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Abstract

We apply Kahan’s discretisation method to three classes of 2-dimensional quadratic vector
fields with quadratic, resp. cubic, resp. quartic Hamiltonians. We show that the maps
obtained in this way can be geometrically understood as the composition of two involutions,
one of which is a (linear) symmetry switch, and the other is a generalised Manin involution.
Applications to 2-dimensional Suslov and reduced Nahm equations are included.

1 Introduction

Kahan’s method for discretizing quadratic differential equations was introduced in [9]. It was re-
discovered in the context of integrable systems by Hirota and Kimura [11]. Suris and collaborators
extended the applications to integrable systems significantly in a series of papers [15], [16], [17],
[18], [8]. Applications to both integrable as well as non-integrable Hamiltonian systems and the
use of polarisation to discretise arbitrary degree Hamiltonian systems were studied in [2], [3] and
[4]. For homogeneous quadratic vector fields,

dxi
dt

=
∑
j,k

aijkxjxk

Kahan’s method gives the following discretisation

x′i − xi
h

=
∑
j,k

aijk(x′jxk + xjx
′
k)/2.

Two classes of 2-dimensional ODE systems of quadratic vector fields where the Kahan discretisa-
tion is integrable were presented in [1]. The latter systems are of the form

dx

dt
= ϕ(x)J∇H(x), (1)

where

x :=

(
x
y

)
, J :=

(
0 1
−1 0

)
,

and ϕ(x) and H(x) are scalar functions of the components of x. In the present paper we show that
for one of these classes, and for two other classes, the Kahan discretisation can be geometrically
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understood as the composition of two involutions, one of which is a symmetry switch and the
other is a generalised Manin involution, both introduced in [10]. This implies that in each case the
Kahan map is the root of a generalised Manin transformation, and hence that there is a (fractional
affine) transformation which brings the map into symmetric Quispel-Roberts-Thompson (QRT)
form [13, 14]. We briefly review all these concepts in the next section.

The three classes we consider are quite general. We include some illustrative applications to
systems from the physics literature: a two-dimensional sub-system of the three-dimensional non-
holonomic Suslov problem which describes the motion of a rigid body under the constraint that a
certain component of the angular velocity vector vanishes [20],

d

dt

(
x
y

)
=

1

2
xJ∇(x2 + αy2) =

(
αxy
−x2

)
; (2)

the reduced Nahm equations [7] corresponding to tetrahedrally symmetric monopoles of charge 3,

d

dt

(
x
y

)
= J∇y(x2 − 1

3
y2) =

(
x2 − y2
−2xy

)
; (3)

and the reduced Nahm equations for octahedrally symmetric monopoles of charge 4,

d

dt

(
x
y

)
=

1

x− y
J∇y(2x+ 3y)(x− y)2 =

(
2x2 − 12y2

−6xy − 4y2

)
. (4)

Their Kahan (or Hirota-Kimura) discretisations, together with an invariant two-form and an
integral of motion, were given in [18]. In this paper we show that the Kahan discretisations of (2),
(3), (4) are each equivalent to a symmetric QRT map, (x, y)→ (y, y′) with

y′ =
y2 + α(2h)2

x
, y′ =

(x+ y)y − (6h)2

3x− y
, y′ =

xy − 2(2h)2

2x− y

respectively.
This paper provides a geometric understanding of the Kahan discretisation of three distinct

classes of ODEs, in particular it shows they possess the same geometric structure.

2 Preliminaries on QRT maps and generalised Manin
transformations

QRT map. Let P (x) = αFa(x) + βFb(x) = 0 be a pencil of biquadratic curves. The horizontal
switch ι1 switches the two points on the curve P (x) = 0 with the same y-coordinate and the
vertical switch ι2 switches the two points on the curve P (x) = 0 with the same x-coordinate, cf.
Figure 1 in the preface of [5]. The QRT-map is the composition of the two involutions given by
ι2 ◦ ι1. In [5, 21] it is shown that every smooth member of the pencil P is an elliptic curve, on
which the QRT map acts as a translation.

Symmetric QRT map. When P is symmetric, i.e. invariant under the (standard) symmetry
switch σ̄ : (x, y) → (y, x), the map ρ = σ̄ ◦ ι1 = ι2 ◦ σ̄ is the square root of τ . It is called the
QRT root of the symmetric QRT map in [5], but commonly known as the symmetric QRT map.
A rational formula for the (12-parameter) symmetric QRT-map is (x, y)→ (y, y′) where

y′ =
f1(y)− xf2(y)

f2(y)− xf3(y)

with f = Av ×Bv, where vT = (x2, x, 1), and A and B are symmetric 3× 3 matrices.

Manin transformation. Let p be a base point of a pencil of cubic curves αFa(x) + βFb(x) = 0,
i.e. we have Fa(p) = Fb(p) = 0. A Manin involution, ιp, maps a point r to the point s = ιp(r)
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uniquely given by the third intersection of the line pr and the curve of the pencil that contains
r [5, 12]. We call ιp a p-switch, and the point p its involution point. A Manin transformation is
the composition of two Manin involutions, cf. e.g. Example 6 in [10].

Generalised Manin transformation. A generalised Manin involution [10] preserves a pencil
of degree N , where N is not necessarily 3. When N = 2 the involution point p can be chosen
arbitrarily, for N > 3 the degree N pencil should have a base point which is a singular point of
multiplicity N − 2. It was shown in [10] that it suffices to consider pencils of degree N < 5 and
that a generalised Manin transformation can be written in QRT-form by a projective collineation.

Root of a generalised Manin transformation. A transformation σ is called a symmetry
switch of the pencil P = 0 if σ is a symmetry of P and it is an involution. The following result
was proven in [10]. Let σ be a symmetry switch of a pencil P = 0 which maps lines to lines (so it
is a projective collineation). Then

τp = ισ(p) ◦ ιp = ρ2p, with ρp = σ ◦ ιp = ισ(p) ◦ σ.

The map ρp is called the root of τp.

3 Concomitants of linear and quadratic forms

We define linear and quadratic forms

L = L(x) := ax+ by, Q = Q(x) := cx2 + 2dxy + ey2.

The three classes of quadratic vector fields we consider are of the form (1) with ϕ(x) = L2−i and
H(x) = Li−1Q and i = 1, 2, 3. All relevant quantities, e.g. modified Hamiltonian for the Kahan
map and involution point for the Manin involutions will be given in terms of the concomitants
(i.e. invariants, covariants, symmetry) defined here, cf. [6, Page 252].

Let η be an element of SL(2) acting on x. This induces an action of SL(2) on the coefficients
a, b, c, d, e which we denote by η′. The discriminant of Q,

D := ce− d2

and the eliminant (resultant of L and Q),

E := 2abd− a2e− b2c,

are invariants, and (half of) the Jacobian determinant ∂(L,Q)/∂(x, y),

G = G(x) := (ad− bc)x+ (ae− bd)y,

(which is the harmonic conjugate of L with respect to Q) is covariant, i.e.

η′(D) = D, η′(E) = E, η′(G) = η(G).

In terms of
v := (b,−a), w := (ad− bc, ae− bd)

we have G = x ·w and E = G(v).
A particular linear symmetry switch, introduced in [10], is relevant here. We define

σa,b,c,d,e : x→ x− 2G(x)

E
v. (5)

A special case of σ is σa,a,c,d,c(x) = (y, x) and the matrices of σa,a,c,d,c and σa,b,c,d,e are conjugate.
In the sequel we will omit the index a,b,c,d,e. Geometrically, the linear transformation σ given by
(5) is a reflection in the line through (0, 0) perpendicular to w along a line with direction v, i.e.
we have

σ(v) = −v, σ(Jw) = Jw.
Importantly, σ (5) leaves the forms L and Q invariant (and it also negates the linear form G),
that is

L(σ(x)) = L(x), Q(σ(x)) = Q(x), G(σ(x)) = −G(x).
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4 A quadratic Hamiltonian

Consider the 2-dimensional ODE (1) where ϕ(x) = L, and the homogeneous Hamiltonian has the
form H = H(x) = Q. The Kahan map for this system is explicitly given by

κ1(x) =
x− h(Gx− LJ∇H)

1− hG+ 2h2DL2
. (6)

It preserves the modified Hamiltonian H̃(x) = Q/T with T = T (x) = 1+h2DL2, cf. [3, Eq. (18)],
and it is measure preserving with density

1

LQ
, (7)

cf. [3, Eq. (17)].

Theorem 1. The map (6) can be written as a composition κ1 = σ ◦ ιb, where σ is given by (5)
and

ιb(x) = x +

(
1 +

1 + hG

1 + hG− 2T

)
(b− x)

where
b =

v

hE
. (8)

The projective collineation

π : (x, y)→ (u, v) =

(
1 + hG

L
,

1− hG
L

)
(9)

brings the map κ1 into QRT form

κ1 = σ ◦ ι1 : (u, v)→
(
v,
v2 + k

u

)
, (10)

where σ(u, v) = (v, u) and k = 4h2D. The modified Hamiltonian transforms into the integral of
(10),

Q/T =
(u− v)2 + k

(u+ v)2 + k
,

Proof. This is verified by direct calculation. The map ιb is the generalised Manin involution with
involution point b, cf. [10, equation (2)] with N = 2 and Fa = Q and Fb = T . The point b is the
intersection point of the lines L = 0 and 1 − hG = 0, and we have σ(b) = −b. The projective
collineation π brings the point b to the point at infinity (∞, 0). Hence the b-switch is transformed
into the horizontal switch

ιb = π ◦ ιb ◦ π−1 = ι1 : (u, v)→
(
v2 + k

u
, v

)
.

Moreover, the symmetry switch σ is transformed into the standard symmetry switch σ : (u, v)→
(v, u), and thus π brings the map κ1 into symmetric QRT form.

Example, 2-dimensional Suslov system. We take a = 1
2 , b = d = 0, c = 1, and e = α. Then

L = 1
2x and Q = x2 + αy2,

H̃ =
Q

T
=

x2 + αy2

1 + α
(
hx
2

)2 ,
and

κ1(x) =

(
x(2 + αhy)

2 + αh(hx2 − y)
,

2y − h(2x2 + αy2)

2 + αh(hx2 − y)

)
.

Page 4 of 9AUTHOR SUBMITTED MANUSCRIPT - JPhysA-110339.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



The symmetry switch is σ(x) = (x,−y). Taking α = −1 the curves Q = 0 and T = 0 intersect in
four points, namely (± 2

h ,±
2
h ). The involution point is b = (0,− 2

h ), which is not one of the base
points. We choose h = 2 and have drawn three level sets of the modified Hamiltonian in Figure 1.
We have also plotted the points (

√
2, 2), (

√
2, 0) and (2, 2), together with their images under the

Manin involution

ιb(x) = σ ◦ κ1(x) =

(
x(y − 1)

2x2 − y − 1
,−2x2 − y(y + 1)

2x2 − y − 1

)
.

Note that the point (
√

2, 2) is a fixed point of ιb.

-2

. 

. 

: l."f 
.
. 

. .

. . 

. 
. 

. 

-2

. 

. 

. 
. 

..

.. 

'! • 

2 

Figure 1: The curves H̃ = 2, H̃ = −2, H̃ = 0, in resp. green, red and blue. Here h = 2 and
α = −1.

5 A cubic Hamiltonian

Next we consider the 2-dimensional ODE (1) where ϕ(x) = 1, and the homogeneous Hamiltonian
has the form H = H(x) = LQ. The Kahan map for this system,

κ2(x) =
x + hJ∇H

R
, R = R(x) = 1 + h2(3DL2 −G2), (11)

is measure preserving with density (7), and it preserves the modified Hamiltonian H̃ = H/R [3,
Eq. (4)].

Theorem 2. The map (11) can be written as a composition κ2 = σ ◦ ιb, where σ is given by (5)
and ιb is the Manin transformation

ιb = x +

(
1− 1 + 2hG

R

)
(b− x)

where b is given by (8). The projective collineation π given by (9) brings the map (11) in QRT
form,

κ2 : (u, v)→
(
v,

(u+ v)v + 3k

3u− v

)
,

where k = 4h2D. The QRT-invariant is

H/R =
(u− v)2 + k

(u+ v)(2uv + 3
2k)

.
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Proof. The expression for ιb can be obtained from [10, equation (2)], taking N = 3 and Fa = LQ
and Fb = R. Note that here the involution point b is a base point, of the pencil αH + βR = 0, as
it is the intersection of the lines L = 0 and hG = 1.

Example, tetrahedrally symmetric Nahm equations. We take a = 0, b = 1
3 , c = 3, d = 0,

and e = −1. Then H = y(x2 − 1
3y

2),

H̃ =
H

R
=

y(x2 − 1
3y

2)

1− h2(x2 + y2)
,

and

κ2(x) =

(
x+ h2(x2 − y2)

1− h2(x2 + y2)
,

y(1− 2hx)

1 + h2(x2 + y2))

)
.

The symmetry switch is σ(x) = (−x, y). The involution point is b = (−1/h, 0). Choosing h = 1
the curves H = 0 and R = 0 intersect in six points on the unit circle (±1, 0) and 1

2 (±1,±
√

3). We
have drawn three level sets of the modified Hamiltonian in Figure 2, where we have also indicated

the images of (
√
3
6 ,−

1
2 +
√

3), ( 1
2 ,−

3
10 ) and (1, 32 −

√
21
2 ) under the Manin involution ιb = σ ◦ κ2.

Note that the image of the point ( 1
2 ,−

3
10 ) is b.

.
.
.
.
.
.

. . . . . . 

-3

.
.
.

. . . 

.
.
.
.
.
.

. 
. . . 

.
.
.

. . . .
. 

-2 2 3 

. . . . 
. 
. . . . . . . . .

. 

-2

Figure 2: The curves H̃ =
√
3
2 , H̃ = − 1

10 , H̃ = 1, in resp. green, red and blue. Here h = 1.

6 A quartic Hamiltonian

Consider the 2-dimensional ODE (1) where ϕ(x) = 1
L , and the homogeneous Hamiltonian has the

form H(x) = L2Q. Then the Kahan map for this system,

κ3(x) =
x + h(Gx + L−1J∇H)

(1− hG)(1 + 2hG) + 4h2DL2
(12)

preserves the modified Hamiltonian H̃(x) = H
S with S = S(x) = (1− h2G2)(1 + h2(8DL2 −G2))

and it is measure preserving with density (7), cf. [1, Section 2].

Theorem 3. The map (12) can be written as a composition κ3 = σ ◦ ιb, where σ is given by (5)
and ιb is the Manin involution, with involution point b given by (8),

ιb = x +

(
1− 1 + 3hG

(1− hG)(1 + 2hG) + 4h2DL2

)
(b− x).
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The projective collineation π given by (9) brings the map (12) in QRT form,

κ3 : (u, v)→
(
v,
uv + 2k

2u− v

)
,

where k = 4h2D. The QRT-invariant is

H/S =
(u− v)2 + k

4uv(uv + 2k)
.

Proof. By direct calculation. The expression for ιb agrees with [10, equation (2)] taking N = 4
and Fa = L2Q and Fb = S. The involution point b is a double base point, as b is also on the
curve h2EQ = 1.

Example, octahedrally symmetric Nahm equations. Taking a = −b = d = 1, c = 0 and
e = 3 yields H = (x− y)2(2xy + 3y2),

H̃ =
H

S
=

(x− y)2(2xy + 3y2)

(1− h2(x+ 4y)2)(1− h2(8(x− y)2 + (x+ 4y)2))
,

and

κ3(x) =

(
x+ h(3x3 + 4xy − 12y2)

1 + h(x+ 4y)− 2h2(3x2 + 4xy + 18y2)
,

y(1− 5hx)

1 + h(x+ 4y)− 2h2(3x2 + 4xy + 18y2)

)
.

The symmetry switch is σ(x) = 1
5 (3x− 8y,−2x− 3y), and b = 1

5h (1, 1). Taking h = 1
5 , the curves

H = 0 and S = 0 intersect in 10 real points,

± (5, 0) , ±
(

5

3
, 0

)
, ± (1, 1) , ± (3,−2) , ±

(
1,−2

3

)
.

We have drawn three level sets of the modified Hamiltonian in Figure 3, as well as the points
(−1, 192103 ), (−3,− 4

3 ), (1,− 256
179 ) and their images under the Manin involution ιb = σ ◦ κ3.

Figure 3: The curves H̃ = 25, H̃ = 125
16 , H̃ = −100, in resp. green, red and blue. Here h = 1

5 .
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7 Summary

We have shown that the Kahan discretisation of the ODE (1) with ϕ(x) = L2−i and H(x) = Li−1Q
for each i = 1, 2, 3 takes the form κ = σ ◦ ιb where ιb is the b-switch with involution point
b = v/(hE), and σ is both a linear map and a symmetry of the preserved pencil which has degree
i+ 1. Therefore, in each case the Kahan map is the root of the generalised Manin transformation
τb = ισ(b) ◦ ιb. According to [10] a generalised Manin involution ιp which preserves a pencil
αFa(x) + βFb(x) = 0 of degree 2 ≤ N ≤ 4 is measure preserving with density LN−3/Fa, where L
is any line through p. This implies, as we have Fa = H, that the density of the measure preserved
by the Kahan map is the same for each i, namely 1/(LQ). For each Kahan map we have provided
its symmetric QRT form.
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