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Abstract

A computational screening strategy applied to 8 million synthetically diverse ionic
liquids, demonstrates its value for sustainable solvent design. In contrast to previous
studies which have largely focused on single characteristics, important properties such
as viscosity, density, thermal stability and toxicity, were estimated using machine
learning. Experimental characterization of 15 compounds selected from the library
reinforced the utility of the approach. Over 2600 ionic liquids, a majority of which
have never been reported before, were investigated for applications in CO2 and H2S
gas separation, and cellulose dissolution, using density functional theory calculations.
Among these, around 250 low cytotoxicity and low viscosity ionic liquids merit further
investigation.

1. Introduction

To facilitate the development of ionic liquids (ILs) for sustainable applications,
rigorous yet expeditious approaches are desired. Advances in IL discovery and uti-
lization have mainly been driven by laborious, time-consuming experimental testing,
underpinned by knowledge of the underlying chemistry. Alternatively, properties
of the IL can be estimated by computational methods[1], following which targeted
synthesis can be performed. Previous reports employing computations have in large
part been restricted to single properties and small systems.[2, 3, 4, 5, 6, 7, 8] The
lack of a thorough screening however, leaves other relevant IL characteristics unde-
termined. For instance, detrimental behaviour such as low stability or high viscosity,
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may not be discovered until later in the development process. Other areas of materi-
als research have exploited the synergy between computational quantum-mechanical
and thermodynamic approaches[9] to identify improved scintillator materials for γ-
ray nuclear detection,[10] solid catalysts,[11] battery electrolyte solvents,[12, 13] and
materials for CO2 capture.[14]

Screening strategies based on machine learning (ML) are well-suited for the rapid
evaluation of large libraries of chemical structures[15, 16, 17, 18] With the avail-
ability of data repositories such as ILThermo,[19] there has been a steep rise in
the use of data-driven methods for modelling IL properties as evidenced by recent
publications.[20, 21, 22, 23, 24, 25, 26] The application of statistical learning ap-
proaches requires a sufficiently large underlying data set of experimental or theoret-
ically calculated properties, ideally covering a wide range of functionalities. As the
amount of IL data increases by the day, the predictions can be expected to improve
over time. Currently, those involving more computationally-intensive calculations,
such as density functional theory (DFT) and the popular conductor-like screening
model for real solvents (COSMO-RS) perform better.[27, 28, 29] However, these are
typically applied in a low-throughput fashion with screening times being substan-
tial. On the other hand, COSMO-RS can be used to calculate solute activity, a
vital parameter when considering a solvent for a specific application. By using ML
methods for an initial screening followed by more focused COSMO-RS calculations,
large libraries may be rapidly assessed for desired uses.

Herein, we have employed a multi-property, high-throughput pipeline to facilitate
task-specific ionic liquid (IL) discovery (see Figure 1). A combinatorial approach was
used to enumerate structures for seven different cation scaffolds: ammonium, imi-
dazolium, phosphonium, piperidinium, pyridinium, pyrrolidinium and sulphonium
combined with a diverse set of anions (alkylsulphonates, phenolates, phosphates, tri-
azolides, PF6, BF4) yielding close to 8 million combinations, the largest IL-based sol-
vent screening to date. To enable rapid screening of the library, statistical structure-
property models calculated for a number of properties of interest were used to prune
the list to a reasonable number of promising candidates. Experimental investigations
for selected ILs supported by quantum chemical calculations (based on the COSMO-
RS theory) demonstrate the efficacy of the approach. Furthermore, a set of over
2600 ILs have been identified for potential applications in gas separation and cellu-
lose dissolution. The presented approach can be readily expanded to other systems,
allowing for more streamlined decision making.
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Figure 1: Overall concept of the presented approach: a) Data collection, b) Machine-learning cal-
ibration, c) Combinatorial library design and enumeration, d) Prediction of properties by ML, e)
Experimental validation of selected candidates, f) Property-based filtering, g) Theoretical evalua-
tion, h) Potential applications.
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2. Methods

2.1. Data collection

Experimental data for 10 properties: melting point (Tm), glass transition tem-
perature (Tg), thermal decomposition temperature (Td), heat capacity (Cp), re-
fractive index (nD), density (ρ), viscosity (η), surface tension (γ), CO2 solubility
(xCO2) and cytotoxicity[30] towards the leukemia rat cell line IPC-81 (log10(EC50)
(in µM) were collated from literature, spanning more than 1500 references (Figure
1a). While a primary source for the data was the NIST ILThermo database,[31] val-
ues for Tm, Td, Tg, and CO2 solubility were taken from previously published scientific
work.[32, 33, 24, 25, 26] In all cases, ILs composed of multiple cations or anions were
excluded. Table S1 in the Supplementary Information(I) provides a summary of the
collected data.

2.2. Designing the IL Library

Figure 2 shows the building blocks used in the generation of the library. Seven
cation families and 38 anions were used to assemble a variety of ILs. Variations in
the cationic cores (e.g. pyridinium), were chosen based on commercially available
synthetic precursors. The substituents were selected based on alkyl halide reagents
suitable for substitution reactions. The functionalities range from standard alkyl
chains to glycols and amines[34] often used in task-specific ILs. The library presented
herein covers a wide range of ILs of interest to researchers. The cation structures were
enumerated using the software SmiLib.[35] A total of 208,268 cations were generated
yielding ∼ 8 million ILs (see Table 1).

Table 1: The number of structures enumerated for each cation family. The last column gives the
total number of cation-anion combinations.

Cation # Molecules # Ionic Liquids

ammonium 179466 6819708
imidazolium 5460 207480
phosphonium 7914 300732
piperidinium 5460 207480
pyridinium 1040 39520

pyrrolidinium 5460 207480
sulphonium 3576 135888
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Figure 2: The building blocks used for generating the library. The ”E/Alk/Ar” represent the
attachment points in the generation process.

2.3. Computational Modelling

Descriptor Calculation. The three-dimensional geometries of the molecules were gen-
erated using OpenBabel[36] and further optimized at the semi-empirical PM6 level
using MOPAC.[37] For computational ease, we have chosen to retain only the lowest
energy conformation. Molecular descriptors (HOMO/LUMO energies, polarizabil-
ities, superdelocalizabilities, charge partial surface areas (CPSA) and geometrical
indices) were calculated independently for each cation and anion using the soft-
ware KRAKENX.[38] After eliminating missing values and excluding highly correlated
(R2 > 0.95) pairs of variables (of which only one variable in the pair was retained),
each IL was represented by a numeric vector of close to 100-120 columns.

Machine Learning. The available data for each property, was divided into indepen-
dent calibration (67%) and validation (33%) sets. For properties such as viscosity,
heat capacity and cytotoxicity, the experimental values were log-transformed. The
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models were generated using tree-based ensemble learning methods: random forests
(RF), Cubist and gradient boosted regression (GBM) which have been shown to
outperform other methods[25, 26]. A repeated 5-fold cross-validation was used to
analyze the predictive ability of the models. For each property, the best performing
model (among RF, Cubist and GBM) across both calibration and test data was de-
termined based on evaluation metrics (squared coefficient of correlation (R2), root
mean square error (RMSE) and the mean absolute error (MAE)). The selected
model was subsequently used for further predictions. In order to assess the relia-
bility of the predictions, model-based bootstrapping (100 bootstrap models in this
study) was used to provide quantitative measures of predictive uncertainty.[25] The
statistical analysis was carried out using the software R.[39]

Quantum Chemistry. Selected combinations of the ions were subjected to DFT/COSMO
geometry optimizations (using the quantum chemistry program ORCA[40]) accord-
ing to the standard quantum chemical method for COSMO-RS i.e. the DFT func-
tional B88-PW86 with a triple zeta valence polarized basis set[41] (TZVP) and the
resolution of identity standard approximation. Values of temperature dependent vis-
cosities and densities, heat capacities, and critical micelle concentrations (CMC) were
calculated using COSMOtherm (parameterization set BP TZVP C30 01601).[42, 43]
In all calculations, the ILs were treated as isolated ions. Gas solubilities for COSMO-
RS calculations were derived from activity coefficients, Raoult’s law and experimental
data for the gases, assuming physical solvation. Ideal solubility of gases and partial
pressure over the pure liquid were collected from literature.[44, 45, 46] Deviation in
derived CO2 solubilities was <4% from the different sources.

Relative Timings. The calculations were carried out on an Intel Xeon CPU E5-
2687W at 3.40GHz with 32 cores and 192 GB RAM. The timings for the DFT
calculations varied between 2 minutes to almost an hour for some cases, with average
values around 30 minutes (using 16 cores). Semi-empirical MOPAC computations
(spread over 4 cores) were considerably quicker with average times being less than
30 seconds with up to 2 minutes for some cases. Descriptor calculations were almost
instantaneous taking less than a second per structure. The time taken to screen
the entire library took about 25 minutes (0.2 milliseconds/per IL) using a single
processor. Screening using COSMOtherm took around 3-4 seconds per IL.

2.4. Experimental Details

Details of the synthesis and characterization of the prepared ILs are described
in Supplementary Information(I). Measurements of thermal decomposition temper-
ature, Td, were performed by a Netzch Libra TG 209 with a heating rate of 20
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◦C. Tg values were determined by a Netzch DSC 214 Polyma differential scanning
calorimeter. Viscosity (η) and density (ρ) were measured using SVM 3000 density
and viscosity meter. Refractive indices (nD) were obtained from a PAL-RI refrac-
tometer from Atago. Determination of heat capacity (Cp) was performed with a
Pyris1 from Perkin-Elmer. A tensiometer from Krüss was used to determine surface
tension (γ). CO2 solubility experiments were carried out in a Rubotherm apparatus
from TA Instruments.

3. Results and Discussion

3.1. Machine Learning Performance

A summary of the fitting results for each of the properties studied is provided in
Table 2. With the exception of Tm and Tg, models for the other properties yield cor-
relations > 0.75 across both training and validation data sets. The best predictions
were obtained for ρ and lnCp, while estimations for nD were generally within 0.01
of the experimental values. The mean absolute deviations (MAE) and average ab-
solute relative deviations (AARD) for properties such as Tm, Tg, log η and xCO2 are
considerably larger. For xCO2 , values less than 0.10 (∼ 2000 observations) are poorly
predicted yielding an overall squared correlation of 0.20 which contributes to the
higher AARD across both data sets. Attempts to improve the predictive ability of
the models by adding other descriptors[47] based on fragment counts and other two-
dimensional indices, yielded negligible changes. Factors affecting the performance
include the limited amount of training data and the choice of the molecular encod-
ing. For the latter, previous studies[48, 49, 16, 50] have shown that the marginal
gains do not warrant the added complexity of using more variables. The presence
of impurities and measurement protocols can also lead to considerable variations in
the experimental values. Although schemes for including experimental uncertainties
have been suggested,[51, 52] for the data sets used in this study, such values were
not always available.
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Among the decision tree-based modelling schemes used, generalized boosted re-
gression models were found to give slightly better results compared with the ran-
dom forests and Cubist approaches. The reported performances for Tm, Td, nD
and xCO2 show only marginal differences compared with those published earlier by
our group.[24, 33, 25, 26] For the other properties, the obtained results are in rea-
sonable agreement with previous reports.[48, 53, 20, 54, 55] The descriptors con-
tributing to the performance vary with the property being investigated. Analysis of
the variable importance plots (see Figures F1-F2 in Supplementary Information(I))
reveals that the influential variables include a number of energy based descriptors
(HOMO/LUMO energies, heat of formation), geometrical indices (volume, area) and
charge based descriptors (CPSA, charge dipole) with respect to both the cation and
anion. Variables such as the HOMO-LUMO gap and the heat of formation (HOF)
reflect the stability of the IL and feature prominently for Tg and ρ. The nucleophilic
delocalizabilities associated with cation/anion influence Td to a large extent.[33] The
electronic structural features captured by the atomic charges (most negative or most
positive) and partial surface area descriptors influence intermolecular (nucleophilic-
electrophilic) interactions and are likely to play crucial roles Cp, cytotoxicity and
η. Geometrical indices such as the ovality/globularity impact both xCO2 [24] and
nD[25], and reflect the ability of the molecule to adapt its shape with respect to the
approaching reactant.

3.2. Predictions from Machine Learning

The ML-based predictive screening focused on primary properties of interest,
namely Tm, Td, Tg, η and ρ, all of which play significant roles in many applications.
While the variations within a single family of cations differs considerably with func-
tionality (see Figure 3), the anions have the greatest influence on the properties of
the ILs (shown in Figure 4). Observed trends for the various properties were gen-
erally found to be in reasonable agreement with the underlying experimental data.
Extremes in values are nonetheless seen for some cation-anion pairs. From Fig-
ure 3, it is clear that phosphonium ILs have higher thermal stabilities compared to
the ammonium ILs[56, 57] which can be attributed to the difference in their ther-
mal decomposition mechanisms.[58] In particular, weakly coordinating anions such
as bistriflimide (NTf2) and PF6, typically possess high thermal stabilities[59] that
are also reflected in the estimated values. On the other hand, the phenolate and
triazolide-based ILs possessed lower Td due to their alkaline nature.[60] Predicted
values for Tm range between -25 to 155 ◦C. Within this range, ILs associated with
acetate, triazolide, phosphate and phenolate anions have Tm ¡ 50 ◦C. The symmet-
rical BF4 and PF6 anions possess the highest melting points. Anions containing
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fluorine, such as triflate, PF6 and NTf2 have higher densities than those without.(see
Figure 4) Lower viscosities were seen for the sulphonium ILs due to the bigger size of
the sulphur atom, followed by the imidazolium ILs (highly asymmetric cation). Less
than a tenth of the ILs were predicted to have viscosities below 300 mPa.s and are
populated by those containing hexafluoroacetylacetonate (hfac), acetate, phenolate
and NTf2 anions.

pyridinium

piperidinium

pyrrolidinium

sulphonium

phosphonium

imidazolium

ammonium

0 50 100 150
Tm (◦C)

pyridinium

piperidinium

pyrrolidinium

sulphonium
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imidazolium

ammonium

-100 -50 0
Tg (◦C)

pyridinium

piperidinium
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200 300 400
Td (◦C)

pyridinium
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Figure 3: Plot shows the density distribution of the ML-predicted values for the seven cation families
investigated. Calculated properties include melting point (Tm), glass transition Tg, thermal decom-
position temperature (Td), viscosity (log10 η)and density (ρ) at room temperature and standard
pressure. The groups have been colourized for clarity.

3.3. Validation of the Approach
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Figure 4: Plot shows the density distribution of the ML-predicted values for melting point (Tm),
glass transition Tg, thermal decomposition temperature (Td), viscosity (log10 η)and density (ρ) at
room temperature and standard pressure. The data has been colourized according to the different
anion groups.
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Using the predicted values as a guideline, we synthesized 15 compounds to pro-
vide a broad examination of the library. The values were further compared with
COSMO-RS calculations (Figure 1e). Cations were selected from three of the classes
combined with six different types of anions. Readily available functionalities for
which physicochemical properties have not previously been reported, were chosen.
The synthesized ILs were selected to span the predicted property range from low
to high for Td, Tg η, xCO2 , ρ and nD. Structures of the synthesized ILs and associ-
ated experimental values are shown in Table 3. The experimental viscosities ranged
from 43-1848 mPa.s, Td from 165-350 ◦C and ρ from 1060-1457 kg/m3. A detailed
comparison of the ML and corresponding COSMO-RS values is provided in Tables
S2-S10 of Supplementary Information(I).

The machine learning predictions and experimental Tg results showed a mean
average error (MAE) of 8 ◦C. The model cannot determine whether an IL will have
a glass transition or melting point, and therefore predicts both for all structures.
The Tm calculations were not compared with experimental results as none of the
synthesized compounds were observed to have a melting point. Decomposition tem-
peratures, Td, were less accurately predicted with a MAE of 25 ◦C. ILs with nD
above 1.53 were not reported because these values were outside the range of the
apparatus used, but for those measured, values were found to be in line with compu-
tational estimates. The predicted trends for density followed the experimental values
quite closely, with ML predictions being only marginally poorer in comparison with
COSMO-RS. The temperature dependency of the density was well encompassed by
the COSMO-RS, having a standard slope deviation of ∼ 5%. Although temper-
ature related trends for the heat capacity were not captured accurately, squared
correlations > 0.80 were observed, mirroring the performance on the validation set.
Rather encouragingly, mean absolute deviations of less than 0.01 were obtained for
the surface tension predictions.

Comparison of the experimental and predicted viscosities showed variable agree-
ment (see Table 3). For some compounds, both the ML and COSMO-RS predictions
were found to have AARD of <25%. In other cases, the predicted viscosities were sig-
nificantly under- or overestimated, particularly for those with high viscosities (> 400
mPa.s). Viscosity predictions are generally more challenging because experimental
values for the same commercially available compound can vary by more than 30%
between studies, depending on experimental procedure and purity.[61, 62, 63, 64]
The ML model does not account for any uncertainty in the measurements and is
therefore susceptible to discrepancies in the underlying data.

The triazolide (IL-12 to IL-14) CO2 solubility predictions compared well with the
experimental values, despite the ML model not being trained on systems of similar

13



basicity. Corresponding COSMO-RS predictions showed higher deviations. For the
amino-functionalized ILs, the ML estimations were less precise. The training data
used as the foundation for the CO2 predictions contains both physical and chemically
absorbing ILs. In most cases, the physical ILs contained no hetero-atoms outside the
cationic core, whereas the chemically absorbing structures contained one or more
hetero-atoms. As the ML model incorporates the electronegativity/electron density
in the calculations, it merely considers the presence of a nitrogen in the imidazolium
side chains. The model is unable to distinguish between a primary (chemical ab-
sorption) or tertiary amine (physical absorption), and thus incorrectly assumes that
ILs containing tertiary amines will be comparable to previously reported primary
amines. This result demonstrates an inherent weakness with the use of ML that has
to be taken into account when predicting properties and relationships. The COSMO-
RS methodology in comparison, correctly identified the amino-functionalized ILs as
physical solvents. The models have, in general yielded encouraging results for a ma-
jority of the properties investigated, and can serve as a useful guide for the prospective
design of task specific ILs. More importantly, the rapid responses provided by data-
driven ML make this approach ideal for initial screening of vast libraries. While on
average, COSMO-RS performed slightly better than the ML models, the speed-up
offered by the latter is considerable.

4. Potential Ionic Liquid Applications

In this section, we highlight potential areas, including CO2 and H2S separation,
cellulose dissolution and extraction technologies, where the designed ILs can be gain-
fully employed. Many applications require ILs to be liquid at low temperatures and
be thermally stable. High viscosity ILs are likely to increase pumping costs and
reduce mass-transfer rates, rendering them unsuitable for most processes. Based on
these recommendations, the number of ILs for further investigation was reduced to
2634 following the cut-off criteria: Tm < 35 ◦C, Td > 150 ◦C and room-temperature
viscosity η < 150 mPa.s (see heatmaps in Figure 1f - 1h). Calibration trends for the
ML-based viscosity model suggested that the relative deviations from experimental
data were smaller at lower viscosities. Ensuing analysis revealed that nearly 75% of
the short-listed ILs were found to have COSMO-RS calculated viscosities below 200
mPa.s. The selected ILs (many of which have not been investigated before) were
analyzed using COSMO-RS, wherein activity coefficients at infinite dilution γinf of
molecular solutes in ILs and critical micelle concentrations were computed.[65] The
γinf is often considered as a qualitative measure for the dissolving power of the
solvent.[66, 67, 68, 69] The computed properties (using COSMO-RS) for all 2634 ILs
are provided in Supplementary Information (II).
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Figure 5: Heatmaps showing the COSMO-RS predicted natural logarithms of activity coefficients
at infinite dilution (ln γ∞ at 25 ◦C) for (a) microcrystalline cellulose (b) water (c) dodecane (d)
naphthenic acid in the 2600 ILs. Each tile is coloured according to the average of the values of
ln γ∞ computed for the cation-anion pair. Missing tiles indicate that the cation-anion combination
did not feature in the shortlist. The mole fraction of cellulose was set to 0.5, the mole fractions of
IL cations and anions set to 0.25 each.

Cellulose Dissolution and Absorptive Cooling. The computed activity coefficients of
microcrystalline cellulose (MCC) and water in a series of ILs are shown in Figures
5a and 5b. The computed values for each cation-anion family were averaged and
plotted as a heatmap where darker colours indicate suitable task-specific ILs. Inter-
estingly, the dissolution capabilities of triazolide ILs appear are comparable to those
of acetate ILs (Figure 5a). A subsequent experimental study carried out for one of
the triazolide ILs (entry 14, Table 3), showed successful dissolution of 2 wt% MCC
at 20 ◦C in 48 h. This was further confirmed by thermogravimetric analysis (TGA)
of the dissolved cellulose after regeneration, (see Supporting Information).[70] Al-
though butylpiperidinium ILs are not considered to be the best cations for cellulose
dissolution,[71], the results suggest that further improvements are possible. The ex-
perimental results and COSMO-RS calculations show that triazolate-based ILs are
promising cellulose-dissolving solvents at low temperature. Interestingly, a correla-
tion can be observed for the activity coefficient of cellulose (Figure 5a) and water
(Figure 5b) in ILs. Both water and cellulose activities appear to be closely linked
to IL H-bond affinity. Triazolide and acetate ILs are potential dehydration or ab-
sorption cooling agents (Figure 5b). Viscosity predictions can help with selecting
cation-anion pairs with higher cellulose dissolution and dehydration rates.

Gas Separation. The synthesized ILs containing tertiary amines can be used as gas
sweetening agents.[72] The negligible vapour pressure and higher chemical stability
compared to traditional amine absorbents mitigate solvent loss, and therefore make
the ILs interesting alternatives. Furthermore, process intensification is an impor-
tant driver in the development of gas treatment processes. One such example is the
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combined H2S and water removal, where these compounds are removed simultane-
ously in one separation unit with the same solvent.[73] Amino-functionalized acetate
and dicyanamide (DCA) ILs, short-listed by the ML models, have been identified
as interesting solvent candidates for this application. Figure 6 shows a plot of the
calculated gas (CH4, H2S and CO2) solubilities.

High pressure applications have been the primary focus of IL-based physical CO2

separation technology.[74] The triazolide ILs identified by ML react chemically with
CO2 both as neat ILs and in aqueous solution. Thus, they are feasible for CO2 ab-
sorption as they show competitive CO2 capacities to commercial amine solvents.[72]
The high IL decomposition temperatures suggest that they may be useful even at
process temperatures. Although the viscosities at 25 ◦C are somewhat high, the
solvents could still be useful for processes at elevated temperatures (¿ 70 ◦C) or high
pressure applications where the increased CO2 partial pressure compensates for the
viscosity.[75]

Selective removal of H2S from gas streams containing H2S and CO2 is a potential
application for ILs. Traditionally aqueous tertiary amines are used, and the selec-
tivity is mostly based on the faster absorption kinetics of H2S compared to CO2.[72]
COSMO-RS predictions for the ML-filtered solvents gave up to 16 times higher se-
lectivity towards H2S compared to CO2. The selectivities were significantly higher
than those seen for aqueous N -methyldiethanolamine, where the equilibria loadings
for CO2 and H2S are comparable.[76] Similarly, for natural gas sweetening and bio-
gas upgrading processes, the predicted methane solubility can be used to exclude
uneconomical solvent candidates, since high methane solubility into the IL will give
unwanted methane loss.

Another interesting gas purification technology is the incorporation of ILs in
membranes to achieve high CO2 permeance and selectivity. Several of the studied ILs
have potential application in gas separating membranes. A low viscosity is essential
in IL-membrane systems to increase diffusivity, and the prediction models applied
allow for targeted selection of membrane materials.[77] Interestingly, high viscosity
ILs are applicable in IL-supported membranes.[78]

Extraction technologies. The COSMO-RS calculated activity coefficients of dode-
cane and naphthenic acid in ionic liquids are displayed in Figures 5c and 5d, respec-
tively. The two compounds, dodecane and naphthenic acid were chosen to represent
hydrocarbons[79] and organic acids[80], respectively. NTF2-based ILs possess low
water affinities (Figure 5b) and high dodecane solubilities, making them well suited
for hydrocarbon extraction. Acetate and triazolide ILs exhibit higher selectivity to-
wards naphthenic acid, compared with dodecane, and may be used to extract acids
from oils and emulsions. From the COSMO-RS CMC predictions (see Supplementary
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Information (II)), PF6 was found to have the highest critical micelle concentration, in
line with previous reports.[81] However, BF4-based ILs are better suited for prevent-
ing or disrupting emulsions in petroleum-water systems. By increasing the critical
aggregation point in crude oils, asphaltene and paraffin crystallization in pipelines
may be inhibited.

Drug delivery and toxicity. Other avenues for investigation include new non-toxic,
biodegradable ILs for drug delivery.[82] By screening the toxicity of candidate molecules,
harmful ILs can be omitted in the early stages of investigation. The CMC predic-
tions allow for the selection of ILs with the desired influence on emulsion properties,
improving drug solubility and enhancing topical and transdermal delivery.[83] By
incorporation of toxicity estimates for all ILs, an initial evaluation of the environ-
mental impact can be assessed. Our analysis of the cytotoxicity predictions reveals
that only 0.23% of the 8 million ILs expressed low to moderate toxicity (using the
criterion of low IL cytotoxicity: log10 EC50 ¿ 3.4 µM).[53] The high prevalence of
toxic structures emphasizes the need to consider the hazard potential. For the short-
listed ILs, around 250 compounds are expected to have low hazardous effects (see
Figure 7). The library can be modified to include more toxicologically favourable
structural elements paving the path for environment-friendly and sustainable ILs.

As demonstrated, the big data approach provides a broad and rational examina-
tion of assumptions and possibilities surrounding ILs. More importantly, the use of
ML-models to screen millions of compounds based on multiple solvent properties of
relevance is a powerful tool, enabling selection of only the most promising structures
for experimental consideration.

5. Conclusions

We have presented a rapid, large-scale virtual screening approach to identify
promising task-specific ionic liquid (IL) solvents. In the first step, machine learning
models were trained on with available experimental data for 10 different IL properties
of interest. The models were subsequently applied to a large library of 8 million
cation-anion pairs that span diverse chemical scaffolds. The validity of the approach
was confirmed both theoretically (using quantum chemistry-based COSMO-RS) and
experimentally for 15 ILs. While predictions for properties such as nD, Td, Cp and
ρ generally reproduced trends observed during calibration, results for others were
moderate, but significant enough to justify their use. Property-based filters focusing
on Tm, Td and η yielded a little over 2600 potentially interesting ILs, for which
applications in cellulose dissolution and gas separation have been identified. To the
best of our knowledge, the exercise carried out herein is the largest ever reported for
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these compounds. The approach can be used as a framework for targeted screening
towards a multitude of applications, for both IL and non-IL systems. Such data-
driven filtering can be used to drastically reduce the time and expenditure associated
with solvent selection. We nonetheless advocate caution in terms of their use, given
that the predictive ability and generalizability of such approaches cannot always be
guaranteed.[84]
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Figure 6: Calculated gas solubilities derived from COSMO-RS based activity coefficients for (a) CO2

versus H2S and (b) CH4 versus H2S in the 2634 short-listed ILs. The points have been coloured
according to the COSMO-RS calculated viscosities (mPa.s at 25 ◦C) as follows: η < 150 - red,
150 < η < 300 - green and η > 300 - blue.
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Figure 7: Predicted cytotoxicities log10 EC50 IPC-81 values for the short listed ILs. Each tile is
coloured according to the mean of the log10 EC50 values associated for the cation-anion pair.
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