) and (8),
so that

hE
i, j =

1

g

(
Ki, j +

∆x
2
(Kx)i, j

)
+ Vi+1/2, j + Hi+1/2, j, (14)

and
hWi, j =

1

g

(
Ki, j − ∆x

2
(Kx)i, j

)
+ Vi−1/2, j + Hi−1/2, j . (15)

The reconstructed values (14) and (15) of h at the cell faces quickly become a performance bottleneck as long as
they depend on calculating the recursive relation in (12). As it turns out, however, we never need to explicitly compute
the recursive terms. First of all, notice that (14) and (15) only depend on derivatives of K and not on L. Similarly, the
reconstructions of hN

i, j and hS
i, j depend on L and Ly . This means that we are only interested in derivatives of K (and L)

in the same direction as the recursive terms for V (and U). The derivatives are limited using the generalized minmod
function using the backward, central, and forward differences. The backward difference is given by

Ki, j − Ki−1, j
∆x

=
g

∆x

(
ηi, j − 1

2

(
Vi+1/2, j + Vi−1/2, j

) − ηi−1, j + 1

2

(
Vi−1/2, j + Vi−3/2, j

) )
. (16)

We see that Vi−1/2, j cancels, and focus on the remaining V values. By applying the recursive expression in (12) twice
on Vi+1/2, j we get

1

2

(−Vi+1/2, j + Vi−3/2, j
)
=
1

2

(
−Vi−1/2, j −

∆x
g

fi, jvi, j + Vi−3/2, j

)

=
1

2

(
−Vi−3/2, j −

∆x
g

fi−1, jvi−1, j − ∆x
g

fi, jvi, j + Vi−3/2, j

)

= − ∆x
2g

(
fi−1, jvi−1, j + fi, jvi, j

)
.

(17)

Inserted back into (16), the backward difference needed to evaluate (Ki, j)x can be written as

Ki, j − Ki−1, j
∆x

=
g

∆x

(
ηi, j − ηi−1, j − ∆x

2g

(
fi−1, jvi−1, j + fi, jvi, j

))
, (18)

which no longer contains any recursive terms. Similar derivations can be used for the forward and central differences,
and equivalently to obtain (Li, j)y .

After obtaining (Kx)i, j we look at the reconstruction of hE
i, j from (14). We start by inserting the expression for K

from (13) into (14) and gather all V-terms,

hE
i, j = ηi, j −

1

2

(
Vi+1/2, j + Vi−1/2, j

)
+
∆x
2g
(Kx)i, j + Vi+1/2, j + Hi+1/2, j

= ηi, j + Hi+1/2, j +
∆x
2g
(Kx)i, j + 1

2

(
Vi+1/2, j − Vi−1/2, j

)
.

(19)
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Here, the values for ηi, j , Hi, j and (Kx)i, j are known, and by using the recursive expression in (12) we get that

1

2

(
Vi+1/2, j − Vi−1/2, j

)
=

1

2

(
Vi−1/2, j +

∆x
g
vi, j fi, j − Vi−1/2, j

)

=
∆x
2g

fi, jvi, j .
(20)

Inserting (20) back into (19) we see that we get

hE
i, j = ηi, j + Hi+1/2, j +

∆x
2g

[
(Kx)i, j + fi, jvi, j

]
, (21)

Again, the same derivation can be applied on the other three face values as well. This enables us to express the
reconstruction step in terms of only local variables, which unlocks an embarrassingly parallel numerical algorithm.

3.2 Accuracy, precision and GPUs
Today’s GPUs can be categorized in two major classes: GPUs meant for the consumer market, and GPUs meant for
supercomputers and other professional users. For the most part, these GPUs are close to identical, but there are some
key differences. One is price: professional GPUs can cost over ten times more than equivalent consumer market GPUs,
making the latter tractable from a financial stand point. Another difference is in the feature set. Professional GPUs
offer more memory, error-correcting code (ECC) memory, and significantly higher performance for features such as
double precision.

Double precision is not an important feature on consumer market GPUs, and typically offer just 3% of the
performance of single-precision arithmetics. The NVIDIA TITAN RTX, for example, has a performance of 16.3
teraFLOPS in single precision, and 0.51 teraFLOPS in double precision. On professional GPUs, on the other hand,
the performance is 50% of single precision, which is the same ratio as on CPUs. If we are able to utilize single-
precision calculations, we should therefore be able to get the highest performance at minimummonetary cost. We have
previously shown that using single precision is sufficiently accurate for most simulation scenarios for the shallow-water
equations [19], and recent studies have shown a 40% increase in performance for complex forecasting models when
using single precision [20].

It is well known that floating-point numbers have a round-off error that increases for larger numbers. A single-
precision floating-point number is represented as

(−1)s · 2e−127 · (1.0 + f ) (22)

in which s is the sign bit, e is represented using 8 bits, and f is the fractional part, represented by 23 bits. This
formulation means that the distance between two floating-point numbers is smallest close to zero, and increases as e
increases. This is important to note in oceanographic simulations, as the water depth, h, can often be thousands of
meters, whereas the relevant tidal wave height is perhaps 0.5 meters. The loss in precision due to the water depth
makes floating point prohibitively inaccurate if we implement the shallow-water equations as formulated in (1). To
counter this loss in precision, we can possibly use double precision (at twice the computational and memory cost),
but a better alternative is to reformulate the problem to represent the relevant physical quantities. This can be done
by basing our simulation on η from (8) instead of h and use [η, hu, hv]T as our vector of conserved variables. By
combining this approach with single-precision floating-point numbers, we get more than sufficient accuracy for the
relevant oceanographic simulations.

When the water depth becomes close to zero, the calculation of the particle velocity, u = hu/h can become severely
ill conditioned as the expression is prone to large round-off errors. To counter this, Kurganov [21] and Kurganov and
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Figure 2: Desingularization of the quantity u = h/hu using existing and our proposed method with κ = 1.0 · 10−11 for
all cases. We compute the value of hu/h using the different approaches for u = 1 and different values of h. Notice how
the single precision floating-point errors are clearly visible for u∗1, that u∗2 has a distinct kink, and that u∗3 significantly
underestimates the true magnitude of u.

Petrova [22] have proposed to desingularize the term using expressions such as

u∗1 =
√
2h(hu)√

h4 +max(h4, κ4)
(23)

u∗2 =
h · hu

h2 + κ2
, or (24)

u∗3 =
2h · hu

h2 +max(h2, κ2) . (25)

The suggestion of using κ = max(∆x4,∆y4) has some obvious problems for real-world simulations with ∆x > 1, as
pointed out in [13]. Furthermore, the desingularization of u here is not very well-behaved. Instead, we propose to use
the following formulation

h∗ = sign(h)max
(
|h|,min(h2/(2κ) + κ/2, κ)

)
u∗ = hu/h∗.

(26)

The advantages of this formulation is that (i) κ now controls directly what magnitudes of h to desingularize, (ii) it
improves the numerical stability as it avoids the square root and the problematic h4 term, (iii) it yields a smooth
transition between normal and desingularized values, and (iv) the effective magnitude of h∗ is controlled. Figure 2
shows the three desingularization strategies and clearly indicates that the desingularized quantity h is better behaved
with our proposed approach.

3.3 Global wall boundary conditions
We have implemented wall and periodic boundary conditions to be able to run test cases to assess the numerical
correctness of our simulator. For reflective von Neumann-type wall boundary conditions, we use so-called ghost cells
that mirror the ocean state across the boundary to enforce a zero flux out of the domain. In the absence of Coriolis
forces, wall boundary conditions at x = 0 are constructed by setting the ghost cell values according to

η(−x, y) = η(x, y), hu(−x, y) = −hu(x, y), hv(−x, y) = hv(x, y). (27)
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Naïve implementation of these conditions with the CDKLM scheme leads to gravitational waves along the boundary.
Special care is therefore required to balance the Coriolis potential energies in the reconstruction of h, so that

0 = hW0, j − hE
−1, j

=

(
η0, j + H−1/2, j −

∆x
2g

[
(Kx)0, j + f0, jv0, j

] )
−

(
η−1, j + H−1/2, j +

∆x
2g

[
(Kx)−1, j + f−1, jv−1, j

] )
,

(28)

using (21). Here, we see that H cancels immediately, whereas η cancels by the use of (27). To make the last terms
cancel, we need to set f−1, jv−1, j = − f0, jv0, j , which means that in addition to (27), we need to enforce

f (−x, y) = − f (x, y). (29)

Note also that this results in (Kx) = 0 across the boundary from (18).

3.4 Moving wet-dry boundary and land mask
The original CDKLM scheme breaks down on land as the gravitational wave speed

√
gh becomes imaginary with

negative depths. To support a moving wet-dry boundary, we use a similar approach as Kurganov and Petrova [22] by
adjusting the slope of h so that all the reconstructed point values become non-negative. For example, if we get hE

i, j < 0
from (21), we adjust the slope to become

(Kx)i, j = − fi, jvi, j − 2g

∆x

[
ηi, j + Hi+1/2, j

]
, (30)

and thus forcing hE
i, j = 0 instead.

The moving wet-dry boundary is required for simulating, e.g., tsunamis and other phenomena in which the run-up
is important. The approach nonetheless violates the steady-state reconstruction, causing non-physical waves and often
also small time step sizes. For static wet-dry boundaries, we have therefore implemented wall boundaries following
a land mask, i.e., ensuring a zero flux for the shore-line. In our approach, we explicitly set the flux between two
neighboring cells to zero if any one of them is masked. The mask is represented by a unique no-data value in the
bathymetry, thereby having no increase in the memory footprint. It should be noted that both of these approaches
reduce the reconstruction to first order along the wet-dry boundary.

3.5 Wind forcing and bed friction source terms
The original formulation of CDKLM includes the bed slope source term, B(Q), and Coriolis force, C(Q), and we
extend the scheme to also include the bed shear stress, S(Q), and wind forcing, W(Q). Bed shear stress is discretized
using a semi-implicit formulation in the strong stability preserving Runge-Kutta scheme,

Q∗i, j =
(
Qn

i, j + ∆tM(Qn)i, j
)
/
(
1 + ∆tS(Qn

i, j)
)

Qn+1
i, j =

1
2

(
Qn

i, j +
(
Q∗i, j + ∆tM(Q∗)i, j

))
/
(
1 + 1

2∆tS(Q∗i, j)
)
,

(31)

instead of (4). This essentially means that we apply half of the bed friction using Qn, and half of the friction using the
predictive step Q∗.

The wind stress comes from the atmospheric wind transferring momentum to the water column. We take the
approach of Large and Pond [23] and use

®τ = ρa
ρw

CD |W10 |W10, (32)

in which ρa = 1.225 is the specific density of air, ρw = 1025 is the specific density of sea water, W10 is the wind speed
at 10 meters, and CD is the drag coefficient computed as

CD = 10−3
{
1.2 if |W10 | < 11 m/s,
0.49 + 0.065 |W10 | if |W10 | ≥ 11 m/s. (33)
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The NorKyst-800 model stores its output, including the wind forcing, every hour. Because the time step of our
simulator is significantly smaller than one hour, we use linear interpolation in time to get the most accurate wind stress
source term for each time step. Given the wind stresses Wa

10 at time ta and Wb
10 at time tb , we compute the wind stress

at time t ∈ [ta, tb] as a convex combination of the two

Wn
10 = (1 − s)Wa

10 + sWb
10, s = (t − ta)/(tb − ta). (34)

In space, we use specialized GPU texture hardware for bilinear interpolation (see e.g., [24]), resulting in a trilinearly
interpolated wind stress. This is highly efficient, as the GPU has dedicated hardware for bilinear spatial interpolation
that also includes caching. An added benefit is that the grid size of the wind stress data does not need to match up with
the underlying simulation grid.

3.6 Nesting the model into NorKyst-800
A common technique in operational oceanography is to nest high-resolution local models within lower-resolution
models that cover a larger domain. For instance, the NorKyst-800 model is nested within TOPAZ, which is a 12-16 km
resolution HYCOM-based coupled ocean and sea ice model with data assimilation [25]. In this work, we nest our
simulations into the NorKyst-800 model by setting initial ocean state and boundary conditions appropriately. We use
the so-called flow relaxation scheme [26], in which we have a relaxation zone between the internal computational
domain and the external boundary conditions. In this region, we solve the shallow-water equations as normal to obtain
an internal solution Qint

i, j , and then gradually nudge it towards an external solution Qext using

Qi, j = (1 − α)Qint
i, j + αQext, α = 1 − tanh(di, j/d0). (35)

Here, di, j is distance in number of cells to the external boundary, and the parameter d0 is typically set to 2 or 3 to
control the fall-off of the tanh relaxation function.

The implementation of the boundary conditions follows the same ideas as for the wind stress, using textures for
linear interpolation in time and space. We use float42 textures to hold our physical variables, η, hu, hv, because float3
is not supported as a texture format. We furthermore only use two textures, as we pack the north and south boundaries
into one texture, and similarly for the east and west.

3.7 Coriolis force
The original CDKLM scheme requires that the grid is aligned with the cardinal directions, which significantly restricts
the use of the scheme. For higher latitudes this becomes especially pronounced, as both the latitude and direction
towards north will vary across the domain. We have therefore extended the scheme to support both a spatially varying
north-vector and a spatially varying latitude, which is required to be able to run realistic simulations for the areas
covered by the NorKyst-800. To account for the varying north vector, we project the momentum onto the local north
and east vectors,

hue = ®e · [hu, hv]T , ®e = [cos(θ),− sin(θ)]
hvn = ®n · [hu, hv]T , ®n = [sin(θ),cos(θ)], (36)

and use these vectors when computing the source term C(Q) so that

C(Q) = f ·


0
®x · [hvn,−hue]T
®y · [hvn,−hue]T


. (37)

in which the vectors ®x = [cos(θ), sin(θ)] and ®y = [− sin(θ),cos(θ)] project the result back into the (x, y)-coordinate
system. Note that we also need to use the same approach in the reconstruction of h as discussed in Section 3.1 to
maintain the rotational steady states.

2Textures on GPUs are originally designed to hold the color of one pixel as the color channels red, green, blue, and alpha, hence float4.
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Figure 3: Planetary Rossby waves generated by a beta plane model for the Coriolis force and with different directions
for north. The simulations are initialized by a rotating bump in the middle of the domain, which develops into Rossby
waves that propagates westwards with wave energy slowly propagating eastwards. The different figures show that we
get the same Rossby waves for arbitrary orientation of our domain. Axes are given in 1000 km, and the colormap
shows η in m.

Our spatially varying Coriolis parameter is computed from the latitude, li, j , of a cell

fi, j = 2ω sin(li, j), ω = 7.2921 · 10−5rad/s, (38)

or using a beta-plane model,

fi, j = fref + β ·
(
®n · [(xi − xref ), (yj − yref )

]T )
. (39)

Here, f is linearized around a reference point, (xref , yref ), with a slope β in the direction of ®n. Setting β to zero yields
a constant Coriolis parameter throughout the domain.

Figure 3 demonstrates how the angle to north plays an important role in the generation of planetary Rossby waves,
caused by variations in the Coriolis force using (39). The figure shows the resulting η after long simulations initialized
with a rotating Gaussian bump in geostrophic balance in the middle of the domain, similar to the case presented in
Holm et al. [27]. Here, we have used a domain consisting of 350 × 350 cells with ∆x = ∆y = 20 km, a depth of
H = 50 m, and the center of the domain corresponding to approximately 33◦ north, with f = 8 ·10−4 and β = 2 ·10−11.
The simulation ends after approximately 35 days. The figure clearly shows the effect of varying the north vector and
hence the Coriolis source term.

3.8 Bathymetry
The bathymetry in the NorKyst-800 model is given as cell midpoint values, and can not be used directly in our
framework as CDKLM requires the bathymetry to be defined as a piecewise bilinear surface specified by point values at
the cell intersections. It is still desirable that the averages of the resulting four intersection values end up to be equal to
the NorKyst-800 cell average values, as large deviations can disturb the balanced relations in the provided ocean state.
Constructing such a piecewise bilinear surface from the cell averages is an ill-posed problem, and a simple averaging
of cell values excessively smears important features such as deep fjords and straits.

We have therefore devised a pragmatic iterative algorithm, which is based on reconstruction of slopes for each
cell, similar to the reconstruction procedure in our numerical shallow-water scheme. Our initial guess is computed as
follows:

1. Compute the local gradient in each cell so that

[Hx
i, j,H

y
i, j] = ∇Hi, j . (40)
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2. Evaluate the piecewise planar function at the four corners of each cell,

Hi, j

i−1/2, j−1/2 = Hi, j − 1
2Hx

i, j − 1
2Hy

i, j,

Hi, j

i+1/2, j−1/2 = Hi, j +
1
2Hx

i, j − 1
2Hy

i, j,

Hi, j

i−1/2, j+1/2 = Hi, j − 1
2Hx

i, j +
1
2Hy

i, j,

Hi, j

i+1/2, j+1/2 = Hi, j +
1
2Hx

i, j +
1
2Hy

i, j .

(41)

3. Average the estimate from the four cells meeting at one intersection point so that

H∗i+1/2, j+1/2 =
1
4

(
Hi, j

i+1/2, j+1/2 + Hi+1, j

i−1/2, j+1/2 + Hi+1, j+1

i−1/2, j−1/2 + Hi, j+1

i+1/2, j−1/2
)

(42)

After obtaining the initial guess, we start an iterative procedure consisting of two stages. The first stage minimizes
the difference between computed and true midpoint values, and the second dampens oscillations created by the first
stage. We start by computing the difference between our estimate and the target bathymetry as

∆Hi, j = Hi, j − H∗(i, j), (43)

in which H∗(i, j) means that we evaluate the piecewise bilinear estimate at midpoints. We then apply (40)–(42) to
compute an estimate of the difference at intersections, ∆H∗

i+1/2, j+1/2, and subtract this difference from our initial guess,

H∗i+1/2, j+1/2 := H∗i+1/2, j+1/2 + ∆H∗i+1/2, j+1/2. (44)

This brings our updated midpoints of H∗(i, j) closer to the target Hi, j , but it also results in unwanted oscillations,
as there is nothing that limits the slopes of this piecewise bilinear surface. We therefore smooth H∗, and repeat the
procedure until the update between two subsequent iterations is sufficiently small. Around ten iterations is typically
sufficient to create a piecewise bilinear surface that lies close to the target. Figure 4 shows the result of our approach
applied to the bathymetry from NorKyst-800 in the innermost parts of Vestfjorden (see also Section 5.2).

CDKLM is a full two-dimensional scheme, yet it exhibits a grid orientation bias close to the land mask. For
example, we have experienced that the scheme has difficulties in propagating the momentum through narrow straits
and canals that are only one or two cells wide. To ameliorate this, we can use binary erosion on the land mask to erode
one row of cells at a time as shown in Figure 5. We extrapolate η into these areas using gray dilation (maximum of
neighbors), and set the water depth equal the land value, which in the NorKyst-800 model is 5 meters. The process can
be repeated to erode the land mask even more, and is required for tidal waves to properly propagate in features such
as narrow fjords and straits. We have found that using single iteration is sufficient to propagate tides in and out of the
fjords in the NorKyst-800 model.

3.9 Refinement and coarsening of grid
The possibility to run simulations at different resolutions is attractive to quickly obtain low-resolution preliminary
results, and also to resolve more of the dynamics for more detailed and accurate results with higher resolution. We
have included functionality in our simulation framework to increase and decrease the grid resolution with factors of
two to support both of these scenarios. We use a static grid refinement/coarsening performed on the initial conditions
themselves, but the same approach can be used for efficient adaptive mesh refinement following the same approach as
Sætra, Brodtkorb and Lie [28].

The physical variables are represented by cell average values, and refinement is based on a slope-limited recon-
struction within each cell, which we evaluate at the refined grid cell centers. As the bathymetry is specified by a
piecewise bilinear surface, the high-resolution representation of the bathymetry evaluates the surface on the refined
cell intersections. Low-resolution representation of the physical variables on a coarsened grid is simply the average
of the original cell values, and intersection values for the bathymetry are sampled from the corresponding original
intersection values. With a factor two coarsening, both these operations are well-defined.

Note that the boundary conditions and wind forcing terms are independent of the mesh resolution due to our use of
GPU textures.
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Figure 4: Reconstruction of the bathymetry at intersection points. Starting with the initial bathymetry Hm defined at
cell midpoints (upper left), we compute the Hi values at intersections (upper right). The lower-left figure shows the
convergence of our reconstruction algorithm, and the reconstructed bathymetry is plotted together with the original in
the lower-right figure.
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Figure 5: Widening of narrow straits, in which the land mask is eroded using binary erosion. The left figure shows
particle velocities in the Tjeldsund strait in Lofoten/Vesterålen between the main land and Hinnøya (the bathymetry is
shown in Figure 4). Left shows the NorKyst-800 reference, center shows original (reconstructed) bathymetry, and the
right figure shows the result with one grid cell land erosion. The strait width and geometry limits the amount of water
passing through it in the original bathymetry, but by eroding one cell of the land mask the amount of water is much
closer to the reference.

12



Table 1: Error of computed solutions at different resolutions and numerical reduction order for each refinement. The
time step is fixed throughout these simulations.

Resolution ∆t L1 Order L2 Order Linf Order
162 1600/16 0.002898 - 0.006072 - 0.037367 -
322 1600/32 0.000923 1.65 0.001877 1.69 0.012651 1.56
642 1600/64 0.000256 1.85 0.000502 1.90 0.002621 2.27
1282 1600/128 0.000058 2.14 0.000122 2.04 0.000741 1.82
2562 1600/256 0.000015 1.96 0.000033 1.87 0.000322 1.20
5122 1600/512 0.000005 1.58 0.000009 1.89 0.000136 1.25

4 Performance and accuracy of GPU implementation
We have previously evaluated the standard CDKLM scheme on several test cases which target oceanographic dynamics
relevant for the shallow-water equations when implemented on a Cartesian grid [27]. In this work, however, we have
reformulated the scheme in terms of η instead of h, added several new source terms, and enabled varying latitude and
north vector. It is therefore important to revisit the grid convergence test. We also measure computational performance
of our simulation framework through assessing its weak scaling.

4.1 Convergence of the numerical scheme
To evaluate numerical convergence, we define a benchmark case covering 500 km×500 km. We model the bathymetry
after the Matlab peaks function,

peaks(s, t) = 3(1 − s)2e−s
2−(t+1)2 − 10(s/5 − s3 − t5)e−s2−t2 − 1/3e−(s+1)

2−t2, s, t ∈ [−3,3] (45)

which yields a non-symmetric smooth surface. We then define the equilibrium ocean depth as

H(x, y) = 100 + 10 · peaks
(
6x
500
− 3, 6y

500
− 3

)
, (46)

with x and y given in km, so that the depth varies between 34 and 181 meters (see Figure 6). We initialize the
sea-surface level with a bump centered in the domain,

η(r) =
{

1
2

(
1 + cos

(
r
c π

) )
, if r ≤ c,

0, if r > c,
(47)

in which r =
√
(x − 250)2 + (y − 250)2 is the distance from the center of the domain, and c controls the size of the

bump, set to 300 km in our case. We assume that the North pole is located at (3000 km,3000 km), which means that
the angle between the y-axis and the north vector varies from 33.7◦ to 56.3◦ across the domain and that the latitude
varies from 56.0◦ to 67.4◦ north. These parameters roughly correspond to the North Sea. Including land inevitably
yield only first-order accurate fluxes, and we have thus deliberately not included such areas in our grid convergence
test.

The simulation is run for 800 seconds, after which we compute the difference for the whole domain between the
solution and a reference computed on a 1024 × 1024 grid. Figure 6 and Table 1 show that we achieve second-order
accuracy in both the L1 and the L2 norm, whilst the convergence in Linf is somewhat slower.

4.2 Computational performance
To assess the computational performance, we continue to use the same benchmark, but run the simulation twice as
long. We also measure the cost of downloading the results from the GPU to the CPU. Figure 7 shows the results for
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Figure 6: Convergence plot of our numerical scheme. The numerical case has a water disturbance consisting of a
cosine bump at the center of the domain, and the bathymetry consists of the smooth Matlab peaks function. The
Coriolis force varies spatially across the domain according to variations in latitude and direction towards north. The
left figure shows the self convergence of the numerical error compared to the reference solution with 10242 cells. To
the right we show the bathymetry with the sea-surface level initially (top) and at the end of the simulation (bottom).

Table 2: Performance for our simulator. The simulation time is approximately eight times larger when we double the
resolution. This is because we have four times as many cells and twice as many timesteps to reach the same end time.
The download increases by a factor four, which is to be expected as we transfer four times as many data elements.

Resolution Simulation time Factor Download time Factor
5122 0.169710 - 0.000929 -
10242 1.170814 6.9 0.002773 3.0
20482 9.133564 7.8 0.019642 7.1
40962 72.832028 8.0 0.077541 3.9
81922 582.599290 8.0 0.305405 3.9
163842 4695.904546 8.0 1.218880 4.0

domains with 162 to 16 3842 cells, running on a Tesla P100 GPU. We see that for the larger domain sizes, we obtain
perfect weak scaling, as a factor two grid refinement leads to a factor eight increase in computational complexity (the
timestep size is cut in half due to the CFL condition, and we have four times the number of cells). Cases with less
than 5122 cells are dominated by overheads and hence, the cost of a single timestep is close to constant. Time for
downloading data scales linearly with the problem size, as is expected. Again, we see the same behavior for small
domains as for the computational performance.
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Figure 7: Weak scaling of our simulator. For small domain sizes, the runtime is dominated by overheads, but for
domain sizes larger than approximately 512 × 512, we see that the computational time scales with the number of cells.
For each doubling of our domain, we perform approximately eight times as many operations (four times as many cells,
and twice the number of time steps).

5 Real-world simulations
Using the NorKyst-800 model system, the Norwegian Meteorological Institute issues daily ocean forecasts for the
complete Norwegian coast and makes them publicly available through thredds servers. The results contain full 3D
values as well as depth-averaged values, wind forcing, bathymetry, longitudes, latitudes, and angle towards north for
each cell. This means that it is simply a matter of accessing the file and cutting out the correct sections to be able to
initialize our simulator. To start a simulation within our framework, we simply need the full url to the specific forecast
we want to nest our simulation within, and specify a desirable sub-domain.

We run our simulations on the three different sub-domains shown in Figure 8. Our first simulation is in the
Norwegian Sea with no land values within the domain, and is therefore a fairly simple test for using real initial and
boundary conditions. The second case is centered on the Lofoten archipelago in Northern Norway, which is dominated
by a complex coastline consisting of narrow fjords and a large number of islands, and serves as a challenging test for
our reconstruction of the bathymetry and land mask. Finally, we run almost the complete domain, leaving only 25
cells in each direction to serve as boundary conditions. With the entire Norwegian coastline, it becomes important to
account for the difference in the north vector throughout the domain (see the longitudinal lines and north arrows in
Figure 8), and we should see the tides following the coast as Kelvin waves. The last case is also used to make sea-level
predictions at five different locations, indicated as stars in Figure 8.

All three cases are run with three different resolutions; a high resolution with a grid refined to 400 m cells, the
original 800 m resolution of NorKyst-800, and a low resolution grid consisting of 1600 m cells. We use an adaptive
time step, and update the time step every 20 minutes according to the CFL condition in (5) with a Courant number
0.8. Each dataset provided from the NorKyst-800 forecasts covers 23 hours, which means that we only have boundary
conditions to run simulations for the same time range.

5.1 Case 1: Norwegian Sea
The first case runs an open water domain in the Norwegian Sea and tests our ability to use the NorKyst data as initial
and boundary conditions. The sea-surface level changes significantly during the simulation time range as the tidal
waves enter and exit the domain, and this dynamic is largely dependent on the boundary conditions. The velocity field
on the other hand, is dominated by already present features of slowly rotating dynamics, and will not change much
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Figure 8: The domain covered by the NorKyst-800 model showing the equilibrium depth off shore. The location of
Case 1 in the Norwegian Sea (yellow rectangle), Case 2 around the Lofoten archipelago (red rectangle), and Case 3
(beige rectangle) within the NorKyst-800 model domain, with red stars marking the locations for sea-level predictions.
The values on the x- and y-axes are given in km, and the latitude-longitude grid shows how the direction towards north
changes throughout the domain.

during the simulation time range. This enables us to test both that the initial conditions are correctly captured, and
how well our simulator maintains complex rotating structures over time.

Figure 9 shows simulation results of the Norwegian Sea for all three different grid resolutions after 23 hours,
compared to the reference solution from NorKyst-800. First, we see that the contour lines for the sea-surface level in
the left column show the same values at similar places for all simulations. This shows that the boundary conditions allow
tidal waves to propagate correctly in and out of the domain as intended. The right column shows the corresponding
particle velocities. Note that the initial state for both the high-resolution and original runs are visually inseparable from
the NorKyst-800 model state, whereas the low-resolution initial conditions slightly smear out the sharper features for
the velocity. At 23 hours, we see that the high-resolution model to a large degree maintains the sharp features from
NorKyst-800. With the original resolution, however, the particle velocities resemble a slightly blurred image of the
reference solution, and in the low-resolution simulation, the features are blurred even more. Also, we are starting to
see clear signs of grid effects both internally and from the boundary.

5.2 Case 2: Lofoten
The second case is centered around the Lofoten archipelago in Northern Norway. This region has a complex coast
line consisting of a large number of fjords, straits and islands. In addition to the aspects tested in the first case, this
case tests the reconstruction of the bathymetry at intersections and the handling of dry zones through the complex land
mask. We expect to see a Kelvin wave following the coast, but because the Lofoten archipelago protrudes into the
Atlantic, some of the wave will be partially trapped and amplified in Vestfjorden between Lofoten and the main land.
Furthermore, as can be seen from the depth map in Figure 8, the edge of the continental shelf crosses through the upper
right corner of the sub-domain, and we can here see a line of eddies driven by baroclinic instabilities.

We again run simulations with the three different grid resolutions, and Figure 10 shows the final simulation state
after 23 hours, with a high tide in Vestfjorden. All three simulations show that the contour lines for the sea-surface
level are slightly off compared to the reference solution, with marginally more water into the fjord. Similarly as in
Case 1, the low-resolution simulation is unable to preserve the fine structures in the currents and shows grid effects.
The original and high grid resolutions are also unable to preserve the exact eddy structure as found in the reference
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Figure 9: Case 1 of the Norwegian Sea after 23 hours, comparing the reference solution from NorKyst-800 with our
simulations using three different grid resolutions. All simulations obtain sea-surface level (left) similar to the reference
solution, meaning that the boundary conditions allow the tides to correctly enter and exit our domain. From the
particle velocities (right), we see that only the high-resolution model is able to maintain sharp features, whereas the
low-resolution simulation has strong signs of grid effects. The values on the x- and y-axes are in km relative to the
location in the complete domain.
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Figure 10: Case 2 around the Lofoten archipelago after 23 hours, comparing the reference solution from NorKyst-800
with our simulations using three different grid resolutions. The values on the x- and y-axes are in km relative to the
location in the complete domain. Our sea-surface levels (left column) are similar but slightly higher within Vestfjorden
compared to the reference solution. From the particle velocities (right), we see that we get stronger currents than the
reference. The level of details in our simulations are stronger with higher grid resolution, whereas the low-resolution
simulation blurs the structures and are influenced by grid effects.
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solution, but we can instead more clearly see a consistent coastal current with natural irregularities. This is consistent
with what we can expect using a barotropic model. These results also show a larger area with high particle velocity
around the smallest islands in our simulations, possibly due to the reconstructed bathymetry, which widens some straits
by the landmask erosion.

5.3 Case 3: Norway
Our third case consists of almost the complete domain covered by the NorKyst-800 model. We leave out the 25
outermost cells and use these as boundary conditions. With the complete domain, we cover a large enough area to see
the Kelvin waves forming in the middle of the domain and travelling north.

Figure 11 shows the simulation results after 23 hours in the same manner as the earlier figures. We now see from
the sea-surface level (left column) that there is a low tide in the middle of the domain, whereas there are high tides both
in the north at the Russian border and in the Oslo fjord in the lower left corner. The contour lines are similar for all
three grid-resolutions, and the particle velocities (right column) are in general consistent with the reference solution
from NorKyst-800. Due to the scale of the domain, it is harder to compare the fine details in Figure 11, but the large
scale features from NorKyst-800 are found in both the high and original grid resolutions. As we have seen in the other
cases, the low-resolution simulation maintains less details. It should be noted that by zooming into the same areas
simulated in Case 1 and 2, we have seen that the results from running the complete domain are similar within each
resolution as to the results shown in Figures 9 and 10.

Table 3 reports the run time for simulating this case on a laptop, a desktop, and a server GPU. The laptop contains
a dedicated GeForce 840M GPU, which is powerful for a laptop but on the low end of the GPU performance spectrum.
It completes the simulation in slightly less than 54 minutes for the original grid resolution of NorKyst-800, which is
comparable to the time required for 256 CPUs to run the NorKyst-800 simulation. On a desktop with a slightly old
GeForce 780GTX gaming GPU, the same simulation is carried out in approximately 10 minutes. Tesla P100 is a GPU
often found in supercomputers, thus belonging to the very high-end of the performance (and price) spectrum, and runs
the 23-hour forecast in approximately 3 minutes. Note that for the high-resolution scheme, the time step is on average
just 0.46 seconds, meaning that the results shown in Figures 9–11 are obtained after 180 000 time steps, using only
single-precision floating-point operations.

5.4 Tidal forecast verification and validation
The oceanographic phenomena best captured and maintained by the shallow-water equations are arguably tides and
storm surges. We therefore use Case 3 to generate tidal forecasts for five locations along the Norwegian coast (see
Figure 8) and compare these with the hourly values from the NorKyst-800 dataset. The locations have been chosen
based on the availability of actual sea-level observation stations, and we use these to show the realism in the forecasts
generated by both NorKyst-800 and the current model. It should be noted that the sea level variation depends on more
physical processes than those modeled by NorKyst-800 and our code, and we therefore expect a discrepancy between
the forecasts and the observations. For us, it is therefore most relevant to use the NorKyst-800 result as a reference
solution. The five locations (see Figure 8) are Bergen and Honningsvåg close to the open sea; Oslo and Narvik located

Table 3: Timing results different resolutions of running the complete Norwegian coast (Case 3) with the original, high
and low resolution on different computer types.

Resolution Num cells Average ∆t

Laptop
GeForce 840M
Maxwell (2014)

Desktop
GeForceGTX780
Kepler (2013)

Server
Tesla P100

Pascal (2016)
Low 541 875 1.85 s 9m 22s 1m 29s 47s
Original 2 167 500 0.92 s 53m 49s 10m 42s 3m 13s
High 8 670 000 0.46 s 6h 10m 09s 1h 23m 22s 23m 21s
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Figure 11: Simulation result for Case 3 containing almost the complete domain used by NorKyst-800 after 23 hours.
The top row shows the reference solution from NorKyst-800, followed by our simulation results using three different
grid resolutions below. The values on the x- and y-axes are in km relative to the location in the complete domain. The
sea-surface levels (left) show how the tide varies along the coast, with low tide in the Oslofjord (lower left corner),
high tide in the middle of the domain, and low tide again towards the border with Russia (lower right corner). Our
results are consistent with the reference solution for all grid resolutions. The particle velocities (right column) are
qualitatively similar for the reference solution (NorKyst-800), and our simulations with high and original resolution.
Even at this scale, it is apparent that the low resolution grid smears the features in the ocean currents.

in the innermost parts of long fjords; and Bodø, which is affected by how the Lofoten archipelago catches the tidal
waves.

Figure 12 shows the tidal forecasts generated from Case 3 for each of the five locations, sorted from south to north.
First of all, we see that our forecasts at Honningsvåg are very well in accordance with NorKyst-800. The same is the
case in Bergen, even though our simulations here consistently give slightly too low values for η. At Bodø, we see
that NorKyst-800 gives a delay in the transition from high to low tide between 14 and 16 hours, and we can see weak

20



0 5 10 15 20

time [h]

−40

−20

0

20

O
S

L
O

se
a-

le
ve

l
[c

m
]

high resolution original resolution low resolution NorKyst-800 reference observed

0 5 10 15 20

time [h]

−60

−40

−20

0

20

40

B
E

R
G

E
N

se
a-

le
ve

l
[c

m
]

high resolution original resolution low resolution NorKyst-800 reference observed

0 5 10 15 20

time [h]

−150

−100

−50

0

50

100

B
O

D
Ø

se
a-

le
ve

l
[c

m
]

high resolution original resolution low resolution NorKyst-800 reference observed

0 5 10 15 20

time [h]

−200

−100

0

100

200

N
A

R
V

IK
se

a-
le

ve
l

[c
m

]

high resolution original resolution low resolution NorKyst-800 reference observed

0 5 10 15 20

time [h]

−150

−100

−50

0

50

100

H
O

N
N

IN
G

S
V

Å
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Figure 12: Tidal predictions, reference NorKyst-800 results, and official gauge measurements at selected locations
generated by the simulations discussed in Case 3. All grid resolutions capture the tide as predicted by NorKyst-800 with
only minor discrepancies at coastal locations, such as Bergen, Bodø and Honningsvåg. The grid resolution comes much
more into play deep inside the fjords, such as at Oslo and Narvik. Here, the low-resolutions grid no longer manages to
represent the bathymetry well enough for the tide to enter the fjord correctly (especially in the very narrow Oslo fjord),
but we still get fair results with the high-resolution grid. The weakly dotted line is actual observed sea-surface level at
the respective locations in the time range of the forecast. It should be noted that official tidal forecasts have additional
physical terms, which is the main reason why the NorKyst-800 is off.
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indications of this in our high-resolution simulation as well. All these locations are at the coast, which makes the tides
here relatively easy to capture, but it should still be noted that they are all protected by islands. The tides in Oslo and
Narvik are seen to be harder to capture, as these two cities are located at the innermost parts of two long fjords, and
we get larger differences between the different grid resolutions. In Narvik, we get a large improvement by using the
high-resolution grid over the original and low resolutions, but overall, our results are not too far from the reference
solution. Oslo is a particularly hard case, as it is positioned within a very narrow and shallow fjord. This leads to
larger relative discrepancies here, even though the absolute difference is roughly the same as in Narvik. We see that
the shape of our high-resolution result is a bit different than for the reference solution. The tidal signal predicted by
the low-resolution grid in Oslo is very weak, as the fjord almost becomes closed off at this resolution. Finally, note
that our solutions are well behaved already from the start, meaning that we manage to initialize our simulations in a
balanced state.

6 Summary
We have presented a GPU simulation framework suitable for real-world oceanographic applications. The framework
is based on a modern high-resolution finite-volume method for the shallow-water equations [6] with new adaptations
and extensions to handle moving wet-dry fronts, land mask, bottom friction, wind forcing, varying north vector,
varying latitude, and external boundary conditions. The numerical algorithm is also improved to facilitate for efficient
implementation on GPUs using single-precision floating-point operations and includes an efficient reformulation of a
problematic recursive term. The framework is designed to be initialized from operational ocean forecasts issued by the
Norwegian Meteorological Institute from a three-dimensional ocean model.

We have presented second-order grid convergence for a synthetic but challenging benchmark containing complex
topography and varying north vector. We have also shown that the computational performance follows the expected
weak scaling.

Finally, we have validated the simulation framework through three different real-world cases along the Norwegian
coastline, initialized from ocean forecasts produced by the NorKyst-800 operational model with an 800 m × 800 m
horizontal resolution. Our results demonstrate that the framework manages to maintain fine rotational structures,
especially when increasing the grid resolution to 400 m × 400 m. On a coarse grid (1600 m grid cells), however, the
features are lost and the simulations get dominated by grid effects. The tidal forecasts show that we are able to predict
the observed tides relatively well at coastal locations on any of the three grid resolutions used, when compared to the
NorKyst-800 reference data. We see, however, that within long fjords, our results are improved when increasing the
grid resolution, compared to using the original horizontal resolution of the NorKyst-800 model.
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Abstract In this work, we perform fully nonlinear data assimilation of ocean drift
trajectories using multiple GPUs. We use an ensemble of up to 10000 members and
the sequential importance resampling algorithm to assimilate observations of drift
trajectories into the underlying shallow-water simulation model. Our results show an
improved drift trajectory forecast using data assimilation for a complex and realistic
simulation scenario, and the implementation exhibits good weak and strong scaling.
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1 Introduction

We present a proof-of-concept framework for performing fully nonlinear data as-
similation of ocean drift trajectories into a shallow-water model. Forecasting drift
trajectories in the ocean is an integral part of offshore preparedness services, and
the forecasts are used in, e.g., search and rescue operations, oil spill tracking, and
operations involving large floating structures [1]. Our approach is to use massive
ensembles of simplified ocean models and assimilate observations using a particle
filter based on the sequential importance resampling algorithm [2]. We first generate
a massive ensemble of perturbed ocean states and simulate each ensemble member
forward in time until we have an observation. Next, we use the particle filter to dis-
card ensemble members that match poorly with the observation, and then reinitialize
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the discarded members based on the simulated states that have a good match. We
continue the simulation until the next available observation and repeat the process.

Particle filters as used here are embarrassingly parallel and require synchroniza-
tion only when resampling individual ensemble members. We therefore use MPI
to distribute ensemble members to different nodes, and each member is simulated
forward in time using a modern explicit finite-volume scheme. The scheme is imple-
mented on the GPU in a massively data-parallel fashion and includes all the complex
source terms required for oceanographic simulations of real-world domains [3].

Our experiments show significantly increased forecast skill compared to both
deterministic and Monte Carlo simulations, and we are able to run experiments with
10 000 ensemble members on the Nvidia DGX-2 server, which has 16 GPUs [4].
The implementation exhibits good weak and strong scaling and can be extended
with more complex perturbation methods with minimal effort.

2 Data assimilation of ocean drift observations

Sequential importance resampling is an example of a particle filter for fully non-
linear data assimilation (see the recent review paper by Vetra-Carvalho et al. [5]
on ensemble-based data assimilation techniques). A benefit of the algorithm is that,
contrary to e.g., the ensemble Kalman filter [6], it does not manipulate variables of
individual simulations that match well with available observations. This means that
the resulting ensemble contains ocean states that are consistent with respect to the
physics of the model. Furthermore, particle filters do not make any assumptions on
linearity in the physical model or Gaussian probability distributions. However, the
algorithm requires a large number of ensemble members as the probability that an
individual ensemble member matches an observation is small. In fact, the required
number of members increases exponentially with the number of observations [7, 2].
This means that it is most suitable for nonlinear problems with few observations,
which is the typical situation for our target application area.

General ocean circulation models, such as ROMS [8], conserve mass, three di-
mensional momentum, salinity, and temperature, and operational setups typically
require large computational resources to run even a single simulation. Herein, we
investigate using simplified ocean models through the two-dimensional shallow-
water equations, which were used operationally in the early days of computational
oceanography [9]. These simplified ocean models are suitable for short-term fore-
casts in which the ocean can be modeled as a barotropic fluid, and they can be
efficiently simulated using GPUs. A further challenge is that even the operational
models often have limited forecast abilities due to by uncertain initial conditions,
model parameters and forcing. By using a simplified model instead of the full three
dimensional equations, we can afford to run a much larger ensemble of perturbed
ocean states that can give us a more detailed description of the uncertainties in ocean
forecasts that can be used as a complement to the current operational methods [10].

We have developed a GPU-based simulation framework that uses operational
ocean forecasts for initial and boundary conditions, bathymetry, and forcing [3].
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The framework is an extension of the high-resolution, central-upwind finite-volume
scheme proposed by Chertock et al. [11], which is well-balanced with respect to
steady states in which the Coriolis force balances a non-zero momentum and water
surface displacement (the geostrophic balance). The scheme uses H as the water
depth, η as the deviation from mean sea level, and hu and hv as the momentum
along the abscissa and ordinate, respectively. We can perturb this ocean state using
the approach in [12], in which we first generate a smooth random field, ∆η , for
each ensemble member, representing deviations of the ocean surface elevation. We
continue by computing the momentum required to balance this perturbation, namely

∆hu j,k =−
gH j,k

f j,k

∆η j,k+1−∆η j,k−1

2∆y
, ∆hv j,k =

gH j,k

f j,k

∆η j+1,k−∆η j−1,k

2∆x
, (1)

and finally add these perturbations to the state variables.
Using the perturbations from (1), we generate an ensemble of ocean states

and use the ensemble ψn = {ψn
0 ,ψ

n
1 , ...,ψ

n
N} at time tn as an approximation to

the probability density function (pdf) p(ψn) of our ocean state. If we have an
observation yn of part of the state (e.g., one drift trajectory), we can improve the
probabilistic forecast by using the conditional pdf p(ψn|yn). Using Bayes theorem,
p(ψn|yn)= p(yn|ψn)p(ψn)/p(yn), we can write p(ψn|yn) as a weighted ensemble1:

p(ψn|yn) ∝
N

∑
i=1

p(yn|ψn
i )

∑N
j=1 p(yn|ψn

j )
δ (ψn−ψn

i ) =
N

∑
i=1

wn
i δ (ψn−ψn

i ), (2)

in which δ is the Dirac’s delta function. The weights, wn
i , reflect how well ensem-

ble member i matches the observation, and members with very low weights have
a negligible contribution to p(ψn|yn). Sequential importance resampling therefore
discards members with low weights and duplicates members with high weights to
maintain a higher sample density in the high-probability areas.

A challenge with sequential importance resampling is the so-called curse of di-
mensionality, as we are operating in a very high-dimensional space. The particle
filter is prone to ensemble collapse, in which the ensemble quickly reduces into
only a very few significant states and thereby only has marginally better predictive
skill than a purely deterministic simulation [7, 2]. This means that we need a much
larger number of ensemble members compared to the number of observations. A
major benefit, however, is that the particle filter makes no changes to the states of
individual ensemble members during the data assimilation phase. This means that
the perturbation strategy is not limited by the data assimilation method.

Fig. 1 gives an overview of the ensemble prediction system used in this paper.
We use the sea-surface elevation and vertically integrated ocean currents from the
operational ocean forecast provided by the ROMS-based NorKyst-800 model sys-
tem [13] as initial and boundary conditions, and give an independent perturbation
to each ensemble member to represent the uncertainty in the initial condition. Fur-
thermore, we also use the same bathymetry and wind forcing as NorKyst-800. The

1 We have ignored the marginal probability as it only serves as a normalization constant.



4 Håvard H. Holm, Martin L. Sætra, and André R. Brodtkorb
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Fig. 1: Algorithmic overview of the simulation, data assimilation and drift trajectory
forecast. Straight lines are deterministic simulation, wiggly lines are perturbations,
and dashed lines show ensemble members that are kept during the resampling phase.

true drift trajectories are generated by OpenDrift [14] using the vertically integrated
ocean currents from the hourly NorKyst-800 data, which means that the underlying
physical model for the simulated truth is significantly different from our much sim-
pler shallow-water model. From these drift trajectories, we estimate the underlying
direction and velocity of the ocean currents and use this as an observation in the
particle filter. We assume that the observations contain a Gaussian error with stan-
dard deviation σ and that they are independent from each other. The weight of each
ensemble member is then computed as

wi = α · exp

(
−0.5

(‖obs− sim‖
σ

)2
)
, (3)

in which we use the Euclidean norm to compute the distance between the observed
and simulated momentum. Furthermore, α is the normalization constant such that
∑Ne

i=1 wi = 1. There are several strategies for choosing which ensemble members
to discard and duplicate (see [2] and references therein), and we use the residual
resampling scheme [15]. Between observation times, each ensemble member runs
independently and deterministically, which means that we need to perturb the du-
plicated ensemble states during the resampling stage.

3 Results

We test our ensemble prediction system using a domain along the coast of Northern
Norway. The domain consists of 315× 630 grid cells with 800 m horizontal reso-
lution, which is the same horizontal resolution as the operational ocean circulation
model that we use for initial and boundary conditions. We run 48 hours of data as-
similation and use the final observed positions for the drifters as initial positions for
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24 hour trajectory forecasts. To avoid that the ensemble collapses during resampling,
we need to balance the number of drifters we observe with the ensemble size. Here
we run experiments with 1000 and 10000 ensemble members and limit ourselves to
four drifters. All experiments are run on an Nvidia DGX-2 server, equipped with 16
Tesla V100 GPUs and two CPUs, each with 24 cores.

Fig. 2 Drift trajectories of
four drifters over a three
day period shown in the
computational domain used
in all our experiments. Red
and yellow colors indicates
strong and weak currents,
respectively. Dots mark start
positions and crosses end
positions, and the values
along the axes are in km. 0 100 200 300 400 500
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Ensemble forecasts of drift trajectories We run three different experiments to il-
lustrate the effect of data assimilation on forecasting of drift trajectories. The first
is a Monte-Carlo experiment, meaning that we do not assimilate any observations
during the first 48 hours. The second and third experiments are with data assimila-
tion, and we use observations to run a particle filter every 30 minutes and 5 minutes,
respectively. Fig. 2 shows the domain and the drift trajectories used as the truth.

Fig. 3 shows the forecasted drift trajectories for the four drifters in each of the
three ensemble experiments with 1000 members, compared to a single deterministic
forecast in green (dashed) and the truth in red (dash-dotted). The results show vari-
able impact from data assimilation between the drifters. We see most positive effect
for drifters three and four, and marginal improvement for drifter two, whereas the
forecast for drifter one seems to be worse with data assimilation. The initial fore-
cast for the first hour for drifter one, however, is significantly improved by the data
assimilation, but our model is unable to capture the downward turn shortly into the
forecast. This makes the ensemble perform worse in the long run when compared
to the deterministic forecast. The results for drifters three and four show improve-
ments when using observations in intervals of five minutes compared to 30 minutes.
Finally, Fig. 4 shows how increasing the ensemble size to 10000 members signif-
icantly improves the forecast for drifter 2. Increasing the ensemble size increases
the sampling of the pdf, and thereby also the chance that the true state is better
represented by the ensemble.

Weak and strong performance scaling We evaluate the ensemble-level parallel
performance by measuring the time spent in the data assimilation and forecasting
parts of the code, running one hour of data assimilation with observations every
five minutes and one hour of drift forecast. Note that the forecast contains no com-
munication and should therefore show close to perfect scaling, whereas the data
assimilation includes serial resampling and communication. For the weak scaling
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Fig. 3: Ensemble forecasts of drift trajectories with 1000 members in light blue,
with the red (dash-dotted) line representing the truth, the green (dashed) line as
the deterministic forecast, and the dark blue line as the ensemble mean. The four
drifters are shown in separate rows, with the columns representing the three different
experiments. From left to right: Monte Carlo without data assimilation, assimilation
of observations every 30 minutes, and assimilation of observations every 5 minutes.
The distance between the markers along the axis are one km.

experiment, we fix the per-process ensemble size at 20 members and increase the
number of processes from one to 16. In the strong scaling experiment, the global en-
semble size is fixed at 960 members and we vary the number of processes on which
they are distributed. Each process utilizes one GPU. The results are shown in Fig. 5,
with both experiments showing a 14x speedup by using 16 GPUs for the forecast.
The speedup for data assimilation is nearly as good as the forecast, which means
that the data assimilation does a good job preserving the parallel performance.
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Fig. 4: Ensemble forcasting with 1000 ensemble members (left) and 10000 members
(right). When using 10000 ensemble members, the forecast is significantly improved
for drifter 2, while the effect is smaller for the other three drifters.
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Fig. 5: The graphs show weak and strong scaling, using 1–16 GPUs on an Nvidia
DGX-2 server. The top dotted line illustrates perfect strong scaling.

4 Discussion and summary
We have presented a framework for fully nonlinear data assimilation of ocean drift
trajectories into a shallow-water model. The framework is implemented using the
GPU for the shallow-water simulation and MPI for distribution of, and communi-
cation between, ensemble members. Our experiments show significantly increased
forecast skill for simulations with data assimilation, and we are able to run over
10000 ensemble members on the Nvidia DGX-2 with 16 GPUs. The results indi-
cate, as expected, that data assimilation with 10000 members based on 5 minute
sampling of the observed drifter positions yields a better forecast than 5 minute
sampling with 1000 members.

The results presented herein show that the data assimilation increases the forecast
skill for three of four drifters. The forecast skill for drifter one, however, appears to
be unaffected by the data assimilation, and we believe this is caused by a local pre-
dominant baroclinic ocean dynamic, which is not captured by our current simplified
model. It will be an important future development to see what criteria are significant
for the data assimilation to be most effective, and perhaps include a multi-layer or
reduced-gravity model which can represent such dynamics better.
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The simple perturbation strategy presented in this paper adds a smooth perturba-
tion to the sea-surface level and computes the momentum required to keep the per-
turbation in geostrophic balance. An important extension will be to conduct more
experiments with more sophisticated perturbation methods and stochastic placement
of the ocean eddies, as well as perturbation of the tidal wave phase.
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oceanic drift. Oceanography, 31(3):59–67, 2018.

2. P. van Leeuwen. Particle filtering in geophysical systems. Monthly Weather Review,
137(12):4089–4114, 2009.

3. A. Brodtkorb and H. Holm. Real-world oceanographic simulations on the GPU using a two-
dimensional finite volume scheme. preprint: arXiv:1912.02457, [in review], 2019.

4. NVIDIA. DGX-2/2H System user guide. Technical report, 2019.
5. S. Vetra-Carvalho, P. van Leeuwen, L. Nerger, A. Barth, M. Altaf, P. Brasseur, P. Kirchgessner,

and J.-M. Beckers. State-of-the-art stochastic data assimilation methods for high-dimensional
non-Gaussian problems. Tellus A: Dynamic Meteorology and Oceanography, 70(1):1–43,
2018.

6. G. Evensen. Data Assimilation: The Ensemble Kalman Filter. Springer Berlin Heidelberg,
2006.

7. C. Snyder, T. Bengtsson, P. Bickel, and J. Anderson. Obstacles to high-dimensional particle
filtering. Monthly Weather Review, 136(12):4629–4640, 2008.

8. A. Shchepetkin and J. McWilliams. The regional oceanic modeling system (ROMS): A split-
explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling,
9(4):347–404, 2005.

9. E. Martinsen, B. Gjevik, and L. Røed. A numerical model for long barotropic waves and storm
surges along the western coast of Norway. Journal of Physical Oceanography, 9:1126–1138,
1979.

10. L. Røed. Documentation of simple ocean models for use in ensemble predictions. Part I:
Theory. Technical report, Norwegian Meteorological Institute, 2012.

11. A. Chertock, M. Dudzinski, A. Kurganov, and M. Lukácová-Medvidová. Well-balanced
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