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Abstract—The detection probability of maritime vessels may
change over time, either slowly or more abruptly, due to effects
such as sea state and varying aspect angle. If the varying
detectability is not accounted for in the tracking system, tracks
may be terminated or lost. The undetected targets may cause
dangerous situations in applications such as maritime collision
avoidance. In the following, we propose two methods for tracking
targets with varying detection probability, both in the integrated
probabilistic data association (IPDA) framework. One method
uses the number of validated measurements to estimate the
detectability of the target, while the other calculates the joint
detectability and existence probabilities based on the measure-
ment association likelihoods. Both methods show significant
improvements over the conventional Markov chain 1 and 2
IPDAs.

I. INTRODUCTION

With increased autonomy in the maritime domain, reliable
situational awareness and collision avoidance capabilities are
needed to ensure the safe operation of vessels. Although many
vessels are equipped with automatic identification system
(AIS) transponders, a good object detection and tracking
system is also needed to track targets without AIS, such as
kayaks and leisure craft, or as a backup to the AIS system.

The main priority of tracking systems for collision avoid-
ance is the capability to quickly and reliably track targets, as
an undetected target is a direct threat to safety. This is also
the case when confirmed tracks on targets are terminated, as
the collision avoidance system may decide to steer into the
now untracked target’s path. However, false tracks may induce
unnecessary maneuvers from the collision avoidance system
and cause dangerous situation from other ships, and the system
should also be able to terminate false tracks quickly.

The literature on track management for fluctuating detection
probability is sparse. In [2], it was found that a Shiryaev test
can greatly improve track termination performance when the
detection probability is varying. In [10], the authors use a
particle filter-based approach to estimate the detection proba-
bility, where the particle filter handles the nonlinearities that
arise when the detection probability is constrained to a limited
interval. Ref. [12] presents an adaptive tracker that is able to
estimate the detection probability using a belief propagation
message passing scheme. A method for extending random
finite set (RFS) filters to include the detection probability in
the state vector is presented in [6], with results in [7]. The

resulting filters performs well with a constant, but unknown,
detection probability.

The first contribution of this paper is an experimental inves-
tigation of whether the variations in small vessel detectability
can be adequately modeled by varying aspect angle, based on
a dataset from a collision avoidance test. The motivation for
using a Markov model as in e.g. [2], [10] is that it is difficult
to identify the primary contributing factor to the detectability
variations, and we will investigate if this is the case for this
dataset as well.

The second contribution of this paper is the extension of
the integrated probabilistic data association (IPDA) to handle
varying target detectability. The first extension estimates the
detectability based on the number of validated measurements,
and the second calculates the joint detection and existence
probability. We have chosen the probabilistic data association
(PDA) framework for two main reasons. The first is that the
PDA has proven to be an efficient tool for object detection and
tracking in short-range maritime collision avoidance, see e.g.
[16], [5], [4], [11]. The other is that the IPDA is a special case
of the joint integrated probabilistic data association (JIPDA)
[8], which in turn can be derived from Poisson multi-Bernoulli
mixture (PMBM) filters [14].

The rest of the paper is structured as follows. Section II
contains assumptions and motivation, Section III describes
the modifications made to the IPDA in order to account for
varying detectability, Section IV presents the results, and the
conclusion follows in Section V.

II. MOTIVATION AND PROBLEM FORMULATION

A. Definitions

The goal of the system is to estimate the state of the
target at time k, which consists of a kinematic component
xk with target position and velocity, and the detection prob-
ability dk. Measurements are denoted zik, Zk = {zik}mk

i=0 and
Zk = (Zk0 , . . . , Zk) for measurements, sets of measurements
and data (sequence of sets) at time k, respectively.

Assumption 1: The target moves according to

p(xk+1|xk) = N (xk+1;Fkxk, Qk) (1)

independent for all k, andN (x; x̂, P ) is the probability density
function (PDF) of the normal distribution of x, with expected
value x̂ and covariance P , respectively.



Assumption 2: The target is assumed to have time-varying
detectability, chosen from a discrete set of Nd states. Let Ejk
be the event that the target is in detectability mode j at time
k, i.e. that dk = P jD. Further, assume that the values of P jD
are known, and that d follows a random process according to

P (Ejk|Eik−1) = πij i, j = 1, . . . , Nd (2)

Assumption 3: The target-originated measurement is dis-
tributed according to

p(zk|xk) = N (zk;Hxk, Rk) (3)

independently for all k, and independent of Assumption 1.
The target is detected with probability P jD, according to the
current detectability mode.

Assumption 4: The number of false alarms in the surveil-
lance region follows a Poisson distribution, with probability
mass function (PMF)

µF (m) =
(λV )m

m!
e−λV (4)

where V is the area of the surveillance region, and λ is the
clutter density. The spatial distribution of clutter measurements
is assumed to be uniform.

Assumption 5: Target existence at time k is denoted Hk,
and H̄k is defined as the complementary event, namely that
the target does not exist at time k. It is assumed to follow a
Bernoulli random process according to

P (Hk|Hk−1) = ps (5)
P (Hk|H̄k−1) = pb (6)

where ps and pb are the probability of survival and birth,
respectively.

B. Track initiation with constant detectability

As one of the assumptions of PDA is that it cannot begin
before a track has been initialized, some form of track initial-
ization is needed. Fundamental to the PDA approach is the
calculation of the association probabilities for the validated
measurements at the current time based on a single prior.
For the mk validated measurements, let θik be the event
that measurement zik is the target-originated measurement for
i = 1, . . . ,mk, and that none of the measurements are target-
originated for i = 0. One of the first attempts at handling track
initiation in the PDA framework can be found in [3], where an
additional association event is added, the event that the target
is unobservable. This causes tracks that have a low probability
of being observable to have low association probabilities for
measurements in the validation gate, reducing their impact
on the posterior state estimate. However, the probability of
detection is still considered constant in [3] when the target is
detectable.

Other approaches to track initiation are logic-based track
formation [1] and sequential tests [13], [15]. This includes the
popular M/N-logic, which requires M detections in N scans
in order to confirm the track. This approach only accounts for
the detectability of the target implicitly by the choice of M

and N. As explored in [2], this may have a significant impact
on performance when the detectability of the target changes.
The detection probability also appears in the likelihood ratio
in the sequential probability ratio test (SPRT) of [13].

In the following, we will focus on the IPDA described in [9].
As opposed to [3], where the PDA association probabilities are
modified with an extra event, the evaluation of the association
event probabilities are the same as in the original treatment
of the PDA, and the existence probability of the target is
calculated by

P (Hk|Zk) =
LkP (Hk|Zk−1)

1− (1− Lk)P (Hk|Zk−1)
(7)

where Lk is the likelihood ratio of the target-present versus the
clutter-only hypotheses, based on the measurements in scan k.
Under the PDA assumption, this is given by

Lk = 1− PDPG + PDλ
−1

mk∑
i=1

p(zik|θik, Zk−1) (8)

where PG is the validation gate probability and
p(zik|θik, Zk−1) = N (νik; 0, Sk). The innovations are
given by νik = zik −Hx̂k|k−1, with corresponding covariance
Sk. The time update of the existence probability is given by

P (Hk|Zk−1) = psP (Hk−1|Zk−1) + pbP (H̄k−1|Zk−1).
(9)

This variant is denoted the Markov chain one (MC1) IPDA
in [9]. It is also derived with another Markov chain, named
the Markov chain two (MC2) IPDA. In addition to the target-
present and no-target state, it also includes an undetectable-
target state. The likelihoods of undetectable targets cannot be
distinguished from the clutter-only hypothesis in the MC2
IPDA, which means that erroneous tracks will have a high
existence probability several scans after the track is lost.

The one-point initialization procedure [1] is used for form-
ing preliminary tracks, with existence probability εI . If the
existence probability exceeds a threshold εC , the track is
confirmed. Tracks with existence probability below εT are
terminated. Established tracks are gated according to known
techniques, with gate probability PG [1]. Any measurements
that are gated by confirmed tracks are not used to update
preliminary tracks, and new preliminary tracks are formed
only with measurements that are not gated by confirmed or
preliminary tracks.

C. Forensic analysis of recorded data

Varying target detectability may have many sources, such
as target aspect angle, range and varying sea state. A scenario
where target detectability is an issue is shown in Fig. 1,
which shows data from a collision avoidance experiment
conducted in the Trondheimsfjord in September 2018. There
are three targets present in the tests, two boats and a stationary
seamark1. The target moving east-to-west is a tugboat with

1A seamark is an aid to navigation for passing ships, typically a board or
a buoy attached to the sea floor.
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Fig. 1. Scenario overview. The grey dots are radar measurements, the black
lines are AIS position trajectories, and the dashed line is the ownship position
trajectory.

Fig. 2. The targets present in the experiments. Top left: The Ocean Space
Drone. Bottom left: Munkholmen II. Right: The seamark.

callsign Munkholmen II (MH II), which has a steel hull. The
target moving north-to-south is a lifeboat, repurposed into
an autonomous test vessel, with callsign Ocean Space Drone
(OSD). It has a fiberglass hull. A radar is mounted on the
ownship, which successfully avoids collision with both targets.
The targets are shown in Fig. 2. The dataset has a low amount
of clutter, with the exception of near-shore areas close to the
origin and to the east.

In the following discussion, the ground truth is based on the
AIS-indicated position of the targets, and the measurements
recorded during the experiments. Although the AIS system is
based on satellite navigation with its own flaws, we believe it
to be of sufficient accuracy to discuss the issues presented in
the rest of this section.

Both targets have frequent detections for the most part,
but there are some periods with more sparse detections. By
assuming the AIS-indicated position is sufficiently accurate
and a low clutter density, a validation gate can be set up around
the reported position. Let δk be a measurement indicator,

0 100 200 300 400 500 600
time [s]

0.0

0.2

0.4

0.6

0.8

1.0

P
D

OSD, N=10
OSD, N=5
MH2, N=10

Fig. 3. Empirical detection probability for the two boats in Fig. 1, calculated
by (10), where the values close to the start and end of the dataset have been
calculated by truncating (10).
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Fig. 4. Resulting tracks after running the IPDA tracker described in Sec-
tion II-A. The track from the OSD target is terminated due to the assumed
high detection probability, as shown in the inset.

which is 0 when the validation gate is empty at time k, and
1 otherwise. Then, the moving average detection probability
can be calculated by

PD(k) =
1

2N + 1

k+N∑
n=k−N

δn. (10)

Fig. 3 shows the detection probability for each of the targets
with different values of N .

The MH II has very good reflective properties and has
a high detection probability throughout the experiment, but
the detection probability of the OSD varies a lot. Keeping
a continuous track on the OSD is hard, and Fig. 4 shows
a set of tracks resulting from running an IPDA described in
Section II-A with a detection probability of 0.8. The track on
the OSD is lost and regained during the experiment.

In addition to the dataset shown in Figures 1 and 4, an addi-
tional 15 datasets have been analysed. These datasets comprise
3554 radar scans of the targets from 2 hours and 50 minutes
of data, collected the same day as the previously discussed
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Fig. 5. Empirical detection probability based on the AIS-indicated aspect
angle. Zero degrees is the bow. Symmetry about the centerline is assumed,
and the range to the targets have not been accounted for.

scenario. The goal is to investigate whether the aspect angle is
a main contributing factor to the varying detection probability.
For every timestep k, a validation gate is set up around the
AIS-indicated position, and δk is evaluated. Additionally, the
aspect angle is calculated based on the velocity information
of the target, also given by the AIS system. The aspect angle
α can be found from the angle between the vectors from the
target to the ownship and the velocity of the target, and is
given by

cosαk =
ptok · vtk
‖ptok ‖‖vtk‖

(11)

where ptok is the vector from the target to the ownship position,
and vtk is the target velocity. The accumulated aspect angle
and detection indicators are then used to evaluate the aspect-
dependent detection probability by dividing the ship aspect
angle into discrete bins, and the detection probability for each
bin is calculated by

PD =

∑N
`=1 δ`
N

. (12)

The results based on all the datasets are shown in Fig. 5,
where it has been assumed that the target is symmetric about
the centerline to increase the number of samples per bin. The
steel hull of MH II has good detectability from all aspect
angles, around PD = 0.9. The OSD is slightly less detectable,
usually about 0.8 and as low as 0.6 from the front. However,
there are no aspect angles with a detection probability which is
as low as the ones indicated in Fig. 3. This example shows that
it can be hard to model the detectability by a single parameter,
and justifies the use of a random process as in Assumption 2
for these datasets.

HMM
IPDA

mk
p(Hk|Zk)

Prediction

Gating
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p(Hk|Zk−1)
p(xk|Zk−1)

P̄D
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Fig. 6. The cascade form HMM and IPDA estimators.

III. EXTENSIONS TO THE IPDA

In the following two sections, we introduce two extensions
which accounts for varying target detectability.

A. Cascade form HMM and IPDA

This method consists of a hidden Markov model (HMM) to
estimate the detectability of the target based on the number of
measurements in the validation gate, and the actual measure-
ments Zk are not used. A MC1-IPDA is used to estimate the
target existence probability based on the detectability estimate
P̄D. This structure is shown in Fig. 6.

To estimate the detectability of the target, the number of
measurements in the validation gate mk and the gate area
Vk are evaluated when the validation gate is setup. Under the
Poisson clutter assumption and detectability mode Ejk, mk has
the distribution

P (mk|Ejk,Hk) = µF (mk)(1− P jDPG) + µF (mk − 1)P jDPG
(13)

where the first term is the probability of mk clutter mea-
surements and a missed detection, and the second term is
the probability of mk − 1 clutter measurements and a detec-
tion, respectively. Given a sequence of observations mk =
(mk0 , . . . ,mk), the probability of being in mode j can be
calculated recursively by

P (Ejk|mk,Hk) =
1

c
P (mk|Ejk,mk−1,Hk)P (Ejk|mk−1,Hk−1)

(14)

where c = P (mk|mk−1) is a normalization constant.
As the detections and clutter are independent over time,
P (mk|Ejk,mk−1) = P (mk|Ejk), and

P (Ejk|mk,Hk) =
1

c
P (Ejk|mk,Hk)

·
Nd∑
i=1

πijP (Eik−1|mk−1,Hk). (15)

The estimate of the detection probability is then given by

P̄D =

Nd∑
j=1

P jDP (Ejk|mk,Hk) (16)

which is then used in a regular IPDA, as described in Sec-
tion II-B.

Although calculating the average detectability in this way
is a heuristic technique, the following example illustrates



how the approximation fits into the PDA framework. Con-
sider the probabilities of the measurement association events
p(θik|mk,Hk, Zk−1). By marginalizing over the detectability,
this becomes

P (θik|mk) =

Nd∑
j=1

P (θik|Ejk,mk)P (Ejk|mk) (17)

where the conditioning on target existence Hk and past data
Zk−1 has been omitted for brevity. The first term is the regular
PDA association event probability with detection probability
equal to P jD, and the second term is the HMM probability of
being in mode j. For the nonparametric PDA, this gives

P (θik|mk) =

{∑Nd

j=1(1− PGP jD)P (Ejk|mk) i = 0∑Nd

j=1
PGP

j
D

mk
P (Ejk|mk) i = 1, . . . ,mk

=

{
1− PGP̄D i = 0
PGP̄D

mk
i = 1, . . . ,mk

(18)

which are expressions from the prior PDA probabilities using
the value P̄D.

B. Detectability-based IPDA

The estimation of the detectability state can also be inte-
grated into the IPDA presented in Section II-B, such that the
detectability is estimated based on the likelihood of the mea-
surement association hypothesis. The goal of this extension is
to estimate the joint probability of target existence Hk and
detectability mode Ejk, given by

P (Hk, Ejk|Zk) =
p(Zk|Hk, Ejk, Zk−1)

p(Zk|Zk−1)
P (Hk, Ejk|Zk−1).

(19)

where the dependence on the number of measurements mk

can be made explicit by

p(Zk|Ejk,Hk, Zk−1) =p(Zk|mk, E
j
k,Hk, Zk−1)

· P (mk|Ejk,Hk, Zk−1) (20)

where the last term is given in (13) since it is independent
of the past data Zk−1. By considering the different data
association hypotheses θik, we have

p(Zk|mk, E
j
k,Hk, Zk−1) =

mk∑
i=0

p(Zk|θik,mk, E
j
k,Hk, Zk−1)

· P (θik|mk, E
j
k,Hk, Zk−1) (21)

where the PDF of the measurements can be found in e.g. [1],
and are given by

p(Zk|θik,mk, E
j
k,Hk, Zk−1)

=

{
V −mk+1
k P−1

G N (νik; 0, Sk) i = 1, . . . ,mk

V −mk

k i = 0
. (22)

H̄
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Fig. 7. The Markov chain with the nonexisting target-state, and two
detectability states. The self-transition probabilities are not shown.

Conditioned on target existence and detectability, the prior
association event probabilites can be found from the regular
PDA equations, and are also found in e.g. [1]:

P (θik|mk, E
j
k,Hk, Zk−1)

=

{
1
mk
P jDPGc

−1
j i = 1, . . . ,mk

(1− P jDPG) µF (mk)
µF (mk−1)c

−1
j i = 0

(23)

where cj normalizes the association events. (13) divided by cj
can be shown to be µF (mk−1), and summing and multiplying
everything together into (20) gives

p(Zk|Ejk,Hk, Zk−1) = µF (mk)V −mk

k (1− P jDPG)

+ µF (mk − 1)V mk−1
k

1

mk
P jD

mk∑
i=1

N (νik; 0, Sk). (24)

Inserting the clutter PMF from Assumption 4 into (24),
cancelling and gathering terms yields

p(Zk|Ejk,Hk, Zk−1) =
λmke−λVk

mk!

[
(1− P jDPG)

+ P jDλ
−1

mk∑
i=1

N (νik; 0, Sk)
]

= CkLjk (25)

where Ljk is the likelihood ratio of the measurements in scan
k for the target present in detectability mode j versus the
clutter-only hypotheses, as in (8).

The prior P (Hk, Ejk|Zk−1) is calculated as follows. Since
the detectability mode change conditioned on target existence
is known from Assumption 2, it is rewritten as (omitting the
dependence on the past data Zk−1 for brevity)

P (Hk,Ejk) = P (Ejk,Hk|Hk−1)P (Hk−1)

+ P (Ejk,Hk|H̄k−1)P (H̄k−1)

=ps

Nd∑
i=1

πijP (Eik−1,Hk−1) +
pb
Nd

P (H̄k−1) (26)

These transition probabilities are equivalent to a Markov chain
with the Nd + 1 states H̄ and (H, Ej) for j = 1 to Nd. An
example with two detectability states is shown in Fig. 7.



The denominator of (19) is a normalization constant which
can be found by summing over the possible target hypotheses,
given by

p(Zk|Zk−1) = p(Zk|H̄k, Zk−1)P (H̄k|Zk−1)

+

Nd∑
j=1

p(Zk|Hk, Ejk, Zk−1)P (Hk, Ejk|Zk−1)

= Ck

1−
Nd∑
j=1

(1− Ljk)P (Hk, Ejk|Zk−1)


(27)

and the Ck cancels in (19) with the same term in (25). To
summarize, the time update of the IPDA with detectability
estimation is given by a Markov chain as shown in Fig. 7,
and the measurement update is given by

P (Hk, Ejk|Zk) =
LjkP (Hk, Ejk|Zk−1)

1−∑Nd

i=1(1− Lik)P (Hk, Eik|Zk−1)
.

(28)

The MC1- and MC2-IPDAs from [9] can be obtained from this
general expression by assuming a single mode with detection
probability PD or two detectability modes with detection
probabilities of PD and 0, respectively.

IV. RESULTS

The two trackers that account for varying target detectability
will be compared with the Markov chain 1 and 2 IPDAs. The
four trackers can be summarized as follows:

MC1-IPDA
The Markov Chain 1 IPDA without detectability
estimation. It has a single detection probability PHD .

MC2-IPDA
The Markov Chain 2 IPDA that allows for unde-
tectable targets. It also has a single detection proba-
bility PHD .

HMM-IPDA
The Markov Chain 1 IPDA with detectability esti-
mation provided by a HMM. The HMM has two
detection probability values, PHD and PLD .

DET-IPDA
The IPDA with joint detectability and target ex-
istence estimation, with two detection probability
values, PHD and PLD .

Apart from the detectability models, the trackers use the same
parameters, given in Table I. For the MC2-IPDA and DET-
IPDA, the target existence probability is the summed existence
probability of the two detectability modes.

All of the trackers use the same motion model, a white noise
acceleration model given by

Fk =

[
1 T
0 1

]
Q = q

[
T 4/4 T 3/2
T 3/2 T 2

]
(29)

independent for the north- and east dimensions with sample
time T . Cartesian position measurements are used, with co-
variance rI2, where I2 is the identity matrix.

TABLE I
SIMULATION PARAMETERS

Parameter Value

Sample time T 3 s
Detection probabilities PH

D , PL
D 0.8, 0.3

Clutter density λ 1× 10−5 m−2

Measurement covariance r 100m2

Process noise covariance q 0.025m2 s−4

Survival probability ps 1.0
Birth probability pb 0
Detectability mode change probability πij 0.8, i = j

0.2, i 6= j
Initial existence probability εI 0.2
Confirmation threshold εC 0.99
Termination threshold εT 0.1
Number of simulations NMC 2500

0 50 100 150 200 250 300
Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
v
e
ra

g
e
 n

u
m

b
e
r 

o
f 

fa
ls

e
 t

ra
ck

s MC1-IPDA
MC2-IPDA

HMM-IPDA
DET-IPDA

Fig. 8. Average number of confirmed tracks for the clutter-only scenario.
Error bars correspond to one standard deviation.

A. False tracks

It is expected that allowing targets to have a lower detection
probability in a surveillance area will increase the number of
false tracks. In this section, we investigate if this expectation
holds true, and to what extent it affects the tracking system.

To test the false track rejection capabilities of the trackers, a
square surveillance area with edge length 2 km is set up, and
clutter is generated according to Assumption 4 with clutter
density λ given in Table I. No targets are present. Fig. 8
shows the average number of confirmed tracks over NMC

simulations.
The premise that the trackers with lower detectability are

prone to more false tracks does not have merit as they all
have a similar number of false tracks. The DET-IPDA and
MC2-IPDA have a slightly lower number than the other two,
but the results are still comparable when considering the
sample standard deviation. The reason for this is that the
trackers account for the lower detection probability in the
update of the target existence probability. However, there is
a large difference in the average duration of the false tracks,
as summarized in Table II. The MC1-IPDA is very fast in
both track initiation and termination, and the MC2-IPDA is
very slow. When tracks persist for a long time, it will gate
measurements that may have been used to confirm another



TABLE II
FALSE TRACK DURATION

Tracker Avg. duration Avg. conf. time

MC1-IPDA 10.0 scans 4.8 scans
MC2-IPDA 78.5 scans 15.8 scans
HMM-IPDA 29.3 scans 10.1 scans
DET-IPDA 30.4 scans 7.7 scans
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Fig. 9. Average number of true tracks with a single target present. The black
line shows the ground truth. The detectability of the target drops at t = 100 s.

track, which in part may explain the lower average number
of false tracks in the DET-IPDA and MC2-IPDA. These also
have a slightly lower standard deviation in the number of false
tracks.

B. Detectability estimation and lost tracks

To test the capability of tracking a target with varying
detectability, a single target is added to the surveillance region
previously described. It starts in the high detectability-mode,
and changes to the low detectability-mode after 100 s. After
an additional 100 s, the target disappears, and the scenario
continues for an additional 100 s. The purpose of the change in
the detectability and track existence is to test both the ability to
track targets with reduced detectability, and track termination
capabilities, i.e. how fast the track is terminated when it is
lost.

More precisely, define a true track as a confirmed track
that has a position error of less than 100 m. Further, a lost
track is defined as a previously confirmed track that no longer
satisfied this requirement. Consequently, a confirmed track
that manages to track the target until it disappears will be
considered lost until it is terminated. For each tracker, the
average number of true tracks are shown in Fig. 9, and the
average number of lost tracks are shown in Fig. 10.

As expected, the IPDA with constant detection probability
struggles to keep track of the target when the detectability
decreases. However, the fast track termination capabilities
ensures the tracks are terminated rather than lost. The tracks
that are maintained until the target disappears are also termi-
nated very quickly. The other three trackers are much better
at tracking the target until it disappears. The MC2-IPDA,
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Fig. 10. Number of lost tracks with a single target present.
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Fig. 11. Average mode of the detectability estimate of confirmed tracks when
the target is present. The black line shows the ground truth.

however, still maintains over 90% of the lost tracks for more
than 30 scans after the target disappears. The HMM-IPDA and
the DET-IPDA terminates nearly all of the lost tracks before
the end of the scenario.

The average mode of the detectability estimate is shown in
Fig. 11. The DET-IPDA esitmates the detectability of the target
slightly better than the HMM-IPDA. When the detectability is
lowered, the MC2-IPDA is the closest, as one of the modes
allows for detectability lower than the true value.

C. Real data results

We now test the trackers on the motivating scenario pre-
sented in Section II-C with 3 targets (OSD, MH II and the
seamark). The tracking system parameters are the same as in
Table I, with some exceptions. The sampling interval varies
slightly according to when data is received, and the average
is 2.88 s. The clutter density is not known, and nonparametric
tracking methods are used by substituting λ = mk/Vk where
mk and Vk are the number of validated measurements and
the area of the validation gate, respectively. The Cartesian
position measurement model is still used, but the measurement
covariance is calculated by a polar to Cartesian conversion [1]
with polar measurement standard deviations of 20 m and 2.3◦.
Further details on the radar data processing can be found in
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Fig. 12. Number of true tracks for the tracking methods in the real data
scenario.
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Fig. 13. Number of false targets for the tracking methods in the real data
scenario.

[16], [15]. The limit for declaring a true track is now reduced
to 60 m.

The number of true and false tracks can be seen in Fig. 12
and Fig. 13, respectively. The MC1-IPDA loses the track
of the OSD from t = 280 s to t = 320 s, and the other
trackers are able to keep track. The MC2- and DET-IPDA
are slightly slower at confirming the track on the drone. Both
the MC1- and HMM-IPDA rapidly confirms three false tracks,
close to the island at the origin. The MC1-IPDA terminates
these quickly, but the HMM-IPDA maintains them for a while
longer. Both the MC2-IPDA and the DET-IPDA outperform
the two other methods with respect to false tracks. At the end
of the test, the OSD makes a 180◦ turn, and the trackers either
lose or terminate the track.

V. CONCLUSION

Accounting for varying target detectability can significantly
improve tracking performance when these issues are present.
The detectability can be estimated with a HMM based on
the number of validated measurements, or the probability of
the joint detectability and target existence may be jointly
evaluated using the based on the likelihood ratio of a target vs.
clutter. Simulations shows that both of these methods are able
to maintain the track when the detectability is lowered, and

terminates lost tracks significantly faster than a Markov chain
2-IPDA. Tests on real data shows that the joint estimation
of target detectability and existence probabilities reduces the
number of false tracks, at the cost of slightly higher track
confirmation time.
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