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ABSTRACT 
This paper concerns the evaluation of alternative fleets of advanced special vessels, like coast guard or 

emergency response and rescue vessels. The paper proposes a mathematical programming formulation of 

the Fleet Deployment with Maximal Covering problem and combines analysis of this problem with 

tradespace exploration and epoch-era analysis. A solution of the mathematical program provides an optimal 

deployment plan for a given fleet in a given context. The objective function value provides a measure of 

effectiveness for the fleet alternative. By evaluating the effectiveness of a set of alternative fleets in several 

alternative scenarios using epoch-era analysis, we obtain strategic insights about dynamic trade-offs and 

provide decision support for fleet size and mix planning. The paper reconciles the use of mathematical 

programming for measurement of fleet effectiveness with a design of experiments approach to concept 

exploration under uncertainty. The results show that it is effective to use mathematical programming for 

planning horizons with less uncertainty, and account for strategic uncertainties using the epoch-era 

framework.  

 

INTRODUCTION 
Determination of fleet size and mix is an important strategic problem facing commercial and governmental 

organizations that operate ships (Christiansen, Fagerholt, Nygreen, & Ronen, 2007; Pantuso, Fagerholt, & 

Hvattum, 2014). For commercial fleets of transport vessels, the objective is to minimize costs or maximize 

profits, determined on basis of the demand for transportation services. For fleets of special vessels, and 

particularly non-commercial fleets, like coast guards and navies, determination of fleet mix is a wicked 

problem (Andrews, 2018; Rittel & Webber, 1973), with many opposing stakeholder interests and uncertainty 

with respect to both current and future expectations. This makes it necessary to formulate other measures of 

effectiveness for evaluation of alternative fleets (Gawande & Wheeler, 1999; Hootman & Whitcomb, 2005; 

Martens & Rempel, 2011; Rains, 1999), that consider the demand for functionality and capabilities beyond 

the individual ship design problem. 

In defining measures of effectiveness for fleets, there is a need for considering the interactions between 

vessels constituting the fleet (Kujawski, 2014). For example, in an emergency preparedness setting, measures 

like area coverage and mission response time strongly depend on the relative location of assets. For coast 

guards, these measures must be traded against strategic military and civilian objectives: How much patrolling 

is required in an area to deter illegal activities? How many patrol days can we afford? Furthermore, it 

becomes a question of whether a given amount of functionality should be delivered by a smaller or larger 

number of assets. Can a smaller number of multi-functional assets replace a large fleet of smaller assets, and 

maintain the same effectiveness at a lower cost, or does such a solution add to the vulnerability of the fleet 

as a whole? For stakeholders to evaluate whether a given fleet renewal plan is appropriate, it is necessary to 

evaluate fleet effectiveness in the scenarios the fleet is likely to face.  

Operations research suggests that mathematical models be used for optimizing fleet compositions, even 

under uncertainty (Pantuso et al., 2014). However, methods that use stochastic programming to account for 

uncertainty in fleet size and mix (Pantuso, Fagerholt, & Wallace, 2016) aim to find the optimal fleet, without 

explicitly exploring the effectiveness of alternative architectures under different scenarios. This paper makes 

an argument for a more extensive exploration of solution spaces, rather than optimizing the solution itself. 

Evaluating fleet effectiveness in tactical emergency response missions using a 

maximal covering formulation 
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Exploration enables stakeholders to learn more about potential compromises before making decisions 

(Singer, Doerry, & Buckley, 2009) resonating with the “exploitation-exploration” trade-off (March, 1991). 

March (1991) argued that exploration, generating new knowledge about something, competes with 

exploitation, which is to use existing knowledge to make decisions, for scarce organizational resources. Both 

are necessary to achieve success, but we focus on exploration in this paper.  

This paper proposes a mathematical model for fleet deployment based on the structure of a maximal covering 

problem to address one measure of effectiveness. We refer to the proposed model structure as the Fleet 

Deployment with Maximum Covering (FDMC) model. By solving this deployment model under an 

experimental design that defines both a set of alternative fleets, and several alternative scenarios, or epochs, 

we enable exploration of the solution space and obtain insights about trade-offs and compromises that can 

guide decision-makers when acquiring new vessels.  

 

LITERATURE REVIEW 
The literature review draws from three main sources of knowledge: First, naval design research has 

highlighted the need for novel measures of effectiveness to be investigated. Second, systems engineering 

research has made advances including methods like tradespace exploration and epoch-era analysis inspired 

by design of experiments and response surface methodology. Third, operations research has contributed to 

numerous mathematical programming models that can be used to measure fleet effectiveness.  

A trend in naval design has been to move from ship design as the main problem to a holistic design approach 

aimed at improving fleet capabilities (Doerry & Fireman, 2009; Hootman & Whitcomb, 2005). This effort 

has included development of measures of effectiveness (Gawande & Wheeler, 1999; Hootman & Whitcomb, 

2005) and wide use of set-based design and concept exploration methods in early design phases to generate 

knowledge before committing costly decisions (Martens & Rempel, 2011; Singer, Doerry, & Buckley, 2009). 

A problem that is especially persistent for naval design, is the highly political design environment (Koenig, 

Czapiewski, & Hootman, 2008).  

Addressing the need to study the compromises that must be made in complex decision processes, including 

those faced by navies or other government organizations, Ross & Rhodes (2008) developed epoch-era 

analysis for studying dynamic system value sustainment. Epoch-era analysis applies an experimental design 

approach to developing scenarios, in which epochs represent short-term, static system contexts, and eras 

represent sequences of several epochs, capturing the long-term, dynamic development of system contexts. 

Epoch-era analysis is often used in combination with concept exploration, in which an experimental design 

approach is taken to define and evaluate a valid design space. Metrics based on analysis of the Pareto front 

are developed to evaluate long-term value robustness across multiple epochs and through eras (Fitzgerald, 

Ross, & Rhodes, 2011; Smaling & Weck, 2004). In this paper, an epoch is taken to correspond with a tactical 

planning horizon, for which the fleet deployment problem is solved. The epoch-era methodology has been 

applied to naval ship design (Schaffner, Ross, & Rhodes, 2014; Vascik, Ross, & Rhodes, 2016), and for 

special vessels in the offshore industry (Gaspar, Erikstad, & Ross, 2012; Pettersen et al., 2018). The problem 

complexity greatly increases on the fleet level, compared to the level of single ships, as the capabilities we 

are interested in emerge from the interaction between several vessels (Kujawski, 2014; Vascik, et al., 2016). 

In that sense, fleet effectiveness is a latent property to any single ship design problem, that can not explicitly 

be designed for (Pettersen, Erikstad, & Asbjørnslett, 2017). This makes it even more difficult to formulate 

evaluate performance, as needed for proper examination of alternative fleet structures.  

Resource allocation models for emergency preparedness in operations research are a useful tool for 

evaluation of fleet effectiveness. Thorough reviews of that literature are given by Altay & Green (2006), 

Galindo & Batta (2013) and Simpson & Hancock (2009). Among common maritime emergency missions 

addressed, we find oil spill response (Belardo, Harrald, Wallace, & Ward, 1984; Garrett, Sharkey, 

Grabowski, & Wallace, 2017; Psaraftis & Ziogas, 1985; Srinivasa & Wilhelm, 1997), emergency towing 

(Assimizele, Royset, Bye, & Oppen, 2018), and search and rescue (Asiedu & Rempel, 2011; Brachner & 
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Hvattum, 2017; Karatas, Razi, & Gunal, 2017; Razi & Karatas, 2016). A few models have been suggested 

for allocation of assets owned by agencies like the U.S. Coast Guard (Wagner & Radovilsky, 2012). 

Resource allocation for oil spill recovery has been most extensively studied. For such problems, possible 

objectives are maximization of area coverage (Belardo et al., 1984; Verma, Gendreau, & Laporte, 2013), 

minimization of total costs associated with oil spills (Iakovou, Ip, Douligeris, & Korde, 1997; Psaraftis & 

Ziogas, 1985), or minimization of response time to oil spills (Srinivasa & Wilhelm, 1997). Verma et al. 

(2013) present a two-stage stochastic program with recourse to address the problem of oil spill response. The 

first stage optimizes the location of oil spill response equipment and facilities, while the second stage uses 

the event-specific details about the oil spill to make decisions in emergency response. They find that 

decisions regarding facility location and equipment stockpiling depends on the trade-off between expected 

environmental costs and the cost of investing in facilities and equipment.  

Search and rescue has also seen increased attention (Brachner & Hvattum, 2017; Karatas et al., 2017; Pelot, 

Akbari, & Li, 2015; Razi & Karatas, 2016). Pelot et al. (2015) present several alternative extensions for a 

maximal covering location model for locating maritime search and rescue vessels. Extensions include 

considerations of workload capacity for vessels, stochastic vessel availability, and considerations of 

uncovered demand for response. Brachner & Hvattum (2017) combine helicopter routing for offshore 

personnel transport with a covering approach that ensures that emergency response units are located 

sufficiently close to helicopter routes. This approach is developed due to the need for novel emergency 

preparedness approaches for offshore personnel transport in the Arctic, where long distances constitute a 

significant vulnerability for emergency response. Search and rescue has also been considered in the context 

of the Mediterranean refugee crisis, where minimization of response time is an important objective, achieved 

by combining integer programming and discrete event simulation (Karatas et al., 2017; Razi & Karatas, 

2016).  

The solutions to resource allocation models like those reviewed here may constitute measures of 

effectiveness for fleet systems in an emergency response setting, which is what we will explore further in 

the paper.  

 

METHODOLOGY 
The methodology combines mathematical programming for tactical planning, the FDMC problem, with an 

epoch-era analysis approach used to explore strategic implications. The purpose of this combination of 

methods is to use optimization to evaluate the effectiveness of alternative solutions, in alternative contextual 

scenarios, and explore trade-offs between cost and effectiveness, rather than using optimization to prescribe 

solutions. Eventually, a good solution will be one that comes close to maximizing effectiveness across many 

scenarios, epochs.  

Epoch-era analysis can be traced theoretically to design of experiments methodology (Box & Liu, 1999) and 

strategic scenario planning (Schoemaker, 1991). Epoch-era analysis works by eliciting several uncertain 

contextual factors that determine the state of the operating environment (Ross & Rhodes, 2008). These 

factors are called epoch variables and are discretized to an appropriate number of levels. A specific vector 

of epoch variables then forms an epoch, a possible static operating context for the system. Sequences of 

epochs constitute eras, long-term dynamic scenarios, in which effectiveness may fluctuate due to changes 

in the dynamic environment. As a method for strategic scenario planning, epoch-era analysis emphasizes a 

more qualitative and exploratory approach to decision-making under uncertainty, in which narratives are 

used to frame and construct possible futures. This qualitative approach is hence different from the use of 

stochastic programming to find optimal solutions to strategic decision problems (Owen & Daskin, 1998).  

Note that a tactical planning horizon is normally defined as a period of one month to a year, whereas strategic 

planning horizons encompass at least one year (Christiansen et al., 2007). Hence, strategic decisions include 

decisions regarding the acquisition of new vessels and locating of vessel bases, while tactical decisions 

include deployment and routing of vessels (Christiansen et al., 2007; Pantuso et al., 2014). For this reason, 
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we propose that the FDMC problem is solved for a set of parametrized system contexts, represented as 

epochs. An overview of epoch-era terminology, with relations to how tactical and strategic decisions are 

handled by the FDMC problem, is provided in Table 1.  

 

Table 1: Describing the connection between mathematical programming and epoch-era analysis. 

Concepts Scenario 

type 

Planning 

horizon 

Description of the concept 

Epoch  Static Tactical  Solve a mathematical program (here the FDMC problem) to evaluate 

fleet effectiveness for each epoch. 

Era Dynamic Strategic Study the development of fleet effectiveness by comparing across 

epochs, or by creating sequences of epochs (eras). 

 

The methodology can be described as follows:  

1. Structure the problem and find an appropriate problem definition.  

2. Develop the mathematical model for the tactical decision problem to be optimized, in this case, the 

FDMC problem.  

a. Develop the basic variant of the FDMC problem. 

b. Develop an 𝜖-constraint variant of the FDMC problem for benchmarking alternatives 

against hypothetical “optimal” fleets, given a budgetary constraint.  

3. Define epochs and eras.  

4. Define fleet alternatives to evaluate.  

5. Solve the FDMC problem:  

a. Solve the basic FDMC problem for all alternative fleets, for all epochs. The results are then 

represented in a cost-utility tradespace for each epoch. The utility is represented by the 

optimal objective function value for the FDMC problem presented in Section 5. The costs 

are determined directly from the fleet composition.  

b. Solve the 𝜖-constraint version of the FDMC problem to generate an approximate Pareto 

front for all epochs.  

6. Evaluate value robustness across epochs and eras using metrics from epoch-era analysis. We 

introduce metrics based on Pareto optimality for this, later in this section.  

The objective values from each solution of the FDMC problem serve as a measure of effectiveness for 

proposed solutions to a corresponding fleet size and mix problem. Running the FDMC problem for multiple 

fleet alternatives, we obtain a tradespace documenting the cost-utility trade-offs (Ross & Hastings, 2005). 

The parameter input data is then varied to create different epochs, similar to design of experiments 

methodology (Box & Liu, 1999; Martens & Rempel, 2011). A value robust fleet alternative is one that 

obtains a stable, high objective function value across multiple epochs and eras, delivering stakeholder value 

in a diverse set of circumstances (Ross, Rhodes, & Hastings, 2008).  

Measures commonly used in epoch-era analysis for evaluating how well the fleet alternatives sustain value 

over several epochs, include the Pareto trace which is essentially the frequency with which a given alternative 

is Pareto optimal, generalized to the fuzzy Pareto trace (Fitzgerald et al., 2011). “Fuzziness” in this context 

mainly serves as an approximation of what fleet alternatives can be considered sufficiently close to the Pareto 

front, to be included in an extended Pareto set. The fuzzy Pareto number is the smallest percentage 𝑘 for 

which a design is within an acceptable range of the Pareto front. For example, an alternative with a 5 % 

fuzzy Pareto number will be within a 5% range of the Pareto front in terms of both cost and utility (Smaling 

& Weck, 2004). An approximation of the theoretical Pareto front is obtained by use of the 𝜖-constraint 

method that repeatedly solves the extended variant of the FDMC problem with varying budgetary constraints 

(Paul, Lunday, & Nurre, 2017). A illustration of the fuzzy Pareto front concept is provided in Figure 1.  
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Figure 1: The fuzzy Pareto concept illustrated, with a k % fuzziness for a cost-utility tradespace (Pettersen 
et al., 2018). 

 

Consequently, an alternative with a 5% fuzzy Pareto trace of 0.25, is within the 5% range of the Pareto front 

in 25% of the epochs. This concept is useful when there is substantial model uncertainty, or future uncertainty 

regarding system context or stakeholder needs, making Pareto optimality based on one model alone an 

insufficient criteria for eliminating alternatives in the search for a fleet structure.  

The remainder of the paper will address the case study concerning a notional emergency response and rescue 

service.  

 

PROBLEM DESCRIPTION 
The case study concerns the deployment of a fleet of vessels for a hypothetical emergency response and 

rescue service, including tasks often performed by coast guards. The primary mission of the fleet is to 

perform patrols in a large geographical region, for example, bounded by national maritime boundaries. 

Patrols normally span tasks like controlling fishery activity, perform vessel inspections, and actively 

maintaining a presence in the region. Location of patrols is determined mostly by the fishery activity, to 

prevent overfishing. Beyond the baseline patrol mission, numerous additional stakeholders, both 

governmental and commercial, have an interest in being supported by the services the fleet can provide. For 

example, the fisheries, shipping companies, companies in the offshore oil and gas industries, and the public 

have an interest in the emergency preparedness offered by patrolling coast guard vessels. Strategic national 

interests, including military interests, are maintained by ensuring that an area is covered as well as possible 

by patrols. It may be difficult to properly separate the functions of the coast guard from the functions of a 

navy in many cases. We limit this study to the civilian functions serviced.  

Among uncertain events that the fleet should respond to, are oil recovery operations, emergency towing 

operations, and search and rescue operations. Oil recovery operations will take place as a response to all 

types of oil spill events. These include possible vessel collisions or groundings, as well as blowouts from 

offshore wells. Oil spills due to grounding are sometimes attributed to a lack of available towing resources, 

in the case where a vessel loses navigational control. Emergency towing may therefore also be a concern 

here, possibly to assist dedicated tugboats. A final type of relevant emergency response operations is search 

and rescue missions. Search and rescue can be performed either by use of helicopters or by use of fast patrol 

craft launched from the emergency response and rescue vessel.  

Several alternative objectives could be addressed by a mathematical programming approach to this situation, 

given that different aspects of the problem situation are emphasized. Some possible objectives are the 

minimization of operating costs, maximization of the number of patrol days per year, maximization of 

utilization, minimization of response time, and maximization of geographical coverage.  
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Limiting our approach, we define a deterministic, integer program in the next section, in which fleet 

deployment is done on basis of a single objective, which is to maximize geographical coverage of multiple 

missions. In principle, evaluating the same fleet against measures like minimized response time, maximized 

patrol time, and so on, could serve as interesting future additions to the work, accounting for the multiple 

objectives of the actual problem situation.  

 

FLEET DEPLOYMENT WITH MAXIMAL COVERING 

Modeling assumptions 
This section presents the Fleet Deployment model with Maximum Covering (FDMC). A heterogeneous fleet 

of service vessels (Coast Guard, emergency response and rescue vessels, or similar services) shall be 

deployed to a larger geographical region. The fleet is heterogeneous in terms of maximum speed and 

functionality. The operating region is divided into smaller areas to which patrols are assigned. These patrol 

areas represent the primary operating environment for each vessel. We will consider each patrol area as a 

node in the model reflecting the “mean” patrol location of the vessel. The patrol areas to which vessels can 

be assigned are represented as nodes in Figure 2. In the figure, dashed lines indicate the border between the 

patrol areas.  

 

 

Figure 2: Representing the patrol areas as nodes. Dashed lines indicate the border between patrol areas. 
Dots indicate nodes with demand for some response mission. Lighter nodes are valued more. The red 

‘star’ indicates an area with a patrol requirement. The circle indicates that a ship is deployed to that patrol 
area. The colored patrol areas are considered covered by the deployed vessel.  

 

Besides the nodes that symbolize patrol areas, there is a risk that sudden-onset emergency response needs 

are triggered at other nodes. These emergency response needs are addressed by vessels performing missions 

to resolve the emergencies. This is conditional on (i) vessel functionality and (ii) the ability of the vessel to 

respond within an acceptable time. First, vessel-mission compatibility is treated as a binary criterion, 

meaning that vessels are not differentiated in terms of how well they meet a demand, as long as they are 

compatible. Second, response time thresholds are used as binary criteria that define whether a vessel is close 

enough to a node to cover it. In Figure 2, the colored patrol areas are hence within the response time threshold 

for a vessel located at the location marked ‘Ship deployed’.  
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Given that the fleet of vessels must be deployed to primary patrol areas, the objective of the model is to 

optimize the covering of nodes where emergency response may be needed, by vessels assigned to patrol area 

nodes. The importance of covering the nodes where emergencies may occur is assumed known and set to 

reflect static measures of the risk of emergency in that node location.  

The mathematical formulation of the FDMC problem is an extension of the maximal covering problem. For 

a generic formulation of maximal covering problems in the facility location context, see Owen & Daskin 

(1998). Several extensions are made compared with the maximal covering problem in its basic form, beyond 

those discussed above. First, a common critique of covering problems is that nodes are either covered or not, 

as determined by some defined critical distance determining whether a node is within the relevant response 

time threshold. Hence, covering models normally do not reflect that nodes can be partially covered (Drezner, 

Drezner, & Goldstein, 2010; Karasakal & Karasakal, 2004). Here this problem is handled by introducing 

several layers to the response time threshold. Second, our model reflects vessel interaction effects by 

considering that the marginal contribution to the objective diminishes when an increasing number of vessels 

cover a node. This is handled introducing batches that are associated with a specific contribution to the 

objective. Preserving model linearity, our model hence assumes that piecewise linear functions sufficiently 

well approximate non-linear phenomena like the demand for node coverage. This approach is inspired by a 

linearization presented by Pantuso, Fagerholt, & Wallace (2016), though for another problem.  

Notation for the mathematical model 
The sets and indices used in the program are:  

𝑖, 𝑗 nodes, ie. operating areas. The nodes to which vessel are deployed for patrol are denoted 𝑗. 

𝑣  vessel types. 

𝑚 mission types. 

𝑘  batches in the piecewise constant function. 

𝑟  layers for acceptable response time thresholds. 

𝑁  set of all nodes. 

𝑁𝑃 set of nodes with a patrol requirement, 𝑁𝑃 ⊂ 𝑁. 

𝑁𝑖𝑣𝑚𝑟 set of nodes within acceptable response time for vessels 𝑣 responding to mission of type 𝑚 at 

node 𝑖, within response time threshold layer 𝑟.  

𝑉  set of vessels. 

𝑉𝑖  set of vessels that can be assigned to a patrol at node 𝑖, 𝑉𝑖 ⊂ 𝑉. 

𝑀  set of missions. 

𝐾  set of batches for diminishing return on coverage. 

𝑅  set of layers for acceptable response time thresholds.  

 

The following parameters are used in the formulation:  

𝑃𝑣 number of vessels of type 𝑣 available in the given fleet. 

𝐻𝑖𝑚𝑘𝑟  demand for functionality for mission 𝑚 at node 𝑖 at batch 𝑘, within response time threshold 

layer 𝑟. 

𝐻𝑖
𝑃    required number of vessels at node 𝑖. 

𝐿𝑖𝑚𝑘𝑟 maximum number of vessels that provide coverage for mission 𝑚 at node 𝑖 in batch 𝑘, 

within response time threshold layer 𝑟, i.e. batch size. 

𝐴𝑖𝑣𝑚  binary parameters defining the compatibility at node 𝑖 between vessel 𝑣 and mission 𝑚. 

𝐷𝑖𝑗  distance between nodes 𝑖 and 𝑗. 

𝑇𝑚𝑟  acceptable response time for mission 𝑚, in response time threshold layer 𝑟. 

𝑆𝑣  maximum speed of vessel 𝑣. 
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Finally, the variables included in the model are:  

𝑥𝑖𝑣  integer variable describing the number of vessels of type 𝑣 assigned to node 𝑖. 

𝑦𝑖𝑚𝑘𝑟  integer variable describing the coverage of mission 𝑚 at node 𝑖 in batch 𝑘, within response 

time threshold layer 𝑟. 

 

Preprocessing of model data 
Before introducing the mathematical program, some explanation of the preprocessing is required. The 

preprocessing generates data for the mathematical program, including subsets constraining the solution 

space. The set of vessels 𝑉𝑖 includes all vessels that can operate at node 𝑖, considering whether a vessel can 

meet the physical operating environment at a node or not. Further, the set of nodes 𝑁𝑖𝑣𝑚𝑟 defines whether a 

vessel 𝑣 located at node 𝑗 can contribute to mission 𝑚, given a time threshold layer 𝑟. This depends on two 

vessel characteristics, the maximum speed 𝑆𝑣 and the compatibility 𝐴𝑖𝑣𝑚 between vessel 𝑣 and mission 𝑚 

at node 𝑖. Additionally, the distance 𝐷𝑖𝑗 between the node 𝑗 representing assigned patrol area and the node 

𝑖 at which response is needed, and the acceptable response time 𝑇𝑚𝑟. Hence, node 𝑗 is included in 𝑁𝑖𝑣𝑚𝑟, 

according to the criteria in Equation (1).  

𝑗 ∈ 𝑁𝑖𝑣𝑚𝑟  |  ( 
𝐷𝑖𝑗

𝑆𝑣
≤ 𝑇𝑚𝑟)  ∩ (𝐴𝑖𝑣𝑚 = 1), 𝑖, 𝑗 ∈  𝑁, 𝑣 ∈ 𝑉𝑖 , 𝑚 ∈ 𝑀, 𝑟 ∈ 𝑅 (1) 

 

To ensure linearity in the mathematical program, we approximate non-linear phenomena using piecewise 

constant functions, following Pantuso et al. (2016). First, the layers for acceptable response time thresholds 

𝑟, can be interpreted from Figure 3. Figure 3 illustrates the dependency of the contribution to the objective 

(𝐻𝑖𝑚𝑘𝑟), on the calculated response time 
𝐷𝑖𝑗

𝑆𝑣
 for vessel 𝑣 deployed to node 𝑗, responding to mission 𝑚 at 

node 𝑖, given an acceptable response time threshold 𝑇𝑚𝑟. When 
𝐷𝑖𝑗

𝑆𝑣
> 𝑇𝑚2 the contribution towards the 

objective is therefore 0. No subset 𝑁𝑖𝑣𝑚𝑟 will include node 𝑗 in such a case. The example in Figure 3 

considers only two layers 𝑟 of the response time threshold, making the covering more gradual. This will 

correspond to valuing “fast” response, in the case where 𝑟 = 1, or “slow” response, in the case where 𝑟 = 2. 

 

 

Figure 3: Influence on 𝐻𝑖𝑚𝑘𝑟 of the response time of a vessel v deployed to a node 𝑗 towards a mission of 
type 𝑚 at node 𝑖. 
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To account for vessel interaction effects represented by diminishing marginal utility of additional coverage 

of a node, we need to linearize this non-linear phenomenon: The addition to the objective function of an 

additional vessel covering mission 𝑚 at node 𝑖 is dependent on the number of vessels already covering 

mission 𝑚 at node 𝑖. A limited number of vessels, given by the batch size 𝐿𝑖𝑚𝑘𝑟 can contribute with a value 

𝐻𝑖𝑚𝑘𝑟 to the objective, at each batch 𝑘. If there are diminishing returns for each additional resource, the 

batch size is 𝐿𝑖𝑚𝑘𝑟 = 1. The formulation of the concave dependency between the objective and the number 

of vessels assigned is linearized using Equation (2), modelled using a geometric series representing the 

diminishing returns on resources.  

𝐻𝑖𝑚𝑘𝑟 = 𝐻𝑖𝑚𝑟 ∑ 𝛼𝑚
𝜆−1

𝑘

𝜆=1

, 𝑖 ∈ 𝑁, 𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅 

(2) 

 

In Equation (2), 𝐻𝑖𝑚𝑟 is the basic contribution associated with the first batch 𝑘 = 1, and 𝛼𝑚 is a parameter 

between 0 and 1. If 𝛼𝑚 = 0, then coverage of a node 𝑖 is counted only for the first vessel that covers the 

node, and no additional coverage will contribute to the objective. If 𝛼𝑚 = 1, there are no diminishing returns 

of increasing the number of vessels covering the node. The relationship between the contribution to the 

objective function and coverage is illustrated in Figure 4, with 𝛼𝑚 = 0.5. Here, it is assumed that 𝑦𝑖𝑚𝑟 =
∑ 𝑦𝑖𝑚𝑘𝑟𝑘∈𝐾 . 

 

 

Figure 4: Modelling the dependency of 𝐻𝑖𝑚𝑘𝑟 on the number of vessels 𝑦𝑖𝑚𝑟 covering mission 𝑚 at node 𝑖 
for response threshold 𝑟. 
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Mathematical formulation 
We here present the mathematical program for the FDMC problem, which is used to optimize the deployment 

of given fleet alternatives. We hence analyze the value of a given fleet, by optimizing its deployment. The 

model formulation is presented below:  

max  ∑ ∑ ∑ ∑ 𝐻𝑖𝑚𝑘𝑟𝑦𝑖𝑚𝑘𝑟

𝑟∈𝑅𝑘∈𝐾𝑚∈𝑀𝑖∈𝑁

 
(3) 

s. t.  ∑ 𝑥𝑖𝑣

𝑣∈𝑉𝑖

≥ 𝐻𝑖
𝑃, 𝑖 ∈ 𝑁𝑃 

(4) 

 ∑ 𝑦𝑖𝑚𝑘𝑟

𝑘∈𝐾

− ∑ ∑ 𝑥𝑗𝑣

𝑗∈𝑁𝑖𝑣𝑚𝑟𝑣∈𝑉𝑖

≤ 0, 𝑖 ∈ 𝑁, 𝑚 ∈ 𝑀, 𝑟 ∈ 𝑅 (5) 

 ∑ 𝑥𝑖𝑣 ≤ 𝑃𝑣 ,

𝑖∈𝑁

 𝑣 ∈ 𝑉 
(6) 

 𝑦𝑖𝑚𝑘𝑟 ≤ 𝐿𝑖𝑚𝑘𝑟 , 𝑖 ∈ 𝑁, 𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾\{𝐾}, 𝑟 ∈ 𝑅  (7) 

 𝑥𝑖𝑣 ∈ ℤ+, 𝑖 ∈ 𝑁, 𝑣 ∈ 𝑉  (8) 

 𝑦𝑖𝑚𝑘𝑟 ∈ ℤ+, 𝑖 ∈ 𝑁, 𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅  (9) 

In the FDMC problem described above, the objective is to maximize the amount of demand covered (3). 

Constraints (4) ensure that the patrol requirement for nodes 𝑖 ∈ 𝑁𝑃 is met by assigning a sufficient number 

of vessels 𝑣 to node 𝑖. Constraints (5) ensure that mission 𝑚 is only covered by vessels 𝑣 assigned to nodes 

within acceptable response time layer 𝑟, hence ensuring that node 𝑗 ∈ 𝑁𝑖𝑣𝑚𝑟. Constraints (6) restrict the 

number of vessels of type 𝑣 that can be deployed to the number of vessels available of type 𝑣 in the fleet. 

Constraints (7) limit the number of vessels 𝑣 that can contribute to the objective function by covering mission 

𝑚 at node 𝑖, at each batch up to 𝑘 ∈ {1, . . , 𝐾 − 1}, at response time threshold layer 𝑟, to the batch size 𝐿𝑖𝑚𝑘𝑟. 

This ensures that the most valuable batch is filled first. In the case where 𝑘 = 𝐾, the contribution is very 

small, ensuring that little additional value results from additional coverage. Constraints (8) – (9) limit the 

variables to taking integer values.  

𝜖-constraint method 
The mathematical program above only presents us with the optimal deployment of a given fleet alternative. 

Hence, in the form presented above it does not account for cost-benefit trade-offs. The main purpose of using 

the 𝜖-constraint method is to provide a benchmark Pareto set of fleet alternatives deployed through the use 

of the basic FDMC model, given the cost-benefit trade-off. The 𝜖-constraint variant of the problem 

essentially solves the problem when we include decisions regarding fleet size and mix, given multiple levels 

of a budgetary constraint. For a previous example of the 𝜖-constraint method applied to a maximal covering 

problem for emergency response, see Paul et al. (2017). In the 𝜖-constraint variant of the FDMC model, we 

allow the model to select the number and types of vessels to include. The Pareto front is found by running 

the model with some modifications. Constraints (6) is replaced by Constraints (10). The 𝜖-constraints (11) 

and Constraints (12) on the number of vessels of each type that can be added to the fleet, are added to the 

model.  

∑ 𝑥𝑖𝑣 ≤ 𝑧𝑣,

𝑖∈𝑁

 𝑣 ∈ 𝑉 
(10) 

∑ 𝐶𝑣

𝑣∈𝑉

𝑧𝑣 ≤ 𝜖  (11) 
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𝑧𝑣 ≤ 𝐵𝑣, 𝑣 ∈ 𝑉 (12) 

 

Here, 𝑧𝑣 is the variable that describes the number of vessels of type 𝑣 included in the fleet.  Notice that 𝑧𝑣 

replaces the parameter 𝑃𝑣, and that now the number of vessels in the fleet is a decision variable. Constraints 

(11) provide budgetary constraints on investment in vessels to a budget 𝜖. 𝐶𝑣 denotes the investment costs 

for vessel type 𝑣, which are given in Table 2. By systematically rerunning the model with different levels 

chosen for the available budget 𝜖, we obtain a set of Pareto optimal solutions. To be consistent with the 

random sampling of fleet alternatives, the total available number of each ship type 𝑣 to invest in, 𝐵𝑣, is set 

to 4, meaning that 𝐵𝑣 = 4, in Constraints (12). Finally, Constraints (13) state that the number of vessels to 

invest in, is an integer:  

𝑧𝑣 ∈  ℤ+, 𝑣 ∈ 𝑉 (13) 

 

CASE STUDY 

Ship data 
Here we present the input data for the FDMC problem. Missions are to be addressed by a given fleet 

composed of vessels with various capabilities. Vessels are described by their maximum speed, some 

important characteristics that define if a vessel will be able to address specific missions, and the capital 

expenditures assumed for each vessel. The expenditure is not considered in the basic FDMC formulation but 

is used to provide insight into the cost-benefit trade-off when exploring alternatives. Hence, capital 

expenditures are used for 𝐶𝑣 in the 𝜖-constraint variant of the FDMC problem. Vessel data is presented in 

Table 2. The technical specifications in Table 2 are derived from vessels operated by the Norwegian Coast 

Guard (Forsvaret, 2018). The capital expenditure is based on estimates according to a simplified cost model 

presented by Buland (2017). In addition, for vessels with helicopter capabilities, estimated unit costs of 40 

mUSD per helicopter are included in the estimates given in Table 2. This assumes that there is one helicopter 

per vessel, neglecting that there may exist a related helicopter assignment problem in which helicopters are 

assigned to vessels where they are most needed.  

 

Table 2: Description of vessel types, in terms of functionality and equipment. 

Design parameters Vessel types 𝒗 ∈ 𝑽 

1 2 3 4 5 6 7 8 

Max speed [kn] 20 21 23 25 18 28 22 16 

Oil recovery [𝑚3] 0 1000 500 0 1000 0 500 1000 

Bollard pull [tons] 50 50 70 70 150 50 100 100 

Helicopter 0 0 1 1 0 1 1 1 

Small boats 1 1 1 2 2 3 2 2 

Arctic capabilities 0 0 0 0 0 1 1 1 

Capital expenditures [mUSD] 27 38 74 78 38 117 95 92 

 

Of these, the maximum speed for each vessel is used directly, as 𝑆𝑣 determines 𝑁𝑖𝑣𝑚𝑟 in accordance with 

Equation (1). The cost data is used to compare the investment costs for alternative fleets, to find compromises 

between costs and the objective function maximizing coverage. Based on the other data in Table 2, we infer 

what missions each ship will be able to perform, and map from vessel form to function. This materializes in 

the compatibility matrix 𝐴𝑖𝑣𝑚, for which input data is presented in Table 3. All vessels can be assigned to 

the basic mission which is patrol, subject to the constraint that some operating areas require Arctic 

capabilities. Only vessels with Arctic capabilities can operate in areas at 74° or further north. 
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Table 3: Compatibility between the vessel type v, and missions m. 

Missions, 𝒎 ∈ 𝑴 Vessel types, 𝒗 ∈ 𝑽 

1 2 3 4 5 6 7 8 

Patrol (baseline mission) 1 1 1 1 1 1 1 1 

Oil recovery (500 𝑚3) (𝑚 = 1) 0 1 1 0 1 0 1 1 

Oil recovery (1000 𝑚3) (𝑚 = 2) 0 1 0 0 1 0 0 1 

Towing missions (small) (𝑚 = 3) 1 1 1 1 1 1 1 1 

Towing missions (large) (𝑚 = 4) 0 0 0 0 1 0 1 1 

Search and rescue (Boat support) (𝑚 = 5) 0 0 1 1 1 1 1 1 

Search and rescue (Heli support) (𝑚 = 6) 0 0 1 1 0 1 1 1 

 

Epoch-independent parameters 
The operating region to which the vessels will be assigned is represented as a set of nodes with associated 

coordinates. We set the limitations of the operating region to roughly overlap with the Norwegian Sea, as 

well as parts of the North Sea and the Barents Sea, represented by the coordinates between 55° and 80° 

North, and between 10° West and 30° East. The grid of nodes is generated with a step length of 0.5°, yielding 

a total number of 4131 nodes.  

In addition to defining the node coordinates, the model requires criteria for acceptable response times, which 

are then be used to generate 𝑁𝑖𝑣𝑚𝑟, in correspondence with Equation (8). The maximum acceptable response 

times are set according to Table 4. Note that two response times are provided for each mission, a “fast” and 

a “slow” response, in accordance with Figure 3.  

 

Table 4: Maximum acceptable response times for missions (in hours). 

Missions, 𝒎 ∈ 𝑴 𝑇𝑚1 𝑇𝑚2 

Oil recovery (500 𝑚3) (𝑚 = 1) 6 10 

Oil recovery (1000 𝑚3) (𝑚 = 2) 6 10 

Towing missions (small) (𝑚 = 3) 6 10 

Towing missions (large) (𝑚 = 4) 6 10 

Search and rescue (Boat support) (𝑚 = 5) 3 5 

Search and rescue (Heli support) (𝑚 = 6) 3 5 

 

Note that for 𝑚 = 6, the critical time limit is set in accordance with helicopter response times. Hence, when 

setting 𝑁𝑖𝑣𝑚𝑟, we do not use the expression in Equation (8) directly. Rather, for this mission, we replace the 

ship speed given in Table 2, with the official maximum speed of an NH 90 helicopter, which is approximately 

160 knots (NH Industries, 2018).  

Epoch-dependent parameters 
Several parameters in the mathematical program represent things that will be subject to change within a 

strategic planning horizon. This particularly concerns the parameters describing the required patrol areas 𝐻𝑖
𝑃, 

and the importance of covering a specific node, 𝐻𝑖𝑚𝑘𝑟. For all practical purposes, context-dependent 

parameters constitute what could be considered as epoch variables. A static contextual scenario, or an epoch 

(Ross & Rhodes, 2008), can then be represented by a specific configuration of these two sets of parameters.  

The parameters can be tuned such that they reflect the approximated risk levels associated with certain events 

at different locations. Input for the demand for node coverage can hence draw on results from accident 

analyses, risk analyses, and estimates of ship traffic densities based on automatic identification system (AIS) 

data. For possible means to generate these inputs, see Kristiansen (2005) for an overview of techniques for 

risk assessment for maritime transport, Rausand (2011) for a review of measures to quantify risk to people, 

useful for quantification of the importance of search and rescue, and Kontovas, Psaraftis, & Ventikos (2010) 

for an example of an empirical analysis of oil spill cost data.  
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In this paper, we develop illustrative scenarios by assigning coverage demands 𝐻𝑖𝑚𝑘𝑟. 𝐻𝑖𝑚𝑘𝑟 could be varied 

according to the development of the demand of node coverage, as perceived by the key stakeholders, or 

tuned to reflect the stakeholder belief about current or future importance of response. An illustration of one 

possible scenario, which corresponds to one epoch, is presented in Figure 5. Coordinates in this operational 

environment are assigned values according to whether they correspond to high traffic density locations, or 

are close to offshore oil and gas installations or fishing fields. The locations are approximated based on 

visual inspections of traffic density maps based on AIS data from MarineTraffic.com (2018).  

 

 

Figure 5: Possible scenario (data for Epoch 1 - “Baseline”). Hollow circles indicate ship deployments to a 
node. Dots indicate nodes with demand. Lighter nodes are valued more. Red 'stars' indicate nodes with 

required patrol presence. 

 

Qualitative descriptions of four epochs the system can face are given in Table 5. Input data for all epochs 

are presented in Table 6, connected to the type of maritime activity generating risks. Data is given for the 

“smaller” types of missions, for the similar mission type of a larger complexity, 𝐻𝑖𝑚𝑘𝑟 is given twice the 

value of the smaller, similar mission. A “center location” is given, indicating the center of the area where 

there is a risk of an event of some type. Any node within a specified distance 𝐷𝑀𝐴𝑋 is assigned a positive 

𝐻𝑖𝑚𝑘𝑟, decreasing linearly until the distance between the nodes 𝑖 and 𝑖′ exceeds 𝐷𝑀𝐴𝑋. Demand for patrols 

at certain locations vary according to the epochs as presented in Table 7.  
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Table 5: Quantitative descriptions of epochs. 

Epoch Description 

1 - “Baseline” The situation at the time of initial deployment.  
2 - “Decommissioned” A complete shutdown of oil and gas production, and increase in fishing.  
3 - “Short sea shipping” Increase in the coastal marine traffic activity overall.  
4 - “Arctic boom” Increase in Northern Sea Route traffic, fishing, and oil and gas activity in the 

Arctic region.  

 

Table 6: Input data for demand for node coverage for all missions, for all epochs. 

Type of 

area 

Center location 

[lat., long.] 

𝑯𝒊𝒎𝟏𝟏 in the epochs {Epoch 1, Epoch 2, Epoch 3, Epoch 4} 

𝒎 = 𝟏 𝒎 = 𝟐 𝒎 = 𝟑 𝒎 = 𝟒 𝒎 = 𝟓 𝒎 = 𝟔 
Traffic 

lane 
Inner – south {7, 7, 15, 7} 2x 𝐻𝑖111 {7, 7, 15, 7} 2x 

𝐻𝑖311 

{7, 7, 15, 7} 2x 𝐻𝑖511 

 Outer – south {5, 5, 12, 7} {5, 5, 12, 7} {5, 5, 12, 7} 

North {5, 5, 12, 15} {5, 5, 12, 15} {5, 5, 12, 15} 

Oil fields [56.5°, 3.0°] {18, 0, 18, 18} {10, 0, 10, 10} {15, 0, 15, 15} 

[58.5°, 2.0°] {18, 0, 18, 18} {10, 0, 10, 10} {15, 0, 15, 15} 

[59.5°, 2.0°] {18, 0, 18, 18} {10, 0, 10, 10} {15, 0, 15, 15} 

[61.5°, 2.0°] {18, 0, 18, 18} {10, 0, 10, 10} {15, 0, 15, 15} 

[65,0°, 7.0°] {18, 0, 18, 25} {10, 0, 10, 20} {15, 0, 15, 25} 

[72.0°, 22.5°] {18, 0, 18, 35} {10, 0, 10, 20} {15, 0, 15, 25} 

Fishing 

fields 
[72.0°, 16.0°] {0, 0, 0, 0} {8, 8, 8, 12} {15, 15, 15, 18} 

[74.0°, 20.0°] {0, 0, 0, 0} {8, 8, 8, 12} {15, 15, 15, 18} 

[76.0°, 16.5°] {0, 0, 0, 0} {8, 8, 8, 12} {15, 15, 15, 18} 

 

Table 7: Vessels required at nodes with patrol demand 𝐻𝑖
𝑃 (nodes given in [latitude, longitude]). 

Epoch [75.0°, 15.0°] [73.0°, 22.0°] [66.0°, 9.0°] [59.0°, 3.0°] 

1 - “Baseline” 1 2 2 2 

2 - “Decommissioned” 1 1 2 2 

3 - “Short sea shipping” 1 2 2 3 

4 - “Arctic boom” 2 4 2 2 

 

Furthermore, to reflect that we consider gradual covering to a limited extent, the number of layers is set to 

𝑅 = 2. This means that we divide coverage into considering both “fast” and “slower” responses. The value 

of a slow response, is set to 40% of a fast response. 

The number of batches, to account for the diminishing return on additional covering, is set to 𝐾 = 5, where 

the capacity of each batch, 𝐿𝑖𝑚𝑘𝑟 = 1. The parameter for Equation (2) is 𝛼 = 0.5. Note that this indicates 

that 𝐻𝑖𝑚5𝑟 = 0.03125𝐻𝑖𝑚𝑟, which means that the contribution from additional resources assigned after the 

fourth vessel covers a mission at a node, is very small.  

 

COMPUTATIONAL STUDY 
The FDMC problem was implemented in Mosel and solved with the commercial solver Xpress MP, with 

pre- and postprocessing in MATLAB. Two variants of the model were run. First, the model of the basic 

FDMC problem is run. Second, we run the variant that includes the 𝜖-constraint method. The first variant 

tests fleet alternatives that may or may not be Pareto optimal in all four epochs. The second variant generates 

the Pareto optimal set of fleet alternatives to benchmark the former set.  

Experiments with notional fleet alternatives were done for the four epochs defined in Table 5, setting a 

maximum time per model run to 300 seconds. 30 fleet alternatives were generated randomly using Latin 

hypercube sampling (McKay, Beckman, & Conover, 1979), allowing a maximum of 4 of the same ship type 
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in the fleet. The purpose of this is to explore how the sampled alternatives will perform, with no specific 

search for solutions that are “optimal”, given the chosen model, and the current context (combination of 

input parameters). This corresponds with a central argument for concept exploration, namely to reduce the 

reliance on modeling assumption when generating alternatives, and gain an understanding of what drives the 

value of the dominated part of the design space. Improvements of the experimental design could be to 

evaluate a fully enumerated space of fleet alternatives (Ross & Hastings, 2005), or to select an experimental 

design specifically intended for evaluating systems-of-systems and capturing interaction effects (Kujawski, 

2014). However, Latin hypercube sampling provides a set of fleet alternatives that represents the real 

variability in the solution space quite well (McKay, et al., 1979).  

The 30 randomly sampled fleet alternatives tested are presented in Table 8. In addition to running the model 

for these alternative fleets, the problem variant using the 𝜖-constraint method is run to generate the Pareto 

front.  

 

Table 8: Fleet alternatives evaluated. 

Fleet no.  Number of vessels of each type 𝒗 Total no. 

of vessels 𝟏 2 3 4 5 6 7 8 

1 2 1 2 0 3 2 2 4 16 

2 2 2 2 2 1 3 1 3 16 

3 1 0 3 2 1 3 3 1 14 

4 2 2 1 2 1 2 4 0 14 

5 0 4 0 0 2 1 3 0 10 

7 1 1 2 3 1 2 3 0 13 

8 3 1 2 0 1 4 2 2 15 

9 0 4 1 2 3 4 2 2 18 

10 1 0 4 2 0 3 0 4 14 

11 3 4 4 2 2 1 1 3 20 

12 2 3 2 3 3 3 2 3 21 

13 4 3 3 1 4 1 1 1 18 

14 3 4 2 1 3 3 1 1 18 

15 1 0 1 3 2 0 0 3 10 

16 4 3 0 4 3 3 3 2 22 

17 2 2 1 1 2 0 4 2 14 

18 4 2 3 1 2 4 3 1 20 

19 2 1 1 0 0 1 0 2 7 

20 2 0 1 4 3 1 2 4 17 

21 0 1 4 3 0 2 2 2 14 

22 3 2 2 3 1 3 1 0 15 

23 1 2 3 3 4 1 1 1 16 

24 1 2 0 2 4 4 4 2 19 

25 2 3 1 1 4 0 1 3 15 

26 0 1 3 1 0 2 2 1 10 

27 4 2 3 4 1 2 3 2 21 

28 3 3 0 4 2 2 2 3 19 

29 1 1 3 3 2 0 4 4 18 

30 3 3 2 1 2 2 3 3 19 

 

Results 
Results from runs of the FDMC model were obtained for all 30 fleet alternatives in all four epochs, and costs 

were quantified. Hence, the mathematical program was evaluated in total 120 times. Again, note that only 

the deployment of the fleet is determined by the model, while the fleet configuration is considered as 

parameters, and given as input at this stage. Additionally, the 𝜖-constraint method produced a Pareto front 

for benchmarking the design space of 30 alternative fleets in each epoch. In the 𝜖-constraint variant, the fleet 
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configuration is also decided by the model, to provide an upper bound for the objective function value, at 

each given budgetary constraint. The cost-utility tradespace for Epoch 1 – “Baseline”, is shown in Figure 6.  

 

 

Figure 6: Cost-benefit tradespace for Epoch 1 – “Baseline”, showing the 30 fleet alternatives generated by 
random sampling, and the Pareto front found using the 𝜖-constraint method. Some of the fleet alternatives 

are highlighted.  

 

The costs and objective values for all fleet alternatives in all epochs are presented in Table 9. The optimal 

deployment in each epoch was found within the time limit of 300 seconds for nearly all tested fleet 

alternatives. For the remaining alternatives, we accepted solutions with negligible optimality gaps of less 

than 0.1 %. The objective function values have all been unit-normalized. We use the optimal objective 

function value obtained by the 𝜖-constraint method at the maximum budgetary constraint, as the maximum 

of the normalization scale.  
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Table 9: Optimal objective function value, and costs for the fleet alternatives, given the different epochs. 

Fleet 

no. 

Objective function value in the epochs, normalized Costs 

[mUSD] Epoch 1 Epoch 2 Epoch 3 Epoch 4 

1 0.75 0.72 0.74 0.69 1156 

2 0.80 0.78 0.80 0.75 1204 

3 0.78 0.73 0.77 0.70 1176 

4 0.75 0.69 0.74 0.66 1022 

5 0.55 0.41 0.53 0.38 630 

6 0.74 0.67 0.73 0.63 1009 

7 0.79 0.75 0.78 0.72 1162 

8 0.86 0.85 0.86 0.83 1338 

9 0.77 0.72 0.76 0.69 1203 

10 0.87 0.86 0.86 0.84 1264 

11 0.91 0.90 0.91 0.90 1491 

12 0.80 0.77 0.80 0.75 998 

13 0.84 0.82 0.83 0.80 1126 

14 0.52 0.40 0.50 0.36 692 

15 0.92 0.92 0.92 0.91 1488 

16 0.68 0.62 0.67 0.58 932 

17 0.91 0.90 0.90 0.89 1425 

18 0.38 0.00 0.34 0.00 477 

19 0.78 0.75 0.77 0.73 1239 

20 0.78 0.72 0.77 0.69 1176 

21 0.80 0.74 0.79 0.71 1038 

22 0.78 0.74 0.77 0.71 1020 

23 0.87 0.86 0.87 0.85 1448 

24 0.67 0.63 0.66 0.59 853 

25 0.62 0.48 0.61 0.45 854 

26 0.92 0.91 0.91 0.91 1479 

27 0.85 0.83 0.84 0.82 1298 

28 0.81 0.79 0.80 0.76 1350 

29 0.85 0.83 0.84 0.81 1307 

30 0.80 0.75 0.80 0.72 985 

 

Table 10 shows the estimated fuzzy Pareto number for each fleet alternative in each epoch. Subsequently, 

the fuzzy Pareto trace at 5 % and 10 % fuzziness for each fleet alternative in each epoch, is also included. 

The reference Pareto set used to obtain the fuzzy Pareto numbers and the Pareto traces was found using the 

𝜖-constraint method.  
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Table 10: Fuzzy Pareto number and fuzzy Pareto trace for all fleet alternatives in all epochs (Inf. = 
Infeasible). 

Fleet no.  Fuzzy Pareto number (FPN) in the epochs Fuzzy Pareto trace at 

Epoch 1 Epoch 2 Epoch 3 Epoch 4 5 % 10 % 20 % 

1 17.5 % 20.1 % 18.2 % 23.0 % 0 0 0.5 

2 10.9 % 12.9 % 11.2 % 14.7 % 0 0 1 

3 12.6 % 18.4 % 13.1 % 21.1 % 0 0 0.75 

4 10.1 % 15.1 % 10.6 % 17.1 % 0 0 1 

5 15.2 % 26.8 % 16.7 % 25.1 % 0 0 0.5 

6 11.7 % 19.0 % 12.1 % 22.1 % 0 0 0.75 

7 12.0 % 15.1 % 12.7 % 17.1 % 0 0 1 

8 6.8 % 7.2 % 7.2 % 7.8 % 0 1 1 

9 16.2 % 21.6 % 16.6 % 24.4 % 0 0 0.5 

10 5.3 % 4.4 % 5.5 % 4.6 % 0.5 1 1 

11 7.4 % 7.4 % 7.5 % 8.2 % 0 1 1 

12 2.6 % 2.5 % 2.4 % 2.8 % 1 1 1 

13 2.8 % 2.6 % 2.8 % 2.6 % 1 1 1 

14 25.8 % 40.0 % 28.4 % 42.9 % 0 0 0 

15 5.9 % 5.7 % 5.9 % 6.1 % 0 1 1 

16 16.6 % 17.9 % 16.9 % 19.4 % 0 0 1 

17 4.7 % 4.9 % 4.5 % 5.3 % 0.75 1 1 

18 37.1 % Inf.  47.2 % Inf.  0 0 0 

19 14.3 % 16.2 % 14.8 % 18.4 % 0 0 1 

20 12.5 % 19.2 % 13.1 % 22.2 % 0 0 0.75 

21 5.7 % 7.4 % 5.7 % 8.6 % 0 1 1 

22 5.3 % 6.6 % 5.3 % 7.9 % 0 1 1 

23 10.7 % 11.5 % 11.0 % 12.2 % 0 0 1 

24 12.9 % 13.1 % 12.8 % 14.5 % 0 0 1 

25 21.8 % 47.0 % 22.5 % 51.4 % 0 0 0 

26 5.1 % 4.7 % 5.2 % 4.8 % 0.5 1 1 

27 8.5 % 8.8 % 9.0 % 9.4 % 0 1 1 

28 15.3 % 18.2 % 16.0 % 21.2 % 0 0 0.75 

29 9.1 % 9.6 % 9.7 % 10.2 % 0 0.75 1 

30 2.5 % 5.0 % 2.4 % 6.2 % 0.5 1 1 

 

In Epoch 1, four sampled fleet alternatives have an FPN below 5 %, meaning that they are within 5 % of the 

Pareto front. Similarly, 13 fleet alternatives have an FPN below 10% in Epoch 1, meaning that these are 

within 10 % of the Pareto front. Two fleet alternatives are always within 5 % of the Pareto front, as shown 

by the fuzzy Pareto trace metric indicating robustness against change in parameter values. These alternatives 

are Fleet 12 and Fleet 13, which are fleet mixes in the medium price range. Fleet 12 consists of an evenly 

spread number of vessels, across all vessel types. Fleet 13 includes a majority of inexpensive vessel types 

like Vessel 1, Vessel 2, and Vessel 5.  

The deployment solutions that were accepted for Fleet 12 for each scenario, are presented in Table 11. The 

corresponding maps for these scenarios are shown for Fleet 12 in Figure 7 - 10. These results reveal that 

multiple vessels are never deployed to the same node unless this is required in accordance with Table 7. A 

major reason for this is the diminishing returns associated with deploying several vessels to the same 

location. Further, we see that there is a general tendency to locate vessels in the southern parts of the 

operating area, where there is most demand. Unsurprisingly, there is a move towards northern locations in 

Epoch 4, as there is more demand in northern areas. The deployment in epochs with decreasing oil and gas 

activity (Epoch 2), and increasing short sea shipping (Epoch 3), are quite similar, although not identical. 

Compared to Epoch 2, Epoch 3 sees a slight increase in the deployment to northern areas.  
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Table 11: Number of vessels in Fleet 12 deployed to each node, for each epoch. 

 Number of vessels assigned in each epoch 

Coordinates [lat., long.] Epoch 1 Epoch 2 Epoch 3 Epoch 4 

[57°, 2.5°] 1 0 0 0 

[57°, 5.5°] 0 0 1 0 

[57°, 6°] 0 1 0 0 

[57.5°, 4°] 0 0 1 0 

[57.5°, 4.5°] 1 1 0 0 

[59°, 3°] 2 2 2 2 

[60.5°, 1.5°] 1 0 0 0 

[61°, 3°] 0 0 1 0 

[61°, 3.5°] 0 1 0 0 

[61.5°, 3°] 1 0 0 1 

[63°, 4°] 1 1 1 0 

[63.5°, 5°] 0 1 0 0 

[64°, 5.5°] 0 0 1 1 

[64.5°, 5.5°] 1 0 0 0 

[65°, 6.5°] 0 1 0 1 

[65°, 7°] 1 0 1 0 

[66°, 9°] 2 2 2 2 

[67.5°, 11°] 0 0 1 0 

[68°, 11.5°] 0 1 0 0 

[68°, 12°] 1 0 0 0 

[68.5°, 12.5°] 0 0 1 1 

[69°, 13°] 0 1 0 0 

[69°, 13.5°] 1 0 0 0 

[69.5°, 14°] 0 0 1 1 

[70.5°, 16.5°] 1 1 0 0 

[70.5°, 17°] 0 0 1 0 

[71°, 17°] 0 0 0 1 

[72°, 23.5°] 1 0 1 0 

[72°, 25°] 0 0 1 1 

[72°, 28.5°] 0 0 0 1 

[73°, 22°] 2 3 2 4 

[75°, 15°] 1 2 1 2 
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Figure 7: Fleet 12 deployed in Epoch 1 - “Baseline”. Hollow circles indicate ship deployments to nodes. 
Dots indicate nodes with demand. Lighter nodes are valued more. Red 'stars' indicate nodes with required 

patrol presence. 

 

 

Figure 8: Fleet 12 deployed in Epoch 2 – “Decommissioned”. Hollow circles indicate ship deployments to 
nodes. Dots indicate nodes with demand. Lighter nodes are valued more. Red 'stars' indicate nodes with 

required patrol presence. 
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Figure 9: Fleet 12 deployed in Epoch 3 – “Short sea shipping”. Hollow circles indicate ship deployments to 
nodes. Dots indicate nodes with demand. Lighter nodes are valued more. Red 'stars' indicate nodes with 

required patrol presence. 

 

Figure 10: Fleet 12 deployed in Epoch 4 - "Arctic boom”. Hollow circles indicate ship deployments to 
nodes. Dots indicate nodes with demand. Lighter nodes are valued more. Red 'stars' indicate nodes with 

required patrol presence. 
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DISCUSSION 
We have proposed a division of roles for decision support methodology in fleet planning by suggesting that 

mathematical programming mainly is used as a tool for evaluating alternatives in a deployment setting. In 

this case, the mathematical program provides a measure of fleet effectiveness. To explore the effectiveness 

of the alternatives across multiple scenarios and support strategic decision-making, including vessel 

acquisition and fleet renewal decisions, the FDMC model was solved for an experimental design that 

considers 30 fleet alternatives and 4 epochs.  

The results of the case study by themselves have limited validity beyond an early design phase. Reasons for 

this include the use of partially illustrative model input data and some unrealistic modeling assumptions. 

However, important insights are extracted from this study, with respect to the exploration of alternative 

solutions to fleet size and mix in emergency preparedness and coast guard settings: 

• First, moving beyond ship design to consider measures of effectiveness on the fleet level, rather than 

ship performance, requires tools that account for relative ship positioning, and other deployment 

insights. 

• Second, the resource allocation literature from operations research provides a rich starting point for 

use of such techniques, where the optimal deployment scheme can be used as a measure of 

effectiveness for a set of fleet alternatives to be used for evaluation of alternatives.  

• Third, rather than stochastic programming for the strategic decisions, we emphasize scenario 

planning in the slightly more qualitative sense (Schoemaker, 1991). This is accomplished via epoch-

era analysis.  

• Fourth, epoch-era analysis has largely neglected exploration of fleet level planning. Epoch-era 

analysis has, to the knowledge of the authors, not previously been combined with optimization of 

fleet deployment.  

Beyond these four highlighted insights, the choice of the model objective function in the current approach 

needs to be addressed. Importantly, only one measure of effectiveness was considered. The reasoning behind 

selecting the maximal covering objective for the FDMC model is that it is a well-defined measure of 

effectiveness that values the fleet effectiveness, given that certain functional requirements and patrol mission 

requirements are met. The weighting of the importance of covering nodes can be adjusted on basis of risk 

analyses and automatic identification system data. The latter is a topic under intense current research and 

could contribute to improved ship design and fleet planning through use in the deployment setting.  

Even though the FDMC model applies some weighting between alternative missions that need to be covered 

at different nodes, the alternatives evaluated by the current approach should also be tested against other 

objectives. The measured fuzzy Pareto trace after such an exercise could reveal additional insights as to how 

robust a fleet is in settings dictated by other objectives. This would contribute to truly scrutinizing the 

alternatives, and get an improved understanding of the compromises that decision-makers actually face when 

deciding what ships to invest in. Examples of such objectives include minimization of response time, 

maximization of important ship capabilities, and maximization of the available patrol days. Alternatively, 

taking a holistic approach, objectives that are aimed at improving the integrability of ships within the overall 

fleet could be employed, for example with respect to commonalities in spare parts or maintenance schemes 

(Doerry & Fireman, 2009).  

In the current approach, aspects of response time minimization and maximization of ship capabilities are 

both present. Response time is directly used in the preprocessing to generate the subset of nodes to which a 

vessel located at another node could respond. Ship capabilities are valued through differentiating whether 

vessels can address certain response mission types. Still, explicitly considering these as objectives could 

provide greatly differing results. A likely result would be that a minimize response time objective would 

greatly emphasize maximum ship speed as an important vessel attribute while maximizing ship capabilities 

would likely provide favorable results for fleets with more technically advanced vessels. Ship capability 
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objectives could probably be addressed without resorting to methods from operations research, with more 

focus on common ship-level performance indicators. Detailed exploration of the trade-offs between ship-

level and fleet-level design characteristics could be an interesting scope for further studies and could 

influence acquisitions.  

The discussion of the correctness of the chosen objectives for this study justifies why we chose to randomly 

sample fleet alternatives, rather than attempting to optimize the selection of fleet alternatives, e.g. as done 

by the 𝜖-constraint method that we use to generate a Pareto front for benchmarking purposes. It is difficult 

to be sure that the selected decision support model most correctly frames the problem, and most adequately 

reflects stakeholder interests. This is particularly true in the politically constrained design environment of 

coast guards and other organizations that address maritime emergency preparedness. Hence, optimization of 

decisions with a strategic planning horizon should be done with caution only, and supplemented with more 

exploratory approaches like epoch-era analysis.  

Rather than attempt to optimize the fleet size and mix, we show that certain fleet alternatives are close to 

Pareto optimal in several scenarios, through the epoch-era analysis. This suggests that these solutions will 

provide adequate robustness towards changes in the demand for coverage. The focus on deployment also 

means that we can apply the proposed FDMC model to optimize the deployment of existing fleets, possibly 

providing new insights to how the utilization of existing resources can be improved.  

 

CONCLUSION 
This paper documents the Fleet Deployment with Maximal Covering (FDMC) problem, for evaluation of 

alternative fleet structures in emergency preparedness. The main thesis of the paper is that tactical fleet 

deployment models can be adopted from operations research to provide insights into fleet size and mix 

decisions, at an early-stage in a fleet planning process. Coupled with epoch-era analysis, the FDMC problem 

allows evaluation of a central measure of effectiveness for fleet architectures, across multiple scenarios. A 

continuation of the study should incorporate additional objectives like minimization of response time to 

emergencies, and other objectives that improve our understanding of what constitutes a good fleet.  
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