
Technical Debt Trade-Off - Experiences

from Software Startups Becoming

Grownups

Orges Cico

Norwegian University of Science and Technology, Trondheim, Norway

orges.cico@ntnu.no

Abstract. Software startups are software-intensive early-stage compa-
nies that have high growth rates. Their time to market is often regarded
as short and decisive in establishing their product/service success, thus
leading to short-cuts in software engineering decisions. High accumula-
tion of the technical debt at early stages has been documented from
previous investigations. How startups rapidly becoming grownups per-
ceive technical debt, make the primary goal of our study. We conducted
semi-structured interviews with six technical and executive officers from
five software startups, selected using purposive sampling. We identified
four critical perceptions (managing, accepting, avoiding, ignoring techni-
cal debt) which permit them to make technical debt trade-offs. We also
found that no one size fits all. Startups need to make deliberate educated
decisions on how to use technical debt in their advantage.

1 Introduction

Facing Technical Debt (TD)1 is becoming even more of an urgent need for many
software startups [2, 5, 8]. Empirical evidence on how TD is perceived from soft-
ware startups is still meager, and the need for empirical evidence is reported
from [1]. Software startups are known to accumulate TDs via their early-stage
prototyping and product development, which eventually requires the companies
to pay the debt, causing initial growth hinders productivity [6]. At the point in
time when startups shift to an established stage in term of finance and resources,
the management of such TDs becomes significance from managerial perspec-
tive. Compared to previous efforts studying TDs at different startup phases, the
understanding of TD management at such transitions is very limited. We aimed
at understanding effective approaches for managing TDs for startups in the scal-
ing transitions. As the first step, we formulated the following research question:
RQ: How is Technical Debt perceived in Software Startups becoming Grownups?

1 Metaphoric concept of TD has been first introduced by Ward Cunningham [4] in
1992.

To answer the RQ, we designed a survey-based semi-structured interview,
conducted with six Chief Executive Officer (CEOs) and Chief Technical Offi-
cers (CTOs) from five software startups, selected using purposive sampling. We
focused on those startups that are almost or have already made a successful

mailto:orges.cico@ntnu.no

Technical Debt Trade-Off - Experiences

transition towards becoming Grownups2. Aligned to previous studies findings,
we also noticed that TD is deliberately embraced as long as product/service
delivery deadlines and good enough quality are met. Furthermore, we found
that a TD trade-off is required in the transition from early stages to grownup
stages. Eventually, we identified (1) Managing TD, (2) Accepting TD, (3) Ignor-
ing TD, (4) Avoiding TD are the main approaches perceived from TS to achieve
the TD trade-offs. Providing empirical evidence on how transitioning startups
have been able to conduct a smooth transition from Minimum Viable Products
(MVPs) towards qualitative product/services can help future practitioners and
entrepreneurs make educated decisions.

2 Research Methodology

We aim to understand the perception of technical debt in Software Startups
becoming Grownups. Therefore, the research question guided our investigation.
Based on recommendations from Runeson [7] we devised a qualitative approach
with semi-structured face-to-face interviews with six CEOs/CTOs from the five
Software Startups.

2.1 Case Selection and Demographics

We were able to collect the sample data from a significant event where par-
ticipation involved 100+ startups. The sample population has been selected
using a non-probability sampling technique. We collected data from the star-
tups’ online resources after initial contact (email or face-to-face acquaintance)
and then later on from CEOs and CTOs. Demographics of the five software
startups are reported in Table 1.

2.2 Interview Design, Data Collection and Analysis

We performed a pilot study in constructing our interview template, which was
used for later data collection from all the cases. This allowed us to focus our
interview questions in connection to the RQ. The interview process took place
in three parts: (1) demographic information about the startup (2) broad context
on software and technological aspects of the startup (3) perception of technical
debt. We interviewed six CTOs/CEOs from five different startups located in the
same country and conducting geographically proximate business activities with
a high tech product focus. The interviews aimed to understand the perception of

2 Grownups are well established companies with market revenue being primary source

of income.

Table 1. Software startup sample demographics.

TD from startup founders, represented by both CEOs and CTOs, Table 1. After
data collection, in order to obtain significant evidence, we used thematic analy-
sis approach [3], consisting of identifying recurring patterns and themes within
the interview data. The systematic analysis steps consisted in (1) Reading the
transcripts, (2) Coding, (3) Creating themes, (4) Labeling and connect-
ing themes, (5) Drawing the results summary, (6) Writing results. We
also used thematic coding tools such as NVivo.

3 Results

During our analysis we created five major categories, namely TD trade-off, Man-
aging TD, Avoiding TD, Accepting TD, and Ignoring TD, each helping to answer
our RQ in the following subsections.

– TD Trade-off. In most cases, we noticed a repetition of the TD trade-off
term. The term itself was mentioned from the interviewer, reporting positive
connotation from the interviewees. This demonstrates that the perception of
the TD is not totally negative or positive, but it is commonly agreed that a
TD trade-off is required in the transition from early to grownup stages. For
example, the CTO of Case 5 explicitly states: “We accept TD can happen, take
responsibility for it and this is all about trade-offs. Our team is highly deadline
driven.”. Thus, here is where we identified different approaches (Managing
TD, Accepting TD, Ignoring TD, Avoiding TD) part of TD trade-off while
analyzing the perception of the CEOs/CTOs.

– ManagingTD. In many cases, TD management is reported as the most com-
mon option. The CEOs from two startups (Case 3, 5) emphasize the relevance
the increased awareness helped them have better control over the TD. This
was common even in large contingents of development teams adopting pair
programming approach to software development. In Case 5, TD trade-off was

accepted, whenever deadlines had to be met. However, team members were
fully aware of the situation and accepted that TD issues had to be dealt
with later on. Likewise, managing and isolating code issues modules with low
coupling helped in controlling TD, as reported in Case 3 (Fig. 1).

Fig. 1. Themes summary.

– AvoidTD. We found that avoiding TD is primarily perceived as positive
when sacrificing software features seemed to be a good option. Case 3 reported
that: “We can develop anything but not everything within the given time
limitations”. However, in Case 1, avoiding TD was strongly connected with
exceeded deadlines, or good software practices producing products that don’t
match the end-user needs. We found that early on architecture, program-
ming language, and technology choices helped the software startups in taking
precautions to avoid TD, Case 2.

– AcceptingTD. Although the acceptance of the TD term was a mere sur-
prise for us, we discovered that the acting along with the TD was considered
to be beneficial. Case 2, reported that requirement validation could be best
achieved when introducing dummy MVPs that can be thrown away due to
the large amount of TD introduced. Furthermore, the same case reports that
TSs can widely accept TD if relying on easy to manipulate backend architec-

tures. Accepting TD is perceived to be inappropriate, Case 3 reports: “We
always use best approaches, although we accept that we cannot achieve perfect
software.”.

– IgnoringTD. We found that this category was strongly associated with a
lack of TD awareness from the team, Case 3. Planning ahead to throw away
prototypes can also lead to ignoring TD for those modules totally. Example
made earlier with dummy MVPs from Case 2. However, to differentiate with
the previous example, when a startup decides to ignore TDs they have made a
deliberate long-lasting decision, which might or might not affect the product
during its operational lifetime, but the reason for doing so is lack of team
competence which is not possible for them to compensate.

We report key findings:

1. Managing TD is perceived to be an essential aspect of the TD trade-offs to be
made in order to meet deadlines. Accountability for improving the software
system is to be dealt with afterward. Readable code and flexible software
architectures help along the process.

2. Avoiding TD can have positive as well as a negative connotation. If startups
are able to cut-off features of their products, then it is recommended for them
to try to avoid TDs, while applying good software development practices.

3. Accepting TD is found in two main beneficial scenarios: (1) acting along with
TD to validate requirements (2) flexible backend software architectures that
allow for rapid change.

4. Ignoring TD is primarily affected by lack of awareness and lack of competence.

4 Discussions

Many of the previous studies have focused on covering and addressing several
startup life cycle phases by unfolding the TD challenges and benefits [2]. In our
case, we focus more on a specific moment in time borderline to the transitioning
from software startups to grownups. This is of significant interest because not
knowing how to cope with TD at this later stage to make the big decisive jump
has higher financial and technological risks. The perception of TD of succeeding
startups having made the jump to grownups can be a winning and compelling
choice for future ones. Another important reason for studying borderlines is also
because it is there when disruptions are observed and successfully overcoming
TD thresholds is required [2]. We believe that TD while transitioning to grown
up company has a different perception compared to TD while at very early stage.
We also provide key recommendations:

1. TD is going to be your best friend or best enemy, so making the right Trade-
offs is crucial. No one size fits all.

2. Cut-off software features if you require less TD. This workaround can still
allow software startups to meet deadlines without compromising future
updates.

3. Accept TD and make it work in your advantage. Build as many dummy MVPs
as possible until you are sure about requirements.

4. Hire if possible at least one highly creative senior developer. If they under-
stand why you want to build the system, they can also tell you what you need
to build.

5. Play it smart. Don’t just ignore TD, because you are unaware or because you
think you lack the competence. As per definition, the debt is later to be paid,
unless you decide it is useful in staging your product.

5 Conclusions and Future Work

We focused on understanding how software startups transitioning in grownup,
perceive TD. After interviewing five different software startups and six of the
co-founders, holding either CEO or CTO roles, we identified four important
perceptions (Managing TD, Avoiding TD, Ignoring TD, Accepting TD) which
permit them to make TD trade-offs. We also found that no one size fits all.
Startups need to make deliberate educated decisions on how to use TD in their
advantage. This can only be obtained if they have a clear view of the options to
cope with TD. This study provides a set of initial recommendations. We plan
in the future to collect further data by surveying and interviewing larger sets
of participants. The triangulation will allow us to generalize our findings and
provide guidelines to be exploited by future startups.

Acknowledgement. This work was funded by the Norwegian Research Council under
the project IPIT Project Number: 274816. Many thanks to Prof. Letizia Jaccheri, for
the support as project leader.

References

1. Abrahamsson, P., et al.: Software startups - a research agenda. e-Informatica Softw.
Eng. J 10(1), 1–28 (2016)

2. Besker, T., et al.: Embracing technical debt, from a startup company perspective.
In: 2018 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pp. 415–425. IEEE (2018)

3. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol.

3(2), 77–101 (2006)

4. Cunningham, W.: The WyCash portfolio management system, Experience Report.
In: Proceedings on Object-Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA 1992) (1992)

5. Devos, N., Durieux, D., Ponsard, C.: Managing technical debt in IT start-ups-an
industrial survey. In: International Conference on Software and System Engineering
and Their Applications (ICSSEA) (2013)

6. Giardino, C., et al.: Software development in startup companies: the greenfield
startup model. IEEE Trans. Softw. Eng. 42(6), 585–604 (2016)

7. Runeson, P., Höost, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14(2), 131 (2009)

8. Tom, E., Aurum, A.K., Vidgen, R.: An exploration of technical debt. J. Syst. Softw.

86(6), 1498–1516 (2013)

