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Abstract

The development of autonomous ships is at an advanced stage. It seems to be just a question of time before
such ships become available at an industrial scale. In this paper, we investigate the economic advantages of
utilizing autonomous over conventional ships. We consider a shipping network composed of conventional
mother ships and autonomous daughter ships that perform cargo transshipment at specific ports. The mother
ships sail between Europe and the Norwegian coastline and are conventional due to international regulations.
The daughter ships serve small ports located along the Norwegian coastline and are autonomous. We apply
this concept of mother and daughter routes to a Norwegian shipping company that transports containers
between a continental European port and 21 ports scattered along the Norwegian coastline. Furthermore, we
extend this case to a shipping network of 42 ports to study a possible increase in the activity of the company.
For solving the corresponding optimization problem, we present a path-flow-based model formulation and a
heuristic route generation method. We carry out extensive computational experiments that consider differently
sized problems, various demand scenarios, advanced routes structures, and sensitivity analyses for cost rates
and the degree of automation of the maritime transport system. The results provide evidence that autonomous
ships might contribute to considerable cost savings.

Keywords: autonomous ships; liner shipping network design; hub-and-spoke network; advanced route structures

1. Introduction

The next generation of ships in the maritime shipping industry will likely be characterized by
full autonomy where ships operate without any crew on board. In Norway, several projects on
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autonomous ships are already taking place, making Norway a leading country in this field. The
two Norwegian companies Kongsberg Maritime and Yara International are developing the world’s
first commercial autonomous ship, Yara Birkeland, with a capacity of 120 TEU (YARA, 2018).
Another example is NTNU’s autonomous passenger ferry to transport people in urban water
channels (NTNU, 2019). The motivation behind these projects is not just about developing the
technology, but also about bringing up new economic, social, and environmental advantages. For
example, due to the removal of the deckhouse and accommodation structure and because of a
reduction of weight and air resistance, autonomous ships can achieve a 6% reduction in fuel
consumption compared with conventional ships (Kretschmann et al., 2017). This reduction has not
only economic benefits but also an environmental impact on reducing NO, and CO, emissions. If
the ships are fully electrified, like the Yara Birkeland, there will be even zero-emissions at sea. A
further positive environmental effect takes place if autonomous ships contribute to replacing truck
traffic. For instance, Yara Birkeland will replace more than 100 daily diesel truck journeys, which
will further contribute to reducing emissions (YARA, 2018). Next to this, autonomous ships might
also be safer as nowadays 58% of accidental events in the shipping industry are attributed to human
factors (EMSA, 2018).

Although autonomous ship projects are at an advanced phase, international regulations are still
conservative against their introduction in international waters. Traditionally, maritime law assigns
responsibility to the captain in ensuring safe operations of the ship at sea. Autonomous ships must
be shown stable enough over time so regulations can be adapted to make sure that safety is ensured
for both autonomous and conventional ships (Ellingsen & Tendel, 2017). However, it is believed
that the regulations in national waters will be adapted more quickly to accommodate the use of
autonomous ships.

In this paper, we do not aim at investigating the technical and design aspects of autonomous ships,
but rather on analyzing the economic consequences of utilizing autonomous over conventional
ships in future maritime logistics systems. We consider a real short-sea shipping network for the
transportation of containers between Europe and ports along the Norwegian coastline. Assuming
that regulations in national waters can be adapted more quickly, we assume that autonomous ships
can serve local ports in Norway and, thus, will be locally deployed on domestic routes, which
we call daughter routes. Conversely, larger and conventional ships sail international waters and
transport cargo from the European continent to main Norwegian ports on so-called mother routes.
The economic analysis is performed based on data from a Norwegian liner shipping company, for
which we investigate new network designs based on both conventional mother and autonomous
daughter ships.

Our work belongs to the area of liner shipping network design (LSND). Most existing LSND
studies focus on deep-sea shipping using conventional ships. For example, Agarwal and Ergun
(2008) introduce an LSND that serves a weekly demand ensured by a heterogeneous fleet. This
study is the first in the literature to consider cargo transshipment, where ships are synchronized
to meet at a same port. The problem is modeled with an arc-flow formulation and solved with a
time-space graph and column generation-based algorithm. This work is extended by Alvarez (2009)
to include transshipment costs in the network design. The problem is solved using a combination
of tabu search and column generation. Reinhardt and Pisinger (2012) present a branch-and-cut
algorithm for the LSND problem with transshipment costs. The model allows for simple (one loop)
and butterfly (two loops) routes with a heterogeneous fleet of ships. Thun et al. (2017) study the
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LSND problem with advanced route structures, from one to many loops. The authors develop a
branch-and-price algorithm. Unfortunately, the problem turns out to be very complicated such that
instances are tested with at most two loops per route. Brouer et al. (2013) develop a benchmark suite
for the LSND problem, where transshipment can be performed at any port and as many times as
necessary, and it is also possible to split pickups and deliveries for the same demand. The problem
is heuristically solved using tabu search and column generation. This problem has been further
extended to include transit time restrictions (Karsten et al., 2017a) and speed optimization on each
sailing leg (Karsten et al., 2017b).

Typically, transshipments in LSND problems are only allowed at specific ports, called hubs,
whereas all other ports act as spoke ports. Such configuration of an LSND is referred to as hub-
and-spoke networks. Typically, larger ships are deployed on routes visiting the hubs, whereas smaller
ships are deployed on feeder routes visiting spoke ports (Zheng et al., 2015). In Meng and Wang
(2011), only a limited set of ports act as hubs. Zheng et al. (2015) limit the number of transshipments
to at most two hubs and also consider transit time restrictions. Holm et al. (2019) address a specific
case for the liner hub-and-spoke shipping problem. The network consists of mother and daughter
ships, where the mother ships serve main (hub) ports. In particular, the transshipment is not
performed at regular ports, but instead at suitable locations at sea. Synchronization of mother and
daughter ships is required in this system so that both mother and daughter ships meet at the same
location at the same time for the transshipment.

A feeder network design problem is a particular version of the LSND problem that typically
consists of a single hub port and many feeder ports (Meng et al., 2013). The containers are trans-
ported between hub and feeder ports, and transshipment is allowed. Fagerholt (1999) introduces a
pioneering study in feeder network design, where the objective is to find the weekly routes of ships
in order to minimize costs. Fagerholt (2004) extends the model to incorporate a heterogeneous fleet
regarding speed and capacity. Wang and Meng (2014) consider direct connections between all ports,
meaning that the shipping system runs without transshipment. Such a configuration results in short
transit time, however, at the expense of higher operational costs. Santini et al. (2018) focus on the in-
depth modeling of a feeder network itself. They combine strategic decisions, such as fleet utilization
and port selection, with tactical decisions, such as speed optimization, in a single framework.

The contribution of this paper is to study an LSND with autonomous ships (LSND-A) applied
to the current activity of a Norwegian shipping company. The network is, as previously mentioned,
composed of mother routes and daughter routes sailed by conventional and autonomous ships,
respectively. We analyze the economic impact of introducing autonomous ships by comparing
it with a fully conventional system. We also consider how the optimal fleet size and mix differ
between the system with autonomous and conventional ships. Furthermore, we study the inclusion
of advanced route structures like butterfly routes and clover routes into the LSND-A in order to
increase ship utilization and network efficiency. Finally, we test whether autonomous ships are also
beneficial if their construction cost are higher than those of conventional ships and we analyze a fully
autonomous system assuming that in the future autonomous ships can also sail international waters.

The remainder of this paper is organized as follows. In Section 2, we provide more explanation
on the LSND-A problem. In Section 3, we propose the solution methodology for solving this
network design problem. We first present a mathematical model based on a path-flow formulation
and then provide a heuristic to solve large problems. We conduct detailed economic analyses of the
introduction of autonomous ships in Section 4. Finally, Section 5 gives concluding remarks.
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2. Liner network design for autonomous shipping in the Norwegian maritime industry

We consider a real case of a Norwegian shipping company that transports containerized goods
between Europe and several ports along the Norwegian coast. The shipping follows a liner basis
mode, which is distinguished by a regular weekly service for all served ports. This mode has the
advantage of having fixed schedules that make the planning easier for the shippers. Currently, the
operations of this company follow a feeder network design. Three lines are operated from a hub
port in Rotterdam to serve the Norwegian ports. One of the routes is sailed by only one ship. This
route has a duration of one week. Each of the other two routes are about 10 days in duration. They
are served by two ships each to guarantee the weekly visiting frequency.

We investigate how this shipping company can run its current operations using autonomous
ships. For this purpose, we develop an LSND-A system based on a combination of conventional
and autonomous ships. We establish a so-called hub-and-spoke network, where larger conventional
ships sail long routes between hubs ports, whereas smaller autonomous ships are deployed on feeder
routes visiting spoke ports. Alumur and Kara (2008) point out that such networks concentrate flows
in order to benefit from economies of scale. The LSND-A is thus to establish a liner shipping
network design using both conventional mother ships that serve main ports (hubs) to ensure all
cargo flows between Europe and Norway and smaller autonomous daughter ships that serve small
ports along the Norwegian coast or inside fjords. We consider only the cargo flows to and from
each Norwegian port and the continental port because cargo flows among Norwegian ports are
negligible. To transport cargo from the continental hub port (Rotterdam) to a minor Norwegian
port, the cargo is first loaded onto a mother ship at the continental port, then unloaded at a
Norwegian main port, transshipped onto a daughter ship, and transported to its destination. The
reverse routing is applied for bringing export cargo from small Norwegian ports to the continental
port. The cargo flows between Norwegian main ports (hubs) and the continental port are con-
ducted by mother ships or by a combination of a mother and daughter ship. In the latter case,
there is an intermediate Norwegian port involved for transshipping the cargo. The classification
of ports into main ports and small ports is according to their location and their capacity to dock
a mother ship. Therefore, the network requires that (i) mother ships serve all or a subset of the
main ports, and (ii) daughter ships visit small ports and those main ports that are not served by
mother ships.

All mother ships sail a unique mother route that starts from the continental port, then serves the
northern-most main Norwegian port belonging to its route before visiting other main ports located
further in the south. Thus, the cargo deliveries and pickups are performed during southbound
journeys. Furthermore, the number of mother ships to be deployed on a mother route is determined
so that a weekly frequency is ensured. For example, a mother route with a total duration of 21
days requires three mother ships to ensure a weekly service at each port. On the other hand, as the
daughter routes are much shorter, it is assumed that the total duration of each such route is at most
one week and operated by only one daughter ship. A daughter route starts at the transshipment
(main) port and serves a set of other (small and/or main) ports. The fleet of daughter ships is
heterogeneous with respect to their capacity and cost structure, which means that each daughter
route of the system can deploy a different daughter ship depending on how much cargo to carry for
the designed route. In contrast, the fleet of mother ships is homogeneous where the overall capacity
of the fleet is sufficiently high to transport all cargoes occurring in the system.
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The LND-A problem consists of determining the composition of main and daughter routes to
fulfill all cargo flows. Furthermore, it needs to be decided on which type and number of autonomous
ships to use for the daughter routes. The objective is to minimize the total costs of operating the
fleet of ships. It should be noted that the problem considered in this study is at a tactical level. That
is, operational decisions, such as adjusting sailing speed or arriving at operating time at small ports,
are made at a later stage and, therefore, out of scope of our study.

3. Model and solution methodology

In this section, we present a path-flow model for the LSND-A. We first provide the notation and
the mathematical model of the problem. We then briefly describe an algorithm to generate the
set of feasible and nondominated routes that are given as input to the path-flow model. We also
present a heuristic version of this algorithm, which restricts the route generation in order to solve
large problems.

3.1. Mathematical model

We use the following notation for modeling the problem under investigation:

Sets
1% set of daughter ship types,
PP set of small ports that only daughter ships can visit,

PM  set of main ports,

RP set of daughter routes with a weekly service frequency; a daughter route d is served by one daughter ship v € V,

RM set of mother routes; the ports visited by a mother route must be served with a weekly service and, thus, a
mother route m is to be served by one or more mother ships,

RP  set of daughter routes that include port p, R7 € R”,

RJ*  set of mother routes that include main port p, R € R™M.

Parameters

CM  weekly operational costs of using a fleet of mother ships to serve the mother route m,
cP weekly operational costs of using a daughter ship to serve daughter route d,
”J:;‘ is equal to 1 if mother route m visits main port p, and 0 otherwise,
Ade is equal to 1 if daughter route d does the transshipment in main port p, and 0 otherwise,
K Big-M value that represents the maximum number of daughter routes that can use main port p for
transshipment; an upper bound can be set to K = |PP| + |[PM| — 2.

A mother route m € R specifies a set of main ports to be visited. The total duration of m
for sailing between the different ports and for loading and unloading cargo at each visited port
is precalculated. This is possible as we allow only one mother route from set R to be operated,
and this route is therefore responsible for transporting the total weekly demand of all ports. The
total duration of route m prescribes the number of mother ships that must be deployed so that a
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weekly service is ensured. The cost C of a mother route m then comprises the weekly time charter
costs for the required number of mother ships, the corresponding bunker costs, port fees, and cargo
handling costs.

A daughter route d € RP specifies a set of small (and/or main) ports to be visited by a daughter
ship. The total duration of route d for sailing and handling containers must not exceed one week,
and thus one daughter ship can be deployed to any given daughter route. The maximum number
of containers being transported along route d determines the ship type v € V to deploy for this
route. The corresponding cost C7 of a daughter route d includes the weekly time charter cost of
the selected ship of type v, the bunker costs, port fees, and cargo handling costs.

Decision variables

X a binary decision variable that is equal to 1 if mother route m € R* is part of the solution, and 0 otherwise,

m

z, a binary decision variable that is equal to 1 if daughter route d € RP is part of the solution, and 0 otherwise.

The optimization problem is modeled as follows:

(FI): min= Y Clx,+ Y Crz (1)
meRM deRP

subject to:
D x,+ D) =1, pePM )
meR[/,"‘ dER]?
Y z;=1, peP® (3)
deR]?
> oxu=1 4)
meRM
K Z Aptx,, > Z A zy. pePM, (5)

meRI/]"l deR;J

x, €{0,1}, meRM, (6)
z;€{0,1), deRP. (7)

The objective function (1) minimizes the total weekly operational costs of the fleet of mother and
daughter ships that operates the network. Constraints (2) state that each main port must be served
by either a mother route or a daughter route. Constraints (3) ensure that each small port is visited
exactly by one daughter route. Constraint (4) enforces only one mother route to be selected in the
whole system. Constraints (5) establish the following transshipment relation: A daughter route d
can be selected only if it performs transshipment at a main port p that is visited by a mother route
m. Finally, the binary requirements for the decision variables are given in Constraints (6) and (7).

© 2020 The Authors.
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3.2. Creating the set of candidate routes

The mathematical model requires as input a set of mother and daughter routes, respectively. Clearly,
creating all possible routes is computationally intractable for relevant numbers of ports, like, for
example, the more than 20 ports being considered in our case. To create a subset of feasible and
nondominated routes, we provide a label-setting dynamic programming algorithm as is widely used
in the literature, for example, Holm et al. (2019), and combine this with a heuristic scheme for
further reducing the number of generated routes.

Mother routes are created as follows: A mother route starts at the continental port and serves
main Norwegian ports. The port visits are performed during the southbound journey meaning that,
once a mother route serves a main port, it is only allowed to sail further south. This route fashion
makes it easy to generate all feasible mother routes if the number of main ports is not too large.
Indeed, a partial mother route, which is a sequence of visited ports, is extended to (i) any main port
located further south than the last visited port, which yields a new partial mother route, or (ii) goes
back to the continental port, which completes a mother route. Each completed mother route m gets
assigned a weekly operational cost C as defined before.

Daughter routes are created as follows: A daughter route begins its voyage at a main port, where
the daughter ship does the transshipment with the mother route. During its voyage, a daughter route
can visit both main and small ports. At each served port, the ship unloads the containers to deliver
and then loads the containers to pick up. While generating this set of routes, a partial daughter
route can be extended to any main or small port as long as the route duration limit of one week is
not violated. Furthermore, a dominance between two partial routes may occur if (i) they include
the same visited ports but in a different order, and (ii) have the same last visited port. Among two
such routes, the partial route with lower cost and lower maximum number of containers on board
(at any visited port) dominates the other partial route. A partial route is completed by letting the
daughter ship return to the main port where the route started. Finally, a completed daughter route
gets assigned a ship of adequate capacity from the fleet of daughter ships. For example, if a route
has 131 TEUs as a maximum number of containers on board, and the available set of daughter
ships has capacities of 86, 158, and 190 TEUs, a ship of size 158 TEU is assigned. As described
before, a weekly cost C7 is associated with each complete daughter route d.

3.3. Heuristic based on limiting the number of candidate routes

Although the label-setting algorithm is capable of generating all nondominated daughter routes,
preliminary experiments showed that the computational time increases exponentially as the number
of ports increases. It is, therefore, necessary to develop a heuristic, so that large-sized problems
can be solved. We propose a simple heuristic that limits the number of candidate routes during
the route generation step by exploiting specific features of the problem. Indeed, many daughter
routes are unlikely to be included in the optimal solution, for example, if they sail long distances
to serve a few ports that are far away from the transshipment port. Furthermore, Norway has a
particular geographical shape where the ports lie more or less on a south-north line along the coast.
Therefore, most cost-efficient routes go in one direction (southbound or northbound) from the main
port, rather than zigzagging. Our idea is therefore to forbid daughter routes that perform zigzagging.

© 2020 The Authors.
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To do this, we first order the ports according to their latitude. The heuristic then starts extending
partial daughter routes from the southernmost port. Extension of a partial route is only allowed
toward the next e ports in northbound direction, where ¢ is a preset parameter value that controls
the heuristic. Then, the heuristic starts the extension from the second port, and so on. Furthermore,
the heuristic duplicates any partial sequence that is extended to a main port. The latter is considered
as the transshipment port in the duplicated route. By reducing the number of candidate routes, the
number of decision variables considered by the mathematical model F1 is significantly reduced,
which effects a substantial reduction of the computational time. The parameter e is used to control
the number of routes generated and, thus, the heuristic reduction of the optimization problem.

It should be emphasized that the procedure described above creates so-called simple daughter
routes that consist of a single loop where a ship starts at a transshipment port, serves some ports,
and then goes back to the initial port. If such a loop is sufficiently short, a daughter ship might
sail another loop within the time limit of one week, to serve further ports. We call the resulting
routes advanced route structures. More precisely, a butterfly route involves two loops, a clover route
combines three loops, and a flower route includes four loops. The generation of advanced routes
can be easily done by combining simple routes that have the same transshipment port p and are
served by the same ship type v. If the total duration of the combined loops is within one week, a
new advanced route is obtained.

4. Computational study

Our computational study aims to provide an economic analysis of integrating autonomous ships into
the studied maritime transportation system. First, we describe the data and parameters that were
chosen such as to make the experiments as realistic as possible. Then, we measure the performance
of the heuristic in regards to solution quality and computational time. Finally, we carry out extensive
experiments to study the economic impacts of using autonomous ships.

The route generation procedures were implemented using MATLAB version R2018a, 64-bit. The
mathematical model was implemented in Xpress-IVE Version 1.24.24 64-bit with Xpress Model
Version 4.8.3 and solved by the Xpress Optimizer Version 33.01.02.

4.1. Data collection

Currently, the liner shipping company is serving 22 ports. The continental port is at Rotterdam at the
Netherlands, and the 21 Norwegian ports are located from the southwestern coastline of Norway to
the very north, see Fig. 1. Furthermore, the study includes an examination of growth in demand and
the possibility to integrate the transportation of farmed fish transported in specialized containers
within the activity of the shipping company. Today, most farmed fish are transported to the European
market by trucks, although all the existing fish farms are located along the Norwegian coast.
Besides, according to the national transportation plan 2018-2029 of Norway, there is a political
focus on shifting freight from road transportation to maritime transportation (Norwegian Ministry
of Transport and Communications, 2017). Therefore, using autonomous ships for the farmed fish
industry offers significant potential to fulfill this political requirement of reducing road traffic. The
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focus on the farmed fish industry is justified by its importance in Norway. The Norwegian Sea Food
Federation has set a goal for the Norwegian fish industry to increase the production of farmed fish
to 5 million tonnes per year within 2050 (Sjemat Norge, 2018). Consequently, sustainable logistics
solutions are needed in order to follow this growth. An efficient logistics system can potentially
be obtained by utilizing autonomous ships. There are 20 fish ports with nearby slaughterhouses
for farmed fish. We assume that these ports can be served by autonomous ships in the future too.
Therefore, in our experiments, we consider the existing container ports and the additional fish
ports too.

The computational study then considers three main instances with 22, 32, and 42 ports, respec-
tively. The instance with 22 ports represents the container ports currently served by the shipping
company, including seven main ports. The instance with 32 ports is composed of 22 ports served by
the company plus 10 fish ports. This instance involves 10 main ports. The largest instance includes
all the ports of which 12 are classified as main ports. The classification of main and small ports
depends on the importance of a port in terms of demand and its geographical location. We assume
that approximately 30% of ports with largest demand are classified as main ports.

Representative demand data for the currently served ports have been provided by the shipping
company. This demand corresponds to the weekly volume of containers transported to/from Rot-
terdam. Conversely, the demand for fish ports is only related to containers exported to Rotterdam
and is based on the slaughtered fish volumes in 2015. To study the impact of changes in demand,
we consider three different scenarios: normal, high, and very high demand. The normal demand
scenario uses the given demand data. The high demand scenario represents a 40% increase over
normal demand, which reflects the growth forecasted for 2040 in the Norwegian national transport
plan 2014-2023 (Regjeringen, 2013). The very high demand scenario envisages a positive growth of
100% increase in demand, considering that the national transport plan 2018-2029 estimates a 70%
increase in demand for 2050 (Regjeringen, 2018). Furthermore, to have a broader testbed for the
heuristic, we generate five additional test instances with 22, 32, and 42 ports for both normal and
high demand scenarios, where demand is created randomly following similar demand ranges as in
the original data provided by the shipping company and the slaughtered fish volumes.

To investigate the economic effect of introducing autonomous daughter ships, the LSND-A is
solved for both conventional and autonomous daughter ships. The fleet of daughter ships can be
composed of ships of three types that differ by capacity, fuel consumption rate, and time charter
cost. We refer to these ships as “small” (S), “medium” (M), and “large” (L). The design and costs
of the autonomous ships are based on estimations provided by a naval architect, as well as from the
literature. The fuel consumption will be lower for an autonomous ship compared to a conventional
with the same cargo capacity (Kretschmann et al., 2017). This is mainly because the autonomous
ships can have somewhat smaller dimensions (or be more slender) as they have more space for
carrying containers due to the removal of the superstructure, but also because of a reduced hotel
load. The effects on building costs from going from conventional to autonomous ships is harder
to estimate. We have followed the estimates provided by Kretschmann et al. (2017) and Willumsen
(2018), which have also been verified by the naval architect. They estimate a net increase in building
costs of 5%, based on that the removal of the deck house will reduce the costs by 5%, whereas
the more complex redundancy systems and ship-shore communication result in an increase of
10%. As the case shipping company charters their vessels on time charter, we have embedded both
the payment of the ship and the crew in a time charter rate. Despite that the building cost for
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Table 1

Parameters for conventional and autonomous daughter ships according to ship size

Conventional daughter ships S M L

Capacity (TEU) 86 158 190

Fuel consumption (tonnes/hour) 0.101 0.114 0.123

Weekly time charter cost (kUSD) 25.0 30.0 35.0

Autonomous daughter ships S M L

Capacity (TEU) 86 158 190

Fuel consumption (tonnes/hour) 0.085 0.097 0.107

Weekly time charter cost (kUSD) 9.7 15.0 20.2
Table 2
Parameters for conventional and autonomous mother ships according to ship size
Conventional mother ships I 11 111 v v
Capacity (TEU) 1000 1350 2000 2550 3500
Fuel consumption (tonnes/hour) 0.61 0.69 0.75 0.80 0.85
Weekly time charter cost (kUSD) 53.0 54.0 56.0 58.0 64.0
Autonomous mother ships I I 1T v \Y
Capacity (TEU) 1000 1350 2000 2550 3500
Fuel consumption (tonnes/hour) 0.55 0.62 0.68 0.72 0.77
Weekly time charter cost (kKUSD) 32.5 33.5 35.6 37.7 44.0

autonomous ships are expected to increase compared to conventional ones, this time charter cost
is significantly reduced in the fully autonomous case because we can remove the crew costs, which
constitute a very high share of the time charter costs for such small ships. The (reduced) crew
costs have been estimated using numbers from Utdanning.no (2019) and verified by the shipping
company. Tables 1 and 2 show the different technical characteristics and the estimated costs for the
daughter and mother ships, respectively, that are used in this case study.

As previously mentioned, as we assume that only one mother route is deployed, the sufficient
capacity for mother ship(s) can easily be determined a priori by taking the maximum between the
total number of containers going from and to Rotterdam. By doing so, we can assign for each
instance a suitable mother ship type among the following capacities: 1000-TEU, 1350-TEU, 2000-
TEU, 2550-TEU, and 3500-TEU, referred to as I, II, III, IV, and V, respectively. For any mother
ship size, the fuel consumption is based on a standard sailing speed set equal to 12 knots, and the
time charter costs are based on data for similar container ships that are taken from Hamburg Index
(2019). The characteristics of different mother ship types are summarized in Table 2. Although
the LSND-A is based on conventional mother ships, we consider autonomous mother ships in
a later experiment to study the economics of a fully autonomous system, see Section 4.3.4. The
fuel consumption and weekly time charter costs for these are estimated in the same way as for the
autonomous daughter ships.

The remaining input data are estimated as follows. The bunker price is roughly based on the
average market price in Rotterdam over one year and set to 600 USD per tonne for low sulfur
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marine gas oil. Fees for port calls are based on average fees faced in Norwegian ports. For the
autonomous ships, we follow Kretschmann et al. (2017), who estimate an increase of 20% in port
cost as it will be necessary for extra assistance of these ships at ports. As for the cargo handling,
the continental main port is assumed to have a higher handling rate (20 TEU/hour) compared to
Norwegian ports (15 TEU/hour). The cargo handling cost is the same for all ports and is set to 30
USD/TEU.

It should be noted that the introduction of autonomous ships most likely will bring new additional
cost components, such as the cost of a shore control center (Kretschmann et al., 2017). However, it
is very hard to estimate this added cost today. Nevertheless, a shore control center might be able to
monitor quite a large number of ships and fleets in parallel. Therefore, we assume that the cost per
ship is negligible and ignore this cost in our evaluation. Additionally, we also perform sensitivity
experiments regarding the increased costs of autonomous ships in Section 4.3.3, where the cost
increase could include the cost of a shore control center.

4.2. Performance of the heuristic

The performance of the heuristic is tested on the randomized test instances for normal and high
demand scenarios. For each of these instances, we solve the LSND-A with autonomous daughter
ships and simple daughter route structures. We tested the performance of the heuristic for values
of the parameter e ranging from 1 to 5. We compare the gap of the obtained solutions to the exact
solution found by Xpress (when optimality can be proven) or to the best among all solutions that
can be found by the heuristic for the different values of e.

Tables 3 and 4 present the results for the random instances with normal and high demand
scenarios, respectively. The first column gives the size of the problem in terms of the number of ports.
The second column reports the solution method applied to the problem. The next three columns
“Mother,” “Daughter,” and “CPU (s)” report the average number of mother and daughter routes
generated for the problem and the average computational time (in seconds) that the route generation
took for the five test instances. For the route generation, we have set a time limit of three hours.
Entry “NA” in the corresponding columns indicates that this time limit was exceeded. Column
“Optimization” provides the average CPU time required for solving the resulting optimization
model for the five instances. “Gap” computes the deviation of the obtained solutions from optimal
or best-known solutions. Here, the values “Avg.,” “Min,” and “Max” indicate the average, minimum,
and maximum gap over the five test instances, respectively.

We can see from Tables 3 and 4 that the performance of the route generation and the solution of
the optimization problem depend on two parameters: the number of ports and the demand scenario.
For the normal demand scenario, generating all relevant routes within the time limit is only possible
for the instances with 22 ports. Here, 127 mother routes and 26,572 daughter routes are obtained
in 1501 seconds. This shows that the generation of daughter routes is by far the biggest challenge.
The number of mother routes is strongly limited and depends only on the number of ports visited
because all routes are strictly southbound directed. Therefore, the time for generating all mother
routes is merely 11 seconds, even for the largest instances with 42 ports.

For the high-demand scenario, the generation of all relevant routes within the time limit is
possible for 22 and 32 ports. In this scenario, port demands are higher, and fewer daughter routes
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Table 3
Performance of the heuristic for random instances with normal demand. For each row, the reported results represent the
average of five random instances. The italic row is related to the exact solution

Route generation Optimization Gap (%)
No. of ports Method Mother Daughter CPU (s) CPU (s) Avg. Min Max
22 ports Exact (Xpress) 127 26,572 1501 32 0.00 0.00 0.00
Heuristic (e = 1) 127 114 1 <l 3.11 2.50 3.97
Heuristic (e = 2) 127 475 2 1 1.00 0.00 1.73
Heuristic (e = 3) 127 1227 3 3 0.55 0.00 1.00
Heuristic (e = 4) 127 2485 5 4 0.19 0.00 0.60
Heuristic (e = 5) 127 4062 9 8 0.18 0.00 0.60
32 ports Exact (Xpress) NA NA NA NA NA NA NA
Heuristic (e = 1) 1023 197 4 2 6.86 3.43 7.64
Heuristic (e = 2) 1023 1054 8 7 1.20 1.03 1.31
Heuristic (e = 3) 1023 3406 40 73 0.41 0.14 0.67
Heuristic (e = 4) 1023 9803 318 255 0.18 0.00 0.13
Heuristic (e = 5) 1023 21,906 1706 1167 0.00 0.00 0.00
42 ports Exact (Xpress) NA NA NA NA NA NA NA
Heuristic (e = 1) 4095 341 22 5 2.09 1.76 2.34
Heuristic (e = 2) 4095 3645 70 21 0.59 0.43 0.81
Heuristic (e = 3) 4095 17,782 6693 224 0.00 0.00 0.00
Heuristic (e = 4) NA NA NA NA NA NA NA
Heuristic (e = 5) NA NA NA NA NA NA NA

are generated as daughter ships reach their capacity limit quickly after visiting a few ports. As a
result, all routes can be generated for the high-demand instances with 32 ports in on average 4807
seconds. Considering the heuristic route generation process, we can generate routes for all instances
except for the largest one with 42 ports and e = 4 or e = 5, see Tables 3 and 4.

In almost all considered cases, the CPU time for solving the optimization problem is lower
compared to the time for generating the routes. As expected, solving the optimization problem
takes longer when there are more routes generated for a problem, that is, the higher the value of
parameter e is. Still, even in the worst solvable case with 32 ports, normal demand, and e = 5,
solving the optimization problem takes only 1167 seconds, see Table 3.

We make the following observations regarding the quality of the heuristic solutions. For those
instances where Xpress obtained optimal solutions, that is, instances with 22 ports for normal
demand as well as instances with 22 and 32 ports for high demand, the heuristic with e = 5 provides
good solutions with very low average gaps of 0.18%, 0.49%, and 0.94%, respectively. For lower values
of e, gaps are higher at the benefit of a reduced runtime. Especially with e = 1, we observe relatively
high average gaps of up to 8.1%. For those instances where Xpress did not solve the problem, gaps
refer to the the best solution found by the heuristic. Clearly, this best solution is always determined
by the heuristic solution with the highest value of parameter e that can be solved for an instance.
For those cases, the gaps are 0.0%, see, for example, e = 4 for the instances with 42 ports and high
demand. Anyhow, even if e is slightly lower, the gaps do not worsen much. This indicates that the
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Table 4
Performance of the heuristic for random instances with high demand. For each row, the reported results represent the
average of five random instances. The italic row is related to the exact solution

Route generation Optimization Gap (%)
No. of ports Method Mother Daughter CPU (s) CPU (s) Avg. Min Max
22 ports Exact ( Xpress) 127 4400 34 6 0.00 0.00 0.00
Heuristic (e = 1) 127 71 6 NA NA NA NA
Heuristic (e = 2) 127 195 6 <1 1.32 1.12 1.61
Heuristic (e = 3) 127 406 6 <1 0.55 0.03 0.77
Heuristic (e = 4) 127 647 7 1 0.52 0.03 1.07
Heuristic (e = 5) 127 988 8 1 0.49 0.03 0.91
32 ports Exact (Xpress) 1023 53,558 4807 142 0.00 0.00 0.00
Heuristic (e = 1) 1023 120 10 <1 8.10 7.07 9.12
Heuristic (e = 2) 1023 401 11 2 6.43 6.23 6.76
Heuristic (e = 3) 1023 851 25 4 1.66 0.84 2.09
Heuristic (e = 4) 1023 1785 47 30 1.13 0.70 1.98
Heuristic (e = 5) 1023 2898 350 12 0.94 0.55 1.67
42 ports Exact (Xpress) NA NA NA NA NA NA NA
Heuristic (e = 1) 4095 193 22 2 2.70 1.48 3.37
Heuristic (e = 2) 4095 977 37 7 1.07 0.89 1.15
Heuristic (e = 3) 4095 2912 341 14 0.38 0.11 0.72
Heuristic (e = 4) 4095 7716 5906 42 0.00 0.00 0.00
Heuristic (e = 5) NA NA NA NA NA NA NA

solution converges to near optimal quality with settings ¢ = 4 or e = 5. As a conclusion, the heuristic
generates very good solution quality for higher values of e within reasonable computation times.

4.3. Economic analysis

In this section, different analyses are conducted to investigate the economic effects of incorporating
autonomous ships into liner shipping. The analyses are performed on nine different test instances
with 22, 32, and 42 ports under normal, high, and very high demand scenarios. These instances
use the realistic demand data that are described in Section 4.1. We use the heuristic to generate the
candidate routes for the daughter ships. For each instance, we select the highest value of e for which
the route generation is completed within a three-hour time limit.

4.3.1. Conventional and autonomous daughter ships with simple routes

This experiment compares the LSND-A with conventional and autonomous daughter ships using
only simple routes. The objective is to study (i) the impact of introducing autonomous ships on
the operational costs and (ii) the fleet composition of the obtained solution. The gained results for
instances with 22, 32, and 42 ports are presented in Tables 5-7, respectively. In each table, we report
results for the three demand scenarios (“Normal,” “High,” and “Very high”). The total operational
costs are given together with their composition into fuel cost, time charter cost, cargo handling, and
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Table 5
The results of the LSND-A with conventional and autonomous daughter ships for simple daughter routes for instances
with 22 ports

Results (22 ports) Normal (e = 5) High (e =) Very high (e = 95)
No. of main ports =7 Conv. Aut. Conv. Aut. Conv. Aut.
Total op. costs (kUSD) 522 474 649 585 900 800
Fuel cost (kUSD) 76 74 85 71 90 85
Time charter costs (kKUSD) 258 211 298 243 437 342
Cargo handl. costs (kUSD) 185 185 263 267 369 369
Port costs (kUSD) 3 4 3 4 4 4
Fleet of daughter ships 2M,1L 2S,2M 2M,2L 5M IM,5L 6M,1L
Fleet of mother ships 311 311 3111 3111 41V 41V
No. of mother routes 127 127 127 127 127 127
No. of daughter routes 14,871 14,871 4456 4456 1384 1384
Total solution time (s) 72 73 26 27 12 13
Route generation (s) 62 58 20 21 11 11
Optimization problem (s) 15 15 6 6 1 2
Table 6

The results of the LSND-A with conventional and autonomous daughter ships for simple daughter routes for instances
with 32 ports

Results (32 ports) Normal (e = 4) High (e = 95) Very high (e = 5)
No. of main ports = 10 Conv. Aut. Conv. Aut. Conv. Aut.
Total op. costs (kUSD) 620 551 836 742 1151 1022
Fuel cost (kUSD) 83 79 92 87 105 94
Time charter costs (kUSD) 308 243 427 337 595 476
Cargo handl. costs (kUSD) 224 224 312 312 446 446
Port costs (kUSD) 5 5 5 6 5 6
Fleet of daughter ships 4L 1S,3M,1L 3M,3L 7™M I1M,7L S5M,4L
Fleet of mother ships 311 3111 41V 41V 5V 5V
No. of mother routes 1023 1023 1023 1023 1023 1023
No. of daughter routes 50,658 50,658 17,882 17,882 3219 3219
Total solution time (s) 10,478 10,874 4563 4020 257 254
Route generation (s) 10,461 10,561 3567 3549 250 245
Optimization problem (s) 17 112 996 474 7 9

port calls in thousand USD (kUSD). The fleet composition of each solution is also provided, where
letters “S,” “M,” and “L” are used to indicate the daughter ship size, and roman numbers are used
for mother ship sizes (see Tables 1 and 2). The further rows of each table mention the number of
mother and daughter routes generated and the overall CPU time required as well the time needed
for generating the routes and for solving the optimization problem.

A central observation from the results of Tables 5-7 is that the introduction of autonomous ships
reduces total operational cost by on average 11% over all the considered instances. Note that 94%
of these savings come from the reduced time charter costs and 6% of the savings stem from fuel cost
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Table 7
The results of the LSND-A with conventional and autonomous daughter ships for simple daughter routes for instances
with 42 ports

Results (42 ports) Normal (e = 2) High (e = 3) Very high (e = 4)
No. of main ports = 12 Conv. Aut. Conv. Aut. Conv. Aut.
Total op. costs (kUSD) 661 582 883 783 1219 1073
Fuel cost (kUSD) 87 82 116 103 113 108
Time charter costs (kKUSD) 328 253 432 341 625 485
Cargo handl. costs (kUSD) 240 240 329 332 473 473
Port costs (kUSD) 6 7 6 7 6 7
Fleet of daughter ships 3M,2L 1S,5M 2M,4L 25,6 M 2M,7L 1S,9M,1L
Fleet of mother ships 3111 31T 41V 41V 5V 5V
No. of mother routes 4095 4095 4095 4095 4095 4095
No. of daughter routes 10,442 10,442 14,934 14,934 8300 8300
Total solution time (s) 414 373 6766 7320 10,418 10,548
Route generation (s) 205 197 6610 7275 10,354 10,412
Optimization problem (s) 209 176 156 45 64 136

reduction. The costs of cargo handling and port calls are almost the same for the conventional and
the autonomous system.

The significant savings in time charter cost stem from differing fleet compositions and ship
routes between the conventional system and the autonomous system. For any instance and demand
scenario, the fleet of autonomous daughter ships is larger but consists of smaller ships than in
the conventional system. The lower cost components of autonomous ships, especially for the time
charter, allows the use of more, but smaller, daughter ships while reducing overall costs. In contrast,
the fleet of mother ships is the same for both solutions with conventional and autonomous daughter
ships in each of the instances. This means that the observed cost reduction is indeed due to changes
in the daughter ship operations. For more details on the role of daughter ships, we consider the
instance with 42 ports and normal demand (see Table 7), which has the same mother route in
both configurations. For this instance, the operational cost of mother ships is 404 kUSD in both
configurations. Total operational costs amount to 257 kUSD for the conventional daughter ships
and to 178 kUSD for the autonomous ships, which yields a saving of 79 kUSD (30.8%) per week.
The majority of this saving (75 kUSD) is due to the lower time charter cost.

Table 8 shows the average utilization of transport capacities and operation times of daughter
and mother ships. The time utilization relates the total route duration of a ship to the one-week
time interval that is available in a weekly service system. It can be observed that the average time
utilization for the mother ships is very high for all instances and demand scenarios, that is, between
80% and 99%. This shows that this resource is well exploited in the LSND-A solutions. For the
daughter ships, we observe a very high capacity utilization of more than 90% for all test instances,
whereas the average time utilization is quite low. Especially for autonomous ships, time utilization
is only between 32% and 56%. This is explained by two factors: (1) the type of daughter ships used,
conventional or autonomous, and (2) the demand scenario. Regarding the first factor, the number
of conventional daughter ships deployed in the LSND-A is less than in the autonomous system.
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Table 8
Average capacity and time utilization for the LSND-A with conventional daughter ships and autonomous daughter ships
LSND-A with conv. daughter ships LSND-A with aut. daughter ships
Daughter ships Mother ships Daughter ships Mother ships
No. of Avg. util. Avg. util. Avg. util. Avg. util. Avg. util. Avg. util.
Demand ports capacity (%) time (%) time (%) capacity (%) time (%) time (%)
Normal 22 92 73 80 97 56 80
32 96 59 90 97 46 90
42 97 57 94 94 46 94
High 22 94 71 99 94 56 96
32 97 51 85 92 44 85
42 98 46 98 98 40 94
Very high 22 96 53 98 92 44 98
32 97 53 90 94 41 90
42 96 42 99 93 32 99

Thus, daughter routes with conventional ships are on average longer. The second factor indicates
that the average utilized time decreases with higher demand for both types of daughter ships. This
is because for high demand, daughter ships reach their capacity limit rapidly already from serving a
few ports in a short route. After completing their routes, daughter ships remain idle. As the average
utilized capacity is high, but the time utilization is low, it might be worth considering more advanced
route structures, which motivates the next experiment.

4.3.2. Autonomous daughter ships with advanced route structures

In order to achieve a better time utilization of daughter ships, one might consider butterfly routes,
clover routes, and flower routes as introduced in Section 3.2. Tables 9-11 report the obtained
results if such advanced daughter route structures are incorporated into the LSND-A. The three
tables cover instances with 22, 32, and 42 ports and all demand scenarios. They present the same
information as tables in the previous section. Additionally, they report the relative savings (in %)
in total operational costs compared to using only simple daughter routes. For the fleet of daughter
ships, the letters S, M, and L are used for the ship sizes and the route types are denoted by “Si”
(simple route), “B” (butterfly route), “C” (clover route) and “F” (flower route).

From Tables 9-11, we can see that the number of generated daughter routes significantly increases
when advanced daughter route structures are considered too. For example, the number of daughter
routes for the instance with 42 ports and normal demand increases from 10,442 (simple routes only)
to 221,620 (simple and advanced routes). Even for instances where advanced routes are generated
with a lower value of ¢, the number of daughter routes remains very high. For example, the instance
with 42 ports and very high demand has 8300 simple daughter routes generated with ¢ = 4 and
316,498 advanced daughter routes generated with e = 3. However, the computational time for the
route generation does not increase exponentially as the advanced routes are not generated from
scratch but just combined from simple daughter routes.
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Table 9

The results of the LSND-A with autonomous daughter ships and advanced daughter route structures for instances with
22 ports

Results (22 ports) Normal (e = 5) High (e = 5) Very high (e = 95)

Total operating costs (kUSD) 455 555 749

Savings (%0) 39 5.2 6.4

Fuel cost (kUSD) 75 71 89

Time charter costs (kUSD) 191 213 287

Cargo handling costs (kUSD) 185 267 369

Port costs (kUSD) 4 4 4

Fleet of daughter ships 1SSi,2SC IMSi,IMB,IMC ISB,1SC,IMB,1LC
Fleet of mother ships 3101 3111 41V

No. of mother routes 127 127 127

No. of daughter routes 415,984 91,380 16,525

Total solution time (s) 7227 436 44

Route generation (s) 6778 385 39

Optimization problem (s) 449 51 5

Table 10

The results of the LSND-A with autonomous daughter ships and advanced daughter route structures for instances with
32 ports

Results (32 ports) Normal (e = 3) High (e = 4) Very high (e = 5)
Total operating costs (KUSD) 519 693 932

Savings (%) 5.8 6.7 8.8

Fuel cost (kUSD) 81 88 95

Time charter costs (kUSD) 208 287 385

Cargo handling costs (kUSD) 224 312 446

Port costs (kUSD) 6 6 6

Fleet of daughter ships ISC,IMB,1MC ISC,2MB,1IMC IMB,2MC,1LF
Fleet of mother ships 311 41V 5V

No. of mother routes 1023 1023 1023

No. of daughter routes 531,794 439,755 132,979

Total solution time (s) 9967 6115 1086

Route generation (s) 5377 5010 558
Optimization problem (s) 4590 1105 528

The results from Tables 9—11 show that advanced daughter route structures lower cost significantly.
The average saving over all instances is 6.0%. Such savings are achieved even if daughter routes are
generated with a low value of e to limit the growth of routes. For example, the instance with 42
ports and very high demand has a saving of 9.1%, although incorporating advanced daughter routes
requires to set e = 3 in the heuristic, compared to ¢ = 4 when considering simple daughter routes
only. The cost savings follow from a much better usage of ship resources where fewer daughter ships
are required to serve all ports. For example, in total six daughter ships are needed for the instance
with 42 ports and normal demand when only simple routes are allowed, whereas four daughter
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Table 11
The results of the LSND-A with autonomous daughter ships and advanced daughter route structures for instances with
42 ports

Results (42 ports) Normal (e = 2) High (e = 2) Very high (e = 3)
Total operating costs (kUSD) 548 732 976
Savings (%) 5.8 6.5 9.1
Fuel cost (kUSD) 84 101 110
Time charter costs (kUSD) 217 287 385
Cargo handling costs (kUSD) 240 337 474
Port costs (kUSD) 7 7 7
Fleet of daughter ships 2SC,1MSi, I MB ISEFIMB,2MC IMB,IMC IMF1LC
Fleet of mother ships 3111 41V 5V
No. of mother routes 4095 4095 4095
No. of daughter routes 221,620 55,774 316,498
Total solution time (s) 5476 392 3669
Route generation (s) 1956 211 3514
Optimization problem (s) 3520 181 155
Table 12
Average capacity and time utilization for the LSND-A with advanced daughter routes
Autonomous daughter ships Mother ships
No. of Avg. util. Avg. util. Avg. util.
Demand ports capacity (%) time (%) time (%)
Normal 22 95 85 80
32 88 90 90
42 92 73 94
High 22 91 91 96
32 88 80 85
42 91 82 94
Very high 22 95 90 98
32 92 96 90
42 95 94 99

ships are sufficient if advanced route structures are allowed. In the latter case, two ships perform
a clover route, one ship performs a single route, and one more ship performs a butterfly route, see
Table 11. Moreover, advanced route structures are used increasingly as the demand increases. For
example, the instance with 42 ports and very high demand deploys butterfly, clover, and flower
daughter routes. This is because daughter ships quickly reach their capacity limit in this demand
scenario although the time limit of one week is not exploited in a single loop. Therefore, a ship can
conduct up to four loops in a week, which reduces the fleet size from nine ships (see Table 7) to four
ships (see Table 11), yielding substantial savings in time charter cost.

Table 12 shows the average capacity and time utilization of the ship fleet for the solutions with
advanced daughter routes. It shows that advanced daughter routes contribute substantially to a
more efficient utilization of the daughter ship resource. In particular, the average utilization time
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Fig. 2. Sensitivity analysis on construction costs for autonomous daughter ships, 22 ports, normal demand. Optimal
solutions are obtained with autonomous daughter ships for construction costs up to 177.3%, and with conventional
daughter ships for a rate more than 177.3%.

improved very much. It now ranges from 73% to 96%, whereas it was in the range of 32-56% for
the same instances but with simple daughter routes only, compare Tables 8 and 12.

4.3.3. Sensitivity analysis on the construction cost for autonomous daughter ships
The results obtained so far show that the most substantial portion of savings in operational costs
is due to time charter costs, which cover both the payment of the ships (construction costs) and the
crew. However, it is clear that our estimations of the construction costs of the autonomous ships
are uncertain. Thus, we perform a sensitivity analysis for the construction costs using the instances
with 22 and 42 ports under normal demand. These instances represent the current operations of the
shipping company and the possible future extension toward fresh fish transportation, respectively.
Figure 2 shows the total operating costs when the construction cost for autonomous ships varies
from —20% to 200% compared with the cost for conventional ships of same size. Figure 2 excludes
the interval between 20% and 150% as this region only continues the linear behaviour. When varying
the construction cost for the instance with 22 ports and normal demand, two optimal solutions are
obtained in terms of fleet composition. The first solution is represented by a thick line and is
composed of three autonomous daughter ships (1 S B, 1 S F, and 1 M Si) and three mother ships of
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Fig. 3. Sensitivity analysis of construction costs for autonomous daughter ships, 42 ports, normal demand. Optimal
solutions are obtained with autonomous daughter ships for construction costs up to 118.8%, and with conventional
daughter ships for a rate more than 118.8%.

type II. This solution is obtained in the range —20% to +1% for the difference in construction costs.
If this measure increases beyond +1%, the routes corresponding to the best-found solution change
for the daughter ships (1 S Si and 2 S C), represented by the dashed line in the figure. The fleet of
daughter ships is autonomous up to an increase of construction costs of 177.3%. If the construction
cost of autonomous ships is even higher, an entirely conventional system becomes more beneficial.

The results of the sensitivity analysis for the instance with 42 ports and normal demand are
shown in Fig. 3. Here, a first fleet composition is observed in the range from —20% to +77.8% in
construction cost. This fleet consists of four daughter routes (2 S C, 1 M Si, and 1 M B) and three
mother ships of type III. A second fleet composition is observed in the range +77.8% to +118.8%,
represented with a dashed line. This fleet is composed of four autonomous daughter ships (1 S
B,2 S C, and 1 M B) and the same mother ships as before. If the additional construction cost
of autonomous ships exceeds 118.8%, it becomes economical to use conventional daughter ships
again. Both solutions confirm that it is more cost-efficient to introduce autonomous daughter ships
unless the construction costs are very much higher compared to conventional ships. The identified
boundary of 118.8% exceeds by far any existing estimates. The results of this sensitivity analysis
again support the introduction of autonomous ships in maritime transportation systems.
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Table 13
The results of the LSND-A with autonomous daughter ships and autonomous mother ships for instances with 22 ports

Results (22 ports) Normal (e = 5) High (e = 5) Very high (e = 5)
Total operating costs (kKUSD) 388 489 662

Savings 1 (%) 14.8 11.9 11.7

Savings 2 (%) 22.9 18.9 18.6

Fuel cost (kUSD) 69 66 83

Time charter costs (kUSD) 130 152 205

Cargo handling costs (kUSD) 185 267 369

Port costs (kUSD) 4 4 5

Fleet of daughter ships 1SSi,2SC IMSi,IMB,IMC ISB,1SC,IMB,1LC
Fleet of mother ships 3101 3111 41V

No. of mother routes 127 127 127

No. of daughter routes 415,984 91,380 16,525

Total solution time (s) 2712 434 49

Route generation (s) 1977 373 40
Optimization problem (s) 735 61 9

Table 14

The results of the LSND-A with autonomous daughter ships and autonomous mother ships for instances with 42 ports
Results (42 ports) Normal (e = 2) High (e = 2) Very high (e = 3)
Total operating costs (kKUSD) 481 643 868

Savings 1 (%) 12.2 12.2 11.1

Savings 2 (%) 19.8 19.1 16.5

Fuel cost (kUSD) 78 92 102

Time charter costs (kUSD) 156 206 285

Cargo handling costs (kUSD) 240 337 473

Port costs (kUSD) 7 8 8

Fleet of daughter ships 2SC,1MSi, 1 MB ISEFEIMB,2MC IMB,IMC,IMFE1LC
Fleet of mother ships 3111 41V 5V

No. of mother routes 4095 4095 4095

No. of daughter routes 221,620 55,774 316,498

Total solution time (s) 2706 573 4023

Route generation (s) 1757 202 3171
Optimization problem (s) 949 371 852

4.3.4. Autonomous mother ships

If or when, in the future, the international regulations by the International Maritime Organization
(IMO) allow operating autonomous ships in international waters, the mother routes in the LSND-
A can also be sailed by autonomous mother ships. This experiment tests the LSND-A with a
fully autonomous fleet for both daughter and mother ships. The analysis is conducted on the test
instances with 22 and 42 ports. The results are presented in Tables 13 and 14, respectively. Next
to measures that were introduced for previous tables, Tables 13 and 14 also report two types of
relative savings. “Savings 17 is the saving of the fully autonomous system over a partial autonomous
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fleet with conventional mother ships and autonomous daughter ships as was investigated before.
“Savings 2” is the saving of the fully autonomous fleet over a fully conventional fleet of mother and
daughter ships. For all configurations, daughter ships can sail advanced route structures.

According to the two tables, the total operating costs decrease between 11.1% and 14.8% compared
with a partial autonomous fleet with conventional mother ships and autonomous daughter ships (see
Savings 1). Compared with an entirely conventional fleet, savings of 16.5-22.9% are observed (see
Savings 2). In all these solutions, cargo handling costs are almost the same for the fully autonomous
system and the partially autonomous system as the same number of containers is transported. Fuel
costs decrease by 10% when utilizing a fully autonomous configuration, whereas the port costs
increase by 22% compared to an entirely conventional fleet. However, these two cost components
make up a relatively small share of the total operating cost. The biggest share is again the time
charter cost. The reduction of this cost component due to autonomous mother ships explains 94%
of the cost savings observed in this experiment. It can be concluded that both, autonomous daughter
ships and autonomous mother ships, have to potential of significantly lowering the operational cost
in maritime freight transportation.

5. Conclusion

This paper studies LSND-A. We consider a real short-sea shipping network for the transportation
of containers between Europe and ports along the Norwegian coastline. Assuming that regulations
in national waters can be adapted more quickly, autonomous daughter ships are used to only serve
local ports in Norway. Conversely, larger and conventional mother ships sail international waters
and transport cargo to/from the European continent to be transshipped from/to autonomous
daughter ships to reach their destinations. For solving the resulting optimization problem, we use a
combination of a path-flow-based optimization model and a (heuristic) label-setting algorithm that
generates candidate routes.

Extensive computational experiments were carried out using realistic case data. A more technical
experiment shows that the developed heuristic generates a high solution quality within reasonable
computational time. The results of our manifold economic analyses indicate that introducing au-
tonomous daughter ships reduces operating costs by 11% on average, where reduced time charter
cost contribute to most of the cost saving. Cost reductions in fuel consumption and time charter
motivate the use of more daughter ships with less capacity each compared to a similar system with
conventional daughter ships. The adaption of advanced daughter route structures, that is, butterfly,
clover, and flower routes, saves another 6% of operational cost. The additional introduction of au-
tonomous mother ships yields further benefits such that the operational cost of a fully autonomous
system with advanced daughter routes are about 20% below the cost of a conventional fleet that
uses simple daughter routes only.

As much of the benefits from introducing autonomous ships come from the reduction/removal
of crew costs, it is likely that such solutions will take hold first in high-cost countries like Norway.
For future research, it would be interesting to improve the service degree of the network to make
the LND-A more competitive to trucks. One way to improve the service degree is to increase the
service frequency of the entire network, for example, by visiting ports twice per week. It would
also be useful to study the introduction of autonomous ships in an on-demand service system.
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Autonomous ships offer a better flexibility with regards to crew working restrictions and thus can
be exploited to increase the service of short sea shipping.
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