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A B S T R A C T  

 

Radio frequency identification (RFID) has been widely used for the automatic 

identification, tracking and tracing of goods throughout the supply chain from the 

manufacturer to the customer. However, one technological problem that impedes the 

productive and reliable use of RFID is the constraint of false positive readings, 

which refers to tags that are detected accidentally by the reader but not the ones of 

interest. This paper focuses on the use of machine learning algorithms to identify 

such RFID readings. A total of 11 statistical features are extracted from received 

signal strength (RSS) and phase rotations derived from the raw RFID data. Each of 

the features is highly statistically different to distinguish the false positive readings, 

but satisfactory classification cannot be achieved when these features are considered 

individually. Classifiers based on logistic regression (LR), support vector machine 

(SVM) and decision tree(DT) are constructed, which combine all of the extracted 

features to classify the RFID readings more effectively. The performance of the 

classifiers is evaluated in a real-world factory. Results show that SVM provides the 

highest accuracy of up to 95.3%. DT shows slightly better accuracy (92.85%) than 

LR (92.75%), while LR has the larger area under the curve(0.976) than DT(0.949). 

Overall, machine learning algorithms could achieve accuracy of 93% on average. 

The proposed methodology provides a much more reliable RFID application as 

false-positive readings are detected immediately without human intervention, which 

enables a significant potential of fully automatic identification and tracking of goods 

throughout the supply chain. 

 

1. Introduction 

     Radio frequency identification (RFID) can be used to 

enhance visibility and traceability of supply chain. Once the 

product is attached with the RFID tag from the beginning of the 

supply chain, it is assigned a unique electronic product code 

(EPC) and then can be automatically identified, tracked and 

traced from the supplier to the customer. Shipping from 

distribution centers to retailers is one of the key processes in the 

supply chain. In order to ensure the smooth flow of goods, 

RFID has been commonly deployed in the warehouse and 

distribution centers (Keller et al. 2012). The goods attached 

with tags are automatically registered by the RFID reader when 

loaded to a truck after passing through the portal. 

                                                           
   Corresponding author at: Norwegian University of Science and   Technology, Department of Production and Quality Engineering, S.P. Andersens 

veg 5, 7031 Trondheim, Norway 

   E-mail addresses: haishu.ma@ntnu.no (H. Ma), yi.wang@gmail.com (Y. Wang), kesheng.wang@ntnu.no (K. Wang) 
 

     However, one technological constraint hinders the 

effectiveness of the RFID application in the warehouse. RFID 

reader can detect any object attached with the tag that appears 

in the reading range of the radio frequency field (Ju Tu and 

Piramuthu 2008). But the reader cannot distinguish between 

tagged tags that actually pass through the portal and the ones 

that appear in the reading field by chance, it is highly likely that 

incorrect invoices will be issued and the retailer stores will pay 

for goods that they nether received nor purchased. A false 

positive RFID read corresponds to the tag that is detected by the 

RFID portal but not loaded to the truck. Therefore, the reliable 

and productive RFID application in the distribution center 

process remains doubtful without solving the false positive 

RFID readings(Bong et al. 2014). Various reasons contribute to 

the false positive problem. Physical conditions in the warehouse 

is complex. Metallic object and the truck itself may cause 
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multipath reflections of RF signals, which can extend the read 

range of the reader(Keller et al. 2015). As a result, the tag 

assumed to be away from the reader can be unintentionally read. 

Other reasons include that a warehouse man might buffer a tag 

temporarily near the portal or he is passing by the portal with 

another tag when the RFID portal is reading(Keller et al. 2010). 

     Many efforts have been devoted to resolving the false 

positive problem. The available measures can be grouped into 

three categories, i.e. sliding-window, extra hardware, and RSS 

based method.  Bai et al. (2006)proposed the sliding window 

method. The false positive readings with the occurrence rate 

below a noise threshold are filtered. This method considers the 

RFID data stream to be uniform flow, which is the ideal 

situation in practice. Jeffery et al. (2006)introduced the adaptive 

sliding window, SMURF, to compensate for the inherent 

unreliability of RFID data streams. A variant of sliding window 

mechanism was proposed by Bian et al. (2013)to eliminate the 

false readings in a RFID tracking system. The algorithm has 

demonstrated its superior performance than the traditional 

mechanism. Tu and Piramuthu (2011) proposed using extra 

readers to determine the false positive reading. When the tag is 

read by the two readers at the same time, it is considered to be 

actually present. Otherwise, the false positive readings are 

confirmed if the tag is read by none of the readers. Krigslund et 

al. (2012)presented a novel method focusing on a two-device 

setup, a reader and an interference source. The setup can impose 

intentional interference between the reader and tag. 

Experimental results showed that the false positive read was 

reduced by imposing interference. 

     The methods relying on extra hardware to identify false 

positive RFID readings can incur additional cost. Sliding 

window methods mainly utilize timestamps and tags readings 

to detect false positive readings. But there is more valuable 

information generated by the reader such as Received signal 

strength (RSS)  and phase shift. RSS has been commonly used 

for indoor real time location system(Ni et al. 2004; Luo et al. 

2011; Stella et al. 2014) and movement detection(Yao et al. 

2015). The changes of object’s orientation and location affect 

the RSS reflected by the RFID tag. These signal changes can be 

leveraged to detect the fluctuations caused by the tag motion.  

Parlak and Marsic (2013)extracted features from RSS and 

classified them as moving or still using statistical methods. A 

trauma resuscitation case study was used to evaluate their 

methods. Results showed that the accuracy achieved 80% in 

complex scenarios. Keller et al. (2010)proposed an algorithm 

that used the information gain criterion to separate tags that 

were loaded onto trucks and tags that were in range of the reader 

by accident. The algorithm was verified under real distribution 

center and results showed that RSS value was the most suitable 

tag characteristics than timestamps and antenna attributes. 

Keller et al. (2015)presented an empirical study using data 

mining techniques to detect false positive RFID tags based on 

the attributes derived from low level reader data. Moreover, 

they demonstrated that utilizing full spectrum of data reported 

by the reader hardware resulted in better performance than 

single-attribute classifier. 

     Machine learning has created new intelligent tool for 

automated extraction of useful information and knowledge 

from manufacturing systems and processes(K. Wang 2007).  

RFID and artificial intelligence have been implemented 

together to enhance the responsiveness of the logistics 

workflow(Lee et al. 2011). Zhong et al. (2014)introduced 

decision tree and SVM to excavate practical standard operation 

times (SOTs) from RFID-enabled real-time shopfloor 

production data. Supervised pattern classification techniques, 

including k nearest neighbor and SVM, were used to 

differentiate the individual tag(Bertoncini et al. 2012). 

Chernbumroong et al. (2013)presented an assisted living 

system that combines neural network and SVM to activities of 

an elderly person. 

      Phase value has attracted more attention in indoor 

localization(Hekimian-Williams et al. 2010; Zhou and Griffin 

2012). But it is rarely used for the classification of RFID 

readings. This paper proposes a method that extract features 

from RSS and phase values reported by the RFID reader to 

determine the false positive readings using machine learning 

algorithms. The rest of this paper is organized as follows. 

Section 2 introduces the real-world factory where the RFID data 

are collected and our method is evaluated. Section 3 gives the 

technical background of RF signal propagation. Extracted 

features from RFID data are presented in section 4. LR, DT, and 

SVM classifiers are constructed in section 5. In Section 6 we 

describe the experimental results of the experiments, and 

discuss some of our findings. Finally, the conclusion and future 

research are given section 7. 

2. Empirical evaluation 

     An RFID enabled smart factory is set up by shanghai 

polytechnic university (SPU) in cooperation with knowledge 

discovery laboratory (KDL) in Norwegian University of 

Science and Technology (NTNU). 

2.1. Experimental setup 

     Fig. 1 illustrates the process of the customized keychain 

from assembly to delivery. The keychain is assembled and 

produced in the smart factory to embody the typical 

characteristic of industry 4.0, i.e. mass personalization 

production. Each user is provided with the options to select the 

color of the keychain and print their names on it. All this 

information is transferred to the serial robot, which selects the 

raw materials, a bottom, a cover and a RFID tag, from the shelf 

and put them on the workbench equipped with a parallel robot, 

as shown in Fig. 1. Next the bottom, the cover, and the tag are 

assembled by the parallel robot. The finished keychain will then 

be put on the conveyor belt which can transfer the keychain to 

the printer workstation. The RFID tag will tell the printer what 

should be printed on the keychain. Finally, a mobile robot can 
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deliver the keychain to the warehouse.  All the processes above 

can be tracked and displayed in a RFID system, which is 

developed by APX systems in Norway. At each workstation, 

the assembly and the printer, the RFID reader antenna can read 

the tag. From the moment the tag is attached to the keychain, 

the product can be identified and tracked using RFID.  

     The functions of the RFID system are as follows. When the 

keychain is detected by the reader antenna installed at the 

assembly workstation, the RFID information will be displayed 

on the assembly list box. When the keychain arrives at the 

printer workstation, the printer list box will show the 

corresponding RFID information and the information in the 

 
Fig. 1.  The illustration of keychain customization (a) raw materials of key chain (b) serial robot (c) laser engraving 

workstation (d) portal (e) mobile robot (f) RFID system 
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assembly list box is cleared.  This is real time tracking of RFID 

tags and all the RFID information during the production is 

displayed in the history list box and stored in the database of the 

RFID system for further research. 

2.2. Data collection 

     Two reader antennas (Impinj Brickyard) are mounted on the 

portal. They are connected to Infinity 610 UHF reader which 

can report RSS, phase, timestamp and EPC. We recorded 2000 

keychains tagged with RFID during our experiment, where 

1000 of them were moved tags passing through the portal. 

Others were static tags that just appeared in the read range of 

the RFID portal by accident, i.e. the false positive readings. The 

period during which the RFID data are collected lasts 5 seconds, 

which is called the data gathering session. At each data 

gathering session, the tag is approximately interrogated by the 

RFID portal for 709 times. After the data collection is 

completed, we will extract features from the readings and 

classify them as moved tags or static tags using different 

machine learning methods. 

3. RFID signal propagation theory 

     The brief introduction of the technical background on radio 

frequency signals and their propagation model are given in this 

section. Passive RFID system leverages backscatter radio link 

to communicate. Fig. 2  provides the conceptual diagram of the 

backscatter communication between a tag and a reader. Passive 

tags have no battery. Instead, they draw power from the reader, 

which transmits electromagnetic waves that induce a current in 

the tag’s antenna. The RF signal transmitted by the reader is 

reflected off the tag, received back at the reader and processed 

to decode the data. The tag will reply the reader’s query by 

changing the impedance on its antenna and modulates its data 

on the backscatter signals using ON_OFF keying(J. Wang and 

Katabi 2013). 

 

3.1. Received signal strength 

     RSS is the most common measurement for the distance 

between reader and tag. In free space propagation, RSS is 

positively correlated with the distance between a transmitter 

and a receiver. The distance can be expressed by the extensively 

used log-distance path loss model(LDPL) as follows (Hossain 

et al. 2013): 

         
2

2
( ) 10log 10 log

16

r tTG G
PL d d X






 
   

 
       (1) 

     Where d is the distance from the tag to the reader, ( )PL d is 

the free space path loss from distance d , 
rG and 

tG are the 

antenna gains of the reader and the tag, respectively,  is the 

wavelength,  is the path loss exponent, and X
is a random 

variable that follows a Gaussian distribution, ~ (0, )X N  .   

X
is used to model the fluctuation of RSS due to multipath 

reflection, obstruction and variation of tag orientation (Bekkali 

et al. 2007).  

3.2. Radio frequency phase shift 

     Most COTS RFID readers support the report of phase shift 

 , which is a phase difference between the transmitted wave 

and the backscattered wave. When the wave travels from the 

reader antenna to the tag antenna, a phase shift is generated, 

which is related with the distance d . As illustrated in Fig.1, d  

is the distance from tag to reader. The total propagation distance 

of RF signal from the reader to the tag and back again is 2d . 

The measured phase is a function of the wavelength  and total 

propagation distance 2d . The formula can be expressed as: 

          
2

2 mod 2T R Tagd


    


 
     
 

         (2) 

     where 
T , 

R , and
Tag are the additional phase rotations 

introduced by the reader transmitter, receiver and tag 

respectively. As phase shift has an inherent ambiguity of 2

radians, an unknown number of wavelengths are also included 

in the distance from tag to reader(Huiting et al. 2013). 

4. Feature extraction 

     As stated in the section above, RSS and phase values are 

closely related with the distance between the tag and reader. 

Therefore, the changes of object’s orientation and location will 

affect the RSS and phase values of the signal reflected by the 

RFID tag. These signal changes can be leveraged to detect the 

fluctuations caused by the tag motion.  A total of 11 statistical 

features, listed in Table 1, are extracted from RSS and phase 

values to characterize the different RFID readings. The reasons 

for the selection of these 11 features are elaborated at the 

following. 

     Fig. 3 displays the RSS and phase readings during a data 

gathering session. As can be seen from Fig. 3(a), the max RSS 

for a moved tag is larger than that of a static tag. When the tag 

is passing through the portal, the moved tag is expected closer 

to the reader antenna. According to Eq. (1), the moved tags tend 

to have a higher RSS value. Meanwhile, the distance between 

the tag and the antenna changes continuously when the tag 

passes through the portal and the RSS for the moved tag will 

change correspondingly. Fig .3(a) reveals that the RSS values 

increase first, reaching the maximum at around 3 seconds, then 

decrease again, which indicates that the tag moves toward the 

portal, passes through it and then moves away from it. On the 

~

Tx Signal

Rx Signal

Local Oscillator

PA

LNA

Circulator

Antenna

d

ƟT

ƟR

ƟTag

λ 

Transmit path phase shiftƟT

Receive path phase shift ƟR

 

Fig. 2.   Radio wave propagation between reader and tag 
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contrary, the RSS values for static tags are relatively constant. 

The variance of the moved tags is significantly higher than that 

of the static tags. Besides, Fig.3 (a) shows that the moved tag is 

interrogated more often than the static tag. These observations 

indicate that max RSS, average, variance, range of RSS, and 

number of RSS readings are statistically different features 

between the moved tags and static tags. 

     Fig. 3(b) shows the phase readings for the moved tag and 

static tag. The phase values display a similar distribution with 

that of RSS. Since the distance between the moved tag and the 

antenna changes continuously, the phase values will change as 

well. As a result, the variance and range of phase values for the 

moved tag are larger than that of the static tag based on Eq. (2). 

Therefore, variance and range are extracted from the phase 

values to differentiate the moved tags from the static tags. 

Another interesting finding about phase values is that they are 

periodic and repeat every 2π radians, as shown in Fig. 3(b). It 

is difficult to determine whether the tags are moving away from 

the portal using only phase readings. But at least one thing can 

be confirmed from Fig.3(b) that one tag is moving while the 

other is static. 

     In addition, statistical features extracted from the histograms 

of RSS and phase distributions are also utilized to characterize 

the RFID readings. Both kurtosis and skewness describe the 

shape of the histograms. Skewness is a measure of asymmetry 

of data distribution around the mean value. While kurtosis is a 

measure of whether the data are heavy-tailed or light-tailed. 

These parameters can be calculated as, 

                       

4

1

2

2

1

1
( )

1
( )

n

i

i

n

i

i

x x
n

kurtosis

x x
n








 

 
 





           (3) 

                       

3

1

3

2

1

1
( )

1
( )

n

i

i

n

i

i

x x
n

skewness

x x
n








 

 
 
 





     (4) 

     Where x  is the average value of the data points, n is the 

number of data points
ix . 

    Fig. 3(c) and Fig.3(d) display the histograms of RSS for static 

tag and moved tag respectively. Compared to the moved tag, 

the static tag tends to have symmetrical distribution because of 

its relatively stable position. Therefore, the skewness of static 

tags is close to zero. It is also observed that the moved tag tends 

to have a heavy-tailed distribution. The kurtosis of the moved 

tag is larger than that of the static tag. The histograms of phase 

values for the static tag and the moved tag are given in Fig.3(e) 

and Fig.3(f). The phase distribution displays the similar 

statistical characteristics to RSS distribution. Hence, both the 

skewness and kurtosis of RSS and phase values are extracted to 

separate the tags.  

Table 1 

Extracted features from RSS and Phase shift 

Features Description 

Max RSS F1 The maximum of the received signal strength during a gathering session. When 

the moved tags move through the portal, they tend to have a larger RSS because 

the distance to the antenna is closer than the static tags. 

Mean RSS F2 The average of the received signal strength during a gathering session. When the 

tags move through the portal, they tend to have a larger mean RSS because the 

distance to the antenna is closer than the static tags during most of the gathering 

session. 

RSS variance F3 Because the distance of the moved tags to the antenna changes continuously when 

the moved tags pass through the portal, they tend to have a larger variance. 

RSS range F4 The difference between maximum received signal strength and minimum 

Received signal strength collected during a gathering session. 

RSS Skewness F5 Represents asymmetry of the RSS’s histogram with respect to its mean value. 

Static tags tend to have a symmetrical RSS distribution. 

RSS Kurtosis F6 Measure of whether the data are heavy-tailed or light-tailed relative to a normal 

distribution. Moved tags tend to have a heavy-tailed RSS distribution. 

Phase variance F7 Because the distance of the moved tags to the antenna changes continuously, they 

tend to have a larger variance. 

Phase range F8 The difference between the maximum and minimum measured phase values 

during a gathering session 

Phase Skewness F9 Asymmetry of the phase’s histogram with respect to its mean value. Static tags 

tend to have a symmetrical phase distribution. 

Phase Kurtosis F10 Measure of whether the data are heavy-tailed or light-tailed relative to a normal 

distribution. Moved tags tend to have a heavy-tailed phase distribution. 

Count F11 The total number of interrogation times during a gathering session. Moved tags 

tend to have a higher number of reads because they pass through the portal and 

are closer to the antenna. 
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     According to Eq. (1), RSS is largely influenced by the 

environment, such as the multipath reflections of signals and 

obstruction. Thus, there may be discrepancy between the 

measured RSS values and the distance from the RFID antenna 

to the tag. Sometimes, even though the tag is far away from the 

antenna, its RSS values are still very high which may result in 

classification error. Based on the measurement of RSS values, 

it is difficult to differentiate the moved tag from the static tag 

 
Fig. 3.  Illustration of RFID reads for moved and static tags (a) RSS distribution (b) Phase distribution (c) RSS histogram (d) RSS 

histogram (e) Phase histogram (f) Phase histogram 

 

 
Fig .4.  Comparison between RSS and phase values (a) RSS distribution (b) Phase distribution 
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by only visualizing the RSS distribution, as shown in Fig. 4(a). 

The RSS values of the moved tag are mingled with that of the 

static tag. By contrast, phase values are more accurate than RSS 

and less affected by the environment, which can be verified by 

Eq. (2). The phase value is closely related to the hardware 

characteristics and the distance between the antenna and tag. 

Given that attribute, phase shift can supplement RSS to make 

better discrimination. As shown in Fig .4(b), the moved tag and 

the static tag are clearly separated. 

   As phase shift has an inherent ambiguity of 2  radians, the 

distance between the tag and reader antenna cannot be reflected 

from the phase shift directly. Hence, it is meaningless to 

differentiate the tags by comparing the max phase value and 

mean phase value, which can be illustrated in Fig. 5. The RSS 

distributions of the moved tag and the static tag are shown in 

Fig. 5(a). We can tell them apart intuitively through the RSS 

distribution, because the max RSS of the moved tag is larger 

than that of the static tag. But Fig. 5(b) shows the contrary 

result, where the max phase value of the static tag is larger than 

that of the moved tag, despite the moved tag is closer to the 

portal antenna than the static tag. Therefore, the max and mean 

phase values of the tags are excluded from the extracted 

features. 

     Even though all the 11 statistically different features listed 

in Table 1 contribute to differentiating the tags, satisfactory 

classification cannot be achieved when the features are 

considered individually. For example, the optimal threshold of 

max RSS for tags differentiation is at -451ddBm. The result is 

illustrated in Fig. 6. This parameter separates the tags with 

85.49% specificity, 82.50% sensitivity, and 84.25% accuracy. 

This accuracy is not enough and the sensitivity is rather low 

which means quite a few moved tags are incorrectly identified 

as static tags. Fig. 7 depicts all of the individual feature’s 

performance. The result indicates that although each feature 

result in statistically differences in identifying the moved tags 

and static tags, none of the separate feature enables the accuracy 

of above 90%. Consequently, it makes sense to combine the 

entire individual feature together using machine learning 

algorithms to distinguish the tags. 

5. Classifier development 

     Data classification consists of two phases, including the 

training phase and classification phase. In the training phase, 

machine learning algorithms build a classifier based on the 

training set made up of data tuples and their corresponding class 

labels. The tuple is composed by an n -dimensional feature 

vector denoted by 
1 2( , ,... )nX x x x . Because 11 features are 

extracted from the RFID readings, n equals 11 and the class 

labels are moved or static. Three commonly used machine 

learning algorithms are employed to construct the classification 

model: decision tree(DT), support vector machine(SVM), and 

logistic regression(LR). 

Decision tree 

     Decision tree adopts a tree structure to predict a tuple. The 

tree structure is constructed from the root to a leaf node which 

holds a class label. Each non-leaf node represents a splitting 

criterion on a given feature and each brunch represents an 

 
Fig .5.  Characteristics of phase values (a) RSS distribution (b) Phase distribution 

 
Fig. 6. Tags identification using maximum RSS 
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outcome of the split criterion. The splitting criterion is 

determined by the attribute selection measure. We build the 

decision tree classifier in Matlab, which uses the CART 

algorithm. The Gini index which measures the impurity of the 

data set is utilized in CART to find the splitting criterion.  

     Let D be the training set which contains m distinct class 

labels
iC .The Gini index is expressed as(Han et al. 2011), 

                             2

1

( ) 1
m

i

i

Gini D p


  (5) 

Where 
ip denotes the probability that a tuple in D belongs to 

class
iC . 

     The Gini index produces a binary split for each attribute. 

Suppose A is a continuous-valued attribute with v distinct 

values 
iv . In order to get the best binary split on A, each 

possible split-point are evaluated. If a binary split on A 

separates D into D1 and D2, where D1 is the set of tuples that 

satisfy A   split point, and D2 is the set of tuples that satisfy A

  split point, the Gini index of D given that partition is 

                 
1 2

1 2( ) ( ) ( )A

D D
Gini D Gini D Gini D

D D
  (6) 

The split point which gives the minimum Gini index for A is 

taken as the split-point. 

Support vector machine 

     Support vector machine is a supervised machine learning 

method for data analysis and pattern recognition. SVM 

classifies data by nonlinearly mapping the original data to high 

dimensional feature spaces first, and then finds the linear 

optimal hyperplane, a decision boundary, to separate the data 

set of one class from another. The hyperplane with the 

maximum margin between the two classes is sought by SVM 

classifier. The hyperplane can be written as 

                                 ( ) 0T X b                 (7) 

     Where   is the weight vector, ( )   is the nonlinear 

mapping and b is the bias. The optimal hyperplane is defined 

by finding  and b which minimize the following 

function(Schölkopf et al. 2000) 

                      
1

1
min

2

n
T

i

i

C  


   (8) 

Subject to  

                   ( ) 1i iy X b     and 0i  (9) 

     Where the slack variable max(0,1 ( ))i iy X b     and C 

is the penalty parameter. The slash variable
i is introduced into 

the Eq.(8) because the data is not always linearly separable. The 

penalty parameter C determines the tradeoff between increasing 

the margin and ensuring the data on the right side of the 

hyperplane. Radial basis function is selected as the kernel 

function, which is expressed as 

                  
2

( , ) exp( )
2

i j

i j

X X
G x x




  (10) 

Where 𝜎 is the standard deviation. 

Logistic regression 

     Logistic regression is a regression model which is used to 

predict the probability of categorical dependent variables. LR 

has been widely used in conditioning monitoring of cutting tool 

where the binary classified variables are normality and 

failure(Chen et al. 2011; Li et al. 2015). In our research, the 

categorical variables are moved and static tags. The relationship 

between the categorical dependent variables and the 

independent variables are measured by LR using the logistic 

function as follows, 

                               
1

( )
1 z

g z
e




     (11) 

     Given a feature vector 
1 2( , ,... )nX x x x of the RFID 

readings, the probability ( )h X  of the categorical dependent 

variable y (moved=1, static=0) equals, 

 

 
 

Fig. 7.  Performance of individual feature 
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                               ( ) ( )Th X g X  (12) 

     Where  is the regression coefficient which is determined 

by minimizing the cost function of logistic regression, 

1

log( ( ) (1 ) log(1 ( ))
m

i i i i

i

J y h X y h X 


       (13) 

     Where m denotes of the number of the tuples in the training 

set. The cost function is used to evaluate how well the LR model 

fits the training data.  

6. Experimental results and discussion 

     The performance of the machine learning approaches to 

detect the false positive RFID readings is evaluated using 10-

fold cross validation. The data set is randomly partitioned in ten 

subsets with one of ten subsets used as the test set while the 

others as the training set. A part of the data set is shown in Table 

2. This process is repeated ten times until all ten subsets have 

been used for both training and testing. The average accuracy 

of the approaches in the ten rounds of cross validation is 

reported as metric for evaluation, which is defined as 

            𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑔𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑔𝑠
 (14) 

     Another two important measures used for evaluation are 

sensitivity and specificity, which are given as 

   𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑔𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑚𝑜𝑣𝑒𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑣𝑒𝑑 𝑡𝑎𝑔𝑠
 (15) 

   𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑔𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑠𝑡𝑎𝑡𝑖𝑐

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑖𝑐 𝑡𝑎𝑔𝑠
 (16) 

The accuracies of the three machine learning approaches are 

shown in Fig. 8. SVM outperforms DT and LR with the highest 

accuracy of 95.5%±1.3 and the smallest standard deviation. 

This demonstrates that SVM has better data generalization and 

more reliability than the other two classifiers. DT shows 

Table 2  

Part of the data collection 

No F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 Class 

1 -449 -460.172 42.01631 36 -0.8158 4.310549 2053.988 359.8956 7.068851 52.68889 1222 0 

2 -438 -446.138 16.4197 17 -0.206 1.935345 16.15839 19.77539 -0.12786 2.525491 972 0 

3 -460 -476.578 89.70307 33 -0.33952 1.603428 50.45177 30.34424 0.752284 2.422366 1058 0 

4 -362 -474.815 5159.725 196 0.357591 1.431107 15185.37 359.9176 -0.6555 1.654829 1957 1 

5 -424 -468.277 1238.169 104 -0.31858 1.540273 1742.024 144.3329 0.240386 1.831543 956 1 

6 -490 -514.898 135.6597 71 0.064726 3.966074 1390.072 359.9176 -8.39662 75.39645 765 0 

7 -449 -507.212 199.5547 121 0.002688 7.27884 1540.425 348.371 1.107835 12.63264 226 0 

8 -426 -465.986 1355.709 132 -0.73831 2.505734 7395.266 358.4509 -0.89449 3.17162 918 1 

9 -408 -434.323 128.1182 45 0.707454 2.18809 49.32138 30.54199 0.373044 2.11012 854 0 

10 -405 -448.63 954.8268 144 -0.64676 3.05545 3049.21 351.1725 -1.16882 6.496533 665 1 

11 -447 -471.116 57.14106 42 0.559984 2.985954 468.2572 77.01965 -1.59286 3.756936 985 0 

12 -557 -574.825 69.36718 44 -0.64326 3.383642 4.490083 11.10168 -0.25694 2.914503 114 0 

13 -442 -455.827 35.05476 31 0.681721 3.115981 14485.9 311.6327 1.455441 3.123077 1100 0 

14 -411 -494.363 3706.34 194 0.0036 1.459702 8352.52 358.6981 -0.64366 2.468081 1238 1 

15 -385 -430.618 1510.693 170 -1.13711 3.717644 11185.91 319.455 0.672517 1.992163 872 1 

16 -394 -453.314 2552.666 173 -0.76474 2.513102 7383.64 359.4012 0.082959 2.093898 796 1 

17 -478 -489.757 37.76601 29 0.204112 2.333488 186.2932 45.93933 -0.27533 2.263785 915 0 

18 -451 -473.034 30.23628 32 0.528525 3.262211 39.96239 22.94495 0.162246 1.63121 818 0 

19 -479 -495.491 78.07341 32 0.051247 1.654391 10483.37 359.9615 2.199334 6.027944 1008 0 

20 -462 -488.841 52.49726 41 1.29678 4.294829 46.91892 35.24963 0.67722 3.11346 684 0 

21 -511 -543.959 973.7256 97 -0.64959 1.666619 111.8418 44.81323 0.35917 2.066272 122 1 

22 -521 -555.523 388.3599 87 -0.19081 1.845874 2537.601 131.8744 0.539479 1.396659 1108 1 

23 -429 -444.929 52.71275 38 0.239094 2.952003 133.0801 38.83667 0.475647 1.631656 926 1 

24 -444 -461.766 94.40747 36 0.197591 1.938721 84.15629 31.84387 0.455939 1.949709 1280 0 

26 -457 -487.138 397.8268 100 -1.32039 4.427495 983.5189 95.27893 0.220116 1.579562 727 1 

27 -491 -504.203 112.7375 46 -0.93423 3.64336 656.345 93.86719 1.347638 3.469264 1009 0 

28 -518 -526.565 34.79432 21 -0.62108 2.88111 21.67721 17.93518 0.309644 1.760684 315 0 

29 -577 -584.667 50.33333 14 0.333067 1.5 9.271475 6.069946 0.169748 1.5 3 0 

… … … … … … … … … … … … … 

2000 -473 -484.459 56.17761 33 -0.57027 3.172882 68.97311 31.5033 0.888269 2.553791 988 0 
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slightly higher accuracy (92.85%±1.8) compared to LR 

(92.75%±1.6). But LR has lower variance than DT during the 

ten rounds cross validation. The reason is that LR is intrinsically 

simple and is also robust to data noise. It is less prone to over-

fitting.  

Next, we compare their sensitivity and specificity. The results 

are shown in Table 3. Sensitivity quantifies the avoiding of false 

negatives while specificity quantifies the avoiding of false 

positives. False positive detection and false negative detection 

have different economic consequences. When a static tag is 

incorrectly identified as moved tag, it is called the false positive 

RFID read. The warehouse management system cannot 

distinguish it and assume the tags have been loaded to the truck. 

Consequently, incomplete consignments will be sent to the 

retail store, which may incur the risk of stock out in the worst 

case. By contrast, when a moved tag is incorrectly identified as 

a static tag, the warehouse management system will send excess 

shipments to the retail store, which may cause surplus of the 

inventory. From a practitioner’s point of view, the false positive 

RFID readings can lead to more serious problem. Therefore, 

classification approaches with the higher specificity are 

preferred. 

     As shown in Table 3, all of the three classification methods 

show higher specificities than their sensitivities. The specificity 

of LR is 92.9% which is 0.3% higher than its sensitivity. DT 

performs slightly worse than LR with specificity 0.1% higher 

than its sensitivity. SVM yields best result in terms of 

sensitivity (93.9%) and specificity (96.7%). These results are 

also supported by their receiver operating characteristic (ROC) 

curves as shown in Fig. 9. The ROC curve is used to visualize 

 
 

Fig. 8.  Performance comparison among different machine 

learning algorithms 
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Table 3  

Confusion matrix of different machine learning algorithms 

Logistic regression 

                           Predicted                            

True 

 

 

Moved [%] Static [%] 

Moved 92.6 7.4 

static 7.1 92.9 

SVM 

                            Predicted                            

True 

 

 

Moved [%] Static [%] 

Moved 93.9 6.1 

static 3.3 96.7 

Decision tree 

                           Predicted                            

 

True 

 

 

Moved [%] Static [%] 

   

Moved 92.5 7.5 

static 7.4 92.6 
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the performance of a binary classifier as the discrimination 

threshold varies. The area under the curve (AUC) measures 

how well the classifier distinguish the moved tags from the 

static tags. After ten rounds of cross validation, the ROC curves 

are obtained for the three machine learning algorithms. Their 

AUC values of LR, DT and SVM are 0.976, 0.949, and 0.985 

respectively. SVM still has the best performance in terms of 

AUC. The results also indicate the AUC value of LR is larger 

than that of DT, even though the accuracy of DT is higher than 

LR. The explanation for that is the overall accuracy is computed 

at the discrimination threshold value of 0.5, while ROC is 

computed at all possible threshold values. Therefore, ROC 

curve gives the more comprehensive comparison. LR shows 

better discrimination ability than DT to correctly identify the 

tags in this case.  

     Note that the percentage of the static tag incorrectly 

identified as moved tag is lower than that of the moved tag 

incorrectly identified as static tag for all the three classifiers. 

The false positive percentage and the false negative rate of LR 

are 7.1% and 7.4% respectively. The false negative percentage 

of DT shows 0.1% higher than its false positive percentage. 

While, SVM almost reduces the false positive percentage by 

one half compared to LR and DT. This result reveals that the 

moved tag is more likely to be incorrectly classified than the 

static tag. The noisy features of moved tags contribute to this 

result. When the moved tags pass through the portal, their RSS 

values and phase shifts change continuously. The RFID 

readings of the moved tags tend to have more noise than the 

static tags which have a relatively constant RFID reading. As a 

result, the statistical features extracted from RSS and phase 

shift are expected to be noisy for  moved tags.  

     The experimental results above indicate that all of the 

machine learning algorithms identify false positives with high 

accuracy. These results are also supported by their 

corresponding ROC curves. Moreover, Table 3 shows that all 

of the machine learning algorithms have higher specificities 

than sensitivities, which implies that they discriminate false 

positives more effectively. From the prospective of economic 

consequence, false positives may lead to the risk of stock out in 

the worst case. Therefore, the practitioner in supply chain can 

benefit from the proposed method. 

7. Conclusion and future research 

     In this paper, a new method by extracting features from RSS 

and phase shifts of received RFID signal for automatic 

detection of false positive RFID readings is proposed. Machine 

learning algorithms are applied to distinguish the moved tags 

from the static tags which appear in the read range of the RFID 

reader by accident. Our method is evaluated in a smart factory 

built by SPU with cooperation of KDL in NTNU. The results 

demonstrate that our methods achieve an average accuracy of 

93%. 

     Previous researches focus on the use of extra hardware and 

sliding-window approach. Nevertheless, additional hardware 

can incur unnecessary cost. The sliding-window approach 

mainly relies on the counts of RFID reads and the 

corresponding timestamps to detect the false positives. In 

contrast to these approaches, we instead extract much more 

features from RFID data and apply machine learning algorithms 

to distinguish the false positives. Compared to the previous 

approaches, our method is cost effective and leads to better 

performance. 

     The main limitation of our study is the volume of RFID data. 

In the future, more data samples will be collected so as to cover 

as many variants of RFID readings as possible. Since a large 

volume of data can provide greater insights than any simulated 

data or laboratory experiments, our method can be evaluated 

more comprehensively and thoroughly.  

     Now only statistical features are utilized to build the 

classification model. Further studies will also extract additional 

features from RFID signals using wave packet decomposition 

to strengthen the performance of our method. It is reasonable to 

take more features into account, which can yield a high degree 

of accuracy.  

     Currently, traditional machine learning models are 

constructed to identify the false positive RFID readings. With 

the increase of data samples and extracted features, more 

advanced and efficient supervised learning algorithms are 

probably able to achieve better classification accuracy. 

     Finally, even though the proposed method is used to detect 

the false positives at the shipment dock doors equipped with 

RFID system, there are much more fields of applications that 

need to solve the problem of false positive reads, such as RFID 

enabled self-checkouts and the monitoring of misplaced goods. 

Our proposed method can be transferred to these new areas to 

deal with the same problem. 
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Highlights 

 This paper presents a classification method for detection of false positive RFID readings. 

 We collect RFID data from a joint factory built by NTNU and SPU. 

 We extract received signal strength (RSS) and phase rotations derived from the raw RFID 

data. 

 Experimental results demonstrate our proposed method achieves satisfactory accuracy. 

*Highlights (for review)




