

N
T

N
U

N
o

rw
e

g
ia

n
 U

n
iv

e
rs

it
y
 o

f

S
c
ie

n
c
e
 a

n
d
 T

e
c
h
n
o
lo

g
y

M
a

s
te

r
T

h
e

s
is

Martin Pettersen

Segmentation of MR Images
Using CNN

Ålesund – 01.10.2019

Abstract

The need for digital segmentation of human body parts is growing and having a digital

twin of the body part with an injury, or a planned surgery can help people understand

that body part better and be prepared for the tasks to come. To segment bodyparts

are a helpful tool to both understand and examen the human body. You can add a

segmented body part in a 3-dimensional world, look at it from different angles and

discover something you could not have seen from a 2-dimensional view.

During the work of this thesis, there was created a Python-script of a Convolutional

Neural Network (CNN) using Keras with TensorFlow as backend. This CNN is a

U-Net inspired network created to classify each pixel in an MRI scan of a knee joint.

It classifies bones, PCL, ACL which all are tissues located in the knee joint. The

results are promising an there where several discoveries in the result of this thesis.

The weighted loss function is a necessary function to classify lower weighted tissues

such as the ligaments (PCL and ACL). And it also showed that the commonly used

inputs not necessary are the best inputs for this network. The single input image T1

performed slightly better than the known method by using all of the images as an

input.

iii

iv

Sammendarag

Anvendbarheten av digital segmentering av kroppsdeler er en økende trend, og det

å ha en digital tvilling av skadede legemer, eller en planlagt operasjon kan bedre

forst̊aelsen av den kroppsdelen bedre, og forberede partene involvert. Segmentering av

kroppsdeler er et nyttig verktøy for å bedre forst̊a og undersøke menneskekroppen.

Segmenterte legemer kan vises som 3D-modeller, og manipuleres slik at den kan ses

fra forskjellige vinkler, og muligens oppdage noe som ikke var like synlig i det originale

bildesettet.

I løpet av masterprosjektet ble det utviklet et Python-script av et Convolutional

Neural Network (CNN) ved hjelp av Keras med TensorFlow som backend. Dette

CNN-nettverket er inspirert av U-Net og lagd for å klassifisere hver enkelt piksel i

MRI-skanninger av kneledd. Den klassifiserer ben, fremre-, og bakre korsb̊and, som

alle er vev som ligger i kneleddet. Resultatene er lovende, og det ble avdekket flere

gode resultater. En vektet tapsfunksjon er nødvendig for å klassifisere vev som opptrer

sjeldnere, slik som korsb̊andene. I tillegg viste det at den mest brukte inndataen ikke

nødvendigvis var det beste. Et enkelt type bilde (T1) gjenga noe bedre resultater enn

en etablert metode der alle bildetyper blir brukt.

v

vi

Contents

Abstract iii

Sammendrag v

1 Introduction 1

1.1 Problem and Motivation . 2

1.2 Scope . 2

1.3 Research Question . 3

1.4 Organization of This Report . 4

1.4.1 Chapter One . 4

1.4.2 Chapter Two . 4

1.4.3 Chapter Three . 4

1.4.4 Chapter Four . 5

1.4.5 Chapter Five . 5

1.4.6 Chapter Six . 5

2 Theory and Literature Review 6

2.1 Knee Anatomy . 8

2.1.1 Bones . 8

2.1.2 Ligaments . 9

2.1.3 Meniscus . 9

2.1.4 Tendon . 10

2.1.5 Nerve . 10

vii

2.1.6 Blood Vessels . 11

2.1.7 Injuries . 11

2.2 Magnetic Resonance Imaging . 12

2.2.1 MRI Components . 12

2.3 MRI Images File Format . 14

2.4 Machine Learning . 15

2.5 Neural Networks . 16

2.5.1 Input Layer . 16

2.5.2 Hidden Layers . 17

2.5.3 Neurons . 17

2.5.4 Activation Function . 17

2.5.5 Output layer . 18

2.5.6 Data Set . 18

2.5.7 Multi-Class Classification . 19

2.5.8 One-Hot Encoding . 19

2.6 Convolutional Neural Network . 19

2.6.1 Convolution Layer . 20

2.6.2 Pooling Layer . 21

2.6.3 Fully Connected Layer . 21

3 Methodology 23

3.1 Software . 24

3.1.1 Keras and TensorFlow . 24

3.1.2 Computer Specifications . 24

3.2 Data-set . 25

3.2.1 Raw Data . 25

3.2.2 Mask/Label Annotation . 27

3.3 Program . 28

3.3.1 UNet . 30

3.3.2 Activation Function . 31

viii

3.3.3 Loss Function . 32

3.4 Evaluation . 33

3.4.1 Confusion Matrix . 33

3.4.2 Measure performance . 35

4 Results 38

4.1 Loss Function . 39

4.1.1 Categorical Cross-entropy . 40

4.1.2 Weighted Categorical Cross-entropy 41

4.1.3 Weighted Categorical Cross-entropy 2nd Version 42

4.2 Compared results of different input 43

4.2.1 One Input . 43

4.2.2 Two inputs . 47

4.2.3 Three inputs . 51

4.3 Accuracy over Iterations . 53

5 Discussion 54

5.1 Loss-Function with Weights . 55

5.2 Best Input to Build a Model . 55

5.3 Best Model . 56

5.4 Model error vs. Human error . 58

6 Conclusion 61

6.1 Conclusion and Future Work . 62

Bibliography 65

A All Results 67

B CNN Summary 80

C Code 83

ix

Chapter 1

Introduction

1.1 Problem and Motivation 2

1.2 Scope . 2

1.3 Research Question . 3

1.4 Organization of This Report 4

1.4.1 Chapter One . 4

1.4.2 Chapter Two . 4

1.4.3 Chapter Three . 4

1.4.4 Chapter Four . 5

1.4.5 Chapter Five . 5

1.4.6 Chapter Six . 5

1

1.1. PROBLEM AND MOTIVATION

1.1 Problem and Motivation

A well functioning knee joint is essential to mobility and a important part of daily

activities as standing, walking and running. Knee injuries, for example injuries on

ligaments, meniscus, cartilage or tendons is common in sport among professional

and amateur athletes. These injuries may damage their career or life quality in a

significant.

Joint diseases and load over a longer time span may also also affect the knee joint

mobility, and may also affect the life quality.

A lot of this injuries is a non life-threatening and the consequences from the injuries

are not reducing life-quality enough. This makes the queues long and you usually

have to wait a long time to get the diagnosis you need to continue the treatment of

the injury.

The Magnetic resonance imaging (MRI) is a widely used technique to image and

diagnose injuries like knee-injuries and gives the doctors the ability to look inside

tissues and organs of the body. The data produced by MRI is not segmented. They

need some kind of segmentation tool to make the segmentation of the images. These

tools use a lot of time and often end up with errors in the segmentation. This is

limiting the quantitative uses of the MRI images and humans has to correct the errors.

Successful treatment of a knee with injuries depends on well trained doctors and a good

knowledge about the injury and the rest of the anatomy in the knee. In this master

thesis we will look into how Convolutional Neural Networks (CNN) can automatically

segment MRI images form knees and further findings on how to optimize the CNN.

1.2 Scope

This thesis will study the use of deep learning and the method named Convolutional

Neural Network within computer science. MRI images are a tool to map the inside

2

1.3. RESEARCH QUESTION

tissues of the body, and are widely used in medicine to diagnose injuries in the knee

joint.

The scope of this thesis is therefore:

• Computer Science - Artificial Intelligence / Machine Learning - Deep Learning,

CNN

• Medicine - MRI - MRI segmentation

Figure 1.1: Scope

1.3 Research Question

Based on what has been mentioned in this document, the following research questions

are formulated:

3

1.4. ORGANIZATION OF THIS REPORT

• Does the proposed Convolutional Neural Network (CNN) perform a good seg-

mentation and make it more automatic then today’s solution?

• How does the CNN perform in processing speed compared to older segmentation

methods?

• What can be done to optimize the segmentation results?

1.4 Organization of This Report

The following document consist of six chapters that will cover this master thesis. Here

is a overview of the chapters presented in this document.

1.4.1 Chapter One

The introduction is explaining the problem and gives a overview about the study and

describe why this is a wanted tool.

1.4.2 Chapter Two

This chapter covers the literature review and the previous work related to this topic.

It covers relevant information for understanding this thesis, and describes the scope

more detailed.

1.4.3 Chapter Three

This chapter includes methods and descriptions of the CNN and processes used to

solve the problem.

4

1.4. ORGANIZATION OF THIS REPORT

1.4.4 Chapter Four

The results are presented in this chapter with a description.

1.4.5 Chapter Five

Discussion of the results discovered in chapter four.

1.4.6 Chapter Six

Conclusions from this thesis.

5

Chapter 2

Theory and Literature Review

2.1 Knee Anatomy . 8

2.1.1 Bones . 8

2.1.2 Ligaments . 9

2.1.3 Meniscus . 9

2.1.4 Tendon . 10

2.1.5 Nerve . 10

2.1.6 Blood Vessels . 11

2.1.7 Injuries . 11

2.2 Magnetic Resonance Imaging 12

2.2.1 MRI Components . 12

2.3 MRI Images File Format 14

2.4 Machine Learning . 15

2.5 Neural Networks . 16

2.5.1 Input Layer . 16

2.5.2 Hidden Layers . 17

2.5.3 Neurons . 17

6

2.5.4 Activation Function . 17

2.5.5 Output layer . 18

2.5.6 Data Set . 18

2.5.7 Multi-Class Classification 19

2.5.8 One-Hot Encoding . 19

2.6 Convolutional Neural Network 19

2.6.1 Convolution Layer . 20

2.6.2 Pooling Layer . 21

2.6.3 Fully Connected Layer . 21

7

2.1. KNEE ANATOMY

2.1 Knee Anatomy

It is important to understand the parts of the knee joint, to know how to evaluate the

results of the CNN. The structures of the knee can be divided into several categories

such as shown in the following list and figure [2]:

• Bones

• Joints

• Ligaments

• Tendons

• Muscles

• Nerves

• Blood Vessels

Figure 2.1: Knee anatomy: https://upload.wikimedia.org/wikipedia/commons/b/bc/Blausen0597KneeAnatomySide.png

2.1.1 Bones

The knee joint is where the two bones femur (top) and tibia (bottom) meet. Other

bones close related to the knee joint are the patella (knee cap) and fibula. At the end

of each bone, in the joint where the bone meets another bone, you have the articular

8

2.1. KNEE ANATOMY

cartilage. The articular cartilage has a slippery surface that allows the two surfaces at

the end of each bone to slide against each other without damaging one another. The

cartilage’s main function is to absorb shock and give a slippery surface which helps

the motion in the joint.

2.1.2 Ligaments

Ligaments are strong bands of tissue that connect the bones. You can find four

ligaments in the knee joint. Two of them are located on each side of the knee joint.

The inside ligament is named Medial Collateral Ligament (MCL) and the outside

ligament is named Lateral Collateral Ligament (LCL).

The two other ligaments are inside the knee. The Anterior Cruciate Ligament (ACL)

stretches from the front of the tibia to the back of the femur, and the Posterior

Cruciate Ligament (PCL) stretches from the back of the tibia to the back of the

femur. The LCL and MCL prevent movement in the side direction and ACL and PCL

prevents movement too far in the front and back direction. The ligaments are the

most important tissue to control the stability of the knee.

2.1.3 Meniscus

The meniscus is a fibrocartilage located between the femur and the tibia. The meniscus

is important for two reasons:

• They work like a gasket to spread the force of the weight of the body over a

larger area.

• They help the ligaments with the stabilization of the knee joint.

The meniscus distributes the weight from the femur over a larger area on the tibia and

works like a pillow in between the two bones. This protects the bones from getting to

much force and prevents the bones from taking damage. The meniscus is also thicker

9

2.1. KNEE ANATOMY

on the edges and this helps the femur stay in place and not roll on the tibia.

The meniscus and ligaments are the most important part of the knee when it comes

to stabilizing it. Without strong and tight ligaments to connect the two bones in the

knee joint, you will end up with a loose knee joint and this can damage the knee.

2.1.4 Tendon

Tendons are similar to ligaments but connect muscles to bones. One of these is the

quadriceps tendon that connects the large muscles in the tie named the quadriceps to

the patella (knee cap). This tendon continues over the patella and connects to the

patellar tendon which connects the patella to the tibia. The hamstring muscles in the

back of the tie also have tendons that connect the hamstring with different places at

the tibia.

The extensor mechanism in the knee is the motor that allows movements in the knee

joint. It sits in the front of the knee joint and exist of the patella, patellar tendon,

quadriceps tendon, and the quadriceps muscles. When the quadriceps muscles contract

it straightens the knee joint like getting up from a squatting position.

2.1.5 Nerve

The most important nerves in the knee is the tibial nerve and the common peroneal

nerve. Those nerves are positioned on the back of the knee. These two nerves travel

to the lower leg and foot to give sensation and muscle control in the lower leg and foot.

The sciatic nerve splits above the knee joint into the tibial nerve and the common

peroneal nerve. Both the tibial nerve and the common peroneal nerve can be damaged

by injuries in the knee joint.

10

2.1. KNEE ANATOMY

2.1.6 Blood Vessels

The major blood vessels in the leg travels with the tibial nerve on the back of the

knee. The popliteal artery and popliteal vein is the largest blood supplies to the leg.

The artery carries blood out to the foot and the vein carries the blood back to the

heart. If big damages happen to the popliteal artery and there are no possibilities for

repair, there is most likely not possible to save the leg.

2.1.7 Injuries

The knee has an unstable design and has to support the body’s full weight while

standing and much more than that when walking, running or jumping. This is one of

the reasons why knee problems are a common complaint among people of all ages.

All ligaments in the knee can be injured. It can be stretched, partially torn or

completely torn. Among these injuries, the most common injury is completely torn.

Symptoms of this are pain, popping sound when the accident happens, instability of

the knee joint and joint swelling. In half of the cases where one ligament is torn, the

surrounding ligaments, cartilage or meniscus are also damaged.

This includes all of the following ligaments:

• Meniscus tear

• ACL strain or tear

• PCL strain or tear

• MCL strain or tear

• LCL strain or tear

In case of injuries, an experienced hand can be accurate and tell if the ligaments are

torn or not. But to confirm the injury it is often used MRI to provide images of the

soft tissues like ligaments and cartilage in the knee.

11

2.2. MAGNETIC RESONANCE IMAGING

2.2 Magnetic Resonance Imaging

MRI uses a magnetic field and radio frequencies to take pictures of the body instead

of ionizing radiation as used in x-ray and CT scans. The magnetic field in an MRI

machine is measured in Tesla which represents the magnetic flux density of the magnet.

MRI machines are usually from 1.5T to 3.0T. This produces a very strong magnetic

field, compared with the magnetic field of the earth that is 0.00003T. The strength of

this magnet is strong enough to pick up a car.

Our body is composed of 70% water or H2O and the MRI relies on the magnetic

properties of the hydrogen atom to produce MRI images. The hydrogen atom has a

single proton in the center of the atom. The atom can be charged with a spinning

momentum that produces a magnetic field also named a magnetic moment. Normally

the protons are oriented randomly in all directions when there is no magnetic field

presence. When the hydrogen atom is in a strong constant magnetic field their

magnetic moment line up parallel or anti-parallel to the field. This is also referred to

as a longitudinal magnetization. This can be done by a superconducting magnet such

as the magnetic field produced by the primary magnet in an MRI machine.

This property of hydrogen in a magnetic field is what makes the MRI possible and is,

therefore, an important part of MRI imaging.

2.2.1 MRI Components

The MRI has several components to be able to map the body in a 3-dimensional

image. The components are as follows:

• Primary magnet

• Gradient Magnets

• Radio frequency (RF) coils

• Computer system

12

2.2. MAGNETIC RESONANCE IMAGING

This chapter will describe the different parts and their properties.

Figure 2.2: MRI components: https://en.wikipedia.org/wiki/File:Mri_scanner_

schematic_labelled.svg

Primary Magnet

This is the magnet which makes the strong constant magnetic field in the MRI machine.

As mentioned earlier this magnetic field has a strength between 1.5T and 3.0T and

covers the entire machine.

13

https://en.wikipedia.org/wiki/File:Mri_scanner_schematic_labelled.svg
https://en.wikipedia.org/wiki/File:Mri_scanner_schematic_labelled.svg

2.3. MRI IMAGES FILE FORMAT

Gradient Magnets

The gradient coils generate a second magnetic field overt the primary field. There

are three gradient coils in different directions. The directions are in z, x, y-axis and

represent the directions the MRI can take pictures. The gradient coils produce a

gradient magnetic field that helps the localization of pixels in the image.

Radio Frequency(RF) Coils

The RF coils are responsible for transmitting the radio frequency or RF pulse and

helps you receive images in MRI. The RF coils come in several designs to suit the

part of the body that is going to be imaged. The RF pulse is responsible for flipping

the protons into a high energy state and decreasing the longitudinal magnetization.

It also synchronizes the protons. This turns the magnetization vector of the proton

towards the transverse plane also named a transverse magnetization. The proton does

not stay in this state for a long time and will end up in its normal state within a small

amount of time. This change induces an electrical signal in the RF receptions and the

transverse plane picks up this signal and stores it in the computer system.

Computer System

The computer system receives the signal from the RF and converts it from analog

to a digital signal. This data is then applied to a Fourier Transformation and this

produces the result image.

2.3 MRI Images File Format

The results produced from an MRI is an output file named DICOM. This section is

about the output file.

14

2.4. MACHINE LEARNING

The image format that an MRI scan is returning is a Digital Imaging and Communi-

cations in Medicine (DICOM) file. This is the standard for handling, saving, printing

and transferring medical images and other information regarding this image/patient.

The DICOM-file consists of a header and a data set containing the data that you want

to save of the patient. The header is the part of the filer where the information about

the patient is stored. Example for information that can be stored in the header is:

• Patients name, age, sex, weight and height.

• Acquisitions made from the doctor about what he thought of the image

• Image dimensions

• Matrix size

• Colour space

• Or other. . .

The reason why the header and the image data is in the same file is because it should be

hard to separate the two of them. You do not want to lose the patient info connected

to the given image. When converting the file from DICOM to another type of file you

will lose the patient data. This is in our case necessary because the patient data is

classified and unauthorized people are not allowed to work with this type of data. The

DICOM format stores any kind of data and images are stored as pixel data from an

MRI session. Since the DICOM file only stores one image each file, you need to store

as many files as there are layers in the z-direction of the image. All the images are

stored with the file type “*.dmc”. If there is an MRI scan producing a 255*255*255

pixel image, you end up with 255 “DCM” files containing one image each file.

2.4 Machine Learning

Machine learning is all about understanding and extracting knowledge from data. It

is a researching field within Artificial Intelligence and has a lot of branches branching

15

2.5. NEURAL NETWORKS

out of it. The use of applications helped by a machine learning algorithm is to find

in all our lives. Everything from picking recommended music, videos, movies, and

other entertainment, to unlocking our phones and in general makes tasks in our daily

lives easier. The idea of machine learning is not a new field of research. AI was first

discussed by Alan Turing in the 1950s and this raised the question: Could a computer

go beyond “what we know how to order it to perform” and learn on its own how to

perform a specified task? The use of machine learning has a big influence on how

data-driven research is done today. It helps science understand problems that not

necessarily are recognized by humans such as finding particles, analyzing DNA and

recognizing cancer.

2.5 Neural Networks

Neural networks are inspired by our human brain. The human brain contains roughly

86 billion neurons and the connections between these neurons are what make our mind

so powerful. Our mind controls everything from your body, thoughts, memories and

more. The concept of using a neural network-model in computing is not a new field of

research [XXX]. It was first presented for over 60 years ago, but the technology at

that time had no possibilities to apply such a model. In this section, we are going to

look closer into how neural networks function and particularly how the convolution

neural networks function (CNN). CNN is the computer equal to human eyes and is

copying how shapes, color, and shades are processed in our brains. There are many

kinds of neural networks and some of the easiest to imagine is a feed-forward neural

network. The neural network is containing the following parts:

2.5.1 Input Layer

The input-layer works as an entrance to the hidden layers. This entrance is tailored

for the data to fit into the neural network. The data often needs to be processed to fit

16

2.5. NEURAL NETWORKS

into an input layer and when the data is in the same size and dimensions as the input

layer, the data is ready to be processed in the neural network.

2.5.2 Hidden Layers

The hidden layers are what makes up the neural network, and the “magic” it does. In

the hidden layer, we are talking about numbers of hidden layers. This is the number

of layers with a decided amount of neurons in the depth of the network. In between

the layers are connections/weights which separates the neurons from the previous

layer to the next layer.

2.5.3 Neurons

Neurons are connected to the previous layer and receives values from the previous

neurons which are weight and then pushed through an activation function. The value

of the current neuron can be updated by changing the value of the weights coming

into the neuron.

2.5.4 Activation Function

As mentioned in the previous section, there is a function used to calculate the new

value of a neuron. This is used to normalize data and keep the neurons under control.

A neuron can often make conclusions by looking at noise (data that are misleading or

confusing) and keep evolving around this misunderstanding. There are therefore a lot

of different types of activation functions depending on what type of problem you want

to solve. E.g. the activation function named ReLu is converting all negative values to

0 and all positive values are still the same.

17

2.5. NEURAL NETWORKS

2.5.5 Output layer

The output layer is similar to the input layer. It is the exit of the neural network

and this is where you get your results. Therefore the output layer has to be in the

same dimensions and size as the expected results. This means that the labeled known

training results should have the same size and dimensions as the output layer. So if

you are classifying an image to be either a “Dog” or a “Cat” the output should be an

approximation of what the network thinks it is e.g. [0.95, 0.02]. This is showing that

this neural network thinks it is a “Dog”.

2.5.6 Data Set

Picking better data

To solve the problem, it is useful to pick the data that suits the problem best. This

includes removing data that are not useful or generating/add more data that we want

and supports our conclusion.

Pre-Processing and Scaling

In neural networks and convolutional neural networks, the algorithms are sensitive to

the scale of the data. Therefore, it is common practice to scale and pre-process the

data set before giving it to the network. The data should be adjusted in such a way

that it suits and optimizes the performance of the network. In a lot of cases, the data

is too detailed, the contents can be irrelevant for the problem that you are trying to

solve, or just not fit for the network to function optimally. In this case scale the data

to fit the network by e.g. reducing dimensions, changing the data type, or fitting it

into another shape that suits better. A very important thing to remember when you

are changing the training data is that the test data should be treated in the same way.

If it is necessary to keep the original data types and scale for the results, this can be

achieved by undoing the processes done before the neural network.

18

2.6. CONVOLUTIONAL NEURAL NETWORK

2.5.7 Multi-Class Classification

In a lot of cases, it is enough to calculate single/binary values like is it a dog in this

image or not. But in cases where there are more than two classes to classify a problem

appear. The problem is an instance of multi-class classification. When this is the case

and every single point should be classified into only one of the categories, meaning

that one of the categories is 1 and the rest is 0, you have an instance of single-label,

multi-class classification.

2.5.8 One-Hot Encoding

When classifying multiple classes or solving categorical variables (single-label, multi-

class classification) such as the one mentioned in the above chapter. The most common

way to represent the data is using the one-hot encoding also known as categorical

encoding. The reason behind this is to simplify the variables into true-false, or 0 -1

values to represent what class it is representing. E.g it is possible to classify an image

and tell if there is a cat or a dog in it.

This can also be done per pixel in the entire image.

2.6 Convolutional Neural Network

The human vision is an advanced sensor. Within fractions of a second, we can identify

all objects in our line of sight without even thinking about it. We can name the

object, tell how far away it is, calculate its movement and predict where the object is

going to be in the near future. Our eyes take raw pixels of colors and transform them

into more primitive shapes like shadows, lines, curves, and other shapes. And then it

gets process into one object and classified. The human vision is the motivation for

the convolutional neural network and the difference between how an ordinary neural

network and the CNN processes data.

19

2.6. CONVOLUTIONAL NEURAL NETWORK

Convolutional Neural Network (CNN) is a deep learning, feed-forward artificial neural

network. CNN is good at recognizing objects in images and that is why CNN is a

good solution for recognizing different tissues in an MRI image. The input to a CNN

can be a 2D image, 3D image, sound or any data where the columns and rows are

closely related to each other. This is because of the unique properties of the CNN

algorithm.

CNN is a multiple layer neural network. This means that it uses several layers in

depth to produce a result. The following sections will describe the layers in detail.

2.6.1 Convolution Layer

The convolutional layers perform a 2D convolution that compares a squared filter over

the entire images. The filter could be an edge, line, dark spot or light spot, that scores

the parts of the image to how similar that part of the image is to the filter. After

applying the filters the convolutional layer gives the result to the next layer.

The first convolutional layers look at simple filters, but the filters get more complex

in the following layers and could represent entire objects instead of lines or spots. In

the following figure you can see how the different layers have different complexity in

the filters and can recognize objects like faces and cars in the last layer.

20

2.6. CONVOLUTIONAL NEURAL NETWORK

Figure 2.3: CNN Convolution Layers

2.6.2 Pooling Layer

The convolutional networks often include local or global pooling layers. This down-

sampled the output and uses, for example, max pooling or average pooling to define

the down-sampled value. The pooling layer also makes the filter less sensitive to the

position. This is good because you do not want to focus on an exact position but

what is appearing in the image.

2.6.3 Fully Connected Layer

The final layer in a CNN is named Fully Connected Layer. This is where every value

that has gone through all the filters earlier gets a vote to find what the answer is going

to be. We take all the values and list them up in a single fully-connected table where

it weights against all the objects. The one object with the strongest average is what

the CNN will return as its result.

21

2.6. CONVOLUTIONAL NEURAL NETWORK

Figure 2.4: Full CNN network

22

Chapter 3

Methodology

3.1 Software . 24

3.1.1 Keras and TensorFlow . 24

3.1.2 Computer Specifications . 24

3.2 Data-set . 25

3.2.1 Raw Data . 25

3.2.2 Mask/Label Annotation . 27

3.3 Program . 28

3.3.1 UNet . 30

3.3.2 Activation Function . 31

3.3.3 Loss Function . 32

3.4 Evaluation . 33

3.4.1 Confusion Matrix . 33

3.4.2 Measure performance . 35

23

3.1. SOFTWARE

3.1 Software

The code for this was built using Python programming language, the Keras library

with TensorFlow as backend.

3.1.1 Keras and TensorFlow

Keras is a widely used high-level neural network API. The Keras library is a user-

friendly, modular and extensible library that allows fast prototyping. It is an excellent

library for developing CNNs and runs seamlessly on both CPU and GPU. It is an

open-source library that is written in python which makes it easy to understand and

debug if any problems should occur.

Keras is using TensorFlow as a backend. TensorFlow is an open-source platform used

for machine learning.

The U-Net model is programmed such that it is running on both of the graphic-cards

on the computer.

3.1.2 Computer Specifications

The computer used to perform these tasks is a computer owned by NTNU. This

computer has good hardware and is a good environment to perform a task such as

this. The hardware specifications is as follows:

• Intel(R) Core(TM) i9-9960X CPU 3.10GHz (Cores)

• 64GB Ram

• SSD 1024 GB

• 2 x NVIDIA GeForce RTX 2080 with 8GB of VRAM

24

3.2. DATA-SET

3.2 Data-set

The data-set is from 20 different knees, but one is not used because it occurred

problems when reading the file. There are used several different imaging techniques

used to image the knee. This is done by the MRI scanner and uses the different

properties of the tissue to get different values from the individual tissues. In this

data-set, we are using three different imaging techniques. This makes it more likely to

distinguish the tissues from one another. The different imaging types that are used are

T1, PD, and FS. The images are anonymous and delivered by MR-Klinikken Møre for

research on this topic. The images are from the right knees from 20 individual subjects

with an estimated healthy knee. The subjects are all adults in the age between 27 and

64. And it is a 50% distribution between males and females. The average age is 46.

All images are inside a preferable quality. This means that the images are in between

the good conditions where the image is sharp and with good contrast and some images

that did not qualify within these parameters were thrown away.

The labels or also known as the ground through is segmented by qualified persons in

MR-Knlinkken Møre with help of tools that are widely used to segment such images.

3.2.1 Raw Data

There are 20 test images delivered with the raw data images from T1, PD, and FS as

well as the ground truth/label saved as Nifty files.

25

3.2. DATA-SET

Figure 3.1: T1 raw image

Figure 3.2: FS raw image

26

3.2. DATA-SET

Figure 3.3: PD raw image

3.2.2 Mask/Label Annotation

The ground truth also named mask or label is a 3-dimensional image in the same

shape/size as the raw image data. The difference is that it only contains values of the

pixels that are classified as some of the tissues that are in the knee. This means that

if a pixel is outside the knee joint or an unspecified tissue in the knee, it has the value

0. Depending on how many tissues are labeled in the image, the range of the pixels is

integers reaching from 0 to the number of tissues classified in the image.

Since the labeled image contains an integer with the range from 0 to the number

of tissues that are classified, the labeled image needs to be converted into one-hot

encoding to fit the input values of the model [as discussed in the section about one

hot encoding]. This is done while loading the labels and all the ground truth (labels)

are stored as this while the program is processing the data. The labels used in this

data-set is the following:

27

3.3. PROGRAM

• Empty/not classified - Value 0 - Black

• Bone - Value 1 - Dark gray

• PCL - Value 2 - Light gray

• ACL - Value 3 - White

Figure 3.4: Label Image

3.3 Program

The following figure shows the flow of the python script and how it manipulates the

data to get the predicted result. You can find the source code as an appendix XX.

Figure 3.5: Program Flow

The data we are using are 3-dimensional images of human knee joints. The original size

28

3.3. PROGRAM

of the images is 400x400x275 where each pixel represents a space of 0.XX cm in real life.

The original image is scaled down to make the images fit into the convolutional neural

network. This is done by resizing the image to the size 256x256x256. The resizing of

the image also applies to the labeled image, to make sure that the input and output

pixels are the same amount. The input format is then given a new dimension and

then the dimensions look like one of the following: 256x256x256x1, 256x256x256x2,

256x256x256x3. This depends on how many of the raw data image types we want the

CNN to process.

Since the labeled data set is labeled with 3 labels. That is not included no label. This

means that the output data has 4 different values as a possible value. In the labels,

there are classified bones, and the ACL and PCL (see. Medicinal section). The same

one-hot encoding is applied on the labeled data-set to fit it into the CNN.

The following table show how the size and dimensions are changed throughout the

programming script.

Table 3.1: Dimension Size

Image Type Raw image

dimensions

Input

dimensions

Output

dimensions

Saved

classified

T1 1 x 400x400x275 256x256x256x1 256x256x256x4 400x400x275x4

PD 1 x 400x400x275 256x256x256x1 256x256x256x4 400x400x275x4

FS 1 x 400x400x275 256x256x256x1 256x256x256x4 400x400x275x4

PD, T1 2 x 400x400x275 256x256x256x2 256x256x256x4 400x400x275x4

PD, FS 2 x 400x400x275 256x256x256x2 256x256x256x4 400x400x275x4

FS, T1 2 x 400x400x275 256x256x256x2 256x256x256x4 400x400x275x4

PD, T1, FS 3 x 400x400x275 256x256x256x3 256x256x256x4 400x400x275x4

29

3.3. PROGRAM

3.3.1 UNet

The Convolutional neural network is a U-Net [8] inspired network and it is built using

the Keras library. The figure [xxx] shows how the network structure is. It shows 5

levels of layers where the first layer is the input layer. After the input layer, there is

a convolutional layer that is discussed in section 2.6.1. All the convolutional layers

are followed up by a batch normalization layers. After two convolutional layers with

a corresponding batch normalization layer, there is a max-pooling layer. The next

level starts with a dropout layer where the first dropout layer is halved to prevent

the model from forgetting any good finds in the first layer. Then it repeats the same

pattern as described above. This repeats in all 5 levels and then the 5 decoding levels

starts, where the goal is to reach the original image size with the labels instead of pixel

values. The first level is started with an up transposed and followed by a merging with

the concatenation and followed by a new dropout layer. Then it is new layers with

two times of convolution and batch normalization. Next, there is a new transposed

layer to double the size of the image and the layer is done. It is then repeated until

it is scaled up to the same size as the input and then the output is generated. All

max-pooling layers and transpose layers contain a size of 2x2, so it gets half the size

each time the max-pooling is applied and double size when the transpose layer is

applied.

30

3.3. PROGRAM

Figure 3.6: CNN structure. See detailed summary in Apendix B CNN Summary.

3.3.2 Activation Function

The convolutional layers are using ReLu as an activation function and the padding is

the same to keep the same size of the image.

The last activation function is a sigmoid function. It could also have been a softmax

function but this is solved later by applying an argmax function (A function that gives

the class with highest probability a new value of 1 and the other classes a value of 0.)

31

3.3. PROGRAM

to the output and then get the highest scored output. Sigmoid and softmax are pretty

similar but softmax also applies the argmax. Because it was used sigmodi in this last

layer the argmax function has to be applied after the output has been generated.

3.3.3 Loss Function

Categorical Cross-entropy

To calculate the loss with categorical cross-entropy you take the true value and

multiplies this with the log value of the prediction. Say that we are looking at only

one class and one pixel where the true values is 1. And for example, the prediction is

right. This gives us the following loss: -1*log(1)= 0. Say that the prediction is only

50% probability on the right class, the loss will be as follows: -1*log(0.5) = 0.693 The

loss is added together for all the classes in all the pixels of the image and this is how

you get the total loss in the image.

Weighed Categorical Cross-entropy

For an unbalanced data-set such as this one, the original categorical cross-entropy

usually updates the weights so that the most common classes are prioritized and the

lower weighed classes often get ignored. This is because a class with lesser pixels in

the ground truth does not add together to a big enough loss to make a difference.

To solve this there is added a weight to the calculated loss. If there is a class that has

the true value of 1 and it is a class that needs to be weighed up with a value of 2 and

the predicted value is 0.5. This gives us the following loss: -1*log(0.5) * 2 = 1.386

To predict the given problem and the unbalanced classes in our data-set, it is calculated

the original categorical cross-entropy, and two versions of weighted categorical cross-

entropy. The following values are the weights used on the loss function, where the

first value represents value and class 0 and continuing left up to value and class 3:

WCC = [1.0, 1.05, 6.9, 11.8]

32

3.4. EVALUATION

WCC2 = [1.0, 1.1, 12.0, 19.7]

3.4 Evaluation

Sometimes when evaluation the results, it is not enough to look at the accuracy. This

especially true when you are looking at a multi-class classification problem. Like other

problems such as binary classification, it is possible to evaluate the results in multiple

ways and then calculate the average of all classes. This chapter will tell more about

the evaluation methods used in this master theses

3.4.1 Confusion Matrix

Confusion matrices are often used for the evaluation of a model. When solving a

binary classification (see chapter about binary classification) this could be illustrated

pretty easily. In the next table you can see how binary classification results can

be distributed four different categories. This is True Positive, True Negative, False

Positive and False Negative, also known as TP, TN, FP, and FN. True positive and

true negative is when you are predicting the correct value of that given point either

if it is a positive value or a negative value. When you hit a false positive the model

gives a false alarm a predicts this point to be something that it is not. And a false

negative is when it is predicting noting but missing on a positive value.

Table 3.2: Confusion Matrix

True

Predictions

Predicted

True

Predicted

False

True TP FN

False FP TN

33

3.4. EVALUATION

Metrics for Multi-Class Classification

In short steps, the multi-class classification is similar to the binary classification, but

you take the average over all the classes given in the problem. When classes are

imbalanced as it often is. The accuracy is not any good type of evaluating the network.

An example of an imbalanced data-set where the model has classified 90 % to be class

A, 6 % class B, and 4 class C. In this case, the accuracy does not mean anything at all.

You could score 85 % accuracy, but this does not tell if you are correctly predicting

anything from class B or C.

Multi-Class Confusion Matrix

The confusion matrix is, in this case, the only way to control that the model is correctly

predicting the separate classes. Considering the same three classes (A, B, and C)

as the model example above. You can see in the following table that the model is

predicting the classes with a bad rate. Although the accuracy is tolerably high.

Table 3.3: Confusion Matrix with values.

True

Values

Predicted

A

Predicted

B

Predicted

C

A 180 0 0

B 2 6 2

C 0 3 7

This confusion matrix shows in detail how the predictions are made by the model.

Known classes is representing the label data that is known to be the correct answer to

this problem. The Predicted Class is what the result from the predictions the model

has made. The diagonal elements in this matrices are the correctly predicted classes

and the other values show how the model misses and tells you a lot about what issues

this model is having with the problem it is trying to solve.

34

3.4. EVALUATION

Table 3.4: Confusion Matrix Notation

True

Values

Predicted

A

Predicted

B

Predicted

C

A TPa eab eac

B eba TPb ebc

C eca ecb TPc

The notations used for values taken from the confusion matrix when evaluation

multi-class classification is as the table shown above.

3.4.2 Measure performance

There are several methods used to calculate the performance of a model. The reason

behind having several methods is to understand and measure the performance of the

model in more detail.

Accuracy

Accuracy is the simplest way to measure performance and often used to evaluate the

model while training. It is total predictions that are true divided by total data point

in the entire data set.

Accuracy = (TP)/(total data predicted)

Precision

Precision also named positive predictive value is measuring the accuracy within a

given class. This means that if the model has predicted this class, what is the accuracy

for tat this is a correct prediction.

Binary classification

Precision = tp/(tp + fp)

35

3.4. EVALUATION

Multi-class classification

Precision(a) = TPa/(TPa + eba + eca) = 180/180 + 2 + 0 = 0.989

To calculate the total precision for the entire model, you calculate the average precision

of each class.

Recall

Given that this is a value that should be positive, what is the accuracy for the model

to find and predict the true value.

Recall = sensitivity = tp/(tp + fn)

Recall(a) = TPa/(TPa + eab + eac) = 180/(180 + 0 + 0) = 1.0

F1-score

Say that you have two different models or algorithms scoring differently on accuracy,

precision, and recall. Where one is better in precision and the other is better on recall.

f1-score helps you classify which one of these models/algorithms is the better one.

The mathematical formula for f1-score is:

f1 − score = 2 ∗ (precision ∗ recall)/(precision + recall)

When scoring a multi-class classification there are two possible ways to calculate the

f1-score, which is macro-f1 and weighted-f1.

Macro f1-score

Macro f1-score is the simplest way to calculate the f1-score for multi-class classification.

This takes the average of the f1-scores for each class. And the mathematical formula

36

3.4. EVALUATION

is as follows [7]:

Macro− F1 = (F1a + F1b + F1c)/3

The macro f1-score does not consider that the classes are differently weighted. this

tells us a lot about how it scores on each class but does not consider the total image.

Weighted f1-score

The weighted f1-score takes to a count that the classes may not be equally weighted.

This means that the F1-score gets weighted by how many percentage of this class is

represented in the data-set.

The mathematical formula for this is as follows:

weighted− f1 = (F1a ∗ truea + F1b ∗ trueb + F1c ∗ truec)/(totalpredictions)

37

Chapter 4

Results

4.1 Loss Function . 39

4.1.1 Categorical Cross-entropy 40

4.1.2 Weighted Categorical Cross-entropy 41

4.1.3 Weighted Categorical Cross-entropy 2nd Version 42

4.2 Compared results of different input 43

4.2.1 One Input . 43

4.2.2 Two inputs . 47

4.2.3 Three inputs . 51

4.3 Accuracy over Iterations 53

38

4.1. LOSS FUNCTION

4.1 Loss Function

As discussed earlier there are used 3 different loss functions used to calculate the

loss on CNN. See section 3.3.3. Early findings in the project show that the original

categorical cross-entropy was not able to score any of the lower weighted classes.

As showing in the upcoming tables, there is a significant difference in the performance

between the functions used. Especially when training the model for lesser iterations,

you will see that the categorical cross-entropy has ignored the lower weighted classes

and does not hit any pixels in those classes.

39

4.1. LOSS FUNCTION

4.1.1 Categorical Cross-entropy

The evaluations of the categorical cross-entropy with one T1 input and 10 iterations

and all three inputs with 1000 iterations are shown in the tables below. The categorical

cross-entropy has greater problems when scoring the lower weighted classes. But the

scores in the first two classes seems to be a good representation of the ground truth.

The macro F1-score shows that the average over the F1-scores is pretty bad. Although

the model that used 1000 iterations of training scores way better, and are evening

out the gap from the other two loss-functions. It still scores the worst on the smallest

class value 3.

Table 4.1: CC (T1 10)

Class True

Positive

Recall Precision F-Score

0 39847412 0.997962 0.9975 0.998

1 3969431 0.98535043 0.9799 0.983

2 0 0 Nan Nan

3 0 0 Nan Nan

Note: Macro F1-score: 0.495077424, Weighted F1-Score: 0.995356337.

Table 4.2: CC (PDFST1 1000)

Class True

Positive

Recall Precision F-Score

0 39826899 0.997448257 0.998432467 0.997940119

1 3974149 0.986521602 0.979427857 0.982961931

2 31011 0.82651919 0.763216184 0.793607329

3 2361 0.449971412 0.191670726 0.26883006

Note: Macro F1-score: 0.76083486, Weighted F1-Score: 0.996307596.

40

4.1. LOSS FUNCTION

4.1.2 Weighted Categorical Cross-entropy

The evaluations of the weighted categorical cross-entropy is shown in the tables below.

The tables are showing one T1 input with 10 iterations of training and all three inputs

with 1000 iterations of training. As the macro f1-score shows that the weight helps

the training find the lower weighed classes early in the training.

Table 4.3: WCC (T1 10)

Class True

Positive

Recall Precision F-Score

0 39789051 0.9965 0.999 0.9977

1 3987212 0.9898 0.972 0.981

2 34902 0.9302 0.649 0.7649

3 3904 0.744 0.313 0.4402

Note: Macro F1-score: 0.795939725, Weighted F1-Score: 0.995899592.

Table 4.4: WCC (PDFST1 1000)

Class True

Positive

Recall Precision F-Score

0 39821311 0.997308308 0.998482868 0.997895242

1 3974473 0.98660203 0.978368421 0.982467975

2 32523 0.866817697 0.701349953 0.775354027

3 2467 0.470173432 0.260699567 0.335418083

Note: Macro F1-score: 0.772783832, Weighted F1-Score: 0.996214022.

41

4.1. LOSS FUNCTION

4.1.3 Weighted Categorical Cross-entropy 2nd Version

The evaluations of the weighted categorical cross-entropy version two is shown in the

tables below. The tables are showing one T1 input with 10 iterations of training and

all three inputs with 1000 iterations of training.

Table 4.5: WCC2 (T1 10)

Class True

Positive

Recall Precision F-Score

0 39820557 0.99729 0.9982 0.99773

1 3956394 0.98211 0.9834 0.98277

2 35418 0.94398 0.5659 0.70763

3 4858 0.92586 0.2354 0.37535

Note: Macro F1-score: 0.765870872, Weighted F1-Score: 0.996036625.

Table 4.6: WCC2 (PDFST1 1000)

Class True

Positive

Recall Precision F-Score

0 39819616 0.997265857 0.998468482 0.997866807

1 3974554 0.986622137 0.977598792 0.982089738

2 31909 0.850453092 0.687560602 0.760380798

3 2311 0.440442157 0.31796918 0.36931682

Note: Macro F1-score: 0.777413541, Weighted F1-Score: 0.996144863.

42

4.2. COMPARED RESULTS OF DIFFERENT INPUT

4.2 Compared results of different input

In this section, we will show the results of the performance of the different imaging

types. As discussed earlier in section 3.2 there are 3 different imaging techniques

delivered in this data-set and we will look deeper into how these images performed.

And maybe discover if one of them are containing more information or a better choice

when you want to segment the classes.

4.2.1 One Input

In this section, we will look at how the different image techniques performers when

training the model. Comparing the three different imaging types FS, PD, and T1 to

see which one of these images performs the best. We will look into how it scores in the

evaluation methods discussed in section 3.4.2. There seems to be a big gap between

how the different imaging types scores in the early stages. As shown in the tables

below there are some imaging types that are not able to detect some of the classes.

Although FS and T1 seem to do pretty decent there are some big differences with the

PD images.

43

4.2. COMPARED RESULTS OF DIFFERENT INPUT

PD

The figure shows how the PD image type has evolved the weights in the network

with the weighed categorical cross-entropy after just 10 iterations of training. You

can see that this input has problems detecting the lower weighted classes such as the

ACL and PCL values 2 and 3. In the table, you can see the evaluation of the entire

3-dimensional image. The calculated average F-scores is bad because it does not score

the third class at all. The average F1-score and weighted F1-score is as follows:

Average = 0.629306106

Weighted = 0.993824558

Figure 4.1: Raw PD, Predicted output, Ground truth

Table 4.7: PD 10 iterations

Class True

Positive

Recall Precision F-Score

0 39777731 0.996216865 0.997099323 0.996657899

1 3935749 0.97698939 0.965525878 0.971223809

2 18446 0.49163113 0.609261461 0.544161897

3 0 0 Nan Nan

44

4.2. COMPARED RESULTS OF DIFFERENT INPUT

FS

The following figure shows how the FS image type has evolved the weights in the

network with the weighed categorical cross-entropy after just 10 iterations of training.

It manages to find all the classes but still has some problems classification the lowest

weighted classes.

Average = 0.714017027

Weighted = 0.989512527

Figure 4.2: Raw FS, Predicted output, Ground truth

Table 4.8: FS 10 iterations

Class True

Positive

Recall Precision F-Score

0 39669131 0.993497023 0.994866632 0.994181355

1 3825669 0.949663716 0.944144318 0.946895974

2 31276 0.83358209 0.611851243 0.705709805

3 2963 0.56470364 0.128440765 0.209280972

45

4.2. COMPARED RESULTS OF DIFFERENT INPUT

T1

The following figure shows how the T1 image type has evolved the weights in the

network with the weighed categorical cross-entropy after just 10 iterations of training.

The average Macro F1-score is the best score in all of the results with only 10 iterations.

Average = 0.795939725

Weighted = 0.995899592

Figure 4.3: Raw T1, Predicted output, Ground truths

Table 4.9: T1 10 iterations

Class True

Positive

Recall Precision F-Score

0 39789051 0.99650037 0.998898098 0.997697793

1 3987212 0.989764291 0.97229485 0.9809518

2 34902 0.930223881 0.649436195 0.764874756

3 3904 0.744044216 0.312595084 0.440234551

46

4.2. COMPARED RESULTS OF DIFFERENT INPUT

4.2.2 Two inputs

By combining two of the images to the input layers. The evaluations start looking

better. There are still some of the imaging types that perform better than the others.

The different combinations of 2 image types are shown in the below sections where

the tables show the scoring of evaluation methods discussed in section 3.4.2.

47

4.2. COMPARED RESULTS OF DIFFERENT INPUT

FS and PD

There are some problems when classifying lower classes in data containing two images

where the PD image type is present. In this case, none of the lower classes were

detected.

Average = 0.492114709

Weighted = 0.993381669

Figure 4.4: Raw FS, Raw PD, Predicted output, Ground truths

48

4.2. COMPARED RESULTS OF DIFFERENT INPUT

Table 4.10: FS, PD 10

Class True

Positive

Recall Precision F-Score

0 39796975 0.996698823 0.996539267 0.996619038

1 3932679 0.976227309 0.967491549 0.971839799

2 0 0 Nan Nan

3 0 0 Nan Nan

FS and T1

This combination scores the best of the inputs containing two image types.

Average = 0.756220155

Weighted = 0.995905556

Table 4.11: FS, T1 10

Class True

Positive

Recall Precision F-Score

0 39795367 0.996658551 0.99865021 0.997653386

1 3975564 0.986872854 0.977049596 0.981936658

2 36510 0.973081023 0.5853682 0.730996786

3 3893 0.74194778 0.199375192 0.314293788

49

4.2. COMPARED RESULTS OF DIFFERENT INPUT

Figure 4.5: Raw FS, Raw T1, Predicted output, Ground truths

PD and T1

There are some still some problems when classifying lower classes in data containing

two images where the PD image type is present. Combined with the T1 image type

the PD scores a better then whit the FS.

Average = 0.68750736

Weighted = 0.996072251

50

4.2. COMPARED RESULTS OF DIFFERENT INPUT

Figure 4.6: Raw PD, Raw FS, Predicted output, Ground truths

Table 4.12: PD, T1 10

Class True

Positive

Recall Precision F-Score

0 39813380 0.997109679 0.99858805 0.997848317

1 3979720 0.987904517 0.975905694 0.981868449

2 34614 0.922547974 0.661203438 0.770312674

3 0 0 Nan Nan

4.2.3 Three inputs

This is the most common way to combine the image-types to represent all three inputs

and make the network look at all the image-types in one. Since this image contains

the most of information there is easy to conclude that this is the best input for the

network. Although there seems to be some imperfections also with this input.

51

4.2. COMPARED RESULTS OF DIFFERENT INPUT

Average = 0.798264327

Weighted = 0.995903632

Figure 4.7: Raw FS, Raw PD, Raw T1, Predicted output, Ground truths

Table 4.13: PD, FS, T1, 10

Class True

Positive

Recall Precision F-Score

0 39789588 0.996513818 0.998841493 0.997676298

1 3984817 0.989169769 0.973869288 0.981459901

2 34937 0.931156716 0.628216424 0.75026038

3 3901 0.74347246 0.230664617 0.352091701

52

4.3. ACCURACY OVER ITERATIONS

4.3 Accuracy over Iterations

Show the results of the classification as a 3D image of the entire image. The model

reduces its loss within a small number of iterations. It seems to get too detailed and

starts introducing some errors. Although it scores better in f1-score the visualization

looks more wrong.

Figure 4.8: 10, 100, 1000

Figure 4.9: Caption for this figure with two images

53

Chapter 5

Discussion

5.1 Loss-Function with Weights 55

5.2 Best Input to Build a Model 55

5.3 Best Model . 56

5.4 Model error vs. Human error 58

54

5.1. LOSS-FUNCTION WITH WEIGHTS

5.1 Loss-Function with Weights

The categorical cross-entropy (CC) scores great values on the knee, looks realistic with

no obvious fails to recognize visually on its own and not comparing it to the labeled.

Overall the categorical cross-entropy maybe the best-looking knee segmentation. But

it does not score a good blue value (class 3). It does a god segmentation elsewhere

and does not detect tissue remote from where it should be. When training the model

for fewer iterations there is a significant issue in the CC’s way to identify the lower

classes and it regularly does not score any positives in class 2 and 3.

The first weighted categorical cross-entropy seems to be performing somewhere in

between CC and the second version of weighted categorical cross-entropy. It does not

achieve the best results at any of the classes but always makes a decent detection of

the small classes and a satisfying segmentation on detecting the bone tissue values 1.

The second is the best model to predict value 3 and does that one properly. It does,

however, find points outside what seems to be a reasonable area to detect the low

weighted classes. This loss function had the best performance of them all when training

for only 10 iterations. It detected all classes early, already after a small number of

iterations with all inputs.

5.2 Best Input to Build a Model

In the earliest stages of training, the PD seems to contain less information than the

other two imaging types. It has problems detecting the ACL and PCL, also when

combined with other imaging types.

When training with only 10 or 100 iterations, this seems to be the best results combining

all of the outputs. Although when training over 1000 iterations the differences seams

to even out and there is no big differentiation anymore.

It seems that the 3 inputs introduces more noise than information to the model when

55

5.3. BEST MODEL

training the model for many iterations. This can bee seen when looking at the best

models from 1000 iterations. When studying this network the best evaluation seems

to come from the segmentation from models created only whit T1 images.

5.3 Best Model

There are a couple ways to explain which model is the best. The first is an overall

accuracy. This is model is made by combining the categorical cross-entropy and T1

image over 1000 iterations. This gives a clear and realistic outcome that does score as

high as 99,638 % accuracy. Witch is a satisfying accuracy to have on a CNN. Out of a

total of 44 000 000 pixels, there are 43 840 759 correct classified pixels. Only missing

on 159 241 of the pixels. But there is a problem with this model as well. Although it

scores high in accuracy it has a problem detecting the smaller classes. The smallest

class contains 5247 pixels, and this model only scores 3050 correct classifications in

this class.

56

5.3. BEST MODEL

Figure 5.1: Best Result CC

The second way to score the best model is to look at the model that scores the highest

accuracy on each of the classes combined. This model is created using one of the

inputs. It uses T1 images and have the second weighted cross-entropy trained over

1000 iterations. It gives a realistic outcome with some missed boundaries in the ACL

and PCL. It still has a good accuracy with 99,60 % and scoring 43 825 612 out of 44

000 000 leaving only 174 388 missed pixels. This model scores way better on the lower

weighted classes and hits on 4436 of the total 5247 pixels in the class with value 3.

57

5.4. MODEL ERROR VS. HUMAN ERROR

Figure 5.2: Best Result WCC2

5.4 Model error vs. Human error

We are scoring the accuracy of the predictions and on most of the cases, it is better

then 99%. This brings up the question: How accurate are these predictions against the

actual true values and does the old techniques also have some error when classifying

the ground truth.

58

5.4. MODEL ERROR VS. HUMAN ERROR

The ACL and PCL are often drawn by hand by a human that is qualified to know

where it starts, ends and where it should go in between these points. But the pixels

that are marked are pixels that often are dark and other pixels surrounding the

ligaments are also dark. This makes it hard for a human to see the difference and

it can introduce errors to the labeled ground truth. By looking at the ground truth

you can also detect some unrealistic pixels and shapes in the way the ligaments look.

After viewing some of the results and applying the new predicted segmentation’s on

top of the original image, the output from this model seems to be as possible as the

ground truth.

59

60

Chapter 6

Conclusion

61

6.1. CONCLUSION AND FUTURE WORK

6.1 Conclusion and Future Work

The segmentation of bodyparts are a valuable tool to both understand and examen

the human body. You can add a segmented bodyparts in a 3-dimensional world, look

at it from different angles and discover something you could not have seen from a

2-dimensional view.

The designed python script named MartiNet is a Convolutional Neural Network

(CNN) using Keras with TensorFlow as backend. It is a CNN created to make detailed

segmentation of the knee joint. It is a U-Net inspired network that can classify each

pixel in an MRI scan as a tissue.

This CNN is a tool performs this task very well. It can make a precise prediction and

outputs a segmentation that is over 99% accurate and looks as real as the ground truth.

It is probably not a perfect segmentation and it will require few corrections. These

corrections can be performed by a professional in a short amount of time. This is a

significant decrease in workload taken into a count that the CNN segments the entire

knee in only seconds compared with the old method that used hours to complete.

The biggest issue was when detecting small tissues that do not have a lot of pixels

in the images. This was solved by adding a weighted loss function. This had a big

impact on how it performed on the smaller classes an this could be considered further

when segmenting more labels on the knee. The loss function named WCC2 sowed a

promising result on classifying these lower weighted classes. For further work, there

should be a task finding a ratio or an optimal description for the weights which could

help a lot when classifying more labels.

When looking at the different input images and how they performed, there were no

significant differences. The finding in this thesis shows results that can point in the

direction of using only one input image (T1) when classifying just three labels as the

bone, PCL and ACL.

This could also work on several other joints on the human body and a CNN like this

62

6.1. CONCLUSION AND FUTURE WORK

can almost without any modifications be trained to classify other bodyparts.

As further work, this CNN could detect more labels. The rate of learning in this CNN

was fast and it had an accuracy of better than 95 % after only a few iterations. This

shows that there is space for more complex problems and it is possible to add more

labels to the segmentation.

63

64

Bibliography

[1] JOHN P. GOLDBLATT, MD, and JOHN C. RICHMOND, MD (2003):

ANATOMY AND BIOMECHANICS OF THE KNEE

[2] https://www.healthpages.org/anatomy-function/knee-joint-structure-

function-problems/ [Downloaded 04.12.18]

[3] Zhaoye Zhou, Gengyan Zhao, Richard Kijowski, Fang Liu (2018): Deep convolu-

tional neural network for segmentation of kneejoint anatomy

[4] Eli Gibson, Wenqi Li, Carole Sudre, Lucas Fidon, Dzhoshkun I. Shakir, Guotai

Wang, Zach Eaton-Rosen, Robert Gray, Tom Doel, Yipeng Hu, Tom Whyntie,

Parashkev Nachev, Marc Modat, Dean C. Barratt, Sébastien Ourselin. M. Jorge

Cardoso, Tom Vercauteren (2018): NiftyNet: a deep-learning platform for medical

imaging

[5] Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-

berg, Dan Mane, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng

(2015) : TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed

Systems

65

https://www.healthpages.org/anatomy-function/knee-joint-structure-function-problems/
https://www.healthpages.org/anatomy-function/knee-joint-structure-function-problems/

BIBLIOGRAPHY

[6] https://radiopaedia.org/articles/mri-sequences-overview [Downloaded

03.12.2018]

[7] https://towardsdatascience.com/multi-class-metrics-made-simple-

part-ii-the-f1-score-ebe8b2c2ca1[Downloaded 01.09.2019]

[8] Olaf Ronneberger, Philipp Fischer, Thomas Brox (2015): U-Net: Convolutional

Networks for Biomedical Image Segmentation

[9] FRANÇOIS CHOLLET (2018): Deep Learning with Python

[10] Matthew Kirk (2017):Thoughtful Machine Learning with Python

66

https://radiopaedia.org/articles/mri-sequences-overview
https://towardsdatascience.com/multi-class-metrics-made-simple-part-ii-the-f1-score-ebe8b2c2ca1
https://towardsdatascience.com/multi-class-metrics-made-simple-part-ii-the-f1-score-ebe8b2c2ca1

Appendix A

All Results

67

cc
FS 10 cc

0 1 2 3 support Recall Precision f-score
0 39703283 225504 0 0 39928787 0.99435235 0.994514392 0.994433362
1 183125 3845321 0 0 4028446 0.95454202 0.943007843 0.948739879
2 30632 6888 0 0 37520 0 0 0
3 5241 6 0 0 5247 0 0 0

0.48722359 0.484380559 0.48579331
0.989741 0.988832034 0.989283301

PD 10 cc
0 1 2 3 support Recall Precision f-score

0 39769067 147818 11902 0 39928787 0.99599988 0.997355704 0.99667733
1 93922 3934524 0 0 4028446 0.9766853 0.96356618 0.970081388
2 8831 931 27758 0 37520 0.73981876 0.657788099 0.696396091
3 2687 21 2539 0 5247 0 0 0

0.67812599 0.654677496 0.665788702
0.9938943 0.993853591 0.993867411

T1 10 cc
0 1 2 3 support Recall Precision f-score

0 39847412 81375 0 0 39928787 0.997962 0.997456958 0.997709413
1 59015 3969431 0 0 4028446 0.98535043 0.979865445 0.982600284
2 37336 184 0 0 37520 0 0 0
3 5241 6 0 0 5247 0 0 0

0.49582811 0.494330601 0.495077424
0.99583734 0.994876851 0.995356337

FS,PD 10 cc
0 1 2 3 support Recall Precision f-score

0 39780681 148106 0 0 39928787 0.99629075 0.996938789 0.996614662
1 80119 3948327 0 0 4028446 0.98011169 0.963672224 0.971822437
2 36803 717 0 0 37520 0 0 0
3 5229 18 0 0 5247 0 0 0

0.49410061 0.490152753 0.492109275
0.99384109 0.992924047 0.993376109

FS,T1 10 cc
0 1 2 3 support Recall Precision f-score

0 39858451 70336 0 0 39928787 0.99823846 0.997300778 0.997769401
1 65333 3963113 0 0 4028446 0.98378208 0.982507745 0.983144502
2 37304 216 0 0 37520 0 0 0
3 5241 6 0 0 5247 0 0 0

0.49550514 0.494952131 0.495228476
0.99594464 0.994977039 0.9954606

PD,T1 10 cc
0 1 2 3 support Recall Precision f-score

0 39827330 99815 1642 0 39928787 0.99745905 0.998088118 0.997773486
1 47701 3980745 0 0 4028446 0.98815896 0.975031376 0.981551276
2 23794 2119 11607 0 37520 0.30935501 0.847535597 0.453265645
3 4796 5 446 0 5247 0 0 0

0.57374325 0.705163773 0.608147602
0.99590186 0.995729742 0.99570495

FS,PD,T1 10 cc
0 1 2 3 support Recall Precision f-score

0 39818777 110010 0 0 39928787 0.99724484 0.997809963 0.997527324
1 44850 3983596 0 0 4028446 0.98886667 0.97307385 0.980906699
2 37306 214 0 0 37520 0 0 0
3 5240 7 0 0 5247 0 0 0

0.49652788 0.492720953 0.494617091
0.99550848 0.994575385 0.995036039

wcc
FS 10 wcc

0 1 2 3 support Recall Precision f-score
0 39669131 222629 18391 18636 39928787 0.993497023 0.994866632 0.994181355
1 200707 3825669 600 1470 4028446 0.949663716 0.944144318 0.946895974
2 2552 3692 31276 0 37520 0.83358209 0.611851243 0.705709805
3 1428 6 850 2963 5247 0.56470364 0.128440765 0.209280972

0.835361617 0.669825739 0.714017027
0.989296341 0.989792791 0.989512527

PD 10 wcc
0 1 2 3 support Recall Precision f-score

0 39777731 139826 11230 0 39928787 0.996216865 0.997099323 0.996657899
1 92616 3935749 81 0 4028446 0.97698939 0.965525878 0.971223809
2 18382 692 18446 0 37520 0.49163113 0.609261461 0.544161897
3 4720 8 519 0 5247 0 0 0

0.616209346 0.642971666 0.628010901
0.993907409 0.993758974 0.993824558

T1 10 wcc
0 1 2 3 support Recall Precision f-score

0 39789051 113445 18025 8266 39928787 0.99650037 0.998898098 0.997697793
1 40891 3987212 339 4 4028446 0.989764291 0.97229485 0.9809518
2 2140 163 34902 315 37520 0.930223881 0.649436195 0.764874756
3 861 6 476 3904 5247 0.744044216 0.312595084 0.440234551

0.915133189 0.733306057 0.795939725
0.995797023 0.996082585 0.995899592

FS,PD 10 wcc
0 1 2 3 support Recall Precision f-score

0 39796975 131812 0 0 39928787 0.996698823 0.996539267 0.996619038
1 95767 3932679 0 0 4028446 0.976227309 0.967491549 0.971839799
2 37225 295 0 0 37520 0 0 0
3 5213 34 0 0 5247 0 0 0

0.493231533 0.491007704 0.492114709
0.993855773 0.992911172 0.993381669

FS,T1 10 wcc
0 1 2 3 support Recall Precision f-score

0 39795367 93188 24736 15496 39928787 0.996658551 0.99865021 0.997653386
1 52676 3975564 191 15 4028446 0.986872854 0.977049596 0.981936658
2 698 190 36510 122 37520 0.973081023 0.5853682 0.730996786
3 414 6 934 3893 5247 0.74194778 0.199375192 0.314293788

0.924640052 0.690110799 0.756220155
0.995712136 0.996224822 0.995905556

PD,T1 10 wcc
0 1 2 3 support Recall Precision f-score

0 39813380 98102 17305 0 39928787 0.997109679 0.99858805 0.997848317
1 48513 3979720 213 0 4028446 0.987904517 0.975905694 0.981868449
2 2757 149 34614 0 37520 0.922547974 0.661203438 0.770312674
3 5024 5 218 0 5247 0 0 0

0.726890543 0.658924296 0.68750736
0.996084409 0.996104575 0.996072251

FS,PD,T1 10 wcc
0 1 2 3 support Recall Precision f-score

0 39789588 106659 19705 12835 39928787 0.996513818 0.998841493 0.997676298
1 43528 3984817 92 9 4028446 0.989169769 0.973869288 0.981459901
2 2157 259 34937 167 37520 0.931156716 0.628216424 0.75026038
3 465 2 879 3901 5247 0.74347246 0.230664617 0.352091701

0.915078191 0.707897955 0.798264327
0.995755523 0.9961475 0.995903632

FS 10 wcc2
0 1 2 3 support Recall Precision f-score

0 39678430 212172 18515 19670 39928787 0.993729912 0.995062584 0.994395802
1 190505 3834083 1747 2111 4028446 0.951752363 0.94689197 0.949315945
2 3755 2866 30845 54 37520 0.822094883 0.598885523 0.692959202
3 2621 3 397 2226 5247 0.424242424 0.092514858 0.151903917

0.797954896 0.658338734 0.697143716
0.989672364 0.990206835 0.989910978

PD 10 wcc2
0 1 2 3 support Recall Precision f-score

0 39821088 89203 0 18496 39928787 0.997302723 0.995490417 0.996395746
1 142531 3885744 0 171 4028446 0.964576415 0.977504839 0.970997595
2 37030 148 0 342 37520 0 0 0
3 829 71 0 4347 5247 0.828473413 0.186119198 0.303954131

0.697588138 0.539778613 0.567836868
0.993435886 0.992898337 0.993138175

T1 10 wcc2
0 1 2 3 support Recall Precision f-score

0 39820557 66461 26086 15683 39928787 0.997289424 0.998165827 0.997727433
1 71267 3956394 781 4 4028446 0.982114195 0.983431476 0.982772394
2 1820 189 35418 93 37520 0.943976546 0.565936436 0.70763114
3 85 6 298 4858 5247 0.925862398 0.235391026 0.375352521

0.962310641 0.695731191 0.765870872
0.995846068 0.99635728 0.996036625

FS,PD 10 wcc2
0 1 2 3 support Recall Precision f-score

0 39689988 200406 24678 13715 39928787 0.994019378 0.998451281 0.9962304
1 58982 3969054 263 147 4028446 0.985256846 0.951771568 0.968224778
2 1740 697 35083 0 37520 0.935047974 0.573786043 0.71116832
3 842 18 1119 3268 5247 0.622832095 0.190776416 0.292085624

0.884289073 0.678696327 0.741927281
0.993122568 0.993719053 0.993339279

FS,T1 10 wcc2
0 1 2 3 support Recall Precision f-score

0 39769603 111674 30139 17371 39928787 0.996013302 0.998911786 0.997460438
1 42075 3986144 115 112 4028446 0.989499177 0.972686932 0.98102103
2 1018 251 36251 0 37520 0.966178038 0.53496746 0.688639192
3 232 6 1258 3751 5247 0.714884696 0.176650655 0.283297459

0.916643803 0.670804208 0.73760453
0.995357932 0.996017081 0.995606814

PD,T1 10 wcc2
0 1 2 3 support Recall Precision f-score

0 39741163 116756 38606 32262 39928787 0.995301034 0.998824192 0.997059501
1 46515 3980308 1330 293 4028446 0.988050479 0.971487819 0.979699152
2 185 56 36989 290 37520 0.985847548 0.475602073 0.641652138
3 83 6 848 4310 5247 0.821421765 0.116000538 0.203292298

0.947655207 0.640478655 0.705425772
0.994608409 0.995769951 0.995072341

FS,PD,T1 10 wcc2
0 1 2 3 support Recall Precision f-score

0 39775864 110154 22720 20049 39928787 0.996170107 0.998921414 0.997543863
1 41659 3986218 485 84 4028446 0.989517546 0.973081108 0.981230501
2 1207 113 36055 145 37520 0.960954158 0.603774533 0.741597762
3 82 6 456 4703 5247 0.896321708 0.18826308 0.311168453

0.960740879 0.691010034 0.803851939
0.995519091 0.996121966 0.995750181

T1 100 cc
0 1 2 3 support Recall Precision f-score

0 39834825 80632 6807 6523 39928787 0.99764676 0.998202401 0.997924503
1 63581 3964825 40 0 4028446 0.984207061 0.979798457 0.981997811
2 6110 923 30431 56 37520 0.811060768 0.802568769 0.806792423
3 2045 192 639 2371 5247 0.451877263 0.264916201 0.334014228

0.811197963 0.761371457 0.780182241
0.996192091 0.99626315 0.996224171

PD,T1 100 cc
0 1 2 3 support Recall Precision f-score

0 39828632 88115 5397 6643 39928787 0.997491659 0.998433636 0.997962425
1 52615 3975822 9 0 4028446 0.986936898 0.978245128 0.982571792
2 7940 301 28950 329 37520 0.771588486 0.836632662 0.802795225
3 1929 1 247 3070 5247 0.585096245 0.305715993 0.401595919

0.835278322 0.779756855 0.79623134
0.9962835 0.996364687 0.996315786

FS, T1 100 cc
0 1 2 3 support Recall Precision f-score

0 39827545 86802 8257 6183 39928787 0.997464436 0.998333985 0.997899021
1 56912 3971504 29 1 4028446 0.985865021 0.978490719 0.982164028
2 6576 499 30223 222 37520 0.805517058 0.782776483 0.793983975
3 2976 1 101 2169 5247 0.413379074 0.252944606 0.31384749

0.800556397 0.753136448 0.771973628
0.996169114 0.996244524 0.996202938

PD,FS,T1 100 cc
0 1 2 3 support Recall Precision f-score

0 39841868 80724 128 6067 39928787 0.997823149 0.997533524 0.997678316
1 58267 3970175 4 0 4028446 0.985535117 0.980019348 0.982769493
2 37009 216 196 99 37520 0.005223881 0.428884026 0.010322037
3 3236 4 129 1878 5247 0.357918811 0.233465937 0.282597246

0.586625239 0.659975709 0.568341773
0.995775386 0.995353985 0.99538611

FS 100 cc
0 1 2 3 support Recall Precision f-score

0 39686334 231360 4946 6147 39928787 0.993927865 0.995086117 0.994506654
1 180667 3847679 29 71 4028446 0.955127362 0.942035039 0.948536025
2 11193 5369 20883 75 37520 0.556583156 0.798218791 0.655852517
3 4117 25 304 801 5247 0.152658662 0.11291232 0.129811198

0.664574261 0.712063067 0.682176599
0.989902205 0.989955921 0.989905891

T1 100 wcc
0 1 2 3 support Recall Precision f-score

0 39825430 83229 13269 6859 39928787 0.997411467 0.998381749 0.997896372
1 58084 3970016 345 1 4028446 0.985495648 0.979425003 0.982450948
2 5408 164 31866 82 37520 0.849307036 0.684819049 0.758244896
3 1060 6 1052 3129 5247 0.596340766 0.310694072 0.408538974

0.857138729 0.743329968 0.786782797
0.996146386 0.996296763 0.996207619

PD,T1 100 wcc
0 1 2 3 support Recall Precision f-score

0 39814900 94311 11727 7849 39928787 0.997147747 0.998501805 0.997824316
1 53403 3974876 166 1 4028446 0.986702068 0.976777526 0.981714715
2 4778 183 32469 90 37520 0.865378465 0.724334092 0.788599325
3 1559 7 464 3217 5247 0.613112255 0.288339159 0.392221409

0.865585134 0.746988146 0.790089941
0.996033227 0.996194348 0.996098762

FS, T1 100 wcc
0 1 2 3 support Recall Precision f-score

0 39810128 99234 13549 5876 39928787 0.997028234 0.998609101 0.997818041
1 49716 3978670 60 0 4028446 0.987643871 0.975570943 0.981570285
2 4337 389 32762 32 37520 0.873187633 0.690584094 0.771224444
3 1396 6 1070 2775 5247 0.528873642 0.319590003 0.398420675

0.846683345 0.746088535 0.787258361
0.996007614 0.996156194 0.996065768

PD,FS,T1 100 wcc
0 1 2 3 support Recall Precision f-score

0 39822307 84467 15296 6717 39928787 0.997333252 0.998486385 0.997909486
1 54357 3973751 337 1 4028446 0.986422804 0.979139378 0.982767597
2 4957 187 32355 21 37520 0.862340085 0.659767537 0.747573937
3 1053 7 1052 3135 5247 0.597484277 0.317500506 0.414655115

0.860895105 0.738723452 0.785726534
0.996171545 0.996345016 0.99624014

FS 100 wcc
0 1 2 3 support Recall Precision f-score

0 39670670 232467 13345 12305 39928787 0.993535566 0.995097491 0.994315915
1 186796 3841219 256 175 4028446 0.953523766 0.941836513 0.947644106
2 5748 4735 27017 20 37520 0.720069296 0.662165143 0.689904368
3 2900 14 183 2150 5247 0.409757957 0.146757679 0.216112982

0.769221646 0.686464207 0.711994343
0.989569455 0.989836085 0.989690469

T1 100 wcc2
0 1 2 3 support Recall Precision f-score

0 39816573 85681 17751 8782 39928787 0.997189647 0.99841759 0.99780324
1 58436 3969809 198 3 4028446 0.985444263 0.978838081 0.98213006
2 3992 140 33343 45 37520 0.888672708 0.637533461 0.74244044
3 678 4 1008 3557 5247 0.677911187 0.287155889 0.4034252

0.887304451 0.725486255 0.78144974
0.995983682 0.996232423 0.99607964

PD,T1 100 wcc2
0 1 2 3 support Recall Precision f-score

0 39808425 99315 15291 5756 39928787 0.996985583 0.998569538 0.99777693
1 51792 3976521 133 0 4028446 0.987110414 0.97558846 0.98131562
2 4337 181 32989 13 37520 0.87923774 0.661102204 0.75472432
3 897 6 1487 2857 5247 0.54450162 0.331207976 0.41187919

0.851958839 0.741617045 0.78642401
0.995927091 0.996098142 0.99599268

FS, T1 100 wcc2
0 1 2 3 support Recall Precision f-score

0 39807808 96036 15699 9244 39928787 0.996970131 0.9985613 0.99776508
1 53009 3975313 124 0 4028446 0.986810547 0.976357792 0.98155634
2 3711 219 33271 319 37520 0.886753731 0.671774991 0.7644376
3 634 6 433 4174 5247 0.795502192 0.303850914 0.43973873

0.91650915 0.737636249 0.79587444
0.995921955 0.996166941 0.99601557

PD,FS,T1 100 wcc2
0 1 2 3 support Recall Precision f-score

0 39811619 96749 15339 5080 39928787 0.997065576 0.998606423 0.9978354
1 49595 3978806 45 0 4028446 0.987677631 0.976209649 0.98191016
2 4998 212 32231 79 37520 0.859035181 0.661094474 0.7471776
3 965 3 1139 3140 5247 0.598437202 0.378358838 0.46360549

0.860553897 0.753567346 0.79763216
0.996040818 0.996194102 0.99609991

FS 100 wcc2
0 1 2 3 support Recall Precision f-score

0 39669658 234912 15025 9192 39928787 0.993510221 0.994821866 0.99416561
1 197730 3830104 498 114 4028446 0.950764637 0.941020732 0.94586759
2 6400 5140 25961 19 37520 0.691924307 0.612865911 0.65
3 2354 3 876 2014 5247 0.383838384 0.177617074 0.24285542

0.755009387 0.681581396 0.70822216
0.98926675 0.989472916 0.98936058

cc
FS,PD,T1 0 1 2 3 support Recall Precision f-score

0 39826899 83182 8889 9817 39928787 0.99744826 0.998432 0.997940119
1 54245 3974149 52 0 4028446 0.9865216 0.979428 0.982961931
2 6088 281 31011 140 37520 0.82651919 0.763216 0.793607329
3 2195 11 680 2361 5247 0.44997141 0.191671 0.26883006

0.81511512 0.733187 0.76083486
0.99623682 0.996396 0.996307596

FS, T1 0 1 2 3 support Recall Precision f-score
0 39822537 91080 9205 5965 39928787 0.99733901 0.998106 0.997722209
1 67336 3961046 64 0 4028446 0.98326898 0.977429 0.980340212
2 6331 375 30688 126 37520 0.81791045 0.764658 0.790388008
3 1912 15 176 3144 5247 0.59919954 0.340444 0.434194172

0.8494295 0.770159 0.80066115
43817415 0.99585034 0.995935 0.99588679

T1 0 1 2 3 support Recall Precision f-score
0 39840970 73521 8501 5795 39928787 0.99780066 0.998237 0.998018753
1 62198 3966179 68 1 4028446 0.98454317 0.981687 0.983113203
2 6227 446 30560 287 37520 0.81449893 0.776304 0.794943163
3 1941 19 237 3050 5247 0.58128454 0.333954 0.424200278

0.84453183 0.772546 0.800068849
43840759 0.99638089 0.996453 0.996412471

wcc
0 1 2 3 support Recall Precision f-score

0 39821311 87671 12952 6853 39928787 0.99730831 0.998482868 0.99789524
1 53799 3974473 174 0 4028446 0.98660203 0.978368421 0.98246798
2 4661 193 32523 143 37520 0.8668177 0.701349953 0.77535403
3 2046 11 723 2467 5247 0.47017343 0.260699567 0.33541808

0.83022537 0.734725202 0.77278383
0.99615395 0.996299924 0.99621402

0 1 2 3 support Recall Precision f-score
0 39827414 81804 14408 5161 39928787 0.99746116 0.998388161 0.99792444
1 57210 3971015 221 0 4028446 0.98574363 0.979776125 0.98275082
2 5170 157 32178 15 37520 0.8576226 0.670948102 0.75288667
3 1919 6 1152 2170 5247 0.41356966 0.295398857 0.34463591

0.81359926 0.736127811 0.76954946
0.99619948 0.996321077 0.99624836

0 1 2 3 support Recall Precision f-score
0 39822228 84083 15074 7402 39928787 0.99733127 0.998225854 0.99777836
1 63932 3964347 141 26 4028446 0.98408841 0.979197336 0.98163678
2 6386 127 30804 203 37520 0.82100213 0.650587142 0.72592732
3 458 11 1329 3449 5247 0.657328 0.311281588 0.42249035

0.86493745 0.73482298 0.7819582
0.99592791 0.996105328 0.99600009

wcc2
0 1 2 3 support Recall Precision f-score

0 39819616 90841 13400 4930 39928787 0.99726586 0.99846848 0.99786681
1 53742 3974554 150 0 4028446 0.98662214 0.97759879 0.98208974
2 5360 224 31909 27 37520 0.85045309 0.6875606 0.7603808
3 1976 10 950 2311 5247 0.44044216 0.31796918 0.36931682

0.81869581 0.74539926 0.77741354
0.99609977 0.99621148 0.99614486

0 1 2 3 support Recall Precision f-score
0 39808156 96839 15501 8291 39928787 0.99697885 0.99850318 0.99774043
1 51741 3976530 175 0 4028446 0.98711265 0.97615442 0.98160295
2 6188 294 30966 72 37520 0.82531983 0.65461695 0.73012355
3 1746 6 662 2833 5247 0.53992758 0.2530368 0.34458432

0.83733473 0.72057784 0.76351281
0.99587466 0.99607489 0.99595686

0 1 2 3 support Recall Precision f-score
0 39818221 81858 18464 10244 39928787 0.99723092 0.99842119 0.9978257
1 60349 3967726 368 3 4028446 0.98492719 0.97975825 0.98233592
2 2155 109 35229 27 37520 0.93893923 0.6475324 0.76647267
3 461 6 344 4436 5247 0.84543549 0.30156356 0.44455579

0.94163321 0.73181885 0.79779752
43825612 0.99603664 0.99633018 0.99614426

Appendix B

CNN Summary

80

Appendix C

Code

83

99

	Abstract
	Sammendrag
	Introduction
	Problem and Motivation
	Scope
	Research Question
	Organization of This Report
	Chapter One
	Chapter Two
	Chapter Three
	Chapter Four
	Chapter Five
	Chapter Six

	Theory and Literature Review
	Knee Anatomy
	Bones
	Ligaments
	Meniscus
	Tendon
	Nerve
	Blood Vessels
	Injuries

	Magnetic Resonance Imaging
	MRI Components

	MRI Images File Format
	Machine Learning
	Neural Networks
	Input Layer
	Hidden Layers
	Neurons
	Activation Function
	Output layer
	Data Set
	Multi-Class Classification
	One-Hot Encoding

	Convolutional Neural Network
	Convolution Layer
	Pooling Layer
	Fully Connected Layer

	Methodology
	Software
	Keras and TensorFlow
	Computer Specifications

	Data-set
	Raw Data
	Mask/Label Annotation

	Program
	UNet
	Activation Function
	Loss Function

	Evaluation
	Confusion Matrix
	Measure performance

	Results
	Loss Function
	Categorical Cross-entropy
	Weighted Categorical Cross-entropy
	Weighted Categorical Cross-entropy 2nd Version

	Compared results of different input
	One Input
	Two inputs
	Three inputs

	Accuracy over Iterations

	Discussion
	Loss-Function with Weights
	Best Input to Build a Model
	Best Model
	Model error vs. Human error

	Conclusion
	Conclusion and Future Work

	Bibliography
	All Results
	CNN Summary
	Code

