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Abstract: Integral inequalities play a critical role in both theoretical and applied mathematics fields.
It is clear that inequalities aim to develop different mathematical methods. Thus, the present days
need to seek accurate inequalities for proving the existence and uniqueness of the mathematical
methods. The concept of convexity plays a strong role in the field of inequalities due to the behavior
of its definition. There is a strong relationship between convexity and symmetry. Whichever one we
work on, we can apply it to the other one due the strong correlation produced between them, especially
in the past few years. In this article, we firstly point out the known Hermite–Hadamard (HH) type
inequalities which are related to our main findings. In view of these, we obtain a new inequality
of Hermite–Hadamard type for Riemann–Liouville fractional integrals. In addition, we establish
a few inequalities of Hermite–Hadamard type for the Riemann integrals and Riemann–Liouville
fractional integrals. Finally, three examples are presented to demonstrate the application of our
obtained inequalities on modified Bessel functions and q-digamma function.
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1. Introduction

Generally, integral inequalities form a strong and thriving field of study within the huge
field of mathematical analysis. They have participated in the study of many common fields, e.g.,
ordinary differential equations, integral equations, and partial differential equations [1,2]. Particularly,
they have participated in the field of fractional differential equations, especially fractional integral
inequalities, which have been crucial in providing bounds to solve initial and boundary value problems
in fractional calculus, and in establishing the existence and uniqueness of solutions for certain fractional
differential equations [3–6].

The most efficient branch of mathematical analysis is fractional calculus, which involves integrals
and derivatives taken to fractional orders or orders outside of the integer or natural numbers. Here,
we present the Riemann–Liouville (RL) definition to facilitate the discussion of the aforementioned
operations, which is most commonly used for fractional derivatives and integrals.

Definition 1 ([7,8]). Let x ∈ J := [α3, α4]. Then, for any L1 function Ḡ on the interval J, the ηth left-RL and
right-RL fractional integrals of Ḡ(x) are, respectively, defined by:

Iη
α3+

Ḡ(x) =
1

Γ (η)

∫ x

α3

(x− χ̄)η−1 Ḡ(χ̄)dχ̄, (1)
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and
I

η
α4−Ḡ(x) =

1
Γ (η)

∫ α4

x
(χ̄− x)η−1 Ḡ(χ̄)dχ̄,

where Re(η) > 0 and Γ(·) represents the known gamma function:

Γ(η) =
∫ ∞

0
χ̄η−1e−χ̄dχ̄, η > 0.

The most well-known inequality, which has a strong relationship with the integral mean of
a convex function, is the Hermite–Hadamard (HH) inequality [9]:

Ḡ
(

α3 + α4

2

)
≤ 1

α4 − α3

∫ α4

α3

Ḡ(χ̄)dχ̄ ≤ Ḡ(α3) + Ḡ(α4)

2
, (2)

where Ḡ : J ⊆ R → R is assumed to be a convex function and α3, α4 ∈ J with α3 < α4.
The HH inequality in Equation (2) gives an approximate from both sides of the mean value

of a convex function and ensures the integrability of the convex function as well. In addition, it is
a matter of great attention and one has to observe that some of the classical inequalities for means
can be obtained from Hadamard’s inequality under the usefulness of peculiar convex functions Ḡ.
The inequality in Equation (2) plays a crucial role in mathematical analysis and in other areas of pure
and applied mathematics as well. Typical applications of the classical inequalities are: probabilistic
problems, decision making in structural engineering, and fatigue life.

The right and left part inequality of the inequalities in Equation (2) are called trapezoidal and
midpoint inequalities. There are two types of the researchers who have been worked on the inequalities
in Equation (2). Many of them have worked only on the trapezoidal type inequality [10–12] or midpoint
type inequality [13,14], while others have bee n worked on both of them at the same time [15–17].
Both trapezoidal and midpoint inequalities can be explained in the following definition:

Definition 2 ([15]). Suppose Ḡ : [α3, α4] ⊆ R → R is a twice differentiable function on an open interval
(α3, α4) with

∥∥Ḡ′′
∥∥

∞ := supx∈(α3,α4)

∣∣Ḡ′′(x)
∣∣ < ∞. Then, the trapezoidal and midpoint type inequalities are

defined by: ∣∣∣∣∫ α4

α3

Ḡ(χ̄)dχ̄− α4 − α3

2
[Ḡ(α3) + Ḡ(α4)]

∣∣∣∣ ≤ (α4 − α3)
3

12

∥∥Ḡ′′
∥∥

∞ , (3)

and ∣∣∣∣∫ α4

α3

Ḡ(χ̄)dχ̄− (α4 − α3) Ḡ
(

α3 + α4

2

)∣∣∣∣ ≤ (α4 − α3)
3

24

∥∥Ḡ′′
∥∥

∞ , (4)

respectively.

From a complementary viewpoint to Ostrowski type inequalities [18], trapezoidal and midpoint
type inequalities provides a prior error bounds in estimating the Riemann integral by a generalized
midpoint and trapezoidal formula [15,19]. We know that the development of Ostrowski’s inequality
has registered an attractive growth in the past decade with more than two thousand papers published
on it. Many refinements, generalizations, and extensions in both discrete and integral cases have
been discovered (see [16,17]). Generalized versions were discussed, e.g., the corresponding versions
on time scales, form-time differentiable functions, for multiple integrals, or vector valued functions
(see [15,20]). Many applications in special functions, numerical analysis, probability model, and other
fields have been proved (see [16]) as well.
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In 2013, Sarikaya et al. [12] generalized the Hermite–Hadamard inequality in Equation (2) to
fractional integrals of Riemann–Liouville type. Their result is stated as follows:

Ḡ
(

α3 + α4

2

)
≤ Γ(η + 1)

2(α4 − α3)η

{
I

η
a+Ḡ(α4) + I

η
b−Ḡ(α3)

}
≤ Ḡ(α3) + Ḡ(α4)

2
, (5)

where Ḡ : [α3, α4]→ R is assumed to be an L1 convex function with η > 0. Meanwhile, they obtained
some inequalities of trapezoidal type in the same paper.

On the other hand, Sarikaya and Yildirim [13] introduced a new version of the HH-inequality
(Equation (2)) for Riemann–Liouville fractional integrals:

Ḡ
(

α3 + α4

2

)
≤ 2η−1Γ(η + 1)

(α4 − α3)η

{
I

η(
α3+α4

2

)+ Ḡ(α4) + I
η(

α3+α4
2

)− Ḡ(α3)

}
≤ Ḡ(α3) + Ḡ(α4)

2
. (6)

Meanwhile, they obtained some inequalities of midpoint type in the same paper.
There are many papers studying integral inequalities for the Riemann–Liouville fractional

integrals and some new relevant generalizations of Hermite–Hadamard type inequalities
(see [11,12,19,21–27] for more details).

The purpose of this paper is to introduce a new inequality of Hermite–Hadamard type and to
establish a few related inequalities for Riemann–Liouville fractional integrals.

2. The New Hermite–Hadamard Inequality

In view of the HH-inequality in Equation (5) and HH-inequality in Equation (6), we can deduce
the following version of the HH-inequality.

Proposition 1. Let Ḡ : [α3, α4] → R be an L1 convex function on [α3, α4] with α3 < α4. Then for η > 0,
we have

2η−1Γ(η + 1)
(α4 − α3)η

[
I

η
α3+

Ḡ
(

α3 + α4

2

)
+ I

η
α4−Ḡ

(
α3 + α4

2

)
+ I

η(
α3+α4

2

)+ Ḡ(α4) + I
η(

α3+α4
2

)− Ḡ(α3)

]

≤ Ḡ
(

α3 + α4

2

)
+

Ḡ(α3) + Ḡ(α4)

2
. (7)

Moreover, we have the following new HH-inequality

Ḡ
(

α3 + α4

2

)
≤ 2η−1Γ(η + 1)

(α4 − α3)η

[
I

η
α3+

Ḡ
(

α3 + α4

2

)
+ I

η
α4−Ḡ

(
α3 + α4

2

)]
≤ Ḡ(α3) + Ḡ(α4)

2
. (8)

Proof. Applying twice the right part of the HH-inequality in Equation (5) with α3 replaced by α3+α4
2

and α4 replaced by α3+α4
2 , obtains

2η−1Γ(η + 1)
(α4 − α3)η

[
I

η(
α3+α4

2

)+ Ḡ(α4) + I
η
α4−Ḡ

(
α3 + α4

2

)]
≤ 1

2
Ḡ
(

α3 + α4

2

)
+

1
2

Ḡ(α4);

2η−1Γ(η + 1)
(α4 − α3)η

[
I

η
α3+

Ḡ
(

α3 + α4

2

)
+ I

η(
α3+α4

2

)− Ḡ(α3)

]
≤ 1

2
Ḡ(α3) +

1
2

Ḡ
(

α3 + α4

2

)
.

Adding these together, we see that the inequality in Equation (7) is proved directly.
On the other hand, we can deduce from the inequalities in Equations (6) and (7),

2η−1Γ(η + 1)
(α4 − α3)η

[
I

η
α3+

Ḡ
(

α3 + α4

2

)
+ I

η
α4−Ḡ

(
α3 + α4

2

)]
≤ Ḡ(α3) + Ḡ(α4)

2
, (9)
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that this gives the right part of the inequality in Equation (8).
By convexity of Ḡ, we can write

Ḡ
(

x̄ + ȳ
2

)
≤ Ḡ (x̄) + Ḡ (ȳ)

2

and for x̄ = χ̄
2 α3 +

2−χ̄
2 α4 and ȳ = 2−χ̄

2 α3 +
χ̄
2 α4, write

2Ḡ
(

α3 + α4

2

)
≤ Ḡ

(
χ̄

2
α3 +

2− χ̄

2
α4

)
+ Ḡ

(
2− χ̄

2
α3 +

χ̄

2
α4

)
, χ̄ ∈ [0, 1]. (10)

Multiplying both sides of Equation (10) by (1− χ̄)η−1, and then integrating both sides with
respect to χ̄ over [0, 1], we get

2Ḡ
(

α3 + α4

2

) ∫ 1

0
(1− χ̄)η−1dχ̄ ≤

∫ 1

0
(1− χ̄)η−1Ḡ

(
χ̄

2
α3 +

2− χ̄

2
α4

)
dχ̄

+
∫ 1

0
(1− χ̄)η−1Ḡ

(
2− χ̄

2
α3 +

χ̄

2
α4

)
dχ̄.

By changing the variables in both right side integrals, we obtain

2
η

Ḡ
(

α3 + α4

2

)
≤ 2η

(α4 − α3)η

∫ α4

α3+α4
2

(
x− α3 + α4

2

)η−1
Ḡ(x)dx

+
2η

(α4 − α3)η

∫ α3+α4
2

α3

(
α3 + α4

2
− x
)η−1

Ḡ(x)dx.

This can be expressed as

Ḡ
(

α3 + α4

2

)
≤ 2η−1Γ(η + 1)

(α4 − α3)η

[
I

η
α3+

Ḡ
(

α3 + α4

2

)
+ I

η
α4−Ḡ

(
α3 + α4

2

)]
, (11)

and thus the left part of the inequality in Equation (8) is proved. Therefore, the inequalities in
Equations (9) and (11) can be rearranged to the desired inequality in Equation (8).

Remark 1. The inequality in Equation (7) with η = 1 becomes:

1
α4 − α3

∫ α4

α3

Ḡ(x)dx ≤ 1
2

Ḡ
(

α3 + α4

2

)
+

1
2

Ḡ(α3) + Ḡ(α4)

2
.

Remark 2. The inequality in Equation (8) with η = 1 becomes the inequality in Equation (2).

Lemma 1. If Ḡ : [α3, α4]→ R is an L1 function, then we have the following trapezoidal formula equality:

Ḡ(α3) + Ḡ(α4)

2
− 2η−1Γ(η + 1)

(α4 − α3)η

{
I

η
α3+

Ḡ
(

α3 + α4

2

)
+ I

η
α4−Ḡ

(
α3 + α4

2

)}
=

α4 − α3

4

{∫ 1

0
(1− χ̄)ηḠ′

(
χ̄

2
α3 +

2− χ̄

2
α4

)
dχ̄−

∫ 1

0
(1− χ̄)ηḠ′

(
2− χ̄

2
α3 +

χ̄

2
α4

)
dχ̄

}
. (12)
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Proof. By making the use of integrating by parts and then changing the variable, we get

ε1 : =
∫ 1

0
(1− χ̄)ηḠ′

(
χ̄

2
α3 +

2− χ̄

2
α4

)
dχ̄

= −2(1− χ̄)η

α4 − α3
Ḡ
(

χ̄

2
α3 +

2− χ̄

2
α4

)∣∣∣∣∣
1

χ̄=0

− 2η

α4 − α3

∫ 1

0
(1− χ̄)η−1Ḡ

(
χ̄

2
α3 +

2− χ̄

2
α4

)
dχ̄

=
2

α4 − α3
Ḡ(α4)−

2η+1η

(α4 − α3)η+1

∫ α4

α3+α4
2

(
u− α3 + α4

2

)η−1
Ḡ(u)du

=
2

α4 − α3
Ḡ(α4)−

2η+1Γ(η + 1)
(α4 − α3)η+1 I

η
α4−Ḡ

(
α3 + α4

2

)
.

Analogously, we have

ε2 : =
∫ 1

0
(1− χ̄)ηḠ′

(
2− χ̄

2
α3 +

χ̄

2
α4

)
dχ̄

=
2(1− χ̄)η

α4 − α3
Ḡ
(

2− χ̄

2
α3 +

χ̄

2
α4

)∣∣∣∣∣
1

χ̄=0

+
2η

α4 − α3

∫ 1

0
(1− χ̄)η−1Ḡ

(
2− χ̄

2
α3 +

χ̄

2
α4

)
dχ̄

=
−2

α4 − α3
Ḡ(α3) +

2η+1Γ(η + 1)
(α4 − α3)η+1

∫ α3+α4
2

α3

(
α3 + α4

2
− v
)η−1

Ḡ(v)dv

=
2η+1Γ(η + 1)
(α4 − α3)η+1 Ḡ

(
α3 + α4

2

)
+

2η+1Γ(η + 1)
(α4 − α3)η+1 I

η
α3+

Ḡ
(

α3 + α4

2

)
.

Consequently, we have

α4 − α3

4

(
ε1 − ε2

)
=

Ḡ(α3) + Ḡ(α4)

2
− 2η−1Γ(η + 1)

(α4 − α3)η

{
I

η
α3+

Ḡ
(

α3 + α4

2

)
+ I

η
α4−Ḡ

(
α3 + α4

2

)}
.

This ends the proof of Lemma 1.

Remark 3. Observe that:

1. The equality in Equation (12) with 1− χ̄ replaced by χ̄ becomes the following midpoint formula equality:

2η−1Γ(η + 1)
(α4 − α3)η

{
I

η(
α3+α4

2

)+ Ḡ(α4) + I
η(

α3+α4
2

)− Ḡ(α3)

}
− Ḡ

(
α3 + α4

2

)

=
α4 − α3

4

{∫ 1

0
χ̄ηḠ′

(
χ̄

2
α3 +

2− χ̄

2
α4

)
dχ̄−

∫ 1

0
χ̄ηḠ′

(
2− χ̄

2
α3 +

χ̄

2
α4

)
dχ̄

}
,

which was proved before in [13] by Sarikaya and Yildirim.
2. The equality in Equation (12) with η = 1 becomes the following trapezoidal formula equality

Ḡ(α3) + Ḡ(α4)

2
− 1

α4 − α3

∫ α4

α3

Ḡ(x)dx

=
α4 − α3

4

{∫ 1

0
(1− χ̄)Ḡ′

(
χ̄

2
α3 +

2− χ̄

2
α4

)
dχ̄−

∫ 1

0
(1− χ̄)Ḡ′

(
2− χ̄

2
α3 +

χ̄

2
α4

)
dχ̄

}
.
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Theorem 1. If Ḡ : [α3, α4] → R is an L1 function, then, for the convexity of |Ḡ′|$, $ ≥ 1 on [α3, α4] with
α3 < α4, we have the following trapezoidal formula inequality:

∣∣∣∣ Ḡ(α3) + Ḡ(α4)

2
− 2η−1Γ(η + 1)

(α4 − α3)η

{
I

η
α3+

Ḡ
(

α3 + α4

2

)
+ I

η
α4−Ḡ

(
α3 + α4

2

)}∣∣∣∣
≤ α4 − α3

4(η + 1)1− 1
$

{(
B(2, η + 1)

2
|Ḡ′(α3)|$ +

2− (η + 1)B(2, η + 1)
2(η + 1)

|Ḡ′(α4)|$
) 1

$

+

(
2− (η + 1)B(2, η + 1)

2(η + 1)
|Ḡ′(α3)|$ +

B(2, η + 1)
2

|Ḡ′(α4)|$
) 1

$

}
, (13)

where B(·, ·) represents the beta function:

B(ξ1, ξ2) =
∫ 1

0
χξ1−1(1− χ)ξ2−1dχ.

Proof. At first, we let $ = 1. Then, by making use of Lemma 1 and the convexity of |Ḡ′|, we have∣∣∣∣ Ḡ(α3) + Ḡ(α4)

2
− 2η−1Γ(η + 1)

(α4 − α3)η

{
I

η
α3+

Ḡ
(

α3 + α4

2

)
+ I

η
α4−Ḡ

(
α3 + α4

2

)}∣∣∣∣
≤ α4 − α3

4

∫ 1

0
(1− χ̄)η

{∣∣∣∣Ḡ′ ( χ̄

2
α3 +

2− χ̄

2
α4

)∣∣∣∣+ ∣∣∣∣Ḡ′ (2− χ̄

2
α3 +

χ̄

2
α4

)∣∣∣∣
}

dχ̄

≤ α4 − α3

4

(
|Ḡ′(α3)|+ |Ḡ′(α4)|

) ∫ 1

0
(1− χ̄)ηdχ̄

=
α4 − α3

4(η + 1)

(
|Ḡ′(α3)|+ |Ḡ′(α4)|

)
.

For $ > 1, we use Lemma 1, power-mean inequality, and the convexity of |Ḡ′|$ to get∣∣∣∣ Ḡ(α3) + Ḡ(α4)

2
− 2η−1Γ(η + 1)

(α4 − α3)η

{
I

η
α3+

Ḡ
(

α3 + α4

2

)
+ I

η
α4−Ḡ

(
α3 + α4

2

)}∣∣∣∣
≤ α4 − α3

4

(∫ 1

0
(1− χ̄)ηdχ̄

)1− 1
$

{(∫ 1

0
(1− χ̄)η

∣∣∣∣Ḡ′ ( χ̄

2
α3 +

2− χ̄

2
α4

)∣∣∣∣$ dχ̄

) 1
$

+

(∫ 1

0
(1− χ̄)η

∣∣∣∣Ḡ′ (2− χ̄

2
α3 +

χ̄

2
α4

)∣∣∣∣$ dχ̄

) 1
$
}

≤ α4 − α3

4(η + 1)1− 1
$

{(∫ 1

0
(1− χ̄)η

[
χ̄

2
|Ḡ′(α3)|$ +

2− χ̄

2
|Ḡ′(α4)|$

]
dχ̄

) 1
$

+

(∫ 1

0
(1− χ̄)η

[
2− χ̄

2
|Ḡ′(α3)|$ +

χ̄

2
|Ḡ′(α4)|$

]
dχ̄

) 1
$

}

=
α4 − α3

4(η + 1)1− 1
$

{(
B(2, η + 1)

2
|Ḡ′(α3)|$ +

2− (η + 1)B(2, η + 1)
2(η + 1)

|Ḡ′(α4)|$
) 1

$

+

(
2− (η + 1)B(2, η + 1)

2(η + 1)
|Ḡ′(α3)|$ +

B(2, η + 1)
2

|Ḡ′(α4)|$
) 1

$

}
,
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where the following facts are used:

∫ 1

0

χ̄

2
(1− χ̄)ηdχ̄ =

B(2, η + 1)
2

;∫ 1

0

χ̄

2
(1− χ̄)ηdχ̄ =

1
η + 1

− B(2, η + 1)
2

.

Thus, we are done.

Remark 4. Observe that:

1. The inequality in Equation (13) with η = 1 becomes the following trapezoidal formula inequality:∣∣∣∣ Ḡ(α3) + Ḡ(α4)

2
− 1

α4 − α3

∫ α4

α3

Ḡ(x)dx
∣∣∣∣

≤ α4 − α3

8

{(
|Ḡ′(α3)|$

6
+

5|Ḡ′(α4)|$
6

) 1
$

+

(
5|Ḡ′(α3)|$

6
+
|Ḡ′(α4)|$

6

) 1
$

}
. (14)

2. The inequality in Equation (13) with η = 1 and $ = 1 becomes the following trapezoidal formula
inequality: ∣∣∣∣ Ḡ (α3) + Ḡ (α4)

2
− 1

α4 − α3

∫ α4

α3

Ḡ(x)dx
∣∣∣∣ ≤ α4 − α3

8
(∣∣Ḡ′(α3)

∣∣+ ∣∣Ḡ′(α4)
∣∣) . (15)

Theorem 2. If Ḡ : [α3, α4] → R is an L1 function, then, for the convexity of |Ḡ′|$, $ ≥ 1 on [α3, α4] with
α3 < α4, we have the following trapezoidal formula inequality:

∣∣∣∣ Ḡ(α3) + Ḡ(α4)

2
− 2η−1Γ(η + 1)

(α4 − α3)η

{
I

η
α3+

Ḡ
(

α3 + α4

2

)
+ I

η
α4−Ḡ

(
α3 + α4

2

)}∣∣∣∣
≤ α4 − α3

4(ηp + 1)
1
$̄

{(
|Ḡ′(α3)|$ + 3|Ḡ′(α4)|$

4

) 1
$

+

(
3|Ḡ′(α3)|$ + |Ḡ′(α4)|$

4

) 1
$

}
, (16)

where 1
$̄ + 1

$ = 1.

Proof. Making use Lemma 1, Hölder’s inequality, and the convexity of |Ḡ′|$, we get∣∣∣∣ Ḡ(α3) + Ḡ(α4)

2
− 2η−1Γ(η + 1)

(α4 − α3)η

{
I

η
α3+

Ḡ
(

α3 + α4

2

)
+ I

η
α4−Ḡ

(
α3 + α4

2

)}∣∣∣∣
≤ α4 − α3

4

(∫ 1

0
(1− χ̄)ηdχ̄

)1− 1
$

{(∫ 1

0

∣∣∣∣Ḡ′ ( χ̄

2
α3 +

2− χ̄

2
α4

)∣∣∣∣$ dχ̄

) 1
$

+

(∫ 1

0

∣∣∣∣Ḡ′ (2− χ̄

2
α3 +

χ̄

2
α4

)∣∣∣∣$ dχ̄

) 1
$
}

≤ α4 − α3

4(ηp + 1)1− 1
$

{(∫ 1

0

[
χ̄

2
|Ḡ′(α3)|$ +

2− χ̄

2
|Ḡ′(α4)|$

]
dχ̄

) 1
$

+

(∫ 1

0

[
2− χ̄

2
|Ḡ′(α3)|$ +

χ̄

2
|Ḡ′(α4)|$

]
dχ̄

) 1
$

}

=
α4 − α3

4(ηp + 1)
1
$̄

{(
|Ḡ′(α3)|$ + 3|Ḡ′(α4)|$

4

) 1
$

+

(
3|Ḡ′(α3)|$ + |Ḡ′(α4)|$

4

) 1
$

}
,
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which rearranges to the proof.

Remark 5. The inequality in Equation (16) with η = 1 becomes the following trapezoidal formula inequality:∣∣∣∣ Ḡ(α3) + Ḡ(α4)

2
− 1

α4 − α3

∫ α4

α3

Ḡ(x)dx
∣∣∣∣

≤ α4 − α3

4(p + 1)
1
$̄

{(
|Ḡ′(α3)|$ + 3|Ḡ′(α4)|$

4

) 1
$

+

(
3|Ḡ′(α3)|$ + |Ḡ′(α4)|$

4

) 1
$

}

≤ α4 − α3

4

(
4

$̄ + 1

) 1
$̄ (
|Ḡ′(α3)|+ |Ḡ′(α4)|

)
.

3. Examples

There are many applications to demonstrate the use of integral inequalities, especially applications
on special means of the real numbers [10,14,16]. In this section, we present some examples to
demonstrate the applications of our obtained results on modified Bessel functions and q-digamma
functions. The modified Bessel functions have been shown to play an important role in the Casimir
theory of dielectric balls (see, e.g., [28–30]).

Example 1. Consider the function I$̄ : R → [1, ∞), defined by

I$̄(z) = 2$̄Γ($̄ + 1)z−v I$̄(z), z ∈ R.

Here, we consider the modified Bessel function of the first kind I$̄, defined by [31]:

I$̄(z) =
∞

∑
n=0

( z
2
)$̄+2n

n!Γ($̄ + n + 1)
.

The first order derivative formula of I$̄(z) is given by [31]:

I ′$̄(z) =
z

2($̄ + 1)
I$̄+1(z). (17)

By making use of Remark 2 and the identity in Equation (17), we can deduce∣∣∣∣I$̄(α4)− I$̄(α3)

α4 − α3

∣∣∣∣ ≤ α3I$̄+1(α3) + α4I$̄+1(α4)

4(p + 1)

for $̄ > −1, α3, α4 ∈ R with 0 < α3 < α4. Specifically, for I− 1
2
(z) = cosh(z) and I 1

2
(z) = sinh(z)

z , we get

∣∣∣∣cosh(α4)− cosh(α3)

α4 − α3

∣∣∣∣ ≤ sinh(α3) + sinh(α4)

2
.

We can also get the following inequalities for the inequality raised in Remark 1 by the same technique
used above: ∣∣∣∣I$̄(α4)− I$̄(α3)

α4 − α3

∣∣∣∣ ≤ α3 + α4

8($̄ + 1)
I$̄+1

(
α3 + α4

2

)
+

α3I$̄+1(α3) + α4I$̄+1(α4)

8($̄ + 1)
.

In particular,∣∣∣∣cosh(α4)− cosh(α3)

α4 − α3

∣∣∣∣ ≤ 1
2

sinh
(

α3 + α4

2

)
+

sinh(α3) + sinh(α4)

4
.
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Example 2. Here, we consider the modified Bessel function of the second kind K$̄, defined by [31]:

K$̄(z) =
π

2
I−$̄(z) + I$̄(z)

sin($̄π)
.

Let Ḡ$̄(z) := −
(K$̄(z)

z$̄

)′
with $̄ ∈ R. Consider the integral representation [31]:

K$̄(z) =
∫ ∞

0
e−z cosh t cosh($̄t)dt, z > 0.

It is clear that z 7→ K$̄(z) is a completely monotonic function on an interval (0, ∞) for all $̄ ∈ R. Since the
product of two completely monotonic functions is also completely monotonic, z 7→ Ḡ$̄(z) is a strictly completely
monotonic function on the same interval for all $̄ > 1. Therefore, the function

Ḡ$̄(z) = −
(K$̄(z)

z$̄

)′
=
K$̄+1(z)

z$̄ (18)

is strictly completely monotonic on an interval (0, ∞) for all $̄ > 1 and thus Ḡ$̄ is a convex function. Then,
by making use of Remark 2 and the identity in Equation (2), we can deduce∣∣∣∣α3

$̄K$̄(α4)− α4
$̄K$̄(α3)

α4 − α3

∣∣∣∣ ≤ α4
$̄K$̄+1(α3) + α3

$̄K$̄+1(α4)

2

for each $̄ > 1 and α3, α4 ∈ R with 0 < α3 < α4.
We can also get the following inequality for the inequality raised in Remark 1 by the same technique

used above:∣∣∣∣α3
$̄K$̄(α4)− α4

$̄K$̄(α3)

α4 − α3

∣∣∣∣ ≤ 1
2

(
2α3α4

α3 + α4

)$̄

K$̄+1

(
α3 + α4

2

)
+

α4
$̄K$̄+1(α3) + α3

$̄K$̄+1(α4)

4

for each $̄ > 1 and α3, α4 ∈ R with 0 < α3 < α4.

Example 3. Consider the q-digamma function Ψ$, defined by [31]:

Ψ$(z) = − ln(1− $) + ln($)
∞

∑
`=0

$`+z

1− $`+z

= − ln(1− $) + ln($)
∞

∑
`=1

$` z

1− $` z

for 0 < $ < 1, and

Ψ$(z) = − ln($− 1) + ln($)

(
z− 1

2
−

∞

∑
`=0

$−(`+z)

1− $−(`+z)

)

= − ln($− 1) + ln($)

(
z− 1

2
−

∞

∑
`=1

$−` z

1− $−` z

)

for $ > 1 and z > 0.
From those definitions, we see that z 7→ Ψ′$(z) is a completely monotonic function on an interval (0, ∞)

for all $ > 0, and consequently z 7→ Ψ′$(z) is convex on the same interval.
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Let Ḡ$(z) := Ψ′$(z) with $ > 0 and, therefore, Ḡ′$(z) := Ψ′′$ (z) is completely monotonic on the interval
(0, ∞). Then, from Remark 1, we have

Ψ′$

(
α3 + α4

2

)
≤
∣∣∣∣Ψ$(α4)−Ψ$(α3)

α4 − α3

∣∣∣∣ ≤ Ψ′$(α3) + Ψ′$(α4)

2
. (19)

Combining the inequalities in Equations (15) and (19), we get∣∣∣∣∣Ψ′$(α3) + Ψ′$(α4)

2
−

Ψ$(α4)−Ψ$(α3)

α4 − α3

∣∣∣∣∣ ≤ α4 − α3

8

(∣∣∣Ψ′′$ (α3)
∣∣∣+ ∣∣∣Ψ′′$ (α4)

∣∣∣).

4. Conclusions

In this article, we consider the new integral inequality and some related inequalities of the
Hermite–Hadamard type for Riemann–Liouville fractional integrals. Integral inequalities form a crucial
branch of analysis and have been combined with various type of fractional integrals but never done
before in this form. For this reason, we study the inequality of Hermite–Hadamard type and related
inequalities via the Riemann–Liouville fractional integrals, generalizing the previous results obtained
by Sarikaya et al. [12,13].
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