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Abstract. Recent studies in maritime logistics have introduced a general ship routing problem

and a benchmark suite based on real shipping segments, considering pickups and deliveries, cargo

selection, ship-dependent starting locations, travel times and costs, time windows, and incom-

patibility constraints, among other features. Together, these characteristics pose considerable

challenges for exact and heuristic methods, and some cases with as few as 18 cargoes remain

unsolved. To face this challenge, we propose an exact branch-and-price (B&P) algorithm and a

hybrid metaheuristic. Our exact method generates elementary routes, but exploits decremental

state-space relaxation to speed up column generation, heuristic strong branching, as well as

advanced preprocessing and route enumeration techniques. Our metaheuristic is a sophisticated

extension of the unified hybrid genetic search. It exploits a set-partitioning phase and uses

problem-tailored variation operators to efficiently handle all the problem characteristics. As

shown in our experimental analyses, the B&P optimally solves 239/240 existing instances within

one hour. Scalability experiments on even larger problems demonstrate that it can optimally

solve problems with around 60 ships and 200 cargoes (i.e., 400 pickup and delivery services)

and find optimality gaps below 1.04% on the largest cases with up to 260 cargoes. The hybrid

metaheuristic outperforms all previous heuristics and produces near-optimal solutions within

minutes. These results are noteworthy, since these instances are comparable in size with the

largest problems routinely solved by shipping companies.
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1 Introduction

International trade depends heavily on ship transportation, as it is the only cost-effective means

for the transportation of large volumes over long distances. It is common to distinguish between

three main modes of operation in maritime transportation: liner, industrial, and tramp shipping.

Liner shipping, which includes container shipping, is similar to a bus service: fixed schedules and

itineraries must be followed. In industrial shipping, the operator owns the cargoes and controls

the fleet, trying to minimize the cargo transportation cost. Finally, a tramp shipping operator

follows the availability of cargoes in the market, often transporting a mix of mandatory and

optional cargoes with the goal of maximizing profit.

In this work, we focus on industrial and tramp ship routing and scheduling problems

(ITSRSPs), typically arising in the shipping of bulk products such as crude oil; chemicals and

oil products (wet bulk); and iron ore, grain, coal, bauxite, alumina, and phosphate rock (dry

bulk). In 2016, these product types constituted more than 60% of the weight transported in

international seaborne trade. Yet, in the wake of the financial crisis in 2008, the freight rates

in the dry bulk shipping segment dropped dramatically: the Baltic Dry Index dropped more

than 80%, and experienced record lows in 2016. This led to a continuing situation of shipping

overcapacity and downward pressure on freight rates (UNCTAD 2017). In this environment, a

shipping company can be profitable only if its fleet is routed effectively.

In the ITSRSP, a shipping company has a mix of mandatory and optional cargoes for

transportation. Each cargo in the planning period must be picked up at its loading port within

a specified time window, transported, and then delivered at its destination port, also within a

given time window. The shipping company controls a heterogeneous fleet of ships; each ship

has a given initial position and time for when it becomes available for new transportation tasks.

Compatibility constraints may restrict which cargoes a ship can transport (for example, due to

draft limits in the ports). The shipping company may charter ships from the spot market to

transport some of the cargoes. The planning objective in the ITSRSP is to construct routes

and schedules, deciding which spot cargoes to transport and which cargoes will be transported

by a spot charter, so that all mandatory cargoes are transported while maximizing profit or

minimizing costs. The ITSRSP extends the pickup and delivery problem with time windows

(PDPTW) with a heterogeneous fleet, compatibility constraints, different ship starting points and

starting times, and service flexibility with penalties. The interplay of these complex attributes

requires the joint optimization of multiple decision sets. Moreover, the ITSRSP is particularly

relevant to decision-makers, as it closely follows the daily practice of several shipping companies

that operate in the shipping segments described above. We refer the reader to Fagerholt (2004)

for a description of the development process of an optimization-based decision support system

for the ITSRSP with several shipping companies.

In a recent work from Hemmati et al. (2014), a set of benchmark instances based on real

shipping segments with seven to 130 cargoes (pickup-and-delivery pairs) has been made available
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to the academic community. The authors also presented a compact mathematical formulation, and

solved it with a branch-and-cut algorithm to obtain initial results. However, some instances with

as few as 18 cargoes remain unsolved. Clearly, given the current scale of industrial applications,

a significant methodological gap must be bridged to respond to practical needs. To compensate

for the lack of exact solutions, Hemmati et al. (2014) designed an adaptive large neighborhood

search (ALNS) heuristic, and subsequently investigated the impact of randomization as well as

that of various search operators (Hemmati and Hvattum 2016). However, due to the lack of

available lower bounds or optimal solutions, the true performance of these methods is unknown

for large problems.

This paper contributes to fill this methodological gap, from an exact and heuristic standpoint.

• Firstly, we introduce an efficient branch-and-price (B&P) algorithm for the ITSRSP. It relies

on the generation of elementary routes, but exploits decremental state-space relaxation (DSSR)

and extensive preprocessing to speed up labeling and pricing, as well as strong branching.

Efficient correction strategies allow to maintain the delivery triangle inequality (DTI), which

can become invalid due to the dual costs but is fundamental for dominance. The B&P

is then extended using route enumeration (possible thanks to a sophisticated sequence of

completion bounds), inspection pricing, and separation of subset-row cuts. This is first time

these methodological building blocks are adapted, improved and combined into an efficient

algorithm for ship routing.

• Secondly, to quickly generate high-quality solutions, we introduce a hybrid genetic search

(HGS). Our approach follows the same principles as the unified hybrid genetic search (UHGS)

of Vidal et al. (2014). Yet, the UHGS was never applied to heterogeneous fixed fleet and

pickup-and-delivery problems as these problems require structurally-different local-search

neighborhoods and variation operators (e.g., crossover) to be efficiently handled. Built on a

completely new code base, our algorithm bridges these gaps. It uses problem-tailored crossover,

local search (LS) operators and ship-dependent neighborhood restriction strategies to efficiently

optimize all aspects of the ITSRSP and take into account its numerous constraints. It is

also complemented by a set partitioning intensification procedure so as to stimulate a faster

convergence towards good route combinations.

• Finally, we report extensive experimental analyses on the industrial instances from Hemmati

et al. (2014) to measure the performance of the new methods. The B&P algorithm is able

to solve 239 out of the 240 available instances to optimality within a time limit of one hour.

The last instance is solved in 4 hours and 25 minutes. Moreover, our HGS finds very accurate

solutions within a few minutes, with an average gap of 0.01% relative to the optima. The

quality of these solutions is far beyond that of the previously existing ALNS. These results are

remarkable because the instances of Hemmati et al. (2014) were built to withstand the test of

time. The ability to solve all of them within five years reflects the considerable progress made
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by exact methods for rich routing applications. To evaluate the scalability of our methods,

we also conduct experiments on larger instances. The largest mixed load instance solved

to optimality has 56 ships and 195 cargoes, and therefore 390 pickup and delivery services.

This size is comparable to the largest problems solved routinely by shipping companies. For

example, Wilson, which is among the largest bulk shipping companies, operates 117 bulk ships

between 1.500 and 8.500 deadweight tons and divides its operations into three main segments

with 40 ships each (Wilson 2018). We therefore reach a turning point where state-of-the-art

exact methods become sufficient for daily maritime practice.

2 Problem Statement and Related Literature

The ITSRSP is defined on a complete digraph G = (V,A), where V is the union of a set of pickup

nodes P = {1, . . . , n}, delivery nodes D = {n+ 1, . . . , 2n}, and starting locations {01, . . . , 0m}.
A tramp or industrial shipping operator owns a fleet of m ships K = {1, . . . ,m}, and n cargoes

are available for transportation. Each cargo i ∈ {1, . . . , n} is characterized by a load qi and must

be transported from a pickup i ∈ P to a corresponding delivery location n+ i ∈ D. Therefore,

qi ≥ 0 for i ∈ P , and qn+i = −qi. Every node i ∈ P ∪D is associated with a hard time window

of allowable visit times [ai, bi]. Each ship k ∈ K becomes available at time sd0k, at location 0k. It

has a capacity Qk and can traverse any arc (i, j) ∈ A for a cost ckij (including fuel and canal costs)

and duration δkij . For every visit involving some ship k ∈ K and some node i ∈ P ∪D, there is an

associated port service cost scik ≥ 0 and duration sdik ≥ 0. There may be incompatibilities between

ships and cargoes (e.g. due to draft limits in the ports). For each i ∈ {1, . . . , n} and k ∈ K, the

boolean Iik defines whether cargo i can be serviced by ship k. Finally, a penalty sci0 is paid if

cargo i is not transported by the fleet. This penalty corresponds to the revenue loss (or charter

cost) due to not transporting an optional cargo.

The objective of ITSRSP is to form routes that minimize the sum of the total travel cost

and the possible penalties in the case where charter ships are used or some cargoes are not

transported. The routes begin at their respective starting points but have no specified endpoint,

since ships operate around the clock. Every route must be feasible: ships cannot exceed their

capacity, cargoes can be serviced only within their prescribed time windows, and ships cannot

transport incompatible cargoes. Furthermore, the routes must respect pairing and precedence

constraints. The pairing constraint states that any pair (i ∈ P, n+ i ∈ D) must belong to the

same route, and the precedence constraint states that any pickup i ∈ P must occur before its

delivery n+ i ∈ D.

Related literature. Early studies of ship routing and scheduling optimization date back to the

1970–80s. In a seminal study, Ronen (1983) discusses the differences between classical vehicle

routing and ship routing and lists possible explanations for the scarcity of research at the time.

The author also provides a comprehensive classification scheme for various types of ship routing
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and scheduling problems. Since this article, research on ship routing has flourished, as highlighted

by a general survey of maritime transportation (Christiansen et al. 2007), and reviews focusing

on routing and scheduling (Christiansen et al. 2013, Christiansen and Fagerholt 2014).

Many variations of ship routing and scheduling problems have been formulated, and these

problems have grown in richness, complexity and accuracy over the years. To name a few,

Brown et al. (1987) introduced a set partitioning (SP) model to solve a full shipload routing and

scheduling problem for a fleet of crude oil tankers. Fagerholt and Christiansen (2000b) proposed a

dynamic programming (DP) algorithm to solve a traveling salesman problem with time windows

and pickups and deliveries, encountered when solving ship scheduling subproblems. The same

algorithm was later exploited by Fagerholt and Christiansen (2000a) to solve subproblems for a

multi-ship PDPTW. Sigurd et al. (2005) introduced a heuristic B&P algorithm for a periodic

ship scheduling problem with visit separation requirements. A maritime PDPTW with split

loads and optional cargoes was studied by Andersson et al. (2011) and St̊alhane et al. (2012).

Andersson et al. (2011) proposed two path-flow models and an exact algorithm that generates

single ship schedules a priori, while St̊alhane et al. (2012) designed a branch-cut-and-price (BCP)

algorithm.

Heuristics and metaheuristics have also been applied to solve several variants of ship routing

problems. Some notable examples are the multi-start LS of Brønmo et al. (2007), the unified

tabu search of Korsvik et al. (2009), and the large neighborhood searches of Korsvik et al. (2011)

and Hemmati et al. (2014). Borthen et al. (2018) used a hybrid genetic search algorithm with

great success to solve a multi-period supply vessel planning problem for offshore installations.

Furthermore, the UHGS methodology of Vidal et al. (2012, 2014) has led to highly accurate

solutions for a considerable number of vehicle routing problem (VRP) variants, including the

classical capacitated VRP, the vehicle routing problem with time windows (VRPTW) (Vidal

et al. 2013), and several prize-collecting VRPs with profits and service selections (Vidal et al.

2016, Bulhões et al. 2018). However, this methodology has never been extended to heterogeneous

fixed fleet or pickup-and-delivery problems, which require structurally different neighborhood

searches and proper precedence and pairing between the pickups and deliveries in the crossover

and split operators.

3 Branch-and-Price

A simple SP formulation of the ITSRSP is given in Equations (1) to (5). Let Ωk be the set of all

feasible routes for ship k ∈ K. This formulation uses a binary variable λkσ to indicate whether or

not route σ ∈ Ωk of ship k is used in the current solution for a cost of ckσ. Moreover, akσi is a

binary constant that is equal to 1 if and only if the route σ of ship k transports cargo i, and 0

otherwise. Each variable yi is equal to 1 if and only if cargo i is transported by a charter instead
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of being included in a route.

Minimize
∑
k∈K

∑
σ∈Ωk

ckσλ
k
σ +

∑
i∈P

sci0yi (1)

subject to
∑
σ∈Ωk

λkσ ≤ 1 ∀k ∈ K (2)∑
k∈K

∑
σ∈Ωk

akσiλ
k
σ + yi = 1 ∀i ∈ P (3)

λkσ ∈ {0, 1} ∀k ∈ K, σ ∈ Ωk (4)

yi ∈ {0, 1} ∀i ∈ P. (5)

Objective (1) minimizes the routing and charter costs. Constraints (2) ensure that each ship

is used at most once, and Constraints (3) guarantee that each cargo is either transported or

chartered.

3.1 Column generation

Formulation (1–5) clearly contains an exponential number of variables, and therefore we will use

a column generation (CG) algorithm to solve its linear relaxation. Moreover, each ship in the

ITSRSP has a different starting location, cargo compatibility, capacity, travel cost, and time

matrix. For this reason, we must solve a collection of pricing subproblems (one for each ship)

rather than a single one.

Let γk and βi be the dual variables associated with Constraints (2) and (3). The reduced

cost of a route, defined in Equation (6), can be distributed into reduced costs for each arc, as

shown in Equation (7).

c̄kσ = ckσ − γk −
∑
i∈P

akσiβi ∀k ∈ K, σ ∈ Ωk. (6)

c̄kij =


ckij − γk
ckij − βi
ckij

∀k ∈ K, i = 0, j ∈ V,
∀k ∈ K, i ∈ P, j ∈ V,
∀k ∈ K, i ∈ D, j ∈ V.

(7)

Since the dual costs are originally associated with cargoes (p–d pairs), we opted to associate

all the dual costs with the out-arcs from the pickup nodes and depot, and none with those

emerging from delivery nodes. This methodological choice led to better performance in our

initial experiments, and it is in agreement with previous studies on the PDPTW (e.g. Ropke

and Cordeau 2009).

Pricing. The pricing subproblem is an elementary shortest path problem with resource

constraints (ESPPRC), which is NP-hard and often difficult to solve for large instances. Various
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studies present ways to solve it more efficiently by using route relaxation techniques, at the cost

of a slightly weaker linear relaxation (Christofides et al. 1981, Baldacci et al. 2011). Again based

on preliminary experiments, we decided to maintain the pairing and precedence constraints,

since relaxing these constraints leads to a strong deterioration in the linear relaxation bound. In

contrast, elementarity tends to be “naturally” satisfied in most situations without any specific

measure in the labeling and dominance. This occurs because after performing a pickup and

delivery, the ship is usually far from the pickup point from a spatial and temporal viewpoint,

and a new visit to the pickup may be impossible because of the time-window constraints. A

similar property has been exploited in Bertsimas et al. (2019) to optimize taxi-fleets services.

We take advantage of this observation by initially relaxing the elementarity and reintroducing

it using DSSR, to accelerate the solution of the pricing subproblems (Righini and Salani 2008).

This is done by defining a set Γ ⊆ P of pickups that cannot be opened again. The set is initialized

as Γ = ∅ at the start of the process, and it is augmented each time that a repeated service is

identified.

The ESPPRC is solved using a forward DP algorithm. For each path P, we define a label

L(P) = (v(P), c̄(P), q(P), t(P),O(P),U(P)) containing, respectively, the last vertex of the path,

the accumulated reduced cost, the total load, the arrival time, the set of opened p–d pairs, and

the set of unreachable pairs. As in Dumas et al. (1991) and Ropke and Cordeau (2009), the set

of opened pairs contains the visited pickup nodes for which the corresponding delivery node has

not been visited. A pair is unreachable if the pickup node has already been visited. Finally, a

valid route is a feasible path P such that O(P) = ∅.

Given i = v(P), extending the path P to a vertex j ∈ V is allowed only if q(P) + qj ≤ Qk,

t(P) + sdik + δkij ≤ bj, and: 
j /∈ O(P) if j ∈ P\Γ,
j /∈ U(P) if j ∈ Γ,

j − n ∈ O(P) if j ∈ D.

(8)

If an extension is allowed, it generates the new label presented in Equation (9):

L(P ′) =


(j, c̄(P) + c̄kij, q(P) + qj,max{aj, t(P) + sdik + δkij},O(P) ∪ {j},U(P)) if j ∈ P\Γ,
(j, c̄(P) + c̄kij, q(P) + qj,max{aj, t(P) + sdik + δkij},O(P) ∪ {j},U(P) ∪ {j}) if j ∈ Γ,

(j, c̄(P) + c̄kij, q(P) + qj,max{aj, t(P) + sdik + δkij},O(P)\{n− j},U(P)) if j ∈ D.
(9)

To reduce the number of labels during the DP algorithm, we use the following dominance

rule: a path P1 dominates a path P2 if Condition (10) holds.

v(P1) = v(P2) and c̄(P1) ≤ c̄(P2) and t(P1) ≤ t(P2) and

O(P1) ⊆ O(P2) and U(P1) ⊆ U(P2).
(10)
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Note that O(P1) ⊆ O(P2) implies that q(P1) ≤ q(P2). However, as discussed in Ropke and

Cordeau (2009), a subset-based dominance between O(P1) and O(P2) is valid only if the reduced

costs satisfy the DTI: c̄kij ≤ c̄ki` + c̄k`j, ∀i ∈ V, j ∈ V, ` ∈ D, k ∈ K. When we define the reduced

costs as in Equation (7), the DTI is valid if the original distances satisfy it. However, it may

become violated by branching constraints that introduce new dual costs. Correction techniques

need to be applied in these situations, as discussed in Section 3.2.

To the best of our knowledge, the DSSR approach has not been tested for PDPTW problems,

but it was suggested as a promising research avenue in Ropke and Cordeau (2009). The same

authors also suggested relaxing the O(P) sets. We tested this option, but observed that it led to

a much slower convergence.

Ship ordering. Since the ITSRSP includes a heterogeneous fleet of ships, it becomes necessary

to solve the pricing subproblems associated with each ship type. To reduce the number of

subproblems, we tested various approaches based on ship grouping and different orderings. We

opted to simply include all the ships in a circular list, and we systematically call the pricing

subproblem for the last ship with which a route was last obtained. When the pricing algorithm

fails to generate a negative reduced-cost route for the current ship, the procedure selects the next

one in the list. The CG terminates when a full round has been performed without generating

any new routes.

Initialization and heuristic pricing. Because of the charter variables in the SP formulation,

we simply start with empty Ωk sets. To reduce the computational effort, the CG initially uses a

fast heuristic pricing in which only the label with the minimum reduced cost for each vertex and

time value is kept. The CG starts using the exact pricing when a full round on the ship list fails

to generate a new route with the heuristic pricing.

Preprocessing. Finally, our CG exploits various preprocessing techniques to eliminate arcs

from the pricing subproblem. A simple version of these strategies was used in Dumas et al.

(1991). These procedures are extended to consider the different attributes of the ITSRSP and

quickly determine which requests cannot be closed from a given (node, time) pair, in such a way

that it is possible to filter label extensions in the pricing algorithms using bitwise operations in

O(n/64).

3.2 Branch-and-bound

The CG presented in the previous section produces strong lower bounds for the ITSRSP. To

obtain integer optimal solutions, we embed it into a branch-and-bound algorithm to form a

Branch-and-Price (B&P) method.

Branching rules. The B&P uses three branching rules, giving priority to the most fractional

element, as explained below.
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B1) Branching on charters. If any yi variable is fractional, generate two branches with yi = 0 and

yi = 1.

B2) Branching on ships. If
∑

σ∈Ωk
λkσ is fractional for any ship k, generate two branches with∑

σ∈Ωk
λkσ = 0 and

∑
σ∈Ωk

λkσ = 1.

B3) Branching on edges for all ships. Given bkra, a binary constant indicating whether or not

route σ of ship k traverses arc a = (i, j)k, let the number of times any ship traverses a1 =

(i, j) or a2 = (j, i) be xe =
∑

k∈K
∑

σ∈Ωk
(bkra1 + bkra2)λ

k
σ. If xe is fractional, generate two

branches with xe = 0 and xe = 1.

Delivery triangle inequality. Rule B1 has no impact on the pricing subproblems. In contrast,

each new constraint generated by rules B2 and B3 introduces a new dual variable that is included

in the reduced costs. The dual variables associated with rule B2 cannot lead to a DTI violation,

since the first node of every route must be a pickup node. In contrast, the constraints resulting

from rule B3 introduce a dual variable that will be subtracted from the right-hand side of

Equation (7), and can lead to violations of the DTI. To circumvent this issue, we use a method

similar to that of Ropke and Cordeau (2009) to fix the DTI. To reduce the computational

complexity of this approach, we check and fix violations in an incremental manner, focusing on

the newly generated dual variables.

Artificial variables. The branching rules presented in this section may make the solution of a

child node infeasible. However, it is not immediately possible to be sure about the infeasibility

because the solution may simply be missing some columns. In addition, as we start with an

empty route set, infeasibility may also happen at the root node. For this reason, at every node

of the B&P that results in an infeasible solution, the algorithm uses an approach like that of

the two-phase simplex method. It introduces an artificial variable on each violating constraint

and changes the objective function to minimize their sum, thus minimizing the infeasibility.

When the solution becomes feasible again, the artificial variables are removed and the original

objective function is restored. If the CG terminates before reaching this state, then the solution

is confirmed to be infeasible.

Heuristic strong branching. We apply strong branching to predict which element will result

in better solutions, thus reducing the size of the B&P tree. After solving the CG of each node,

we build a set of branching candidates from the most fractional elements found by the branching

rules, and we simulate the branching for each element by solving both child nodes. Since it

is prohibitively expensive to solve the exact pricing several times, we perform heuristic strong

branching by executing the CG with the heuristic pricing. Even the non-optimal linear solution

gives a good prediction for the quality of each child node and can be used to compare the

candidates. The method then retains the best one, i.e. the branching with the best worst child

node. Moreover, a branching with one infeasible child node (from the heuristic pricing viewpoint)

is always considered to be better than one with no infeasible child node, and a branching with
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two infeasible child nodes is immediately chosen. When the branching candidate is chosen, the

exact pricing is executed on both child nodes.

3.3 Route enumeration

The techniques discussed to this point lead to an efficient method, the results of which will be

discussed in Section 5. Since a good upper bound is known from the heuristic presented in

Section 4, we decided to test additional route enumeration techniques that, when applicable,

can allow us to solve larger problem instances. Given the known upper bound, the algorithm

attempts to enumerate all feasible routes within the integrality gap, and it aborts if more than

2|K| million routes are created. The route enumeration is done by a DP algorithm similar to

that for the exact pricing procedure, using dominance rule (11):

v(P1) = v(P2) and c̄(P1) ≤ c̄(P2) and t(P1) ≤ t(P2) and

O(P1) = O(P2) and U(P1) = U(P2).
(11)

This rule is weaker since it cannot discard a route unless there is another with the exact

same set of opened and unreachable nodes, and therefore it leads to a much larger number of

labels during the DP algorithm. To deal with this issue, we first execute a backward pricing

using completion bounds (the best reduced cost of a path ending at a given node and time)

calculated from the last run of the forward exact pricing. From the results of the backward

pricing we then calculate backward completion bounds (the best reduced cost of a path starting

at a given node and time). As the name suggests, the backward pricing is the exact pricing

algorithm executed from the end of the time horizon to the start, changing dominance rule

(10) into (O(P1) = O(P2)) to avoid enforcing the pickup triangle inequality (see Gschwind

et al. 2018). At first the completion bounds from the forward pricing subproblems seem to be

incompatible with the backward pricing because of the DTI fix. However, we observe that they

are an underestimate of the correct completion bounds and therefore can be used to fathom

labels. Finally, we generate completion bounds from the backward pricing and use them to

fathom labels during the route enumeration procedure.

Upon success, the enumerated routes may be fed into the SP formulation to obtain an optimal

solution. However, the number of routes is often prohibitively large to be directly tackled with a

mixed-integer programming (MIP) solver. Therefore, we continue the search with the same B&P

approach and rely on 3-Subset-Row Cuts (3-SRCs) to improve the value of the linear relaxations

(Jepsen et al. 2008). For the ITSRSP, the 3-SRCs are Chvátal-Gomory rank-1 cuts obtained

from a subset of three constraints from Constraints (3) and a 1
2

multiplier, resulting in the valid

inequality presented in (12), where αkσ represents the number of times the route σ of ship k visits

10



the nodes of the 3-SRC. ∑
k∈K

∑
σ∈Ωk

⌊
αkσ
2

⌋
λkσ ≤ 1 (12)

This leads to a B&P algorithm where the separation and pricing is done by simple route

inspection, as in Contardo and Martinelli (2014). In addition, note that the 3-SRCs can be

first separated at the root node to improve the linear relaxation and reduce the number of

routes resulting from the enumeration. Moreover, the 3-SRCs are not separated when evaluating

candidates during strong branching; they are instead used on the two chosen branches.

4 Hybrid Genetic Search

As demonstrated in Section 5, the proposed exact approaches lead to remarkable results for

industrial-size ship routing instances, but the variance of CPU times can be a drawback for

industrial applications. To provide heuristic solutions in a more consistent manner, as well as

initial upper bounds for the exact method, we now introduce an HGS, a sophisticated extension

of the UHGS of Vidal et al. (2012, 2014) which includes problem-tailored search operators and

an SP-based intensification procedure.

As Algorithm 1 indicates, our method follows the same general scheme as the UHGS with

the addition of the SP procedure. It jointly evolves a feasible and an infeasible subpopulation of

individuals representing solutions. At each iteration, two parents are selected from the union of

the subpopulations. A crossover operator is applied to generate an offspring, which is improved

by LS and inserted into the adequate subpopulation according to its feasibility (Lines 3–6). If the

offspring is infeasible, a repair procedure is called in an attempt to generate a feasible solution

(Lines 7–10).

Whenever a subpopulation reaches a maximum size, a survivor selection procedure is applied

to remove individuals based on their quality and contribution to the population diversity (Lines 11–

13). If no improving solution is found after Itdiv successive iterations, new individuals are added

to the population in order to diversify it (Lines 14–16). Similarly, if no improving solution is

found after Itsp successive iterations, an intensification procedure is triggered, in the form of an

SP model that aims to construct better solutions from high-quality routes identified in the search

history. Finally, the penalty coefficients are periodically adjusted to control the proportion of

feasible individuals in the search.

Hybrid genetic searches with a similar structure have been used with great success for a

variety of VRPs (see, e.g., Vidal et al. 2014, 2016, Borthen et al. 2018). Still, the ITSRSP includes

such a diversity of constraints that most components of the method had to be carefully tailored

in order to obtain an effective algorithm. The following subsections describe each component in

more detail.
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1 Initialize population;

2 while number of iterations without improvement < Itni and time < Tmax do

3 Select parent solutions P1 and P2;

4 Apply the crossover operator on P1 and P2 to generate an offspring C;

5 Educate offspring C by local search;

6 Insert C into respective subpopulation;

7 if C is infeasible then

8 With probability prep, repair C (local search) and

9 insert it into respective subpopulation;

10 if maximum subpopulation size reached then

11 Select survivors;

12 if best solution not improved for Itdiv iterations then

13 Diversify population;

14 if best solution not improved for Itsp iterations then

15 Run set partitioning;

16 Adjust penalty coefficients for infeasibility;

17 Return best feasible solution;

Algorithm 1: Hybrid Genetic Search (HGS)

4.1 Search space

Previous studies have demonstrated that the controlled use of penalized infeasible solutions can

help converging towards high-quality feasible solutions (Glover and Hao 2009, Vidal et al. 2015a).

This is especially relevant for the ITSRSP, since this problem includes time windows, capacity

constraints and incompatibility constraints, as well as precedence and pairing restrictions for

p–d pairs. In the proposed HGS, we allow the exploration of infeasible solutions in which:

• ship capacity constraints may be exceeded;

• some cargoes may not be picked up or delivered within their respective time windows;

• each ship may transport incompatible cargoes; but

• no component of the HGS creates solutions that violate precedence or pairing constraints.

The load infeasibility is proportional to the difference between the peak load (largest load over

the trip) and the ship capacity. To relax the time-window constraints, we use the “time-warp”

approach of Nagata et al. (2010) and Vidal et al. (2013), which allows penalized “returns in time”

upon a late arrival to a node. Finally, the penalty associated with ship-cargo incompatibilities is

proportional to the number of incompatible cargoes carried by each ship.

Let σ = (σ0, . . . , σn(σ)) be a route for ship k, starting from the initial position (σ0 = 0k) and

servicing a sequence of (pickup or delivery) nodes (σ1, . . . , σn(σ)). The start-of-service time tkσi at
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the ith node can be defined as:

tkσi =

sd0k if i = 0,

min{max{aσi , tσi−1
+ sdσi−1

+ δkσi−1,σi
}, bσi} otherwise.

(13)

Route σ can be characterized by the following quantities:

Travel cost: Ck(σ) =

n(σ)−1∑
i=1

(ckσi,σi+1
+ scσi) (14)

Peak load: Qmax
k (σ) = max

1≤i≤j≤n(σ)

j∑
l=i

qσl (15)

Time warp use: TWk(σ) =

n(σ)∑
i=1

max{tσi−1
+ sdσi−1

+ δkσi−1,σi
− bσi , 0} (16)

Incompatibilities: Ik(σ) =

n(σ)∑
i=1

Iσik. (17)

Finally, we define the penalized cost of route σ for ship k as:

φk(σ) = Ck(σ) + ωQ max{0, Qmax
k (σ)−Qk}+ ωtwTWk(σ) + ωIIk(σ), (18)

where ωq, ωtw, and ωI are the respective penalty coefficients for peak-load, time-window, and

incompatibility-constraint violations. The penalty coefficients will be adjusted during the search

as described in Section 4.5. The penalized cost of a solution S is the sum of the penalized costs

of all its routes, that is, φ(S) =
∑

(r,k)∈S φk(σ).

4.2 Solution representation and evaluation

A solution S is represented in HGS as a giant tour πS that holds a permutation of nodes in

P ∪D and satisfies the precedence constraints between the p–d pairs. Such a representation

greatly facilitates the design of an effective crossover operator. Moreover, segmenting this giant

tour into different routes can be done efficiently using a variant of the Split algorithm (Prins

2004, Vidal 2016) to form a complete solution after crossover.

Split is a DP algorithm that was originally designed for the capacitated VRP but is flexible

enough to be adapted to a variety of constraints and objectives (see, e.g., Prins et al. 2009,

Velasco et al. 2009). When dealing with VRPs with heterogeneous fleets, previous authors have

assumed that Split should jointly optimize the giant tour segmentation and the choice of ship

for each route (Duhamel et al. 2011). This extension, unfortunately, leads to a special case of the

shortest path problem with resource constraints, for which only pseudo-polynomial algorithms
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are currently available. To avoid this issue, we opted to fix the sequence of ships and restrict the

Split algorithm to the segmentation of the tours, so that the ships are considered one by one

in their order of appearance. To avoid any possible bias from the instance representation, we

shuffle the order of the ships when reading the data and keep this order fixed during the solution

process. The possible use of spot charters for optional cargoes is modeled via a dummy ship of

index m+ 1 with zero distance cost and a service cost equal to the charter price for each cargo.

The Split graph is defined as follows. Let GS be a directed acyclic graph with nodes

V S = {v0
0, . . . , v

0
2n, v

1
0, . . . , v

1
2n, . . . , v

m+1
0 , . . . , vm+1

2n } and arcs AS = {(vk−1
i , vkj ) : 0 ≤ i ≤ j ≤

2n, 1 ≤ k ≤ m+ 1}. Each arc (vk−1
i , vkj ) ∈ AS represents a route

σkij = (0k, π
S
i+1, π

S
i+2, . . . , π

S
j ) (19)

associated with ship k. If i = j, then σkij = (0k), representing an empty route. The cost of arc

(vk−1
i , vkj ) is set to φk(σ

k
ij) when the route satisfies the pairing constraints (no open pickup or

delivery), and infinity otherwise. With these definitions, an optimal segmentation of the giant

tour πS into routes assigned to the ships 1 to m+ 1 corresponds to a shortest path between nodes

v0
0 and vm+1

2n in GS. This shortest path can be obtained via Bellman’s algorithm in topological

order, with a time complexity of O(mn2) and space complexity of O(mn). Moreover, note

that there always exists at least one feasible path without necessarily relying on spot charters:

a single route for ship 1 containing all visits naturally satisfies the pairing and precedence

restrictions, despite its high cost related to the penalized violation of all the other (load, time,

and incompatibility) constraints.

Individual evaluation. As in the UHGS, the quality of an individual S is not based solely

on its cost but also on its contribution to the subpopulation diversity. The combination of these

two metrics is referred to as the biased fitness of S in its subpopulation P , and it is defined as

fP(S) = fφP(S) +

(
1− µelite

|P|

)
fdiv
P (S), (20)

where fφP(S) is the penalized cost rank of S in P , and fdiv
P (S) is the diversity contribution rank

of S in P . Both ranks are relative to the subpopulation size, and parameter µelite balances the

weight of each rank. The diversity contribution of S in P is defined as the average distance to

its µclose closest individuals. We use the broken pairs distance, measuring the proportion of

different edges between two solutions.

4.3 Parent selection and crossover

At each iteration, the algorithm selects two parents P1 and P2 by binary tournament based

on their biased fitness. To produce a child C, these parents are submitted to a specialized
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one-point crossover operator (Velasco et al. 2009), designed to enforce the pairing and precedence

constraints between the pickups and deliveries:

Step 1) A cutting point s ∈ {1, . . . , 2n} is randomly selected with uniform probability in the

giant tour πP1 of the first parent, and the sequence of visits σ = (πP1
1 , . . . , πP1

s ) is copied into πC .

Step 2) The second parent is swept from beginning to end, and any pending delivery (n+ i /∈ σ
such that i ∈ σ) is inserted at the end of πC .

Step 3) The second parent is swept a second time, and any missing node is inserted at the end of πC .

4.4 Education and repair

Each individual resulting from the crossover operator is decoded with the Split algorithm to

obtain a complete solution, and then improved (i.e., educated) by an efficient LS based on a

variety of neighborhoods tailored for pickup-and-delivery problems. The moves are evaluated in

random order, and any improving move is directly applied (first-improvement strategy). The LS

terminates as soon as no improving move exists. After thorough computational analyses, we

selected five neighborhoods:

N1 – Relocate Pickup: Relocate a pickup i ∈ P in the same route after a node j ∈ V
(located before the corresponding delivery n+ i ∈ D).

N2 – Relocate Delivery: Relocate a delivery n + i ∈ D in the same route after a node

j ∈ V (located at or after the corresponding pickup i ∈ P ).

N3 – Relocate Pair: Relocate a p–d pair (i, n+ i), placing i after a node j ∈ V and placing

n+ i no more than ∆ nodes after i.

N4 – Swap Pair: Given two pairs (i, n+ i) and (j, n+ j), swap i with j and n+ i with n+ j.

N5 – Swap Ships: Exchange the ships assigned to two different routes.

All these neighborhoods preserve the p–d pairing and precedence constraints. Neighborhoods

N1 and N2 specialize in intra-route modifications, while N3 and N4 may be used for both intra-

and inter-route modifications, and they can therefore change cargo-ship allocations. Finally, to

maintain a low complexity, neighborhood N3 is limited to ∆ ∈ {0, 1, 2}.

Efficient move evaluations. All the move evaluations are performed in O(1) amortized time

thanks to concatenation strategies (Vidal et al. 2014, 2015b). These strategies are based on the

fact that all moves in N1 to N5 create routes that correspond to the concatenation of a constant

number of route subsequences of the current solution. Therefore, preprocessing meaningful

information on subsequences of consecutive visits prior to move evaluations (as well as after each

route update) can facilitate the evaluation of complex constraints and objectives.

The information preprocessed on subsequences for the ITSRSP is listed in Table 1. This is

done by induction on the operation of concatenation ⊕ of two visit sequences, starting from

the base case of a single node σ0 = (i) in the sequence. Note that, in contrast with other

problems, this information depends on the ship type k, requiring O(n2m) preprocessing time
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Table 1: Preprocessing and move evaluations by concatenation.

Name Base case Induction step – Concatenation

Travel cost Ck(σ
0) = scik Ck(σ ⊕ σ′) = Ck(σ) + Ck(σ

′) + ckσn(σ)σ′1
Load Qk(σ

0) = qi Qk(σ ⊕ σ′) = Qk(σ) +Qk(σ
′)

Peak load Qmax
k (σ0) = qi Qmax

k (σ ⊕ σ′) = max{Qmax
k (σ), Qk(σ) +Qmax

k (σ′)}
Time warp use TWk(σ

0) = 0 TWk(σ ⊕ σ′) = TWk(σ) + TWk(σ
′) + ∆k

TW

Earliest possible completion time Ek(σ
0) = ai Ek(σ ⊕ σ′) = max{Ek(σ′)−∆k, Ek(σ)} −∆k

WT

Latest feasible starting time Lk(σ
0) = bi Lk(σ ⊕ σ′) = min{Lk(σ′)−∆k, Lk(σ)}+ ∆k

TW

Duration Dk(σ
0) = sdik Dk(σ ⊕ σ′) = Dk(σ) +Dk(σ

′) + δkσn(σ)σ′1
+ ∆k

WT

Incompatibilities Ik(σ
0) = Iik Ik(σ ⊕ σ′) = Ik(σ) + Ik(σ

′)

Auxiliary computations ∆k = Dk(σ)− TWk(σ) + δkσn(σ)σ′1
∆k
WT = max{Ek(σ′)−∆k − Lk(σ), 0}

∆k
TW = max{Ek(σ) + ∆k − Lk(σ′), 0}

and space if a brute force approach is employed, since a solution contains O(n2) subsequences of

consecutive visits and m ships. Fortunately, this complexity can be reduced to O(n2 + nm) time

and O(n2 +m) space by observing that the following information is sufficient to evaluate all the

moves:

• The information on all O(n2) subsequences of consecutive nodes in the incumbent solution,

for their current ship type (for neighborhoods N1 to N4) ;

• The information on each single node for all ship types, in O(nm) (for N3 and N4);

• The information on each sequence representing a complete route for all ship types, which can

be computed in O(nm) time and stored in O(m) (for N5).

Finally, to avoid redundant move evaluations, the HGS uses a simple memory scheme that

registers the last-modified time of a route and the last-evaluated time for each move. By comparing

these values, one can decide whether or not to re-evaluate a move. This strategy is as efficient as

and much simpler than the “static move descriptors” discussed in Zachariadis and Kiranoudis

(2010). Moreover, time stands for any non decreasing counter, e.g., the number of moves applied

or tested in the method.

Ship-dependent neighborhood restrictions. Our LS uses static neighborhood restrictions

similar to those of Vidal et al. (2013), by limiting move evaluations to those that create at least

one directed arc (i, j) with ship k such that {i ∈ {01, . . . , 0k} and j ∈ P} or {i ∈ P ∪ D and

j ∈ Γk(i)}. The set Γk(i) contains the |Γ| most promising successors of vertex i for ship k, ranked

according to a metric γk(i, j) of spatial and temporal proximity between nodes i and j:

γk(i, j) = γunitckij + γwt max{aj − sdik − δkij − bi, 0}
+ γtw max{ai + sdik + δkij − bj, 0}.

(21)
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The first term of the equation represents the spatial proximity (distance), scaled by the ratio

between travel time and distance γunit = δkij/ckij to ensure that all terms have the same unit. The

next two terms measure the temporal proximity, based on the unavoidable amount of waiting

time and time warp when servicing i and j consecutively, with weights γwt and γtw.

Repair. The routes and solutions explored in the LS can include penalized violations of

time-window, capacity, and incompatibility constraints. Therefore, this procedure may lead to

an infeasible solution that will be stored in the infeasible subpopulation. In this event, a Repair

phase is additionally called on this solution with probability prep. Repair temporarily multiplies

all the penalty coefficients by 10 and runs the LS. If the resulting solution remains infeasible,

then the coefficients are again multiplied, this time by 100, and the LS is run again. If it is

successful, the resulting feasible solution will be added to the feasible subpopulation.

4.5 Population management

As in the UHGS, we rely on survivor selection, population diversification, and adaptive penalty

mechanisms to find a good balance between population diversity and elitism. We also incorporate

an additional intensification phase, in the form of an SP procedure that aims to build a better

solution from existing routes from the search history.

Initialization. To initialize the population, the HGS generates 4µmin random individuals.

Random individuals are generated as giant tours where a sequence of pickups is shuffled and then

deliveries are placed immediately after the respective pickups. These individuals are educated,

possibly repaired, and inserted into their respective subpopulations.

Survivor selection and diversification. A survivor selection mechanism occurs whenever a

subpopulation reaches the maximum size of µmin + µgen individuals. As in Vidal et al. (2012),

the µgen individuals with maximum biased fitness are discarded, prioritizing individuals that

have a clone. This selection procedure preserves the best µelite individuals with respect to the

penalized cost and finds a good balance between elitism and diversity. To explore an even wider

diversity of solution characteristics, a diversification procedure is called whenever no improving

solution was found during the last Itdiv = 0.4 · Itni iterations. It discards all but the µmin/3

individuals with the smallest biased fitness in each subpopulation, and then generates 4µmin new

random individuals that are educated and possibly repaired.

Set partitioning. Because of the many constraints of the ITSRSP, even generating promising

feasible routes can be a challenging task. In this context, it is natural to exploit as far as possible

high-quality routes from the search history. Thus, in a similar way to Muter et al. (2010) and

Subramanian et al. (2013), HGS triggers an intensification procedure whenever no improving

solution has been found over Itsp = 0.2Itni consecutive iterations. This procedure formulates an

SP model (Equations 1–5) that considers all feasible routes from local minima in the past search,
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and solves it with a MIP solver subject to a time limit of T sp
max. Any improved solution obtained

is inserted into the population. This intensification procedure complements the other operators

well: instead of performing local improvements, it seeks good combinations of previously found

routes and can be viewed as a form of large neighborhood search.

Adaptive penalties. Finally, the penalty coefficients are adjusted during the search to maintain

a target proportion ξref of feasible individuals with respect to the relaxed constraints (load, time

windows, and incompatibilities). For each constraint X, HGS records the proportion ξX of feasible

solutions w.r.t. constraint X over the last 100 iterations. This calculation is performed after the

LS, before any possible repair. The penalty coefficients are then adjusted every Itni/100 iterations:

if ξX ≤ ξref − 5%, ξX is multiplied by 1.2, and if ξX ≥ ξref + 5%, ξX is multiplied by 0.85.

5 Experimental Analysis

This section reports our computational experiments with the two B&P algorithms (with and

without enumeration) and the HGS. Our aim is fourfold:

• We compare the proposed exact algorithms, and evaluate their ability to solve practical-size

ship routing problems to optimality in limited time;

• In situations where a faster response is sought, we evaluate the quality of the solutions produced

by the HGS metaheuristic;

• We evaluate the impact of some of our most important methodological choices and new

components: e.g., ship-dependent neighborhood restrictions and set-partitioning problem

parameters for the HGS; advanced preprocessing techniques, DSSR, and completion bounds

for the B&P algorithms;

• Finally, we evaluate the scalability of the proposed approaches on new larger problem instances.

We implemented all algorithms in C++ with double precision numbers, using CPLEX 12.7 to

solve the B&P master problem and the integer SP inside the HGS. We conducted all experiments

on a computer with an i7-3960X CPU and 64 GB of RAM.

We rely on the benchmark instances suite for the ITSRSP based on real-life scenarios, pre-

sented in Hemmati et al. (2014) and currently available at http://home.himolde.no/~hvattum/

benchmarks/. These instances are divided into four groups of 60, according to problem topology

and cargo type: short sea mixed load (SS MUN), short sea full load (SS FUN), deep sea mixed

load (DS MUN), and deep sea full load (DS FUN). Each group contains five instances for 12

different problem size values. The mixed load instances have up to 130 cargoes and 40 ships,

whereas the full load instances have up to 100 cargoes and 50 ships. So far, 123/240 instances

remain open. Finally, we produced 32 additional larger instances with up to 260 cargoes and 74

ships for our scalability experiment.

In the full load instances, each delivery should be visited immediately after its associated

pickup due to the absence of residual capacity for other loads. This property is no longer valid
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for the mixed load instances. Furthermore, short and deep sea instances consider different

geographical regions. The short sea instances represent shipments among European ports,

whereas the deep sea instances involve long-distance shipments between different continents.

5.1 Exact solutions

To our knowledge, the study of Hemmati et al. (2014) is the only one to report lower bounds

and optimal solutions for these benchmark instances, obtained by solving a MIP formulation.

We establish a comparison with our branch-and-price without route enumeration (B&P1), as

well as the same algorithm with route enumeration and 3-SRCs using inspection pricing (B&P2).

Both configurations use heuristic strong branching with 50 candidates at each iteration. As an

initial upper bound, we set Zub = Zhgs + 0.1, where Zhgs is the best objective value found by our

HGS metaheuristic. One hour of computation was allowed for each instance.

Table 2 reports the experimental results. Each line gives the average results for five in-

stances with the same characteristics. The first group of columns presents the results of

Hemmati et al. (2014): the time in minutes, the gap between the integer solution and the best

bound found in the MIP formulation, and the number of instances solved to optimality. The

second group presents the results for B&P1: “Gap0” and “T0” represent the percentage gap and

the time in minutes for the root node. “GapF” and “TF” are the final percentage gap and time,

“NF” is the number of nodes in the search tree, and “Opt” is the number of instances solved to

optimality. The last group of columns presents the results for B&P2 (with route enumeration

and inspection pricing): the columns “TE” and “RE” are the time in minutes for the route

enumeration and the number of routes found. “Gap0”, “T0”, and “Cuts0” are the percentage

gap, the overall time and the number of 3-SRCs separated at the root node. “RF”, “GapF”,

“TF”, “CutsF”, and “NF” are the final number of routes, the percentage gap, the overall time, the

3-SRCs separated, and the number of nodes in the search tree. Finally, “Opt” is the number of

instances solved to optimality in the group.

As observed in Table 2, the MIP formulation already fails to produce optimal solutions on

some small instances with 20 to 30 cargoes. In contrast, B&P1 solves all the full load instances in

less than one minute, as well as 107 out of the 120 mixed load instances. The column generation

produces good lower bounds, with an average gap of 0.36% at the root node. However, for

the mixed load instances, the average time needed to solve each pricing subproblem (ratio

TF/NF) increases with the number of cargoes, whereas the lower bounds tend to deteriorate,

leading to larger branch-and-bound trees. To go further, one can concentrate on improving the

pricing problem solution or the lower bounds. For the largest open instances, the root-node

gap seems small enough to allow a complete route enumeration via sophisticated DP algorithms

(Section 3.3). We therefore derived B&P2 from this premise: the enumeration of the routes allows

subsequent pricing by inspection and permits to introduce SRCs without significant consequences

on CPU time.
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Table 2: Performance comparison – Exact approaches
Hemmati et al. (2014) Branch-and-Price (B&P1) Branch-and-Price + Enumeration + SRCs (B&P2)

Instances T Gap Opt Gap0 T0 GapF TF NF Opt TE RE Gap0 T0 Cuts0 RF GapF TF CutsF NF Opt

S
S
-M

U
N

C7-V3 0.0 0.00 5 0.00 0.00 0.00 0.00 1.0 5 0.00 9 0.00 0.00 0.0 9 0.00 0.00 0.0 1.0 5

C10-V3 0.0 0.00 5 0.00 0.00 0.00 0.00 1.0 5 0.00 13 0.00 0.00 0.0 13 0.00 0.00 0.0 1.0 5

C15-V4 1.4 0.00 5 1.07 0.00 0.00 0.00 3.4 5 0.00 75 0.80 0.00 3.2 64 0.00 0.00 4.6 1.8 5

C18-V5 42.5 3.12 4 0.56 0.00 0.00 0.00 5.4 5 0.00 83 0.16 0.00 2.2 40 0.00 0.00 2.2 1.8 5

C22-V6 50.6 15.47 1 1.40 0.00 0.00 0.01 6.6 5 0.00 468 0.61 0.00 13.8 242 0.00 0.00 17.0 4.2 5

C23-V13 60.0 26.88 0 0.41 0.01 0.00 0.05 7.8 5 0.00 180 0.17 0.01 5.8 74 0.00 0.01 5.8 3.0 5

C30-V6 60.0 79.46 0 0.73 0.01 0.00 0.11 15.0 5 0.00 913 0.36 0.01 25.8 290 0.00 0.01 31.4 2.6 5

C35-V7 60.0 82.66 0 0.66 0.03 0.00 0.36 23.0 5 0.00 2K 0.38 0.03 42.4 850 0.00 0.07 78.6 7.0 5

C60-V13 60.0 85.48 0 0.43 0.49 0.00 11.82 96.6 5 0.07 28K 0.29 0.48 57.2 13K 0.00 0.91 176.0 20.6 5

C80-V20 60.0 86.63 0 0.19 1.20 0.00 9.06 17.4 5 0.19 35K 0.08 1.15 51.2 12K 0.00 1.23 79.0 5.4 5

C100-V30 60.2 97.59 0 0.15 2.88 0.02 36.02 40.0 3 0.47 23K 0.10 2.81 34.4 9K 0.00 3.27 70.0 19.0 5

C130-V40 61.5 99.95 0 0.13 12.68 0.04 60.00 18.4 0 2.82 111K 0.07 13.44 41.8 36K 0.00 15.08 115.6 23.8 5

Overall 43.0 48.10 20 0.48 1.44 0.01 9.79 19.6 53 0.30 17K 0.25 1.49 23.2 6K 0.00 1.71 48.4 7.6 60

S
S
-F

U
N

C8-V3 0.0 0.00 5 0.00 0.00 0.00 0.00 1.0 5 0.00 10 0.00 0.00 0.0 10 0.00 0.00 0.0 1.0 5

C11-V4 0.0 0.00 5 0.00 0.00 0.00 0.00 1.0 5 0.00 19 0.00 0.00 0.0 19 0.00 0.00 0.0 1.0 5

C13-V5 0.0 0.00 5 0.00 0.00 0.00 0.00 1.0 5 0.00 21 0.00 0.00 0.0 21 0.00 0.00 0.0 1.0 5

C16-V6 0.0 0.00 5 0.00 0.00 0.00 0.00 1.0 5 0.00 34 0.00 0.00 0.0 34 0.00 0.00 0.0 1.0 5

C17-V13 0.0 0.00 5 0.01 0.00 0.00 0.00 1.8 5 0.00 49 0.01 0.00 0.0 49 0.00 0.00 0.0 1.8 5

C20-V6 0.8 0.00 5 0.03 0.00 0.00 0.00 1.8 5 0.00 81 0.00 0.00 2.6 76 0.00 0.00 5.0 1.4 5

C25-V7 40.5 0.83 3 0.00 0.00 0.00 0.00 1.4 5 0.00 67 0.00 0.00 0.8 62 0.00 0.00 0.8 1.0 5

C35-V13 60.0 8.85 0 0.00 0.00 0.00 0.00 1.4 5 0.00 131 0.00 0.00 1.4 130 0.00 0.00 1.4 1.4 5

C50-V20 60.0 13.99 0 0.03 0.00 0.00 0.01 1.8 5 0.00 671 0.03 0.00 0.0 671 0.00 0.01 0.0 1.8 5

C70-V30 60.1 60.04 0 0.12 0.01 0.00 0.08 4.6 5 0.00 7K 0.12 0.01 0.0 7K 0.00 0.04 3.0 4.6 5

C90-V40 60.3 78.32 0 0.00 0.03 0.00 0.11 2.2 5 0.00 1K 0.00 0.03 1.0 1K 0.00 0.04 1.0 1.8 5

C100-V50 60.9 79.11 0 0.01 0.04 0.00 0.24 3.8 5 0.00 3K 0.01 0.04 2.0 2K 0.00 0.10 2.0 3.4 5

Overall 28.5 20.10 33 0.02 0.01 0.00 0.04 1.9 60 0.00 1K 0.02 0.01 0.7 978 0.00 0.02 1.1 1.8 60

D
S
-M

U
N

C7-V3 0.0 0.00 5 1.15 0.00 0.00 0.00 1.4 5 0.00 12 0.00 0.00 0.6 8 0.00 0.00 0.6 1.0 5

C10-V3 0.0 0.00 5 1.92 0.00 0.00 0.00 3.4 5 0.00 30 1.81 0.00 1.0 28 0.00 0.00 1.0 1.8 5

C15-V4 0.4 0.00 5 1.02 0.00 0.00 0.00 1.8 5 0.00 80 0.00 0.00 1.4 22 0.00 0.00 1.4 1.0 5

C18-V5 16.3 2.18 4 0.51 0.00 0.00 0.00 2.6 5 0.00 97 0.25 0.00 5.0 78 0.00 0.00 5.0 1.4 5

C22-V6 26.2 3.28 4 1.45 0.00 0.00 0.00 5.8 5 0.00 154 1.01 0.00 2.8 108 0.00 0.00 3.4 2.6 5

C23-V13 26.4 4.62 3 0.27 0.00 0.00 0.00 2.6 5 0.00 79 0.13 0.00 0.4 55 0.00 0.00 0.4 1.8 5

C30-V6 60.0 52.25 0 1.56 0.00 0.00 0.04 15.0 5 0.00 4K 0.84 0.00 16.0 1K 0.00 0.01 30.6 3.0 5

C35-V7 60.0 54.25 0 1.13 0.01 0.00 0.06 14.6 5 0.00 8K 0.74 0.01 20.6 5K 0.00 0.01 25.6 3.4 5

C60-V13 60.0 89.22 0 0.58 0.10 0.00 3.62 45.4 5 0.02 33K 0.14 0.10 32.8 5K 0.00 0.70 88.2 9.4 5

C80-V20 60.1 91.56 0 0.43 0.37 0.00 12.57 49.4 5 0.10 231K 0.11 0.42 43.4 30K 0.00 0.59 64.0 7.8 5

C100-V30 60.3 99.03 0 0.52 0.57 0.09 20.72 63.4 4 0.21 1M 0.24 0.70 32.0 395K 0.00 2.13 99.4 22.2 5

C130-V40 61.3 100.00 0 0.41 3.81 0.16 60.00 30.0 0 4.86 13M 0.28 9.07 52.6 5M 0.01 17.64 168.0 19.2 4

Overall 35.9 41.37 26 0.91 0.40 0.02 8.08 19.6 54 0.43 1M 0.46 0.86 17.4 478K 0.00 1.76 40.6 6.2 59

D
S
-F

U
N

C8-V3 0.0 0.00 5 0.00 0.00 0.00 0.00 1.0 5 0.00 10 0.00 0.00 0.0 10 0.00 0.00 0.0 1.0 5

C11-V4 0.0 0.00 5 0.00 0.00 0.00 0.00 1.0 5 0.00 14 0.00 0.00 0.0 14 0.00 0.00 0.0 1.0 5

C13-V5 0.0 0.00 5 0.00 0.00 0.00 0.00 1.0 5 0.00 18 0.00 0.00 0.0 18 0.00 0.00 0.0 1.0 5

C16-V6 0.0 0.00 5 0.01 0.00 0.00 0.00 1.4 5 0.00 28 0.01 0.00 0.0 28 0.00 0.00 0.0 1.4 5

C17-V13 0.0 0.00 5 0.02 0.00 0.00 0.00 1.4 5 0.00 34 0.02 0.00 0.0 34 0.00 0.00 0.0 1.4 5

C20-V6 0.0 0.00 5 0.11 0.00 0.00 0.00 1.4 5 0.00 67 0.11 0.00 0.0 67 0.00 0.00 0.0 1.4 5

C25-V7 0.1 0.00 5 0.00 0.00 0.00 0.00 1.0 5 0.00 80 0.00 0.00 0.0 80 0.00 0.00 0.0 1.0 5

C35-V13 45.6 4.37 2 0.03 0.00 0.00 0.00 1.8 5 0.00 145 0.03 0.00 0.0 145 0.00 0.00 0.0 1.8 5

C50-V20 56.3 8.81 1 0.00 0.00 0.00 0.00 1.0 5 0.00 182 0.00 0.00 0.0 182 0.00 0.00 0.0 1.0 5

C70-V30 60.1 11.37 0 0.00 0.01 0.00 0.01 1.4 5 0.00 682 0.00 0.01 0.4 682 0.00 0.01 0.4 1.4 5

C90-V40 60.2 48.44 0 0.00 0.02 0.00 0.04 1.8 5 0.01 1K 0.00 0.02 1.4 1K 0.00 0.03 5.2 1.8 5

C100-V50 60.5 52.36 0 0.00 0.02 0.00 0.07 1.8 5 0.01 682 0.00 0.02 0.6 651 0.00 0.04 1.0 1.4 5

Overall 23.6 10.45 38 0.01 0.00 0.00 0.01 1.3 60 0.00 267 0.01 0.00 0.2 265 0.00 0.01 0.6 1.3 60
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The remaining columns of Table 2 report the performance of B&P2. This approach outperforms

the standard B&P1 in terms of number of instances solved and average solution time. Route

enumeration at the root node takes a maximum of 17.8 minutes. The number of routes may,

however, rise up to 60 millions (on instance DS-MUN-C130-V40-HE-2). Having enumerated the

routes allows to efficiently separate the SRCs and decrease the root-node gap (from 0.36% to

0.19%). As a consequence, the route set can be reduced further (from 311K to 121K on average)

as well as the size of the branch-and-bound tree (from 10.6 to 4.2 on average). Using this method,

all available instances but one (DS-MUN-C130-V40-HE-2) are solved within a time limit of one

hour. A larger time limit allows to solve the last remaining instance in 4 hours and 23 minutes.

Figure 1: Number of instances solved over time by B&P1 and B&P2
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Figure 1 displays the number of instances solved by B&P1 and B&P2 as a function of the

CPU time limit. B&P2 visibly produces superior results, but this method is also less flexible: its

performance depends on the ability to do a complete route enumeration at the root node within

the optimality gap. This process may possibly fail (due to time or memory limitations, or an

unusually large gap), such that we recommend to first consider B&P1 in exploratory analyses

without any prior knowledge of the structure of the ITSRSP instances.

5.2 Heuristic solutions

As seen in the previous section, our exact methods can solve the majority of the instances, but

their CPU time can widely vary, even for instances with similar characteristics. Therefore, fast

heuristic solutions remain essential for applications requiring a response in a guaranteed short

time. This section compares the performance of our HGS with that of the existing ITSRSP

heuristics from Hemmati et al. (2014) and Hemmati and Hvattum (2016). To highlight the

impact of the SP component, we evaluated two versions of our algorithm: without SP (HGS1)

and with SP (HGS2).
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We used the same parameters as Vidal et al. (2013) to avoid any problem-specific overfit.

Therefore, (µmin, µgen) = (25, 40), µelite = 10, µclose = 5, prep = 0.5, ξref = 0.2, |Γ| = 30, and

(γtw, γwt) = (1.0, 0.2). The penalty coefficients take (ωq, ωtw, ωI) = (c̄/q̄, 100, c̄) as a starting

value, where c̄ =
∑
k∈K

∑
(i,j)∈A c

k
ij

|K||A| and q̄ =
∑
i∈V |qi|
n

. To compare with previous literature in similar

CPU time, we set (Itni, Tmax) = (2.5 ·103, 15 min), and T sp
max = 30 s. Finally, the full load instances

(FUN) require directs visits from pickup to delivery points, such that neighborhoods N1 and N2

can be disabled and neighborhood N3 is restricted to ∆ = 0. In the neighborhood restrictions,

i ∈ D is the only possible candidate successor of i− n, and only a pickup node j ∈ P can follow

a delivery i ∈ D.

Table 3 compares the results of the ALNS of Hemmati et al. (2014) with those of HGS1 and

HGS2. Each line gives average results over 10 runs for five instances with the same characteristics.

Each column “Gap” reports the percentage gap of one method relative to the optimal solutions

found in Section 5.1, column “T” gives the total CPU time in minutes, and column “T*” gives

the attainment time (in minutes) needed to reach the final solution. For each instance class, the

best gap is highlighted in boldface. The detailed results of Hemmati et al. (2014) were kindly

provided by the authors, and our complete detailed results (per instance) are also available

in the electronic companion of this paper, located at https://w1.cirrelt.ca/~vidalt/en/

VRP-resources.html.

As visible in the results of Table 3, both versions of the HGS largely outperform previous

algorithms. HGS2 obtains near-optimal solutions within an average gap of 0.01%, compared to

1.01% for the ALNS. The full load instances are generally easier to solve than the mixed load

instances since the problem simplifies. Moreover, the SP-based procedure largely contributes to

the performance of the algorithm: contrary to intuition, it does not increase the overall CPU

time, but even decreases it from 1.93 min (HGS1) to 1.48 min (HGS2) on average. Indeed, the

SP helps to reach optimal solutions more quickly, such that the method only performs Itni
additional iterations before reaching the termination criteria instead of gradually improving over

a longer time. The effect is manifest when comparing the average attainment time of HGS1 (T*

= 1.49 min) with that of HGS2 (0.94 min). In a follow-up work, Hemmati and Hvattum (2016)

investigated the impact of some design decisions and parameters of their ALNS and reported the

results of six variants of their algorithm on a smaller subset of instances. Drawing a comparison

with these methods leads to similar conclusions: HGS2 largely outperforms these methods. For

the sake of brevity, this comparison is presented in the electronic companion.

5.3 Sensitivity analyses

To highlight the role of each main strategy and parameter, we have conducted extensive sensitivity

analyses with the B&P and HGS algorithms. We started with the standard configurations of

each method (B&P1, B&P2 and HGS2) and generated a number of alternative configurations by
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Table 3: Performance comparison – Metaheuristics
Hemmati et al. (2014) HGS1 HGS2

Instances Gap T Gap T T* Gap T T*

S
S

-M
U

N

C7-V3 0.00 0.03 0.00 0.02 0.00 0.00 0.02 0.00

C10-V3 0.00 0.04 0.00 0.04 0.00 0.00 0.04 0.00

C15-V4 0.58 0.09 0.00 0.08 0.00 0.00 0.08 0.00

C18-V5 0.51 0.13 0.07 0.12 0.02 0.02 0.13 0.03

C22-V6 1.82 0.19 0.05 0.19 0.05 0.00 0.18 0.04

C23-V13 0.58 0.25 0.13 0.25 0.09 0.00 0.23 0.07

C30-V6 1.60 0.38 0.17 0.36 0.17 0.00 0.33 0.12

C35-V7 1.92 0.54 0.81 0.51 0.26 0.03 0.54 0.27

C60-V13 1.69 2.01 1.03 2.44 1.81 0.14 2.25 1.37

C80-V20 2.45 4.13 1.79 5.21 4.09 0.03 3.84 2.44

C100-V30 2.68 7.77 1.67 9.97 8.01 0.01 5.31 3.02

C130-V40 2.57 16.95 2.28 13.84 11.87 0.02 12.43 8.39

Overall 1.37 2.71 0.67 2.75 2.20 0.02 2.12 1.31

S
S

-F
U

N

C8-V3 0.00 0.03 0.00 0.01 0.00 0.00 0.01 0.00

C11-V4 0.13 0.05 0.00 0.02 0.00 0.00 0.02 0.00

C13-V5 0.07 0.07 0.00 0.02 0.00 0.00 0.02 0.00

C16-V6 0.05 0.10 0.00 0.03 0.00 0.00 0.03 0.00

C17-V13 0.01 0.14 0.00 0.04 0.00 0.00 0.05 0.00

C20-V6 0.14 0.18 0.00 0.04 0.00 0.00 0.05 0.00

C25-V7 0.22 0.27 0.00 0.07 0.02 0.00 0.07 0.01

C35-V13 0.29 0.60 0.01 0.19 0.08 0.00 0.17 0.05

C50-V20 0.52 1.38 0.22 0.67 0.43 0.00 0.43 0.15

C70-V30 1.29 3.51 0.68 1.86 1.28 0.00 1.09 0.42

C90-V40 1.45 6.98 0.70 3.90 2.83 0.00 1.93 0.76

C100-V50 0.96 9.79 0.50 5.98 4.46 0.00 2.83 1.20

Overall 0.43 1.93 0.18 1.07 0.76 0.00 0.56 0.22

D
S

-M
U

N

C7-V3 0.00 0.03 0.00 0.02 0.00 0.00 0.02 0.00

C10-V3 0.01 0.04 0.00 0.04 0.00 0.00 0.04 0.00

C15-V4 1.26 0.08 0.00 0.08 0.01 0.00 0.08 0.01

C18-V5 0.47 0.13 0.00 0.12 0.01 0.00 0.12 0.01

C22-V6 2.18 0.19 0.01 0.18 0.05 0.00 0.18 0.05

C23-V13 0.12 0.24 0.02 0.19 0.05 0.00 0.20 0.04

C30-V6 1.04 0.37 0.22 0.36 0.17 0.03 0.32 0.12

C35-V7 1.08 0.51 0.14 0.53 0.28 0.00 0.44 0.17

C60-V13 3.74 1.92 1.41 2.58 1.96 0.03 1.81 1.06

C80-V20 3.10 4.26 1.61 5.69 4.58 0.04 3.56 2.20

C100-V30 3.69 8.00 3.27 9.22 7.27 0.01 9.87 6.84

C130-V40 5.18 17.47 5.08 13.66 11.64 0.09 14.81 12.88

Overall 1.82 2.77 0.98 2.72 2.17 0.02 2.62 1.95

D
S

-F
U

N

C8-V3 0.00 0.03 0.00 0.01 0.00 0.00 0.01 0.00

C11-V4 0.00 0.05 0.00 0.02 0.00 0.00 0.02 0.00

C13-V5 0.00 0.06 0.00 0.02 0.00 0.00 0.04 0.00

C16-V6 0.03 0.10 0.00 0.03 0.00 0.00 0.04 0.00

C17-V13 0.00 0.13 0.00 0.05 0.00 0.00 0.05 0.00

C20-V6 0.01 0.16 0.00 0.04 0.00 0.00 0.05 0.00

C25-V7 0.41 0.26 0.00 0.07 0.01 0.00 0.07 0.01

C35-V13 1.03 0.59 0.01 0.26 0.14 0.00 0.21 0.08

C50-V20 0.61 1.41 0.23 0.71 0.46 0.00 0.45 0.17

C70-V30 0.59 3.55 0.31 2.02 1.43 0.00 1.02 0.38

C90-V40 1.10 7.01 0.44 4.27 3.16 0.00 2.20 1.00

C100-V50 1.07 9.85 0.41 6.37 4.80 0.00 3.13 1.44

Overall 0.41 1.93 0.12 1.16 0.83 0.00 0.61 0.26
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deactivating a component or modifying a single parameter to study its impact. The results of

these analyses are presented in Tables 4–5. In Table 4, Column “Gap” represent the average gap,

Column “T” reports the average CPU time in minutes, Column “Root” counts the number of

instances for which the root node solution was completed, and Column “Opt” counts the number

of optimal solutions found. By convention, failing to solve the root node gives a Gap of 100%.

In Table 5, Column “Gap” refers to the average gap, and Columns “T” and “T*” represent the

average CPU time and attainment time.

Table 4: Impact of some of the key components of the B&P

FUN MUN

Gap T Root Opt Gap T Root Opt

Standard (B&P1) 0.00 0.02 120 120 0.01 8.94 120 107

A. No Heuristic Pricing 0.00 0.02 120 120 0.02 11.20 120 103

B. No Strong Branching 0.00 1.09 120 118 0.06 17.54 120 86

C. No Preprocessing 0.00 0.03 120 120 6.76 15.10 112 95

D. No DSSR 0.00 0.04 120 120 25.02 19.27 90 84

Standard (B&P2) 0.00 0.01 120 120 0.00 1.74 120 119

E. No Completion Bounds 0.00 0.01 120 120 13.33 9.97 104 104

F. No Subset-Row Cuts 0.00 0.01 120 120 0.00 2.47 120 118

Table 5: Impact of some of the key components and parameters of the HGS

FUN MUN

Gap T T* Gap T T*

Standard (HGS2) 0.00 0.58 0.24 0.02 2.37 1.63

G. No SP Intensification (HGS1) 0.15 1.11 0.80 0.82 2.74 2.18

H. Shorter SP Intensification (T sp
max = 10 s) 0.00 0.58 0.24 0.02 2.29 1.54

I. Longer SP Intensification (T sp
max = 120 s) 0.00 0.58 0.24 0.02 2.37 1.59

J. No neighborhood restrictions (|Γ| = +∞) 0.00 0.72 0.29 0.05 3.49 2.35

K. No diversity management (fdiv
P (·) = 0) 0.00 0.58 0.25 0.03 2.39 1.71

In these experiments, again, the instances of class FUN are solved more easily. Since most

methods achieve the same solution quality for this class, we will primarily rely on the harder

MUN instances in our analyses.

Table 4 analyzes the components of the B&P algorithms. As illustrated by the results of

Configuration A, heuristic pricing significantly reduces the overall pricing time. Without this

component, four additional instances remain open and the CPU time increases by 25%, though

this effect is generally less marked than in other VRP variants (see, e.g. Desaulniers et al. 2008,

Martinelli et al. 2014).

24



Deactivating strong branching (Configuration B) has a larger impact. Strong branching helps

predicting good branching decisions and reducing the search tree. Without it, the number of

solved instances decreases from 107 to 86. The method can still nearly close the optimality gap

(0.06% on average), but it often fails to complete the optimality proof.

Configurations C and D evaluate the impact of our advanced preprocessing strategies and

DSSR (Section 3.1). Both components focus on enhancing the speed of the DP pricing algorithm.

These components play a decisive role. Deactivating just one of these components makes it

impossible to compute the root-node relaxation in a reasonable time for many instances. As

an immediate consequence, the number of optimal solutions dramatically decreases (down to

84/120) and the optimality gap soars (up to 25.02%) due to the number of incomplete root node

calculations.

The remaining analyses of Table 4 concern the B&P2 algorithm, based on route enumeration.

In addition to the preprocessing strategies and DSSR, the DP algorithm used for route enumera-

tion exploits a sophisticated succession of completion bounds (Section 3.3). Deactivating these

bounds, as in Configuration E, hinders the performance of the route enumeration algorithm, which

fails on 16/120 largest instances. Remark that any instance which is successfully enumerated

is subsequently solved. Finally, deactivating the SRC separation is moderately detrimental: it

leads to an 42% increase of CPU time and one additional open instance.

The results of the sensitivity analysis of the HGS, in Table 5, essentially highlight the

importance of the SP-based intensification procedure. As visible in Configuration F, the solution

quality of HGS significantly decreases (up to 0.82% average gap on the MUN instances) when

this strategy is deactivated. HGS identifies the routes (columns) belonging to the optimal

solutions within the available number of iterations, but due to the large number of ships, ship

types, and the cargo-ship incompatibility matrix, combining these routes into a complete solution

can be a challenging task. In contrast, the SP component is perfectly suited for this role, such

that the combination of both techniques leads to a particularly effective matheuristic.

The impact of other components and parameter settings is less marked: increasing or

decreasing the time limit of each SP model (Configurations H and I) does not impact the

solution method, due to the fact that most SP models are solved within a few seconds. Moreover,

deactivating our ship-dependent neighborhood restrictions (Configuration J) and population-

diversity management strategies (Configuration K) leads to a small but significant decrease of

solution quality.

5.4 Experiments on large-scale instances

Most shipping companies solve planning problems involving at most a few dozen ships per segment

(Wilson 2018). Still, some scenarios may exceptionally require to consider larger instances, for

example when evaluating possible merger or coordinated freight operations. Efficient optimization

tools are needed to react in such situations. The goal of this section is to evaluate the scalability
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of our algorithms in such cases. For this analysis, we produced 32 new instances with the same

problem generator as Hemmati et al. (2014), with up to 89 ships and 260 cargoes (i.e., 520

pickups and deliveries). These instances are accessible at https://w1.cirrelt.ca/~vidalt/

en/VRP-resources.html. We apply the B&P2 and the HGS2 with the same parameters as

previously, and increase the CPU-time limits by a factor of four. Therefore, the HGS2 is run

with Tmax = 1 h and T sp
max = 2 min. Similarly, the B&P2 is run until a time limit of four hours is

exceeded. However, to obtain lower bounds for all instances, we do not interrupt the B&P2 until

it has at least completed the solution of the root node.

Table 6 reports the results of this experiment using the same conventions as Tables 2 and 3.

For these instances, we could not obtain optimal solutions on all instances, such that the column

“Gap” for the HGS2 reports the gap relative to the best lower bound found by the B&P2. In

addition, detailed solution values for each instance are provided in the electronic companion.

The results on the new large-scale instances are consistent with our previous findings. All

the full load instances are solved to optimality within a few minutes. In contrast, the mixed load

instances are significantly more difficult since the deliveries can occur in any position after their

associated pickups. This leads to a larger search space which effectively requires to arrange up

to 520 visits (i.e., 260 pickups and deliveries) in the largest case. Seven out of the 16 large mixed

load instances are solved to optimality. For the remaining 9 instances, the optimality gap is

always smaller than 1.28%, but the root-node solution took up to 64 hours in the largest case

(DS-MUN-C260-V74). The solutions of the proposed heuristic are also remarkably accurate. For

the full load instances, the HGS2 always finds near-optimal solutions (average gap below 0.01%)

in an average time of 9.16 minutes. For the mixed load instances, the HGS2 complements very

well the exact method by producing consistently good solutions (average gap of 0.36%) within a

controllable CPU time (47.94 minutes on average).

6 Conclusions and Perspectives

As demonstrated in this paper, the literature on maritime logistics has attained a turning point

where state-of-the-art exact algorithms can solve industrial and tramp ship routing optimization

problems of a realistic scale. The B&P algorithm that we designed for this purpose capitalizes on

multiple methodological elements to find a good balance between relaxation strength and pricing

speed. As demonstrated by our sensitivity analyses, its most critical method components concern

the efficiency of the DP pricing and enumeration algorithms: our sophisticated preprocessing

techniques and filters, the use of DSSR to reintroduce elementarity and the successive completion

bounds are essential to solve large ITSRSPs instances. These observations are in line with the

works of Pecin et al. (2017), Sadykov et al. (2017) and the general research on MIP for VRPs

which, for a large part, focuses on finding tighter relaxations and faster DP algorithms.

From the heuristic viewpoint, our experiments with a problem-tailored HGS show that the
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Table 6: Performance on larger instances
Branch-and-Price + Enumeration + SRCs (B&P2) HGS2

Instance TE RE Gap0 T0 Cuts0 RF GapF TF CutsF NF Gap T T*

S
S
-M

U
N

C143-V41 5.22 385K 0.13 20.39 44 143K 0.00 24.38 209 33 0.04 15.85 10.69

C156-V45 7.40 1M 0.12 35.42 58 509K 0.00 71.98 502 129 0.01 28.15 18.19

C169-V48 6.83 199K 0.06 39.08 53 88K 0.00 41.71 159 19 0.01 26.32 19.28

C182-V52 13.22 762K 0.10 53.72 38 482K 0.00 88.32 406 101 0.03 42.22 31.34

C195-V56 29.25 297K 0.06 133.40 71 180K 0.00 147.68 282 47 0.04 50.21 39.07

C208-V59 57.49 8M 0.12 135.82 59 2M 0.02 240.00 625 157 0.03 56.17 46.63

C221-V63‡ - - 0.17 495.02 - - 0.17 495.02 - - 0.20 56.32 45.02

C260-V74‡ - - 0.17 1196.78 - - 0.17 1196.78 - - 0.25 60.16 53.57

Overall 19.90 2M 0.10 69.64 53.8 559K 0.04 258.23 363.8 81.0 0.08 41.93 32.97

S
S
-F

U
N

C110-V52 0.01 2K 0.01 0.07 0 2K 0.00 0.14 0 3 0.00 4.01 1.88

C120-V53 0.01 3K 0.01 0.10 4 3K 0.00 0.29 7 5 0.00 4.40 1.87

C130-V58 0.01 4K 0.01 0.14 10 3K 0.00 0.35 22 5 0.00 5.58 2.67

C140-V62 0.01 1K 0.00 0.14 0 1K 0.00 0.14 0 1 0.00 6.49 2.71

C150-V67 0.02 4K 0.00 0.20 3 4K 0.00 0.34 3 3 0.00 7.66 3.33

C160-V71 0.03 6K 0.01 0.32 5 6K 0.00 1.31 19 11 0.00 9.14 3.96

C170-V76 0.03 2K 0.00 0.34 0 2K 0.00 0.34 0 1 0.00 13.05 6.95

C200-V89 0.05 4K 0.00 0.78 0 4K 0.00 0.78 0 1 0.01 20.74 11.52

Overall 0.02 3K 0.00 0.26 2.8 3K 0.00 0.46 6.4 3.8 0.00 8.88 4.36

D
S
-M

U
N

C143-V41 5.51 16M 0.39 11.63 78 8M 0.00 33.66 315 37 0.04 42.36 34.89

C156-V45 1.14 102K 0.01 7.73 78 12K 0.00 8.09 78 3 0.04 43.33 34.79

C169-V48† - - 0.35 240.00 - - 0.35 240.00 - - 0.40 55.06 47.54

C182-V52† - - 0.51 240.00 - - 0.51 240.00 - - 0.60 57.21 49.01

C195-V56† - - 0.44 240.00 - - 0.44 240.00 - - 0.62 57.95 49.53

C208-V59† - - 1.28 240.00 - - 1.28 240.00 - - 1.50 56.32 47.13

C221-V63‡ - - 0.46 481.31 - - 0.46 481.31 - - 0.62 59.39 50.24

C260-V74‡ - - 1.04 3848.88 - - 1.04 3848.88 - - 1.32 60.00 52.28

Overall 3.33 8M 0.20 9.68 78.0 4M 0.51 666.49 196.5 20.0 0.64 53.95 45.67

D
S
-F

U
N

C110-V52 0.01 2K 0.00 0.04 0 2K 0.00 0.04 0 1 0.00 3.72 1.40

C120-V53 0.01 2K 0.00 0.06 5 2K 0.00 0.06 5 1 0.00 4.75 2.12

C130-V58 0.02 2K 0.00 0.07 0 2K 0.00 0.07 0 1 0.00 5.70 2.54

C140-V62 0.02 5K 0.00 0.12 0 5K 0.00 0.12 0 1 0.00 6.87 3.16

C150-V67 0.03 17K 0.00 0.14 2 17K 0.00 0.96 14 9 0.00 8.35 3.97

C160-V71 0.03 2K 0.00 0.15 0 2K 0.00 0.15 0 1 0.00 13.46 8.19

C170-V76 0.03 12K 0.00 0.18 5 12K 0.00 0.39 5 3 0.00 14.74 8.32

C200-V89 0.06 77K 0.00 0.45 9 77K 0.00 8.54 73 37 0.00 17.95 9.37

Overall 0.03 15K 0.00 0.15 2.6 15K 0.00 1.29 12.1 6.8 0.00 9.44 4.88

† Root-node solution was completed within four hours but enumeration exceeded four hours, triggering termination.

‡ Root-node solution exceeded four hours.
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routes of optimal solutions can usually be quickly identified, but that crossover and local search

methods are easily tricked into suboptimal route selections. Hybridizing the HGS with an SP

solver fixes this issue and allows to attain near-optimal solutions within minutes.

Overall, the algorithms presented in this paper have contributed to push the limits of

performance and problem tractability, but multiple avenues of research remain open concerning

model accuracy. Indeed, despite its relevance for maritime transportation companies, the

ITSRSPs remains a mere simplification of reality. As highlighted in Christiansen and Fagerholt

(2014), it does not consider load-dependent fuel consumption, possible load splitting and flexible

cargo quantities, or the possibility of slow-steaming on selected route segments. Emission control

areas and sea conditions (e.g. depth and currents) are also largely ignored. Last but not the

least, considerable reductions of turnaround time may be achieved by jointly optimizing ship

routing and port operations within integrated supply chains. Adapting state-of-the-art exact

and heuristic algorithms to handle these complex attributes remain a significant challenge for

the future.
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Nagata, Y., Bräysy, O., Dullaert, W., 2010. A penalty-based edge assembly memetic algorithm for the

vehicle routing problem with time windows. Computers & Operations Research 37, 724–737.

Pecin, D., Contardo, C., Desaulniers, G., Uchoa, E., 2017. New enhancements for the exact solution of

the vehicle routing problem with time windows. INFORMS Journal on Computing 29, 489–502.

Prins, C., 2004. A simple and effective evolutionary algorithm for the vehicle routing problem. Computers

& Operations Research 31, 1985–2002.

Prins, C., Labadi, N., Reghioui, M., 2009. Tour splitting algorithms for vehicle routing problems.

International Journal of Production Research 47, 507–535.

Righini, G., Salani, M., 2008. New dynamic programming algorithms for the resource constrained

elementary shortest path problem. Networks 51, 155–170.

Ronen, D., 1983. Cargo ships routing and scheduling: survey of models and problems. European Journal

of Operational Research 12, 119–126.

Ropke, S., Cordeau, J.F., 2009. Branch and cut and price for the pickup and delivery problem with

time windows. Transportation Science 43, 267–286.

Sadykov, R., Uchoa, E., Pessoa, A., 2017. A bucket graph based labeling algorithm with application to

vehicle routing. Technical Report L-2017-7. Cadernos do LOGIS-UFF. Niterói, Brazil.
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Appendix – Detailed Results

Tables 7 to 11 give the detailed results of B&P2 and HGS2 (with the set partitioning component)

on each individual instance. For the B&P2, Columns “Opt” and “T” represent the optimal

value and the total CPU time (in minutes). For the HGS2, Columns “Best”, “Avg” and “Worst”

represent the best, average and worst cost found over 10 runs. Column “T” gives the total CPU

time in minutes, and column “T*” gives the attainment time (in minutes) needed to reach the

final solution. In Table 11, Columns “LB” and “UB” represent the bounds found by the B&P2.
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Table 7: Results for short sea mixed load instances

Instance
B&P2 HGS2

Opt T Best Avg Worst T T*

SHORTSEA MUN C7 V3 HE 1 1476444 0.00 1476444 1476444.0 1476444 0.02 0.00
SHORTSEA MUN C7 V3 HE 2 1134176 0.00 1134176 1134176.0 1134176 0.02 0.00
SHORTSEA MUN C7 V3 HE 3 1196466 0.00 1196466 1196466.0 1196466 0.02 0.00
SHORTSEA MUN C7 V3 HE 4 1256139 0.00 1256139 1256139.0 1256139 0.02 0.00
SHORTSEA MUN C7 V3 HE 5 1160394 0.00 1160394 1160394.0 1160394 0.02 0.00
SHORTSEA MUN C10 V3 HE 1 2083965 0.00 2083965 2083965.0 2083965 0.04 0.00
SHORTSEA MUN C10 V3 HE 2 2012364 0.00 2012364 2012364.0 2012364 0.04 0.00
SHORTSEA MUN C10 V3 HE 3 1986779 0.00 1986779 1986779.0 1986779 0.04 0.00
SHORTSEA MUN C10 V3 HE 4 2125461 0.00 2125461 2125461.0 2125461 0.04 0.00
SHORTSEA MUN C10 V3 HE 5 2162453 0.00 2162453 2162453.0 2162453 0.04 0.00
SHORTSEA MUN C15 V4 HE 1 1959153 0.00 1959153 1959153.0 1959153 0.08 0.00
SHORTSEA MUN C15 V4 HE 2 2560004 0.00 2560004 2560004.0 2560004 0.08 0.00
SHORTSEA MUN C15 V4 HE 3 2582912 0.00 2582912 2582912.0 2582912 0.08 0.01
SHORTSEA MUN C15 V4 HE 4 2265396 0.00 2265396 2265396.0 2265396 0.09 0.00
SHORTSEA MUN C15 V4 HE 5 2230861 0.00 2230861 2230861.0 2230861 0.08 0.00
SHORTSEA MUN C18 V5 HE 1 2374420 0.00 2374420 2374420.0 2374420 0.11 0.00
SHORTSEA MUN C18 V5 HE 2 2987358 0.00 2987358 2987358.0 2987358 0.11 0.01
SHORTSEA MUN C18 V5 HE 3 2301308 0.00 2301308 2301308.0 2301308 0.12 0.01
SHORTSEA MUN C18 V5 HE 4 2400016 0.00 2400016 2402999.2 2414932 0.16 0.05
SHORTSEA MUN C18 V5 HE 5 2813167 0.00 2813167 2813167.0 2813167 0.17 0.06
SHORTSEA MUN C22 V6 HE 1 3928483 0.00 3928483 3928483.0 3928483 0.17 0.03
SHORTSEA MUN C22 V6 HE 2 3683436 0.01 3683436 3683436.0 3683436 0.16 0.02
SHORTSEA MUN C22 V6 HE 3 3264770 0.00 3264770 3264770.0 3264770 0.18 0.04
SHORTSEA MUN C22 V6 HE 4 3228262 0.00 3228262 3228262.0 3228262 0.22 0.07
SHORTSEA MUN C22 V6 HE 5 3770560 0.00 3770560 3770560.0 3770560 0.17 0.03
SHORTSEA MUN C23 V13 HE 1 2276832 0.01 2276832 2276832.0 2276832 0.22 0.04
SHORTSEA MUN C23 V13 HE 2 2255469 0.01 2255469 2255469.0 2255469 0.22 0.06
SHORTSEA MUN C23 V13 HE 3 2362503 0.00 2362503 2362503.0 2362503 0.23 0.08
SHORTSEA MUN C23 V13 HE 4 2250110 0.02 2250110 2250110.0 2250110 0.25 0.08
SHORTSEA MUN C23 V13 HE 5 2325941 0.00 2325941 2325941.0 2325941 0.22 0.06
SHORTSEA MUN C30 V6 HE 1 4958542 0.00 4958542 4958542.0 4958542 0.31 0.10
SHORTSEA MUN C30 V6 HE 2 4549708 0.01 4549708 4549708.0 4549708 0.34 0.13
SHORTSEA MUN C30 V6 HE 3 4098111 0.02 4098111 4098111.0 4098111 0.33 0.11
SHORTSEA MUN C30 V6 HE 4 4449449 0.02 4449449 4449485.3 4449812 0.36 0.15
SHORTSEA MUN C30 V6 HE 5 4528514 0.01 4528514 4528514.0 4528514 0.29 0.09
SHORTSEA MUN C35 V7 HE 1 4893734 0.03 4893734 4898167.9 4913975 0.59 0.32
SHORTSEA MUN C35 V7 HE 2 4533265 0.21 4533265 4534290.3 4543518 0.53 0.23
SHORTSEA MUN C35 V7 HE 3 4433847 0.03 4433847 4433847.0 4433847 0.46 0.20
SHORTSEA MUN C35 V7 HE 4 4580935 0.05 4580935 4580935.0 4580935 0.51 0.23
SHORTSEA MUN C35 V7 HE 5 5511661 0.01 5511661 5513388.5 5523201 0.61 0.35
SHORTSEA MUN C60 V13 HE 1 8133385 0.96 8133385 8147210.5 8163045 2.71 1.70
SHORTSEA MUN C60 V13 HE 2 7971476 0.88 7971476 7972935.0 7984871 1.84 1.05
SHORTSEA MUN C60 V13 HE 3 7604198 0.75 7604198 7632301.3 7647547 2.56 1.74
SHORTSEA MUN C60 V13 HE 4 8505125 0.87 8505125 8505971.4 8508321 2.09 1.24
SHORTSEA MUN C60 V13 HE 5 8921750 1.08 8921750 8931617.8 8942531 2.08 1.11
SHORTSEA MUN C80 V20 HE 1 10289573 1.67 10289573 10294261.3 10305785 5.04 3.37
SHORTSEA MUN C80 V20 HE 2 10240618 0.91 10240618 10241641.4 10246354 3.64 2.32
SHORTSEA MUN C80 V20 HE 3 9606530 2.84 9606530 9606573.1 9606961 2.91 1.66
SHORTSEA MUN C80 V20 HE 4 11302476 0.45 11302476 11311027.3 11333280 4.78 3.21
SHORTSEA MUN C80 V20 HE 5 10862563 0.31 10862563 10863032.1 10867254 2.85 1.63
SHORTSEA MUN C100 V30 HE 1 12626988 2.53 12626988 12627601.8 12633126 4.59 2.48
SHORTSEA MUN C100 V30 HE 2 12774864 2.98 12774864 12775622.5 12776760 5.80 3.23
SHORTSEA MUN C100 V30 HE 3 11935332 7.82 11935332 11935349.0 11935502 5.14 2.92
SHORTSEA MUN C100 V30 HE 4 13605352 1.82 13605352 13610213.4 13612134 5.20 2.96
SHORTSEA MUN C100 V30 HE 5 13240648 1.20 13240648 13241314.4 13244485 5.83 3.54
SHORTSEA MUN C130 V40 HE 1 16316051 13.45 16316388 16318378.8 16319526 13.31 8.71
SHORTSEA MUN C130 V40 HE 2 16260579 27.23 16260579 16263866.0 16272543 12.64 8.63
SHORTSEA MUN C130 V40 HE 3 15537963 17.97 15537963 15543747.8 15551928 12.68 9.03
SHORTSEA MUN C130 V40 HE 4 17011065 6.65 17011065 17012795.2 17014853 11.82 7.84
SHORTSEA MUN C130 V40 HE 5 18273893 10.11 18273893 18275423.4 18281922 11.71 7.75
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Table 8: Results for short sea full load instances

Instance
B&P2 HGS2

Opt T Best Avg Worst T T*

SHORTSEA FUN C8 V3 HE 1 1391997 0.00 1391997 1391997.0 1391997 0.01 0.00
SHORTSEA FUN C8 V3 HE 2 1246273 0.00 1246273 1246273.0 1246273 0.01 0.00
SHORTSEA FUN C8 V3 HE 3 1698102 0.00 1698102 1698102.0 1698102 0.01 0.00
SHORTSEA FUN C8 V3 HE 4 1777637 0.00 1777637 1777637.0 1777637 0.01 0.00
SHORTSEA FUN C8 V3 HE 5 1636788 0.00 1636788 1636788.0 1636788 0.01 0.00
SHORTSEA FUN C11 V4 HE 1 1052463 0.00 1052463 1052463.0 1052463 0.02 0.00
SHORTSEA FUN C11 V4 HE 2 1067139 0.00 1067139 1067139.0 1067139 0.02 0.00
SHORTSEA FUN C11 V4 HE 3 1212388 0.00 1212388 1212388.0 1212388 0.02 0.00
SHORTSEA FUN C11 V4 HE 4 1185465 0.00 1185465 1185465.0 1185465 0.02 0.00
SHORTSEA FUN C11 V4 HE 5 1310285 0.00 1310285 1310285.0 1310285 0.02 0.00
SHORTSEA FUN C13 V5 HE 1 2034184 0.00 2034184 2034184.0 2034184 0.02 0.00
SHORTSEA FUN C13 V5 HE 2 2043253 0.00 2043253 2043253.0 2043253 0.03 0.00
SHORTSEA FUN C13 V5 HE 3 2378283 0.00 2378283 2378283.0 2378283 0.03 0.00
SHORTSEA FUN C13 V5 HE 4 2707215 0.00 2707215 2707215.0 2707215 0.02 0.00
SHORTSEA FUN C13 V5 HE 5 3011648 0.00 3011648 3011648.0 3011648 0.02 0.00
SHORTSEA FUN C16 V6 HE 1 3577005 0.00 3577005 3577005.0 3577005 0.03 0.00
SHORTSEA FUN C16 V6 HE 2 3560203 0.00 3560203 3560203.0 3560203 0.03 0.00
SHORTSEA FUN C16 V6 HE 3 4081013 0.00 4081013 4081013.0 4081013 0.04 0.00
SHORTSEA FUN C16 V6 HE 4 3667080 0.00 3667080 3667080.0 3667080 0.03 0.00
SHORTSEA FUN C16 V6 HE 5 3438493 0.00 3438493 3438493.0 3438493 0.03 0.00
SHORTSEA FUN C17 V13 HE 1 2265731 0.00 2265731 2265731.0 2265731 0.05 0.00
SHORTSEA FUN C17 V13 HE 2 3154165 0.00 3154165 3154165.0 3154165 0.05 0.00
SHORTSEA FUN C17 V13 HE 3 2699378 0.00 2699378 2699378.0 2699378 0.06 0.01
SHORTSEA FUN C17 V13 HE 4 2806231 0.00 2806231 2806231.0 2806231 0.05 0.00
SHORTSEA FUN C17 V13 HE 5 2910814 0.00 2910814 2910814.0 2910814 0.05 0.00
SHORTSEA FUN C20 V6 HE 1 2973381 0.00 2973381 2973381.0 2973381 0.05 0.00
SHORTSEA FUN C20 V6 HE 2 3206514 0.00 3206514 3206514.0 3206514 0.05 0.01
SHORTSEA FUN C20 V6 HE 3 3197445 0.00 3197445 3197445.0 3197445 0.05 0.01
SHORTSEA FUN C20 V6 HE 4 3342130 0.00 3342130 3342130.0 3342130 0.05 0.00
SHORTSEA FUN C20 V6 HE 5 3156378 0.00 3156378 3156378.0 3156378 0.05 0.00
SHORTSEA FUN C25 V7 HE 1 3833588 0.00 3833588 3833588.0 3833588 0.07 0.02
SHORTSEA FUN C25 V7 HE 2 3673666 0.00 3673666 3673666.0 3673666 0.07 0.01
SHORTSEA FUN C25 V7 HE 3 4238213 0.00 4238213 4238213.0 4238213 0.07 0.01
SHORTSEA FUN C25 V7 HE 4 4260762 0.00 4260762 4260762.0 4260762 0.08 0.02
SHORTSEA FUN C25 V7 HE 5 4069693 0.00 4069693 4069693.0 4069693 0.08 0.02
SHORTSEA FUN C35 V13 HE 1 2986667 0.00 2986667 2986667.0 2986667 0.14 0.02
SHORTSEA FUN C35 V13 HE 2 3002973 0.00 3002973 3002973.0 3002973 0.20 0.07
SHORTSEA FUN C35 V13 HE 3 3084339 0.00 3084339 3084339.0 3084339 0.16 0.04
SHORTSEA FUN C35 V13 HE 4 3952461 0.00 3952461 3952461.0 3952461 0.18 0.06
SHORTSEA FUN C35 V13 HE 5 3293086 0.00 3293086 3293086.0 3293086 0.18 0.06
SHORTSEA FUN C50 V20 HE 1 7258266 0.00 7258266 7258266.0 7258266 0.40 0.13
SHORTSEA FUN C50 V20 HE 2 7452465 0.01 7452465 7452465.0 7452465 0.44 0.17
SHORTSEA FUN C50 V20 HE 3 6922293 0.01 6922293 6922293.0 6922293 0.44 0.15
SHORTSEA FUN C50 V20 HE 4 8933846 0.01 8933846 8933846.5 8933848 0.46 0.17
SHORTSEA FUN C50 V20 HE 5 7322307 0.01 7322307 7322307.0 7322307 0.40 0.13
SHORTSEA FUN C70 V30 HE 1 10051856 0.02 10051856 10051856.0 10051856 0.98 0.39
SHORTSEA FUN C70 V30 HE 2 10455468 0.01 10455468 10455468.0 10455468 0.99 0.38
SHORTSEA FUN C70 V30 HE 3 10172541 0.01 10172541 10172541.0 10172541 1.27 0.62
SHORTSEA FUN C70 V30 HE 4 10854036 0.06 10854036 10854036.0 10854036 1.02 0.38
SHORTSEA FUN C70 V30 HE 5 10886838 0.10 10886838 10886838.0 10886838 1.16 0.35
SHORTSEA FUN C90 V40 HE 1 13361947 0.03 13361947 13362943.0 13371155 1.94 0.82
SHORTSEA FUN C90 V40 HE 2 13828112 0.02 13828112 13828112.0 13828112 1.88 0.71
SHORTSEA FUN C90 V40 HE 3 12627125 0.08 12627125 12627476.1 12628003 1.77 0.63
SHORTSEA FUN C90 V40 HE 4 14406428 0.03 14406428 14406689.8 14409031 1.82 0.64
SHORTSEA FUN C90 V40 HE 5 13560830 0.06 13560830 13560835.3 13560853 2.23 1.01
SHORTSEA FUN C100 V50 HE 1 13800823 0.03 13800823 13800823.0 13800823 2.94 1.35
SHORTSEA FUN C100 V50 HE 2 14644836 0.19 14644836 14645381.1 14647299 3.02 1.30
SHORTSEA FUN C100 V50 HE 3 13135505 0.05 13135505 13135756.6 13136396 2.65 1.02
SHORTSEA FUN C100 V50 HE 4 14841840 0.14 14841840 14841840.4 14841841 3.06 1.41
SHORTSEA FUN C100 V50 HE 5 14009874 0.07 14009874 14009971.3 14010827 2.48 0.93
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Table 9: Results for deep sea mixed load instances

Instance
B&P2 HGS2

Opt T Best Avg Worst T T*

DEEPSEA MUN C7 V3 HE 1 5233464 0.00 5233464 5233464.0 5233464 0.02 0.00
DEEPSEA MUN C7 V3 HE 2 6053699 0.00 6053699 6053699.0 6053699 0.02 0.00
DEEPSEA MUN C7 V3 HE 3 5888949 0.00 5888949 5888949.0 5888949 0.02 0.00
DEEPSEA MUN C7 V3 HE 4 6510656 0.00 6510656 6510656.0 6510656 0.02 0.00
DEEPSEA MUN C7 V3 HE 5 7220458 0.00 7220458 7220458.0 7220458 0.02 0.00
DEEPSEA MUN C10 V3 HE 1 7986248 0.00 7986248 7986248.0 7986248 0.04 0.00
DEEPSEA MUN C10 V3 HE 2 7754484 0.00 7754484 7754484.0 7754484 0.04 0.00
DEEPSEA MUN C10 V3 HE 3 9499357 0.00 9499357 9499357.0 9499357 0.04 0.00
DEEPSEA MUN C10 V3 HE 4 8617192 0.00 8617192 8617192.0 8617192 0.04 0.00
DEEPSEA MUN C10 V3 HE 5 8653992 0.00 8653992 8653992.0 8653992 0.04 0.00
DEEPSEA MUN C15 V4 HE 1 13467090 0.00 13467090 13467090.0 13467090 0.07 0.00
DEEPSEA MUN C15 V4 HE 2 12457251 0.00 12457251 12457251.0 12457251 0.10 0.02
DEEPSEA MUN C15 V4 HE 3 12567396 0.00 12567396 12567396.0 12567396 0.08 0.00
DEEPSEA MUN C15 V4 HE 4 11764241 0.00 11764241 11764241.0 11764241 0.08 0.01
DEEPSEA MUN C15 V4 HE 5 10833640 0.00 10833640 10833640.0 10833640 0.08 0.00
DEEPSEA MUN C18 V5 HE 1 43054055 0.00 43054055 43054055.0 43054055 0.14 0.02
DEEPSEA MUN C18 V5 HE 2 25068287 0.00 25068287 25068287.0 25068287 0.13 0.02
DEEPSEA MUN C18 V5 HE 3 29211238 0.00 29211238 29211238.0 29211238 0.12 0.00
DEEPSEA MUN C18 V5 HE 4 32281904 0.00 32281904 32281904.0 32281904 0.11 0.00
DEEPSEA MUN C18 V5 HE 5 40718028 0.00 40718028 40718028.0 40718028 0.12 0.02
DEEPSEA MUN C22 V6 HE 1 41176718 0.00 41176718 41176718.0 41176718 0.16 0.03
DEEPSEA MUN C22 V6 HE 2 37236363 0.00 37236363 37236363.0 37236363 0.17 0.05
DEEPSEA MUN C22 V6 HE 3 38215238 0.00 38215238 38215238.0 38215238 0.17 0.03
DEEPSEA MUN C22 V6 HE 4 34129809 0.00 34129809 34129809.0 34129809 0.22 0.08
DEEPSEA MUN C22 V6 HE 5 46379332 0.00 46379332 46379332.0 46379332 0.17 0.04
DEEPSEA MUN C23 V13 HE 1 41002992 0.00 41002992 41002992.0 41002992 0.19 0.04
DEEPSEA MUN C23 V13 HE 2 28014147 0.00 28014147 28014147.0 28014147 0.19 0.02
DEEPSEA MUN C23 V13 HE 3 29090422 0.00 29090422 29090422.0 29090422 0.17 0.00
DEEPSEA MUN C23 V13 HE 4 33685274 0.00 33685274 33685274.0 33685274 0.23 0.07
DEEPSEA MUN C23 V13 HE 5 38664843 0.00 38664843 38664843.0 38664843 0.20 0.06
DEEPSEA MUN C30 V6 HE 1 19227093 0.00 19227093 19227093.0 19227093 0.31 0.12
DEEPSEA MUN C30 V6 HE 2 16784810 0.02 16784810 16784810.0 16784810 0.35 0.11
DEEPSEA MUN C30 V6 HE 3 21183928 0.01 21183928 21213100.9 21298546 0.35 0.16
DEEPSEA MUN C30 V6 HE 4 21076728 0.00 21076728 21076728.0 21076728 0.28 0.09
DEEPSEA MUN C30 V6 HE 5 24490671 0.01 24490671 24490671.0 24490671 0.33 0.12
DEEPSEA MUN C35 V7 HE 1 65082675 0.01 65082675 65086315.3 65119078 0.50 0.21
DEEPSEA MUN C35 V7 HE 2 54810586 0.03 54810586 54810586.0 54810586 0.45 0.18
DEEPSEA MUN C35 V7 HE 3 56182502 0.00 56182502 56182502.0 56182502 0.42 0.14
DEEPSEA MUN C35 V7 HE 4 61354812 0.02 61354812 61354812.0 61354812 0.46 0.16
DEEPSEA MUN C35 V7 HE 5 63904705 0.00 63904705 63904705.0 63904705 0.39 0.15
DEEPSEA MUN C60 V13 HE 1 80649895 3.25 80649895 80696507.0 80708160 2.13 1.14
DEEPSEA MUN C60 V13 HE 2 74881109 0.10 74881109 74881109.4 74881110 1.86 1.21
DEEPSEA MUN C60 V13 HE 3 91766747 0.03 91766747 91768529.1 91782830 1.47 0.78
DEEPSEA MUN C60 V13 HE 4 89702352 0.05 89702352 89763856.0 89863541 1.90 1.17
DEEPSEA MUN C60 V13 HE 5 88486544 0.08 88486544 88498544.6 88606550 1.71 1.00
DEEPSEA MUN C80 V20 HE 1 70718084 0.33 70718084 70799785.6 70922338 3.20 1.78
DEEPSEA MUN C80 V20 HE 2 73558165 1.95 73558165 73589043.3 73603212 5.07 3.47
DEEPSEA MUN C80 V20 HE 3 78250612 0.12 78250612 78251002.0 78254512 2.56 1.43
DEEPSEA MUN C80 V20 HE 4 75962439 0.32 75962439 75994306.3 76061556 3.67 2.34
DEEPSEA MUN C80 V20 HE 5 74162521 0.22 74162521 74169783.2 74207930 3.29 1.97
DEEPSEA MUN C100 V30 HE 1 150481912 1.25 150481912 150508649.2 150525751 10.03 7.17
DEEPSEA MUN C100 V30 HE 2 150826322 0.52 150826322 150834992.9 150866157 12.08 9.54
DEEPSEA MUN C100 V30 HE 3 151027805 1.83 151027805 151036770.9 151039246 8.58 4.48
DEEPSEA MUN C100 V30 HE 4 151193009 6.33 151193009 151218563.7 151331951 10.65 7.34
DEEPSEA MUN C100 V30 HE 5 159789021 0.75 159789021 159799748.9 159828402 8.02 5.67
DEEPSEA MUN C130 V40 HE 1 232582224 5.30 232625726 232672618.6 232835502 14.74 12.29
DEEPSEA MUN C130 V40 HE 2 228036360 265.06 228205988 228285255.3 228365518 15.00 13.56
DEEPSEA MUN C130 V40 HE 3 235657072 9.49 235666249 235772248.0 236033885 15.00 13.66
DEEPSEA MUN C130 V40 HE 4 220357686 6.40 220360711 220564140.8 220783879 14.31 11.66
DEEPSEA MUN C130 V40 HE 5 235381937 7.03 235487434 235739525.3 235849521 15.01 13.23
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Table 10: Results for deep sea full load instances

Instance
B&P2 HGS2

Opt T Best Avg Worst T T*

DEEPSEA FUN C8 V3 HE 1 9584863 0.00 9584863 9584863.0 9584863 0.01 0.00
DEEPSEA FUN C8 V3 HE 2 9369654 0.00 9369654 9369654.0 9369654 0.01 0.00
DEEPSEA FUN C8 V3 HE 3 4596681 0.00 4596681 4596681.0 4596681 0.01 0.00
DEEPSEA FUN C8 V3 HE 4 6899730 0.00 6899730 6899730.0 6899730 0.01 0.00
DEEPSEA FUN C8 V3 HE 5 6815253 0.00 6815253 6815253.0 6815253 0.01 0.00
DEEPSEA FUN C11 V4 HE 1 34854819 0.00 34854819 34854819.0 34854819 0.02 0.00
DEEPSEA FUN C11 V4 HE 2 25454434 0.00 25454434 25454434.0 25454434 0.02 0.00
DEEPSEA FUN C11 V4 HE 3 29627143 0.00 29627143 29627143.0 29627143 0.02 0.00
DEEPSEA FUN C11 V4 HE 4 33111680 0.00 33111680 33111680.0 33111680 0.02 0.00
DEEPSEA FUN C11 V4 HE 5 28175914 0.00 28175914 28175914.0 28175914 0.03 0.00
DEEPSEA FUN C13 V5 HE 1 11629005 0.00 11629005 11629005.0 11629005 0.04 0.00
DEEPSEA FUN C13 V5 HE 2 11820655 0.00 11820655 11820655.0 11820655 0.04 0.00
DEEPSEA FUN C13 V5 HE 3 9992593 0.00 9992593 9992593.0 9992593 0.04 0.00
DEEPSEA FUN C13 V5 HE 4 12819619 0.00 12819619 12819619.0 12819619 0.03 0.00
DEEPSEA FUN C13 V5 HE 5 10534892 0.00 10534892 10534892.0 10534892 0.03 0.00
DEEPSEA FUN C16 V6 HE 1 51127590 0.00 51127590 51127590.0 51127590 0.04 0.00
DEEPSEA FUN C16 V6 HE 2 44342796 0.00 44342796 44342796.0 44342796 0.03 0.00
DEEPSEA FUN C16 V6 HE 3 45391842 0.00 45391842 45391842.0 45391842 0.03 0.00
DEEPSEA FUN C16 V6 HE 4 39687114 0.00 39687114 39687114.0 39687114 0.04 0.00
DEEPSEA FUN C16 V6 HE 5 42855603 0.00 42855603 42855603.0 42855603 0.04 0.00
DEEPSEA FUN C17 V13 HE 1 17316720 0.00 17316720 17316720.0 17316720 0.04 0.00
DEEPSEA FUN C17 V13 HE 2 12194861 0.00 12194861 12194861.0 12194861 0.05 0.00
DEEPSEA FUN C17 V13 HE 3 12091554 0.00 12091554 12091554.0 12091554 0.05 0.00
DEEPSEA FUN C17 V13 HE 4 12847653 0.00 12847653 12847653.0 12847653 0.05 0.01
DEEPSEA FUN C17 V13 HE 5 13213406 0.00 13213406 13213406.0 13213406 0.05 0.00
DEEPSEA FUN C20 V6 HE 1 16406738 0.00 16406738 16406738.0 16406738 0.05 0.00
DEEPSEA FUN C20 V6 HE 2 16079401 0.00 16079401 16079401.0 16079401 0.05 0.00
DEEPSEA FUN C20 V6 HE 3 17342200 0.00 17342200 17342200.0 17342200 0.04 0.00
DEEPSEA FUN C20 V6 HE 4 16529748 0.00 16529748 16529748.0 16529748 0.05 0.01
DEEPSEA FUN C20 V6 HE 5 17449378 0.00 17449378 17449378.0 17449378 0.05 0.00
DEEPSEA FUN C25 V7 HE 1 22773158 0.00 22773158 22773158.0 22773158 0.07 0.01
DEEPSEA FUN C25 V7 HE 2 20206329 0.00 20206329 20206329.0 20206329 0.08 0.01
DEEPSEA FUN C25 V7 HE 3 19108952 0.00 19108952 19108952.0 19108952 0.07 0.01
DEEPSEA FUN C25 V7 HE 4 22668675 0.00 22668675 22668675.0 22668675 0.07 0.01
DEEPSEA FUN C25 V7 HE 5 23036603 0.00 23036603 23036603.0 23036603 0.08 0.02
DEEPSEA FUN C35 V13 HE 1 86951609 0.00 86951609 86951609.0 86951609 0.22 0.09
DEEPSEA FUN C35 V13 HE 2 83422071 0.00 83422071 83422071.0 83422071 0.19 0.07
DEEPSEA FUN C35 V13 HE 3 83898591 0.00 83898591 83898591.0 83898591 0.21 0.08
DEEPSEA FUN C35 V13 HE 4 91970481 0.00 91970481 91970481.0 91970481 0.23 0.09
DEEPSEA FUN C35 V13 HE 5 91123040 0.00 91123040 91123040.0 91123040 0.20 0.07
DEEPSEA FUN C50 V20 HE 1 41310946 0.00 41310946 41310946.0 41310946 0.46 0.18
DEEPSEA FUN C50 V20 HE 2 37784994 0.00 37784994 37784994.0 37784994 0.46 0.18
DEEPSEA FUN C50 V20 HE 3 39841724 0.00 39841724 39841724.0 39841724 0.41 0.13
DEEPSEA FUN C50 V20 HE 4 43941098 0.00 43941098 43941098.0 43941098 0.47 0.20
DEEPSEA FUN C50 V20 HE 5 41947437 0.00 41947437 41947437.0 41947437 0.46 0.18
DEEPSEA FUN C70 V30 HE 1 142679953 0.01 142679953 142679953.0 142679953 1.03 0.38
DEEPSEA FUN C70 V30 HE 2 135031988 0.02 135031988 135031988.0 135031988 1.06 0.36
DEEPSEA FUN C70 V30 HE 3 162759203 0.01 162759203 162759203.0 162759203 1.02 0.40
DEEPSEA FUN C70 V30 HE 4 155855123 0.01 155855123 155855123.0 155855123 1.06 0.44
DEEPSEA FUN C70 V30 HE 5 156557723 0.01 156557723 156557723.0 156557723 0.95 0.35
DEEPSEA FUN C90 V40 HE 1 190627186 0.06 190627186 190630992.5 190641592 2.08 0.83
DEEPSEA FUN C90 V40 HE 2 189770977 0.02 189770977 189771678.3 189777990 2.63 1.45
DEEPSEA FUN C90 V40 HE 3 211038412 0.02 211038412 211038684.4 211041136 2.15 0.94
DEEPSEA FUN C90 V40 HE 4 210449287 0.02 210449287 210449654.6 210451528 2.02 0.93
DEEPSEA FUN C90 V40 HE 5 197804917 0.05 197804917 197805398.0 197809727 2.11 0.87
DEEPSEA FUN C100 V50 HE 1 205826535 0.08 205826535 205831890.5 205844919 2.96 1.24
DEEPSEA FUN C100 V50 HE 2 207809147 0.03 207809147 207813969.7 207833395 4.33 2.62
DEEPSEA FUN C100 V50 HE 3 217000928 0.02 217000928 217000928.0 217000928 3.08 1.41
DEEPSEA FUN C100 V50 HE 4 220879632 0.03 220879632 220879794.0 220880172 2.49 0.83
DEEPSEA FUN C100 V50 HE 5 223265017 0.02 223265017 223265583.6 223270683 2.79 1.10
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Table 11: Results for new large scale instances

Instance
B&P2 HGS2

LB UB T Best Avg Worst T T*

SHORTSEA MUN C143 V41 17799119.0 17799119 24.38 17804172 17806545.5 17810359 15.85 10.69
SHORTSEA MUN C156 V45 19342942.0 19342942 71.98 19343517 19344605.7 19346784 28.15 18.19
SHORTSEA MUN C169 V48 21268109.0 21268109 41.71 21268109 21270048.5 21278516 26.32 19.28
SHORTSEA MUN C182 V52 22980177.0 22980177 88.32 22982740 22986270.9 22991134 42.22 31.34
SHORTSEA MUN C195 V56 24440859.0 24440859 147.68 24440859 24450058.2 24468278 50.21 39.07
SHORTSEA MUN C208 V59 25708244.1 25712849 240.00 25712849 25716650.8 25723526 56.17 46.62
SHORTSEA MUN C221 V63 26989861.5 27034941 495.02 27034941 27042556.8 27058195 56.32 45.02
SHORTSEA MUN C260 V74 32407978.0 32464488 1196.78 32464488 32488515.1 32538633 60.16 53.57
SHORTSEA FUN C110 V52 15133771.0 15133771 0.14 15133771 15133926.9 15134691 4.01 1.88
SHORTSEA FUN C120 V53 16558958.0 16558958 0.29 16558993 16559104.9 16559264 4.40 1.87
SHORTSEA FUN C130 V58 17649436.0 17649436 0.35 17649436 17649659.7 17650377 5.58 2.67
SHORTSEA FUN C140 V62 19179026.0 19179026 0.14 19179026 19179026.2 19179027 6.49 2.71
SHORTSEA FUN C150 V67 20281407.0 20281407 0.34 20281407 20281794.0 20283296 7.65 3.33
SHORTSEA FUN C160 V71 21695647.0 21695647 1.31 21696335 21696659.8 21696858 9.14 3.96
SHORTSEA FUN C170 V76 23110481.0 23110481 0.34 23110481 23111291.2 23114048 13.06 6.95
SHORTSEA FUN C200 V89 27690324.0 27690324 0.78 27690324 27693029.9 27703323 20.74 11.52
DEEPSEA MUN C143 V41 254254590.0 254254590 33.66 254254591 254349635.7 254608621 42.36 34.89
DEEPSEA MUN C156 V45 270058045.0 270058045 8.09 270085318 270176938.6 270330689 43.32 34.79
DEEPSEA MUN C169 V48 289887680.2 290916269 240.00 290916269 291038620.0 291257150 55.06 47.54
DEEPSEA MUN C182 V52 300137926.8 301663875 240.00 301663875 301925296.5 302379995 57.21 49.01
DEEPSEA MUN C195 V56 310191451.9 311546377 240.00 311546377 312129552.3 313791486 57.95 49.53
DEEPSEA MUN C208 V59 341832426.9 346223133 240.00 346223133 346961721.4 347822705 56.32 47.13
DEEPSEA MUN C221 V63 350836918.3 352462189 481.31 352462189 352995236.0 354581124 59.39 50.24
DEEPSEA MUN C260 V74 404166031.4 408352976 3848.88 408352976 409513515.0 411652613 60.00 52.28
DEEPSEA FUN C110 V52 240011111.0 240011111 0.05 240011111 240014104.1 240026076 3.72 1.40
DEEPSEA FUN C120 V53 248614953.0 248614953 0.06 248614953 248618591.1 248633514 4.75 2.12
DEEPSEA FUN C130 V58 288771846.0 288771846 0.08 288771846 288771846.0 288771846 5.70 2.54
DEEPSEA FUN C140 V62 303231470.0 303231470 0.12 303231470 303231470.0 303231470 6.87 3.16
DEEPSEA FUN C150 V67 323442552.0 323442552 0.96 323442822 323455751.7 323466563 8.35 3.97
DEEPSEA FUN C160 V71 370429540.0 370429540 0.16 370429540 370439735.8 370471324 13.46 8.19
DEEPSEA FUN C170 V76 395641818.0 395641818 0.39 395641818 395648175.4 395663480 14.74 8.32
DEEPSEA FUN C200 V89 430966915.0 430966915 8.54 430970779 430984012.9 431008839 17.95 9.37
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Appendix – Comparison with Hemmati and Hvattum (2016)

Hemmati and Hvattum (2016) have presented detailed results of six ALNS variants on a subset

of the Hemmati et al. (2014) instances. Table 12 compares these results with those of HGS2.

Each line represents a group of instances, and the best results are highlighted in boldface. For

each method, column “Gap” reports the percentage gap relative to the optimal solutions, and

column “T” gives the total CPU time in minutes.

Table 12: Performance comparison with Hemmati and Hvattum (2016)

ALNS1 ALNS2 ALNS3 ALNS4 ALNS5 ALNS6 HGS2

Gap T Gap T Gap T Gap T Gap T Gap T Gap T

S
H

O
R

T
S

E
A C22-V6 0.29 0.18 0.29 0.20 0.23 0.19 0.17 0.19 0.35 0.20 0.53 0.18 0.00 0.18

C23-V13 0.82 0.25 0.34 0.25 0.35 0.26 0.28 0.26 0.24 0.25 0.46 0.25 0.00 0.23

C30-V6 1.32 0.35 0.66 0.40 1.14 0.41 0.90 0.42 1.04 0.39 1.95 0.38 0.00 0.33

C35-V7 1.40 0.51 1.51 0.58 1.69 0.58 1.21 0.58 1.03 0.55 1.97 0.53 0.01 0.53

C60-V13 2.89 2.05 2.29 2.18 2.83 2.29 2.30 2.42 2.63 2.06 1.81 1.95 0.13 2.14

Overall 1.34 0.67 1.02 0.72 1.25 0.75 0.97 0.77 1.06 0.69 1.34 0.66 0.03 0.68

D
E

E
P

S
E

A

C22-V6 0.35 0.18 0.31 0.19 0.15 0.20 0.15 0.20 0.19 0.19 1.66 0.18 0.00 0.18

C23-V13 0.00 0.26 0.00 0.26 0.02 0.28 0.01 0.28 0.00 0.25 0.00 0.24 0.00 0.20

C30-V6 0.67 0.36 0.34 0.42 0.36 0.42 0.34 0.42 0.42 0.39 0.58 0.37 0.03 0.33

C35-V7 0.61 0.52 0.51 0.60 0.50 0.60 0.58 0.63 0.37 0.54 0.69 0.51 0.00 0.43

C60-V13 4.37 2.18 3.50 2.41 4.11 2.39 4.12 2.39 3.23 1.99 3.41 1.85 0.02 1.73

Overall 1.20 0.70 0.93 0.78 1.03 0.78 1.04 0.78 0.84 0.67 1.27 0.63 0.01 0.57
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