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Abstract 

We study the impact of fuel prices, emission allowances, demand, past prices, wind 

and solar production on hourly day-ahead electricity prices in Germany over the 

period from January 2015 until June 2018. Working within a linear regression, ARX-

EGARCH and quantile regression framework we compare how different pricing 

factors influence the mean and quantiles of the electricity prices. Contrary to the 

existing literature we find that short-term price fluctuations on the fuel markets and 

emission allowances have little effect on the electricity prices. We also find that day-

of-the-week as well as monthly effects have significant impact on the electricity 

prices in Germany and should not be ignored in model specifications. Three main 

factors are found to drive extreme prices: price persistence, expected demand and 

expected wind production. Our findings contribute to understanding of extreme price 

movements, which can be used in pricing models and hedging strategies. 
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1. Introduction 

The liberalization of the power market in Germany has introduced competition and 

increased market participants’ exposure to risk. In the new market structure, the extreme 

electricity price volatility can be higher than for commodities or stocks. Coupling to the price 

risk, the market participants face risks associated with unexpected outage, fluctuation in 

demand, fuel price and emission allowances. The expansion of renewable energy in Germany 

and its volatility in production has increased the day-ahead electricity price variance even 

further (Jacobsen and Zvingilaite 2010; Green and Vasilakos 2010). Hence, an understanding 

how the fundamental drivers of electricity price affect the electricity price is necessary in order 

to manage the risks involved in the market. 

Electricity pricing exhibits several intrinsic features, which are unique in comparison to 

the prices of commodities such as gas and oil. Since electricity is not storable, and is also 

influenced by transmission constraints, electricity market is organized in a more complicated 

way than market for other commodities. For a typical commodity, there are two main markets: 

a forward market and a spot market. The main difference between market for electricity and 

market for other commodities lies in the spot market. The electricity markets which are 

somehow equivalent to the spot market of other commodities are the day-ahead market and the 

intraday/balancing market. Focus of this paper is the day-ahead market. For reader interested 

in intraday market we recommend an excellent article by Kiesel and Paraschiv (2017). 

Furthermore, the electricity price exhibits both volatility clustering and large spikes. 

The possibility of extreme price movements increases the risk for the market participants. 

Hence, modelling the probability of extreme prices can be more important than the expected 

values (Bunn et al, 2016, Hagfors et al, 2016b). In this paper we analyze how electricity price 
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reacts to fundamental variables, with focus on wind and solar production, using both an ordinary 

and a quantile regression.   

The response of electricity price to wind and solar production has been studied 

extensively for various markets, for example Australia (Worthington and Higgs, 2017), 

Denmark (Jónsson, Pinson and Madsen, 2010), Great Britain (Green and Vasilakos, 2010), 

Germany (Ketterer, 2014; Paraschiv et al, 2014; Ziel, Steinert and Husmann, 2015), Italy (Clò, 

Cataldi and Zoppoli, 2015; Sapio, 2019), New England (Martinez-Anido, Brinkman and 

Hodge, 2016), and many others, for a review see Würzburg, Labandeira and Linares (2013) and 

Dillig, Jung a Karl (2016). 

These studies are interested in an average impact of wind and solar production on price. 

However, this is not sufficient for the purpose of risk management and related applications. 

Jónsson, Pinson and Madsen (2010), who conclude that “It is quite obvious that the spot prices 

are not Gaussian distributed and therefore it must be deemed highly unlikely that models 

constructed with least squares techniques will have Gaussian residuals. Prediction intervals for 

such models should therefore be estimated using other techniques. In fact the distributions are 

so far from parameterized distributions that it seems reasonable to conclude that non-parametric 

approaches, like for instance quantile regression, will return the most reliable prediction 

intervals.”  In accordance with this recommendation, we complement the linear regression with 

an ARX-EGARCH model that allows for innovations to follow a very flexible distribution that 

accounts for potential heavy-tails and we also utilize quantile regression that allows us to study 

the impact of wind production, solar production, and fundamental factors on the whole 

distribution of electricity price in a non-parametric way. 
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Quantile regressions have been applied in financial risk management and recently in 

energy market studies: household energy consumption (Kaza, 2010), electricity demand (Do et 

al, 2016a; He et al, 2019), oil prices (Lee and Zeng, 2011) and CO2 emission allowance price 

(Hammoudeh et al, 2014). Quantile regression has been successfully applied also to electricity 

price forecasting, see Jónsson et al. (2014), Nowotarski and Weron (2014), Nowotarski and 

Weron (2015), Juban et al. (2016), Maciejowska and Nowotarski (2016), Moreira, Bessa and 

Gama (2016), Maciejowska et al (2016), Bello et al. (2017), Liu et al (2017), Mosquera-López 

et al. (2017), Uniejewski, Marcjasz and Weron (2018). Since the focus of our paper is not on 

forecasting, reader interested in electricity price forecasting can see Weron (2014), Uniejewski, 

Nowotarski and Weron (2016), Hong and Fan (2016), Nowotarski and Weron (2018) and Ziel 

and Steinert (2018). 

Papers most closely related to our work are Bunn et al (2016) and Hagfors et al (2016).1 

They both study impact of several fundamental factors, mainly fuel prices, on UK electricity 

price. However, neither of these two studies include wind and solar production in their analysis. 

Our in-sample approach, allows us to study in detail impact of various variables, including wind 

and solar production, on the distribution of hourly electricity price in Germany over period 2015 

– 2018. We make several contributions to the understanding on the drivers of electricity prices 

across quantiles. We show that short-term price fluctuations on the coal, Brent oil, natural gas 

and emission allowances (EUA) markets does not have impact on the German day-ahead 

electricity prices. The role of the past production of electricity from renewable resources of 

wind and solar had not been research is such depth before. We find that extreme (low and high 

alike) electricity prices are not only persistent but that they are at least partly driven by wind 

 
1 A brief conference paper of Hagfors et al. (2016) is more closely related to our study, but our analysis is much 
more detailed in terms of models specifications, models employed, discussion and we utilize new data which have 
no overlap with their dataset. 

 Electronic copy available at: https://ssrn.com/abstract=3436614 



 4 

production, and particularly wind production drives low prices during night sessions. Lastly, 

we also control for the weekday effects, weekly seasonality in prices, holiday effects, day-light 

seasonality, and long-term seasonality using monthly dummies and it turns out that all seasonal 

effects are important drivers of electricity price and should not be neglected in pricing models.  

Rest of this paper is organized as follows: Section 2 provides an overview of the German 

electricity market; Section 3 discusses the relationship between renewables and extreme prices; 

Section 4 describes the models while Section 5 describes data used in this study. In Section 6 

we present our key results and the final section concludes. 

2. The German electricity market  

The German electricity market was fully liberalized in 1998. In the liberalization 

process eight utilities merged into four utilities: RWE, E.ON, Vattenfall and EnBw Energie. 

These four vertically integrated utilities were responsible for the supply, transmission and 

balancing of electricity. Since the liberalization was considered to be progressing too slowly, a 

directive was issued by the European commission establishing an unbundling policy, and the 

four utilities then sold a majority stake in their transmission share to third parties. Today, there 

are still four large electricity generators and four transmission companies, but they act 

independently. The market is liberalized both for the supply and retail electricity markets. The 

German market is considered a competitive environment although there is some degree of 

market power (Janssen and Wobben, 2008).  

The supply and demand curves are important components for understanding the 

electricity market. Figure 1 illustrates the Merit Order curve as a sorted short-term marginal 

cost curve of electricity production; the renewables have the lowest marginal cost, followed by 

nuclear energy, lignite, hard coal, natural gas and oil power plants. As depicted in Figure 1 the 
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short-term marginal costs consist mainly of fuel and CO2 costs. This suggests that an increase 

in the marginal cost of the input variables will lead to an increase in the electricity price. The 

demand curve is inelastic, meaning that demand remains almost unchanged with changes in 

electricity price (Sensfuß et al, 2008). 

The intersection between the supply and demand curves determines the clearing price 

for electricity. Every day, a day-ahead auction for each of the 24 hours takes place at 12 p.m.. 

Each hour is dominated by a different type of power plant (Murray, 2009); conventional power 

plants remain the price setting utilities in the German market. Normally, nuclear energy, lignite 

and coal power plants cover the base load, while gas power plants cover the peak load (Sensfuß 

et al, 2008).  

Renewable production was given priority access to the grid and has nearly zero marginal 

costs. As a result, renewable production enters at the base of the Merit Order curve and shifts 

the curve to the right, so that cheaper conventional power plants set the price (Zachman, 2013). 

This means that additional renewable infeed to the grid will reduce the electricity prices.  

 

Figure 1 A stylized example of the stepwise marginal cost function and demand function for 
day and night. 
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3. Renewables and extreme prices 

Lindstrom and Regland (2012) study electricity prices on six European electricity 

markets and find that the frequency of extreme events is positively correlated with the amount 

of renewable sources installed on the grid. On the electricity price market, extreme prices are 

not only extremely positive prices, but also negative prices, which are not uncommon. 

Compared to financial and other commodity markets, this makes the electricity price market 

unique. Extreme prices are not uncommon on the German electricity market studied in this 

paper as well. In Figure 2 the upper panel shows continuous electricity price series (24 prices 

for each hour of each day of a weak), while the lower panels show electricity prices for selected 

hours (1 price for each day corresponding to a given hour). Sudden price upsurge and drops are 

not uncommon, but it is also evident that the price series differ with respect to a given hour. For 

example, looking at the middle panel of Figure 2, the price series is more volatile than the price 

series in for the bottom panel of Figure 2 (also see Table 2 for comparison of summary 

statistics). Detailed examination of our data shows that the negative prices occur more often 

during the night than during the day, while price spikes appear during the day. Furthermore 

Figure 3 shows how extreme prices are distributed between various hours. The upper panel 

show the distribution of negative prices, while the middle and bottom panels show the 

distribution for prices below the 5th and above the 95th quantiles. A close inspection of our data 

reveals that similarly as in Lindstrom and Regland (2012) increasing share of electricity 

production from renewable sources is associated with higher occurrence of extremely low 

prices (below the 5th quantile). At the same time, higher share of production from renewable 

sources is associated with lower occurrence of extremely high prices (above the 95th quantile)2. 

 
2 The pairwise correlation between exceedance of prices below the 5th percentile (1 if yes, 0 otherwise) and the 
share of energy produced from renewable sources is at 0.40. The corresponding correlation for the exceedance of 
prices above the 95th percentile (1 if yes, 0 otherwise) is -0.21. 
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Figure 2 Electricity price in the German market 

 

The reason behind negative electricity prices is that must-run inflexible utilities, like 

nuclear power plants, are willing to pay the consumer because the cost of shutting down exceeds 

the costs of accepting the negative price (Keles et al. 2012). Additionally, a high level of solar 

and wind generation with essentially zero marginal costs leads to negative electricity prices 

when coupled with lower demand.  

 On the other hand, electricity price spikes can occur for many different reasons, for 

instance unpredicted generation outage or transmission failures. Another reason is high demand 

coupled with low renewable production, which results in additional firing of power plants 

higher on the merit order curve, pushing the prices up. 
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Figure 3 Distribution of extreme prices over different time of the day 

 
 

4. Modeling framework 

We model electricity prices on the German market using a linear regression model to 

establish baseline results and subsequently we use a quantile regression framework because it 

allows us to examine the tails of the distribution of electricity prices, i.e. extreme upward and 

downward prices that can be regularly found for the German electricity market. In the previous 

Section 3 as well as from the next Section 5 it is evident, that electricity prices on the German 

market show distinct features for each of the hours during the day. Therefore each model is 

estimated for each hour of the day. 

The baseline results are established within the linear regression model estimated via 

ordinary least squares. More specifically, we estimate the following model specification: 
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The electricity price Pt
h at day t and for hour h is explained via the electricity price for 

the same hour of the previous day, Pt-1
h and of the previous weak Pt-7

h. This lag-structure should 

capture most of the systematic short-term seasonal patterns. The DFt
h is the forecasted demand 

for day t (it is therefore exogenous) and hour h, while DAt-1
h is the actual consumption from the 

previous day. The changes on the energy markets are captured by ΔCt-1 for coal, ΔGt-1 for 

Natural gas, ΔBt-1 for Brent oil and ΔEt-1 for the market of the European Union Emission 

Allowances. Expected production of renewables for day t is captured by WFt
h and SFt

h, while 

the actual share of energy production using renewables resources (wind and solar) is 

incorporated into the SRt-1 variable. From evening 22:00 until morning 05:00, the electricity 

production from solar energy sources is minimal, therefore SFt
h is excluded from specifications 

for these hours. Finally, we also use a set of control variables, namely day of the week dummies 

Dayt,j (Wednesday excluded), monthly dummies Montht,j (July excluded) and a variable 

controlling for the upcoming national holidays Holt. 

We complement the regression analysis by employing an ARX(7,0)-EGARCH(1,1) 

model which is defined in Appendix A. The motivation for considering an ARX(7,0)-

EGARCH(1,1) model is twofold. First, in the ARX(7,0)-EGARCH(1,1) model the innovations 

are allowed to follow a distribution that accounts for possible skewness and kurtosis making it 

potentially more useful when extreme observations are of concern. This might be indeed the 

case with electricity prices, that due to demand surge or supply shocks can suddenly increase 

or increase by considerable magnitude. Second, within an ARX(7,0)-EGARCH(1,1) model we 

account for the serial dependence of the innovations directly and also take into account possible 

conditional heteroscedasticity. Interestingly, as results in Appendix A show, this modeling 

choice is well supported by the data3, but as qualitatively the results do not differ much, in the 

 
3 The residuals from ARX(7,0)-EGARCH(1,1) show no traces of serial dependence and all the parameters of this 
model are significant. 
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main body of the manuscript we present results from the linear regression only, while the 

interested reader finds ARX(7,0)-EGARCH(1,1) results in Appendix A.  

 To study the drivers behind extreme price movements we work within a quantile 

regression framework. We assume that the price Pt
h is related to a set of exogenous explanatory 

variables. Let Ph denote a (T × 1) vector of prices for hour h, with T denoting the number of 

observations (t = 1, 2, …, T). k – 1 exogenous variables are stacked in a (T × k) matrix X that 

also includes a constant, while β(τ) is a (k × 1) vector of unknown parameters, ε(τ) the (T × 1) 

vector of disturbances and τ a quantile (0, 1). Quantile regression model can be formulated as:  

( ) ( )Th τ τ= +P X β ε   (2) 

while assuming that τ-th quantile error term conditional on X, β(τ) is equal to 0. Coefficients 

are estimated by minimizing the weighted sum of absolute deviations between the electricity 

price Pt
h and a linear combination of variables: 

( )
( )

( )
( )

( ) ( )
( )k T T

T T
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h h
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h h
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∑ ∑
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 (3) 

The vector Xt
T contains all our explanatory variables defined in (1). We estimate equation (3) 

for τ = 0.05, 0.25, 0.50, 0.75, 0.95, while the optimization of equation (3) is performed via the 

Frisch–Newton interior point algorithm (see p. 289 in Portnoy and Koenker 1997; for details), 

while to address the quantile crossing issue, (3) is estimated simultaneously across all quantiles, 

given the non-crossing quantile restriction along the lines of eq. 2 in Bondell et al., (2010). The 

significance of the quantile regression coefficients is calculated using a fixed block length 

bootstrap procedure, where given the potential weakly seasonality, the block length was set to 

7 and 1000 bootstrap samples were reproduced. 
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5. Data 

5.1 The electricity price 

This paper uses hourly day-ahead German electricity prices Pt
h (the Physical Electricity 

Index) provided by the European Energy Exchange market (EEX), where t is a time index which 

denotes a given day (t = 1, 2, …) and h is an index that denotes a given hour, h = 0, 1, …, 23. 

We choose to study the day-ahead prices for a given hour rather than intraday prices because 

they represent a larger share of the trading volume. The electricity price dataset covers the 

period from January 1st 2015 to May 31st 2018. Given that we prices are settled for each hour 

within a day, this lead to 29929 price observations on 24 time series4. 

Some earlier studies applied logarithmic transformation to the electricity price series in 

order to achieve variance stabilization (Conejo et al, 2005; Bunn et al 2016; Hagfors et al 

2016a). Karakatsani and Bunn (2010), on the other hand, argue that logarithmic transformation 

is not relevant in the electricity market, because it conceals detailed statistical properties and 

induces error effects. Further, logarithm can be applied only to positive numbers and the 

electricity price data also contains negative prices. Also, in this study we focus also on modeling 

extreme prices that would be largely mitigated using the logarithmic transformation. Finally, 

the logarithmic transformation is justified if extreme prices would be higher than the average 

or median of the price in order of several magnitudes and this is not the case of electricity prices 

in Germany. We therefore use the price data directly rather than using the logarithm of prices. 

The full and sample price series are visualized in Figure 2, while in Table 1 we present 

descriptive data on price series. In each row, summary statistics present the price data for given 

hour. As already noted in previous Section 3, the price series exhibit quite distinct price paths 

 
4 The overall number of observations in not even due to the day-light saving times and occasional missing 
observation. 
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that are further amplified in Table 1. The price is peaks twice, during morning from 08:00 to 

09:00 and evening 19:00 to 20:00. During the evening session, negative prices are less likely 

as indicated by lower price skewness.  

A high level of persistence of the price series would indicate a possible presence of a 

unit root, as we latter work with the 24 price series within an OLS and quantile regression 

framework, such issues would need to be addressed properly. In Table 1 we indicate the 

autocorrelation at first, fifth and seventh lag. The autocorrelation coefficients range from 0.47 

to 0.68 at the 1st lag, they tend to decline to a range from 0.04 to 0.38 at the 5th lag, and are up 

again at the 7th lag at a range from 0.11 to 0.57. These results suggest two important features of 

our series that are distinct from price data of financial assets: i) the time series are less persistent, 

ii) the time series show weakly price seasonality. The present of a seasonal-unit root was tested 

using three standard tests of Osborn et al., (1988), Hylleberg et al., (1990), and Canova and 

Hansen (1995). They each indicated an absence of a seasonal-unit root. We therefore study each 

price series in their level. 
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Table 1 Descriptive statistics of the electricity price and demand for given hours 
 Electricity price, Pt

h [EUR] Total demand, DAt
h [MWh] 

Hour Mean SD Min Max Skew. ρA(1) ρA(5) ρA(7) Mean SD Min Max Skew. ρA(1) ρA(5) ρA(7) 
00:00 - 01:00 25.86 10.09 -79.94 57.01 -2.20 0.47 0.11 0.18 46371 4460 33830 61699 0.20 0.78 0.45 0.81 
01:00 - 02:00 23.98 10.57 -83.00 51.04 -2.35 0.52 0.08 0.17 44437 4434 32638 59909 0.19 0.77 0.44 0.79 
02:00 - 03:00 22.65 11.60 -83.03 53.05 -2.95 0.54 0.07 0.11 43480† 4456 31615 58463 0.19 0.78 0.44 0.79 
03:00 - 04:00 22.07 10.92 -83.03 48.82 -2.46 0.52 0.09 0.17 43511 5038 0 57893 -1.43 0.64 0.32 0.69 
04:00 - 05:00 22.49 10.74 -83.04 51.52 -2.49 0.54 0.11 0.20 44543 4810 31455 58668 -0.02 0.75 0.36 0.82 
05:00 - 06:00 24.49 10.44 -83.02 56.06 -2.61 0.54 0.12 0.26 46830 5754 31854 60979 -0.30 0.63 0.16 0.83 
06:00 - 07:00 30.31 13.44 -83.01 91.21 -2.13 0.48 0.06 0.44 52265 8528 32758 68258 -0.56 0.48 -0.07 0.83 
07:00 - 08:00 36.88 16.39 -80.00 163.52 -0.46 0.47 0.04 0.53 57136† 10056 33014 73738 -0.62 0.43 -0.12 0.83 
08:00 - 09:00 38.99 16.50 -79.96 153.67 -0.40 0.47 0.06 0.50 60094† 9655 34323 76304 -0.70 0.41 -0.12 0.82 
09:00 - 10:00 37.50 15.26 -76.02 150.10 -0.09 0.48 0.11 0.46 61582 8548 37430 76706 -0.72 0.41 -0.10 0.81 
10:00 - 11:00 35.49 15.11 -67.08 151.07 0.08 0.50 0.14 0.43 63073 8086 40168 77791 -0.73 0.42 -0.10 0.79 
11:00 - 12:00 34.70 14.86 -81.95 135.00 -0.02 0.52 0.16 0.40 64325 7723 41945 78207 -0.72 0.43 -0.10 0.79 
12:00 - 13:00 32.18 14.84 -76.09 121.58 -0.41 0.51 0.16 0.37 63822 7700 41065 78327 -0.70 0.43 -0.11 0.79 
13:00 - 14:00 30.49 16.23 -100.06 117.68 -1.13 0.50 0.14 0.38 62695 8152 39664 77079 -0.69 0.44 -0.12 0.79 
14:00 - 15:00 29.75 16.70 -130.09 112.21 -1.36 0.50 0.16 0.43 61357 8250 38922 76720 -0.67 0.44 -0.12 0.79 
15:00 - 16:00 30.92 15.84 -82.06 117.18 -0.49 0.55 0.20 0.49 60466 8163 38974 76839 -0.64 0.45 -0.09 0.80 
16:00 - 17:00 32.83 15.34 -76.00 120.00 0.35 0.61 0.29 0.54 59896 7879 38515 78483 -0.54 0.49 -0.02 0.81 
17:00 - 18:00 38.07 16.11 -6.00 142.78 1.48 0.68 0.38 0.57 60744 7948 33261 79063 -0.36 0.57 0.15 0.82 
18:00 - 19:00 41.43 15.02 -1.21 143.09 1.75 0.63 0.33 0.51 61277 7633 39044 77741 -0.28 0.64 0.24 0.83 
19:00 - 20:00 41.89 13.04 1.80 124.94 1.17 0.60 0.26 0.43 60764 7296 42362 76186 -0.27 0.64 0.22 0.84 
20:00 - 21:00 38.29 10.57 -4.94 109.92 0.48 0.54 0.21 0.38 58257 6430 41725 72594 -0.28 0.63 0.15 0.83 
21:00 - 22:00 34.62 9.24 -38.19 78.98 -0.71 0.52 0.19 0.33 55744 5589 39670 69863 -0.25 0.63 0.14 0.82 
22:00 - 23:00 32.84 8.78 -49.98 66.17 -1.10 0.51 0.22 0.26 53412 4970 38079 68267 -0.06 0.71 0.30 0.81 
23:00 - 24:00 27.84 9.90 -70.09 56.61 -3.02 0.48 0.12 0.15 49520 4624 35776 64729 0.10 0.76 0.41 0.80 

Note: SD denotes sample standard deviation, ρA(.) is the value of the autocorrelation coefficient at a given lag. 
Using the procedures developed in Hyndman et al., (2018), we used the Osborn et al., (1988), Hylleberg et al., 
(1990), and Canova and Hansen (1995) tests of weakly seasonal unit-root for each of the series. We omit the 
explicit reporting of results of these tests as they all indicated no seasonal unit-root in hourly electricity prices, 
except for series denoted with symbol † where the Canova and Hansen (1995) test indicated that one seasonal 
differencing is necessary to remove the seasonal unit-root. 

5.2 Actual and forecasted energy demand 

As previously discussed, demand and supply are important in the electricity price 

formation process, and their components should be included in our model. The supply side is 

determined by several factors: fuel for the power plants, emission allowances and production 

of renewable energy (Paraschiv et al, 2014). Electricity consumption represents the demand 

side. As the demand is almost inelastic, the day-ahead electricity prices are strongly affected by 

unscheduled plant outages (Bunn et al, 2013). A clear understanding of the underlying factors 

is important in developing insights into the electricity price. The demand variable will be 

represented by the aggregated electricity consumption in Germany, DAt
h. As with the price time 

series, the demand is positively autocorrelated with even more profound seasonal pattern. 
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However, in almost all price series the seasonal unit-root tests indicated no presence of the unit-

root5. To proxy for the expected demand, we use the day-ahead total load forecast obtained 

from the Transparency Platform operated by the European Network of Transmission System 

Operators for Electricity (ENTSO-E, 2018), DFt
h. For markets where system operator does not 

provide load forecast, a model such as Do et al. (2016b) could be used.  

5.3 Renewable energy 

The biggest share of renewable production in Germany consists of wind and solar 

power. Moreover, production of these two renewables is price inelastic. We therefore focus 

only on these two renewables in our paper and use the term renewables interchangeably with 

wind and solar power. Woo et al. (2011) and Keles et al. (2013), employ econometric techniques 

to investigate the impact of wind on the electricity price in the Netherlands and German 

markets. Both papers find that wind production has reduced the electricity prices. 

Installed capacity and production from renewable sources have increased in the recent 

years. We therefore expect the production of energy from renewables to have a negative impact 

on the electricity price in Germany. For illustration purposes, the following Figure 4 shows the 

time evolution of the share of wind and solar energy production on the overall electricity 

production. The average value over our sample period is at 0.22, but occasionally it reached 

values over 0.50, thus making it a potentially important price factor. 

 
5 An exception was found for three price series, where the Canova and Hansen’s (1995) test indicated a seasonal-
unit root, but the remaining tests no. 
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Figure 4 Share of the wind and solar energy production 
 

The summary statistics presented in Table 2 cover production forecasts for electricity 

generated from wind and solar sources (ENTSO-E, 2018). Using forecasts is advantageous in 

a similar fashion as using demand forecasts: the forecasts are exogenous with respect to the 

day-ahead price data, the forecasts are publicly available and manifest market participant’s 

expectations that are not captured in the actual lagged production. The descriptive statistics 

reported in Table 2 confirm some stylized facts about energy production from wind and solar 

renewable sources. For the wind energy, the hourly price series are most of the time quite 

similar, while for the solar energy the price path show ‘typical’ features of no production during 

night, while the production peaks around noon. Compared to the consumption (demand), in 

production, there is no weakly seasonal effect to be expected, nor visible in the autocorrelation 
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structure. Using the unit-root tests and the Sul et al., (2005) version of the Kwiatkowski et al., 

(1992) stationarity test the null of no unit-root was also not rejected. 

Table 2 Descriptive statistics for wind and solar forecasts 
 Wind production forecast, WFt

h [MWh] Solar production forecast, SFt
h [MWh] 

Hour Mean SD Min Max Skew. ρA(1) ρA(5) ρA(7) Mean SD Min Max Skew. ρA(1) ρA(5) ρA(7) 
00:00 - 01:00 10642 7769 738 40938 1.14 0.59 0.20 0.17 -- -- -- -- -- -- -- -- 
01:00 - 02:00 10661 7802 576 39861 1.14 0.59 0.20 0.18 -- -- -- -- -- -- -- -- 
02:00 - 03:00 10613 7809 574 38827 1.13 0.59 0.20 0.18 -- -- -- -- -- -- -- -- 
03:00 - 04:00 10466 7774 0 38842 1.12 0.59 0.20 0.18 -- -- -- -- -- -- -- -- 
04:00 - 05:00 10424 7754 730 38383 1.11 0.59 0.20 0.18 -- -- -- -- -- -- -- -- 
05:00 - 06:00 10336 7760 846 38305 1.12 0.60 0.20 0.18 41 94 0 1663 5.51 0.73 0.70 0.68 
06:00 - 07:00 10232 7802 781 38139 1.13 0.60 0.20 0.19 381 578 0 2132 1.39 0.95 0.92 0.90 
07:00 - 08:00 10092 7892 618 38046 1.15 0.61 0.21 0.19 1626 1763 0 6245 0.80 0.93 0.87 0.85 
08:00 - 09:00 9929 8031 412 37995 1.16 0.61 0.21 0.19 4108 3338 4 12149 0.44 0.89 0.79 0.77 
09:00 - 10:00 9873 8234 314 38126 1.15 0.61 0.20 0.18 7269 4750 283 18356 0.28 0.85 0.71 0.69 
10:00 - 11:00 9954 8408 292 38602 1.14 0.61 0.18 0.16 10141 5800 733 23490 0.19 0.82 0.66 0.63 
11:00 - 12:00 10101 8533 293 38990 1.12 0.61 0.16 0.14 12162 6503 1116 26908 0.14 0.82 0.64 0.61 
12:00 - 13:00 10271 8595 334 39191 1.10 0.60 0.15 0.13 13091 6946 1190 28651 0.11 0.83 0.65 0.62 
13:00 - 14:00 10401 8584 366 38933 1.08 0.60 0.14 0.11 12897 7153 982 28817 0.12 0.84 0.68 0.66 
14:00 - 15:00 10445 8486 436 38778 1.07 0.59 0.13 0.11 11697 7149 620 27511 0.14 0.87 0.73 0.71 
15:00 - 16:00 10414 8347 381 38879 1.07 0.57 0.13 0.11 9629 6851 178 24753 0.17 0.90 0.79 0.77 
16:00 - 17:00 10385 8201 398 39164 1.08 0.56 0.14 0.11 7109 6016 7 20402 0.26 0.92 0.84 0.82 
17:00 - 18:00 10360 8060 463 39619 1.09 0.56 0.16 0.13 4569 4499 0 14735 0.40 0.94 0.87 0.86 
18:00 - 19:00 10329 7938 545 40062 1.10 0.57 0.18 0.16 2362 2665 0 8873 0.60 0.95 0.90 0.90 
19:00 - 20:00 10319 7855 610 40423 1.12 0.58 0.21 0.19 880 1176 0 3921 1.01 0.97 0.93 0.93 
20:00 - 21:00 10410 7818 651 40605 1.13 0.58 0.23 0.20 197 344 0 2130 1.76 0.95 0.92 0.91 
21:00 - 22:00 10536 7757 672 40514 1.13 0.59 0.23 0.20 12 56 0 1731 23.74 0.22 0.21 0.20 
22:00 - 23:00 10667 7706 833 40292 1.13 0.59 0.22 0.19 -- -- -- -- -- -- -- -- 
23:00 - 24:00 10703 7659 855 39895 1.13 0.59 0.21 0.18 -- -- -- -- -- -- -- -- 

Note: SD denotes sample standard deviation, ρA(.) is the value of the autocorrelation coefficient at a given lag. 
Using the procedures developed in Hyndman et al., (2018) we used the Osborn et al., (1988), Hylleberg et al., 
(1990), and Canova and Hansen (1995) tests of weakly seasonal unit-root for each of the series. We have also 
used the Sul et al. (2005) version of the Kwiatkovski et al. (1992) test indicated rejection of the null hypothesis of 
a unit-root. We do not report results from these tests explicitly as for all series the results indicated no presence 
of seasonal unit-root. 

5.4 Market prices: Coal, Brent, Natural Gas, EUA 

According to Sensfuß et al. (2008) different means of electricity generation have distinct 

fuel price dependencies; for example, coal power plants are dependent on coal prices and gas 

power plants are dependent on gas prices. Mjelde and Bessler (2009) study two US electricity 

markets and include uranium prices along with other fuel prices. Ferkingstad et al (2011) use a 

cointegration approach on prices in Northern Europe and find that electricity prices are closely 

connected with gas prices, while coal and oil prices are less important. However, Parashiv et al 
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(2014) studies the German electricity price and finds that coal, gas and oil are all important 

fundamental variables driving the electricity price, with coal price more important during off 

peak hours and gas and oil prices important during peak hours. This finding is in line with 

Murray (2009), who found that the relationship between fuel prices and electricity price is 

depended on the marginal electricity price setting technology used in each specific hour. 

Usually, nuclear power plants run at almost constant power for economic reasons, even 

when the load is low (International Atomic Energy Agency, 1999). Nuclear power plants have 

low marginal costs on the merit order curve. They have therefore very small impact on the 

variation of electricity price. Coal and lignite are the primary fuels (45% in 2013) used to cover 

the base load for the electricity market (AG Energiebilanzen, 2015). Unlike hard coal, lignite is 

based on local distribution and there is currently no single market price for lignite. The coal 

price is represented by a futures contract on the price of coal imported to northwestern Europe 

via Amsterdam, Rotterdam and Antwerp. Unlike coal power plants, gas power plants are mainly 

used to cover the peak load due to their greater flexibility to ramp up and down. In Germany, 

gas is traded under contracts from Gaspool and NetConnect Germany (NCG). We choose to 

use the NCG contracts because there is higher liquidity in this market. Production from oil 

power plants forms a small fraction (1%) of Germany's total electricity production (AG 

Energiebilanzen, 2015). Oil price has therefore a low impact on the merit order curve (Sensfuß 

et al., 2008). Further, oil consumption is dominated by the transport sector and industry. 

However, the oil price might serve as a proxy for economic activity and transport fuel for coal 

fuel. In this paper, the European Brent spot price is used to represent the oil fuel cost. Based on 

the arguments above, we include coal, gas and oil prices in our model. 

 Electronic copy available at: https://ssrn.com/abstract=3436614 



 18 

The CO2 markets are an attempt to increase investment in cleaner technology by fuel 

switching to less carbon intensive power plants or reducing the use of carbon intensive power 

plants. Both Fell (2010) and Parashiv et al (2014) find that the short-term influence of CO2 price 

on the electricity price is higher in off peak hours than in peak hours. This is because coal emits 

twice as much CO2 as natural gas. We therefore expect the CO2 price to have a higher effect on 

the electricity price during periods when coal power plants are the price setting technology.  

The following Table 3 presents the summary statistics of the market prices of the Brent 

oil, coal, natural gas and EUA. In line with the existing literature, the unit-root test rejected the 

null of no unit-root in the level of the series. Therefore in the subsequent analysis, we use the 

1st differences as they the test was unable to reject the null of no-unit root. Note, that using these 

market prices in level form is not advised as they are integrated of order one, while electricity 

prices (dependent variable) is integrated of order zero. A linear combination would potentially 

lead to a variable (within a linear regression model to residuals) that are integrated of order one.  

Table 3 Descriptive statistics for the prices of Brent oil, Coal, Natural gas and EUA 
   Mean SD Min Max Skew. ρA(1) ρA(5) ρA(7) 
Panel A: Level series 
Brent Bt 53.53† 9.85 27.88 79.80 0.17 0.993 0.967 0.955 
Coal Ct 69.18† 16.49 43.40 96.65 0.08 0.998 0.989 0.984 
Gas Gt 42.33† 8.23 26.38 66.31 0.02 0.993 0.965 0.953 
EUA Et 6.94† 2.29 3.93 16.28 1.66 0.992 0.960 0.942 
Panel B: Differenced series 
Brent ΔBt 0.02 0.98 -4.59 5.46 0.26 -0.081 -0.044 -0.003 
Coal ΔCt 0.02 0.77 -6.20 11.95 2.63 0.062 0.014 -0.025 
Gas ΔGt 0.00 0.87 -6.50 6.50 -0.14 0.036 -0.001 -0.023 
EUA ΔEt 0.01 0.16 -0.93 1.10 0.47 -0.042 0.019 -0.061 

Note: SD denotes sample standard deviation, ρA(.) is the value of the autocorrelation coefficient at a given lag. 
Symbol † denotes series where the Sul et al. (2005) version of the Kwiatkovski et al. (1992) test indicated rejection 
of the null hypothesis of a unit-root. 
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6. Empirical results 

6.1 Baseline results from linear models 

 Similar to the demand model, we generate a multiple regression model for the price. 

The reason for using a separate equation is that each hour displays a rather distinct price profile, 

reflecting the daily variation in demand, fuel costs and operational constraints (Chen and Bunn, 

2010). Furthermore, extensive research on price forecasting has generally favored the multi-

model specification for short-term predictions (Chen and Bunn, 2010; Paraschiv et al., 2014). 

Based on the description of the electricity market in Germany given in Section 2 and on 

data availability, we estimated 24 separate linear regression models to estimate electricity prices 

in Germany. To save space, Table 4 we reports estimated coefficients from Eq. (1) for four 

selected hours of the day, results for the remaining 20 hours are available upon request. In order 

to give a more comprehensive picture of results for all hours, we provide a graphic 

representation on the estimated coefficient from the ordinary regression in Figure 5 and 6. 
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Table 4 Baseline OLS results explaining electricity prices for selected hours 
    08:00 - 09:00 12:00 - 13:00 19:00 - 20:00 00:00 - 01:00 
Panel A: Variables of interest      
Constant  -1.632 3.968 -14.889* -15.964*** 
Lagged price Pt-1 0.261*** 0.218*** 0.332*** 0.175*** 
Previous week's price Pt-7 0.165*** 0.106*** 0.167*** 0.085*** 
Forecasted demand/1000 DFt 0.150*** 0.100*** 0.050* 0.020* 
Lagged demand/1000 Dat 0.001 0.070** 0.130*** 0.230*** 
Lagged coal price return ΔCt-1 -0.099 0.011 -0.06 -0.219 
Lagged natural gas price return ΔGt-2 0.164 0.098 0.013 0.292 
Lagged Brent oil price return ΔBt-3 -0.348* -0.081 -0.018 0.076 
Lagged EUA price return ΔEt-4 -0.330 1.067 1.904 0.466 
Wind production forecast/1000 WFt -0.240*** -0.240*** -0.220*** -0.230*** 
Solar production forecast/1000 SFt -0.130*** -0.230*** 0.060 

 

Panel B: Control variables      
Monday Mont 4.597 6.517*** 9.933*** 3.076*** 
Tuesday Tuet 0.673 0.373 0.621 4.097*** 
Thursday Thut -0.514 -1.100** -1.251* -0.286 
Friday Frit -1.651*** -1.34** -2.906*** -0.627* 
Saturday Satt -5.239** -4.784*** -4.333*** -0.393 
Sunday Sunt -5.647* -4.019** 0.771 -3.546*** 
January Jant 6.226** -1.089 4.851* -2.473 
February Febt 1.903 -4.771** 1.959 -3.839** 
March Mart 1.035 -3.948** 2.674 -3.770** 
April Aprt 2.747* -0.544 1.433 -0.302 
May Mayt 1.550 -0.058 0.799 -0.51 
Jun Junt -0.293 -1.360 -1.087 -1.621 
August Augt -1.089 -1.347 0.362 -1.188 
September Sept 1.732 -1.946 2.804 -1.050 
October Octt 3.810** -2.106 5.120** -0.779 
November Novt 6.043*** -1.356 4.563** -0.004 
December Dect 3.681** -2.520 4.322** -0.971 
Holiday Holt -8.335** -6.687** -2.046* -1.251 
R2  0.747 0.721 0.711 0.678 
1st order autocorrelation of residuals 0.026 0.138 0.126 0.158 
7th order autocorrelation of residuals 0.074 0.111 0.162 0.116 

Note: *, **, *** denotes significance of coefficients at the 10%, 5%, and 1% level. The significance of coefficients is 
based on the estimation of standard errors of regression coefficients that are consistent even in the presence of 
autocorrelated and heteroscedastic residuals, using the Newey and West (1994) automatic bandwidth procedure 
with Quadratic spectral weighting scheme. Autocorrelation of residuals was tested using the Peña and Rodríguez 
(2002) test using the Monte Carlo version of Lin and McLeod (2006). R2 denotes the coefficient of determination. 

 

 Electronic copy available at: https://ssrn.com/abstract=3436614 



 21 

 
Figure 5 Estimated OLS coefficients of price models across different daily hours: Lagged 
prices and model fit 
Note: The shaded area represents the 95% confidence interval around the estimated coefficients. 
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Figure 6 Estimated OLS coefficients of price models across different daily hours: Demand and 
production from renewable energy sources 
Note: The shaded area represents the 95% confidence interval around the estimated coefficients. 
 
 

Our results (see Table 4 and Figure 5) confirm the existence of persistence in the 

electricity prices in Germany. The coefficient (at Pt-1) ranges from 0.157 (for the 23:00 to 00:00 

period) to 0.357 (18:00 to 19:00). We have also introduced the lagged weakly price variable to 

account for weakly seasonality. The coefficients (at Pt-7) was positive and significant for almost 

all daily prices all models. Although price persistence of electricity prices is present across all 

pricing equations, the size of the persistence differs across the day, as higher persistence (daily 

and weekly) is found late afternoon (from 15:00 to 20:00). These results suggest that prices late 

afternoon, when the demand peaks are more predictable. Supply side explanation for this effect 

would be that later afternoon production runs closer to the overall available production capacity. 
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Therefore sudden changes in demand have a relatively low effect on the supply side and thus 

the electricity price. 

Even though the demand is considered to be mostly inelastic (Sensfuß et al, 2008), we 

find, that the variation in the actual and forecasted demand is positively associated with next 

day’s prices. However, the magnitude of the effect that actual and forecasted demand exert on 

the prices over the day differs quite considerably. The forecasted demand is most important for 

electricity prices in the morning (from 06:00 to 11:00), while actual one-day lagged demand in 

the midnight (from 23:00 to 02:00). 

The effects of renewables on German electricity prices are estimated using exogenous 

terms for the total expected (forecasted) electricity production from wind and solar resources. 

Coefficients on the forecasted electricity production from renewable resources are negative, 

thus confirming earlier finding that increased production through renewables decreases 

electricity prices. This effect can be attributed to the minimal marginal costs associated with 

higher production.  

The infeed from solar production has a lower impact on the electricity price than wind 

production, which can be explained by higher total installed wind capacity compared to that of 

solar sources (AG Energiebilanzen, 2015). We further observe that the solar production 

coefficient is smaller (higher effect) during the day and almost zero as during the night, in 

accordance with the solar production level.  

The role of the wind production in setting prices declines during production peaks 

mornings and late afternoon up until midnight. The possible explanation is that when the 

demand for electricity is high, flexible gas power plants are required to cover the demand, which 
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on the other hand have high marginal costs. Using the additional capacity of such high cost 

power plants decreases the price lowering effect from renewables.  

Price of coal, natural gas and Brent oil in their differenced form are statistically 

unrelated to the electricity prices (see Table 4, results for remaining hours lead to the same 

conclusion). This might seem to be surprising given the fact that energy prices are driving costs 

for non-renewable energy sources (as well as opportunity costs for renewable energy sources). 

Also European Union emission allowances have no relevant effect on the day-ahead electricity 

prices. However, as we use price differences (due to the inability to reject the null of stationarity 

of the price series) in the analysis, the reported result only suggest that short-term (daily) 

changes in market prices on the right hand side of our model, does not lead electricity prices (in 

level form) on the German market. This is in line with the fact how commodities are purchased 

– contracts (and prices) are settled several months in advance, therefore daily changes should 

in fact only limited effect on day-ahead electricity prices, which is what our results suggest. 

We also included a set of control variables in a form of a dummy variables (see Table 

4). The results indicate significant and relevant day-of-the-week effects and monthly effects. 

For example, compared to Wednesdays, the average price on Monday during the peak hours 

(19:00 - 20:00) is 9.93 EUR higher. While compared to July, prices for the same hour in October 

are on average up 5.12 EUR. We can also observe that day-of-the-week and monthly effects 

are more relevant during peak hours. 
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6.2 Results from ARX-EGARCH model 

We complement the linear regression results with those from the ARX(7,0)-

EGARCH(1,1) model. Fundamental variables show similar magnitude and significance as 

those reported via the linear regression. Detailed results for selected hours can be found in 

Appendix A. However, few new results are worth to mention. First, the inclusion of one to 

seven daily price lags (not just one day and one week price lags) removed traces of serial 

correlation in residuals, and also led to less pronounced day-of-the-week effects. Still, prices 

during the weekend are lower compared to the benchmark of Wednesday’s prices. Second, the 

residuals show signs of conditional heteroscedasticity and the presence of the sign effects that 

vary with respect to the hourly price being modelled. For example, during the night, when 

negative price shocks are more likely we observe a leverage effect, where negative price shocks 

lead to an increase of volatility of higher magnitude than comparable positive price shocks. On 

the other hand, during the production peak hours, when positive price shocks are more likely, 

we observe the opposite effect (positive sign coefficient). 

Overall, our models are able to explain the electricity prices better during the day, 

particularly when demand is high (see Figure 5). We attribute this to the: i) stronger persistence 

of prices during peak hours, ii) the stronger (and positive) effect of the demand, and iii) more 

relevant seasonal effects. The impact of the renewable energy sources on the electricity price is 

negative, i.e. higher expected production from wind and solar renewable sources leads lower 

electricity prices. One explanation for lower model fit and smaller effects of fundamentals 

during the night and off-peak hours is that prices are subject to extreme swings during the night 

(see Figure 3), because of low demand and excess production from wind sources (see Paraschiv 

et al., 2014). In the next section, we address this issue by studying how key fundamental drivers 

effect the tails of electricity prices. 

 Electronic copy available at: https://ssrn.com/abstract=3436614 



 26 

6.3 Modeling extreme prices 

Quantile regression enables us to estimate a set of regression lines, corresponding to 

selected quantiles of the electricity price distribution. Using the quantile regression framework 

allows us to compare results across different quantiles (and compared to the OLS estimators) 

and thus observe potential asymmetric and non-linear effects on the electricity price. In the 

following models, we report results on the 5th, 25th, 50th, 75th and 95th percentiles of the 

electricity prices.  Focusing on tails of the price distribution, 5th and 95th, percentiles is useful 

for our understanding of drivers of extreme prices that also tend to have the largest effect on all 

market participants: suppliers, consumers and regulators alike.  

Since we estimate coefficients for five quantiles for each variable for 24 hours of the 

day, that lead to over 3600 coefficients, thus presenting all the coefficients in tables would be 

cumbersome. We therefore summarize results for key variables in following Figures 7 – 8. 

 Electronic copy available at: https://ssrn.com/abstract=3436614 



 27 

 
Figure 7 Estimated quantile regression coefficients across different daily prices and quantiles: 
Lagged prices 
Note: The dot in the line corresponds to a statistically significant coefficient at the 5% significance level. 
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Figure 8 Estimated quantile regression coefficients across different daily prices and quantiles: 
Demand and production from renewable energy sources 
Note: The dot in the line corresponds to a statistically significant coefficient at the 5% significance level. 

In Figures 7 and 8 we report results only from fundamental variables that systematically 

influenced prices. Similarly, as for the OLS model, market prices in their differenced form had 

no relevant effect on the percentiles of the day-ahead electricity prices in Germany and were 

therefore excluded from the Figure 7 and 8. 

In Figure 7 (upper panel), we can observe several notable asymmetric effects of the 

persistence coefficients (at Pt-1). For example, during the night (from 02:00 until 06:00) the 

persistence of extremely low prices (below 5th percentile) is much stronger than persistence of 

high prices (above the 95th percentile). On the other hand, during the late afternoon production 

peak (from 17:00 until 21:00) the persistence of extremely low prices is much smaller. This 
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shows, that at least part of the variation in the extremely negative prices can be attributed to 

different persistence of prices across quantiles and hours. 

The weekly seasonality price coefficient (at Pt-7) tend to be of lower magnitude than the 

daily lagged coefficient (lower panel of Figure 6), but is still significant across most quantiles 

and hours. The effect across quantiles of the electricity prices shows similar patterns. An 

exception is found for the production peak period (17:00 until 21:00), where weekly lagged 

price coefficient reaches values above 0.20 for the 95th percentile of the electricity price. 

The importance of the estimated coefficients of forecasted demand differs across 

percentiles. The positive relationship between forecasted demand and electricity price is greater 

in magnitude at the lower tail (5th and 25th percentiles) of the distribution than at the upper tail 

(75th and 95th quantiles). The differences are amplified during production peak period in the 

morning and early afternoon. For example, with respect to the price during the period from 

14:00 to 15:00 the effect of the forecasted demand at the 95th percentile of the price is 0.108 

(after multiplying by 1000) and at the 5th percentile it is 0.200, while both significant. 

The effect of the actual lagged demand on the prices differs particularly with respect to 

given hour, while it is similar across quantiles. During the night, when production/demand is 

low the lagged demand shows strong effect across all quantiles of the price distribution, while 

during the day, the effect of lagged demand is much smaller and before noon even insignificant. 

The effect of expected (forecasted) renewable electricity production resources show 

several interesting features. First note that the effect of the solar power sources over the relevant 

daily hours is very similar across quantiles. Increasing level of production leads to lower prices 

across the whole distribution. Therefore solar power sources does not seem to amplify extreme 

prices. On the other hand, wind production shows that it indeed has the ability to shift extreme 
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prices in both direction. Note, that during the whole day coefficients related to the 5th price 

percentile, that explain extremely low electricity prices, are much lower (larger in magnitude) 

compared to the coefficients on remaining percentiles. At the same time, coefficients for the 

upper tail of the price distribution, although smaller in magnitude, are also still significant. This 

means that although wind production shifts left-tail price distribution in a more pronounced 

way, wind production in general drives both, the right- and left-tail of the price distribution. 

During the night session (from 22:00 to 06:00) the effect of the wind power production is 

amplified with respect to extremely low prices.   
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7. Conclusions 

This paper studies the main drivers of the electricity prices in Germany over the period 

from January 2015 until Jun 2018. We analyze hourly day-ahead prices using standard linear 

regression, ARX-EGARCH, and a (non-quantile crossing) quantile regression models. Our 

contribution to the existing literature is five-fold.  

First, we find that short-term price fluctuations of the coal, Brent oil, natural gas and 

emission allowances (EUA) do not impact the German day-ahead electricity prices. Second, we 

show that controlling day-of-the-week as well as monthly effects is necessary for a correct 

specification as these effects are not only statistically significant but also economically relevant 

price drivers. Third, we identify that extremely low and high price movements on the market 

are driven partly by price persistence. The extremely low prices (below the 5th percentile) tend 

to persist in the prices for the night session. At the same time, extremely high prices (above the 

95th percentile) tend to persist in the prices settled during the late afternoon production peak 

period. Fourth, extremely low prices are driven by expected demand. When the demand drops 

during the day, the impact on the left-tail of the price distribution is much higher compared to 

the impact on the right-tail of the price distribution. Fifth, we identify that forecasted wind 

production effects both, extremely high and low price, although low prices are more affected. 

The difference in the effect of the wind production on electricity prices is amplified during the 

night session, where low prices are smaller with larger increase of wind production. 

The results presented in this study could be used by market participants to understand 

what drive extreme price movements, i.e. that extreme prices are at least partly driven by market 

fundaments like demand and production from renewable energy sources. For example, risk 

managers could design better trading strategies to mitigate effects of extreme negative price 

movements on their portfolios.  
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Appendix The ARX-EGARCH model: specification and estimation 

Alternatively to the standard OLS model, we consider an AutoRegressive model with 

eXogenous regressors with Exponential Generalized AutoRegressive Conditional 

Heteroscedasticity model ARX-EGARCH. The model is defined as: 
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 The model given by (A.1)-(A.5) is estimated by maximum likelihood. Compared to Eq. 

(1) in the main text, Eq. (A.1) excludes the autoregressive terms in the mean equation. Instead, 

the persistence is modelled separately in Eq. (A.7). We use seven lags (one week) of the error 

terms to account for the serial correlation. The advantage of this approach is that we handle the 

serial correlation of residuals directly within the model, on the other hand, the interpretation of 

persistence parameters is unclear. However, other fundamental variables in Eq. (A.1) can be 

interpreted in the same way as in the OLS regression Eq. (1). 

The EGARCH model of Nelson (1991) models the volatility, where st
h denotes 

standardized innovations, and α and γ control for the sign and size effects, respectively, while 

β for the persistence of the latent volatility process. We choose this specification, for two 

reasons. First, it allows to address potential asymmetric volatility effects, while it models the 
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log of the volatility, which makes the estimation of the model easier, a property we desire given 

that we have around 1250 observations for each model. Finally, we allow ηt
h to follow the 

Johnson’s distribution (1949a, 1949b) that is capable of capturing skewness and heavy tail 

properties of the underlying random variable (if present). 

Table A1 ARX-EGARCH model explaining electricity prices for selected hours 
    08:00 - 09:00 12:00 - 13:00 19:00 - 20:00 00:00 - 01:00 
Panel A: Variables of interest      
Constant  4.722*** 23.727*** 24.106*** 17.672*** 
Lagged price – one day  0.370*** 0.422*** 0.353*** 0.346*** 
Lagged price – two day  0.089*** 0.156*** 0.170*** 0.113*** 
Lagged price – three day  0.029* 0.036** 0.077*** 0.120*** 
Lagged price – four day  0.042* 0.042*** 0.066** 0.078*** 
Lagged price – five day  0.064** 0.027*** 0.031 0.093*** 
Lagged price – six day  0.091*** 0.041*** 0.098*** 0.063*** 
Previous week's price  0.168*** 0.086*** 0.120*** 0.107*** 
Forecasted demand/1000  0.189*** 0.110*** 0.065*** -0.001 
Lagged demand/1000  0.006 0.019*** 0.044*** 0.067*** 
Lagged coal price return  -0.117*** -0.016 -0.108 -0.251 
Lagged natural gas price return  0.164 -0.013 0.076 0.086 
Lagged Brent oil price return  0.084 -0.027 -0.025 0.086 
Lagged EUA price return  -1.847*** -0.506 -0.752 0.019 
Wind production forecast/1000  -0.216*** -0.222*** -0.211*** -0.192*** 
Solar production forecast/1000  -0.175*** -0.245*** 0.142*** 

 

Panel B: Control variables      
Monday  -1.739 -3.910** -0.903 -0.581 
Tuesday  0.262 -2.387 -0.078 2.103 
Thursday  -1.524*** -2.656* -0.021 0.605 
Friday  0.599** -1.737 -1.217 1.490 
Saturday  -0.236 -0.005 -1.235 -0.631 
Sunday  -0.632 -0.858 -0.587 -1.972* 
January  -0.017 -0.675 0.735 -0.843 
February  0.360 -0.386** 1.570 -0.841 
March  1.198 0.063 1.883 0.259 
April  -2.181 0.508 2.202 0.839 
May  -4.832** -3.479* 0.544 2.144 
Jun  -1.260 -3.107*** -3.273*** -0.636 
August  -1.739 -3.910** -0.903 -0.581 
September  0.262 -2.387 -0.078 2.103 
October  -1.524*** -2.656* -0.021 0.605 
November  0.599** -1.737 -1.217 1.490 
December  -0.236 -0.005 -1.235 -0.631 
Holiday  -0.632 -0.858 -0.587 -1.972* 
Panel C: Variance equation      
Constant  0.295* 1.688*** 0.107*** 0.325*** 
Sign effect  0.029 0.011 0.128*** -0.107** 
Persistence  0.917*** 0.522*** 0.967*** 0.898*** 
Size effect  0.304*** 0.514*** 0.127*** 0.263*** 
Panel D: Distribution parameters      
Skewness  0.151* -0.129* 0.348*** -0.462*** 
Shape  1.201*** 1.183*** 1.451*** 1.157*** 
Panel E: Model fit      
R2  0.763 0.743 0.772 0.686 
1st order autocorrelation of residuals -0.016 -0.106 0.084 -0.005 
7th order autocorrelation of residuals -0.036 -0.019 -0.016 -0.067 

Note: *, **, *** denotes significance of coefficients at the 10%, 5%, and 1% significance level. 
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