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Abstract

We study the impact of fuel prices, emission allowances, demand, past prices, wind
and solar production on hourly day-ahead electricity prices in Germany over the
period from January 2015 until June 2018. Working within a linear regression, ARX-
EGARCH and quantile regression framework we compare how different pricing
factors influence the mean and quantiles of the electricity prices. Contrary to the
existing literature we find that short-term price fluctuations on the fuel markets and
emission allowances have little effect on the electricity prices. We also find that day-
of-the-week as well as monthly effects have significant impact on the electricity
prices in Germany and should not be ignored in model specifications. Three main
factors are found to drive extreme prices: price persistence, expected demand and
expected wind production. Our findings contribute to understanding of extreme price
movements, which can be used in pricing models and hedging strategies.
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1. Introduction

The liberalization of the power market in Germany has introduced competition and
increased market participants’ exposure to risk. In the new market structure, the extreme
electricity price volatility can be higher than for commodities or stocks. Coupling to the price
risk, the market participants face risks associated with unexpected outage, fluctuation in
demand, fuel price and emission allowances. The expansion of renewable energy in Germany
and its volatility in production has increased the day-ahead electricity price variance even
further (Jacobsen and Zvingilaite 2010; Green and Vasilakos 2010). Hence, an understanding
how the fundamental drivers of electricity price affect the electricity price is necessary in order

to manage the risks involved in the market.

Electricity pricing exhibits several intrinsic features, which are unique in comparison to
the prices of commodities such as gas and oil. Since electricity is not storable, and is also
influenced by transmission constraints, electricity market is organized in a more complicated
way than market for other commodities. For a typical commodity, there are two main markets:
a forward market and a spot market. The main difference between market for electricity and
market for other commodities lies in the spot market. The electricity markets which are
somehow equivalent to the spot market of other commodities are the day-ahead market and the
intraday/balancing market. Focus of this paper is the day-ahead market. For reader interested

in intraday market we recommend an excellent article by Kiesel and Paraschiv (2017).

Furthermore, the electricity price exhibits both volatility clustering and large spikes.
The possibility of extreme price movements increases the risk for the market participants.
Hence, modelling the probability of extreme prices can be more important than the expected

values (Bunn et al, 2016, Hagfors et al, 2016b). In this paper we analyze how electricity price



reacts to fundamental variables, with focus on wind and solar production, using both an ordinary

and a quantile regression.

The response of electricity price to wind and solar production has been studied
extensively for various markets, for example Australia (Worthington and Higgs, 2017),
Denmark (Jonsson, Pinson and Madsen, 2010), Great Britain (Green and Vasilakos, 2010),
Germany (Ketterer, 2014; Paraschiv et al, 2014; Ziel, Steinert and Husmann, 2015), Italy (Clo,
Cataldi and Zoppoli, 2015; Sapio, 2019), New England (Martinez-Anido, Brinkman and
Hodge, 2016), and many others, for a review see Wirzburg, Labandeira and Linares (2013) and

Dillig, Jung a Karl (2016).

These studies are interested in an average impact of wind and solar production on price.
However, this is not sufficient for the purpose of risk management and related applications.
Jonsson, Pinson and Madsen (2010), who conclude that “It is quite obvious that the spot prices
are not Gaussian distributed and therefore it must be deemed highly unlikely that models
constructed with least squares techniques will have Gaussian residuals. Prediction intervals for
such models should therefore be estimated using other techniques. In fact the distributions are
so far from parameterized distributions that it seems reasonable to conclude that non-parametric
approaches, like for instance quantile regression, will return the most reliable prediction
intervals.” In accordance with this recommendation, we complement the linear regression with
an ARX-EGARCH model that allows for innovations to follow a very flexible distribution that
accounts for potential heavy-tails and we also utilize quantile regression that allows us to study
the impact of wind production, solar production, and fundamental factors on the whole

distribution of electricity price in a non-parametric way.



Quantile regressions have been applied in financial risk management and recently in
energy market studies: household energy consumption (Kaza, 2010), electricity demand (Do et
al, 2016a; He et al, 2019), oil prices (Lee and Zeng, 2011) and CO- emission allowance price
(Hammoudeh et al, 2014). Quantile regression has been successfully applied also to electricity
price forecasting, see Jonsson et al. (2014), Nowotarski and Weron (2014), Nowotarski and
Weron (2015), Juban et al. (2016), Maciejowska and Nowotarski (2016), Moreira, Bessa and
Gama (2016), Maciejowska et al (2016), Bello et al. (2017), Liu et al (2017), Mosquera-Lopez
et al. (2017), Uniejewski, Marcjasz and Weron (2018). Since the focus of our paper is not on
forecasting, reader interested in electricity price forecasting can see Weron (2014), Uniejewski,
Nowotarski and Weron (2016), Hong and Fan (2016), Nowotarski and Weron (2018) and Ziel

and Steinert (2018).

Papers most closely related to our work are Bunn et al (2016) and Hagfors et al (2016).1
They both study impact of several fundamental factors, mainly fuel prices, on UK electricity
price. However, neither of these two studies include wind and solar production in their analysis.
Our in-sample approach, allows us to study in detail impact of various variables, including wind
and solar production, on the distribution of hourly electricity price in Germany over period 2015
—2018. We make several contributions to the understanding on the drivers of electricity prices
across quantiles. We show that short-term price fluctuations on the coal, Brent oil, natural gas
and emission allowances (EUA) markets does not have impact on the German day-ahead
electricity prices. The role of the past production of electricity from renewable resources of
wind and solar had not been research is such depth before. We find that extreme (low and high

alike) electricity prices are not only persistent but that they are at least partly driven by wind

L A brief conference paper of Hagfors et al. (2016) is more closely related to our study, but our analysis is much
more detailed in terms of models specifications, models employed, discussion and we utilize new data which have
no overlap with their dataset.
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production, and particularly wind production drives low prices during night sessions. Lastly,
we also control for the weekday effects, weekly seasonality in prices, holiday effects, day-light
seasonality, and long-term seasonality using monthly dummies and it turns out that all seasonal

effects are important drivers of electricity price and should not be neglected in pricing models.

Rest of this paper is organized as follows: Section 2 provides an overview of the German
electricity market; Section 3 discusses the relationship between renewables and extreme prices;
Section 4 describes the models while Section 5 describes data used in this study. In Section 6

we present our key results and the final section concludes.

2. The German electricity market

The German electricity market was fully liberalized in 1998. In the liberalization
process eight utilities merged into four utilities: RWE, E.ON, Vattenfall and EnBw Energie.
These four vertically integrated utilities were responsible for the supply, transmission and
balancing of electricity. Since the liberalization was considered to be progressing too slowly, a
directive was issued by the European commission establishing an unbundling policy, and the
four utilities then sold a majority stake in their transmission share to third parties. Today, there
are still four large electricity generators and four transmission companies, but they act
independently. The market is liberalized both for the supply and retail electricity markets. The
German market is considered a competitive environment although there is some degree of

market power (Janssen and Wobben, 2008).

The supply and demand curves are important components for understanding the
electricity market. Figure 1 illustrates the Merit Order curve as a sorted short-term marginal
cost curve of electricity production; the renewables have the lowest marginal cost, followed by

nuclear energy, lignite, hard coal, natural gas and oil power plants. As depicted in Figure 1 the
4



short-term marginal costs consist mainly of fuel and CO: costs. This suggests that an increase
in the marginal cost of the input variables will lead to an increase in the electricity price. The
demand curve is inelastic, meaning that demand remains almost unchanged with changes in

electricity price (SensfuB et al, 2008).

The intersection between the supply and demand curves determines the clearing price
for electricity. Every day, a day-ahead auction for each of the 24 hours takes place at 12 p.m..
Each hour is dominated by a different type of power plant (Murray, 2009); conventional power
plants remain the price setting utilities in the German market. Normally, nuclear energy, lignite
and coal power plants cover the base load, while gas power plants cover the peak load (Sensfufl

et al, 2008).

Renewable production was given priority access to the grid and has nearly zero marginal
costs. As a result, renewable production enters at the base of the Merit Order curve and shifts
the curve to the right, so that cheaper conventional power plants set the price (Zachman, 2013).

This means that additional renewable infeed to the grid will reduce the electricity prices.

Emission cost Demand Demand
I uel cost Night Day

——— Demand \
Price A \

(day)

Price B
(night)

Marginal cost in EUR/MVWh

Must run
(wind, solar) d d

Electricity supplied to the wholesale market in MWh

Figure 1 A stylized example of the stepwise marginal cost function and demand function for
day and night.



3. Renewables and extreme prices

Lindstrom and Regland (2012) study electricity prices on six European electricity
markets and find that the frequency of extreme events is positively correlated with the amount
of renewable sources installed on the grid. On the electricity price market, extreme prices are
not only extremely positive prices, but also negative prices, which are not uncommon.
Compared to financial and other commodity markets, this makes the electricity price market
unique. Extreme prices are not uncommon on the German electricity market studied in this
paper as well. In Figure 2 the upper panel shows continuous electricity price series (24 prices
for each hour of each day of a weak), while the lower panels show electricity prices for selected
hours (1 price for each day corresponding to a given hour). Sudden price upsurge and drops are
not uncommon, but it is also evident that the price series differ with respect to a given hour. For
example, looking at the middle panel of Figure 2, the price series is more volatile than the price
series in for the bottom panel of Figure 2 (also see Table 2 for comparison of summary
statistics). Detailed examination of our data shows that the negative prices occur more often
during the night than during the day, while price spikes appear during the day. Furthermore
Figure 3 shows how extreme prices are distributed between various hours. The upper panel
show the distribution of negative prices, while the middle and bottom panels show the
distribution for prices below the 5™ and above the 95" quantiles. A close inspection of our data
reveals that similarly as in Lindstrom and Regland (2012) increasing share of electricity
production from renewable sources is associated with higher occurrence of extremely low
prices (below the 5™ quantile). At the same time, higher share of production from renewable

sources is associated with lower occurrence of extremely high prices (above the 95" quantile)?.

2 The pairwise correlation between exceedance of prices below the 5™ percentile (1 if yes, 0 otherwise) and the
share of energy produced from renewable sources is at 0.40. The corresponding correlation for the exceedance of
prices above the 95™ percentile (1 if yes, 0 otherwise) is -0.21.
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Figure 2 Electricity price in the German market

The reason behind negative electricity prices is that must-run inflexible utilities, like
nuclear power plants, are willing to pay the consumer because the cost of shutting down exceeds
the costs of accepting the negative price (Keles et al. 2012). Additionally, a high level of solar
and wind generation with essentially zero marginal costs leads to negative electricity prices

when coupled with lower demand.

On the other hand, electricity price spikes can occur for many different reasons, for
instance unpredicted generation outage or transmission failures. Another reason is high demand
coupled with low renewable production, which results in additional firing of power plants

higher on the merit order curve, pushing the prices up.
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Figure 3 Distribution of extreme prlces over different time of the day

4. Modeling framework

We model electricity prices on the German market using a linear regression model to
establish baseline results and subsequently we use a quantile regression framework because it
allows us to examine the tails of the distribution of electricity prices, i.e. extreme upward and
downward prices that can be regularly found for the German electricity market. In the previous
Section 3 as well as from the next Section 5 it is evident, that electricity prices on the German
market show distinct features for each of the hours during the day. Therefore each model is
estimated for each hour of the day.

The baseline results are established within the linear regression model estimated via

ordinary least squares. More specifically, we estimate the following model specification:

ﬁo + ﬁl 1t ﬂz 7t ﬁsDF + ﬂ4 DA + ﬂ5AC a7t ﬁeAG a7t ﬂ7AB’[ a7t ﬂSAEt—l +
1
ﬁQWFt + ﬂlOSFth + /3118R1-1 + Zﬂj+llDayt,j + Zﬂkﬂ?Montht,k + ﬁZQHOIt + gth )
j=]_ k=1



The electricity price P{" at day t and for hour h is explained via the electricity price for
the same hour of the previous day, Pt1" and of the previous weak P¢7". This lag-structure should
capture most of the systematic short-term seasonal patterns. The DF¢" is the forecasted demand
for day t (it is therefore exogenous) and hour h, while DAw1" is the actual consumption from the
previous day. The changes on the energy markets are captured by ACt.; for coal, AGt.,1 for
Natural gas, AB1 for Brent oil and AEy; for the market of the European Union Emission
Allowances. Expected production of renewables for day t is captured by WF{" and SF+", while
the actual share of energy production using renewables resources (wind and solar) is
incorporated into the SR variable. From evening 22:00 until morning 05:00, the electricity
production from solar energy sources is minimal, therefore SF" is excluded from specifications
for these hours. Finally, we also use a set of control variables, namely day of the week dummies
Day:j (Wednesday excluded), monthly dummies Monthj (July excluded) and a variable
controlling for the upcoming national holidays Hol:.

We complement the regression analysis by employing an ARX(7,0)-EGARCH(1,1)
model which is defined in Appendix A. The motivation for considering an ARX(7,0)-
EGARCH(1,1) model is twofold. First, in the ARX(7,0)-EGARCH(1,1) model the innovations
are allowed to follow a distribution that accounts for possible skewness and kurtosis making it
potentially more useful when extreme observations are of concern. This might be indeed the
case with electricity prices, that due to demand surge or supply shocks can suddenly increase
or increase by considerable magnitude. Second, within an ARX(7,0)-EGARCH(1,1) model we
account for the serial dependence of the innovations directly and also take into account possible
conditional heteroscedasticity. Interestingly, as results in Appendix A show, this modeling

choice is well supported by the data®, but as qualitatively the results do not differ much, in the

3 The residuals from ARX(7,0)-EGARCH(1,1) show no traces of serial dependence and all the parameters of this
model are significant.
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main body of the manuscript we present results from the linear regression only, while the
interested reader finds ARX(7,0)-EGARCH(1,1) results in Appendix A.

To study the drivers behind extreme price movements we work within a quantile
regression framework. We assume that the price P{" is related to a set of exogenous explanatory
variables. Let P" denote a (T x 1) vector of prices for hour h, with T denoting the number of
observations (t=1, 2, ..., T). k — 1 exogenous variables are stacked in a (T x k) matrix X that
also includes a constant, while B(z) is a (k x 1) vector of unknown parameters, &(z) the (T x 1)
vector of disturbances and z a quantile (0, 1). Quantile regression model can be formulated as:
P" = X"B(r)+¢(7) (2)
while assuming that z-th quantile error term conditional on X, B(z) is equal to 0. Coefficients
are estimated by minimizing the weighted sum of absolute deviations between the electricity
price Pi" and a linear combination of variables:

ﬁ(r) =arg mikn{ Z T|Rh —XIB(T)|+ Z (1—T)|Rh —X:B(r)|} (3)

A()eRE | tR">X[p(r) tR"<X[P(r)

The vector X;" contains all our explanatory variables defined in (1). We estimate equation (3)
for t=0.05, 0.25, 0.50, 0.75, 0.95, while the optimization of equation (3) is performed via the
Frisch—-Newton interior point algorithm (see p. 289 in Portnoy and Koenker 1997; for details),
while to address the quantile crossing issue, (3) is estimated simultaneously across all quantiles,
given the non-crossing quantile restriction along the lines of eq. 2 in Bondell et al., (2010). The
significance of the quantile regression coefficients is calculated using a fixed block length
bootstrap procedure, where given the potential weakly seasonality, the block length was set to

7 and 1000 bootstrap samples were reproduced.
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5. Data
5.1 The electricity price

This paper uses hourly day-ahead German electricity prices P{" (the Physical Electricity
Index) provided by the European Energy Exchange market (EEX), where t is a time index which
denotes a given day (t =1, 2, ...) and h is an index that denotes a given hour, h=0, 1, ..., 23.
We choose to study the day-ahead prices for a given hour rather than intraday prices because
they represent a larger share of the trading volume. The electricity price dataset covers the
period from January 1% 2015 to May 31% 2018. Given that we prices are settled for each hour

within a day, this lead to 29929 price observations on 24 time series®.

Some earlier studies applied logarithmic transformation to the electricity price series in
order to achieve variance stabilization (Conejo et al, 2005; Bunn et al 2016; Hagfors et al
2016a). Karakatsani and Bunn (2010), on the other hand, argue that logarithmic transformation
is not relevant in the electricity market, because it conceals detailed statistical properties and
induces error effects. Further, logarithm can be applied only to positive numbers and the
electricity price data also contains negative prices. Also, in this study we focus also on modeling
extreme prices that would be largely mitigated using the logarithmic transformation. Finally,
the logarithmic transformation is justified if extreme prices would be higher than the average
or median of the price in order of several magnitudes and this is not the case of electricity prices

in Germany. We therefore use the price data directly rather than using the logarithm of prices.

The full and sample price series are visualized in Figure 2, while in Table 1 we present
descriptive data on price series. In each row, summary statistics present the price data for given

hour. As already noted in previous Section 3, the price series exhibit quite distinct price paths

4 The overall number of observations in not even due to the day-light saving times and occasional missing
observation.
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that are further amplified in Table 1. The price is peaks twice, during morning from 08:00 to
09:00 and evening 19:00 to 20:00. During the evening session, negative prices are less likely

as indicated by lower price skewness.

A high level of persistence of the price series would indicate a possible presence of a
unit root, as we latter work with the 24 price series within an OLS and quantile regression
framework, such issues would need to be addressed properly. In Table 1 we indicate the
autocorrelation at first, fifth and seventh lag. The autocorrelation coefficients range from 0.47
to 0.68 at the 1° lag, they tend to decline to a range from 0.04 to 0.38 at the 5™ lag, and are up
again at the 7"" lag at a range from 0.11 to 0.57. These results suggest two important features of
our series that are distinct from price data of financial assets: i) the time series are less persistent,
i) the time series show weakly price seasonality. The present of a seasonal-unit root was tested
using three standard tests of Osborn et al., (1988), Hylleberg et al., (1990), and Canova and
Hansen (1995). They each indicated an absence of a seasonal-unit root. We therefore study each

price series in their level.
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Table 1 Descriptive statistics of the electricity price and demand for given hours
Electricity price, P{" [EUR]

Total demand, DA [MWHh]

Hour Mean SD Min Max Skew.p*(D)p*(B)pN7) Mean  SD Min Max Skew.p"(1) p*(5) p"(7)
00:00-01:00 25.8610.09 -79.94 57.01 -2.20 0.47 0.11 0.18 46371 44603383061699 0.20 0.78 0.45 0.81
01:00 - 02:00 23.9810.57 -83.00 51.04 -2.35 0.52 0.08 0.17 44437 44343263859909 0.19 0.77 0.44 0.79
02:00-03:00 22.6511.60 -83.03 53.05 -2.95 0.54 0.07 0.11 434801 44563161558463 0.19 0.78 0.44 0.79
03:00-04:00 22.0710.92 -83.03 48.82 -2.46 0.52 0.09 0.17 43511 5038 057893 -1.43 0.64 0.32 0.69
04:00 - 05:00 22.4910.74 -83.04 51.52 -2.49 0.54 0.11 0.20 44543 48103145558668 -0.02 0.75 0.36 0.82
05:00 - 06:00 24.4910.44 -83.02 56.06 -2.61 0.54 0.12 0.26 46830 57543185460979 -0.30 0.63 0.16 0.83
06:00-07:00 30.3113.44 -83.01 91.21 -2.13 0.48 0.06 0.44 52265 85283275868258 -0.56 0.48 -0.07 0.83
07:00-08:00 36.8816.39 -80.00163.52 -0.46 0.47 0.04 0.53 571361 10056 33014 73738 -0.62 0.43 -0.12 0.83
08:00-09:00 38.9916.50 -79.96153.67 -0.40 0.47 0.06 0.50 600941 96553432376304 -0.70 0.41 -0.12 0.82
09:00 - 10:00 37.5015.26 -76.02150.10 -0.09 0.48 0.11 0.46 61582 85483743076706 -0.72 0.41 -0.10 0.81
10:00 - 11:00  35.4915.11 -67.08151.07 0.08 0.50 0.14 0.43 63073 808640168 77791 -0.73 0.42 -0.10 0.79
11:00 - 12:00 34.7014.86 -81.95135.00 -0.02 0.52 0.16 0.40 64325 77234194578207 -0.72 0.43 -0.10 0.79
12:00 - 13:00 32.1814.84 -76.09121.58 -0.41 0.51 0.16 0.37 63822 77004106578327 -0.70 0.43 -0.11 0.79
13:00 - 14:00  30.4916.23-100.06117.68 -1.13 0.50 0.14 0.38 62695 815239664 77079 -0.69 0.44 -0.12 0.79
14:00 - 15:00  29.7516.70-130.09112.21 -1.36 0.50 0.16 0.43 61357 82503892276720 -0.67 0.44 -0.12 0.79
15:00 - 16:00  30.9215.84 -82.06117.18 -0.49 0.55 0.20 0.49 60466 81633897476839 -0.64 0.45 -0.09 0.80
16:00 - 17:00  32.8315.34 -76.00120.00 0.35 0.61 0.29 0.54 59896 78793851578483 -0.54 0.49 -0.02 0.81
17:00 - 18:00 38.0716.11 -6.00142.78 1.48 0.68 0.38 0.57 60744 7948 3326179063 -0.36 0.57 0.15 0.82
18:00 - 19:00 41.4315.02 -1.21143.09 1.75 0.63 0.33 0.51 61277 76333904477741 -0.28 0.64 0.24 0.83
19:00 - 20:00 41.8913.04 1.80124.94 1.17 0.60 0.26 0.43 60764 72964236276186 -0.27 0.64 0.22 0.84
20:00-21:00 38.2910.57 -4.94109.92 0.48 0.54 0.21 0.38 58257 64304172572594 -0.28 0.63 0.15 0.83
21:00 - 22:00 34.62 9.24 -38.19 78.98 -0.71 0.52 0.19 0.33 55744 55893967069863 -0.25 0.63 0.14 0.82
22:00-23:00 32.84 8.78 -49.98 66.17 -1.10 0.51 0.22 0.26 53412 49703807968267 -0.06 0.71 0.30 0.81
23:00-24:00 27.84 9.90 -70.09 56.61 -3.02 0.48 0.12 0.15 49520 46243577664729 0.10 0.76 0.41 0.80

Note: SD denotes sample standard deviation, p*(.) is the value of the autocorrelation coefficient at a given lag.
Using the procedures developed in Hyndman et al., (2018), we used the Osborn et al., (1988), Hylleberg et al.,
(1990), and Canova and Hansen (1995) tests of weakly seasonal unit-root for each of the series. We omit the
explicit reporting of results of these tests as they all indicated no seasonal unit-root in hourly electricity prices,
except for series denoted with symbol T where the Canova and Hansen (1995) test indicated that one seasonal
differencing is necessary to remove the seasonal unit-root.

5.2 Actual and forecasted energy demand

As previously discussed, demand and supply are important in the electricity price
formation process, and their components should be included in our model. The supply side is
determined by several factors: fuel for the power plants, emission allowances and production
of renewable energy (Paraschiv et al, 2014). Electricity consumption represents the demand
side. As the demand is almost inelastic, the day-ahead electricity prices are strongly affected by
unscheduled plant outages (Bunn et al, 2013). A clear understanding of the underlying factors
is important in developing insights into the electricity price. The demand variable will be
represented by the aggregated electricity consumption in Germany, DA". As with the price time

series, the demand is positively autocorrelated with even more profound seasonal pattern.
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However, in almost all price series the seasonal unit-root tests indicated no presence of the unit-
root®. To proxy for the expected demand, we use the day-ahead total load forecast obtained
from the Transparency Platform operated by the European Network of Transmission System
Operators for Electricity (ENTSO-E, 2018), DF{". For markets where system operator does not

provide load forecast, a model such as Do et al. (2016b) could be used.

5.3 Renewable energy

The biggest share of renewable production in Germany consists of wind and solar
power. Moreover, production of these two renewables is price inelastic. We therefore focus
only on these two renewables in our paper and use the term renewables interchangeably with
wind and solar power. Woo et al. (2011) and Keles et al. (2013), employ econometric techniques
to investigate the impact of wind on the electricity price in the Netherlands and German

markets. Both papers find that wind production has reduced the electricity prices.

Installed capacity and production from renewable sources have increased in the recent
years. We therefore expect the production of energy from renewables to have a negative impact
on the electricity price in Germany. For illustration purposes, the following Figure 4 shows the
time evolution of the share of wind and solar energy production on the overall electricity
production. The average value over our sample period is at 0.22, but occasionally it reached

values over 0.50, thus making it a potentially important price factor.

5> An exception was found for three price series, where the Canova and Hansen’s (1995) test indicated a seasonal-
unit root, but the remaining tests no.
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Figure 4 Share of the wind and solar energy production

The summary statistics presented in Table 2 cover production forecasts for electricity
generated from wind and solar sources (ENTSO-E, 2018). Using forecasts is advantageous in
a similar fashion as using demand forecasts: the forecasts are exogenous with respect to the
day-ahead price data, the forecasts are publicly available and manifest market participant’s
expectations that are not captured in the actual lagged production. The descriptive statistics
reported in Table 2 confirm some stylized facts about energy production from wind and solar
renewable sources. For the wind energy, the hourly price series are most of the time quite
similar, while for the solar energy the price path show ‘typical’ features of no production during
night, while the production peaks around noon. Compared to the consumption (demand), in

production, there is no weakly seasonal effect to be expected, nor visible in the autocorrelation
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structure. Using the unit-root tests and the Sul et al., (2005) version of the Kwiatkowski et al.,

(1992) stationarity test the null of no unit-root was also not rejected.

Table 2 Descriptive statistics for wind and solar forecasts

Wind production forecast, WF{" [MWh] Solar production forecast, SF{" [MWh]

Hour Mean SD Min Max Skew.p"(1)p"(5)p(7) Mean SD Min Max Skew.p"(1) p"(5) p’(7)
00:00-01:00 106427769 73840938 1.14 0.59 0.20 0.17 - - - -- - - - -
01:00 - 02:00 106617802 57639861 1.14 0.59 0.20 0.18 - - - -- - - - -
02:00 - 03:00 106137809 57438827 1.13 0.59 0.20 0.18 - - - -- - - - -
03:00-04:00 104667774 038842 1.12 0.59 0.20 0.18 - - - -- - - - -
04:00 - 05:00 104247754 73038383 1.11 0.59 0.20 0.18 - - - -- - - - -
05:00 - 06:00 103367760 84638305 1.12 0.60 0.20 0.18 41 94 0 1663 5.51 0.73 0.70 0.68
06:00-07:00 102327802 78138139 1.13 0.60 0.20 0.19 381 578 0 2132 1.39 0.95 0.92 0.90
07:00-08:00 100927892 61838046 1.15 0.61 0.21 0.19 16261763 0 6245 0.80 0.93 0.87 0.85
08:00 - 09:00 99298031 41237995 1.16 0.61 0.21 0.19 41083338 412149 0.44 0.89 0.79 0.77
09:00 - 10:00 98738234 31438126 1.15 0.61 0.20 0.18 72694750 28318356 0.28 0.85 0.71 0.69
10:00 - 11:00 99548408 29238602 1.14 0.61 0.18 0.16 101415800 73323490 0.19 0.82 0.66 0.63
11:00 - 12:00 101018533 29338990 1.12 0.61 0.16 0.14 121626503111626908 0.14 0.82 0.64 0.61
12:00 - 13:00 102718595 33439191 1.10 0.60 0.15 0.13 130916946119028651 0.11 0.83 0.65 0.62
13:00 - 14:00 104018584 36638933 1.08 0.60 0.14 0.11 128977153 98228817 0.12 0.84 0.68 0.66
14:00 - 15:00 104458486 43638778 1.07 0.59 0.13 0.11 116977149 62027511 0.14 0.87 0.73 0.71
15:00 - 16:00 104148347 38138879 1.07 0.57 0.13 0.11 96296851 17824753 0.17 0.90 0.79 0.77
16:00 - 17:00 103858201 39839164 1.08 0.56 0.14 0.11 71096016 720402 0.26 0.92 0.84 0.82
17:00 - 18:00 103608060 46339619 1.09 0.56 0.16 0.13 45694499 014735 0.40 0.94 0.87 0.86
18:00 - 19:00 103297938 54540062 1.10 0.57 0.18 0.16 23622665 0 8873 0.60 0.95 0.90 0.90
19:00 - 20:00 103197855 61040423 1.12 0.58 0.21 0.19 8801176 0 3921 1.01 0.97 0.93 0.93
20:00-21:00 104107818 65140605 1.13 0.58 0.23 0.20 197 344 0 2130 1.76 0.95 0.92 0.91
21:00 - 22:00 105367757 67240514 1.13 0.59 0.23 0.20 12 56 0 1731 23.74 0.22 0.21 0.20
22:00-23:00 106677706 83340292 1.13 0.59 0.22 0.19 - - - -- - - - -
23:00-24:00 107037659 85539895 1.13 0.59 0.21 0.18 - - - -- - - - -

Note: SD denotes sample standard deviation, p*(.) is the value of the autocorrelation coefficient at a given lag.
Using the procedures developed in Hyndman et al., (2018) we used the Osborn et al., (1988), Hylleberg et al.,
(1990), and Canova and Hansen (1995) tests of weakly seasonal unit-root for each of the series. We have also
used the Sul et al. (2005) version of the Kwiatkovski et al. (1992) test indicated rejection of the null hypothesis of
a unit-root. We do not report results from these tests explicitly as for all series the results indicated no presence
of seasonal unit-root.

5.4 Market prices: Coal, Brent, Natural Gas, EUA

According to Sensful? et al. (2008) different means of electricity generation have distinct
fuel price dependencies; for example, coal power plants are dependent on coal prices and gas
power plants are dependent on gas prices. Mjelde and Bessler (2009) study two US electricity
markets and include uranium prices along with other fuel prices. Ferkingstad et al (2011) use a
cointegration approach on prices in Northern Europe and find that electricity prices are closely

connected with gas prices, while coal and oil prices are less important. However, Parashiv et al
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(2014) studies the German electricity price and finds that coal, gas and oil are all important
fundamental variables driving the electricity price, with coal price more important during off
peak hours and gas and oil prices important during peak hours. This finding is in line with
Murray (2009), who found that the relationship between fuel prices and electricity price is

depended on the marginal electricity price setting technology used in each specific hour.

Usually, nuclear power plants run at almost constant power for economic reasons, even
when the load is low (International Atomic Energy Agency, 1999). Nuclear power plants have
low marginal costs on the merit order curve. They have therefore very small impact on the
variation of electricity price. Coal and lignite are the primary fuels (45% in 2013) used to cover
the base load for the electricity market (AG Energiebilanzen, 2015). Unlike hard coal, lignite is
based on local distribution and there is currently no single market price for lignite. The coal
price is represented by a futures contract on the price of coal imported to northwestern Europe
via Amsterdam, Rotterdam and Antwerp. Unlike coal power plants, gas power plants are mainly
used to cover the peak load due to their greater flexibility to ramp up and down. In Germany,
gas is traded under contracts from Gaspool and NetConnect Germany (NCG). We choose to
use the NCG contracts because there is higher liquidity in this market. Production from oil
power plants forms a small fraction (1%) of Germany's total electricity production (AG
Energiebilanzen, 2015). QOil price has therefore a low impact on the merit order curve (Sensfuf3
et al., 2008). Further, oil consumption is dominated by the transport sector and industry.
However, the oil price might serve as a proxy for economic activity and transport fuel for coal
fuel. In this paper, the European Brent spot price is used to represent the oil fuel cost. Based on

the arguments above, we include coal, gas and oil prices in our model.
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The CO, markets are an attempt to increase investment in cleaner technology by fuel
switching to less carbon intensive power plants or reducing the use of carbon intensive power
plants. Both Fell (2010) and Parashiv et al (2014) find that the short-term influence of CO> price
on the electricity price is higher in off peak hours than in peak hours. This is because coal emits
twice as much CO- as natural gas. We therefore expect the CO- price to have a higher effect on

the electricity price during periods when coal power plants are the price setting technology.

The following Table 3 presents the summary statistics of the market prices of the Brent
oil, coal, natural gas and EUA. In line with the existing literature, the unit-root test rejected the
null of no unit-root in the level of the series. Therefore in the subsequent analysis, we use the
1%t differences as they the test was unable to reject the null of no-unit root. Note, that using these
market prices in level form is not advised as they are integrated of order one, while electricity
prices (dependent variable) is integrated of order zero. A linear combination would potentially

lead to a variable (within a linear regression model to residuals) that are integrated of order one.

Table 3 Descriptive statistics for the prices of Brent oil, Coal, Natural gas and EUA

Mean SD Min Max Skew. (1) p"(5) A7)

Panel A: Level series

Brent B: 53.53t 9.85 27.88 79.80 0.17 0.993 0.967 0.955
Coal C 69.187 16.49 43.40 96.65 0.08 0.998 0.989 0.984
Gas Gt 42.33% 8.23 26.38 66.31 0.02 0.993 0.965 0.953
EUA E: 6.94t 2.29 3.93 16.28 1.66 0.992 0.960 0.942
Panel B: Differenced series

Brent AB 0.02 0.98 -4.59 5.46 0.26 -0.081 -0.044 -0.003
Coal AC; 0.02 0.77 -6.20 11.95 2.63 0.062 0.014 -0.025
Gas AG; 0.00 0.87 -6.50 6.50 -0.14 0.036 -0.001 -0.023
EUA AE; 0.01 0.16 -0.93 1.10 0.47 -0.042 0.019 -0.061

Note: SD denotes sample standard deviation, pA(.) is the value of the autocorrelation coefficient at a given lag.
Symbol T denotes series where the Sul et al. (2005) version of the Kwiatkovski et al. (1992) test indicated rejection
of the null hypothesis of a unit-root.

18



6. Empirical results
6.1 Baseline results from linear models

Similar to the demand model, we generate a multiple regression model for the price.
The reason for using a separate equation is that each hour displays a rather distinct price profile,
reflecting the daily variation in demand, fuel costs and operational constraints (Chen and Bunn,
2010). Furthermore, extensive research on price forecasting has generally favored the multi-

model specification for short-term predictions (Chen and Bunn, 2010; Paraschiv et al., 2014).

Based on the description of the electricity market in Germany given in Section 2 and on
data availability, we estimated 24 separate linear regression models to estimate electricity prices
in Germany. To save space, Table 4 we reports estimated coefficients from Eq. (1) for four
selected hours of the day, results for the remaining 20 hours are available upon request. In order
to give a more comprehensive picture of results for all hours, we provide a graphic

representation on the estimated coefficient from the ordinary regression in Figure 5 and 6.
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Table 4 Baseline OLS results explaining electricity prices for selected hours
08:00-09:00  12:00 - 13:00  19:00 - 20:00 _ 00:00 - 01:00

Panel A: Variables of interest

Constant -1.632 3.968 -14.889" -15.964™"
Lagged price P 0.261™" 0.218™" 0.332" 0.175™"
Previous week's price Pe7 0.165™" 0.106™" 0.167" 0.085™"
Forecasted demand/1000 DF¢ 0.150™" 0.100™" 0.050" 0.020"
Lagged demand/1000 Da; 0.001 0.070™ 0.130™" 0.230™"
Lagged coal price return ACy -0.099 0.011 -0.06 -0.219
Lagged natural gas price return 4Gy 0.164 0.098 0.013 0.292
Lagged Brent oil price return ABv3 -0.348" -0.081 -0.018 0.076
Lagged EUA price return AEta -0.330 1.067 1.904 0.466
Wind production forecast/1000 WF; -0.240™" -0.240™" -0.220™" -0.230™"
Solar production forecast/1000  SF; -0.130"" -0.230™" 0.060

Panel B: Control variables

Monday Mon 4,597 6.517" 9.933™ 3.076™"
Tuesday Tue; 0.673 0.373 0.621 4,097
Thursday Thu -0.514 -1.100™ -1.251" -0.286
Friday Frig -1.651" -1.34™ -2.906™" -0.627"
Saturday Sat; -5.239™ -4.784™ -4.333™" -0.393
Sunday Sung -5.647" -4.019™ 0.771 -3.546™"
January Jan; 6.226™ -1.089 4.851" -2.473
February Feb 1.903 4,771 1.959 -3.839™
March Mar; 1.035 -3.948™ 2.674 -3.770™
April Apri 2.747" -0.544 1.433 -0.302
May May 1.550 -0.058 0.799 -0.51
Jun Juny -0.293 -1.360 -1.087 -1.621
August Augy -1.089 -1.347 0.362 -1.188
September Sepy 1.732 -1.946 2.804 -1.050
October Oct; 3.810™ -2.106 5.120™ -0.779
November Nowv; 6.043™" -1.356 4.563™ -0.004
December Dec: 3.681™ -2.520 4.322™ -0.971
Holiday Hol, -8.335™ -6.687" -2.046" -1.251
R2 0.747 0.721 0.711 0.678
1%t order autocorrelation of residuals 0.026 0.138 0.126 0.158
7™ order autocorrelation of residuals 0.074 0.111 0.162 0.116

Note: *, ™, ™ denotes significance of coefficients at the 10%, 5%, and 1% level. The significance of coefficients is

based on the estimation of standard errors of regression coefficients that are consistent even in the presence of
autocorrelated and heteroscedastic residuals, using the Newey and West (1994) automatic bandwidth procedure
with Quadratic spectral weighting scheme. Autocorrelation of residuals was tested using the Pefia and Rodriguez
(2002) test using the Monte Carlo version of Lin and McLeod (2006). R? denotes the coefficient of determination.
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Figure 5 Estimated OLS coefficients of price models across different daily hours: Lagged

prices and model fit
Note: The shaded area represents the 95% confidence interval around the estimated coefficients.
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Figure 6 Estimated OLS coefficients of price models across different daily hours: Demand and

production from renewable energy sources
Note: The shaded area represents the 95% confidence interval around the estimated coefficients.

Our results (see Table 4 and Figure 5) confirm the existence of persistence in the
electricity prices in Germany. The coefficient (at P.1) ranges from 0.157 (for the 23:00 to 00:00
period) to 0.357 (18:00 to 19:00). We have also introduced the lagged weakly price variable to
account for weakly seasonality. The coefficients (at Pi.7) was positive and significant for almost
all daily prices all models. Although price persistence of electricity prices is present across all
pricing equations, the size of the persistence differs across the day, as higher persistence (daily
and weekly) is found late afternoon (from 15:00 to 20:00). These results suggest that prices late
afternoon, when the demand peaks are more predictable. Supply side explanation for this effect

would be that later afternoon production runs closer to the overall available production capacity.
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Therefore sudden changes in demand have a relatively low effect on the supply side and thus

the electricity price.

Even though the demand is considered to be mostly inelastic (Sensful? et al, 2008), we
find, that the variation in the actual and forecasted demand is positively associated with next
day’s prices. However, the magnitude of the effect that actual and forecasted demand exert on
the prices over the day differs quite considerably. The forecasted demand is most important for
electricity prices in the morning (from 06:00 to 11:00), while actual one-day lagged demand in

the midnight (from 23:00 to 02:00).

The effects of renewables on German electricity prices are estimated using exogenous
terms for the total expected (forecasted) electricity production from wind and solar resources.
Coefficients on the forecasted electricity production from renewable resources are negative,
thus confirming earlier finding that increased production through renewables decreases
electricity prices. This effect can be attributed to the minimal marginal costs associated with

higher production.

The infeed from solar production has a lower impact on the electricity price than wind
production, which can be explained by higher total installed wind capacity compared to that of
solar sources (AG Energiebilanzen, 2015). We further observe that the solar production
coefficient is smaller (higher effect) during the day and almost zero as during the night, in

accordance with the solar production level.

The role of the wind production in setting prices declines during production peaks
mornings and late afternoon up until midnight. The possible explanation is that when the

demand for electricity is high, flexible gas power plants are required to cover the demand, which
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on the other hand have high marginal costs. Using the additional capacity of such high cost

power plants decreases the price lowering effect from renewables.

Price of coal, natural gas and Brent oil in their differenced form are statistically
unrelated to the electricity prices (see Table 4, results for remaining hours lead to the same
conclusion). This might seem to be surprising given the fact that energy prices are driving costs
for non-renewable energy sources (as well as opportunity costs for renewable energy sources).
Also European Union emission allowances have no relevant effect on the day-ahead electricity
prices. However, as we use price differences (due to the inability to reject the null of stationarity
of the price series) in the analysis, the reported result only suggest that short-term (daily)
changes in market prices on the right hand side of our model, does not lead electricity prices (in
level form) on the German market. This is in line with the fact how commodities are purchased
— contracts (and prices) are settled several months in advance, therefore daily changes should

in fact only limited effect on day-ahead electricity prices, which is what our results suggest.

We also included a set of control variables in a form of a dummy variables (see Table
4). The results indicate significant and relevant day-of-the-week effects and monthly effects.
For example, compared to Wednesdays, the average price on Monday during the peak hours
(19:00 - 20:00) is 9.93 EUR higher. While compared to July, prices for the same hour in October
are on average up 5.12 EUR. We can also observe that day-of-the-week and monthly effects

are more relevant during peak hours.
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6.2 Results from ARX-EGARCH model

We complement the linear regression results with those from the ARX(7,0)-
EGARCH(1,1) model. Fundamental variables show similar magnitude and significance as
those reported via the linear regression. Detailed results for selected hours can be found in
Appendix A. However, few new results are worth to mention. First, the inclusion of one to
seven daily price lags (not just one day and one week price lags) removed traces of serial
correlation in residuals, and also led to less pronounced day-of-the-week effects. Still, prices
during the weekend are lower compared to the benchmark of Wednesday’s prices. Second, the
residuals show signs of conditional heteroscedasticity and the presence of the sign effects that
vary with respect to the hourly price being modelled. For example, during the night, when
negative price shocks are more likely we observe a leverage effect, where negative price shocks
lead to an increase of volatility of higher magnitude than comparable positive price shocks. On
the other hand, during the production peak hours, when positive price shocks are more likely,

we observe the opposite effect (positive sign coefficient).

Overall, our models are able to explain the electricity prices better during the day,
particularly when demand is high (see Figure 5). We attribute this to the: i) stronger persistence
of prices during peak hours, ii) the stronger (and positive) effect of the demand, and iii) more
relevant seasonal effects. The impact of the renewable energy sources on the electricity price is
negative, i.e. higher expected production from wind and solar renewable sources leads lower
electricity prices. One explanation for lower model fit and smaller effects of fundamentals
during the night and off-peak hours is that prices are subject to extreme swings during the night
(see Figure 3), because of low demand and excess production from wind sources (see Paraschiv
et al., 2014). In the next section, we address this issue by studying how key fundamental drivers
effect the tails of electricity prices.
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6.3 Modeling extreme prices

Quantile regression enables us to estimate a set of regression lines, corresponding to
selected quantiles of the electricity price distribution. Using the quantile regression framework
allows us to compare results across different quantiles (and compared to the OLS estimators)
and thus observe potential asymmetric and non-linear effects on the electricity price. In the
following models, we report results on the 5", 25M 50" 75" and 95" percentiles of the
electricity prices. Focusing on tails of the price distribution, 5" and 95%, percentiles is useful
for our understanding of drivers of extreme prices that also tend to have the largest effect on all

market participants: suppliers, consumers and regulators alike.

Since we estimate coefficients for five quantiles for each variable for 24 hours of the
day, that lead to over 3600 coefficients, thus presenting all the coefficients in tables would be

cumbersome. We therefore summarize results for key variables in following Figures 7 — 8.
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Figure 7 Estimated quantile regression coefficients across different daily prices and quantiles:
Lagged prices
Note: The dot in the line corresponds to a statistically significant coefficient at the 5% significance level.
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Figure 8 Estimated quantile regression coefficients across different daily prices and quantiles:

Demand and production from renewable energy sources
Note: The dot in the line corresponds to a statistically significant coefficient at the 5% significance level.

In Figures 7 and 8 we report results only from fundamental variables that systematically

influenced prices. Similarly, as for the OLS model, market prices in their differenced form had

no relevant effect on the percentiles of the day-ahead electricity prices in Germany and were

therefore excluded from the Figure 7 and 8.

In Figure 7 (upper panel), we can observe several notable asymmetric effects of the

persistence coefficients (at Pt.1). For example, during the night (from 02:00 until 06:00) the

persistence of extremely low prices (below 5™ percentile) is much stronger than persistence of

high prices (above the 95" percentile). On the other hand, during the late afternoon production

peak (from 17:00 until 21:00) the persistence of extremely low prices is much smaller. This
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shows, that at least part of the variation in the extremely negative prices can be attributed to

different persistence of prices across quantiles and hours.

The weekly seasonality price coefficient (at Pt.7) tend to be of lower magnitude than the
daily lagged coefficient (lower panel of Figure 6), but is still significant across most quantiles
and hours. The effect across quantiles of the electricity prices shows similar patterns. An
exception is found for the production peak period (17:00 until 21:00), where weekly lagged

price coefficient reaches values above 0.20 for the 95" percentile of the electricity price.

The importance of the estimated coefficients of forecasted demand differs across
percentiles. The positive relationship between forecasted demand and electricity price is greater
in magnitude at the lower tail (5™ and 25" percentiles) of the distribution than at the upper tail
(75" and 95" quantiles). The differences are amplified during production peak period in the
morning and early afternoon. For example, with respect to the price during the period from
14:00 to 15:00 the effect of the forecasted demand at the 95™ percentile of the price is 0.108

(after multiplying by 1000) and at the 5 percentile it is 0.200, while both significant.

The effect of the actual lagged demand on the prices differs particularly with respect to
given hour, while it is similar across quantiles. During the night, when production/demand is
low the lagged demand shows strong effect across all quantiles of the price distribution, while

during the day, the effect of lagged demand is much smaller and before noon even insignificant.

The effect of expected (forecasted) renewable electricity production resources show
several interesting features. First note that the effect of the solar power sources over the relevant
daily hours is very similar across quantiles. Increasing level of production leads to lower prices
across the whole distribution. Therefore solar power sources does not seem to amplify extreme

prices. On the other hand, wind production shows that it indeed has the ability to shift extreme
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prices in both direction. Note, that during the whole day coefficients related to the 5™ price
percentile, that explain extremely low electricity prices, are much lower (larger in magnitude)
compared to the coefficients on remaining percentiles. At the same time, coefficients for the
upper tail of the price distribution, although smaller in magnitude, are also still significant. This
means that although wind production shifts left-tail price distribution in a more pronounced
way, wind production in general drives both, the right- and left-tail of the price distribution.
During the night session (from 22:00 to 06:00) the effect of the wind power production is

amplified with respect to extremely low prices.
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7. Conclusions

This paper studies the main drivers of the electricity prices in Germany over the period
from January 2015 until Jun 2018. We analyze hourly day-ahead prices using standard linear
regression, ARX-EGARCH, and a (non-quantile crossing) quantile regression models. Our

contribution to the existing literature is five-fold.

First, we find that short-term price fluctuations of the coal, Brent oil, natural gas and
emission allowances (EUA) do not impact the German day-ahead electricity prices. Second, we
show that controlling day-of-the-week as well as monthly effects is necessary for a correct
specification as these effects are not only statistically significant but also economically relevant
price drivers. Third, we identify that extremely low and high price movements on the market
are driven partly by price persistence. The extremely low prices (below the 5" percentile) tend
to persist in the prices for the night session. At the same time, extremely high prices (above the
95" percentile) tend to persist in the prices settled during the late afternoon production peak
period. Fourth, extremely low prices are driven by expected demand. When the demand drops
during the day, the impact on the left-tail of the price distribution is much higher compared to
the impact on the right-tail of the price distribution. Fifth, we identify that forecasted wind
production effects both, extremely high and low price, although low prices are more affected.
The difference in the effect of the wind production on electricity prices is amplified during the

night session, where low prices are smaller with larger increase of wind production.

The results presented in this study could be used by market participants to understand
what drive extreme price movements, i.e. that extreme prices are at least partly driven by market
fundaments like demand and production from renewable energy sources. For example, risk
managers could design better trading strategies to mitigate effects of extreme negative price

movements on their portfolios.
31



References

AG Energiebilanzen, (2015) Bruttostromerzeugung in Deutschland von 1990 bis 2014 nach
Energietragern. Downloaded on 20/04/2015 from (http://www. ag-energiebilanzen.de/).
Bello, A., Bunn, D. W., Reneses, J., & Mufioz, A. (2017). Medium-term probabilistic
forecasting of electricity prices: A hybrid approach. IEEE Transactions on Power Systems,

32(1), 334-343.

Bondell, H. D., Reich, B. J., & Wang, H. (2010). Noncrossing quantile regression curve
estimation. Biometrika, 97(4), 825-838.

Bunn, D. W., & Chen, D. (2013). The forward premium in electricity futures. Journal of
Empirical Finance, 23, 173-186.

Bunn, D., Andresen, A., Chen, D., & Westgaard, S. (2016). Analysis and Forecasting of
Electricty Price Risks with Quantile Factor Models. The Energy Journal, 37(1), 101-122.

Canova, F., & Hansen, B. E. (1995). Are seasonal patterns constant over time? A test for
seasonal stability. Journal of Business & Economic Statistics, 13(3), 237-252.

Chen, D., & Bunn, D. W. (2010). Analysis of the nonlinear response of electricity prices to
fundamental and strategic factors. IEEE Transactions on Power Systems, 25(2), 595-606.

Clo, S., Cataldi, A., & Zoppoli, P. (2015). The merit-order effect in the Italian power market:
The impact of solar and wind generation on national wholesale electricity prices. Energy
Policy, 77, 79-88.

Conejo, A. J., Contreras, J., Espinola, R., & Plazas, M. A. (2005). Forecasting electricity prices
for a day-ahead pool-based electric energy market. International Journal of Forecasting,
21(3), 435-462.

Dillig, M., Jung, M., & Karl, J. (2016). The impact of renewables on electricity prices in
Germany—An estimation based on historic spot prices in the years 2011-2013. Renewable
and Sustainable Energy Reviews, 57, 7-15.

Do, L. P. C., Hagfors, L. I, Lin, K. H., & Molnar, P. (2016a). Demand and residual demand
modelling using quantile regression. Renewable Energy and Environmental Sustainability,
1, 41.

Do, L. P. C,, Lin, K. H., & Molnér, P. (2016b). Electricity consumption modelling: A case of
Germany. Economic Modelling, 55, 92-101.

ENTSO-E (2018). Transparency Platform.<https://transparency.entsoe.eu>.

Fell, H. (2010). EU-ETS and Nordic electricity: a CVAR analysis. The Energy Journal, 31(2),
1-25.

Ferkingstad, E., Lgland, A., & Wilhelmsen, M. (2011). Causal modeling and inference for
electricity markets. Energy Economics, 33(3), 404-412.

Green, R., & Vasilakos, N. (2010). Market behaviour with large amounts of intermittent
generation. Energy Policy, 38(7), 3211-3220.

Hagfors, L. 1., Bunn, D., Kristoffersen, E., Staver, T. T., & Westgaard, S. (2016a). Modeling
the UK electricity price distributions using quantile regression. Energy, 102, 231-243.
Hagfors, L. I., Kamperud, H. H., Paraschiv, F., Prokopczuk, M., Sator, A., & Westgaard, S.
(2016Db). Prediction of extreme price occurrences in the German day-ahead electricity

market. Quantitative Finance, 16(12), 1929-1948.

Hagfors, L. I., Paraschiv, F., Molnar, P., & Westgaard, S. (2016c). Using quantile regression to
analyze the effect of renewables on EEX price formation. Renewable Energy and
Environmental Sustainability, 1, 32.

Hammoudeh, S., Nguyen, D. K., & Sousa, R. M. (2014). Energy prices and CO2 emission
allowance prices: A quantile regression approach. Energy Policy, 70, 201-206.

32



He, Y., Qin, Y., Wang, S., Wang, X., & Wang, C. (2019). Electricity consumption probability
density forecasting method based on LASSO-Quantile Regression Neural Network. Applied
Energy, 233, 565-575.

Hong, T., & Fan, S. (2016). Probabilistic electric load forecasting: A tutorial review.
International Journal of Forecasting, 32(3), 914-938.

Hylleberg, S., Engle, R. F., Granger, C. W., & Yoo, B. S. (1990). Seasonal integration and
cointegration. Journal of econometrics, 44(1-2), 215-238.

Hyndman R, Athanasopoulos G, Bergmeir C, Caceres G, Chhay L, O'Hara-Wild M,
Petropoulos F, Razbash S, Wang E, Yasmeen F (2018). forecast: Forecasting functions for
time series and linear models. R package version 8.4, http://pkg.robjhyndman.com/forecast.

International Atomic Energy Agency (1999), Modern Instrumentation and Control for Nuclear
Power Plants: A Guidebook, Technical Report Series N°387.

Jacobsen, H. K., & Zvingilaite, E. (2010). Reducing the market impact of large shares of
intermittent energy in Denmark. Energy Policy, 38(7), 3403-3413.

Janssen, M., & Wobben, M. (2009). Electricity pricing and market power—evidence from
Germany. European Transactions on Electrical Power, 19(4), 591-611.

Johnson, N.L. (1949a). Systems of Frequency Curves Generated by Method of Translation.
Biometrika 36(1/2), 149-176.

Johnson, N.L. (1949b). Bivariate Distributions Based on Simple Translation Systems.
Biometrika 36(3/4), 297-304.

Jonsson, T., Pinson, P., & Madsen, H. (2010). On the market impact of wind energy forecasts.
Energy Economics, 32(2), 313-320.

Jonsson, T., Pinson, P., Madsen, H., & Nielsen, H. A. (2014). Predictive densities for day-ahead
electricity prices using time-adaptive quantile regression. Energies, 7(9), 5523-5547.

Juban, R., Ohlsson, H., Maasoumy, M., Poirier, L., & Kolter, J. Z. (2016). A multiple quantile
regression approach to the wind, solar, and price tracks of GEFCom2014. International
Journal of Forecasting, 32(3), 1094-1102.

Karakatsani, N. V., & Bunn, D. W. (2010). Fundamental and behavioural drivers of electricity
price volatility. Studies in Nonlinear Dynamics & Econometrics, 14(4).

Kaza, N. (2010). Understanding the spectrum of residential energy consumption: a quantile
regression approach. Energy policy, 38(11), 6574-6585.

Keles, D., Genoese, M., Most, D., & Fichtner, W. (2012). Comparison of extended mean-
reversion and time series models for electricity spot price simulation considering negative
prices. Energy Economics, 34(4), 1012-1032.

Keles, D., Genoese, M., Mést, D., Ortlieb, S., & Fichtner, W. (2013). A combined modeling
approach for wind power feed-in and electricity spot prices. Energy Policy, 59, 213-225.

Ketterer, J. C. (2014). The impact of wind power generation on the electricity price in Germany.
Energy Economics, 44, 270-280.

Kiesel, R., & Paraschiv, F. (2017). Econometric analysis of 15-minute intraday electricity
prices. Energy Economics, 64, 77-90.

Kwiatkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of
stationarity against the alternative of a unit root: How sure are we that economic time series
have a unit root?. Journal of econometrics, 54(1-3), 159-178.

Lee, C. C.,, & Zeng, J. H. (2011). The impact of oil price shocks on stock market activities:
Asymmetric effect with quantile regression. Mathematics and Computers in Simulation,
81(9), 1910-1920.

Lin, J. W., & McLeod, A. 1. (2006). Improved Pena—Rodriguez portmanteau test.
Computational Statistics & Data Analysis, 51(3), 1731-1738.

33



Lindstrom, E., & Regland, F. (2012). Modeling extreme dependence between European
electricity markets. Energy Economics, 34(4), 899-904.

Liu, B., Nowotarski, J., Hong, T., & Weron, R. (2017). Probabilistic load forecasting via
quantile regression averaging on sister forecasts. IEEE Transactions on Smart Grid, 8(2),
730-737.

Maciejowska, K., & Nowotarski, J. (2016). A hybrid model for GEFCom2014 probabilistic
electricity price forecasting. International Journal of Forecasting, 32(3), 1051-1056.

Maciejowska, K., Nowotarski, J., & Weron, R. (2016). Probabilistic forecasting of electricity
spot prices using Factor Quantile Regression Averaging. International Journal of
Forecasting, 32(3), 957-965.

Martinez-Anido, C. B., Brinkman, G., & Hodge, B. M. (2016). The impact of wind power on
electricity prices. Renewable Energy, 94, 474-487.

Mijelde, J. W., & Bessler, D. A. (2009). Market integration among electricity markets and their
major fuel source markets. Energy Economics, 31(3), 482-491.

Moreira, R., Bessa, R., & Gama, J. (2016). Probabilistic forecasting of day-ahead electricity
prices for the Iberian electricity market. In 2016 13th International Conference on the
European Energy Market (EEM), Porto, pp. 1-5.
doi: 10.1109/EEM.2016.7521226

Mosquera-Lopez, S., Uribe, J. M., & Manotas-Duque, D. F. (2017). Nonlinear empirical pricing
in electricity markets using fundamental weather factors. Energy, 139, 594-605.

Murray, B. (2009) Power markets and economics: energy costs, trading, emissions. Chichester,
U.K., Wiley.

Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach.
Econometrica: Journal of the Econometric Society, 347-370.

Newey, W. K., & West, K. D. (1994). Automatic lag selection in covariance matrix estimation.
The Review of Economic Studies, 61(4), 631-653.

Nowotarski, J., & Weron, R. (2014). Merging quantile regression with forecast averaging to
obtain more accurate interval forecasts of Nord Pool spot prices. In 11th International
Conference on the European Energy Market (EEM14), Krakow, pp. 1-5.
doi: 10.1109/EEM.2014.6861285

Nowotarski, J., & Weron, R. (2015). Computing electricity spot price prediction intervals using
quantile regression and forecast averaging. Computational Statistics, 30(3), 791-803.

Nowotarski, J., & Weron, R. (2018). Recent advances in electricity price forecasting: A review
of probabilistic forecasting. Renewable and Sustainable Energy Reviews, 81, 1548-1568.

Osborn, D. R., Chui, A. P., Smith, J. P., & Birchenhall, C. R. (1988). Seasonality and the order
of integration for consumption. Oxford Bulletin of Economics and Statistics, 50(4), 361-
377.

Paraschiv, F., Erni, D., & Pietsch, R. (2014). The impact of renewable energies on EEX day-
ahead electricity prices. Energy Policy, 73, 196-210.

Pefia, D., & Rodriguez, J. (2002). A powerful portmanteau test of lack of fit for time series.
Journal of the American Statistical Association, 97(458), 601-610.

Portnoy, S., & Koenker, R. (1997). The Gaussian hare and the Laplacian tortoise: computability
of squared-error versus absolute-error estimators. Statistical Science, 12(4), 279-300.

Sapio, A. (2019). Greener, more integrated, and less volatile? A quantile regression analysis of
Italian wholesale electricity prices. Energy Policy, 126, 452-469.

Sensful3, F., Ragwitz, M., & Genoese, M. (2008). The merit-order effect: A detailed analysis of
the price effect of renewable electricity generation on spot market prices in Germany.
Energy policy, 36(8), 3086-3094.

34



Sul, D., Phillips, P. C., & Choli, C. Y. (2005). Prewhitening bias in HAC estimation. Oxford
Bulletin of Economics and Statistics, 67(4), 517-546.

Uniejewski, B., Marcjasz, G., & Weron, R. (2018). On the importance of the long-term seasonal
component in day-ahead electricity price forecasting: Part Il—Probabilistic forecasting.
Energy Economics, 79, 171-182.

Uniejewski, B., Nowotarski, J., & Weron, R. (2016). Automated variable selection and
shrinkage for day-ahead electricity price forecasting. Energies, 9(8), 621.

Weron, R. (2014). Electricity price forecasting: A review of the state-of-the-art with a look into
the future. International Journal of Forecasting, 30(4), 1030-1081.

Woo, C. K., Horowitz, I., Moore, J., & Pacheco, A. (2011). The impact of wind generation on
the electricity spot-market price level and variance: The Texas experience. Energy Policy,
39(7), 3939-3944.

Worthington, A. C., & Higgs, H. (2017). The impact of generation mix on Australian wholesale
electricity prices. Energy Sources, Part B: Economics, Planning, and Policy, 12(3), 223-
230.

Wirzburg, K., Labandeira, X., & Linares, P. (2013). Renewable generation and electricity
prices: Taking stock and new evidence for Germany and Austria. Energy Economics, 40,
S159-S171.

Zachmann, G. (2013). A stochastic fuel switching model for electricity prices. Energy
Economics, 35, 5-13.

Ziel, F., Steinert, R., & Husmann, S. (2015). Efficient modeling and forecasting of electricity
spot prices. Energy Economics, 47, 98-111.

Ziel, F., & Steinert, R. (2018). Probabilistic mid-and long-term electricity price forecasting.
Renewable and Sustainable Energy Reviews, 94, 251-266.

35



Appendix The ARX-EGARCH model: specification and estimation

Alternatively to the standard OLS model, we consider an AutoRegressive model with
eXogenous regressors with Exponential Generalized AutoRegressive Conditional

Heteroscedasticity model ARX-EGARCH. The model is defined as:

Pth = ﬂo + IBlDFth + ﬂz DA&h—l + :B3Act—1 + :B4AGt—1 + ﬂSABt—l + ﬂGAEt—l +
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The model given by (A.1)-(A.5) is estimated by maximum likelihood. Compared to Eq.
(1) in the main text, Eq. (A.1) excludes the autoregressive terms in the mean equation. Instead,
the persistence is modelled separately in Eqg. (A.7). We use seven lags (one week) of the error
terms to account for the serial correlation. The advantage of this approach is that we handle the
serial correlation of residuals directly within the model, on the other hand, the interpretation of
persistence parameters is unclear. However, other fundamental variables in Eq. (A.1) can be
interpreted in the same way as in the OLS regression Eq. (1).

The EGARCH model of Nelson (1991) models the volatility, where s" denotes
standardized innovations, and « and y control for the sign and size effects, respectively, while
p for the persistence of the latent volatility process. We choose this specification, for two

reasons. First, it allows to address potential asymmetric volatility effects, while it models the
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log of the volatility, which makes the estimation of the model easier, a property we desire given
that we have around 1250 observations for each model. Finally, we allow #" to follow the
Johnson’s distribution (1949a, 1949b) that is capable of capturing skewness and heavy tail
properties of the underlying random variable (if present).

Table A1 ARX-EGARCH model explaining electricity prices for selected hours
08:00-09:00 12:00-13:00 19:00 - 20:00 _00:00 - 01:00

Panel A: Variables of interest

Constant 4,722 23.727 24.106™" 17.672™
Lagged price — one day 0.370™" 0.422"* 0.353"™" 0.346™"
Lagged price — two day 0.089™" 0.156™" 0.170™" 0.113"
Lagged price — three day 0.029" 0.036™ 0.077" 0.120™"
Lagged price — four day 0.042" 0.042* 0.066™" 0.078™"
Lagged price — five day 0.064™" 0.027* 0.031 0.093™"
Lagged price - six day 0.091™* 0.041™ 0.098™" 0.063™"
Previous week's price 0.168™" 0.086™" 0.120™" 0.107™
Forecasted demand/1000 0.189™" 0.110™ 0.065™" -0.001
Lagged demand/1000 0.006 0.019™" 0.044™" 0.067""
Lagged coal price return -0.117" -0.016 -0.108 -0.251
Lagged natural gas price return 0.164 -0.013 0.076 0.086
Lagged Brent oil price return 0.084 -0.027 -0.025 0.086
Lagged EUA price return -1.847 -0.506 -0.752 0.019
Wind production forecast/1000 -0.216™" -0.222"* -0.211™ -0.192"
Solar production forecast/1000 -0.175™" -0.245™" 0.142""
Panel B: Control variables
Monday -1.739 -3.910™ -0.903 -0.581
Tuesday 0.262 -2.387 -0.078 2.103
Thursday -1.524™"" -2.656" -0.021 0.605
Friday 0.599"" -1.737 -1.217 1.490
Saturday -0.236 -0.005 -1.235 -0.631
Sunday -0.632 -0.858 -0.587 -1.972"
January -0.017 -0.675 0.735 -0.843
February 0.360 -0.386™ 1.570 -0.841
March 1.198 0.063 1.883 0.259
April -2.181 0.508 2.202 0.839
May -4.832" -3.479" 0.544 2.144
Jun -1.260 -3.107 -3.273™ -0.636
August -1.739 -3.910™ -0.903 -0.581
September 0.262 -2.387 -0.078 2.103
October -1.524™" -2.656" -0.021 0.605
November 0.599™ -1.737 -1.217 1.490
December -0.236 -0.005 -1.235 -0.631
Holiday -0.632 -0.858 -0.587 -1.972"
Panel C: Variance equation
Constant 0.295" 1.688™" 0.107"" 0.325™"
Sign effect 0.029 0.011 0.128™" -0.107™
Persistence 0.917 0.522"* 0.967"" 0.898™"
Size effect 0.304™" 0.514™" 0.127" 0.263™"
Panel D: Distribution parameters
Skewness 0.151" -0.129" 0.348™" -0.462""
Shape 1.201™" 1.183™ 1.451™" 1.157™
Panel E: Model fit
R? 0.763 0.743 0.772 0.686
1%t order autocorrelation of residuals -0.016 -0.106 0.084 -0.005
7t order autocorrelation of residuals -0.036 -0.019 -0.016 -0.067
Note: *, ™, ™ denotes significance of coefficients at the 10%, 5%, and 1% significance level.
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