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Global climate change is altering the timing of life history events for species living in 
seasonal environments. These shifts in phenology can lead to the disruption of inter-
specific relationships with implications for individual fitness. Predicting phenological 
change and its population level consequences can provide insights into population 
persistence. Achieving this is challenging for labile traits as current structured popula-
tion models do not explicitly distinguish between the roles of phenotypic plasticity 
and micro-evolution, hindering realistic predictions of trait change. In this study we 
present the first empirical test of a new integral projection model (IPM) framework, 
which allows phenotypic plasticity and micro-evolution to be teased apart by incor-
porating a quantitative genetic inheritance function. We parameterise this model for 
a population of wild great tits Parus major and test its predictive capabilities through 
K-fold cross validation. We test the predictive accuracy of the quantitative genetic IPM 
in comparison to the standard IPM. We demonstrate that adding genetic inheritance 
rules maintains high accuracy of projections of phenological change, relative to the 
standard IPM. In addition, we find almost identical projections of population dynam-
ics in this population for both IPMs, demonstrating that this model formulation 
allows researchers to investigate the contributions of phenotypic plasticity and micro-
evolution to trait change, without sacrificing predictive accuracy. Modelling in this 
way reveals that, under directional environmental change, both micro-evolution and 
plasticity contribute to an advance of phenology, although the effect of plasticity is an 
order of magnitude higher than evolution. Despite this, synchrony between great tits 
and their caterpillar prey was reduced and population declines occurred. Our approach 
demonstrates that this model framework provides a promising avenue through which 
to explore the roles of phenotypic plasticity and evolution in trait changes and popula-
tion dynamics.
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Introduction

Rapid climate change is altering biological populations across 
the globe (IPCC 2007). Average temperatures are increasing 
and seasonal patterns are shifting, with springs occurring ear-
lier (Parmesan and Yohe 2003, Parmesan 2007) and autumns 
later (Gallinat et al. 2015). One of the most widely observed 
responses to the current climatic shifts is phenological change; 
an alteration of the timing of life history events. Phenological 
change has been observed across almost all taxonomic groups 
(Menzel et al. 2006, Cleland et al. 2007, Gallinat et al. 2015, 
Thackeray et al. 2016), and across a multitude of life history 
events from migration (Lehikoinen and Sparks 2010), repro-
duction (Crick et al. 1997, Both et al. 2004, Both and Visser 
2005, Durant et al. 2007, Charmantier et al. 2008), and emer-
gence from hibernation (Ozgul et al. 2010), to senescence of 
leaves (Gallinat et al. 2015). Different species have different 
degrees of environmental sensitivity (adaptive plasticity) and 
plasticity (Cushing 1969, Durant et al. 2007, Thackeray et al. 
2010), consequently rates of spring advance have been highly 
variable (Parmesan and Yohe 2003, Menzel  et  al. 2006, 
Both  et  al. 2009). These uneven patterns of response have 
been hypothesised to lead to mismatches between interacting 
species, which rely on temporal synchrony between interspe-
cific life history events (Cushing 1969, Durant et al. 2007, 
Singer and Parmesan 2010, Reed et al. 2013).

Whether mismatch will occur depends on both the plastic 
responses of the interacting species and evolutionary change. 
Phenotypic plasticity is the primary mechanism by which 
phenological matching is achieved in inter-annually variable 
environments (Charmantier et al. 2008, Chevin et al. 2010, 
Charmantier and Gienapp 2014, Chevin and Lande 2015). 
However, whether the degree of plasticity that evolved in 
fluctuating environments will be sufficient under directional 
change is not known; some evolution may be required to 
maintain synchrony. Several studies have suggested that the 
contribution of plasticity to phenology is high and heritabil-
ity low, therefore limiting the capacity to evolve in response 
to selection pressure (Vedder et al. 2013, Charmantier and 
Gienapp 2014, Gienapp  et  al. 2014). However, the incor-
poration of these processes in population models of natural 
populations has been limited. Teasing apart the contribu-
tion of ecological and evolutionary processes in phenological 
responses is a key step to understanding how phenological 
synchrony changes and identify processes that may disrupt it. 
Despite a wealth of research on phenology and its importance 
for individual fitness (Reed  et  al. 2013, Plard  et  al. 2014), 
our understanding of the mechanisms behind phenological 
change, how this influences phenological synchrony and how 
this translates to changes in population dynamics, is poorly 
developed (Miller-Rushing et al. 2010, Bennett et al. 2015, 
Johansson et al. 2015).

In order to address this gap, we need a model that can 
not only track population dynamics but also evolution and 
plasticity through time. Modelling frameworks now exist, 
which can achieve this. Such models were introduced in 

Childs et al. (2016) and Coulson et al. (2017), which extend 
the integral projection model (IPM) to include quantitative 
genetics. Standard IPMs are relatively easy to parameterise 
using data collected from the field using standard statisti-
cal analyses (Ozgul  et  al. 2010), and offer the potential to 
address questions of joint trait and population dynamics. 
Evolutionarily explicitly IPMs, which we implement here, 
are more complex to parameterise and require detailed pedi-
gree information. However, they also offer the potential for 
greater insights into evolutionary processes. It is currently 
unknown whether these models will be useful for producing 
projections for actual systems or whether they perform any 
better than the standard IPM in terms of accuracy of projec-
tions of trait and population dynamics.

In this study we use a population modelling framework 
to address questions about the role of ecological and evolu-
tionary processes in phenological change, and the level of 
model complexity needed to capture them. We present the 
first empirical use of the extended IPM framework intro-
duced by Coulson  et  al. (2017). This framework allows us 
to tease apart the contributions of plasticity and evolution 
to phenological change. We construct two density-dependent 
IPMs, a standard IPM and one with a quantitative genetic 
inheritance function (sensu Coulson et al. 2017). We param-
eterise these models using long-term data from a population 
of great tits Parus major in Wytham Woods. The timing of 
reproduction in this population plays an important role in 
reproductive success. Individuals hatching chicks around 
13 days prior to their prey species’ peak abundance (winter 
moth caterpillar Operophtera brumata) fledge the most chicks 
(Simmonds et al. 2017). Phenology of both the great tits and 
the winter moth caterpillars are advancing (Charmantier et al. 
2008). The phenology and demography of this population 
has been recorded in a standardised way since 1960, provid-
ing an exemplary dataset to test model performance.

We use our parameterised models to address three specific 
aims:

1. To test whether adding a quantitative genetic inheri-
tance function to an IPM improves accuracy of projec-
tions relative to a standard IPM, as assessed through cross 
validation.

2. To explore the contribution of plasticity and micro- 
evolution to phenological change using the quantitative 
genetic IPM.

3. To assess whether phenotypic plasticity and micro- 
evolution can maintain trophic synchrony under direc-
tional environmental change.

Methodology

General model description

In this study we build and parameterise two integral projec-
tion models (IPMs) (Easterling et al. 2000). One is a stan-
dard IPM, the second adds a quantitative genetic inheritance 
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function (Coulson et al. 2017). Both of these IPMs consist 
of four classes of fundamental demographic functions; sur-
vival, development, recruitment and inheritance. These fun-
damental functions capture the survival of individuals from 
one year to the next, change in the focal trait for survivors, 
the number of new individuals that recruit to the population 
in the next year, and their inherited trait values, respectively. 
The basis of these models has typically been phenomenologi-
cal. Coulson et al. (2011) extended the IPM framework to 
include population genetics. It has been further extended 
in 2016 by Childs et al. to incorporate quantitative genetics 
into the inheritance function, and by Coulson et al. (2017) 
to explicitly distinguish some forms of phenotypic plastic-
ity from micro-evolution. Coulson et al.’s framework (2017), 
the one which we implement here, has several differences 
to the standard IPM. The primary development, based on 
Childs et al. (2016) is the inclusion of a genetic inheritance 
function based on quantitative genetic assumptions.

Our model framework is similar to that introduced by 
Childs et al. (2016) both in its application and model struc-
ture. Childs et al.’s model tracked the bivariate distribution of 
a breeding value and the phenotypic trait itself. The dynamics 
of the breeding value assumed the infinitesimal model. The 
aim of their model was to investigate the role of microevo-
lution and selection on labile traits. They used their model 
to partition the contributions of evolution on trait change 
via calculation of terms in the age- and sex-structured Price 
equation. Our model operates slightly differently in that we 
track the bivariate distribution of the breeding value and the 
environmental component of the phenotype. Both models 
make a simplifying assumption that permanent environ-
ment effects are negligible, although both approaches could 
be extended to capture such effects. Our model has an addi-
tional simplifying assumption of identical demography for 
both sexes such that males and females do not need to be 
separated into different classes, reducing the dimensionality 
of the model. Our framework is formulated to make the envi-
ronmental dependence of the phenotype more explicit. The 
two components of the phenotype can always be isolated and 
can change independently. This is the first time an IPM-based 
model has been parameterised to simultaneously examine the 
interplay between plasticity and evolution on ecological and 
evolutionary dynamics.

The standard IPM framework tracks a distribution of traits 
(Z) through time. In the quantitative genetic IPM framework, 
we track a bivariate distribution of breeding values (G) and 
environmental components (E) of a trait. These two compo-
nents can be combined to create a distribution of phenotypes: 
we assume Z(G, E) = G + E. The E component of the pheno-
type changes at each time step based on the fixed effects of 
environmental conditions at that time step, making the trait 
labile. An underlying assumption of this approach is that the 
breeding value (G) remains fixed for life across the environ-
ments that an individual experiences, therefore, develop-
ment cannot alter the conditional distribution of breeding 
values. The conditional distribution of G can only be altered 

by the survival and recruitment functions, which operate on 
the entire phenotype and the inheritance function. Here we 
implement a single sex, infinitesimal model, with breeding val-
ues for the offspring cohort defined by a Gaussian distribution 
with a mean of the selected mothers and variance defined by 
the additive genetic variance. In this model, we have assumed 
the widely used infinitesimal model of inheritance, specifi-
cally, we assume that selection does not erode genetic variance 
and the offspring breeding value is normally distributed in 
each cohort (Lynch and Walsh 1998, Walsh and Lynch 2018). 
This is one aspect where our model diverges from the one in 
Childs  et  al. (2016). The quantitative genetic aspect of our 
model assumes that males and females have identical demog-
raphy, the implicit assumption is that selection acts the same 
way in males and females with respect to the breeding value 
of this trait, and that assumption is currently very difficult to 
test. While this is a simplifying assumption and any deviation 
from this could impact our results, we have no evidence from 
the study population to suggest that this is not the case. For 
instance, males and females have been found to show simi-
lar survival rates (Culina et al. 2015). A single sex model was 
chosen as males are typically assumed to have little influence 
on breeding times in great tits (van Noordwijk et al. 1980). 
Effects of males have found for lay date but not clutch size 
(Germain et  al. 2016). These effects were an order of mag-
nitude lower than that of females, however, as the male and 
female effects positively covaried, including males did increase 
the overall heritability of the trait (Germain et al. 2016). In 
light of these findings, our results could be interpreted as a 
potential slight underestimate of the evolutionary potential of 
phenological traits. But we would expect the contribution of 
males to be small relative to that of females.

The development and inheritance functions have the 
effect of redistributing E within each value of G in the bivari-
ate distribution. Through this method of tracking the bivari-
ate distribution of G and E, it is possible to isolate effects of 
ecological and evolutionary processes involved in quantita-
tive trait and population dynamic change. Such distinction is 
not possible from the single distribution in a standard IPM.

The equations for the standard IPM and the extended 
approach are given below (Eq. 1, 2, respectively) where Z is 
the trait at t, Z′ is the trait at t + 1, N(Z, t) is the distribution 
of the trait at time t, N(Z′, t + 1) is the distribution of the trait 
time t + 1. S(Z, θ, t), R(Z, θ, t), D(Z′|Z, θ, t) and H(Z′|Z, θ, 
t) are the survival, recruitment, development and inheritance 
conditional on the phenotype and environment at time t(θ). 
G and E in Eq. 2 are the breeding value and environmental 
component of the phenotype at time t, respectively. E′ rep-
resents the environmental component of the phenotype at 
time t + 1. The survival and recruitment functions are condi-
tional on both the environment at time t and t − 1 (θ′), due 
to lagged effects of spring conditions immediately before the 
census. Evolution occurs in our model as a response to natural 
selection – a within generation process that alters the distri-
bution of breeding values via viability selection (the survival 
function) and fertility selection (the recruitment function).
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Data for parameterisation

Study system
In this study we used population census and phenological 
records from approximately 6000 individuals from 1961 to 
2010. Details of data used in parameterisation are shown in 
Table 1.

Great tits maximise reproductive success when they hatch 
their eggs 13 days prior to population-wide caterpillar peak 
abundance (Simmonds et al. 2017). Typically phenology has 
been explored by analysing lay date, but hatch date is a bet-
ter indicator of matching between chick energetic needs and 
peak caterpillar availability as non-trivial phenology adjust-
ments are possible after laying (Simmonds  et  al. 2017), so 

we use hatch date as our phenological trait here. Phenology 
of great tits has been advancing over recent decades and 
has generally kept pace with that of their caterpillar prey 
(Charmantier et al. 2008). This is assumed to be driven by 
plasticity and it is not known how long it will continue.

Precipitation, temperature and beech mast index were 
chosen as the key environmental variables for this analy-
sis because they have been previously linked to population 
dynamics, and phenology in passerine birds (Raven  et  al. 
2005, Sandvig  et  al. 2017) and specifically in tit species 
(Paridae) (Van Balen 1980, Perdeck  et  al. 2000, Payevsky 
2006, Grøtan et al. 2009). These cover both spring and win-
ter conditions, therefore investigating the influence of the 
weather throughout the year.

Long-term data (from 1960 to 2015) were collected through 
population censuses of the nest box breeding population of 
great tits in Wytham Woods (~6000 individuals over this 
period). Censuses have been conducted using a standardised 
procedure since 1960 (Perrins 1965, Perrins and McCleery 
1989) and provide data on breeding phenology, clutch size, 
reproductive success, survival and a detailed social pedigree. 
In addition to the spring breeding census, mist netting is 
conducted throughout the winter within Wytham Woods.  

Table 1. Details of the variables used in parameterisation. *These variables are used as response variables in the demographic functions. 
**These variables end in the calendar year following the current breeding season e.g. winter temperature would end in February 2001 for 
the 2000 breeding season.

Variable name Units Details

Population census and phenology data
 Survival* 0 or 1 Individual survived to next season (1) or did not (0)
 Number recruited* Number of chicks
 Hatch date (t + 1)* (numeric) Days since 1 April Date on which first chick hatched in a nest. This is a maternal trait, i.e. it 

is when the first egg hatches in the 11 nest the mother laid eggs in. 
Only available for individuals surviving beyond the focal year

 ID Factor Unique identifiable ring number of breeding female
 Nest box Factor Identity of the nest box used by an individual for its breeding attempt
 Hatch date (numeric) Days since 1 April Date on which first chick hatched in a nest. This is a maternal trait, i.e. it 

is when the first egg hatches in the nest the mother laid eggs in.
 Synchrony (numeric) Days of mismatch Hatch date minus the date of caterpillar peak abundance
 Clutch size (numeric) Number of eggs Maximum number of eggs observed in the nest
 Age 1 or 2 1 = first year bird, 2 = older than first year. More detail in Supplementary 

material Appendix 1 Section A1
 Immigrant True/False Whether a bird was born in Wytham Wood or not
 Section Factor Section of the woodland
 Mother ID Factor Unique identifiable ring number of the mother of the breeding female
 Year Factor Year of the nesting attempt
 Population size (numeric) Number of breeding 

females
For total population

Environmental data
 Date of peak caterpillar  

abundance (numeric)
Days since 1 April Median date on which first instar winter moth larvae descend to ground 

to pupate
 Spring temperature (numeric) Mean °C Mean of mean daily temperatures from 1 March to 9 April (Met Office 

2009, Hollis and McCarthy 2017)
 Winter temperature** (numeric) Mean °C Mean of mean daily temperatures from 1 December to 28/29 February 

(Met Office 2009, Hollis and McCarthy 2017)
 Spring precipitation (numeric) mm Sum of precipitation from 1 April to 31 May (Radcliffe Meterological 

Station 2016)
 Winter precipitation** (numeric) mm Sum of precipitation from 1 December to 28/29 February (Radcliffe 

Meterological Station 2016)
 Beech mast index** Factor 0 = no mast, 1 = little mast, 2 = high mast
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Any new birds caught over winter are fitted with uniquely 
identifiable metal leg rings and radio-frequency identification 
tags and age, sex and morphometric data are recorded.

All numeric variables, including hatch date, were scaled 
across years (mean subtracted and divided by the standard 
deviation) to ensure comparable effect sizes. Census years 
run from 1 June to 31 May the following calendar year, so 
from breeding season to breeding season. All results are inter-
preted and presented on the original scale. Full details of data 
collection, data cleaning and sources can be found in the 
Supplementary material Appendix 1 Section A1.

Functional forms and parameterisation of the 
survival, development and recruitment functions

The two fundamental functions of survival and recruitment 
have an identical construction and parameterisation for both 
the standard IPM and the quantitative genetic inheritance 
IPM. The development function has the same construction 
but is implemented differently in the two IPMs. Each of 
these functions is based on a linear predictor of the form in 
Eq. 3, where β0 is the intercept of a linear regression taking 
into account effects of any explanatory factors, β1 is the slope 
of the relationship between the phenotypic trait (Z) of inter-
est and the response variable, βj is the slope of the relationship 
between explanatory variable j and the response variable, and 
Xj is the value of explanatory variable j at this time step.

V Z X Z Xj j

j

n

( , ) = + +
=

∑β β β0 1

1

 (3)

Each function is parameterised from the coefficients from 
various forms of linear model (explained in detail below and 
in Supplementary material Appendix 1 Section A2–A5), 
which assess the relationships between the demographic rates 
(survival, development and recruitment) and the explanatory 
variables of interest. Model selection for all functions was 
performed using stepwise model reduction with an informa-
tion theoretic approach, using the AIC (Akaike information 
criterion) as is commonly employed in the phenology field 
(Hinks et al. 2015, Roberts et al. 2015, Bailey and De Pol 
2016, Thackeray et al. 2016). The exception was the inheri-
tance function, due to the Bayesian model optimisation where 
only standard errors for fixed effects, were used to determine 
if a variable should be removed, following Wilson (2010).

We performed stepwise model reduction to allow variables 
to be removed based on their influence on model predictive 
performance rather than due to a priori decisions about the 
importance of covariates. The motivation for model selection 
was to reduce the number of explanatory variables included 
in our model but retain predictive ability. We were not testing 
hypotheses related to any of these variables and do not expect 
that we have found a single best model, simply a balance 
between simplicity and predictive performance. We systemat-
ically removed one variable at a time and assessed the impact 
on the AIC. Variables to be removed were chosen based on 

their standard errors, those with estimates less than two times 
the standard error were candidates for removal. Whether a 
variable was retained in the model or removed permanently 
was determined by the ΔAIC. Variables were only retained 
in the model if removal generated a ΔAIC greater than the 
model containing the variable.

Some variables were always retained in the statistical mod-
els of each function regardless of their standard errors, because 
these were of biological importance or interest. Candidate 
variables for model selection that were included in all func-
tions were: spring temperature, spring precipitation, winter 
temperature, winter precipitation and section of the wood-
land. Candidate variables included in some functions only 
were: synchrony and its quadratic, a quadratic effect of hatch 
date, immigrant status and beech mast index (in survival, 
development and recruitment), age (in recruitment and devel-
opment) and clutch size and its quadratic (in recruitment). 
Each demographic function included the effects of hatch date 
(the trait value of interest in this study) and population size 
(to ensure density dependence). These variables were included 
in every function, regardless of their standard error values 
because they are of specific biological interest (Coulson et al. 
2011). Parameter values are the intercept and beta estimates 
from the linear model for each demographic rate.

The survival function
The survival function describes the probability of survival 
to t + 1 as a function of Z at time t. The survival function 
is assumed to be logistic, details of the equations of the 
functional form are available in the Supplementary mate-
rial Appendix 1 Section A2. The survival function alters the 
distribution of G and E. Natural selection acts through this 
function, as survival depends on the phenotype.

The parameter values for this function were obtained from 
a Cormack–Jolly–Seber (CJS) mark recapture model. The 
CJS model had survival as a binary response variable with 
logit link function. This not a closed population, however, as 
individuals primarily migrate during their first year and do 
not return, immigration is indistinguishable from mortality 
and therefore they are considered the same in this model.

The development function
For the quantitative genetic IPM, the development function 
describes the change in mean E from time t to t + 1 and the 
variance around this change. As G values are assigned for life, 
this function redistributes E values within each G value. The 
development function captures the extent to which individ-
ual phenology is explained by the previous years’ phenology 
in addition to the effect of environmental covariates on phe-
nology. We might expect individuals that hatched their eggs 
early relative to the population, in absolute terms, at t might 
also have early phenology at t + 1 (Thorley and Lord 2015). 
However, we might expect the effect of previous timing to 
be considerably lower than the effect of spring temperature 
at t + 1. The development function can be approximated as a 
Gaussian probability function (Easterling et al. 2000) of the 
expected values of E at t + 1 (E′) and its variance, given E at t. 
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Details of the equations of the functional form are available 
in the Supplementary material Appendix 1 Section A3.

The linear predictor of the expected value was parameter-
ised from a general linear mixed effect model (GLMM) with 
hatch date at t + 1 as a response variable with a Gaussian dis-
tribution with identity link. As the breeding value remains 
fixed for life and genetic variation explains little of the phe-
notypic observations, we assume the dynamics of Z (hatch 
date) and E are sufficiently similar to parameterise this func-
tion on Z. The variance of the function, σ2, was taken as the 
variance of the residuals around the fitted relationship from 
the GLMM. We model the variance as the same at each t, 
regardless of environmental conditions as it showed no rela-
tionship with any explanatory variables in the model. Due to 
the inclusion of age in this function, we implemented two 
formulations of the development function in both IPMs, one 
with an intercept representing juvenile birds (first year breed-
ing) and the second with an intercept for birds older than one 
year. This makes the models age structured.

For the standard IPM functional form and parameterisa-
tion of the development function is the same except that it 
operates on the phenotype (Z) as a whole not on E. This is 
because in a standard IPM we track only a single distribution 
of Z not a bivariate distribution of G and E.

The recruitment function
The recruitment function describes the number of offspring 
produced by an individual with each Z value, which survive 
to recruit to the population at t + 1. Details of the equations of 
the functional form are available in the Supplementary mate-
rial Appendix 1 Section A4. The recruitment function alters 
the distribution of G and E. Natural selection acts through this 
function, as reproductive success depends on the phenotype.

The parameter values for this function were obtained from 
a Poisson GLMM with number of recruits as response vari-
able (count data) and a log link function.

Both the survival and recruitment functions include 
lagged environmental effects from spring conditions in t − 1.

The inheritance function of the standard IPM
This inheritance function describes the change in hatch date 
given the mother’s mean hatch date and the environmental 
conditions at t. The inheritance function, like development, can 
be approximated as a Gaussian probability function. Details of 
the equations of the functional form are shown below and in 
the Supplementary material Appendix 1 Section A5. Equation 
3, describes the expected values of Z at t + 1 (Z′) and its vari-
ance, given Z at t. V(Z, X) is the linear predictor from Eq. 3, 
which gives the value of Z′ given the environmental conditions 
at t + 1. σ2 is the variance of the probability function. H(Z′|Z, 
X, θ, t) is the probability distribution of Z at t + 1, given the Z 
and the environmental conditions at t + 1 (θ).

H Z Z X t e
Z V Z X

′ θ
πσ

σ| , , ,
( , )

( ) =
−

−( )
1

2 2
2

2

2  (4)

This function was parameterised using the coefficients from 
a GLMM with daughter hatch date as the response variable 
with Gaussian distribution and an identity link.

The inheritance function of the quantitative genetic IPM
The quantitative inheritance function consists of two ele-
ments. The first captures genetic inheritance. This is done 
assuming an infinitesimal model of quantitative genetic 
inheritance, where selection occurs but additive genetic vari-
ance is maintained and normally distributed. At each time 
step the breeding values of offspring are generated from a ran-
dom normal distribution. The mean of the breeding values of 
the selected mothers (those that produced recruits) defines 
the mean of the distribution of offspring breeding values at 
t + 1. The variance is defined as additive genetic variance from 
the animal model (Wilson  et  al. 2010), therefore variance 
does not erode during our simulations. Equation 5 represents 
this first element of inheritance where GO,t+1 is the distribu-
tion of breeding values of offspring at t + 1, GR,t+1 is the distri-
bution of breeding values of selected mothers at t + 1 and VA 
is the additive genetic variance.

G N G VO R A, , ,t t+ +( )1 1  (5)

The second element represents non-genetic inheritance which 
are changes in plasticity. This part of the function redistrib-
utes E values within each G value. This environmental effect 
can be interpreted as the plastic component of the pheno-
type. Hatch date is a trait influenced by genes, the maternal 
environment and the external environment. Although here 
we assume that permanent environment effects are negligible. 
Each female offspring has a genetic predisposition to a certain 
hatch date but also matches the local environment through 
E. This element has a functional form that is the same as the 
standard IPM, but operates on the expected values of E at 
t + 1 (E′) and its variance, given E at t (Eq. 6).

The linear predictor of the expected values was esti-
mated mechanistically using a quantitative genetic approach 
through the animal model (Wilson et al. 2010). This included 
the breeding value as a random explanatory variable within 
the model, allowing estimation of the variance of breeding 
values in the population (additive genetic variance), as well 
as maternal effect and permanent environment effect. We 
included fixed explanatory variables of section of woodland, 
population size, spring temperature, winter temperature, 
spring precipitation and winter precipitation. The variance of 
the Gaussian function, σ2, was taken as the total phenotypic 
variance estimated by the animal model minus the additive 
genetic variance (the residual environmental variance).
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Social pedigree is used to infer relatedness, therefore only 
individuals that appear in the pedigree could be used here 
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(n = 5855). For females social pedigree should represent accu-
rate genetic relationships, however there are rare instances of 
females laying eggs in nests other than their own as illustrated 
by observed mixed species broods (found to be 3% in blue tits 
and great tits (Barrientos et al. 2015)). For males on the other 
hand, a social pedigree will have a higher number of incor-
rectly assigned relationships. Even in socially monogamous 
bird species extra pair paternity occurs in on average 11.1% of 
offspring (Griffith et al. 2002). Extra pair paternity was mea-
sured at 13% in our study population (Patrick et al. 2012).

Caterpillar peak abundance
The timing of the peak abundance of the winter moth cat-
erpillar is also predicted at each time step in the model 
simulations using a linear predictor (Eq. 3). This function is 
parameterised from a linear model of the date of peak cater-
pillar abundance against environmental explanatory variables 
of spring temperature, spring precipitation, winter tempera-
ture, winter precipitation and beech mast index. Predicting 
caterpillar timing at each time step allows us to calculate tem-
poral synchrony between great tit hatch timing and caterpil-
lar peak abundance at t + 1.

Model testing

K-fold cross validation
To test model performance our IPMs were parameterised 
using a training dataset and then projections were generated 
for a five-year test dataset (year beginning and ending 20 
May) using observed environmental data from the test years. 
Using this design, we could compare our projected results of 
the trait value and population size to the observed hatch date 
and population abundance in the test years (five-fold cross 
validation).

The full dataset from 1961 to 2010 (1960 was removed 
due to a vast amount of missing data on parent IDs, birth 
years and previous breeding attempts) was split into 11 five-
year sections. In turn, each section was used as a test data-
set, removed from the parameterisation process, and then 
predicted from the resulting model. The remaining 10 five-
year sections were used as the training dataset from which 
parameters were generated. This allows predictive capacity 
of the model to be tested whilst controlling for some of the 
stochasticity in test years. Through this process we obtained 
55 years of predicted population size and trait values, with 
corresponding observed values, from which we could test 
predictive accuracy.

Population size and mean hatch date were calculated at 
each time step in each model. These measures were com-
pared to the observed population size and mean hatch date. 
Predictive accuracy was assessed using mean absolute error 
(MAE), the mean absolute difference between observed and 
predicted values.

Model simulation of 50 years
To test model performance over a longer time period both 
IPMs were parameterised using the whole dataset of 50 

years. These models were then used to project the population 
trait- or bivariate-distribution from the same years used to 
parameterise (1961–2010). Here the training and test data-
sets are the same, so not independent. Consequently, this is 
not a validation of model predictive performance but demon-
strates how the models perform over longer simulation runs. 
Observed values of environment covariates were again used 
to direct predictions at each simulated time step.

Running the model simulations

At each simulated time step values of explanatory variables 
need to be generated. In these simulations the values of 
explanatory variables were taken from observed values or held 
at their mean or 0 for random effects (Fixed effects: clutch 
size, section of the woodland. Random effects: mother ID 
and permanent environment effect). The date of peak cat-
erpillar abundance, and consequently synchrony, was cal-
culated at each time step from the environmental drivers.  
Only the dynamics of resident birds are simulated, as we did 
not model immigration. It should be noted that while we 
only simulate resident birds, the population size measure we 
use is for the total population size including immigrant birds. 
This was chosen to improve the estimate of density depen-
dence in the population (Supplementary material Appendix 1  
Section A6).

In order to explore the impact directional climate change 
might have on synchrony between the great tits and their 
caterpillar prey we ran a second 50-year simulation. In this 
simulation spring temperature values were no longer taken 
from observed values but instead sampled randomly from a 
normal distribution at each time step. We fit a linear model 
of spring temperature over time to estimate the rate of change 
in spring temperature from 1960 to 2010. For a scenario 
of directional change, we assumed the same rate of change 
would continue. Spring temperature values were therefore 
drawn from a normal distribution with an increasing mean 
and a standard deviation equal to that of the observed data. 
The mean began at one standard deviation above the observed 
mean and increased by the estimated slope of the relationship 
between spring temperature and time each year for 50 years.

Results

Results of model fitting

The final model parameterisation of both IPMs, determined 
by model selection, included the influence of both winter and 
spring environmental conditions. Winter conditions, includ-
ing food supply (beech mast index) played a significant role 
in both survival and recruitment as well as inheritance of 
hatch date. No other weather-related environmental drivers 
were retained in the development function following model 
selection. Full details of the variables included in the final 
form of each function can be found in the Supplementary 
material Appendix 1 Section A2–A5.
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Can adding quantitative genetic inheritance to an 
IPM improve projections?

Both the standard IPM and quantitative genetic IPM repro-
duce the trait, mean hatch date, dynamics well (Fig. 1). The 
MAE is only three days for each method, when rounded 
to nearest whole day. There is no difference in accuracy of 
mean hatch date prediction between the two IPMs. The abil-
ity to accurately predict phenological change is equally high 
for both models. The same is true for population dynamics. 
While neither IPM fully reproduces the observed popula-
tion dynamics, they are both equally accurate. There is a sys-
tematic accuracy error, with predictions almost always being 
lower than observed population numbers (Table 2).

Figure 2 shows the projected population dynam-
ics and mean hatch date values for a single model simula-
tion of 50 years (parameterised from the whole dataset).  

The under-prediction of population dynamics is emphasised 
when predictions are generated over a 50-year, rather than 
5-year, period (Fig. 2). When predictions are generated from 
a model parameterised on the whole 50-year dataset and pre-
dict back observed values in those years (non-independent 
test and training datasets) the predicted mean hatch dates still 
match the observations as well as for shorter projection runs. 

Figure 1. Projected population size and mean hatch dates, generated from K-fold cross validation. For each panel observed values are indi-
cated by the grey line. Panels a and b show projections of the quantitative genetic IPM, c and d show projections of the standard IPM. 
Trajectories do not converge every five years because the observed initial conditions of each cross-validation simulation are not plotted. 
Plotting is restricted to projected years.

Table 2. Discrepancy between simulated results and observed val-
ues, average across all K-fold cross validation predictions. Mean 
absolute error (MAE) for population size and trait values (hatch date) 
for the two IPMs rounded to nearest whole number.

Model
MAE

Population size Phenology

Standard IPM 64 3
Quantitative genetic IPM 64 3
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However, the discrepancy between the predicted population 
size and observed increases (Table 3), the difference between 
the two IPMs remains small but increases to two individuals. 
The capturing of the population dynamics is not improved 
by using resident population size (Supplementary material 
Appendix 1 Section A6).

What are the contributions of micro-evolution and 
plasticity to phenological change?

In the standard IPM, it is primarily plasticity that is driving 
phenological change. This can be seen in the Supplementary 
material Appendix 1 Fig. A4, as the contribution from the 
mother’s hatch date to variation in the offspring hatch date is 
substantially lower than the contribution from environmen-
tal effects. Using the quantitative genetic IPM, we can explic-
itly track the contribution of micro-evolution and plasticity. 
When we do this, we show that plasticity is again the pre-
dominant driver of phenological change in this population 

(Fig. 3). Micro-evolution, represented by changes in the 
mean breeding value, does occur, but is an order of magni-
tude lower than the contribution of phenotypic plasticity. 
If we quantify the directional change in breeding value and 
environmental component of the phenotype by using a linear 
model of each component against time, the slopes are −0.14 
for the environmental component and −0.01 for the genetic 
component.

Figure 2. Projected population size and mean trait values for all 50 years of our study, from a single parameterisation. For each panel 
observed values are indicated by the grey line. Panels a and b show projections of the quantitative genetic IPM, c and d show projections of 
the standard IPM.

Table 3. Discrepancy between simulated results and observed 
values for 50-year simulation. Mean absolute error (MAE) for popu-
lation size and trait values (hatch date) for the two IPMs rounded to 
nearest whole number.

Model
MAE

Population size Phenology

Standard IPM 101 3
Quantitative genetic IPM 103 3
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Can phenological synchrony be retained under 
directional environmental change?

Under directional change in spring temperature, we see a 
gradual loss of optimal synchrony coupled with a decline in 
population size (Fig. 4). Over the course of the simulation 
the mean synchrony moves steadily closer to 0 and further 
from the optimum of −13 days, i.e. great tits hatch closer to 
the time of peak caterpillar abundance the further into the 
future we project. This is despite both great tits and caterpil-
lars using the same cue for phenology in this model and expe-
riencing the same environmental change. Directional change 
in phenology is generated in this simulation by both plastic-
ity and micro-evolution. Both components of the phenotype 
advance, leading to earlier hatch dates. However, this advance 
is not as fast as that of the caterpillar prey. Despite steady 
population declines (Fig. 4) and increased selection for earlier 
laying, micro-evolution was not sufficient to retain matching 
between the two trophic levels in our model.

Discussion

The final model parameterisation of both IPMs included the 
influence of both winter and spring environmental condi-
tions. Winter conditions, including food supply (beech mast 
index) played a significant role in both survival and recruit-
ment as well as inheritance of hatch date. The role of win-
ter conditions confirms previous work suggesting a key role 

of winter conditions on overwinter survival for both adults 
and first year birds (Van Balen 1980). It also highlights the 
importance of considering cross-season environmental influ-
ences on demography rather than focussing only on a sin-
gle environmental driver (Reed et al. 2013). Our statistical 
analyses of the drivers of phenological change (here develop-
ment) also supported previous work indicating that breeding 
phenology is primarily driven by spring conditions (Perrins 
1965, Husby et al. 2010).

Further to the environmental drivers included in our 
models, we also found a quadratic effect of synchrony with 
caterpillar prey on reproductive success and survival. This 
is what we would expect from mismatch theory (Cushing 
1969, Johansson et al. 2015) and previous work looking at 
hatch date synchrony (Simmonds et al. 2017), both breeding 
too early or too late reduces reproductive success and female 
survival. We would expect both of these effects due to mis-
match reducing the amount of food available to chicks and 
increasing stress on females. This effect was not incorporated 
into previous models (Childs et al. 2016), because they mod-
elled synchrony as a focal trait rather than a covariate.

It should be noted that our choice of a single sex model 
could have an impact on the predicted results. Restricting a 
model to one sex results in any sex specific differences in off-
spring recruitment being ignored. If the sex ratio of recruits 
varies between years based on environmental conditions 
(as discussed in Oddie 2000) then this could lead to over 
or underestimations of population size. Based on previous 
analyses (Oddie 2000), which did not find significant sex dif-
ferences in recruitment in great tits and the dominating role 
of females in egg laying, these should not have a large effect 
in this population. However, potential sex biases should be 
considered when applying these methods to other species and 
populations.

Figure 3. The environmental and genetic component of the pheno-
type during a 50-year simulation based on observed weather values. 
Purple indicates the environmental component and orange the 
genetic component of the phenotype (hatch date).

Figure 4. Population size and synchrony trends under directional 
change in spring temperature.
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The two constructions of IPM we test here were able to 
accurately reproduce the dynamics of the mean hatch date 
for the study population. Projections of phenological change 
had average error of lower than the standard deviation of the 
data (approx. seven days), even when run across 50 years. 
However, they also both showed a systematic under predic-
tion of population size. This is could be driven by several, 
non-mutually exclusive factors. The first is a failure of the sta-
tistical analyses that parameterise the fundamental functions 
to capture the true form of population dynamics. This could 
be due to a lack of inclusion of secular trends in survival or 
reproductive rates. We did not include secular trends in these 
models but a steady increase in population size across the 
study period. We trialled the final survival and recruitment 
models with a fixed linear effect of time rather instead of a 
random effect, to quantify the secular trend in these demo-
graphic rates. The estimate for a secular trend in survival was 
not statistically significant (EST = 0.006, SE = 0.004) but we 
did a statistically significant the effect of time on recruit-
ment (EST = 0.176, SE = 0.037, estimate for time scaled by 
subtracting mean year and dividing by the standard devia-
tion). This suggests there is a temporal trend in recruitment 
that our current environmental drivers do not capture. There 
could also be some stochastic temporal variation in survival 
that we did not capture in our models, due to a lack of a 
temporal random effect. The absence of congruence between 
model predictions and observed population dynamics could 
also stem from non-linear density dependence acting in this 
system that we do not account for in our linear models.  
A final potential factor is an inability to correctly model immi-
grants to the population (Plard et al. 2019). In these models 
we only include immigrants as a fixed addition relative to the 
projected resident population size. In reality the proportion 
of immigrants varies annually, this could alter the strength of 
density dependence in our model differently to reality.

Despite both IPMs having systematic error in projected 
population size, the accuracy of the two IPMs was virtu-
ally identical. The maximum deviation was two individuals. 
This close similarity is unsurprising as only the inheritance 
functions differ between the two models. This suggests that 
incorporating the ability of the focal trait to evolve, through 
changes in G as a result of survival and recruitment, does not 
reduce accuracy of projections of population dynamics. In 
addition, despite a difference in mean projected phenology 
on an interannual (time step by time step) scale, the MAE 
in phenology projection between the two models remains 
the same. On average, across all years predicted, the differ-
ence between projected phenology and observed is the same 
for the standard and quantitative genetic IPM even though 
interannual projections of mean phenology are not. Both 
model constructions capture the phenological change with 
good accuracy even in simulations covering several decades, 
this suggests that our fundamental functions have captured 
the drivers of hatch date well, but have not fully captured 
population dynamics.

Our finding that the projected mean hatch date remains 
consistent whether you include evolution (quantitative 

genetic IPM) or not (standard IPM) suggests either that the 
mode of inheritance included in the model does not make a 
substantial difference to the capturing of trait dynamics or 
that trait heritability is low or that selection is weak. Any of 
these causes could result in the observed patterns. There is 
a strong influence of phenotypic plasticity on phenological 
change. Previous work has found that phenotypic plasticity 
is the primary driver of phenological change for the great tit 
(Charmantier et al. 2008, Chevin et al. 2010, Charmantier 
and Gienapp 2014, Chevin and Lande 2015). Evolution 
has been assumed to play a substantially smaller role in 
this species (Vedder et al. 2013, Charmantier and Gienapp 
2014, Gienapp et al. 2014). This is further supported by the 
Supplementary material Appendix 1 Fig. A4, which dem-
onstrates that the variation in hatch dates of the offspring 
contributed by the mother hatch date is considerably lower 
than that contributed by environmental variables. In addi-
tion, Fig. 3 shows that the contribution of micro-evolution, 
while directional, is an order of magnitude lower than that 
of plasticity. This indicates that the phenotype is primarily 
controlled by environmental conditions rather than addi-
tive genetic effects. Indeed, a model without any inheritance 
might still capture the phenotypic change well. From other 
work on phenology, we would expect micro-evolution to play 
an important role (Caro et al. 2013) in tandem to a key role 
of plasticity, with plasticity dominating interannual varia-
tion but evolution playing a more important directional role 
on longer timescales. It seems from the current results that 
micro-evolution will not be sufficiently rapid in the study 
population to achieve this.

For our study population from Wytham Woods, including 
evolution of hatching phenology in IPM led to equal accu-
racy in population size predictions and retained good accu-
racy in phenological predictions. When coupled with the 
ability to explicitly investigate the roles of micro-evolutionary 
and plastic change, the extended IPM we test here offers a 
strong potential to give insights into phenological change 
(and change in other plastic traits). Despite the increased 
complexity of this model, there does not seem to be a cost 
in terms of predictive performance. In contrast, by using this 
new framework it is possible to disentangle the contribution 
of phenotypic plasticity and micro-evolution to trait change, 
whilst maintaining the same accuracy of projected popula-
tion dynamics.

Under directional change in spring temperatures, plasticity 
alone was not sufficient to keep pace with the environmental 
change (Fig. 4). Even when combined with some evolutionary 
change (Fig. 3), great tit hatch dates still did not advance suf-
ficiently to maintain synchrony with their caterpillar prey. The 
change we induced here was at the same rate as the observed 
data but did reach into novel conditions. The different rates 
of response across trophic levels, even when responding to 
the same cue, have been suggested as inherent (Gienapp et al. 
2014). This is supported by our results, which show caterpillars 
advancing more rapidly than their great tit predators, creating 
selection for earlier phenology in great tits. However, selection 
pressures do not seem to produce an evolutionary response fast 
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enough to match the environmental change. This could indi-
cate that mismatch is inevitable in the face of future environ-
mental change, however, the current results present the effects 
of a gradual change in spring temperature in isolation. In real-
ity, multiple environmental conditions change at once, which 
could have different impacts on various demographic rates and 
therefore buffer populations from the negative impacts of a 
single driver. Further studies should consider change in multi-
ple drivers preferably directed by predictions of future weather 
from climate models.

We demonstrated the first empirical example of a new 
IPM framework, detailing how such frameworks can be 
applied to real biological populations and tested its predictive 
ability compared to a standard IPM. The procedures outlined 
here can be easily applied to other systems. By including envi-
ronmental drivers from across different seasons and consider-
ing their influence on both phenology and demographic rates 
(survival and recruitment) this kind of population model has 
potential to dig into the role of phenological change in popu-
lation dynamics. Considering all key demographic processes 
together is essential to move from individual fitness to popu-
lation level consequences, which has been rarely achieved in 
phenological research. The models analysed here provide an 
excellent opportunity to achieve this.
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