A Blind Coupon Mechanism Enabling Veto Voting
over Unreliable Networks

Colin Boyd Kristian Gjgsteen Clémentine Gritti
Thomas Haines

NTNU, Trondheim, Norway
{colin.boyd,kristian.gjosteen,clementine.gritti, thomas.
haines}@ntnu.no

Abstract

A Blind Coupon Mechanism (BCM) allows spreading of alerts qui-
etly and quickly over unreliable networks. The BCM primitive ensures
that alerts are efficiently broadcast while the nature of these signals
are securely hidden. However, current BCM proposals are limited to
indicating a single bit of information and also lack natural privacy
properties. In this paper, we develop a new BCM solution that allows
the transmission of several alerts privately and in one shot. This ex-
tension perfectly suits a new kind of applications, that is (absolute)
veto voting over unreliable networks, in which multiple decisions are
reached using only simple peer-to-peer communications. Our enhanced
BCM efficiently supports the spread of votes over unreliable networks
while hiding whether these votes contain any or several vetoes. We
prove our BCM solution secure and illustrate its use for veto voting
protocols in limited communication infrastructures.

Keywords: Blind coupon mechanism, Veto voting system, Untraceability.

1 Introduction

A Blind Coupon Mechanism (BCM) [2, 3, 5] is a cryptographic primitive
allowing confidential signals to be combined in a specific way. A BCM
enables a network to distribute a covert signal while ensuring that forging
signals is difficult. Signals are embedded in coupons, which are generated by
authorities in possession of some secret material. Dummy coupons (without
a signal) and signal coupons are exchanged over the network, and combined
such that anything joined with a signal coupon becomes a signal coupon.
Such a primitive can prevent an attacker from gaining knowledge about
alert transmissions. Suppose an attacker manages to access a network and
monitor a sensor-based intrusion detection system. The attacker knows that

she is safe until the sensors transmit an alert. Therefore, the system requires
a confidential and efficient alert transmission to prevent the attacker from
withdrawing and removing her tracks in a timely manner.

The BCM notion was first introduced by Aspnes et al. [2, 3] and recently
improved by Blazy and Chevalier [5]. A BCM includes a verification algo-
rithm that checks whether a coupon is valid, and a combining algorithm that
takes as inputs two valid coupons and outputs a coupon. The output coupon
is signal (with high probability) if and only if at least one of the inputs is sig-
nal. A BCM should satisfy two security properties: indistinguishability (an
attacker cannot distinguish between dummy and signal coupons) and un-
forgeability (an attacker cannot create a signal coupon unless it has another
signal coupon as input).

1.1 Generalized BCMs

Previously proposed BCMs use coupons which can only transmit one bit of
information, for example whether an alert has occurred or not. When we
consider using BCMs in different applications we may want to have coupons
which can signal multiple events. Even in the original application of quietly
spreading alerts, it may be useful to be able to indicate additional informa-
tion on which kind of alert is relevant. We therefore propose a generalized
definition of BCMs allowing multiple signals. A trivial way to instantiate
our generalized BCM is to use multiple instances of a standard BCM, but
we would like also to remain as efficient as possible. Therefore we proposed
a construction for a generalized BCM which adds minimally to the overhead
for the currently most efficiently known BCM construction.

We are also interested in stronger security for BCMs. Previous BCM
analysis [2, 3, 5] considers only indistinguishability and unforgeability as
relevant security properties, ignoring the privacy of the agents contributing
coupons. Malicious spotters may attempt to track and follow coupons and
thus gain information on individual choices. The original BCM construction
[2, 3] even suffers from the creation of traceable coupons if key generation is
dishonest. Hence, there is a clear lack of privacy notion in [2, 3, 5], and we
therefore add the notion of untraceability to the useful security properties
of BCMs.

As a useful new application for our generalized BCM, we propose a novel
voting protocol. One way to look at a BCM is that signal coupons over-
ride dummy coupons — once a signal coupon has been added, the dummy
coupons are irrelevant. In a sense this means that the signal coupons wveto
the effect of dummy coupons. This observation suggests that a BCM is a
natural foundation for (absolute) veto voting [17, 14, 4]. In general, vot-
ing systems are designed for elections launched in reliable communication
infrastructures to support interaction with central servers. Nevertheless, in
some situations, only limited connectivity is available and continuous and

local tallying is needed. These restrictive communication infrastructures re-
quire to broadcast vetoes quietly and quickly, while the nature of these votes
must be securely hidden, allowing us to exploit the untraceability property
of our generalized BCM. We depict below a plausible scenario that requires
a voting system that fully operates under such conditions.

One could assume that communication channels between system users
are secure. Nevertheless, we must defend the system against dishonest par-
ticipants, who may not forward the received coupons or being curious about
others’ choices. Hence such an assumption will not help. One could also
attempt to encrypt veto coupons and return them to the authorities via
peer-to-peer channels, but that would require solving problems related to
traceability and privacy similar to those needed in designing a BCM.

1.2 A BCM-Friendly Voting Scenario

A political demonstration is calling for a change of government. The or-
ganizers wish demonstrators to express their choices on elements of their
new plan. FElements could be whether a demonstration should be sched-
uled on the coming Saturday. Several parameters may disrupt the voting
process and influence the underlying system. For instance, the government
may respond to the demonstration by either turning off the mobile phone
network or jamming the usable radio frequencies, making radio communica-
tion impossible. Although QR-codes with cameras enable a low-bandwidth
peer-to-peer communication, the latency is too large to allow reasonable ad-
hoc networks. Therefore, the system requires other tools to overcome such
communication constraints.

Furthermore, the government must not be able to infiltrate the demon-
stration network, and to forge a veto canceling any further demonstration.
In addition, the organizers running the veto elections may move continu-
ously, and therefore, should sample current veto states from any physical
location in the demonstration at any time. Not all demonstrators trust the
organizers, and information on who vetoed what may have bad consequences
(e.g. being registered in police files as a potential governmental opponent).
Hence, privacy and untraceability properties must be guaranteed.

The above scenario motivates the design of a veto voting system in un-
reliable network infrastructures. During a setup phase, the organizers, seen
as election authorities, distribute ballots to demonstrators, seen as voters.
These ballots are pre-marked as either blank or carrying veto(es). During
a voting phase, the demonstrators interact using limited peer-to-peer com-
munications, and make their choices, for instance regarding demonstration
cessation. They are assured to remain anonymous, hence avoiding political
friction among them. Once the voting phase is over, the organizers sample
votes by interacting with the demonstrators, and recover the veto results.

Such a veto voting system will enable demonstrators to veto even under

the following attacks or constraints from the government. The system will
continue to operate successfully, even if the government disturbs the net-
work. Attackers may also attempt to infiltrate the network; however, as an
outsider, it will not be able to disrupt the voting process.

1.3 Proposed Solution

Our BCM solution is based on that of Blazy-Chevalier [5] which offers attrac-
tive features of strong indistinguishability, unforgeability and applicability
to real contexts. We enhance this BCM to allow the transmission of multiple
signals in one coupon, only adding one extra group element per signal. We
also define a new security property, namely untraceability, and prove that
our solution satisfies it. This property precludes an attacker to track, follow
and distinguish transmitted coupons.

In addition, we show that veto elections arise as a natural application
of BCM. We design a peer-to-peer veto voting system based on our im-
proved BCM, enabling the spread of coupons containing (possibly multiple)
veto(es).

e During the setup phase, dummy coupons, representing a blank vote,
and signal coupons, representing a veto vote, are distributed to voters
by the authorities via secure communication channels (this is the only
phase where such feature must be guaranteed).

e The voters first spread their dummy coupons. Communication chan-
nels no longer need to be secure. This is to create a continuous flow of
coupons during the entire voting phase, and prevent attackers to dis-
tinguish blank and veto votes from a possible discontinuity in spread-
ing them. Whenever a voter decides to veto on some action(s), she
uses the appropriate signal coupon and spreads it around her.

e Voters continuously exchange their coupons with their neighbors, en-
suring the aforementioned continuous flow. Upon receiving a neigh-
bor’s coupon, a voter combines it with her current coupon, and gets
an updated coupon, that is then spread around her. One fundamental
property of our veto election is that an output coupon is signal (veto)
if at least one input is signal. Moreover, one veto is enough to stop an
action, and thus vote counting is not required.

e The election authorities intercept coupons at random time from ran-
dom voters and decode them to obtain veto results. Once a veto is
received, this is enough to unilaterally stop the associated action.

Figure 1 illustrates our veto voting system based on BCM. Several elec-
tion authorities jointly create and distribute initial coupons to the voters.
Voters form a network where peer-to-peer communications are possible but

Election Authorities Voters

O 1) Initial coupons o
O

O
O 2) Final coupons

@)

3) Decoding final coupons and
retrieving veto results

Figure 1: Veto voting system based on BCM.

limited. Voters spread their coupons around them such that the resulting
flow is continuous. From the magnifying glass, we observe that the voter V2
has collected coupons cl, ¢2 and ¢3 from other voters. She wishes to use her
coupon c4 for voting. She then emits coupon ¢5 to her neighbors, that is a
combination of cl, ¢2, ¢3 and c4. The voter V3 has received coupon ¢5 and
combines it with his own coupon ¢6, and spreads the resulting coupon ¢7
around him. Once the voting phase is over, the election authorities intercept
final coupons from the voters and jointly decode them to obtain the veto
results.

1.4 Related Work

Blind Coupon Mechanism. Aspnes et al. [2, 3] introduce BCM as an
AND-homomorphic authenticated bit commitment scheme. The authors
construct their scheme based on an abstract group structure (U, G, D) such
that U is a finite set, G C U is a cyclic group and D is a proper subgroup
of G. The elements in D are dummy coupons and the elements in G\ D are
signal coupons. The scheme is proved secure with relation to indistinguisha-
bility and unforgeability based on the subgroup membership and subgroup
escape problems respectively. The subgroup escape problem [2, 3] is defined
as follows: Given a generator for D (but not G), find an element of G \ D.
The problem seems hard on certain groups with bilinear pairings and on
elliptic curves over the ring Z,.

Recently, Blazy and Chevalier [5] propose a more efficient and more
secure scheme compared to that of Aspnes et al. [2, 3] by setting their
scheme in a group of prime order instead of composite order, and by re-
lying on standard assumptions. They design a simple BCM scheme that
is OR-homomorphic and combine this scheme with a new version of the
linearly homomorphic Structure-Preserving Signature (SPS) scheme [18] to

obtain their full, AND-homomorphic BCM scheme. Blazy-Chevalier scheme
is proved indistinguishable under the Decisional Diffie-Hellman assumption
and is statistically unforgeable.

Nevertheless, implementing a veto protocol over constrained networks
using Blazy-Chevalier BCM technique generates computational and com-
munication burdens and impedes its operation. Since we aim to develop
veto voting in restrictive peer-to-peer communication infrastructures, we
need to extend the aforementioned solution to permit secure and efficient
multiple veto broadcast and guarantee practical performance.

Veto Voting. In a reformulation of the famous Dining Cryptographers
(DC) problem introduced by Chaum [9], Hao and Zieliriski [14] consider the
following problem. Three cryptographers wish to know among NSA and
them, who has not paid for the dinner, such that all the participants are
enabled to pay anonymously. If one participant votes with a veto, then one
of the cryptographers has paid for the dinner; otherwise, NSA has paid. A
protocol for the statement that no cryptographer has paid is thus similar
to anonymous veto protocols [17, 13, 7]. Hao and Zielinski [14] present a
protocol, named Anonymous Veto Network (AV-net), to solve the reformu-
lated problem. Compared to the DC network solution [9], AV-net does not
require secret channels, does not encounter message collisions and is more
resistant to disruptions.

The Kiayias-Yung protocol [17] for veto elections considers a tally with-
out any veto votes as a 0-vote. A voter who wants to veto actually votes on a
non-zero random element from Z,, for a prime p, and if no voter has vetoed,
then the tally is 0. One security issue is that any voter can check whether
she is the only one who vetoed using her random element [13]. Groth [13]
improves the Kiayias-Yung protocol while publishing a smaller amount of
data. However, the number of rounds depends on the number of voters,
while it is constant in the original Kiayias-Yung protocol [17]. Brandt [7]
bases his veto protocol on a technique used for secure multi-party computa-
tion applications. While it allows to define a boolean-OR function, solving
the function remains complex and expensive.

Hao and Zieliriski’s AV-net [14] outperforms existing anonymous veto
protocols [17, 13, 7] regarding the number of rounds, computational load and
bandwidth usage. Nevertheless, the solution [14] still requires two rounds on
voters’ side: a first round to send a seed with its proof (preparation phase),
and a second round to actually vote (voting and self-tallying phase). To
reduce to one round, the preparation phase should be executed only once
[11]: voters agree on some parameters before several elections, and use these
parameters for all the elections they are participating in.

AV-net [14] also suffers from two issues related to fairness and robustness.
First, a voter who has submitted a veto can find out whether there are any

other voters who vetoed. Second, the last voter submitting a vote is able
to pre-compute the boolean-OR result before submission, allowing the last
voter to change the vote according to that pre-computation. Khader et al.
[16] propose a variant Hao-Zieliniski protocol [14] to provide aforementioned
missing properties (by adding a commitment round and a recovery round
respectively). Their variant also assumes authenticated public channels to
prevent multiple voting and to guarantee voters eligibility. Later, Bag et
al. [4] extend further to avoid the fairness and robustness limitations of the
previous work, but now maintaining the advantage of a two-round protocol.
Indeed, Bag et al.’s solution [4] achieves similar system complexities to AV-
net [14], while binding voters to their votes in the very first round, canceling
the possibility of runtime changes to any of the inputs. In addition, at the
end of the voting phase, voters are not able to learn more than the output
of the boolean-OR function and their own votes.

We see that earlier veto voting systems need fairly reliable networks or
a sequential round structure in order to work. Neither is available in our
scenarios, where connectivity is unreliable and we need continuous and local
tallying.

1.5 Contributions

Our paper contains contributions to the design of both a secure BCM scheme
and a veto voting system. More precisely, we provide a new BCM construc-
tion (Section 3) that allows for transmitting multiple signals in one coupon,
rather than in separate coupons. We prove it secure according to indis-
tinguishability and unforgeability properties. We also define the notion of
untraceability, as an enhancement of the privacy in BCM, and prove that
our solution satisfies it. Then, we show that veto voting arises as a straight
application of BCM (Section 4). We present a peer-to-peer veto voting pro-
tocol over unreliable networks based on our solution.

2 Building Blocks

2.1 Preliminaries

In this section, we introduce the mathematical tools and assumptions that
our BCM construction and security proofs use.

Bilinear Group and Pairing. Our extended BCM relies on pairing-
based cryptography. Let Gi, Gy and G be three cyclic groups of prime
order p. A pairing e is a map e : G; x Gy — G which satisfies the following
properties:

e Bilinearity: Given g1 € Gy, g2 € Go and a,b € Z,, e(g9%,95) =
e(g1,92)*";

e Non-degeneracy: There exist g1 € Gy and g2 € Go such that e(g1, g2) #
lgy;

e Computability: There exists an efficient algorithm to compute e(g1, g2)
for all g1 € G1 and g2 € Go.

n-Decisional Diffie-Hellman Exponent (n-DDHE) Assumption. Our
scheme is proven untraceable assuming that the n-DDHE problem is hard.
Let Gy be a cyclic group of prime order p and g; be a generator of that group.
The DDHE assumption [6, 15| compares the real and random distributions:

7 n+1 7
DHE, = {{¢} }1<i<n, 0" ;v €r Zy} DHES = {{g¥ Vicicn, 9t v, 1 €1 Zy)

A (T, e)-distinguisher for G, is a probabilistic Turing Machine A running in
time T that, given an element X of either DHE, or DHEf, outputs 0 or 1
such that:

AdvZ“r(A) = | Pr[A(X) = 1, X € DHE,] — Pr[A(X) = 1, X € DHE}]| > ¢

The DDHE problem is (7', ¢)-intractable if no (7 ¢)-distinguisher for G;
exists.

n-Multi-Decisional Diffie-Hellman (n-MDDH) Assumption. Our
scheme is proven indistinguishable assuming that the n-MDDH problem is
hard. Let G; be a cyclic group of prime order p and g; be a generator
of that group. The MDDH assumption [8] compares the real and random
distributions:

MDH,, = {¢7°, {g}" }1<j<n, {91 t1<j<n; %0, T €R Zp, 1 < j < n}

MDHR = {g{°, {1’ h1<jcn: {91" h1<jcni 20, 25,705 €R Zp, 1 < j <}

A (T, e)-distinguisher for G; is a probabilistic Turing Machine A running in
time T that, given an element X of either MDH,, or MDH%, outputs 0 or 1
such that:

Advg 4" (A) = | Pr[A(X) = 1, X € MDH,]—Pr[A(X) = 1, X € MDH}]| > ¢

The MDDH problem is (T, ¢)-intractable if no (7', ¢)-distinguisher for G;
exists.

Double Pairing (DP) Assumption. Our scheme is proven unforgeable
assuming that the DP problem is hard. Let G1, Gs and G be three cyclic
groups of prime order p. Let g; be a generator of G; and g2 be a generator
of Gy. The DP assumption [1] is defined as follows. A (T, ¢)-adversary for
G and G2 is a probabilistic Turing Machine A running in time T that given

a random pair X = (g2, o) in G2, outputs a non-trivial pair (g1, §1) in G?
satisfying Y : e(g1, 92) - €(g1, §2) = 1g, such that:

Adv® o, (A) = |Pr[X = (g2,02) € G3; (g1, 51) « A(X) : (g1,61) € GIAY| > €

The DP problem is (T,)-intractable if no (T, e)-adversary for G; and Go
exists.

2.2 Linearly Homomorphic Structure-Preserving Signature

A linearly homomorphic SPS scheme [18] enables verifiable computation
mechanisms on encrypted data, by combining homomorphic signature prop-
erties with the additional one that signatures and messages only contain
group elements with unknown discrete logarithms. Blazy and Chevalier [5]
present a linearly homomorphic SPS scheme in an asymmetric setting with
groups of prime order, as an extension of the scheme in the symmetric setting
given in [18].

Following the idea of Blazy and Chevalier [5], a one-time linearly homo-
morphic SPS scheme is combined with an OR-homomorphic BCM in the
asymmetric setting to guarantee unforgeable signal coupons (the one-time
property implies that the tag linked to the to-be-signed message is empty).
We extend this combination to the multivariate setting by signing vectors
of n + 1 elements rather than signing vectors of two elements.

For clarity, we recall the signature scheme introduced in [18]. The one-
time linearly homomorphic SPS scheme is composed of the following algo-
rithms:

KeyGen(1¥) — (pk, sik). On input of a security parameter 1%, the algorithm
outputs a verification (public) key pk and a signing (secret) key sik.

Let (p, G1, G2, Gr, g1, 92,€) be a tuple defined from the bilinear group
setting. Pick at random o €gr Z, and compute g» = g5. For j €
[0,n], pick at random &;,p; €r Z, and compute hp; = ggjggj. The
verification key is pk = (g1, g2, 92, {hp;j}jejo,n)) and the signing key is
stk = ({&5, pi}tjeo.n)-

Sign(sik,m) — o. On input of a signing key sik and a message vector m =
(mg, mq, -+ ,mpy) GéG’fH, the algorithm outputs a signature o. Com-

_ n —Sj _ n —Pj

pute z = Hj:() m; Jand u = szomj J

(z,u).

and set the signature o =

SignDerive(pk, {\i, 0i}icny) — 0. On input of a verification key pk and I
pairs of coefficients (arbitrary) and signatures {\;, o;};e[1,),the algo-
rithm outputs a new signature o. If all the input signatures are valid,
compute z = Hé:l zf" and u = Hi’:l ug\l and set the new signature
o= (z,u).

Verify(pk,mi,0) — {valid, invalid}. On input of a verification key pk, a
message vector m = (mg,my,---,my) € G’f“ and a signature o =
(z,u), the algorithm outputs valid or invalid. The signature is valid
if and only if e(z, g2) - e(u, G2) - [Tj_ e(m;, hp;) = 1g, holds.

Correctness. For all key pair (pk,sik) < KeyGen(1%), for all message
vector m, if o < Sign(sik,m), then Verify(pk,m, o) = valid.

Let {)\i,rﬁi}ie[l,l] correspond to H§:1 Tﬁi\l = (Hé:l mf"g, Hf;:1 mg\ll, e
Hézl mf‘;t) For all key pair (pk, sik) < KeyGen(1¥), for all signatures o;
on message vectors my;, if valid < Verify(pk,mi;,0;) for i € [1,1], then
valid < Verify(pk, {\i, M }icp g, SignDerive(pk, {\i, 0i}icp1))-

3 New Blind Coupon Mechanism

Our BCM solution extends Blazy-Chevalier scheme [5] into a multivariate
setting as follows: in addition to the two elements g1, h1 € G, n—1 elements
ho,--- , hy, are also generated, where n is an integer. This implies that a
signal coupon is a tuple of n + 1 random elements from the group G, while
a dummy coupon is a tuple (g7, hY,h%, -+ ,hl) of n + 1 elements where

r €R Z, is a random exponent.

3.1 Construction

The extended BCM construction contains the following algorithms:

BCMGen(1%) — (pk, sk). On input a security parameter 1%, the algorithm
outputs the public key pk and the secret key sk.

Let (p, G1, G2, Gr, g1, 92,€) be a tuple defined from the bilinear group
setting. Run the algorithm KeyGen(1¥) — (pk,sik) where pk =
(91592, G2, {hpj}jcom)) and sik = ({&j, pj}jcjo,n)- For j € [1,7n], pick
at random 3; €r Z;, and compute h; = glﬁj . The public key is pk and
the secret key is sk = (sik, {5j}je[1,n}7 {hj}je[l,n])'

BCMCouponGen(pk, sk,) — c¢. On inputs the public key pk, the secret key
sk, avector U = (v, -+ ,v,) € {0,1}", the algorithm outputs a coupon
c.

The integer n corresponds to the number of signal options. For j €
[1,n], each element v; of the vector ¥ states the nature of the cor-
responding option opt;. In particular, a bit v; = 0 states that the
option opt; is set as dummy while a bit v; = 1 states that it is set
as signal. Hence, a dummy coupon is defined as ¢ = (0,0,---,0
(all 0s) and a coupon with signal on one single option is set as ¥ =
(0,---,0,1,0,---,0) (one 1 and the remaining 0s).

10

We recall that the secret key sk includes the signing key sik = ({&;, pj}je(0,n))-
To generate a valid coupon for a dummy or single signal coupon, pick
at random 0, ¢’ €g Z,, and then compute ¢; o = g‘f and for j € [1,n],

vjo _ gf’(2% Set c1 = {c13}jefom)-

Run the algorithm Sign(sik,c1) — co = (2, u) where:

n n
_ —& _ —0:0=310 1 & Bi(64v;0") _ —pj _ —P00=3 01 PP (5+0;8)
Z—HCLJ‘ =9 “—HCLJ‘ =9

j=0 J=0

Let the valid coupon be ¢ = (c1,c2) where ¢1 = {c1,5}jc(0,n) and co =
(z,u). We call the pair co = (z,u) the signature of the coupon.

BCMVerify(pk, c) — {valid, invalid}. On inputs the public key pk and
a coupon ¢, the algorithm outputs valid if the coupon c¢ is valid;
invalid otherwise.

Let a coupon be ¢ = (c1,c2) where ¢1 = {c1,j}jen and c2 = (2,u).
Run result < Verify(pk,c1,c2) and output result (which is valid or
invalid).

BCMCombine(pk, {ci}icp1,g) — ¢ On inputs the public key pk, a set {c; }ic[1
of [valid coupons, the algorithm outputs a new valid coupon ¢ com-
bining ¢; for i € [1,1].

Let ¢; = ({¢i,1,5}jefo,n]s (2i> ui)) be a coupon for i € [1,1]. Run the algo-
rithm SignDerive(pk, {\i, (2, u;) }ie[1,)) — c2 for random exponents \;.
That algorithm first checks that all the input coupons are valid. If the

answer is positive, then it computes z = H§:1 ziA" and u = Hé:l ul)‘l
and sets ¢y = (2, u). Moreover, compute ¢; j = [[.e, ¢ ; for j €10,n],
and set c1 = {c1;}je0,n. Finally, set the new, combined coupon

c = (c1,¢2).

BCMDecode(pk, sk,c) — ¥. On inputs the public key pk, the secret key sk
and a valid coupon ¢, the algorithm outputs a vector ¥ = (vy,- -+, vp).
The vector ¥ reveals the nature of the coupon such that each element
v; of the vector ¥ tells whether the corresponding option opt; is either
dummy or signal.

Given a coupon ¢ = (c1,c) where ¢ = {Cl,j}je[(],n]v if c1; = c’ijo
then set v; = 0 for each j € [1,n]; otherwise set v; = 1. Output
U= (v1,v2,...,0p).

Correctness on Coupon Decoding. Correctness on coupon decoding
focuses on correctness of signature verification. The remaining is easily
proved correct. For all key pair (pk,sk) < BCMGen(1¥), for all vector
U, if ¢ <~ BCMCouponGen(pk, sk, ¥), then valid < BCMVerify(pk,c) and

11

U <= BCMDecode (pk,sk,c). Let ¢ = (c1,c2) = ({c1,5}jefom)s (2,1)) be a
valid coupon, then we have:

n n

n n
e(z, g2)e(u, G2) H e(c1,5, hpj) —e(Hclf’,gz) Hclj . G2) H e(cr 95 35') = oy

Correctness on Combined Coupon Decoding. For all key pair (pk, sk) «
BCMGen(1%), for all coupons ¢; for i € [1,1], if valid + BCMVerify(pk, c;),
then

BCMDecode(pk;, sk, BCMCombine(pk, {ci}ic1,y])) = V;ep g BCMDecode(pk;, sk, c;).

Let ¢ = (c1, ¢2) = ({5 }jefon)s (2,w)) = {ITi— G 1]}J€[0 nls (I 1)\31_[2:1 u;\z))
be a coupon obtained by combining [valid coupons ¢; = ({¢; 1,5 }]E[O,n (zi,u3)),
then we have:

e(z, g2) - €(U 92) - Ilj—pe (Clmhpj)

n n l
SEI10) Gl HH;fi; Lo TLeqT g o898 = te,

7=01:=1 7=0 =1

3.2 Security

We prove that our extended BCM construction satisfies indistinguishability,
unforgeability and untraceability properties. The indistinguishability model
n [2, 3, 5] reflects that, given a valid coupon and oracle access to dummy and
signal coupons, the adversary cannot tell whether it is dummy or signal. Our
model extends it by considering coupons with signals on different options,
in addition to dummy ones.

As in [18], the unforgeability model prevents an adversary from gener-
ating a valid signal coupon which could not be a combination of coupons
already seen.

Untraceability is a new BCM security property that encompasses the
specific issues encountered in voting applications over unreliable networks,
where an attacker should be precluded from tracking and following voters
based on the information that coupons store. Given two sets of valid coupons
embedding identical signals and oracle access to any coupons, the adversary
should not able to tell which set was used to generate the combined coupon.

Indistinguishability Model. In this model, the adversary is provided
with a coupon generation oracle, giving it access to as many dummy and
signal coupons it wants. Then, given a valid coupon, the adversary cannot
tell whether its nature with a non-negligible advantage. The experiment
ExpfffdiSt from Fig. 2 defines the security experiment for indistinguishability.

12

Indist Unforg

Experiment Exp Experiment Exp
(pk, sk) < BCMGen(1¥) (pk, sk) < BCMGen(1%)
(T, 1) <= AQsen(Ph:sk) (pE) ¢* < AQsen(Phssk) (pE)
b+ {0,1} Note that A is only allowed to ac-
cp < BCMCouponGen(pk, sk,) cess Ogen once for each single signal
b < ACoenPhsk) () vector.

Untrac

Experiment Exp
(pk, sk, € N) < BCMGen(1%)
({eoiticp {eriticpy) < A%enPhsR) (pk, 1) s.t.
BCMDecode(pk, sk, BCMCombine(pk, {c; i }ic(1,))) is the same for j €
fo,1}
b+« {0,1}
Cp < BCI\/ICombine(pk, {Cb,i}ie[l,l})
b+ A(pk,cp)

Figure 2: Algorithms defining security experiments ExpfffdiSt for indistin-

guishability, Expznforg for unforgeability and Expy™™a for untraceability.

The adversary wins if b = b’ in the experiment. Our scheme is (7', ¢, q; +
¢2)-indistinguishable if there is no T-time adversary A that succeeds with
advantage |Pr[b = b'] — 1/2| < ¢ after making up to ¢1 + g2 queries to the
coupon generation oracle Ogyep,.

Indistinguishability Proof Sketch. Indistinguishability follows directly
from the n-MDDH assumption. We sketch a challenger B against n-MDDH
using an adversary A against indistinguishability with advantage €. B takes
as input g7° and two tuples of group elements {g}” }1<j<, and {gio’j H<j<ns
where o, z; €r Z, and g ; is either equal to zox; or to a random exponent.
When A submits queries to the coupon generation oracle Oyep, B uses the
coupon generation algorithm with its first group element tuple as the secret
key. When A submits two challenged signals, B uses g;° and its second group
element tuple to create the coupon using one of the two challenged signals.
If the adversary A guesses the signal correctly, B outputs 1; otherwise, it
outputs 0.

If the input to B comes from MDH,, (meaning that to ; = zoz;), the above
simulation will be a perfect one of the security game, and the probability that
B outputs 1 equals the probability that the adversary A guesses correctly
in the security experiment. However, if the input to B comes from MDH§
(meaning that tp; is a random exponent), the challenged coupon will be
independent of the adversary’s challenged signals, and the probability that
A guesses correctly is 1/2. It then follows that Advgfldh” (B) =e.

13

Unforgeability Model. In this model, the adversary is given oracle ac-
cess to dummy coupons and single signal coupons such that the latter are
each requested only once. The adversary is not able to create a valid signal
coupon that is not a combination of queried coupons with a non-negligible
probability. The experiment Expjnforg from Fig. 2 defines the security model
for unforgeability.
The adversary outputs a valid forged coupon ¢* if and only if BCMDecode(pk,

sk,c*) = 0" #Land v* ¢ {\/;c5¥i; S C [1,n]} (i.e. linear span). Our scheme
is (T, ¢, q)-existentially unforgeable if there is no T-time adversary A that
succeeds with at least probability € after making up to n queries to the

oracle Oye,.

Unforgeability Proof Sketch. Before going through the proof for un-
forgeability, one should notice that signatures (z,u) are part of coupons,
hence an adversary asking for signatures is essentially asking for coupons.
Let A be an adversary that forges a signature with non-negligible advan-
tage. Let B be the challenger that takes as input a DP instance (g2, §2) € G3
and expects A to find a non-trivial pair (z,u) € G? such that e(z,go) -
e(u,g2) = lg,. To do so, B runs the algorithm KeyGen (when running
BCMGen) with random exponents &;, p; €r Zjy for j € [0,n]. When A re-
quests a signature on (g?, {h?}je[l,n])a B replies by running the algorithm
Sign (when running BCMCouponGen). Finally, the adversary A outputs
(g2, {h;s-* }jel1,n)) With signature elements 3 = (z*,u*). The challenger B
computes a signature on A’s input as cg = (2F,uf) = (gflﬁ’(_go)~l_[?:1 hj-f'(_fj), ng'(_pO)-

[T, th'(_p])). With overwhelming probability, the ratios z—T and Z—: are a
non-trivial solution to the DP problem. Indeed, any public key pk has ex-
ponentially many corresponding secret keys, and thus pk perfectly hides
the exponents {&;}jc0,n and {p;}jcjon- In addition, for a given public
key pk, elements g¢ and {hi* }je[1,n) have an exponential number of valid
signatures while Sign algorithm’s output is completely determined by the
exponents {&;}jejo.n and {p;}jefo.n)-

Over the game between B and A, the latter obtains signatures {c;2 =
(zi,ui)}ie[l,n} on at most n linearly independent vectors. Hence, given
{hpj}jeon), A sees at most 2n + 1 linear equations in 2n + 2 unknown val-
ues. In A’s view, since (g¢", {h?-* }jel1,n)) must be independent of previously
signed vectors, predicting z' is done only with probability 1/p. Therefore,
with overwhelming probability 1 — ;1), 2* # 21, and thus ‘z% and Z—; is a valid
solution to the DP problem.

Untraceability Model. In this model, the adversary is provided with a
coupon generation oracle, giving it access to as many dummy and signal
coupons it wants, such that two distinct sets of these coupons decode to the

14

same vector. Then, given a valid combined coupon, the adversary cannot
tell from which set it results from with a non-negligible advantage. The ex-
periment Eprntmc from Fig. 2 defines the security model for untraceability.

The adversary wins if b = &’. Our scheme is (7 €, ¢)-untraceable if there
is no T-time adversary A that succeeds with advantage | Pr[b = b']—1/2| < e
after making up to ¢ queries to the coupon generation oracle Ogyey,.

Untraceability Proof. Before going through the proof for untraceabil-
ity, one should notice that Left-or-Right and Real-or-Random notions are
equivalent. Since the former is more natural as a security notion, we use it
as our security definition. Since the later is easier to work with, we use it
as our proof.

Let an adversary A against untraceability with advantage . Using A,
we build a challenger B that solves the n-DDHE problem in G;. For a
generator g1 € G and an exponent v € Zj, let y; = g’ € Gy for j € [1,n).
The challenger B is given as input a tuple (X,7T) = ((91,91, " ,Yn),T)
where T is either equal to y,+1 = g7 "™ or to a random element in G7¥ (such
that 7" is uniform and independent in G}). The challenger’s goal is to output
0 when T' = y,4+1 and 1 otherwise. B interacts with A as follows.

Let g2 be a generator of Go, a €r Zj, and g2 = g5. Let &;, pj €r Zp, and
hpj = ggj gy’ for j € [0,n]. The challenger sets h; = y; for j € [1,n], meaning
that the exponents §; are implicitly equal to vJ (and hence, the elements
B; remain unknown to B). The public key pk = (g1,92, 92, {hp;};jc(on))
is provided to A. The secret key sk = ({&;,0j}je0,n), 1P }jel1,n) is kept
by B. The adversary makes queries on vector ¢ to the challenger. The
latter replies by generating coupons as follows. First, B chooses at random
exponents dg, 01, - - ,0p €r Zp. Two or more exponents are equal when there
is no signal, while unique exponents represent signals. Then, it computes
co =g, ¢y = y?j for j € [1,n], z = 91—50-60 1y 6 and u =

g," 0-do H?Zl y;pj % Such coupons are computable from elements in the
tuple given to the challenger.

After the query phase, A submits two challenged coupon sets {Co,z‘}ie[l,l}
and {c1,i}ien) such that both sets contain the same signals (if any); and
both sets contain the same number of coupons (note that we can pad one set

with dummy coupons if needed). B picks at random a bit b €r {0,1}. For

€ [1,1], we denote a coupon c; as (cﬁ’l),czl) ({c 17]1}]6[0 n)s (2 () uz(.b))).

The challenger computes the coupon ¢, that combines ¢;; for i € [1,1] as
5®

b s ! b b
follows: Cg% = Hz 1 1 = Hz 1(g7)%0 = Hi:l(cg,())z) ng) 1_.[2 1 3/311 =
1 5“ 1l (v) . B ® ol 5
Hz l(y]) - Hz 1(61 Js z) fOI‘ j € [17 n 1] and ¢ - Hz 1 ™ If

1n

5 l 5 ! b
T = g1 then) = [T, T = [T, ()% = 1 (?))", meaning
that the coupon cb is valid. Indeed, the exponents \; € Z,, are all implicitly

15

set to be equal to v, and correctness on combined coupon decoding follows.
Otherwise, the coupon ¢, is independent of b in A’s view.

Finally, A outputs a bit ¥’ € {0,1}. The challenger concludes its own
game by outputting a guess as follows. If b =/, then B outputs 0, meaning
that T' = yp41 = gfnﬂ; otherwise, it outputs 1, meaning that 7 is random
in G;. When T = y,41 = gan, then A’s view is identical to its view in a
real attack game, hence |Pr[b = V'] — 1/2| > . When T is random in Gy,
then Pr[b = '] = 1/2. Therefore, for g; and T uniform in Gy, for v uniform
in Zyp, | PriB(X, ynt1) = 0] = Pr[B(X,T) =0]| > [(1/2+¢) — 1/2| =¢.

3.3 [Efficiency Analysis

Table 1 shows the efficiency results of our extended BCM scheme. The size
of components (public key, secret key, coupon) is linear in the number of
options, i.e. O(n). The process of checking the validity of a coupon requires
O(n) pairing operations, since every element of a coupon is carefully included
in the verification. By doing so, any (malicious) modification on a coupon
will be notified with a verification failure. The process of decoding a coupon
involves O(n) exponentiation operations, since the first n + 1 elements of
a coupon (excluding the signature part) are required to interpret the veto
outcome, which must likely be correct.

Public key pk | Secret key sk Coupon ¢ Verification time Decoding time
(# elements) | (# elements) | (# elements) (# pairings) (# exponentiations)

n-+4 4n + 2 n+3 n—+3 n

Table 1: Size of public/secret keys and coupons, and verification and decod-
ing costs for coupons with n options.

The beneficial feature enabling secure voting over unreliable networks
inevitably has an effect on the efficiency of our solution. Yet, while our
voting protocol is not optimally efficient, it is practical and can be run in
most, if not all, circumstances that require veto elections.

A cost that is linear in the number of vote options is normal in voting sys-
tems — for instance, when using homomorphic voting and with a 1-out-of-n
scheme involving n encryptions. Our scheme is in some sense a 1-out-of- (T:L/)
scheme for n’ € [0, n] when voters choose to veto on n’ options. This means
that the ciphertext needs to be of size O(n), and thus the cost of encryption
must be at least O(n). Even with such cost, the scheme is practical since
it can easily be implemented using terminals, such as reasonably modern
smartphones. Clearly, there are more efficient schemes, but they do not
have the properties we want.

A parallelization of the protocol may at first seem a promising trade-
off between efficiency and security for some scenarios. Indeed, transmitting

16

signals in a parallel way allows voters to only spread coupons containing
one signal and no dummies, and thus being of size not depending on the
value n. However, in a parallel version of BCM, a coupon with a signal
on one option should contain information about which option is considered,
increasing the size of the coupon. In addition, a parallel fashion may lose
vetoes: coupons with one specific option may be dropped more often, and
thus a signal on that option would less likely be noticed. The frequency of
spreading coupons containing signals on that particular option may also be
higher, and thus noticeable, potentially leaking information to unauthorized
entities. In other words, the parallel version does not achieve the desired
security goals. On the other hand, transmitting whole coupons with O(n)
elements allows to increase the chances to intercept the signals embedded
in these coupons, while avoiding leaking information from the frequency of
signals on given options.

4 Application: Veto Voting Protocol

The BCM is a primitive originally designed to spread alerts quietly and
quickly on wireless networks [2, 3, 5]. We propose a new application from
such primitive where our multivariate extension makes it beneficial: peer-
to-peer veto voting over unreliable networks. In this section, we describe
a protocol where m election authorities are responsible to prepare the veto
election and release the veto results, and manifold voters make their choices
on n decisions and interact each other during the voting session.

4.1 Description

Setup Phase. The setup phase is managed by m election authorities.
First, the election authorities run the algorithm BCMGen in a distributed
way to generate the public and secret parameters. To proceed, we assume
that election authorities use existing tools such as secret sharing and multi-
party computation [19, 20, 12, 10] (this process is out of scope of our pa-
per). Public parameters are made available to all participants, while secret
parameters are shared among the m election authorities. Second, the elec-
tion authorities run the algorithm BCMCouponGen in a distributed way to
generate n single veto coupons (corresponding to n single signal coupons)
and one blank coupon (corresponding to a dummy coupon) for each voter
over secure communication channels.

Every voter (assigned with an index ¢) hence receives n + 1 coupons
Ci0,Ci1, ", Cin. There are n options that voters can veto on, where each
option refers to the cessation of a demonstration for instance. The coupon
¢;0 corresponds to a blank vote (no veto) and a coupon ¢; j, for j € [1,n],
corresponds to a veto on option opt;. Each voter can combine her coupons
to obtain multiple veto option coupons. For instance, by combining the

17

coupon ¢; 1, that corresponds to a veto on option opt, and the coupon ¢; 2,
that corresponds to a veto on option opts, the resulting coupon c is for vetoes
on both options opt; and opts. Once all voters get the public key material
and their coupons, the setup phase is over. From this point onwards, secure
communication channels between the authorities and voters is not assumed.

Voting Phase. A voter Vj starts the voting phase by generating and
spreading blank coupons to her neighbors. We suppose such action from
the voter since we want to create a continuous spread of dummy and signal
coupons over the voting phase, such that attackers only see the uninter-
rupted flow while not distinguishing the nature of these coupons.

Thereafter, the voter V4 may decide to veto on either a single option or
multiple options. To do so, she distributes a coupon cl that either belongs to
{¢ij}jen,n (for vetoing on a single option) or is a combination of single veto
coupons from {c;;};ep,n (for vetoing on multiple options). Combination
of coupons is enabled by running the algorithm BCMCombine. Let Vg be
one of V4’s neighbors that has received cl. At the moment of reception,
Vp holds a coupon ¢2 (representing either a blank vote, a single veto vote
or a multiple veto vote). First, Vg checks the validity of the coupon ¢l by
running the algorithm BCMVerify. If the output is valid, then he runs the
algorithm BCMCombine to combine ¢l and ¢2 resulting into ¢3, and spreads
the latter to his neighbors.

The process of generating and spreading coupons is performed by all
voters in the voting network. Each election authority is enabled to com-
municate with voters individually, allowing the former to intercept emitted
coupons and verify with other authorities whether vetoes have been trig-
gered, and on which option(s). The voting phase is over after a certain time
that has been agreed among the m election authorities.

Note that a dishonest voter cannot forge a coupon, meaning that no
coupon can be created that was not received from the authorities. There-
fore a dishonest voter V4 can only deviate from the correct protocol by either
spreading coupons with vetoes on additional options, or by not combining
received coupons and only transmitting dummy coupons. In the former case,
then V4 just expresses her opinion, that is, she is against the chosen propo-
sitions. In the second case, then V4 acts as she agrees on all propositions,
and other (honest) voters combine her dummy coupons with their own ones,
hence possibly inserting some vetoes. We assume that not all the voters act
like that since this is in their interest to spread vetoes if they want to raise
their voices (anonymously) against their government for example. There-
fore, some legitimate coupons are spread anyway and likely intercepted by
the authorities.

18

Sampling Phase. The m election authorities jointly decode the coupons
intercepted so far by distributively running the algorithm BCMDecode and
obtain the veto results. More precisely, elements in a decoded vector tell
whether vetoes have been launched, and on which option(s). Election au-
thorities can repeat the sampling process on multiple coupons in order to
enhance the veto results. Depending on the number of collected coupons
and the time allocated for voting, the election authorities can attest with
overwhelming probability the results of the veto election. Election author-
ities do not count the number of vetoes since absolute veto is considered,
meaning that one veto is enough to stop an action.

We observe that no strong assumption on the reliability of communica-
tion channels between the authorities and voters is required. Communica-
tion channels are supposed to be functional enough to allow at least one
authority to receive one coupon, at the expense of a lower probability on
the accuracy of the election result.

A malicious voter may have never combined her neighbors’ coupons and
only forwarded coupons embedding her own non-veto and veto choices only.
Hence, if all voters have acted in such way, then care needs to be taken by
the election authorities when sampling. Combination of intercepted coupons
can be done by the latter, preventing biased results from dishonest voters.
We can also assume that at least one voter is honest and that coupons from
this voter has been received and decoded by the election authorities.

4.2 Security

We discuss in this section the security requirements [11] that our veto voting
system should meet. Security requirements of the voting protocol reduce to
the security of the extended BCM, that has been carefully proven secure in
Section 3.2. Due to lack of space, we opt for a succinct security description
of the resulting veto protocol.

Privacy. For each election, votes should be as secret as possible. An
exception exists when a final result only contains non-veto votes, thus no
vote can be private. We do not consider such case when discussing about
privacy. Privacy comes from indistinguishability: since an attacker cannot
distinguish coupons, no information about (non-)veto is leaked. Privacy
also derives from untraceability: an attacker cannot find out the path taken
by a coupon, assuring that the voting choices made by voters cannot be
successfully guessed.

Anonymity and Fairness. Anonymity implies that no one can discover
which voter vetoed which option(s). Indeed, an attacker must not be able to
reveal the identity of a voter from an intercepted coupon. This requirement
is guaranteed by untraceability: an attacker cannot find the path followed

19

by a coupon, and thus cannot locate the voter who emitted the coupon. One
can argue that anonymity can lead to potential misuse of the veto power and
some kind of accountability on the voter who casts a veto can be desirable.
However, in our scenario, we believe anonymity is more important than
accountability.

A fairness guarantee should ensure that a given voting method is sen-
sitive to all of the voters’ opinions in the right way. Fairness implies that
no early results from voting can be obtained. Indeed, none of the voters
can learn information on the election outcome before the election authori-
ties officially reveal it. From receiving coupons from neighbors, voters are
not able to know whether vetoes are embedded, since any two coupons are
indinstinguishable and secret key material is required to decode them. This
also applies for any external spotters intercepting coupons during the voting
phase. Election authorities may intercept coupons during the voting phase
and jointly decode them to get a partial result. Nevertheless, we assume that
enough election authorities (up to a threshold defined according to the un-
derlying distribution technique [19, 20, 12, 10]) wait for the sampling phase
to decode coupons and recover the election results.

Partial Verifiability. Each voter should be able to check that tallying
and counting were performed correctly. Unfortunately, our solution does
not permit a voter to be aware that her vote has been correctly taken into
consideration in the final result. If the voter has vetoed on option opt;, and
if the decoded vector contains a veto for opt;, then the voter is relieved that
her veto choice is included in the election result but cannot be guaranteed
that her veto has been assessed. We recall that vote counting is not necessary
for absolute veto elections. If the voter has vetoed on option opt;, and if
the decoded vector does not contain a veto for opt;, then the voter is aware
that her veto vote has not been taken into account. In order to increase
the probability of having her vote included in the final result, the voter
transmits multiple times her veto coupon to her neighbors. We aim to
develop a substantive, efficient veto protocol in unreliable communication
infrastructures. While verifiability is desirable, it does not seem essential in
our scenario.

Correctness and Robustness. Correctness implies that no one should
be able to submit incorrect votes. Correctness is enhanced with the algo-
rithm BCMVerify that permits everyone to check the validity of a coupon.
Correctness also originates from unforgeability, guaranteeing that an at-
tacker cannot submit a valid fake coupon that successfully decodes to a
consistent vote.

Robustness implies that a malicious voter should not prevent the election
result from being declared. Even if some voters either fail to vote or abort the

20

voting phase, the election result can still be announced. Election authorities
can collect coupons at the time of abortion, and decode them to know what
has been vetoed so far.

Functionality. Our voting protocol requires a new setup phase as soon
as veto options change. However, if several elections contain the same op-
tions, then there is no need to generate and deliver new coupons. Voting
and sampling phases should be executed for each election. Nevertheless,
both phases can be parallelized: election authorities jointly decode coupons
during the voting phase by intercepting them, and agree on a final result
once this result is obtained with high probability from collected coupons.

Partial Collusion Resistance. A full collusion against one specific voter
involves all other voters in the network. An anonymous protocol is by defini-
tion not fully collusion resistant [9, 14] since the voter’s anonymity cannot be
preserved. Nevertheless, having all voters acting maliciously and colluding
against one particular voter is not possible in practice; otherwise, this voter
would just decide to leave the network. Our voting protocol is partially re-
sistant against colluding voters, such that they cannot discover the result of
the veto election and cannot force a result more that what they have been
given through their coupons. Such guarantees come from indistinguisha-
bility and unforgeability. Our protocol is also resistant against colluding
election authorities, up to a given threshold. Such assurance is determined
by the distribution technique used at the setup phase [19, 20, 12, 10].

No Self-Tallying. The voting protocol is not self-tallying since election
authorities must use their secret key shares to decode coupons.

5 Observations and Future Work

We discuss here some observations from both our BCM scheme and veto
protocol and possible improvements that can be brought.

Enhancing Unforgeability. Future work will focus on designing a BCM
solution that guarantees a stronger unforgeability level while saving its ap-
plicability in constrained peer-to-peer communication infrastructures. Our
current model restricts the adversary to submit unique coupons with one
signal option to the oracle. A desirable extension would be to allow the
adversary to request coupons with multiple signal options.

Enhancing Untraceability. Veto elections within a dynamic constrained
network should offer untraceability guarantees that would prevent malicious
voters and election authorities from tracking, following and distinguishing

21

coupons. We have proven our solution untraceable based on a model where
the adversary is only given the public key material and access to a coupon
generation oracle. Such model can be strengthened by giving the adversary
either the secret key material or access to a coupon decoding oracle. In the
full version of the paper, we present three stronger untraceability models and
discuss the benefits and limitations of such models regarding our solution
and the ones from [2, 3, 5].

Accountability. For our scenario, we believe anonymity is more impor-
tant than accountability. However, it is possible to add some accountability
to the system. For instance, we can design a threshold system of account-
ability, such that if fewer voters than the threshold number submit vetoes,
then they will be identifiable by someone with the appropriate secret key.
On the other hand, if more voters than the threshold number submit vetoes,
then they cannot be identified. We discuss this further in the full version.

Unauthorized Voters. Election authorities can forbid some voters to
veto by giving them n+1 dummy coupons. Since dummy and signal coupons
are indinstinguishable, these voters are not aware of being unauthorized to
veto. In our scenario, this setting enables the organizers to specifically
authorize experienced demonstrators to decide for demonstration cessation,
while inexperienced ones cannot. To go easier on their egos, the latter are
not told directly that they have no veto competence. We stress that this is
entirely optional.

6 Conclusion

In this paper, we proposed an extension of Blazy-Chevalier BCM scheme
[5] to enable the quiet propagation of multiple signals. Our BCM solu-
tion is proved secure with relation to indistinguishability and unforgeability
properties. We also defined a new security notion, that is untraceability,
and showed that our BCM construction satisfies it. Finally, based on our
enhanced BCM, we presented an efficient and reliable veto protocol using
peer-to-peer communications over unreliable networks.

Acknowledgments

This work was supported by the the Luxembourg National Research Fund
and the Research Council of Norway for the joint project SURCVS.

22

References

[1]

M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo.
Structure-preserving signatures and commitments to group elements.
J. Cryptol., 29(2):363-421, Apr. 2016.

J. Aspnes, Z. Diamadi, K. Gjgsteen, R. Peralta, and A. Yampolskiy.
Spreading alerts quietly and the subgroup escape problem. In Proc.
of the 11th International Conference on Advances in Cryptology, ASI-
ACRYPT’05, pages 253-272. Springer, 2005.

J. Aspnes, Z. Diamadi, A. Yampolskiy, K. Gjgsteen, and R. Peralta.
Spreading alerts quietly and the subgroup escape problem. J. Cryptol.,
28(4):796-819, Oct. 2015.

S. Bag, M. A. Azad, and F. Hao. Priveto: a fully private two-round
veto protocol. IET Information Security, 13(4):311-320, July 2018.

O. Blazy and C. Chevalier. Spreading alerts quietly: New insights from
theory and practice. In Proc. of the 13th International Conference on
Awailability, Reliability and Security, ARES’18, pages 30:1-30:6. ACM,
2018.

D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast en-
cryption with short ciphertexts and private keys. In Proc. of the 25th In-
ternational Conference on Advances in Cryptology, CRYPTO’05, pages
258-275. Springer-Verlag, 2005.

F. Brandt. Efficient cryptographic protocol design based on distributed
El Gamal encryption. In Proc. of the 8th International Conference on
Information Security and Cryptology, ICISC’05, pages 32-47. Springer-
Verlag, 2006.

E. Bresson, O. Chevassut, and D. Pointcheval. Dynamic group Diffie-
Hellman key exchange under standard assumptions. In Proc. of the In-
ternational Conference on Advances in Cryptology, EUROCRYPT’02,
pages 321-336. Springer-Verlag, 2002.

D. Chaum. The dining cryptographers problem: Unconditional sender
and recipient untraceability. J. Cryptol., 1(1):65-75, Mar. 1988.

P. Feldman. A practical scheme for non-interactive verifiable secret
sharing. In Proc. of the 28th Annual Symposium on Foundations of
Computer Science, SFCS’87, pages 427-438. IEEE Computer Society,
1987.

23

[11]

[16]

[17]

K. Gjgsteen. A latency-free election scheme. In Proc. of the Interna-
tional Conference on Topics in Cryptology, CT-RSA’08, pages 425—436.
Springer Berlin Heidelberg, 2008.

O. Goldreich, S. Micali, and A. Wigderson. How to play any mental
game. In Proc. of the 19th Annual Symposium on Theory of Computing,
STOC’87, pages 218-229. ACM, 1987.

J. Groth. Efficient maximal privacy in boardroom voting and anony-
mous broadcast. In Proc. of the International Conference on Financial
Cryptography, FC’04, pages 90-104. Springer Berlin Heidelberg, 2004.

F. Hao and P. Zieliniski. A 2-round anonymous veto protocol. In Proc.
of the International Workshop on Security Protocols, Security Proto-
cols’06, pages 202-211. Springer Berlin Heidelberg, 2006.

J. Herranz, F. Laguillaumie, B. Libert, and C. Rafols. Short attribute-
based signatures for threshold predicates. In Proc. of the 12th Con-
ference on Topics in Cryptology, CT-RSA’12, pages 51-67. Springer-
Verlag, 2012.

D. Khader, B. Smyth, P. Y. A. Ryan, and F. Hao. A fair and robust
voting system by broadcast. In Proc. of the 5th International Confer-
ence on Electronic Voting, EVOTE’12, pages 285-299. Gesellschaft fiir
Informatik, 2012.

A. Kiayias and M. Yung. Non-interactive zero-sharing with applications
to private distributed decision making. In Proc. of the International
Conference on Financial Cryptography, FC’03, pages 303-320. Springer
Berlin Heidelberg, 2003.

B. Libert, T. Peters, M. Joye, and M. Yung. Linearly homomor-
phic structure-preserving signatures and their applications. Des. Codes
Cryptography, 77(2-3):441-477, Dec. 2015.

A. Shamir. How to share a secret. Commun. ACM, 22(11):612-613,
Nov. 1979.

A. C. Yao. Protocols for secure computations. In Proc. of the 23rd
Symposium on Foundations of Computer Science, SFCS’82, pages 160—
164, 1982.

24

