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Summary

In recent years, applications of biometric systems on national and interna-
tional scale have appeared. Biometric identification is one of the impor-
tant operational modes of such systems. It entails ascertaining the data sub-
ject identity corresponding to a given biometric sample, solely using the in-
formation from said biometric sample, i.e. effectively conducting a nearest-
neighbour search. The naı̈ve search method, i.e. an exhaustive (linear) search
of the biometric enrolment database, suffers from two drawbacks, namely:
high computational workload and increased probability of false positive oc-
currences.

Consequently, research into computationally efficient methods of bio-
metric identification is necessary; it is the main topic covered in this thesis.
Specifically, the key contributions of this thesis are:

• Formulation of a taxonomy for conceptual categorisation of methods
of efficient biometric identification. A comprehensive survey of the
relevant existing publications and organisation thereof in the context
of the developed taxonomy.

• Development of methods which substantially decrease (by space search
and/or template comparison cost reduction) the computational work-
load requirements of the biometric identification transactions, includ-
ing:

– Methods which take advantage of the intrinsic properties of cer-
tain types of biometric characteristics and/or biometric feature
representations.

– Methods which can be applied irrespective of the type of biomet-
ric characteristic and the biometric feature representation.

– Methods which utilise biometric information fusion.

• Development of methods (both general purpose and biometric char-
acteristic specific) of biometric template protection in the aforemen-
tioned context of computationally efficient biometric identification sys-
tems.

• Development of methods relevant to other (e.g. stress testing and us-
ability) aspects of the operational biometric identification systems.
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Chapter 1

Introduction

Abstract

This chapter presents the motivation and general background for
the research work conducted in this thesis. Furthermore, an outline of
the thesis contents and organisation is provided.

1.1 Motivation

Biometric systems can be used as a replacement or supplement for the tradi-
tional knowledge (e.g. password) and token (e.g. RFID chip) based identity
management systems. The current and future value of the biometrics mar-
ket has been estimated in tens of billions of dollars by various market stud-
ies [1, 28, 36]. The number, scope, and scale of the personal, corporate, and
governmental applications are quickly increasing. In recent years, biometric
solutions have been applied extensively in various contexts and domains.
Prominent examples include, but are not limited to:

• National citizen inventory.

• Identity documents and passports.

• Voter registration during elections.

• Automated border security and surveillance in general.

• Law enforcement forensics.

• Financial services.

• Personal and corporate access control systems.

• Signing of legal documents.

With the growing size (in terms of enrolled data subjects) of such systems
(see e.g. [5, 9, 10, 39]), a need for research into computationally efficient bio-
metric solutions has arisen. The research conducted in this thesis focuses on
this topic; specifically, it concentrates on matters associated with biometric
identification, information fusion, and data protection.
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1.2 Background

The following subsections provide an introduction and further reading ref-
erences for the key research areas relevant in the context of this thesis.

1.2.1 Biometrics

Biometrics is a science which deals with the task of establishing or verifying
the identity of individuals. The international standard ISO/IEC 2382-37 [16]
defines biometrics as (quote):

“automated recognition of individuals based on their biological
and behavioural characteristics”

Certain characteristics which are (nearly) universally possessed by all
humans (e.g. anatomical, such as iris) are highly distinctive and can be used
to distinguish between different individuals with a very high degree of con-
fidence. Figure 1.1 shows example images of several popular types of bio-
metric characteristics. The four depicted characteristics were used in the
research conducted in the scope of this thesis (see chapter 2 for more de-
tails).

(a) Face (b) Iris (c) Fingerprint (d) Vein

Figure 1.1: Examples of biometric characteristics (images taken from from
publicly available research databases).

An automated biometric recognition system relies on algorithms which
process biometric samples (often, but not necessarily, images) to extract dis-
tinguishing features, which are subsequently compared to establish the de-
gree of similarity between two biometric samples. Regardless of the chosen
type of biometric characteristic, the elements of such a system are general-
isable into a modular framework. A conceptual overview of a generic bio-
metric system is depicted in figure 1.2.

In the figure, the overall system is divided into five subsystems, while
the arrows represent the data transmission paths between the subsystems.
Below, the tasks handled by the subsystems are described briefly.
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Figure 1.2: A conceptual overview of the components and information flow
in a biometric system (from ISO/IEC 19795-1 [14]).

Data capture: Responsible for the acquisition of a biometric sample (e.g. a
facial image) with a capture device containing one or multiple sen-
sor(s) (e.g. a camera).

Signal processing: Responsible for processing the raw biometric sample.
This includes e.g. steps such as: segmentation of the region of inter-
est, extraction of distinguishing features, and quality control. The ex-
tracted features are used to create a so-called biometric template.

Data storage: This module is typically a database where the biometric tem-
plates and the personal details (e.g. user ID) associated therewith are
stored.

Comparison: This module makes it possible to ascertain the similarity of
two biometric templates by comparing them with each other. For
example, templates with biometric features represented as vectors of
floating point numbers could be compared using the Euclidean dis-
tance.

Decision: This module is used to reach a decision (subject verified or iden-
tified, see subsection 1.2.2) based on the comparison score(s), as well
as the policies and thresholds set by the system operator.
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The research in this thesis concerns especially the comparison subsystem
(see chapter 2 for more details). For a much more comprehensive introduc-
tion to biometrics, the reader is referred to e.g. [26] and the handbook series
[2, 18, 25, 27, 37].

1.2.2 Biometric Identification and Computational Workload

The main two of the possible operational modes of biometric systems are
(definitions quoted directly from ISO/IEC 2382-37 [16]):

Biometric verification: Referring to the “process of confirming a biometric
claim through biometric comparison”.

Biometric identification: Referring to the “process of searching against a
biometric enrolment database to find and return the biometric refer-
ence identifier(s) attributable to a single individual”.

Within biometric identification, the closed-set and open-set scenarios can
be distinguished. In a closed-set identification, it is assumed that all the po-
tential system users are present in the enrolment database, whereas in an
open-set identification, it is possible and tested for some users (impostors)
not to be enrolled in the system. Arguably, the latter scenario is more real-
istic and challenging from the practical point of view; the research in this
thesis focuses chiefly on the open-set identification systems.

Biometric identification systems need to ascertain the presence in the en-
rolment database and the identity of a data subject solely based on the infor-
mation extracted from a biometric sample (i.e. without a biometric identity
claim, as is the case in the biometric verification). Thus, in the worst case,
reaching a decision requires an exhaustive database search (i.e. comparing
the probe against all the references stored in the enrolment database). This
naı̈ve search approach encounters two non-trivial challenges:

Computational workload: With the enrolment database size increasing, the
system response time becomes proportionally slower. From the opera-
tional point of view, this may end up requiring software optimisations
and/or hardware investment in order to facilitate more data subjects.

False positives: The probability of making false positive errors is likewise
increased with the growing size of the biometric enrolment database.

Those challenges necessitate research into methods of efficient biometric
identification, which is the main topic of this thesis. Specifically, methods of
computational workload reduction are of interest; more precisely concern-
ing the following two key aspects:
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Search space: Aiming to create algorithms and datastructures with sub-linear
or logarithmic complexity in biometric identification transactions.

Individual template comparisons: Aiming to create compact biometric fea-
ture representations, whose similarity can be ascertained using com-
putationally efficient biometric comparators.

The biometric data has certain properties (i.e. lack of inherent ordering,
within-subject variability, and high dimensionality), due to which many tra-
ditional approaches (e.g. normal database indexing) become unsuitable or
perform poorly [12]. Consequently, methods of computational workload
reduction which are specifically tailored to the aforementioned properties
need to be developed. Research in this area exists; however, this topic is
by no means solved with many research avenues remaining relatively unex-
plored, especially nowadays with the rise of numerous large-scale deploy-
ments and the challenges associated therewith. Some of those areas are ad-
dressed by this thesis (see chapter 2 for details). A detailed overview of this
research area is given in chapter 4, which contains a comprehensive survey
[7] of the current state-of-the-art in this research area, a formulation of a
taxonomy for categorising those approaches, as well as a discussion of the
current trends and challenges. In addition to the scientific literature sur-
veyed and systematised in the abovementioned chapter, two recent theses
(by Li [24] and Schuch [35]) have been at least partially devoted to the topic
of efficient biometric identification. Both of them focused exclusively on
fingerprint-based systems. The existing works notwithstanding, many re-
search avenues had been (and/or remain) open in this field; those include,
but are by no means limited to: a general framework for the purposes of
categorisation of the existing approaches, the creation of methods for other
types of biometric characteristics, the incorporation of information fusion
and data protection techniques, as well as the development of generic meth-
ods which can be applied irrespective of the chosen types of biometric char-
acteristics and representations of their features. Several of those matters are
addressed in this thesis (see chapter 2 where its scope is defined).

1.2.3 Multi-Biometrics

Due to the increasing operational and security demands, the focus of many
biometric systems, especially large-scale ones, is shifting from single to multi-
biometrics. Multi-biometric systems rely on information fusion, whereby
information obtained from multiple sources is consolidated with the goal
of improving the biometric performance, sample quality, or other quantifi-
able aspects w.r.t. a single information source system. Illustrating the con-
cept with a finger-based biometric system, the different information sources
could be:
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• Sensors (e.g. capacitive and optical).

• Algorithms (e.g. fingerprint texture and minutiae-based).

• Samples (e.g. multiple acquisitions of the same fingerprint).

• Instances (e.g. multiple fingers).

• Types of characteristics (e.g. fingerprints and fingerveins).

The fusion of the acquired information can happen on multiple opera-
tional levels of a biometric system. Most generally speaking, two categories
of information fusion can be distinguished in this context:

• Prior to the template comparisons, i.e. sensorial (see e.g. [17]) or feature
(see e.g. [20]) level fusion.

• After the template comparisons, i.e. score (see e.g. [19]), rank (see e.g.
[23]), or decision (see e.g. [30]) level fusion.

Information fusion is an active field of research within biometrics. An
introductory overview of this topic is available in, for example [34], while [6]
provides a comprehensive survey of the current state-of-the-art. Lastly, the
ISO/IEC 24722 [15] is also of interest in this context. The large amount of the
existing research notwithstanding, the matter of computational workload
reduction coupled with (or by means of) a biometric information fusion has
received relatively little attention and is one of the topics investigated in this
thesis.

1.2.4 Biometric Data Protection

A number of data privacy and security concerns has arisen w.r.t. biometrics.
If compromised or leaked, the biometric data can be misused in a variety of
ways, including but not limited to:

• Identity theft.

• Tracking or profiling.

• Extraction of sensitive information (e.g. illness).

Therefore, a strong demand (e.g. by the general population, various non-
governmental organisations and advocacy groups, as well as policymakers)
for data protection exists. Recently, the General Data Protection Regulation
(GDPR) [8] has been introduced by the European Union. Under this regu-
lation, biometric data is categorised within “special categories” of personal
data (formerly, “sensitive personal data”) and hence allotted extensive legal
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protections. Those societal and legal trends indicate the need of research
into secure, privacy-preserving biometric systems (see e.g. [4] for more de-
tails). According to ISO/IEC 24745 [13], biometric systems must be designed
and operated so that they satisfy a number of security and privacy related
requirements. While the security ones are mostly related to the operational
details and implementation of a biometric system (thus out of scope covered
by this thesis), the following properties are of interest w.r.t. the biometric
data itself:

Irreversibility: Recreating the original biometric template from the secured
template must be computationally infeasible.

Unlinkability: Cross-correlating protected templates across different sys-
tems and databases must not be possible in order to avoid profiling
(without consent) of the data subject.

Renewability: In case of being compromised, revoking and reissuing a new
(different) protected biometric reference should be possible and straight-
forward.

Performance: The biometric performance of the protected system must not
be (severely) impaired by the template protection scheme.

Collectively, methods which aim to satisfy those properties are referred
to as “biometric template protection”. There exists a body of work on this
subject in the scientific literature, with the key categories of approaches be-
ing (see e.g. [3], [33], and [32] for more details):

Biometric cryptosystems: Originally aimed at securing or deriving crypto-
graphic keys, such schemes can also be used for biometric template
protection directly (see e.g. [38]). However, in most cases, the bio-
metric comparators need to use error-correcting codes, thereby being
computationally expensive, which constitutes a major limitation for
large-scale biometric identification.

Cancelable biometrics: Methods relying on the application of a non-invertible
transform (see e.g. [31]) or a salt (see e.g. [22]) to the biometric data. The
aim is to create a protected template which maintains the fundamental
statistical properties of the original data. In many cases, the protected
template comparison can be performed using the same comparators
as for the plain, unprotected templates. For the purpose of biomet-
ric identification, such methods will generally be superior (in terms of
computational workload) to biometric cryptosystem schemes.

General purpose: Relying on methods not necessarily limited to biomet-
rics, such as homomorphic encryption (see e.g. [11]).
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Coupling and addressing the challenges of biometric template protec-
tion and computational workload reduction has not yet been sufficiently
explored in the scientific literature and is therefore of interest for this thesis.

In addition to the technological challenges of privacy-preserving biomet-
rics, many legal, societal and ethical issues are associated with this research
area (see e.g. [21] and [29]). However, those (fascinating) non-technical mat-
ters are out of scope covered by this thesis.

1.3 Overview of Research Projects

The research for the articles included in this thesis was conducted in the
context of two research projects. The projects and their respective funding
agencies are briefly described in the following subsections.

1.3.1 BioIndex

This project was conducted in the context of CRISP, which is one of the na-
tional IT-security research centres in Germany. It was funded by the German
Federal Ministry of Education and Research (BMBF) and the Hessen State
Ministry for Higher Education, Research and the Arts (HMWK). The CRISP
research centre focuses on close contacts to the industry stakeholders and
conducts applied research into the application-oriented issues of cybersecu-
rity and privacy.

The BioIndex project description states (quote1):

“Nowadays, biometric recognition represents an integral com-
ponent of identity management systems. The aim of the BioIn-
dex subproject of CRISP is to accelerate biometric systems op-
erating in identification mode without decreasing the recogni-
tion accuracy of the overall system. This represents a challeng-
ing issue since generic biometric recognition systems do not pro-
vide the scalability needed for large-scale applications. Within
the BioIndex project diverse techniques will be investigated and
developed in order to provide real-time identification on large-
scale biometric databases.”

1.3.2 BioBiDa

This project was sponsored by the Development of Scientific and Economic
Excellence (LOEWE-3) initiative. It was a collaboration between academia
(Hochschule Darmstadt), an industry partner (iCOGNIZE GmbH), and the
German Federal Police (Bundeskriminalamt). The LOEWE-3 funds projects

1https://dasec.h-da.de/projects/bioindex/
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which strengthen the cooperation between small and medium Hessian com-
panies and universities, as well as non-university research institutions. The
overarching goal of the projects is facilitating applied research with high
relevance for end-users, industry, and public institutions.

The BioBiDa project description states (quote2):

“With the recent rapid growth of biometric systems’ sizes and
popularity, technologies supporting efficient and accurate pro-
cessing of large amounts of biometric data are sought for. The
goal of this 2-year project is development of efficient algorithms
and datastructures for biometric identification, which can per-
form search queries on large biometric datasets in real-time, while
simultaneously facilitating biometric data protection. The project
will focus on systems based on biometric characteristics from
hands and faces. The application of the developed schemes will
be twofold – a robust and quick search for use both in the iden-
tification scenario with cooperative subjects, as well as forensic
investigations. Furthermore, by virtue of development of pri-
vacy enhancing concepts, the societal acceptance of biometric
technologies is expected to be strengthened.”

1.4 Thesis Organisation

The main contents of this thesis are presented as a collection of interrelated
research articles. The thesis is divided into five parts:

• Part I consists of 3 overview chapters. A general topic introduction is
given in chapter 1. In chapter 2, the scope of the thesis is defined along
with the research questions and the experimental evaluation environ-
ment. Chapter 3 outlines the contributions of this thesis, specifically
containing a list and summary of the research articles written within
the scope of this thesis, as well as their relation to the research ques-
tions.

• Part II contains one of the larger articles written in the course of the
doctoral studies. This article contains a comprehensive overview of
the current state-of-the-art and related works. Furthermore, it dis-
cusses the pertinent challenges and issues from both the academic and
industry perspective.

• Part III is the main technical body of this thesis and comprises all the
other individual research articles, which collectively address the re-
search questions.

2https://dasec.h-da.de/projects/biobida/

11



1. INTRODUCTION

• Part IV concludes the thesis by summarising the findings and results,
as well as by answering the research questions. Lastly, a discussion of
the potential future research avenues is provided.

• Part V contains the appendices.

Note, that following the regulations, in this thesis the overview and re-
search articles are reproduced verbatim (i.e. as written for the scientific con-
ferences and journals). The only changes pertain to the layout and typeset-
ting (e.g. migrating from double to single column format and using a consis-
tent style for the references).
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Chapter 2

Thesis Scope

Abstract

This chapter presents the objectives of this thesis by defining and
elaborating upon its main research questions. Furthermore, the envi-
ronment for evaluating the developed methods is described.

2.1 Research Questions

Five research questions are addressed in this thesis. In the subsequent sub-
sections, each of them is stated and elaborated upon. Following the main
research body of the thesis, the research questions are discussed and an-
swered in chapter 16 based on the obtained results.

2.1.1 Research Question 1

RQ1: Is it possible to vastly (i.e. by 90% or more) decrease the computa-
tional workload of a biometric identification system, while retaining high
biometric performance of the naı̈ve, exhaustive search approach?

The computational costs of a biometric identification transaction are typi-
cally dominated by the computations of the template comparisons (i.e. other
computational costs, such as feature extraction, tend to be relatively trivial).
In this context, two types of approaches are relevant: reducing the search
space (i.e. the number of template comparisons necessary for a biometric
identification transaction) and reducing the computational cost of the in-
dividual template comparisons. Furthermore, since machine learning has
been increasingly successful in biometric recognition, computational work-
load in the context of features extracted by deep learning methods is also
investigated.

This research question defines the overarching goal of this thesis – re-
search into computational workload reduction in biometric identification
systems. Two distinct research objectives are defined within the scope of
this research question:
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• Creation of algorithms and datastructures which facilitate search space
reduction.

• Creation of algorithms and datastructures which facilitate more effi-
cient individual template comparisons.

2.1.2 Research Question 2

RQ2: Is it possible to categorise different methods of efficient biometric
identification across biometric modalities into a single, coherent taxon-
omy? Is it possible to create metrics suitable for a modality agnostic eval-
uation and reporting of computational workload reduction methods?

Although substantial amount of research has been published in the area of
computational workload reduction, the field lacks a unified taxonomy of
approaches, as well as evaluation metrics. Those matters, as well as other
issues relevant for operational biometric identification systems are the focus
of this research question.

In summary, three distinct research objectives are defined within the
scope of this research question:

• Conducting a comprehensive study of biometric workload reduction
literature across modalities and systematisation of the approaches into
a generalised, biometric characteristic-agnostic taxonomy.

• Development of a framework and metrics for computational workload
reduction and a proposal submission to the revision of the Interna-
tional Standard ISO/IEC 19795-1 Biometric performance testing - Part
1: Principles and framwork [12].

• Investigation of other factors relevant for practical large-scale biomet-
ric systems’ deployments (e.g. usability and facilitating stress testing
by creating large synthetic datasets of biometric data).

2.1.3 Research Question 3

RQ3: Is it possible to incorporate biometric information fusion for the
benefit of the approaches aimed at computational workload reduction?

The underlying idea of multi-biometric systems is combining the biometric
information obtained from multiple sources. This can be done at several
different stages of the biometric systems’ pipeline and using a multitude of
methods. In any case, by doing so, higher discriminative power (and hence,
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higher biometric performance) can be achieved. Although biometric infor-
mation fusion has been applied extensively in the context of biometric recog-
nition, coupling it with computational workload reduction in the biometric
identification scenario has not yet been exhaustively explored. Thus, this
research question couples the RQ1 with the additional stipulation of util-
ising information fusion, either alongside other methods of computational
workload reduction or for the explicit purpose of computational workload
reduction.

In summary, three distinct research objectives are defined within the
scope of this research question:

• Creation of methods which take advantage of biometric information
fusion on various levels (e.g. signal, feature, score, decision) of the bio-
metric processing pipeline.

• Creation of methods which take advantage of biometric information
fusion utilising one (e.g. multi-sample and multi-instance) type of bio-
metric characteristic.

• Creation of methods which take advantage of biometric information
fusion utilising multiple types of biometric characteristics.

2.1.4 Research Question 4

RQ4: Is it possible to develop computational workload reduction meth-
ods which work prior to feature extraction or even irrespective of the cho-
sen feature representation? Can those be applied within a system utilis-
ing biometric information fusion?

Most of the already published methods for computational workload reduc-
tion are tied to a certain feature representation (i.e. they somehow rely on its
inherent properties). This research question couples the RQ1 and RQ3 with
the additional stipulation that the developed method be independent of the
chosen feature representation or happen prior to the feature extraction step.

In summary, two distinct research objectives are defined within the scope
of this research question:

• Creation of methods which can be used irrespective of the feature rep-
resentation.

• Creation of methods which can be used prior to the feature extraction
step.
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2.1.5 Research Question 5

RQ5: Is it possible to create a privacy-preserving (cancelable) biometric
system, which maintains a high biometric performance and a low compu-
tational workload in the biometric identification scenario?

Data security and privacy is an important issue in the context of biometric
recognition. While the research has yielded numerous promising biometric
template protection methods, their use together with computational work-
load reduction methods has not yet been explored. This research question
thus couples the RQ1 with the additional stipulation of fulfilling the tem-
plate protection properties demanded by ISO/IEC 24745 [11].

In summary, two distinct research objectives are defined within the scope
of this research question:

• Creation of a hierarchical retrieval system, which exhibits template
protection (cancelable) properties and reduces the computational work-
load associated with the biometric identification transactions.

• Investigation of general-purpose methods which can be incorporated
into a biometric identification system to strengthen the security and
privacy of its enrolled data subjects.

2.2 Evaluation Environment

This section contains the basic information regarding the experimental set-
ups used in the research articles. In particular, the datasets (subsection 2.2.1)
and processing pipelines (subsection 2.2.2), as well as the evaluation metrics
(subsection 2.2.3) are described briefly. The individual research articles pro-
vide more details on their respective experimental setups.

2.2.1 Datasets

Initially, three main types of biometric characteristics were selected for the
experimental work (face, fingerprint, and iris). The selected characteris-
tics are well-established in the scientific community and widely used in the
practical biometric systems around the world (cf. table 4.1). Later on, vas-
cular data (specifically, fingervein) was also included due to its promising
potential (e.g. good biometric performance and relative robustness against
presentation attacks), as well as the growing interest in this characteristic
both from the academic and industry side.

Table 2.1 shows the datasets used in the experiments. The key criteria
for the dataset choices are the image quality (compliance with the quality

20



2.2 EVALUATION ENVIRONMENT

requirements set in ISO/IEC 29794 [13]) and a large (for a research dataset)
size in terms of the number of data subjects. The thesis focuses on cooper-
ative biometric recognition; therefore not considering poor quality, in-the-
wild, or automatically scraped datasets. Hence, some of the images are ex-
cluded to meet those criteria; this especially the case for the facial datasets,
which often deliberately contain e.g. images with accessories or imperfect
lighting conditions. In some of the experiments, the datasets are merged to
facilitate a larger or chimeric multi-modal experimental set-up.

Table 2.1: Used datasets

Characteristic Dataset Subjects Instances Samples

Face FERET [28] 1,199 1,199 14,051
FRGC [27] 569 569 40,084
AR Face [21] 126 126 4,000
FEI [33] 200 200 2,800
BioSecure (subset) [24] 210 210 840
CAS-PEAL [9] 1,040 1,040 30,863
CASIA NIR-VIS [17] 725 725 17,580

Fingerprint NIST SD 9 [23] 2,700 27,000 54,000
MCYT [25] 330 3,330 39,600

Fingervein UTFVP [34] 60 360 1,440
IDIAP [36] 110 220 440
PolyU [16] 156 312 3,132
SCUT-FV [29] 100 600 3,600
FV-USM [2] 123 492 5,904
SDUMLA [38] 106 636 3,816

Iris CASIA-V4-Interval [4] 249 395 2,639
CASIA-V4-Thousand [4] 1,000 2,000 20,000
IITDv1 [15] 224 448 1,120
BioSecure [24] 210 420 1,680
ND-Iris-Template-Aging [8] 322 644 22,156

2.2.2 Processing Pipelines

The capability to extract discriminative features from the biometric samples
is a prerequisite for a successful biometric system. In the context of the
image-based biometrics, various general purpose (see e.g. a survey [19]) and
biometric characteristic specific (see e.g. the handbook series [3, 18, 20, 35])
feature extraction methods exist. Improving the existing and developing en-
tirely new feature extraction methods is an active research area; however, it
is out of scope for this thesis. Its focus lies elsewhere, namely developing
methods of computational workload reduction which can be applied prior
(i.e. on the samples) or after (i.e. on the feature vectors and/or their com-
parators) the signal processing steps. Additionally, one of the research ques-
tions stipulates development of computational workload reduction meth-
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ods which work irrespective of the chosen type of biometric characteristics
and feature representations.

Therefore, all the research articles contained in this thesis utilise exist-
ing frameworks for the purposes of biometric data pre-processing (e.g. re-
gion of interest segmentation, feature extraction, etc.). The used tools are
listed below, while more detailed descriptions and images from the process-
ing pipelines are included in the research articles themselves. All the used
frameworks and pre-trained models are open-source and achieve state-of-
the-art biometric performance rates in biometric systems’ evaluations. To
facilitate reproducible research, all of the used tools and frameworks are
open-source.

Iris: OSIRIS [26] and USIT [30].

Fingerprint: FingerJetFX [6], FingerNet [32], and sourceAFIS [37].

Fingervein: PLUS OpenVein [14] and spectral minutiae [22].

Face: FaceNet [31], OpenFace [1], and ArcFace [5].

Table 2.2 summarises the information about the data processing pipelines
used for the biometric recognition. More detailed information about the pro-
cessing pipelines is given in the individual research articles contained in this
thesis.

Table 2.2: Summary of the data processing pipelines

Characteristic Features Representation Size Comparison

Face Embedding 1-D vector 512 floats Euclidean distance
Fingerprint Minutiae Set of triplets Variable Minutiae pairing
Fingervein Spectral minutiae 2-D matrix 256×128 floats Correlation
Iris Wavelet demodulation 2-D matrix 20×256 bits Hamming distance

2.2.3 Visualisation and Metrics

Depending on the focus of the individual research article, one or multiple of
the following aspects need to be considered and evaluated quantitatively:

• Biometric performance.

• Computational workload.

• Template protection.

Accordingly, the methods used for results’ visualisation and reporting
are briefly outlined in the subsections below. The individual research ar-
ticles provide more detailed information in their respective experimental
protocol sections.
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2.2.3.1 Biometric Performance

Biometric performance evaluation methodology and some metrics are stan-
dardised trough ISO/IEC 19795-1 [12]. They are followed whenever possi-
ble in this work.

In the context of the biometric performance assessment, the most impor-
tant visualisation tools used in the research articles are:

• Histogram of genuine and impostor comparison scores, which makes
it possible to visually assess the ranges and overlap of their distribu-
tions.

• DET curve, which shows the trade-off between type I and type II error
rates depending on the chosen decision threshold.

In the context of the biometric performance assessment, the most impor-
tant metrics used in the research articles are:

• Equal-error rate, which is the point at which the type I and type II error
rates are equal.

• Hit rate (for a pre-selection algorithm), which denotes the proportion
of genuine attempts where the enrolment record corresponding to the
probe is contained in the subset of templates pre-selected from the en-
rolment database.

• Descriptive statistics of the genuine and impostor scores, such as: mean
and median, minimum and maximum, standard deviation, skewness,
and excess kurtosis.

• Sensitivity/Decidability index, which measures the degree of separa-
tion between two distributions.

The above methods facilitate a quantitative benchmark of different sys-
tems (e.g. state-of-the-art baseline vs. a proposed method) or different con-
figurations of the same system, thereby making it possible to ascertain their
relative strengths and weaknesses in the context of the biometric recognition
performance.

2.2.3.2 Computational Workload

As opposed to the aspects considered in the previous subsection, no stan-
dardised methodology for computational workload reduction in biometric
systems exists at the time of this writing. ISO/IEC 19795-1:2006 [12] does
define the penetration rate (see below); however, it is not sufficient for all
the scenarios considered in the research articles.

In the context of computational workload assessment, the most impor-
tant metrics used in the research articles are:
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• Penetration rate (for a pre-selection algorithm), which denotes the re-
maining proportion of the enrolment database that has to be consid-
ered after the pre-selection step.

• Workload fraction, as defined in [7], a metric which in addition to pen-
etration rate and enrolment database size also considers the cost of the
individual template comparisons. The metric expresses the computa-
tional workload of a proposed method as a fraction of the computa-
tional workload of a baseline method.

• Operations counts, i.e. the number of intrinsic CPU instructions neces-
sary for a certain computation.

• Execution time, measured on commodity hardware.

Lastly, combining the aspects of biometric performance and computa-
tional workload assessment, the Euclidean distance from the optimal oper-
ation point (i.e. no errors and almost no computational workload) is used
where appropriate.

2.2.3.3 Template Protection

The ISO/IEC 24745 [11] defines objectives which need to be fulfilled by
a biometric template protection system. However, the standard currently
does not define specific metrics, hence the metrics currently used in the sci-
entific literature are adopted.

In the context of template protection assessment, the most important
metrics used in the research articles are:

• Unlinkability, which is measured using the methodology and metric
proposed in [10], which provide an estimation of the degree of the
global linkability of a system.

• Irreversibility, which refers to the probability of an attacker guessing
an original biometric template given a protected template.

• Renewability, which is measured by computing the available key space.

• Performance preservation, for which the previously outlined methods
(see subsection 2.2.3.1) are used.
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[21] MARTÍNEZ, A. M., AND BENAVENTE, R. The AR face database. Tech.
Rep. 24, CVC, June 1998.

[22] MOKROSS, B.-A. Efficient biometric identification in large-scale palm
vein databases. MSc thesis, Hochschule Darmstadt, Germany, Decem-
ber 2017.

[23] NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. Spe-
cial Database 9. https://www.nist.gov/srd/nist-special-
database-9, August 2010. Last accessed: 2020–03–11.

[24] ORTEGA-GARCIA, J., FIERREZ, J., ALONSO-FERNANDEZ, F., GAL-
BALLY, J., FREIRE, M. R., ET AL. The multiscenario multienvironment
BioSecure multimodal database (BMDB). Transactions on Pattern Analy-
sis and Machine Intelligence (TPAMI) 32, 6 (June 2010), 1097–1111.

[25] ORTEGA-GARCIA, J., FIERREZ-AGUILAR, J., SIMON, D., GONZALEZ,
J., FAUNDEZ-ZANUY, M., ET AL. MCYT baseline corpus: a bimodal
biometric database. IEE Proceedings – Vision, Image and Signal Processing
150, 6 (December 2003), 395–401.

26



2.3 BIBLIOGRAPHY

[26] OTHMAN, N., DORIZZI, B., AND GARCIA-SALICETTI, S. OSIRIS: An
open source iris recognition software. Pattern Recognition Letters 82, 2
(September 2016), 124–131.

[27] PHILLIPS, P. J., FLYNN, P. J., SCRUGGS, T., BOWYER, K. W., CHANG,
J., ET AL. Overview of the face recognition grand challenge. In
Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR) (June 2005), vol. 1, IEEE, pp. 947–954.

[28] PHILLIPS, P. J., MOON, H., RIZVI, S. A., AND RAUSS, P. J. The FERET
evaluation methodology for face-recognition algorithms. Transactions
on pattern analysis and machine intelligence (TPAMI) 22, 10 (October 2000),
1090–1104.

[29] QIU, X., KANG, W., TIAN, S., JIA, W., AND HUANG, Z. Finger
vein presentation attack detection using total variation decomposition.
Transactions on Information Forensics and Security (TIFS) 13, 2 (February
2018), 465–477.

[30] RATHGEB, C., UHL, A., WILD, P., AND HOFBAUER, H. Design de-
cisions for an iris recognition SDK. In Handbook of Iris Recognition,
K. Bowyer and M. J. Burge, Eds., 2 ed., Advances in Computer Vision
and Pattern Recognition. Springer, July 2016, pp. 359–396.

[31] SCHROFF, F., KALENICHENKO, D., AND PHILBIN, J. FaceNet: A
unified embedding for face recognition and clustering. In Conference
on Computer Vision and Pattern Recognition (CVPR) (June 2015), IEEE,
pp. 815–823.

[32] TANG, Y., GAO, F., FENG, J., AND LIU, Y. FingerNet: An unified deep
network for fingerprint minutiae extraction. In International Joint Con-
ference on Biometrics (IJCB) (October 2017), IEEE, pp. 108–116.

[33] THOMAZ, C. E. FEI face database. https://fei.edu.br/˜cet/
facedatabase.html. Last accessed: 2020–03–11.

[34] TON, B. T., AND VELDHUIS, R. N. J. A high quality finger vascular
pattern dataset collected using a custom designed capturing device. In
International Conference on Biometrics (ICB) (June 2013), IEEE, pp. 1–5.

[35] UHL, A., MARCEL, S., BUSCH, C., AND VELDHUIS, R. N. J. Handbook
of Vascular Biometrics. Springer, 2020.

[36] VANONI, M., TOME, P., EL SHAFEY, L., AND MARCEL, S. Cross-
database evaluation using an open finger vein sensor. In Workshop on
Biometric Measurements and Systems for Security and Medical Applications
(BIOMS) (October 2014), IEEE, pp. 30–35.

27



2. THESIS SCOPE
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Abstract

In this chapter, the research articles written during the course of the
doctoral studies are listed with short descriptions of their respective
backgrounds, goals, contributions, and relation to the research ques-
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Following research article is included in the appendix of this thesis (due
to being partially based on work previous to the doctoral studies):

• DROZDOWSKI, P., RATHGEB, C., AND BUSCH, C. Bloom filter-based
search structures for indexing and retrieving Iris-Codes. IET Biometrics
7, 3 (May 2018), 260–268.

Following additional research articles were co-authored during the course
of the doctoral studies, but are not included in this thesis (2nd authorship):

• OSORIO-ROIG, D., DROZDOWSKI, P., RATHGEB, C., MORALES-GONZÁLEZ,
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wavelength: Impact and automated detection of glasses. In Interna-
tional Conference on Signal-Image Technology Internet-Based Systems (SITIS)
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• MOKROSS, B.-A., DROZDOWSKI, P., RATHGEB, C., AND BUSCH, C.
Efficient Identification in Large-Scale Vein Recognition Systems Using Spec-
tral Minutiae Representations. Springer, 2020, ch. 9.

The research articles are listed and briefly summarised in the subsections
below, while table 3.1 shows the relations between them and the research
questions.

Table 3.1: Relations between the research articles and the research questions

Chapter Reference RQ1 RQ2 RQ3 RQ4 RQ5

4 [8] � �
5 [3] � � �
6 [5] � �
7 [4] � �
8 [12] �
9 [2] � �
10 [11] � � �
11 [9] � � �
12 [10] � �
13 [13] �
14 [6] �
15 [14] �

Appendix A [7] � �
— [19] �
— [18] �

3.1.1 Main

The main research articles included in this thesis are listed below.
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Abstract: Computational workload is one of the key challenges in biometric identification systems. The naïve retrieval method
based on an exhaustive search becomes impractical with the growth of the number of the enrolled data subjects. Consequently,
in recent years, many methods with the aim of reducing or optimising the computational workload, and thereby speeding-up the
identification transactions, in biometric identification systems have been developed. In this article, a taxonomy for conceptual
categorisation of such methods is presented, followed by a comprehensive survey of the relevant academic publications, including
computational workload reduction and software/hardware-based acceleration. Lastly, the pertinent technical considerations and
trade-offs of the surveyed methods are discussed, along with an industry perspective, and open issues/challenges in the field.

1 Introduction

The interest in biometric technologies has been steadily growing in
recent years, as evidenced by various market value studies [1–3]
and numbers of scientific publications in the area. Many states have
utilised biometric technologies for purposes such as forensic inves-
tigations and law enforcement, border crossing entry-exit tracking,
national citizen inventory (ID systems), and voter registration. By
far the largest biometric deployment to date is the Indian Aadhaar
national ID system, which, at the time of this writing, accommodates
1.3 billion enrolled subjects – almost the entire Indian population.

(a) Fingerprint (b) Face (c) Iris

Fig. 1: Example images of some biometric characteristics com-
monly used in large-scale biometric identification systems (taken
from the MCYT, FRGC, and IITD databases)

Table 1 gives an overview of this and several other examples of
operational and planned large-scale biometric systems. The table is
non-exhaustive; instead, it seeks to highlight the diversity of the used
biometric characteristics, the system purposes, and the geographi-
cal locations of some of the largest biometric systems around the
world. In figure 1, example images of biometric characteristics most
commonly used in large-scale biometric identification systems are
shown.

Biometric systems can operate in a broad variety of ways. Two
such ways (as defined in the ISO/IEC international standards [4, 5])
are:

Biometric verification Referring to the “process of confirming a
biometric claim through biometric comparison”.

Biometric identification Referring to the “process of searching
against a biometric enrolment database to find and return the bio-
metric reference identifier(s) attributable to a single individual”.
Two main scenarios can be distinguished in this case: closed-set
identification, for which all potential users are enrolled in the sys-
tem, and open-set identification, for which some potential users
are not enrolled in the system.

Naturally, the second case (i.e. open-set identification, as well
as the duplicate-enrolment check) is the most interesting and chal-
lenging from the practical point of view for the aforementioned
real-world applications. Unfortunately, in the worst case, an exhaus-
tive search (i.e. comparing a probe against all the enrolled subjects)
is required in order to reach a decision. This naïve approach quickly
runs into two non-trivial problems:

Computational costs As the number of enrolled subjects increases,
the system response times become gradually slower, thus requir-
ing optimisations and/or investment into larger hardware architec-
tures.

False positives costs The probability of at least one false positive
(PN ) occurring in a identification scenario is: PN = 1− (1−
P1)

N , where N is the number of enrolled subjects and P1 the
false positive probability of a one-to-one template comparison.
This relationship is very demanding – even for systems which
perform extremely well in verification mode (i.e. have low P1),
the value of PN very quickly becomes unacceptably high, as
the number of enrolled subjects N increases (see [17]). Note,
that this equation ignores other system errors, e.g. the failure-to-
acquire rate and assumes that at a given threshold all subjects have
the same false-match-rate, which likely is not the case. Nonethe-
less, it is a useful approximation for illustrating this challenge of
biometric identification systems.

In a recent interview [18], Daugman, the pioneer of iris recog-
nition (see [19]), has stated that performing accurate and efficient
biometric identification (i.e. not by an exhaustive search) is one of
the important, unsolved issues in the biometrics field in general.
Substantial research effort has been devoted to development of work-
load reduction methods, which seek to alleviate the aforementioned
issues (especially the computational cost, since the biometric perfor-
mance can also be improved through other means, such as increasing
data quality and information fusion). Since the overall computa-
tional costs in a biometric identification scenario are dominated by

IET Research Journals, pp. 1–15
c© The Institution of Engineering and Technology 2015 1

Publication reference: DROZDOWSKI, P., RATHGEB, C., AND BUSCH, C.
Computational workload in biometric identification systems: An overview.
IET Biometrics 8, 6 (November 2019), 351–368.
DOI: https://doi.org/10.1049/iet-bmt.2019.0076
Thesis chapter: 4
Addressed research question(s): RQ1, RQ2
Background: With the raise of the popularity and scale of biometric (identi-
fication) systems worldwide, substantial amount of research has been con-
ducted in the field of computational workload reduction. However, no sur-
vey of this research area has been conducted previously. Likewise, a system-
atic categorisation of the existing approaches was lacking.
Contribution: The main contribution of this research article is a compre-
hensive overview of the research area this thesis focuses on. Furthermore, a
taxonomy is proposed, which allows to conceptually categorise the methods
for efficient biometric identification irrespective of the biometric character-
istic. Furthermore, a broad survey of the existing methods is conducted and
put in the context of the proposed taxonomy. Finally, the article discusses
the relevant technical and practical considerations, as well as future research
perspectives from both the industry and academic points of view.
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Abstract

The increasingly large scale of deployed biometric sys-
tems necessitates approaches for computational workload
reduction in order to perform identification queries effi-
ciently. Simple database binning based on classification
of features in biometric samples is amongst the most fre-
quently used and researched methods for achieving said
goal. However, multi-instance database binning appears to
be a neglected topic in the scientific literature: best to the
authors’ knowledge, for fingerprints there exists only one,
entirely theoretical, study on this subject. In this paper, we
propose a retrieval algorithm based on multi-instance bin-
ning of fingerprint databases, along with usage of statistical
information on fingerprint classes and their correlations.

The aforementioned statistics are obtained from NIST
SD9 database and data obtained from the German Fed-
eral Criminal Police Office. Subsequently, the experimen-
tal evaluation of the proposed algorithm is performed on
the NIST SD9 database. The proposed system is evaluated
using a classifier based on the PCASYS tool and neuronal
networks. The results show a significant workload reduc-
tion from a baseline exhaustive search scenario – down to
12.7% for this particular classifier and 5.8% for a theoret-
ical perfect (completely accurate) classifier. The proposed
method could be seamlessly integrated into operational sys-
tems, as it relies on well-established features and compati-
bility with the current acquisition methods.

1. Introduction
Nowadays, biometric technologies are already deployed

in numerous nation-wide large-scale applications, such as
the Indian Aadhaar project [21]. With the rapid growth of
biometric systems’ sizes and popularity, technologies sup-
porting efficient and accurate processing of large amounts
of biometric data are vital in order to guarantee practical re-
sponse times. Conventional biometric systems require ex-

haustive one-to-many comparisons in order to identify bio-
metric probes, i.e. comparison time frequently dominates
the overall computational workload of an identification at-
tempt. In past years, researchers have invested significant
efforts to tackle the challenge of computational workload
reduction in biometric identification systems. Basically,
four different key concepts can be distinguished: classifica-
tion or “binning”, indexing, a serial combination of a com-
putationally efficient and an accurate (but more complex)
algorithm and hardware-based acceleration. Depending on
the used biometric characteristic, the vast majority of clas-
sification approaches are designed to reliably extract human
understandable attributes from a biometric sample, e.g. sex
or ethnicity for face. While not necessarily unique to an in-
dividual, those attributes allow for a binning of biometric
databases according to a predefined number of classes, i.e.
the search space (=̂ computational workload) for a given
biometric probe can be reduced to one (or a few) bin(s).
In contrast, biometric indexing approaches introduce hierar-
chical search structures (tolerating a certain amount of bio-
metric variance), where the process of search space reduc-
tion might not be reproducible by human experts. Lastly,
the latter two categories do not aim at reducing the com-
plexity of an identification attempt but response times.

Focusing on fingerprint recognition systems, the clas-
sification model of Henry [12] has been widely used by
researchers, as well as commercial vendors, for computa-
tional workload reduction in identification scenarios. The
five fingerprint classes (or types), i.e. arch, tented arch,
right loop, left loop and whorl, which are depicted in figure
1, are unevenly distributed in the population. Fingerprint
classes are mainly determined based on the global (level-
1) features, in particular ridge line flow (orientation map)
and the singular points, i.e. core and delta, derived from
it. Numerous approaches, which either directly employ or
further process those features, have been proposed for the
purpose of distinguishing between said classes. For more

1

Publication reference: DROZDOWSKI, P., FISCHER, D., RATHGEB, C., SCHIEL,
C., AND BUSCH, C. Database binning and retrieval in multi-fingerprint
identification systems. In International Workshop on Information Forensics and
Security (WIFS) (December 2018), IEEE, pp. 1–7.
DOI: https://doi.org/10.1109/WIFS.2018.8630763
Thesis chapter: 5
Addressed research question(s): RQ1, RQ3, RQ4
Background: Biometric enrolment database binning is a relatively simple
method of computational workload reduction. It relies on classifying (by
somewhat discriminative features, e.g. fingerprint type) the biometric sam-
ples into a discrete number of categories (bins). During a biometric identifi-
cation transaction, the search is conducted only within the bin(s) most likely
corresponding to that of the probe sample. The existing binning approaches
tend to concentrate on single instance data, whereas the use of multiple data
instances has not yet been explored in detail.
Contribution: The contributions of this research article are twofold: firstly,
the statistics of fingerprint types and their correlations across multiple fin-
gers are computed and summarised. Secondly, a multi-instance binning
method is presented and evaluated, with the results indicating a substan-
tial reduction in the computational workload. The proposed method relies
on an auxiliary feature and can therefore be used prior to the actual feature
extraction step. In addition to using publicly available data, the experiments
in this research article were validated using data provided by the German
Federal Police (Bundeskriminalamt).
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Abstract

We present a multi-iris indexing system for efficient and
accurate large-scale identification. The system is based on
Bloom filters and binary search trees. We describe and
empirically evaluate several possible information fusion
strategies for the system. Those experiments are performed
using a combination of several publicly available datasets;
the proposed system is tested in an open-set identification
scenario consisting of 6,000 genuine and 100,000 impos-
tor transactions. The system maintains the near-optimal
biometric performance of an iris-code, score fusion based
baseline system, while reducing the required lookup work-
load to less than 1% thereof.

1. Introduction

The increased popularity of biometrics worldwide is re-
flected in the appearance of several large-scale deploy-
ments. Of these, by far the largest is the Indian National
ID project - at the time of this writing, more than 1 billion
subjects have been enrolled [22] with biometric data from
iris, face and fingerprints.

In (open-set) identification and de-duplication scenarios,
one of the key challenges is the system accuracy, especially
in terms of false positive occurrences. In a naı̈ve, brute-
force approach 1:N comparisons per retrieval of the en-
rolled reference are performed, i.e. the probe template is
compared against every template in the biometric reference
database. Hence, for large databases, the possibility of false
positive occurrenes quickly becomes unacceptable (see [3]).
Fusing information from multiple sources can be used to in-
crease the discriminative power of a biometric system [11].
In this paper, we utilise information from multiple instances
of the same biometric characteristic - images of the left and
right irides. Since the operational systems often already
capture images of both irides (e.g. the aforementioned de-

ployment in India), the proposed approach would not incur
additional hardware costs or acquisition time during enrol-
ment and could be easily integrated into existing systems.

The main contribution of this paper is a, best to the au-
thor’s knowledge, first system for multi-iris indexing in the
biometric literature and a large-scale, open-set identification
evaluation of several information fusion strategies for said
system. The key goal was to explore different strategies for
multi-instance Bloom filter-based indexing and conduct a
benchmark in terms of biometric performance and workload
reduction. The paper is organised as follows: section 2 out-
lines related work; the basics of Bloom filter-based indexing
are described in section 3, while section 4 shows how it can
be extended to support multi-iris templates and which infor-
mation fusion strategies can be applied. Section 5 describes
the experimental setup; the results, discussion thereof and
conclusions are presented in sections 6 and 7.

2. Related Work

The task solved by a biometric system in an open-
set identification mode (i.e. where no identity claim is
made) can be generalised to the classic nearest-neighbour
search (NNS) problem. Additional non-trivial challenges
are caused by high dimensionality, as well as fuzziness of
the biometric data, meaning that the reference and probe
sample from the same subject may be very similar, but never
identical. In large systems, it is desirable to avoid the neces-
sity of a naı̈ve, brute-force lookup for every search query,
as such retrieval method is computationally expensive and
prone to false positive occurrences. Database indexing is
a commonly used method for achieving this goal. In such
systems, an index data-structure (e.g. a tree or hash table),
which allows to quickly locate the approximate location of
the data, is created and maintained. In other words, in-
dexing systems utilise additional storage space in order to
decrease response times. For biometric data, the indexing
schemes must take into account the aforementioned issues

Publication reference: DROZDOWSKI, P., RATHGEB, C., AND BUSCH, C.
Multi-iris indexing and retrieval: Fusion strategies for Bloom filter-based
search structures. In International Joint Conference on Biometrics (IJCB) (Octo-
ber 2017), IEEE, pp. 46–53.
DOI: https://doi.org/10.1109/BTAS.2017.8272681
Thesis chapter: 6
Addressed research question(s): RQ1, RQ3
Background: Information fusion can be used to increase the discriminative
power (and hence the biometric performance) of biometric recognition sys-
tems. However, those benefits are often counterbalanced by other costs, e.g.
sensing and usability overhead. Coupling information fusion and compu-
tational workload reduction while simultaneously avoiding the above costs
has not yet received enough attention in the scientific literature.
Contribution: The main contribution of this article is a method for indexing
of multi-instance iris data. This work builds on the previous work in [7],
by incorporating several information fusion strategies, whereby the biomet-
ric templates from the left and right iris can be consolidated. Additionally,
several heuristics for traversing the constructed hierarchical data-structures
are presented. The proposed method could be incorporated without ad-
ditional sensing and usability overhead, as many iris recognition systems
already capture both irides during the acquisition step. On the other hand,
the proposed method offers substantial benefits in terms of computational
workload and biometric performance.
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Abstract—Protecting the privacy of the enrolled subjects is
an important requirement expected from biometric systems. In
recent years, numerous template protection schemes have been
proposed, but so far none of them have been shown to be
suitable for indexing (workload reduction) in the computationally
expensive identification mode. This paper presents a, best to the
authors’ knowledge, first method in the scientific literature for
indexing protected iris templates. It is based on applying random
permutations to Iris-Code rows, and subsequent indexing using
Bloom filters and binary search trees. In a security evaluation,
the unlinkability, irreversibility and renewability of the method
are demonstrated quantitatively. The biometric performance and
workload reduction are assessed in an open-set identification
scenario on the IITD and CASIA-Iris-Thousand datasets. The
method exhibits high biometric performance and reduces the
required computational workload to less than 5% of the baseline
Iris-Code system.

I. INTRODUCTION

In recent years, interest in biometric systems have spiked
with many large-scale deployments (e.g. national databases
and border crossing control systems) appearing. Currently, the
largest such system is the Indian National ID system, into
which, at the time of this writing, 1.2 billion Indian residents
have been enrolled [1] with multi-biometric data and unique
identifier numbers. In the United Arab Emirates, the border
control agency employs an iris-based blacklist system, which
aims to prevent undesirable travellers (e.g. visa violators and
criminals) from re-entering the country [2].

Those and similar deployments have to operate in the
identification or duplicate-check modes. Due to the sheer size
of such systems, they are faced with strenuous requirements in
terms of biometric performance and computational workload.
The naı̈ve algorithm for such scenarios requires an exhaustive
(1:N) database search, i.e. comparing the probe against all
the references stored in the database. Notwithstanding the
use of efficient hardware and parallelism, with the growing
database sizes, the cost of executing such searches becomes
computationally prohibitive. Simultaneously, the probability of
false positives quickly becomes unacceptable. In [3], Daugman
shows the probability of at least one false positive (PN )
occurring in a identification scenario to be: PN = 1−(1−P1)N ,
where N is the number of enrolled subjects and P1 the
false positive probability of a one-to-one template comparison.

For this reason, research has been conducted into biometric
workload reduction, whereby the exhaustive search is replaced
with more advanced techniques. Those techniques often take
advantage of the underlying biometric template data represen-
tation, thus facilitating efficient search strategies; for example
through indexing or serial combination of algorithms. The
aim thereof is to vastly reduce the necessary number of
template comparisons per lookup, while maintaining or only
insignificantly reducing the biometric performance achieved
by the baseline, exhaustive algorithm. A biometric system
in an open-set identification mode (i.e. without an identity
claim) can be generalised to the classic nearest-neighbour
search (NNS) problem. However, additional non-trivial chal-
lenges arise due to high dimensionality, as well as intra-
class variation of the biometric data, which means that the
biometric templates extracted from the reference and probe
samples belonging to the same subject may be very similar,
but (almost) never identical. Consequently, typical workload
reduction approaches such as indexing need to be adapted to
account for the challenging properties of the biometric data
(see e.g. [4], [5], [6], [7], and [8] for a more comprehensive
survey). Other approaches used in (iris) biometric systems
include: cascading algorithms, whereby a computationally
efficient (albeit less accurate) method first computes a shortlist
of candidate identities, which is then searched exhaustively
by a slower and more accurate comparator (see e.g. [9],
[10], [11]); and classification, whereby the database is split
into buckets containing certain template classes (e.g. based
on gender, eye colour, some statistical properties etc.), with
the exhaustive search only being performed inside the bucket
corresponding to the probe (see e.g. [12], [13], [14]).

In addition to the aforementioned need for workload re-
duction, potential of data exposure is a large concern in
biometric system deployments, where the stored data is, in
most cases, secured using traditional encryption algorithms
[15]. Once compromised, this can lead to serious problems
such as identity theft, cross-matching without consent and
severely limited renewability. Furthermore, centralised storage
of sensitive personal and biometric data has been increasingly
receiving attention from the general public and various non-
governmental organisations, thus leading to widened legisla-

Publication reference: DROZDOWSKI, P., GARG, S., RATHGEB, C., GOMEZ-
BARRERO, M., CHANG, D., AND BUSCH, C. Privacy-preserving indexing of
Iris-Codes with cancelable Bloom filter-based search structures. In European
Signal Processing Conference (EUSIPCO) (September 2018), IEEE, pp. 2360–
2364.
DOI: https://doi.org/10.23919/EUSIPCO.2018.8553053
Thesis chapter: 7
Addressed research question(s): RQ1, RQ5
Background: Due to public scrutiny and new legislation (e.g. GDPR in the
European Union [15]), biometric systems (among others) are faced with in-
creasingly stringent data privacy and security requirements. The ISO/IEC
24745 [16] stipulates several properties (unlinkability, irreversibility, renewa-
bility, biometric performance preservation) to be fulfilled by the biometric
template protection schemes.
Contribution: The contribution of this research article builds on the pre-
vious research articles included in this thesis ([7] and [5]). In particular,
it extends the Bloom filter-based hierarchical indexing algorithm with data
privacy and security properties. A row-wise permutation of the iris feature
vectors is applied prior to the indexing step. The resulting system exhibits
strong template protection properties, while simultaneously significantly re-
ducing the computational workload of the biometric identification transac-
tions.
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ABSTRACT

Feature vectors extracted from biometric characteristics are
often represented using floating point values. It is, however,
more appealing to store and compare feature vectors in a bi-
nary representation, since it generally requires less storage
and facilitates efficient comparators which utilise intrinsic bit
operations. Furthermore, the binary representations are very
often necessary for some specific application scenarios, e.g.
template protection and indexing.

In recent years, usage of deep neural networks for facial
recognition has vastly improved the biometric performance
of said systems. In this paper, various binarisation schemes
are applied to such feature vectors and benchmarked for bio-
metric performance. It is shown that with only a negligible
drop in biometric performance, the storage space and compu-
tational requirements can be vastly decreased.

Index Terms— Biometrics, face recognition, binarisa-
tion, deep face templates

1. INTRODUCTION

Face is one of the most widely used biometric characteris-
tics. Various methods have been proposed over the span of
last three decades [1, 2]. In recent years, methods based on
deep learning (e.g. [3, 4, 5, 6]) have been proposed, and
significantly improved on the biometric performance of the
heretofore existing methods. With this improved biometric
performance, face has become an attractive characteristic for
large-scale identification systems.

The deep face feature representations typically involve
float-valued vectors, for which the template comparison is
performed using metrics such as Euclidean distance (L2

norm) or Chi-square distance (χ2). Those metrics are com-
putationally expensive – thus creating a potential efficiency
bottleneck for large-scale biometric identification systems,
where 1:N template comparisons are performed during lookup.
Additionally, transmission of such feature vectors from low-
cost mobile devices to central systems requires a compact
encoding, specifically when the bandwith of mobile networks

is limited. Binarisation of feature vectors offers an attractive
alternative – such templates can be stored efficiently and be
compared quickly in the Hamming domain utilising intrinsic
CPU operations (i.e. xor and popcount) [7].

Over time, many methods of binarising data have been
proposed, mostly with template protection as motivation (to
transform the features to certain input forms required by the
different cryptographic primitives) [8] and shown to work
with, among others, classical facial recognition systems.
However, it is unknown, whether or not those approaches are
suitable for the vectors produced by deep learning based face
feature extractors and their potential biometric performance
degradation due to information loss has not been studied
thoroughly. With this uncertainty as the motivation, the main
contribution of this paper is such a benchmark, where vari-
ous binarisation methods are evaluated in terms of biometric
performance and computational workload incurred at the
comparison stage.

The remainder of this paper is organised as follows: Sec-
tion 2 introduces the related work. In section 3, binarisation
schemes for deep facial templates are described. In section 4,
the experimental setup and results are presented, while sec-
tion 5 contains a summary of the paper and future work items.

2. RELATED WORK

In the recent decade, several data binarisation approaches
have been proposed. Kevenaar et al. [9] extract the most re-
liable components of facial feature vectors and binarise them
for use in a template protection scheme. Chen et al. [10]
present a detection rate optimized bit allocation (DROBA)
principle, which is biometric characteristic-agnostic. Based
on the discriminative power of the features, it assigns more
or fewer bits to them during binarisation, thus improving the
biometric performance of the binarised feature representation.
Bringer et al. [11] transform fingerprint minutiae set using
a vicinity-based approach, which in addition to producing a
compact feature representation, also exhibits self-alignment
property. When presenting a novel fingerprint minutiae rep-
resentation scheme, Cappelli et al. [12] note that it can also

Publication reference: DROZDOWSKI, P., STRUCK, F., RATHGEB, C., AND
BUSCH, C. Benchmarking binarisation schemes for deep face templates.
In International Conference on Image Processing (ICIP) (October 2018), IEEE,
pp. 191–195.
DOI: https://doi.org/10.1109/ICIP.2018.8451291
Thesis chapter: 8
Addressed research question(s): RQ1
Background: Facial recognition systems based on neural networks have
achieved breakthrough biometric performances in recent years. The feature
vectors typically extracted by those systems are represented using floating
point values and compared using metrics such as Euclidean or χ2 distance.
From the computational efficiency point of view, however, it would be more
appealing to store and compare the feature vectors using a binary represen-
tation, as it would generally require less storage space and facilitate efficient
comparators utilising intrinsic bit operations.
Contribution: The main contribution of this research article is a bench-
mark of biometric performance and computational workload achieved by
two neural network-based facial recognition methods. The benchmark is
conducted prior to and after the application of various existing floating
point data quantisation and encoding methods. It is shown that there ex-
ists a trade-off, whereby significant computational efficiency gains can be
achieved by sacrificing relatively little biometric performance.
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Publication reference: DROZDOWSKI, P., BUCHMANN, N., RATHGEB, C.,
MARGRAF, M., AND BUSCH, C. On the application of homomorphic en-
cryption to face identification. In International Conference of the Biometrics
Special Interest Group (BIOSIG) (September 2019), IEEE, pp. 173–180.
DOI: N/A
Thesis chapter: 9
Addressed research question(s): RQ1, RQ5
Background: Homomorphic encryption makes it possible to carry out mean-
ingful computations on encrypted data. This unique property is of interest
in various contexts where the privacy and security of the data needs to be
guaranteed. Recent public scrutiny and legislation (e.g. GDPR in the Euro-
pean Union [15]) means that increasingly stringent data privacy and security
requirements are put onto biometric (and other) systems.
Contribution: While homomorphic encryption has previously been shown
to be able to satisfy the biometric template protection goals of ISO/IEC
24745 [16], it has only been done for biometric verification. The main con-
tribution of this research article is an architecture and protocol proposal
for performing biometric identification in the homomorphically encrypted
domain, as well as an implementation and evaluation thereof using open-
source frameworks. As an additional contribution, the research article dis-
cusses the relevant challenges and technical considerations in the context of
the efficient biometric identification and computational workload reduction
in the homomorphically encrypted domain.
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Multi-biometric Identification with
Cascading Database Filtering

Pawel Drozdowski, Christian Rathgeb, Benedikt-Alexander Mokroß, Christoph Busch

Abstract—The growing scale and number of biometric deployments around the world necessitates research into technologies which facilitate
fast identification queries and high discriminative power. In this context, this article presents a biometric identification system which relies on a
successive pre-filtering of the potential candidate list using multiple biometric modalities, coupled with a weighted score-level information fusion.
The proposed system is evaluated in a series of experiments using a compound dataset constructed from several publicly available datasets; an
open-set identification scenario is considered with the enrolment database containing 1,000 chimeric instances. This evaluation shows that the
proposed system exhibits a significantly increased biometric performance w.r.t. a weighted score-level or rank-level fusion based baseline, while
simultaneously providing a consequential computational workload reduction in terms of penetration rate. Lastly, it is worth noting that the proposed
system could be flexibly employed in any multi-biometric identification system, irrespective of the chosen types of biometric characteristics and the
encoding of their extracted features.

Index Terms—Biometric Identification, Information Fusion, Computational Workload Reduction

�

1 INTRODUCTION

Various market value studies (see e.g. [1], [2], [3]) evince
the rapid growth of interest and investment in biometric
technologies. Biometrics are being used by various govern-
mental organisations around the world for purposes such
as law enforcement and forensic investigations (see e.g. [4],
[5], [6]), border control (see e.g. [7], [8], [9], [10]), national
ID systems (see e.g. [11], [12]), as well as during elections
for voter registration (see e.g. [13], [14]). The largest of
such deployments to date is located in India, where the
Unique Identification Authority of India operates a national
ID system (Aadhaar) which accommodates, at the time of
this writing, almost 1.3 billion enrolled subjects (see e.g.
the online dashboard [15]). Additionally, the prevalence
and computing power of mobile devices (especially smart-
phones) has been steadily increasing. Together with the
advances in embeddable high-quality sensors, those trends
have sparked interest in (single and multi modal) mobile
biometrics, which has become an active area of research and
product development (see e.g. [16], [17], [18], [19], [20]).

With the aforementioned increase of the popularity and
sizes of biometric systems in the governmental and com-
mercial sectors alike, it is important to develop technolo-
gies which facilitate accurate and efficient processing of
large amounts of biometric data. In particular, guaranteeing
practical system response times by means of algorithmic
solutions, rather than merely the scaling of the hardware
architecture is of utmost interest. Those considerations are
especially important for biometric identification (and du-
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plicate enrolment check) scenarios, where the conventional
biometric systems typically conduct an exhaustive search
(entailing one-to-many comparison) to identify the biomet-
ric probes. Daugman, the pioneer of iris recognition, stated
(in a recent interview) that performing accurate and efficient
biometric identification (i.e. without an exhaustive search) is
one of the most important, unsolved issues in biometrics in
general. From the governmental side there exists a strong
interest for computationally efficient biometric algorithms,
as evidenced by multiple competitions and benchmarks (e.g.
1:N Evaluation under Face Recognition Vendor Test (FRVT)
[21], one-to-many evaluations under Iris Exchange (IREX)
[22], and Biometric Technology Rally [23]).

In recent years, a significant research effort has been
devoted to addressing this topic by developing methods
for computational workload reduction in biometric systems
(see subsection 2.2 and a recent survey of Drozdowski et
al. [24] for more details). The contribution of this work in
this context is a proposal of an information fusion scheme,
as well as an experimental evaluation thereof on a large
compound dataset in the biometric open-set identification
scenario. The scheme is based on a successive filtering
of candidate shortlists coupled with information fusion
on score level. It is shown that the proposed scheme in-
creases the biometric performance w.r.t. the weighted score-
level or rank-level fusion based baseline by an order of
magnitude, while simultaneously significantly reducing the
computational workload (in terms of penetration rate) of
the biometric identification transactions. In related works,
several authors utilised dimensionality reduction and/or
binarisation to create short-length templates, which are used
to pre-filter the enrolment database in a two-stage frame-
work (see e.g. Gentile et al. [25], Billeb et al. [26], and Pflug
et al. [27]), whereas Drozdowski et al. [28] used biometric
image morphing in a similar manner. All of those methods
considered single-modal systems. A decision-based cascade
operating on the principle of sequential fusion of fingerprint

Publication reference: DROZDOWSKI, P., RATHGEB, C., MOKROSS, B.-A.,
AND BUSCH, C. Multi-biometric identification with cascading database fil-
tering. Transactions on Biometrics, Behavior, and Identity Science (TBIOM),
(March 2020), 1–14.
DOI: https://doi.org/10.1109/TBIOM.2020.2977215
Thesis chapter: 10
Addressed research question(s): RQ1, RQ3, RQ4
Background: By combining information from multiple sources (e.g. multi-
ple biometric modalities), the discriminative power (and hence biometric
performance) of a biometric recognition system can be increased. On the
other hand, the use of multiple information sources tends to make the sys-
tem more computationally demanding, typically in terms of additional tem-
plate comparisons being necessary.
Contribution: The main contribution of this research article is a concept for
a system which successively filters the potential candidate lists in biometric
identification transactions using multiple types of biometric characteristics.
The proposed concept is evaluated experimentally, where it is shown that
it not only significantly reduces the computational workload, but also im-
proves the biometric performance w.r.t. a weighted score-level fusion base-
line. The proposed method works irrespective of the chosen type of biomet-
ric characteristic or their corresponding feature representations, since it only
relies on the comparison scores and ranked candidate lists.
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TURNING A VULNERABILITY INTO AN ASSET:
ACCELERATING FACIAL IDENTIFICATION WITH MORPHING

P. Drozdowski�† C. Rathgeb� C. Busch�
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ABSTRACT

In recent years, morphing of facial images has arisen as an
important attack vector on biometric systems. Detection of
morphed images has proven challenging for automated sys-
tems and human experts alike. Likewise, in recent years, the
importance of efficient (fast) biometric identification has been
emphasised by the rapid rise and growth of large-scale bio-
metric systems around the world.

In this paper, the aforementioned, hitherto unrelated, top-
ics within the biometrics domain are combined: the properties
of morphed images are exploited for the purpose of improv-
ing the transaction times of a biometric identification system.
Specifically, morphs of two or more samples are used in the
pre-selection step of a two-stage biometric identification sys-
tem. In a proof-of-concept experimental evaluation using two
state-of-the-art open-source facial recognition frameworks it
is shown, that the proposed system achieves hit rates com-
parable to that of an exhaustive search-based baseline, while
significantly reducing the penetration rate (and thus the com-
putational workload) associated with the biometric identifica-
tion transactions.

Index Terms— Biometric identification, Face morphing,
Computational workload reduction, Indexing, Pre-selection

1. INTRODUCTION

In recent years, the interest around biometric technologies has
been growing steadily. This is evidenced by various market
value studies (see e.g. [1, 2]), as well as flourishing deploy-
ments of national and international systems for purposes of,
among others, personal identification, law enforcement, and
facilitating elections (see e.g. [3, 4, 5, 6]).

In this paper, two hitherto unrelated areas of biometric
research are combined:

1. Computational workload reduction in biometric identi-
fication.

2. Facial image morphing.

Specifically, facial image morphing, a crucial vulnerabil-
ity of operational biometric systems is turned into an advan-
tage through which the penetration rate (computational work-

load) of biometric identification transactions can be signifi-
cantly reduced. This is achieved by employing a two-stage
retrieval approach, which exploits certain properties of mor-
phed facial images.

The remainder of this paper is organised as follows: sec-
tion 2 introduces the relevant background concepts and the
related work. In section 3, the proposed system is described
and visualised conceptually. Section 4 presents the experi-
mental setup and the achieved results, while a summary and
concluding remarks are given in section 5.

2. BACKGROUND AND RELATED WORK

In this section, the research fields relevant to this paper are
briefly introduced: the operation modes of a biometric system
and challenges associated with biometric identification (sub-
section 2.1), and facial images morphing (subsection 2.2).

2.1. Operation Modes of a Biometric System
Biometric systems generally operate in one of two modes:

Verification Resolved in a 1:1 comparison between a bio-
metric probe and the biometric reference of a claimed
identity.

Identification No identity claim is made. Thus, in the worst
case, an exhaustive linear search is required in order to
find a candidate list or to reach a decision with the rank
one on the list.

The second case is obviously more challenging from the
practical point of view. However, the naı̈ve approach of the
exhaustive search suffers from two key issues:

Computational cost The growing number of enrolled sub-
jects, gradually slows down the response times, which
in turn requires investment into optimisations and/or
hardware architecture.

False positives costs The probability of at least one false
positive (PN ) occurring in a identification scenario is:
PN = 1 − (1 − P1)

N , where N is the number of en-
rolled subjects and P1 the false positive probability of
a one-to-one template comparison (see Daugman [7]).
This relationship is very demanding – even for systems

Publication reference: DROZDOWSKI, P., RATHGEB, C., AND BUSCH, C.
Turning a vulnerability into an asset: Accelerating facial identification with
morphing. In International Conference on Acoustics, Speech, and Signal Process-
ing (ICASSP) (May 2019), IEEE, pp. 2582–2586.
DOI: https://doi.org/10.1109/ICASSP.2019.8683326
Thesis chapter: 11
Addressed research question(s): RQ1, RQ3, RQ4
Background: Facial morphing has recently been established as a potential
attack vector against facial recognition systems. During the morphing pro-
cess, images of multiple data subjects are combined together to produce a
single image which exhibits a similarity (both in the context of human expert
perception and automated recognition systems) to each of the contributing
data subjects. Current research predominantly concentrates on methods for
creation of better morphs and detection of the morphed images.
Contribution: The contribution of this research article is the insight that
morphed images (a vulnerability) can be used in a positive way (an asset).
Specifically, it is shown that by using morphing, the the biometric enrolment
database can be organised into a two-step retrieval system. In a biometric
identification transaction, the morphed images can be used to conduct a
rough pre-selection of the candidate list (and hence computational work-
load reduction); subsequently, the individual images from the candidates
contributing to the pre-selected morphs are checked using the normal pro-
cedure. Furthermore, the proposed scheme functions on the image-level, i.e.
prior to feature extraction, which enables the use of any system susceptible
to morphing attacks for the pre-selection step, whereas the feature represen-
tation for the second step can be chosen freely.
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Abstract

The necessity of biometric template alignment imposes a
significant computational load and increases the probabil-
ity of false positive occurrences in biometric systems. While
for some modalities, automatic pre-alignment of biometric
samples is utilised, this topic has not yet been explored for
systems based on the iris.

This paper presents a method for pre-alignment of iris
images based on the positions of automatically detected eye
corners. Existing work in the area of automatic eye corner
detection has hitherto only involved visible wavelength im-
ages; for the near-infrared images, used in the vast majority
of current iris recognition systems, this task is significantly
more challenging and as of yet unexplored. A comparative
study of two methods for solving this problem is presented
in this paper. The eye corners detected by the two methods
are then used for the pre-alignment and biometric perfor-
mance evaluation experiments. The system utilising image
pre-alignment is benchmarked against a baseline iris recog-
nition system on the iris subset of the BioSecure database.
In the benchmark, the workload associated with alignment
compensation is significantly reduced, while the biometric
performance remains unchanged or even improves slightly.

1. Introduction

The iris is one of the main biometric characteristics used
in biometric systems around the world. At the time of this
writing, the Indian Aadhaar system has enrolled over 1 bil-
lion subjects’ multi-modal (including iris) biometric data
[27]. The border control system of United Arab Emirates
checks every traveller against a growing blacklist consisting
of hundreds of thousands of subjects [2]. The deployments
of this size and importance face strenuous requirements in
terms of, among other matters, biometric performance and
computational efficiency.

Following Daugman’s approach [7], which is the core
of most public operational systems, four major modules
constitute an iris recognition system: (1) acquisition of the
near-infrared image, where most current deployments re-
quire subjects to fully cooperate with the capture device
in order to capture images of sufficient quality; (2) pre-
processing, which involves a detection of inner and outer
iris boundaries, a detection of eyelids, an exclusion of eye-
lashes as well as contact lens rings, a scrubbing of spec-
ular reflections and an estimation of quality factors [15].
Subsequently, the iris is mapped to dimensionless coordi-
nates, i.e. a normalized rectangular texture, and an accord-
ing noise mask is stored; (3) feature extraction, in which a
two-dimensional binary feature vector, i.e. iris-code, is gen-
erated by applying adequate filters to the pre-processed iris
texture. This binary data representation enables compact
storage and rapid (4) comparison, which is based on the esti-
mation of Hamming distance (HD) scores between pairs of
iris-codes. In the comparison stage circular bit shifts are ap-
plied to iris-codes and HD scores are estimated at ±K dif-
ferent shifting positions, i.e. relative tilt angles, in order to
compensate the biometric sample misalignment. The min-
imal obtained HD , which corresponds to an optimal align-
ment, represents the final score.

Considering multiple shifting positions during a tem-
plate comparison increases the computational workload of
the system and the probability of a false match with K
[8]. This is especially important for identification systems,
where an exhaustive search of the reference database is per-
formed during an authentication attempt. By pre-aligning
the eye images, the aforementioned cost (in terms of com-
putational workload and biometric performance degrada-
tion) could be significantly reduced, thus partially allevi-
ating the issues created by the necessity of alignment com-
pensation. For the biometric references, the pre-alignment
could be performed at enrollment stage, while any addi-
tional computational cost of pre-alignment of the biometric

Publication reference: DROZDOWSKI, P., RATHGEB, C., HOFBAUER, H.,
WAGNER, J., UHL, A., AND BUSCH, C. Towards pre-alignment of near-
infrared iris images. In International Joint Conference on Biometrics (IJCB)
(October 2017), IEEE, pp. 359–366.
DOI: https://doi.org/10.1109/BTAS.2017.8272718
Thesis chapter: 12
Addressed research question(s): RQ1, RQ4
Background: Most of the currently operational iris recognition systems utilise
some version of the Daugman algorithm (Iris-Code). The algorithm includes
sample misalignment (i.e. relative tilt angles) compensation at the template
comparison stage: the Hamming distance between two Iris-Codes (binary
matrices) is computed at multiple relative positions by circularly shifting
the matrices, thereby incurring additional computational costs. Since the
comparison score at the optimal alignment is chosen, the score distribution
of (zero-effort) impostors tends to shift towards the genuine score distribu-
tion, which typically increases the probability of false positives.
Contribution: The main contribution of this research article is a method of
iris pre-alignment, which works on the biometric sample level. By detect-
ing the eye corners in the iris images, they can be rotated onto a common
plane, so that the eye corners form a horizontal line. As a consequence, the
relative misalignment of the samples is (on average) smaller overall. Thus,
fewer relative shifting positions need to be considered during the template
comparison, hence reducing the computational workload and improving
the biometric performance. An additional contribution are the methods for
eye corner detection, as previous research in this area only concerned visible
wavelength and not near-infrared iris images.
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Abstract—Eyeglasses change the appearance and visual
perception of facial images. Moreover, under objective met-
rics, glasses generally deteriorate the sample quality of near-
infrared ocular images and as a consequence can worsen the
biometric performance of iris recognition systems. Automatic
detection of glasses is therefore one of the prerequisites for
a sufficient quality, interactive sample acquisition process in
an automatic iris recognition system. In this paper, three
approaches (i.e. a statistical method, a deep learning based
method and an algorithmic method based on detection of
edges and reflections) for automatic detection of glasses in
near-infrared iris images are presented. Those approaches
are evaluated using cross-validation on the CASIA-IrisV4-
Thousand dataset, which contains 20000 images from 1000
subjects. Individually, they are capable of correctly classifying
95-98% of images, while a majority vote based fusion of the
three approaches achieves a correct classification rate (CCR)
of 99.54%.

Keywords-Biometrics; Iris Recognition; Glasses Detection;

I. INTRODUCTION

In recent years, iris recognition has become a popular
modality for biometric systems and is used in many large-
scale deployments (e.g. the Indian National ID project [22]).
The technology is also increasingly being used in automatic
(without human operator supervision) systems, such as smart
border/airport gates and mobile devices [14]. Operational
systems typically capture iris images in the near-infrared
light spectrum, in which the iris patterns are much more pro-
nounced than in the visible light spectrum, even for darkly
pigmented irides [6]. According to recent reports [20], [21],
over 50% of adult population in the developed world wear
eyeglasses. The pervasiveness of short-sightedness (myopia)
has been on an extreme rise in Eastern Asia and around the
world in general; a recent report in Nature News [7] states:

East Asia has been gripped by an unprecedented
rise in myopia, also known as short-sightedness.
Sixty years ago, 10-20% of the Chinese population
was short-sighted. Today, up to 90% of teenagers
and young adults are. In Seoul, a whopping 96.5%
of 19-year-old men are short-sighted. Other parts
of the world have also seen a dramatic increase
in the condition, which now affects around half
of young adults in the United States and Europe

- double the prevalence of half a century ago. By
some estimates, one-third of the world’s popula-
tion - 2.5 billion people - could be affected by
short-sightedness by the end of this decade.

Due to specular reflections, blur, scratches and other
factors, glasses tend to decrease the biometric sample quality
and consequently often the biometric performance of the
systems. While several researchers have investigated the
impact of glasses on face recognition systems, the scientific
literature on iris recognition contains very little related work
on this subject, except for a paper in which a small-scale
quantification of the effects of glasses on iris image pre-
processing is presented [13] and glasses being mentioned as
a significant noise factor (e.g. [3], [1], [9]). ISO/IEC 29794-
6 biometric sample quality standard [10] specifically rec-
ommends to instruct data subjects to remove glasses during
acquisition or to perform the acquisition with additional care.

Therefore, and due to the prevalence of glasses in the
world population, automatic detection of glasses is an impor-
tant matter in iris recognition (as will also be substantiated
by the experiments described in section III). It is of particular
interest for automatic sample acquisition systems, where
such a detection module would enable an interactive sample
acquisition and thus facilitate higher sample quality. While
this is a well-researched topic in systems working with
images of the facial region (e.g. [23], [2]), doing so in images
of ocular region alone has not received enough attention. In
this paper, three methods for accomplishing said task are
presented and benchmarked.

This paper is organised as follows: in section II, the used
dataset and experimental setup are described. Section III
provides an overview of the impact of glasses on iris
recognition. In section IV the three proposed automatic
glasses detection approaches are presented and evaluated.
Concluding remarks are given in section V.

II. EXPERIMENTAL SETUP

The Thousand subset of the CASIA-IrisV4 database [5]
(henceforth referred to as ”CASIA-Thousand dataset”) was
chosen for the experiments performed for this paper. Said
dataset contains near-infrared iris images of size 640× 480
pixels and, due to its size, is suitable for large-scale testing.

Publication reference: DROZDOWSKI, P., STRUCK, F., RATHGEB, C., AND
BUSCH, C. Detection of glasses in near-infrared ocular images. In Interna-
tional Conference on Biometrics (ICB) (February 2018), IEEE, pp. 202–208.
DOI: https://doi.org/10.1109/ICB2018.2018.00039
Thesis chapter: 13
Addressed research question(s): RQ2
Background: The appearance and visual perception of facial and ocular im-
ages changes with the presence of eyeglasses. Furthermore, eyeglasses tend
to deteriorate the objective sample quality of ocular images (e.g. due to blur,
reflections, and scratches); as a consequence, the biometric performance of
iris recognition systems can be negatively affected. With the quickly rais-
ing prevalence of myopia (nearsightedness), especially in the technologi-
cally developed world, eyeglasses can present an additional challenge for
the operational iris recognition systems.
Contribution: The main contributions of this research article are twofold:
firstly, an experimental evaluation of the impact of eyeglasses on iris recog-
nition using a large near-infrared ocular dataset is conducted. Previously,
only small studies have been reported in the literature. Secondly, three
methods (and a fusion thereof) are shown to reliably detect eyeglasses in
near-infrared ocular images. An additional contribution are the labels (with
or without eyeglasses) for one of the largest publicly available near-infrared
ocular datasets.
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Abstract—Nowadays large-scale identity management systems
enrol more than one billion data subjects. In order to limit
transaction times, biometric indexing is a suitable method to
reduce the search space in biometric identifications. Effective
testing of such biometric identification systems and biometric
indexing approaches requires large datasets of biometric data.
Currently, the size of the publicly available iris datasets is in-
sufficient, especially for system scalability assessments. Synthetic
data generation offers a potential solution to this issue; however, it
is challenging to generate data that is both statistically sound and
visually realistic - for the iris, the currently available approaches
prove unsatisfactory.

In this paper, we present a method for generation of synthetic
binary iris-based templates, i.e. Iris-Codes, which are the de
facto standard used throughout major biometric deployments
around the world. We validate the statistical properties of the
synthetic templates and show that they closely resemble ones
produced from real ocular images. With the proposed approach,
large databases of synthetic Iris-Codes with flexibly adjustable
properties can be generated.

Index Terms—Biometrics, Iris Recognition, Iris-Code, Syn-
thetisation

I. INTRODUCTION

The iris is one of the most widely applied biometric modali-
ties. In recent years, several large-scale deployments have been
created, most notably the Indian National ID program [1],
which has, at the time of this writing, enrolled over one billion
subjects with biometric data including the irides. Despite
using efficient comparators (e.g. Hamming distance for the
iris) and parallelism, the computational load faced by such
deployments in the identification scenario is extremely high.
With biometric workload reduction as a motivation, many
approaches for indexing of iris data have been developed [2].
However, evaluation of such approaches and their scalability
is often questionable due to lack of large test datasets. While
various publicly available iris databases with near-infrared
(NIR) data exist, they are relatively small. At the time of
this writing, some of the largest publicly available datasets,
CASIA-IrisV4-Thousand and ND-CrossSensor-Iris-2013, con-
tain merely 20.000 images from 1000 subjects and 146.550
images from 676 subjects, respectively. This is several orders
of magnitude smaller than some of the large-scale deployments
nowadays.

Synthetic data generation is one possible way of dealing
with the issue of testing efficient indexing methods. Most of
the existing approaches for synthetic iris generation attempt to
synthesise an entire iris image or texture [3]–[11]. The main

issues with such approaches include the computational costs
and the difficulty in guaranteeing the statistical properties of
the real data. The vast majority of operational iris biometric
systems are based on the Iris-Code [12], making it a de
facto standard. Generating Iris-Codes (feature vectors) directly
is therefore also viable and may offer better control over
the statistical properties of the synthetic data. Recently, two
such approaches have been proposed. Proença and Neves [11]
provide a method of Iris-Code synthesis based on bit corre-
lations; the method is shown to attain some of the desired
statistical properties (the shapes of the genuine and impostor
distributions). It is also somewhat flexible with adjustable
parameters; however, it does not allow to generate a set of
templates following a desired score distribution. Furthermore,
the filter response resulting from the typical feature extraction
process is not modelled (in other words, the produced synthetic
Iris-Codes scantily resemble the ones produced from real iris
images through the commonly used iris processing pipeline).
Lastly, typical error patterns between two mated templates
are not modelled. Daugman [13] proposed to use a simple
hidden Markov model to generate a stream of bits and showed
that it can be adjusted, so that the produced templates mimic
the impostor distribution of real iris templates. However, the
produced streams are 1-dimensional (i.e. do not model the cor-
relation between the Iris-Code rows); furthermore, the method
does not offer a way to generate more than one template per
subject (i.e. it is not possible to use it for simulating genuine
comparisons). As such, it might only be useful for stress-
testing of iris identification systems.

In this paper, we present a synthetic Iris-Code generator,
which both reflects the statistical properties of the real Iris-
Codes and resembles the real templates visually. An important
feature of the proposed approach is its flexibility, in that
it allows to generate Iris-Codes with an arbitrary resolution
and an arbitrary score distribution of mated templates, unlike
any of the approaches currently in the literature. To facilitate
reproducible research, the software written in Python3 pro-
gramming language, is released to the scientific community
under a permissive license.

The remainder of this paper is organised as follows: sec-
tion II describes the proposed method of synthetic Iris-Code
generation. In section III the properties of the generated
templates are validated, while section IV contains concluding
remarks.

Publication reference: DROZDOWSKI, P., RATHGEB, C., AND BUSCH, C.
SIC-Gen: A synthetic Iris-Code generator. In International Conference of the
Biometrics Special Interest Group (BIOSIG) (September 2017), IEEE, pp. 61–69.
DOI: https://doi.org/10.23919/BIOSIG.2017.8053520
Thesis chapter: 14
Addressed research question(s): RQ2
Background: Large datasets of biometric data are required in order to con-
duct effective tests of biometric identification systems and computational
workload reduction methods. Currently, however, the publicly available
datasets are often insufficient in size, especially for the assessment of system
scalability. A potential solution to this issue is synthetic data generation,
whereby arbitrarily large datasets can be created within short timespans.
However, synthetically generating data which is both visually and statisti-
cally realistic is considered challenging.
Contribution: The main contribution of this research article is a concep-
tual framework for generation of synthetic binary iris templates (i.e. Iris-
Codes). The implementation of the concept has been provided as an open-
source code release. The templates generated using the proposed method
closely resemble the ones extracted from the real ocular images and mimic
their statistical properties. The proposed approach is highly flexible and
parametrisable, thereby allowing the generation of large databases for a va-
riety of stress testing scenarios.
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ABSTRACT
Multiple samples can be utilised at the comparison stage of a bio-
metric system in order to increase its biometric performance via
information fusion or decision heuristics. It has been shown, that
in a single-instance dual-probe setup, fusing the probe scores yields
significant biometric performance increase over the single-probe
baseline. Additionally, using the probe-probe comparison score was
demonstrated to further improve the biometric performance of a fin-
gerprint recognition system in a study by Cheng et al. In this paper,
through a benchmark on the CASIA-IrisV4-Interval dataset and on
the iris corpus of the BioSecure dataset, the aforementioned method
is shown to be viable for an iris recognition system. However, since
it requires an additional parameter, which must be estimated empiri-
cally, we propose a simpler method which exhibits similar biometric
performance, while requiring no additional parametrisation.

CCS Concepts
• Security and privacy → Biometrics; • Computing method-
ologies→ Biometrics;

Keywords
Biometrics, Biometric Information Fusion, Iris Recognition

1. INTRODUCTION
In past years, several multi-biometric iris recognition systems have
been proposed [1, 2], some of which consolidate information from
multiple samples of a single eye instance during enrolment. Some
of these single-instance multi-sample fusion approaches have been
found to significantly improve the recognition accuracy of iris
recognition systems. The vast majority of proposed iris-based multi-
sample fusion schemes process multiple extracted feature vectors,
i.e. binary iris-codes, at the time of enrolment. The first concep-
tual scheme of this kind was presented in [3], in which a majority

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
ICBEA ’18, May 16–18, 2018, Amsterdam, Netherlands
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6394-5/18/05. . . $15.00
https://doi.org/10.1145/3230820.3230823

vote-based coding is applied for each bit position of an odd num-
ber of iris-codes, with the goal of reducing the intra-class varia-
tion between the resulting reference and probe iris-codes. In [4], a
weighted majority voting was proposed to improve the accuracy
of an iris recognition system. A weight map, which indicates the
stability of iris-code bits, is obtained from several iris-codes at en-
rolment. Comparison scores are then estimated as a weighted sum
of mis-matching bits. A similar approach based on personalized
weight maps has been presented in [5]. In [6], so-called “fragile”
bits, i.e. bits which exhibit a higher probability than others to flip
their value during a genuine comparison, are detected by compar-
ing several iris-codes obtained from a single eye. Incorporating
those bits into noise masks extracted in the iris segmentation stage
was shown to improve the overall biometric performance of the iris
recognition system. In contrast to the aforementioned approaches,
a signal-level fusion of iris texture information extracted from mul-
tiple frames of a video was proposed in [7]. Based on a pixel-wise
averaging, a single normalised iris texture is obtained. Such tex-
tures exhibit higher quality/reliabiltiy, and have been shown to
improve the biometric performance of an iris recognition system.
This scheme has been derived from a concept which was first intro-
duced for face recognition [8]. Similar schemes have been proposed
for fingerprint recognition systems [9, 10]. In [11], a score fusion
of single-fingerprint dual-probe is proposed, where in addition to
utilising the reference-probe comparison scores, the probe-probe
comparison score is incorporated into a score fusion. In this paper,
said score fusion method, along with proposal of further heuristics
are applied in an iris-based system and benchmarked.
The remainder of this paper is organised as follows: in section 2, the
employed fusion strategies for single-iris dual-probe iris recognition
are described. In section 3, the experimental setup and results are
presented, while section 4 contains a summary of the paper.

2. FUSION STRATEGIES
State-of-the-art iris recognition systems capture multiple samples
during acquisition stage for the purpose of supporting compensa-
tion of pose or gaze variations or for providing some fundamental
presentation attack detection (PAD) [12]. Those additional samples
can then be utilised at comparison stage. Specifically, in a system
where two probe samples are present at comparison stage, three
comparison scores can be computed as shown in figure 1: two (HD1
and HD2) between the reference and each probe and one (HD3)
between the two probes themselves. It is then possible to fuse the
scores, for example, in following ways:

Publication reference: DROZDOWSKI, P., WIEGAND, N., RATHGEB, C.,
AND BUSCH, C. Score fusion strategies in single-iris dual-probe recognition
systems. In International Conference on Biometric Engineering and Applications
(ICBEA) (May 2018), ACM, pp. 13–17.
DOI: https://doi.org/10.1145/3230820.3230823
Thesis chapter: 15
Addressed research question(s): RQ3
Background: By acquiring and using multiple samples of a biometric probe,
the biometric performance of a biometric recognition system can be im-
proved, e.g. by applying quality assurance and/or information fusion meth-
ods.
Contribution: In this research article, an existing method of dual-sample
fingerprint recognition is transferred to iris recognition and benchmarked.
The main contribution is an extension of the original method by proposing
a heuristic, which, as opposed to the original method, is parameter-free and
hence requires no training step.

3.1.2 Additional

Several additional research articles have been published during the course
of the doctoral studies research. They are listed below.
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Abstract: Large-scale biometric deployments are becoming ubiquitous. The computational workload of the conventional
retrieval method, requiring 1:N comparisons in the identification mode, is impractical for such systems. In recent years, many
approaches for efficient biometric identification were proposed, but their scalability is often questionable. Furthermore, the lack
of a unified methodology for biometric workload reduction reporting often makes a direct benchmark or a thorough evaluation of
the proposed schemes cumbersome. We present an iris indexing scheme based on Bloom filters and binary search trees. With
a statistical model, the system is shown to be theoretically scalable for arbitrarily many enrollees. We evaluate this system on a
combined database from several publicly available datasets, containing a total of 11,936 iris images from 1477 instances. In an
open-set identification scenario, the system maintains the biometric performance of an iris-code 1:N baseline – a true positive
identification rate of approximately 98% measured at 0.1% false positive identification rate, at only 10% of the baseline
workload. In a proof-of-concept multi-iris indexing experiment, the true positive identification rate is further increased to over
99%, without additional workload costs. Lastly, we define several prerequisites necessary for a transparent and comprehensive
methodology of biometric workload reduction results dissemination.

1 Introduction
In recent years, several large-scale biometric systems have been
introduced worldwide. By far the largest of these is the Indian
National ID project, which at the time of this writing has
successfully enrolled over one billion subjects [1] with biometric
data from iris, face and fingerprints. Two main challenges
associated with large-scale biometric identification are the
computational cost and the risk of false positives. A naïve, brute-
force approach is to perform template comparisons between the
probe and all enrolled reference templates (i.e. 1:N comparisons).
Even with excellent hardware and reliance on parallelism, the
computational cost quickly becomes prohibitive. Similarly, the
possibility of false positive occurrences quickly becomes
unacceptable. In [2], Daugman shows the probability of at least one
false positive (PN) occurring in an identification scenario to be
calculated using (1), where N is the number of enrolled subjects
and P1 the false positive probability of a one-to-one template
comparison

PN = 1 − (1 − P1)N (1)

A biometric system which performs well in the verification mode
(i.e. has a low P1) is not necessarily suitable for the much more
demanding identification mode. Observe that for values of P1
which are acceptable for biometric verification, the value of PN
might very quickly becomes unacceptably high as the number of
enrolled subjects N increases. The equation ignores other system
errors (e.g. failure-to-acquire rate (FTA)).

Following Daugman's approach [3], which is the core of most
public operational systems, four major modules constitute an iris
recognition system: (i) image acquisition, where most current
deployments require subjects to fully cooperate with the capture
device in order to capture images of sufficient quality; (ii) pre-
processing, which involves a detection of inner and outer iris
boundaries, a detection of eyelids, an exclusion of eyelashes as
well as contact lens rings, a scrubbing of specular reflections and
an estimation of quality factors. Subsequently, the iris is mapped to
dimensionless coordinates, i.e. a normalised rectangular texture,
and an according noise mask is stored; (iii) feature extraction, in

which a two-dimensional (2D) binary feature vector consisting of
WIC × HIC bits, i.e. iris-code, is generated by applying adequate
filters to the pre-processed iris texture. This binary data
representation enables compact storage and rapid (iv) comparison,
which is based on the estimation of Hamming distance (HD) scores
between pairs of iris-codes. In the comparison stage circular bit
shifts are applied to iris-codes and HD scores are estimated at K
different shifting positions, i.e. relative tilt angles, resulting in
WIC ∗ HIC ∗ K bit comparisons. The minimal obtained HD, which
corresponds to an optimal alignment, represents the final score.

Despite the rapid comparison and high resilience against false
matches offered by the iris-code representation, the sheer scale of
the major biometric deployments makes biometric workload
reduction a very relevant and important research topic. Recently, a
promising workload reduction approach employing a Bloom filter-
based representation of iris-codes and binary search trees has been
proposed in a proof-of-concept study [4]. In this paper, we further
analyse and expand upon said idea.

1.1 Contribution of work and paper organisation

The remainder of this paper is organised as follows:

i. The related works in the area of biometric workload reduction
for iris recognition are outlined (Section 2).

ii. A proposal for a standardised way of biometric workload
reduction reporting is made (Section 2).

iii. A basic Bloom filter-based system for biometric indexing is
described in detail. This system forms the basis of the work
performed for this paper (Section 3).

iv. A general model for Bloom filter-based indexing is introduced
along with a number of improvements for the basic system;
those include scalability to an arbitrary number of enrollees
and a first of its kind attempt of multi-iris indexing (Section 3).

v. The experiment methodology and results are presented and
discussed, along with future work items and concluding
remarks (Sections 4–6).

IET Biom.
© The Institution of Engineering and Technology 2017

1

Publication reference: DROZDOWSKI, P., RATHGEB, C., AND BUSCH, C.
Bloom filter-based search structures for indexing and retrieving Iris-Codes.
IET Biometrics 7, 3 (May 2018), 260–268.
DOI: https://doi.org/10.1049/iet-bmt.2017.0007
Thesis chapter: Appendix A
Addressed research question(s): RQ1, RQ2
Background: Currently, there exists no unified methodology for benchmark-
ing the computational workload (and reduction thereof) in biometric iden-
tification systems. This makes it difficult to directly compare the results
achieved by various computational workload reduction methods which are
presented in the different scientific publications.
Contribution: This research article is included in the appendix, as a sub-
stantial part of its contents is based on previous work. Specifically, the the-
ory and methods therein have been developed and described in the con-
text of the M.Sc. thesis [1] of this author. On the other hand, the prepara-
tion of a large-scale experimental setup, biometric performance and com-
putational workload reduction evaluation, as well as the process of article
writing/revisioning have been conducted after the hand-in of the aforemen-
tioned thesis (i.e. during the course of the doctoral studies). In addition to
the research component, where an efficient hierarchical retrieval method for
iris recognition systems has been presented and shown to be arbitrarily scal-
able using a statistical model, this article has laid some of the groundwork
for the submissions of comments to the ISO/IEC 19795-1 [17] standardisa-
tion project.
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Abstract—The prevalence of visual impairment around the
world is rapidly increasing, causing large numbers of people
to wear glasses. Glasses are generally considered an important
noise source in iris recognition; under objective metrics, they have
recently been shown to deteriorate the sample quality of near-
infrared (NIR) ocular images (consequently impairing the seg-
mentation accuracy and biometric performance). Automatically
and robustly detecting glasses in ocular images is therefore one of
the prerequisites for the acquisition of high quality iris samples.
While this issue has recently been addressed for NIR ocular
images, it remains an open issue in the visible wavelength (VW)
spectrum. As the popularity of VW iris recognition increases
(due to e.g. deployment of iris recognition in consumer grade
mobile devices and general improvements in VW recognition
algorithms), it becomes a matter of interest to quantitatively
evaluate the impact of glasses on such systems, as well as develop
methods for automatic detection of glasses in VW ocular images.

In this paper, the impact of glasses on VW iris segmentation
performance is investigated using the UBIRISv2 and MobBIO iris
databases. It is shown that the presence of glasses significantly
degrades the accuracy of iris segmentation. In addition, a state-of-
the-art iris segmentation method which can perform a semantic
segmentation of ocular images (including the segmentation of
glasses) is employed for the purpose of glasses detection. On the
used databases, correct classification rates (CCRs) of 98.57% and
83.62% are obtained, respectively.

Index Terms—biometrics, iris recognition, iris segmentation,
glasses detection

I. INTRODUCTION

In the past years, biometric recognition has become ubiq-
uitous in various applications ranging from automated border
control to forensic investigations. While some technologies,
e.g. face or fingerprint recognition, are already commercially
deployed in numerous application scenarios, the potential of
others still needs to be explored. In particular, non-cooperative
iris recognition based on images captured at VW represents a
challenging task [1]. In contrast to iris images captured under
NIR light, the iris tends to exhibit less textural information
when acquired at VW, depending on the eye colour of a
data subject. Furthermore, within VW iris images possible
artefacts, such as specular reflections or shadows, are more
pronounced. Those issues generally lead to an increased intra-
class variation, which can cause a severe drop in the biometric
performance. Accurate segmentation of the iris region in VW

images represents one of the most critical tasks [2] in the
processing pipeline and has also been the topic of several
competitions (e.g. MICHE [3], [4] and NICE [5], which
concentrated on mobile devices and noisy images, respec-
tively) aimed at improving the accuracy of the contemporary
algorithms. The segmentation of the iris involves a detection
of inner and outer iris boundaries, a detection of eyelids, an
exclusion of eyelashes and contact lense rings, as well as
scrubbing of specular reflections [6]. More recently, methods
based on deep learning, e.g. [7]–[10], revealed encouraging
results for the task of iris segmentation.

Visual impairment is becoming an increasingly common
affliction around the world. By some recent estimates (e.g.
[11], [12]), over 50% of adults in the developed world
are glass-wearers. In Eastern Asia, the prevalence of short-
sightedness (myopia) has been rapidly increasing to unprece-
dented levels [13]. Several researchers mention glasses as a
significant noise factor for iris recognition systems (e.g. [14]–
[16]). However, very little related work on this subject is
available in the contemporary scientific literature. In [17], the
impact of glasses on the pre-processing pipeline of NIR iris
images was evaluated in a small-scale study. Recently, a more
thorough investigation on the impact of glasses for NIR iris
images was done in [18]. In both works the drastic impact
of glasses on NIR iris image pre-processing and recognition
is demonstrated. Furthermore, in ISO/IEC 29794-6 biometric
sample quality standard [19], it is recommended to exercise
increased care during image acquisition from data subjects
wearing glasses, or to outright instruct them to remove their
glasses. Due to the non-trivial negative impact of glasses on the
biometric performance of iris recognition systems, as well as
the aforementioned pervasiveness of vision impairment (and,
consequently, of glasses in the world population), automatic
detection of glasses is an important matter in iris recognition.
This is particularly the case for automatic sample acquisition
systems, where higher sample quality could be facilitated
through interactive sample acquisition with a glasses detection
module.

In [18] methods based on texture descriptors, deep learning,
edge/reflection detection, and a fusion thereof have been
shown to achieve near-optimal results for glasses detection in

Publication reference: OSORIO-ROIG, D., DROZDOWSKI, P., RATHGEB, C.,
MORALES-GONZÁLEZ, A., GAREA-LLANO, E., AND BUSCH, C. Iris recog-
nition in visible wavelength: Impact and automated detection of glasses.
In International Conference on Signal-Image Technology Internet-Based Systems
(SITIS) (November 2018), IEEE, pp. 542–546.
DOI: https://doi.org/10.1109/SITIS.2018.00088
Thesis chapter: This research article is not included in this thesis, as it has
been decided to only include first-authorship research articles.
Addressed research question(s): RQ2
Background: The appearance and visual perception of facial and ocular im-
ages changes with the presence of eyeglasses. Furthermore, eyeglasses tend
to deteriorate the objective sample quality of ocular images (e.g. due to blur,
reflections, and scratches); as a consequence, the biometric performance of
iris recognition systems can be negatively affected. With the quickly rais-
ing prevalence of myopia (nearsightedness), especially in the technologi-
cally developed world, eyeglasses can present an additional challenge for
the operational iris recognition systems.
Contribution: This is a complementary research article to one of the main
research articles ([13]). This research article considers the visible wavelength
iris recognition, which in recent years is increasingly receiving attention as
an alternative to the near-infrared-based iris recognition. The contribution
is an experimental assessment of the impact of eyeglasses on visible wave-
length iris recognition, as well as a method for detection of eyeglasses in
visible wavelength iris images using a semantic ocular image segmentation
neural network.
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Publication reference: MOKROSS, B.-A., DROZDOWSKI, P., RATHGEB, C.,
AND BUSCH, C. Efficient Identification in Large-Scale Vein Recognition Systems
Using Spectral Minutiae Representations. Springer, 2020, ch. 9.
DOI: https://doi.org/10.1007/978-3-030-27731-4_9
Thesis chapter: This research article is not included in this thesis, as it has
been decided to only include first-authorship research articles.
Addressed research question(s): RQ1
Background: Vascular (e.g. palm and finger vein) biometric characteristics
are of interest for practical biometric applications due to their high discrim-
inative power and the relative difficulty of conducting successful presen-
tation attacks against them. However, many of the current state-of-the-art
vascular recognition algorithms (e.g. vein skeleton and minutiae based) are
computationally intensive, thus necessitating research into methods of com-
putational workload reduction.
Contribution: This research article is a chapter in the handbook of vascu-
lar biometrics [20]. The contribution is a proposal and evaluation of several
methods for indexing of vascular data, some of which are based on the con-
cepts from other research articles contained in this thesis ([7] and [5]).
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Chapter 4

Computational Workload in Biometric
Identification Systems: An Overview

Abstract

Computational workload is one of the key challenges in biometric
identification systems. The naı̈ve retrieval method based on an exhaus-
tive search becomes impractical with the growth of the number of the
enrolled data subjects. Consequently, in recent years, many methods
with the aim of reducing or optimising the computational workload,
and thereby speeding-up the identification transactions, in biometric
identification systems have been developed. In this article, a taxonomy
for conceptual categorisation of such methods is presented, followed by
a comprehensive survey of the relevant academic publications, includ-
ing computational workload reduction and software/hardware-based
acceleration. Lastly, the pertinent technical considerations and trade-
offs of the surveyed methods are discussed, along with an industry per-
spective, and open issues/challenges in the field.

Addressed research question(s): RQ1, RQ2
Reference: DROZDOWSKI, P., RATHGEB, C., AND BUSCH, C. Computa-
tional workload in biometric identification systems: An overview. IET Bio-
metrics 8, 6 (November 2019), 351–368.

4.1 Introduction

The interest in biometric technologies has been steadily growing in recent
years, as evidenced by various market value studies [10, 122, 182] and num-
bers of scientific publications in the area. Many states have utilised bio-
metric technologies for purposes such as forensic investigations and law
enforcement, border crossing entry-exit tracking, national citizen inventory
(ID systems), and voter registration. By far the largest biometric deploy-
ment to date is the Indian Aadhaar national ID system, which, at the time of
this writing, accommodates 1.3 billion enrolled subjects – almost the entire
Indian population.
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(a) Fingerprint (b) Face (c) Iris

Figure 4.1: Example images of some biometric characteristics commonly
used in large-scale biometric identification systems (taken from the MCYT,
FRGC, and IITD databases)

Table 4.1 gives an overview of this and several other examples of oper-
ational and planned large-scale biometric systems. The table is not exhaus-
tive; instead, it seeks to highlight the diversity of the used biometric charac-
teristics, the system purposes, and the geographical locations of some of the
largest biometric systems around the world. In figure 4.1, example images
of biometric characteristics most commonly used in large-scale biometric
identification systems are shown.

Biometric systems can operate in a broad variety of ways. Two such
ways (as defined in the ISO/IEC international standards [86, 87]) are:

Biometric verification Referring to the “process of confirming a biometric
claim through biometric comparison”.

Biometric identification Referring to the “process of searching against a
biometric enrolment database to find and return the biometric refer-
ence identifier(s) attributable to a single individual”. Two main sce-
narios can be distinguished in this case: closed-set identification, for
which all potential users are enrolled in the system, and open-set iden-
tification, for which some potential users are not enrolled in the sys-
tem.

Naturally, the second case (i.e. open-set identification, as well as the du-
plicate enrolment check) is the most interesting and challenging from the
practical point of view for the aforementioned real-world applications. Un-
fortunately, in the worst case, an exhaustive search (i.e. comparing a probe
against all the enrolled subjects) is required in order to reach a decision. This
naı̈ve approach quickly runs into two non-trivial problems:
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Table 4.1: Examples of currently operational and planned large-scale bio-
metric identification systems around the world

Status System Location Characteristic(s) Subjects Purpose

Operational Aadhaar [184, 185] India Fingerprint and iris (op-
erational), face (potential
future use)

1.3 billion National ID

EURODAC [49, 51] EU Fingerprint 7 million Border-control
IDENT/US-VISIT [63] USA Fingerprint (operational),

face and iris (pilots ongo-
ing)

200 million Entry-exit

CODIS [53] USA DNA 17.5 million Law enforcement
CENI [25] DR Congo Fingerprint 46 million Voter registration

Planned HART [37, 140] USA Fingerprint, Face, Iris (expected) up to 500 million Entry-exit
EES [47, 50] EU Fingerprint, Face (expected) up to 200 million Entry-exit

Computational costs As the number of enrolled subjects increases, the sys-
tem response times become gradually slower, thus requiring optimi-
sations and/or investment into larger hardware architectures.

False positives costs The probability of at least one false positive (PN ) oc-
curring in a identification scenario is: PN = 1 − (1 − P1)

N , where
N is the number of enrolled subjects and P1 the false positive proba-
bility of a one-to-one template comparison. This relationship is very
demanding – even for systems which perform extremely well in veri-
fication mode (i.e. have low P1), the value of PN very quickly becomes
unacceptably high, as the number of enrolled subjects N increases
(see [32]). Note, that this equation ignores other system errors, e.g.
the failure-to-acquire rate and assumes that at a given threshold all
subjects have the same false-match-rate, which likely is not the case.
Nonetheless, it is a useful approximation for illustrating this challenge
of biometric identification systems.

In a recent interview [83], Daugman, the pioneer of iris recognition (see
[34]), has stated that performing accurate and efficient biometric identifi-
cation (i.e. not by an exhaustive search) is one of the important, unsolved
issues in the biometrics field in general. Substantial research effort has been
devoted to development of workload reduction methods, which seek to al-
leviate the aforementioned issues (especially the computational cost, since
the biometric performance can also be improved through other means, such
as increasing data quality and information fusion). Since the overall com-
putational costs in a biometric identification scenario are dominated by per-
forming the biometric comparisons, most approaches are aimed at that step
in the system pipeline. Specialised data representations and search algo-
rithms are utilised to reduce the computational effort required for a sin-
gle template comparison, and/or to reduce the overall number of required
template comparisons. However, biometric data exhibits certain proper-
ties, which present challenges or outright invalidate many traditional ap-
proaches aimed at retrieval speed improvement:
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Ordering Biometric data has no inherent logical ordering (as opposed to,
for example, text data, which can be indexed e.g. alphabetically).

Within-subject variability The samples acquired from the same subject
(even within short time intervals) are almost never exactly identical
(i.e. they are fuzzy). Some variations are nearly inevitable due to nu-
merous noise sources in the acquisition process (e.g. distance and angle
from the sensor, environmental conditions, occlusions etc.).

Dimensionality The biometric feature vectors are typically high dimen-
sional; many search and indexing methods perform poorly in such
spaces [68].

Consequently, computational workload reduction methods tailored specif-
ically to the particular properties of biometric data have been developed
in recent years. Such methods will be surveyed in the following sections.
For a general overview of search structures and algorithms used for fast
similarity searches across various disciplines, the reader is referred to e.g.
[1, 21, 79, 148, 149, 150, 189, 205]. The reader is expected to possess cer-
tain background knowledge on biometric recognition systems in general
and the typical algorithms used in their signal processing pipelines. For
quick primers, the reader is referred to the encyclopedia of biometrics [111],
as well as the renowned handbook series: [90] for biometrics in general and
[14, 110, 119, 183] specifically for fingerprint, face, iris, and vascular charac-
teristics, respectively.

While previously there have been surveys on biometric workload reduc-
tion methods (e.g. [145] for iris and [168] for fingerprint), they tend to con-
centrate on particular methods and/or biometric characteristics, rather than
the overall spectrum of available research. Although the emphasis of this ar-
ticle is on the academic research, a discussion from the industry perspective
and the interplay between academia and industry are included. The main
contributions of this article are thus as follows:

Taxonomy which conceptually categorises the computational workload re-
duction methods in biometric identification.

Comprehensive survey of the methods reported in the scientific literature.
It is organised by the relevant concepts, rather than by biometric char-
acteristics. Instead of concentrating on one biometric characteristic
only, the (arguably) most popular ones (in terms of actual use in in-
dustry and scientific research interest) are surveyed.

Discussion of relevant technical considerations and trade-offs, along with
an industry perspective, and open issues/challenges pertaining to this
research field.
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The remainder of this article is organised as follows: section 4.2 gives
an overview of relevant background information; in particular it introduces
and defines key concepts used throughout the article, as well as outlines the
current methodologies for results reporting and issues associated therewith.
Section 4.3 contains a comprehensive survey of the existing computational
workload reduction approaches reported in the scientific literature, concep-
tually organised within the framework of the proposed taxonomy. Section
4.4 discusses the topic from the purely academic, as well as industrial per-
spective, and outlines open issues/challenges. A summary and concluding
remarks are given in section 4.5.

4.2 Background

This section gives an overview of relevant background information. Sub-
section 4.2.1 contains a list and short descriptions of the pertinent concepts
and nomenclature, whereas in subsection 4.2.2, the dilemma associated with
biometric result reporting and benchmarking is outlined.

4.2.1 Concepts and Nomenclature

Throughout this article, the nomenclature from the biometric vocabulary
[87] and biometric performance testing and reporting [86] ISO/IEC interna-
tional standards are used whenever applicable. However, as of this writing,
many concepts relating to computational workload in biometric systems
have not yet been put into standards by ISO/IEC (although efforts in this di-
rection are ongoing, especially as some of the key standards are now/soon
up for a revision). In this context, the present standards only defines the
terms (quoted directly from the standards):

Pre-selection algorithm Referring to the “algorithm to reduce the number
of templates that need to be matched in an identification search of the
enrolment database”.

Pre-selection error Referring to “the error that occurs when the correspond-
ing enrolment template is not in the pre-selected subset of candidates
when a sample from the same biometric characteristic on the same
user is given”.

Baseline performance Referring to the “performance of a biometric system
in a reference evaluation environment”.

Those terms are insufficient to capture the whole spectrum of issues and
methods relevant in the aforementioned context. Therefore, several key con-
cepts listed below are defined based on their actual use in the surveyed sci-
entific literature:
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Figure 4.2: Taxonomy of methods used for the purpose of speeding-up bio-
metric identification
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Baseline system A state-of-the-art algorithm performing an exhaustive database
search during a biometric identification transaction.

Computational workload The total computational effort of a single trans-
action (or a set of transactions) in a biometric (identification) system,
including: number of intrinsic operations, execution time, memory
and storage requirements.

Computational workload reduction The extent to which a method reduces
the computational requirements (workload) of a biometric transaction
(in a biometric identification system). See also subsection 4.2.2.

Pre-filtering (also “pre-selection”, “cascading algorithms”, “serial combi-
nation of algorithms”, “guided search”, “continuous classification”)
Computationally efficient, but somewhat inaccurate, comparator(s) are
used to compare the biometric probe against the enrolled templates to
produce successively smaller short-lists of candidate identities. In the
end, the actual accurate, but computationally expensive, comparator
is applied only to a fraction of the entries from the candidate short-list.

Binning (also “(discrete/exclusive) classification”, “clustering”) Splitting
of the enrolment database into a number of subset (i.e. bins) based on
coarse-level features. Those features can be tangible sample meta-data
(e.g. sex, ethnicity, age) or based on intrinsic statistical properties of a
template representation. During retrieval, the search space is reduced
by only searching within the bins(s) most likely corresponding to the
biometric probe.

Data-structures Organising the enrolment database to take advantage of
efficient ordering principles (e.g. based on trees or fuzzy hashing), thus
enabling searching in sub-linear/logarithmic time.

Indexing An often used umbrella term (in the biometric literature – e.g.
a recent survey [168] and many individual publications) for all pre-
selection methods (i.e. pre-filtering, binning, and data-structures). Si-
multaneously, it also has specific meaning outside the biometrics com-
munity. In order to avoid ambiguities, the term is not used in this
article. Instead, the publications which present “indexing” methods,
are assigned conceptually to one of the aforementioned categories.

Feature transformation The act of deriving additional features from a bio-
metric template with the goal of attaining some desirable properties
(e.g. smaller template size, ability to use a faster comparator, biometric
sample alignment invariance).
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Acceleration (hardware and/or software based) Utilisation of specialised
hardware, hardware-software co-design, parallelism, distributed com-
puting, and other methods in order to increase the efficiency/speed of
a system compared to execution on standard CPUs.

In section 4.3, a taxonomy, which encompasses the abovementioned con-
cepts and terms is presented.

4.2.2 Results Reporting

In subsequent subsections, tables which summarise the surveyed publica-
tions are presented. They include, among other matters, biometric perfor-
mance and computational workload details. The metrics used for measur-
ing biometric performance are well-defined and standardised [86]. The most
relevant, in the context of this article, is the pre-selection error rate (comple-
ment of the hit rate; incidentally the hit rate is preferred in the vast majority
of the works referenced later on in this article). While, in theory, this should
make it possible to directly compare different methods, the reality is rather
disappointing. First of all, some of the listed publications pre-date or ig-
nore this standard, i.e. use a wide range of other metrics. Secondly, there
inevitably exist other confounding issues and discrepancies in the experi-
mental protocol, such as e.g. mode of operation (closed or open set), choice
of dataset (hence, crucially, data quality), as well as size and partitioning
thereof (i.e. training/testing partitions, number of biometric mated and non-
mated comparison trials). Furthermore, at the time of this writing, metrics
for measuring computational workload and its reduction are not standard-
ised in any way whatsoever; many different metrics do appear in the scien-
tific literature, for example:

• Penetration rate, which measures what fraction of the database is searched
during a biometric identification transaction.

• Biometric template and/or model size, which determines how com-
putationally expensive a single biometric comparison is.

• The fraction or percentage between the computational workload of a
proposed system and a baseline system.

• Computational time, which measures the average execution time on
some specific hardware configuration.

Additionally, it is often the case, that the publications present various pa-
rameter configurations with different trade-off spectra etc. for the proposed
systems. It is therefore not always clear, which result to choose to present
in a survey table, and how to select the single operational point which best
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encompasses all the aspects of the proposed systems. As such, the choices
in this survey were made as follows:

1. If the authors have provided a single representative result (operational
point) in the publication text (e.g. in the abstract or summary) for the
biometric performance and/or computational workload, those values
are taken directly.

2. Otherwise, a single operational point is chosen in good faith from the
presented plots and tables. If possible, this is done based on what is
commonly reported elsewhere in the literature, e.g. equal-error-rate or
other recognised metric. For the sake of consistency, if results for mul-
tiple ranks (e.g. CMC curve) are available, rank-1 results are preferred.

3. Computational time results are not reproduced, since they depend on
a specific hardware configuration (which is most likely obsolete any-
way). Where possible, the relative speed-up between the baseline and
the proposed method is (calculated and) reported.

Due to the aforementioned issues, directly comparing the results from
the surveyed publications is problematic, if not impossible. Furthermore,
different systems require different considerations and trade-offs w.r.t. the
biometric performance and the computational workload, as well as addi-
tional matters such as user convenience, software and hardware infrastruc-
ture, financial costs, and others. Consequently, the readers interested in
benchmarking and/or utilising the surveyed methods are strongly recom-
mended to investigate the relevant publications by themselves in order to
obtain full-picture information of the proposed methods along with the bio-
metric performance and computational workload trade-offs associated there-
with.

4.2.3 Feature Extraction

Extracting sufficiently discriminative features is a critical prerequisite for
any biometric system. This is especially a concern in biometric identification
systems, due to the significantly increased risk of false positive errors (see
section 4.1). Over time, various general purpose and biometric characteristic
specific feature extraction methods have been proposed and used in this
context. However, comprehensively surveying and comparing those would
tremendously extend the already significant scope of this article. Therefore,
the reader interested in a detailed treatment of this subject is referred to a
recently published comprehensive survey of general purpose texture based
feature extraction methods [116], as well as the handbook series: [90] for
biometrics in general and [14, 110, 119, 183] specifically for fingerprint, face,
iris, and vascular characteristics, respectively.
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4.3 Computational Workload Reduction Approaches

In this section, the current state-of-the-art is presented. Firstly, the proposed
taxonomy around which this section is structured is introduced and de-
scribed below. Thereafter, a comprehensive survey of existing methods is
given and put in the context of the taxonomy.

Figure 4.2 shows the proposed taxonomy under which the existing ap-
proaches to speeding-up the biometric identification can be categorised. Note,
that in many cases the approaches can be combined into multi-level frame-
works, e.g. a binning followed by tree-based hierarchical retrieval, imple-
mented utilising hardware acceleration or pre-selection based on multiple
levels of complementary features. Two main approaches to improving the
computational efficiency of biometric identification can be distinguished:
workload reduction (subsections 4.3.1 to 4.3.5) and acceleration (subsection
4.3.6). The latter does not reduce the computational workload per se – in-
stead, it seeks to perform the same amount of computations in a more effi-
cient manner (e.g. by utilising specialised hardware or optimising the soft-
ware implementation). The goal of the former is to reduce the amount of
computations necessary to perform a biometric identification transaction.
For those approaches, two main categories can be distinguished: concentrat-
ing on reducing the penetration rate, the aim of the pre-selection approaches
(subsections 4.3.1 to 4.3.3) is to narrow down the search space by taking ad-
vantage of auxiliary features, metadata, or search structures, which can be
extracted or created from the samples. On the other hand, the goal of feature
transformation approaches (subsection 4.3.4) is to reduce the computational
cost of individual template comparisons, e.g. by reducing their dimension-
ality or utilising more computationally efficient comparators. The vast ma-
jority of the approaches can be assigned to one of those categories. The re-
maining few ones (subsection 4.3.5) are based e.g. on augmenting the search
strategy of the retrieval algorithm or rely on certain intrinsic properties of
specific biometric data.

This section is organised to facilitate selective reading: firstly, a very
broad overview of the efficient biometric identification research areas has
been given above by introducing and describing the proposed taxonomy.
The following subsections’ text outlines the relevant high-level concepts and
ideas, while the tables contain more detailed information w.r.t. specific tools,
algorithms, and datasets used, as well as the achieved results. Finally, the
considerations and trade-offs associated with the different approach cate-
gories are discussed in subsection 4.4.1.

4.3.1 Pre-filtering

Figure 4.3 shows a conceptual overview of pre-filtering approaches, while
table 4.2 summarises the surveyed methods.
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Figure 4.3: Conceptual view of pre-filtering approaches

4.3.1.1 Multi-Feature

The key idea behind the multi-feature approaches is the extraction of one
or several auxiliary features, which in themselves do not have sufficient
discriminative power for unique identification, but can nonetheless signif-
icantly reduce the search space (i.e. by acting as an index, which allows to
determine a candidate short-list).

Auxiliary features such as orientation field, ridge density, local (minutiae-
based) and global (e.g. fingerprint types, which have been in use for decades
for the purposes of manual indexing of analog ten-fingerprint records with
the Henry Classification System, see e.g. [77, 78], and subsection 4.3.2) can
be extracted from fingerprint images; some of them also pertain to other
characteristics, such as vascular and palmprint patterns. Several authors
(e.g. [9, 15, 36, 54, 97, 109, 113, 191]) utilise such coarse features as an in-
dex in a pre-filtering step. In other cases, the methods proposed in the sci-
entific literature do not rely on specific, biometric characteristic-dependent
features as above; instead, to create an index, they utilise general-purpose
algorithms, such as texture extractors (e.g. [23, 39]), principal component
analysis (e.g. [128]), and, more recently, deep learning (e.g. [187, 188]). It
should be noted, that the pre-filtering can happen in a cascading manner,
over two (e.g. [72, 73, 102]) or multiple (e.g. [55, 153, 202]) levels, which suc-
cessively produce smaller candidate lists, or through direct application of
information fusion strategies to the extracted features (e.g. [139]). However,
an in-depth analysis and evaluation concerning which of the methods (cas-
cades or fusion) performs better has not yet been reported in the scientific
literature.

4.3.1.2 Same feature, different representation

The key idea behind this category of approaches is transformation of the
original feature representation into a more compact one, whereby the com-
putational costs of comparisons are decreased (often at the cost of losing
some discriminative power). The compact templates can then be used to re-
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Table 4.2: Pre-filtering approaches

Taxonomy Characteristic Publication Method Database Biometric Performance Computational Workload

Multi-Feature Fingerprint Ratha et al. [153] Metadata (only
conceptual), fin-
gerprint type,
ridge density

NIST-9 subset 80% accuracy, 10% reject
rate

12.5% search space

De Boer et al. [36] Directional field,
FingerCode, and
minutiae triplets

FVC2000 100% hit rate 18% penetration rate

Bhanu [9] Minutiae triplets,
geometric features

NIST SD4 85% hit rate 10% penetration rate

Feng et al. [54] Minutiae points
and types, local
ridge structures

FVC2002 100% hit rate 22% penetration rate

Li et al. [109] Ridge structure,
symmetrical filters

NIST DB4 98% hit rate 32.7% penetration rate

Liang et al. [113] Minutiae neigh-
bourhoods, Delau-
nay triangulation

FVC2002, FVC2004 100% hit rate 18.1%, 20.9% penetration
rate

Wang et al. [191] 2D Fourier expan-
sion coefficients

NIST SD 14 100% hit rate 10% penetration rate

Feng et al. [55] Fingerprint type,
singular points,
orientation field

NIST SD27 (search
attempts), NIST
SD4, SD14 and
SD27 (background)

97.3% accuracy 39% penetration rate

Cappelli [15] Ridge-line orienta-
tions and frequen-
cies

NIST SD4, SD14,
FVC2000 (DB2,
DB3), FVC2002
(DB1)

96.5%, 96.5%, 99%,
93.5%, 99% hit rate

10% penetration rate

Paulino et al. [139] Orientation field,
ridge period,
singular points,
minutiae triplets,
simplified MCC

NIST SD27 (search
attempts), in-house
(background)

90.3% hit rate 20% penetration rate

Fingerprint,
face

Gyaourova et al. [72, 73] Index-codes from
non-mated com-
parison trials,
fusion

FERET, FRGC,
WVU

100% hit rate 84% reduction

Face Mohanty et al. [128] Affine approxima-
tion, PCA

FERET — 20-fold reduction

Chen et al. [23] LBP, semantic
codewords from
metadata

LFW, Pubfig 18.6%, 21.0% MAP —

Wang et al. [187, 188] Deep features and
COTS

LFW, IJB-A 0.25 MAP at 1% FAR,
0.175 MAP at 1% FAR

30-fold time reduction

Iris Konrad et al. [102] Rotationally in-
variant representa-
tion

CASIA-V1,
CASIA-V3 In-
terval, MMU

92% IR, 0% FAR; 89%
IR, 0.85% FAR; 79% IR,
0.85% FAR

70-80% time reduction

Gadde et al. [57] BWT CASIA-V3-Interval 99.83% hit rate 17.23 % penetration rate
Dey et al. [39] Gabor energy

features, multi-
sample enrolment

Bath, CASIA-V3-
Interval, CASIA-
V4-Thousand,
MMU2, WVU

98.2%, 91.1%, 90.7%,
85.2%, 96% hit rate

11.3%, 14.5%, 16.3%, 13.5%,
10.3% penetration rate

Fingervein Kavati et al. [97] Delaunay triangu-
lation

NTU NIR, NTU
FIR

100% hit rate 17.99%, 11.75% penetration
rate

Palmprint You et al. [202] Global geometry,
global texture
energy, fuzzy “in-
terest” line, local
texture

In-house 6.13% FRR at 11.77%
FAR

2-fold speed-up

Same feature,
different represen-
tations

Face Wu et al. [197] Binary template
pre-screening

In-house Better than baseline ∼10-fold reduction

Iris Gentile et al. [64] Short-length Iris-
Codes

MMU 7% pre-selection error 12-fold reduction

Fingervein Tang et al. [179] Binary vein encod-
ing

PKU 98.4% hit rate 250-fold time reduction

Voice Billeb et al. [11] Binary template
pre-screening

Unknown, text-
independent

same or better than
baseline

95% speed-up

Ear Pflug et al. [143] Binary template
pre-screening

PolyU, UND-J2 100% hit rate 30% penetration rate

Sub-sampling Fingerprint Iqbal et al. [84] Incremental
matching

FVC2002 99% hit rate 26% penetration rate

Fingerprint,
palmprint

Chen et al. [24] Incremental
matching

THU, NIST SD 4,
in-house

90.4% IR, 85.3% IR,
75.3% IR

∼50% reduction

Face Yi et al. [200] Incremental
matching

FERET, in-house Same as baseline 7.5-fold speed-up

Iris Hao et al. [75] BGS, incremental
matching

UAE 0% FAR, 0.64% FRR 0.006% penetration rate

Ross et al. [164] Partial matching UPOL 0.62% EER 10% of baseline
Hämmerle-Uhl et al. [74] Partial matching CASIA-V3 Interval Same as baseline 1 order of magnitude re-

duction
Rathgeb et al. [160] Incremental

matching
CASIA-V3 Interval Same as baseline 95% fewer bit comparisons

Fingervein Surbiryala et al. [178] Partial matching Combined 7 fin-
gervein DBs

8.05% pre-selection er-
ror

∼3-fold reduction

duce the search space (i.e. by acting as an index, which allows to determine
a candidate short-list).

Conceptually similar approaches, where binarised (see also subsection
4.3.4.1) and/or shortened feature vectors are used as an index in the pre-
filtering step, have been proposed e.g. in [11, 64, 143, 179, 197] for iris, face,
fingervein, voice, and ear, respectively.
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The difference between the key idea in this and previous subsection is
subtle – here, the same feature is used to create the index template (e.g.
through binarisation), whereas in the multi-feature concept, additional fea-
tures are extracted from the sample (e.g. through texture or keypoint de-
scriptors or high level geometric features).

4.3.1.3 Sub-sampling

The key idea behind sub-sampling is to utilise partial information from the
original feature vectors once or in an incremental manner to facilitate search
space reduction via accurate early rejection of unlikely candidates. In other
words, parts of the original feature vector itself act as an index in this case.
This can be done trivially by deterministically or randomly selecting the
partial information or, in more advanced approaches, by reorganising the
feature vectors based on reliability and discriminative power (see e.g. [80]),
as well as utilising other heuristics. In the literature, numerous conceptually
similar approaches have been presented e.g. in [24, 74, 84, 160, 164, 178, 200]
for various biometric characteristics, including fingerprints, face, iris, and
fingervein. In all the aforementioned publications, the computational work-
load is shown to be substantially reduced without causing degradation of
the biometric performance. In [75] a more sophisticated approach, which
relies on creating an auxiliary search guiding structure and an early search
termination strategy, was presented with impressive results, albeit on pro-
prietary data.

4.3.2 Binning

Figure 4.4 shows a conceptual overview of binning approaches, while table
4.3 summarises the surveyed methods.
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Figure 4.4: Conceptual view of binning approaches

63



4. COMPUTATIONAL WORKLOAD IN BIOMETRIC
IDENTIFICATION SYSTEMS: AN OVERVIEW

Table 4.3: Binning approaches

Taxonomy Characteristic Publication Method Database Biometric Performance Computational Workload

Handcrafted Fingerprint Zheng et al. [207] Classification,
coarse-level match-
ing, class-jumping,
SURF

NIST DB 4 100% hit rate 15% penetration rate

Drozdowski et al. [40] Fingerprint types,
multi-instance,
variable search
order

NIST DB 9,
in-house Bun-
deskriminalamt
(BKA) DB

Same as an exhaustive
search

5-15% of an exhaustive
search

Face Park et al. [138] Facial marks, scars,
and tattoos

PCSO (police
mugshots)

7.1%, 0.5% rank-1 accu-
racy loss

7%,20% speed-up

Iris Yu et al. [203] Box-counting, frac-
tal dimensions

In-house 1.72% pre-selection er-
ror

Less than 40% time

Puhan et al. [146] Colour informa-
tion in YCbCr
space, set intersec-
tion

UBIRIS 97% hit rate 25% penetration rate

Zhao [206] Average RGB
colour compo-
nents, set union

UBIRIS 92.35% hit rate 28.28% penetration rate

Palmprint Palla et al. [136] Geometric fea-
tures, codebook
vectors, Voronoi
regions

In-house 100% hit rate rate 30% penetration rate

Palmvein Zhou et al. [208] Principal orienta-
tion features

PolyU, CASIA, in-
house

96.67%, 96.00%, 97.71%
retrieval accuracy

14.29%, 14.50%, 14.28%
penetration rate

Clustering Fingerprint Germain et al. [66] Minutiae triplets,
ridge skeleton,
Flash algorithm

In-house 3.5% FNMR at 0.01%
FMR

—

Ross et al. [163] Delaunay triangu-
lation, geometric
and ridge features,
k-means clustering

FVC2002, FVC2004 100% hit rate ∼50% av. penetration rate

Liu et al. [117] Orientation field,
average ridge
distance, k-means
clustering

NIST-DB 4 95.8% hit rate 20% penetration rate

Biswas et al. [12] Curvature, minu-
tiae geometry, k-
means clustering

IBM proprietary 90% rank-1 accuracy 5-fold decrease

Iloanusi et al. [81, 82] Minutiae quadru-
plets, k-means
clustering

FVC2002, FVC2004 100% av. hit rate ∼12% av. penetration rate

Face Perronnin et al. [141] Expectation max-
imisation clus-
tering, anchor
modelling

FERET ∼95% IR 6-7-fold reduction

Chaari et al. [20] Eigenfaces and
Fisherfaces, k-
means clustering

XM2VTS 87.5% IR at rank-1 40% penetration rate

Klare et al. [99] Spectral clustering,
k-means and k-
medoids clustering

LFW, PCSO 85% IR 50% reduction

Iris Mukherjee et al. [130] Iris-Code, PCA, k-
means clustering

CASIA-V3-Interval 80% hit rate 8% penetration rate

Ross et al. [164] Statistical texture
features, Principal
Direction Divisive
Partitioning

UPOL 100% CCR 3-5-fold reduction

Sun et al. [177] Ordinal measures,
hierarchical visual
codebook, k-means
clustering, SVM

CASIA Thousand ∼2% EER less than 30%

Nalla et al. [132] Online dictionary
learning, k-means
clustering

UPOL 100% CCR 3-4-fold reduction

Fingervein Surbiryala et al. [178] Maximum cur-
vature, k-means
clustering

Combined 7 fin-
gervein DBs

97.47% hit rate 86.43% penetration rate

Raghavendra et al. [151] Self Organizing
Map neural net-
work, k-means or
k-medoids cluster-
ing, multi-cluster
search

Combined 7 fin-
gervein DBs

92.42%; 99.02% hit rate 42.48%; 52.88% penetration
rate

Palmprint
and signa-
ture

Mhatre et al. [126] K-means clustering Unknown 0% FRR, — FAR 5% penetration rate

Ear Pflug et al. [142] K-means clus-
tering, texture
descriptors

UND-J2, AMI, IITK 3.11% pre-selection er-
ror rate

31.7% penetration rate

4.3.2.1 Handcrafted

Depending on the observed biometric characteristic, there exist classifica-
tion approaches designed to reliably extract human understandable attributes
from a biometric sample, e.g. sex or ethnicity for face, or fingerprint types.
Such attributes are called “soft biometrics” (see e.g. [30] for a comprehensive
survey).

Based on the global pattern formed by the ridge lines, fingerprints can
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be classified into a number of classes/types initially proposed by Galton
[60] and Henry [78] (currently typically 4 or 5, i.e. whorls, right and left
loops, and (tented) arches, sometimes extended with additional sub-types).
Over time, numerous approaches to automated fingerprint type classifica-
tion have been proposed (see e.g. [58, 59] for a comprehensive survey). The
classification accuracy on data of reasonable quality is near-optimal; how-
ever, it tends to vary somewhat across the different fingerprint types. Bin-
ning based on fingerprint classes has been evaluated for single fingerprints
by e.g. [153, 207] and for multi-instance data in [40, 194]. Attributes extracted
from iris data can also be used in this manner. Conceptually similar sys-
tems are presented in [203], [136], and [208], where binning based on bio-
metric characteristic-specific geometric/texture features is proposed for irs,
palmprint, and palmvein data, respectively. In [147, 172, 180], it has been
demonstrated, that ethnicity and gender information can be extracted from
iris images. When reliably extracted, such features could be used for simple
database binning. Binning based on iris colour has been performed e.g. in
[146, 206]. Although the vast majority of the human population has brown
eyes, for certain population groups, the eye colour can be used as a some-
what distinguishing soft biometric trait. Currently, all practical iris recog-
nition systems operate within the near-infrared (NIR) light spectrum. In
recent years, significant advances in the visible-wavelength (VW) iris recog-
nition have been made, hence potentially making it an emerging technology.
See e.g. [31] for an investigation of the reliability of the iris colour as a soft
biometric trait. Facial region is a rich source of potential soft biometric at-
tributes. In addition to simple approaches based on sex, age, or ethnicity
classification, binning based on marks, scars, and tattoos has been proposed
[138].

While the aforementioned attributes are not discriminative enough to be
directly used in biometric identification, they allow for a relatively straight-
forward binning of biometric databases according to a predefined number
of classes. In other words, the potential search space for a given biometric
probe can be narrowed down to one (or a few) bin(s), thereby reducing the
penetration rate, and hence the computational workload.

4.3.2.2 Clustering

Cluster analysis or clustering refers to the unsupervised or semi-supervised
classification of patterns (i.e. feature vectors, data items, or observations)
into groups (referred to as clusters), wherein the items are, in some sense,
similar to each other. With applications across many different disciplines,
k-means clustering is currently one of the most popular and effective algo-
rithms used in data mining [196].

Likewise, in the surveyed literature, k-means clustering (and its vari-
ous extensions/derivatives) is by far the most popular method, used in e.g.
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[12, 20, 81, 82, 99, 117, 126, 130, 132, 142, 151, 163, 177, 178]. Other methods
include e.g. multimap clustering [66], expectation maximisation clustering
[141], and principal direction divisive partitioning [164]. Comparing the
various clustering methods is out of scope for this article. For more de-
tails regarding this field of research, the reader is referred to surveys, e.g.
[2, 91]. Generally, the approaches referenced in this subsection extract cer-
tain biometric characteristic-specific features (e.g. orientation field or Delau-
nay triangles for fingerprint, or general-purpose texture descriptors for iris)
to facilitate the clustering or apply it directly with the feature vectors (e.g.
minutiae points) themselves. As a result, the search space is separated into
distinct bins, whereby during biometric identification, candidates only from
the most likely one(s) are retrieved. Hence, the penetration rate (and thereby
the computational workload) is significantly reduced.

4.3.3 Data-Structures

Figure 4.5 shows a conceptual overview of hierarchical retrieval approaches,
while table 4.4 summarises the surveyed methods. A multitude of meth-
ods, algorithms, and data-structures (whose detailed descriptions are out of
scope for this article) has been used in the surveyed approaches. For a gen-
eral introduction to on approximate searching, relevant concepts, and most
commonly used data-structures, the reader is referred to existing surveys,
e.g. [1, 21, 79] for theoretical, practical, and easily digestible perspectives,
respectively.

Templates

size N

Biometric Database

Decision

Template extraction

Probe

Retrieval Creation

Search
Structure

Figure 4.5: Conceptual view of data-structures approaches

4.3.3.1 Hierarchical

Approaches in this category are most often tree-based, most prominently
utilising k-d trees (e.g. [6, 38, 94, 95]), b or b+ trees (e.g. [71, 98, 124, 125]),
other tree-like search structures (e.g. [120, 130, 144, 145, 154, 190]), and forests
thereof (e.g. [28, 29, 42, 43]). The differences between the various types of
used trees (some of which are each other’s generalisations) are out of scope
for this article; instead, the reader is referred to e.g. [26, 100]. The key idea
is to create a search structure, which repeatedly partitions the data (i.e. the
search space – the enrolment database) into successively smaller subsets.
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Table 4.4: Data-structures approaches

Taxonomy Characteristic Publication Method Database Biometric Performance Computational Workload

Hierarchical Fingerprint Mansukhani et al. [120] Local minutiae
neighbourhoods,
unbalanced tree

FVC2002, FVC2004 81% accuracy Almost constant w.r.t. en-
rolment DB size

Face Dewangan et al. [38] SURF, kd-tree FERET, FRGC, Cal-
Tech

95.57%, 97.00%, 92.31%
hit rate

7.90%, 12.55% and 23.72%
penetration rate

Iris Mukherjee et al. [130] Blockwise texture
SPLDH, tree-like
structure

CASIA-V3-Interval 84% hit rate 30% penetration rate

Mehrotra et al. [124] DCT, subband
coding, energy
histogram, b-tree

CASIA Interval,
BATH, IITK

95% hit rate 25% penetration rate

Khalaf et al. [98] DCT, DWT, SVD,
subband coding,
energy histogram,
b-tree

CASIA Interval,
BATH, IITK

∼97.5%,∼97.5%, 95%
hit-rate

20% penetration rate

Jayaraman et al. [95] Iris colour, SURF,
kd-tree

UBIRISv2, UPOL 98.7%, 98.5% av. hit rate 7.5%, 1.5% av. penetration
rate

Barbu et al. [6] HOG, kd-tree UPOL 85% precision and recall —
Rathgeb et al. [154] Bloom filters, bi-

nary search trees
IITD same or better than

baseline
6% penetration rate

Drozdowski et al. [42] Bloom filters, bi-
nary search trees,
multi-instance
fusion

Combination of 4
iris datasets

99.41% TPIR at 0.01%
FPIR

<1% of baseline

Drozdowski et al. [43] Bloom filters, bi-
nary search trees

Combination of 4
iris datasets

98% TPIR at 0.1% FPIR 10% of baseline

Damer et al. [29] LSH-forest ISYN1 99.85% single instance,
99.99% multi instance
hit rate

0.4% penetration rate

Damer et al. [28] General Borda
count, LSH-forest,
multi-instance

ISYN1 >99.5% hit rate 0.1% penetration rate

Proença et al. [144, 145] Multi-resolution
decomposition,
n-ary trees

CASIA-V4-
Thousand,
UBIRISv2

95% hit rate 20%, 80% penetration rate

Iris, Signa-
ture, Face,
Ear

Jayaraman et al. [94] Dimensionality
reduction, feature-
level fusion, kd-
tree

IITK 97.33% hit-rate at 0.66%
FRR

—

Fingervein Wang et al. [190] Local textons, vo-
cabulary tree

PolyU, SDUMLA,
MMCBNU, FV-
USM

∼99% hit rate at rank-5 Up to 5-fold speedup

Palmprint Mhatre et al. [125] Geometric fea-
tures, spatial
hashing, b-tree

unknown 0% FRR, — FAR 8.86% penetration rate

Ear Gupta et al. [71] Division into quad-
rants, wavelet de-
composition, b-tree

IITK 95.8% accuracy 34% penetration rate

Hashing Fingerprint Shuai et al. [169] SIFT, LSH FVC2000, FVC2002 98%, 96% hit rate 10% penetration rate
He et al. [76] SIFT, SURF, DAISY,

LSH
FVC2000, FVC2002 99%, 90% hit rate 10% penetration rate

Capelli et al. [18] MCC, LSH, voting NIST SD4, 14,
FVC2000, 2002

95% hit rate <10% penetration rate

Yuan et al. [204] Minutiae triplets,
two-level
hashtable

FVC2000, 2002,
2004

100% hit rate 22%, 9.9%, 11.7% av. pene-
tration rate

Wang et al. [193] MCC, Markov
random field the-
ory, geometric
dictionary

FVC2002 DB1 100% hit rate 10% penetration rate

Li et al. [107] MCC, binarisation,
LSH

FVC2002,
FVC2004, FVC2006

7.5%, 22.5%, 4% pre-
selection error rate

10%, 10%, 5% penetration
rate

Face Kaushik et al. [96] SURF, geometric
hashing, voting

FERET 100% hit rate 4% penetration rate

Iris Mehrotra et al. [123] SIFT, geometric
hashing, voting

BATH, CASIA-
V3-Interval, IITK,
UBIRIS

98.29%, 98.55%, 99.61%,
97.57% EER

Order of magnitude faster
than baseline

Rathgeb et al. [158] Iris texture hashes,
Karnaugh map

CASIA-V3 Interval 90% accuracy 3% of baseline

Jayaraman et al. [93] Iris-Code, LSH,
voting

CASIA-V3-Interval 94.07% hit rate 10.63% penetration rate

Panda et al. [137] SIFT, geometric
hashing

CASIA-V3-
Interval, UBIRISv1

98.25%, 97.62% accu-
racy

∼75% of baseline time

Palmprint Badrinath et al. [5] SURF, geometric
hashing

IITK, CASIA,
PolyU

100% hit rate 22.5%, 22.8%, 31.9% pene-
tration rate

For this partitioning, the highly discriminative (and high-dimensional) fea-
ture vectors themselves and/or the more coarse auxiliary features can be
used. By doing so, sub-linear or even logarithmic lookup complexity can
be achieved, thereby substantially reducing the computational workload of
biometric identification.

4.3.3.2 Hashing

Hashing makes it possible to map the highly-dimensional biometric feature
vectors into compact hashtables or similar data-structures, which facilitate
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efficient retrieval. Since biometric data is inherently fuzzy (recall section
4.1), many traditional hashing approaches are not suitable. Nevertheless,
there exist methods, which can deal with fuzzy data. One of such method is
locality-sensitive hashing (LSH) [68], which refers to a family of functions,
which can be used to map data points into buckets in such a way, that it is
highly probable for data points which are close to each to be located in the
same buckets; conversely, data points which are distant from each other, are
likely located in different buckets. Several authors utilised LSH and vari-
ations/extensions thereof to facilitate efficient retrieval of (in most cases)
fingerprint data [18, 76, 93, 107, 169, 204]. Geometric hashing [105], which
was originally developed for object recognition (matching similar geomet-
ric shapes irrespective of translation, rotation, and scaling), has also been
applied in the context of biometrics by coupling it with general-purpose
keypoint detectors [5, 96, 123, 137].

Deeper descriptions of the various hashing algorithms and their exten-
sions are out of scope for this article – the reader is referred to e.g. [189, 195].
Generally, by significantly reducing the dimensionality of the data and fa-
cilitating retrieval of a subset of candidate identities, general purpose fuzzy
hashing methods adapted to the biometric data can be used to greatly re-
duce the computational workload. Aside from potential biometric perfor-
mance degradation due to hashtable/bucket misses, the storage require-
ments of the system (especially in the case of geometric hashing) are typ-
ically increased.

4.3.4 Feature Transformation

This subsection surveys methods based on creating efficient representations
of biometric templates, which reduce the computational cost of a single tem-
plate comparison. This can typically be achieved through e.g. reducing the
template dimensionality, creating fully or partially alignment invariant rep-
resentations, or utilising more efficient template comparators (for instance,
based on bit instead of floating-point operations). In other words, the goal
is often to transform the original template (or create an unrelated alterna-
tive representation), so that it obtains certain desirable properties, while
predominantly maintaining the discriminative power. Templates utilising
such alternative or transformed representations can then be used on their
own in an exhaustive search, or in more advanced approaches, e.g. act as a
pre-selector (see subsection 4.3.1) in a multi-stage retrieval system. Table 4.5
summarises the surveyed methods.

4.3.4.1 Binarisation

Comparison of float-based feature vectors is relatively expensive computa-
tionally, due to use of comparators based on e.g. Euclidean or χ2 distances.
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Table 4.5: Feature transformation approaches

Taxonomy Characteristic Publication Method Database Biometric Performance Computational Workload

Binarisation Fingerprint Capelli et al. [17] Binarised minutia
cylinder-code

FVC2006 <1% average EER At least an order of magni-
tude faster

Face Schlett et al. [166] Multi-scale block
LBP, binarisation

FERET, Extended-
Yale-B

15% FNMR at 10% FMR 20-fold speed-up

Drozdowski et al. [46] Benchmark of
various quantisa-
tion and encoding
methods

FERET, FRGC 0.3% EER, 2.3% EER An order of magnitude
fewer CPU operations re-
quired

Dimensionality re-
duction

Iris Gentile et al. [65] Short-length Iris-
Codes

MMU 79.4% FNR at 1% FPR 12-fold size reduction

Rathgeb et al. [161] Most discrimina-
tive bits, selective
algorithm fusion

CASIA-V3-Interval 1.15% EER ∼50% fewer bits

Variable to fixed
size

Fingerprint Jain et al. [92] FingerCode NIST SD9,
MSU DBI

∼15% FRR at 1% FAR;
∼8% FRR at 1% FAR

—

Xu et al. [198] Spectral minutiae MCYT 3.13% EER —
Yang et al. [199] Tessellated invari-

ant moment fea-
tures

FVC2002 3.57% average EER 3-fold reduction

Alignment invari-
ance

Iris Rathgeb et al. [155] Bloom filters CASIA-V3 interval 1.5% EER 20% of baseline

Damer et al. [27] Translation-
invariant trans-
formation

SYN1 0.646%EER, 1.213% EER 6.56% of baseline, 2.45% of
baseline

In many cases, such feature vectors can be quantised and encoded into bi-
nary strings, whereby utilisation of comparators based on e.g. Hamming
distance is possible. Such comparators can take advantage of the more effi-
cient bitwise operators, thereby reducing the computational workload. An
illustrative example can be seen in [46] (and a simpler one in [166]), where
various bit allocation schemes for float-based feature vectors generated by
neural network-based systems are benchmarked. In [17], a new represen-
tation is extracted from minutiae points, which can be further binarised to
accelerate the biometric template comparisons. Although some information
is lost through the binarisation process, both publications show only neg-
ligible biometric performance loss in relation to their respective baselines,
while achieving a significant speed-up. Finally, binarised feature vectors are
an essential component in the context of many template protection schemes
(see e.g. [114] for more details on this subject).

4.3.4.2 Dimensionality reduction

Templates produced through dimensionality reduction can be used directly
as a replacement for the full-sized templates (e.g. through PCA). Addition-
ally, they can serve as a first pre-filtering step in a two-stage system (see
subsection 4.3.1 for examples). An illustrative example is[65] (and a simi-
lar approach in [161]), where the so-called “short-length Iris-Codes’, which
comprise the most discriminative parts of the normal Iris-Codes, are pre-
sented. The transformed templates are an order of magnitude smaller than
the original ones, and exhibit somewhat impaired biometric performance
when benchmarked against the original templates, thereby making them
good candidates for a pre-filtering step.
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4.3.4.3 Variable to fixed size

Comparisons of variable-size feature vectors are computationally demand-
ing and often suffer from other domain-specific drawbacks. In biometrics,
most prominently used variable-sized feature representation is that of fin-
gerprint minutiae. The number of minutiae points can be inherently differ-
ent between different data subjects and can further be augmented depend-
ing on the sample acquisition conditions (i.e. the so-called missing and spu-
rious minutiae). In the literature, a number of alternative approaches to the
traditional minutiae-based fingerprint comparison algorithm has been pro-
posed by several authors [92, 198, 199]. All of those methods achieve bio-
metric performance and computational workload results competitive with
those of the traditional variable-size, minutiae-based algorithm.

4.3.4.4 Alignment Invariance

An important issue in biometrics, and especially fingerprint and iris recog-
nition is the necessity of compensating for the relative sample misalignment
caused by roll pose variations. This is typically done by considering multi-
ple relative shifting positions of the Iris-Codes matrix and choosing the one
with best comparison score, thereby increasing the computational cost of a
single template comparison. In [155] and [27] feature transformations are
presented, which ensure that sample misalignment (to a certain degree, rea-
sonable from practical point of view) is intrinsically compensated for by the
resulting feature vectors. Both approaches achieve substantial speed-up in
an exhaustive search without significantly impairing the baseline biometric
performance. Several other (not feature transformation based) approaches
tackling the issue of iris alignment are also listed in subsection 4.3.5.

4.3.5 Other

This subsection presents computational workload reduction approaches which
do not fit into the previous categories. Table 4.6 summarises the surveyed
methods. A simple method of reducing the computational workload in
an exhaustive search is performing an early exit strategy, i.e. finishing the
search once first (not necessarily best) suitable candidate is found. This is
sometimes referred to as “one-to-first” search. In [104] this search strat-
egy is analysed extensively for iris recognition in order to assess potential
degradation of biometric performance. It is discovered, that the biometric
performance degradation is strongly dependent on the decision thresholds
(accuracy target) and size of the enrolment database. For some parameters,
the biometric performance of an exhaustive search can be maintained, while
the computational workload is significantly reduced. In [16] several strate-
gies were proposed, which reduce candidate lists (produced by other meth-
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ods) through analysis of comparison scores. In [157] an approach to reduce
the number of relative shifting positions of the Iris-Codes which need to be
considered in a template comparison was presented. The method is based
on an analysis of the intrinsic properties of the iris data and achieves a con-
siderable speed-up without impairing the biometric performance. In [45] a
pre-alignment of raw iris images is performed. The method is based on au-
tomatic detection of eye corners and several other points in raw iris images,
and subsequently aligning the eye corners onto a horizontal line. Thus, at a
later point, once features are extracted, fewer relative shifting positions need
to be considered during template comparisons. The approach of [44] relies
on morphing (signal-level fusion). The facial images from the enrolment
database are morphed (in 2s, 4s, or 8s), whereby biometric information from
multiple subjects is fused into one image. The morphed images are then
utilised for pre-filtering (see subsection 4.3.1). In addition to being explicitly
used in some computational workload reduction schemes surveyed in this
article, information fusion is an important aspect in ensuring the scalability
of biometric systems in terms of biometric performance. For a comprehen-
sive survey of this topic, the reader is referred to e.g. [173].

Table 4.6: Other approaches

Taxonomy Characteristic Publication Method Database Biometric Performance Computational Workload

Search strategies Iris Kuehlkamp et al. [104] 1-to-first search Notre-Dame see paper 50-70% of baseline
Fingerprint Cappelli et al. [16] Analysis of com-

parison scores,
ruleset/criteria

FVC 1% average error rate 27% penetration rate (from
indexing) reduced to 3.9%

Intrinsic data prop-
erties

Iris Rathgeb et al. [157] Iris-Code analy-
sis, fewer relative
shifting positions
at comparison

CASIA-V4 interval <1% EER 4-fold reduction

Sample pre-
alignment

Iris Drozdowski et al. [45] Pre-alignment of
raw samples based
on eye corner
and pupil center
locations

BioSecure ∼2.5% EER 2-fold reduction

Information fusion Face Drozdowski et al. [44] Morphing FERET 98.82% RR-1 52.5% penetration rate

4.3.6 Acceleration

Hardware acceleration can facilitate massive execution speed gains for cer-
tain types of computations. In the following subsections, the use of reconfig-
urable computing (subsection 4.3.6.1) and graphical processing units (sub-
section 4.3.6.2) in biometric systems is surveyed. The references in those
two subsections are by no means exhaustive, due to the focus of this article
being elsewhere. Instead, they outline the relevant concepts and highlight a
few systems created for the different biometric characteristics. Lastly, they
focus on the more recent publications due to the fast pace of developments
within hardware components. For a quick general comparison of the capa-
bilities, along with the advantages and disadvantages of those two types of
hardware, the reader is referred to e.g. an industry white paper in [8], or a
general survey of various Big Data analysis platforms and methods [171].
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Although hardware acceleration cannot be strictly considered a method
of workload reduction (since the amount of computations is not reduced
– it is merely parallelised, distributed, or executed more efficiently), it is
also mentioned here as an important aspect of speeding-up transactions in
large-scale biometric identification systems. There appears to be a substan-
tial research interest in the area of hardware-based acceleration utilising FP-
GAs and GPUs. Some of the existing publications present convincing and
well-substantiated results, whereby massive speed gains (up to two orders
of magnitude) are achieved in the benchmarks. It should be noted, how-
ever, that in some cases the experimental protocols of the benchmarks are
questionable; in particular, it is not always clear if the external latency fac-
tors (unrelated to the algorithms themselves) have been accounted for in
the evaluation. Furthermore, the degree of the CPU-based baseline algo-
rithm optimisation is often not clearly outlined. The results must therefore
be closely scrutinised, as it could be that the speed gains result merely from a
poor baseline implementation. This caveat notwithstanding, using reconfig-
urable computing and/or graphical processing units could be a promising
avenue for speeding up the execution of various components (or even entire
pipelines) in many different biometric modalities. On the other hand, factors
such as difficulty of implementation, as well as purchase and maintenance
cost have to be taken into consideration for real-world systems.

Lastly, software acceleration and optimisation are also worth mentioning
in this context; although there does not seem to be many scientific publica-
tions on the topic. In [156], an extensive analysis of possible speed-ups in
CPU-based Iris-Code comparisons is presented. The authors consider pos-
sible improvements through low-level implementations, manual loop un-
rolling, caching and pre-computing certain parts of data, analysis of mem-
ory access bottlenecks, multi-threading, as well as statistical optimisation of
micro-operations. In [118], a hardware-software co-design of iris recogni-
tion pipeline is proposed. The authors benchmark highly optimised soft-
ware code, coupled with a hardware-based implementation of several of
the pipeline components. Both publications show that substantial speed-
ups (but not computational workload reduction) can be achieved through
code optimisations, which do not in themselves change the underlying al-
gorithms or biometric feature representations.

4.3.6.1 Reconfigurable Computing

Field Programmable Gate Arrays (FPGAs) are integrated circuits containing
an array/matrix of programmable logic blocks (of different types, e.g. gen-
eral logic, memory, arithmetic), which can be programmably interconnected
with each other and with input/output blocks. The programming/configuring
is generally done using a hardware description language (e.g. VHDL or Ver-
ilog) or (nowadays rarely) circuit diagrams, and takes place after the chip

72



4.3 COMPUTATIONAL WORKLOAD REDUCTION APPROACHES

has been manufactured. In other words, the FPGAs can be configured and
re-configured to execute arbitrary digital circuits, and thus are capable of
solving any computable problem. FPGAs can utilise hardware parallelism
and deep pipelining extensively, thereby completing many more compu-
tations per clock cycle as opposed to a normal sequential execution. Ad-
ditionally, they rely on much fewer layers of abstraction than the general
purpose CPUs, thus facilitating lower-level programming, as well as cus-
tom memory and I/O interfaces. Those properties can be exploited to yield
potentially massive speed-ups for certain applications (see e.g. [165, 174]).
For a more detailed view of the current FPGA state-of-the-art, advantages
and disatvantages, as well as future outlook and challenges, the reader is
referred to fundamentals, e.g. [4]. Due to the abovementioned advantages,
reconfigurable computing has been extensively applied to solve a variety
of problems in many fields (see e.g. [181] for a survey), including computer
vision, signal processing and pattern matching (see e.g. [61]), and neural
networks (see e.g. [22]). Algorithms from those domains are cornerstones of
various biometric systems; hence, substantial research effort has also been
devoted to development of FPGA-based processing of biometric data.

FPGA based implementations of biometric systems’ components or com-
plete data processing pipelines were published e.g. for iris [152], fingerprint
[56], face [175], (finger)vein [88], retina [103], and voice [13]. There, speed-
ups over traditional CPU-based algorithms of up to two orders of magni-
tude were reported.

4.3.6.2 Graphical Processing Units

As the name suggests, traditional Graphical Processing Units (GPUs) were
designed for very efficient processing of two and three dimensional graph-
ics and have a rigid set of functions and programmable features. Over time,
the ease of use/programmability and the range of applications for GPUs
have steadily increased, especially with the introduction of general pur-
pose frameworks for GPU programming such as CUDA [135] and OpenCL
[176]. Taking advantage of the single program multiple-data (SPMD) pro-
gramming model, the data can be processed in highly parallel ways. Thus,
adapting code to run on GPUs can yield massive execution speed gains
for many applications, e.g. linear algebra, sorting and searching, differen-
tial equations, or more generally floating-point operations on vectorisable
data. For a general introduction to GPU computing, the reader is referred to
e.g. [127]. Some tasks at which GPUs excel are important in typical biometric
processing pipelines. Hence, there has been interest in the scientific commu-
nity to leverage the power of GPUs in this domain as well. A good general
introduction to usage of GPUs in biometrics, along with a brief survey of
applications for fingerprint-based systems can be found in [106].
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GPU based implementations of biometric systems’ components or com-
plete data processing pipelines were reported. It should also be noted, that
GPUs (and more recently, specialised tensor processing units (TPUs) [7]),
have also been utilised extensively in problems involving machine learning
and deep neural networks, see e.g. [112]. In recent years, those technologies
have also been applied to biometrics (e.g. facial recognition deep neural net-
works [167]), highlighting possibilities of hardware-acceleration use beyond
efficient biometric identification, more specifically in the algorithm training
phase. E.g. for iris [186], fingerprint [67], face [201], and sclera-vein [115],
similarly to FPGAs (see subsection 4.3.6.1), speed-ups over traditional CPU-
based algorithms of up to two orders of magnitude were reported.

4.4 Discussion

In this section, several matters relevant to the topic of this article are dis-
cussed, namely: the considerations and trade-offs of computational work-
load reduction approaches (subsection 4.4.1), a brief digression into data
security (subsection 4.4.2), a perspective on how real large-scale biometric
systems deal with large-scale biometric identification (subsection 4.4.3), and
finally an outline of open issues and challenges in this research field (sub-
section 4.4.4).

4.4.1 Considerations and Trade-offs

As evidenced by previous sections, there exists a plethora of approaches
which seek to reduce the computational workload requirements in biomet-
ric identification systems. Below, a systematic (qualitative, due to the infea-
sibility of directly comparing the results – recall subsection 4.2.2) discussion
of noteworthy matters w.r.t. the different approach categories is given, con-
centrating on their general impact on: 1) computational workload, 2) bio-
metric performance, and 3) disk/memory storage.

Pre-filtering

Computational workload The potential speed-up depends on the dis-
criminative power and size of the index templates. Given strongly
discriminative index templates, a much smaller short-list of can-
didates can be produced, thereby minimising the number of the
necessary template comparisons with the expensive (and accu-
rate) comparator. On the other hand, the size of the index tem-
plates determines the computational cost of the pre-filtering step,
as the probe index is compared exhaustively against the index
templates. Naturally, those two parameters typically counterbal-
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ance each other – smaller size of the index templates typically
entails lower discriminative power.

Biometric performance Since the features used for pre-filtering typi-
cally have limited discriminative power, errors may occur, so that
the sought identity is not among the returned candidate short-
list, thereby increasing the false-negative rates. CMC curves are
useful in assessing the efficacy of such features and can help de-
cide on a reasonable size of the candidate short-list.

Storage Since additional information (index) is stored in order to
facilitate the pre-filtering step, the storage requirements are in-
creased.

Binning

Computational workload The potential speed-up benefits are lim-
ited by the number of bins. It tends to be rather small, especially
for the handcrafted classes/types. Additionally, the handcrafted
classes/types are very often inherently unevenly distributed (due
to genetics and environmental influences). Consequently, com-
putational workload reduction obtained through binning varies
accordingly with the relative frequencies of the bins. A good ex-
ample is binning based on fingerprint types. Whorls and loops
generally exhibit the highest prevalence and there are variations
across different ethnic groups (see Rife [162]). Nevertheless, it is
still a feasible approach, and it has been used in operational sys-
tems, e.g. in AFIS’ (see e.g. [52, 129]) – initially using the explicit
classes, more recently utilising machine learning to develop non-
exclusive classes that lead to more balanced bin sizes. In some
cases, however, a severely non-uniform distribution across the
bins can invalidate the binning approach entirely. For instance,
people of many ethnic groups (or entire countries) have predom-
inantly brown eyes, thus little to no speed-up can be achieved by
binning using eye colour in such systems.

Biometric performance In order for the system to be viable, the clas-
sification accuracy must be near-optimal. Otherwise, the prob-
ability of false-negative errors increases due to misclassification
and consequently searching in the wrong bin(s) (i.e. pre-selection
errors).

Storage Typically not significantly increased, since only the metadata
(e.g. the fingerprint types) need to be stored.

Data-structures
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Computational workload By often relying on divide-and-conquer ap-
proaches, the complexity of the retrieval algorithm can often be
reduced from the linear complexity down to the (near-)logarithmic
complexity.

Biometric performance Due to wrong paths being taken during the
search structure traversal, the potential for making false-negative
error increases. For many approaches this is especially relevant
for the higher levels of the structure, where the information stored
by the nodes is denser than near the leaves. On the other hand,
the potential for false positive errors is typically reduced due to
the lower penetration rate.

Storage The storage requirements are typically increased, since ad-
ditional hashtables and/or tree-like data-structures have to be
maintained.

Feature transformation

Computational workload Although the individual template compar-
isons are computed much more efficiently, the identification is
still carried out over the entire search space (exhaustive search),
thereby severely limiting the potential computational workload
reduction.

Biometric performance The more compact template representations
and/or more efficient comparators may suffer from a decrease in
discriminative power and hence a lower biometric performance.

Storage Typically decreased, due to more compact template repre-
sentations.

Acceleration

Computational workload Not reduced per se, merely computed more
efficiently (e.g. paralellised, distributed, or otherwise optimised).

Biometric performance Typically unaffected, as functionally equiva-
lent algorithms are somehow implemented or optimised to achieve
faster computation speeds.

Storage Possibly increased, as it may be necessary to port the bio-
metric data to the specifics of the utilised system (e.g. CUDA) or
distribute them across a network.

Due to varying system requirements and policies, it is important to en-
able the biometric systems’ operators to make well-informed decisions w.r.t.
the used algorithms. Therefore, for any proposed computational workload
reduction methods, it is crucial to include the above information, as well
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as benchmarks against a current state-of-the-art algorithm performing an
exhaustive search (baseline). By doing so, the trade-offs (biometric perfor-
mance, computational workload, storage) of the proposed methods can be
evaluated, thereby facilitating informed decisions on the systems’ design
and policies. In some cases, it may even be possible to probabilistically
model the impact of the proposed methods on the biometric performance,
which could potentially be very useful in establishing the pertinent trade-
offs even prior to the experimental evaluations on real data. However, such
models rarely appear in the surveyed literature. Examples include, e.g. [32],
which discusses the binning approaches in general and [43], where a statisti-
cal model for the proposed Bloom filter-based hierarchical retrieval method
is included. Hence, the development of such models could be an interesting
avenue of future research.

4.4.2 Data Security

In addition to the need for computational workload reduction, which was
the core topic of this article, the potential of data exposure is a large concern
in biometric system deployments, where the stored data is, in most cases,
secured using traditional encryption algorithms (see e.g. [133]). From the
technical point of view, this means that should the data be compromised, se-
rious problems such as identity theft, cross-matching without consent arise,
furthermore the renewability of such biometric templates is severely lim-
ited. Additionally, the centralised storage of sensitive personal and bio-
metric data has increasingly been under scrutiny, both by the general pub-
lic and various non-governmental organisations, which recently has led to
widened legislation against privacy violations (e.g. GDPR in Europe [48]).
The ISO/IEC international standard on biometric information protection
[85] stipulates several properties required for biometric template protec-
tion schemes. While many approaches have been proposed for normal bio-
metric systems (see e.g. [159] for a survey), template protection coupled to-
gether with computational workload reduction has received relatively little
attention in the scientific literature. Some early proof-of-concept works and
trade-off analyses have been carried out e.g. in [41, 108, 192].

4.4.3 Real-World Systems

Due to confidentiality constraints (i.e. company or state secrets), the avail-
ability of details for real-world systems is not nearly as abundant as that of
scientific publications. Nevertheless, this subsection will give several exam-
ples, based on the existing literature and personal communications.

Aadhaar As of this writing, the Indian National ID Programme (see e.g.
[170, 185]) encompasses acquisition and usage of the largest biomet-
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ric system in the world in terms of number of the enrolled data sub-
jects. During enrolment, a de-duplication check must be carried out,
in order to avoid issuing multiple unique identification numbers to
the same individual. The de-duplication proceeds in several steps:
first, obvious duplicates are pre-filtered out based on metadata (demo-
graphic information), either through exact matches or fuzzy matches
followed by a preemptive biometric check. Subsequently, an exhaus-
tive search of the biometric database is performed by one of the COTS
systems provided by three different vendors. Each system uses a dif-
ferent implementation and information fusion (data from two irides
and ten fingerprints is used) strategies. Any potential duplicate is ver-
ified by another system, and if the need arises, it is also adjudicated
manually by a trained biometric system operator. The whole system
design is distributed and massively parallelisable, and claimed to be
scalable through use of commodity hardware and enterprise Big Data
solutions.

UAE The border control system in United Arab Emirates (see e.g. [3, 35])
takes advantage of the intrinsically efficient iris representation (Iris-
Codes, see [33]) and distributed architecture of COTS components for
quick biometric identification queries. It is reported, that an exhaus-
tive search against the database of close to 1 million subjects can be
executed within a couple seconds. I/O latency issues are avoided by
pre-loading the entire enrolment database into random access mem-
ory.

NEXUS In Canada, automated self-service kiosks for selected airports and
(frequent) travellers are offered in order to expedite the border control
process. The system uses iris as the biometric characteristic, and per-
forms 1-to-first searches on the database of over 0.5 million enrolled
data subjects for each biometric identification (see e.g. [69]).

EES Due to the specifics of the legal mandate [50], the biometric systems for
the EU visa and entry-exit system will be forced to perform exhaustive
database searches. Due to the operational scenarios (such as border
control), stringent requirements for quick (real-time) query responses
have been imposed on the potential biometric systems vendors. It can
therefore be expected that efficient data representations, information
fusion schemes, as well as parallel/distributed design will be essential
components of the forthcoming infrastructure solutions.

AFIS Deployments of the Automated Fingerprint Identification Systems
(see e.g. [62, 101, 129]) are ubiquitous around the world and used for
instance in the context of criminal investigations. Such systems are
known to utilise computational workload reduction methods based on
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demographics, coarse fingerprint data (such as fingerprint type), along
with highly optimised software algorithms to facilitate fast response
times. Prominent examples include the Integrated AFIS (IAFIS) ran by
the Federal Bureau of Investigation (FBI) in the USA and the database
of the German Bundeskriminalamt (BKA).

Industry In order to provide competitive search speeds for large biometric
identification systems, commercial vendors of biometric recognition
technologies, for example the German company Dermalog (informa-
tion acquired through personal communication), are known to utilise
methods of workload reduction in their products. National Institute
of Standards and Technology (NIST) carried out an evaluation of 1:N
face recognition vendors [70]. Among the details, it has been stated
that several submitted algorithms take the expense of constructing
fast search data-structures at enrolment, in order to achieve sub-linear
search duration growth (with respect to the size of the biometric refer-
ence database).

From the above examples, it is clear that computational workload is a
critical consideration in operational systems and certain methods used to
expedite the high number of queries handled by the existing large-scale sys-
tems around the world. To summarise in the context of the proposed tax-
onomy (recall figure 4.2), the following methods are represented in the list
above:

• Pre-filtering by metadata (e.g. demographic and geographic).

• Search strategies (e.g. 1-to-first search).

• Binning with coarse features (e.g. fingerprint types).

• Intrinsically efficient feature representations (e.g. IrisCodes).

• Software optimisation.

• Massive parallelisation and distribution of computations.

Notably absent are the methods of hardware acceleration (i.e. reconfig-
urable computing and graphical processing units) – it could be, that the
practical matters (e.g. monetary implementation and maintenance costs) out-
weigh the benefits of potential speed improvements. Another potential im-
portant issue is vendor lock-in and the necessity of tailoring for specific
software/hardware combination, which was deliberately avoided in e.g. the
UAE and Aadhaar systems by making the design decision to use commod-
ity CPU-based hardware (see e.g. [3, 185]). The pre-selection methods, which
are heavily researched, seem to be seldom used in those deployments. In
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other words, in this case there does appear to be (or perhaps is perpetuated
by the information scarcity in this area), at least to a certain degree, a mis-
match between what is researched in academia and what is actually used by
the industry. This and other open issues are discussed in more detail in the
next subsection.

4.4.4 Open Issues

Several open issues/challenges remain in research related to computational
workload reduction in biometric identification systems:

Standardisation As described in subsection 4.2.2, as of yet there exists
no standardised way of reporting results for biometric computational
workload and its reduction. This leads to a multitude of method-
ologies and metrics in the scientific literature, thereby making direct
benchmarks and comparative assessment of the proposed methods ex-
tremely cumbersome to carry out. Moreover, in many publications,
even the baseline results (i.e. exhaustive search with a state-of-the-art
algorithm) are not reported, which further exacerbates this issue. In
[43], experimental prerequisites and metrics for such evaluations are
proposed; as of this writing, there is an ongoing effort to include met-
rics to measure computational workload and its reduction in the cur-
rent revision of the ISO/IEC IS 19795-1. This effort notwithstanding,
the standardisation in this research area remains an open debate sub-
ject within the standardisation committee and in general.

Scalability Due to limited availability of large-scale biometric data for aca-
demic research, many, if not most, of the surveyed approaches were
tested on relatively small databases (mostly up to hundreds or thou-
sands of subjects; tens of thousands of samples). Hence, the scalability
of many of the proposed methods remains questionable or unproven
in practice (cf. table 4.1 w.r.t. the sizes of large real-world deployments
of biometric systems). Some authors are fortunate enough to receive
access to large-scale, sequestered databases (e.g. law enforcement) in
order to evaluate and validate their approaches (e.g. [75, 188]), but such
cases are rare in the surveyed literature, likely as a consequence of the
significant practical and legal hurdles associated with accessing the
sensitive biometric/personal data.

Biometric performance trade-off It appears that many approaches are ca-
pable of delivering significant (e.g. one or two orders of magnitude)
decrease in computational workload requirements. However, further
reductions prove elusive for most methods due to rapidly degenerat-
ing biometric performance. Some of the surveyed methods incorpo-
rate in their designs information fusion (from multiple biometric char-
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acteristics or multiple instances of the same characteristics) to mitigate
this issue to a certain degree.

Dissonance between academia and industry There seem to exist, to a cer-
tain degree, discrepancies between methods and goals of the research
conducted within the academia, and the actual practical use cases in
the industry. Several examples (also partially related to the aforemen-
tioned issues of standardisation and scalability) relevant to the topic
of this article are:

Evaluation protocol Whereas a substantial number of the surveyed
publications perform their experiments using the closed-set iden-
tification, the real-world systems are essentially universally re-
quired to perform the much more challenging open-set identifi-
cation.

Decision thresholds Almost all of the surveyed publications do not
report decision thresholds at which the given biometric perfor-
mance was achieved. Furthermore, evaluations on different datasets
with fixed decision thresholds are rarely performed. This is in
stark contrast with the industry/law enforcement practices, where
decision thresholds and fixed operational points are used exten-
sively in the operational systems.

Results reporting The surveyed publications often report results us-
ing metrics, which are of limited value in the industry practice.
For instance, operational systems would not typically operate at
EER (even if it ever was an operational point at all), but rather
at fixed false-positive identification-error rates acceptable within
their respective system policies. Many publications use rank-
based reporting and CMC curves, which imply the less interest-
ing (from the industry point of view) closed-set evaluation proto-
col, as mentioned above.

Acceleration As evidenced by subsection 4.3.6, significant research
efforts have been devoted to develop biometric algorithms suit-
able for FPGA or GPU computations. However, as mentioned in
subsection 4.4.3, the existing deployments of large-scale biomet-
ric systems lean towards distributed architectures of commodity
CPU hardware due to other practical considerations; addition-
ally, software optimisations, which play an important role in the
commercial systems, are only superficially treated in the scientific
literature.

Thus, aside from the technical challenges (and potential limits) of im-
proving on the trade-offs between biometric performance and computa-
tional workload reduction, there are two key areas that should be consid-
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ered by the large-scale biometric identification practitioners from academia
and industry alike:

Academia and industry cooperation Much tighter integration between the
academic research and industry requirements is needed. The academics
should seek out industry partners to validate their proposed systems
and solutions outside of a lab setting; conversely, the industry should
engage in outreach initiatives to academia in order to promote the
actual prerequisites, requirements, and challenges of the commercial
systems. More frequent and deeper joint (research or otherwise) projects
and partnerships between academia and industry could potentially
help to ameliorate the aforementioned dissonances. Jain et al. [89] re-
cently published the short “Guidelines for Best Practices in Biomet-
ric Research”. This document can serve as a good starting point out-
lining the absolute essentials for legitimate and practical reporting of
results within biometrics research. Furthermore, the representatives
from all the stakeholders should begin or continue to actively engage
in the international standardisation efforts, for instance the ones by the
ISO/IEC JTC 1/SC 37 (who are responsible for, among others, the bio-
metric performance evaluation and harmonized biometric vocabulary
standards [86, 87]) and/or of other national agencies, such as NIST in
the USA and BSI in Germany. This way, meaningful consensus w.r.t.
evaluation protocols, metrics, and benchmarks that reflect the real use
cases can be attained.

Practical evaluations Entities (e.g. governmental agencies, universities, com-
panies) in possession of large amounts of biometric data should sup-
port large-scale evaluations, thus facilitating scalability assessment and
fair benchmarks between the systems developed by the academic re-
searchers and the commercial vendors. Such benchmarks make avail-
able an API against which algorithms can be coded, then submitted
to a central server, and finally ran and evaluated there using the same
experimental protocol and metrics. Such tests offer an additional ad-
vantage, in that the vast majority of the image data used for evalua-
tion remains unseen by the algorithm authors, which in turn facilitates
higher generalisably of the proposed algorithms. Lastly, synthetically
generated data could be used to some extent in the context of biomet-
ric scalability testing (see e.g. [131]). Interesting existing initiatives in
this area are, for example: the BEAT platform [121] with the aim of de-
veloping a general standard framework biometric technologies’ eval-
uation, along with several more constrained initiatives such as the in-
dexing competition under Fingerprint Verification Competition (FVC-
onGoing) [19], the 1:N Evaluation under Face Recognition Vendor Test
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(FRVT) [134], one-to-many evaluations under Iris Exchange (IREX) –
for fingerprint, face, and iris characteristics, respectively.

4.5 Summary

Large-scale biometric identification systems are confronted with high com-
putational workload. This is especially the case for an exhaustive search,
where the computational effort required during retrieval grows linearly with
the number of enrollees. Methods that seek to alleviate this issue aim at re-
ducing the number of template comparisons necessary per retrieval (pen-
etration rate), the computational costs associated with individual template
comparisons, or at optimising the software/hardware system implementa-
tions. In this article, a taxonomy for conceptual categorisation of such meth-
ods is presented, followed by a comprehensive survey of publications per-
taining therewith. The article is concluded with a discussion of matters to
take note of with the various categories of approaches, a digression on usage
of such methods in real-world systems, as well as an outline of remaining
relevant challenges.

As the number and scale of the biometric systems deployments world-
wide steadily increases, computational workload reduction in biometric iden-
tification systems can be expected to remain an active field of research, espe-
cially since a number of open issues/challenges remains unresolved regard-
less of the significant advances made through the academic and commercial
research. To solve said challenges, standardisation and much tighter coop-
eration between the academia, industry, governmental agencies, and other
concerned parties is necessary. There exists an urgent need of a unified
methodology for reporting of computational workload and its reduction.
Furthermore, another important matter is the development of experimental
protocols, benchmarks, and metrics which closely correspond with the ac-
tual prerequisites and use cases of the real-world deployments. To accom-
plish this, the international standardisation efforts are a promising avenue,
albeit continuous engagement from all the concerned stakeholders is neces-
sary to establish a suitable and broad consensus.
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Size-reduction strategies for iris codes. International Journal of Com-
puter, Electrical, Automation, Control and Information Engineering 9, 1
(2015), 290–293.

[75] HAO, F., DAUGMAN, J., AND ZIELINSKI, P. A fast search algorithm
for a large fuzzy database. Transactions on Information Forensics and
Security (TIFS) 3, 2 (June 2008), 203–212.

[76] HE, S., ZHANG, C., AND HAO, P. Comparative study of features
for fingerprint indexing. In International Conference on Image Processing
(ICIP) (November 2009), IEEE, pp. 2749–2752.

[77] HEINDL, R. Daktyloskopie. W. de Gruyter & Company, 1927.

90



4.6 BIBLIOGRAPHY

[78] HENRY, E. R. Classification and uses of finger prints. HM Stationery
Office, 1900.

[79] HJALTASON, G. R., AND SAMET, H. Index-driven similarity search in
metric spaces (survey article). Transactions on Database Systems (TODS)
28, 4 (December 2003), 517–580.

[80] HOLLINGSWORTH, K. P., BOWYER, K. W., AND FLYNN, P. J. The
best bits in an iris code. Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) 31, 6 (June 2009), 964–973.

[81] ILOANUSI, O. N. Fusion of finger types for fingerprint indexing using
minutiae quadruplets. Pattern Recognition Letters 38 (2014), 8–14.

[82] ILOANUSI, O. N., GYAOUROVA, A., AND ROSS, A. Indexing finger-
prints using minutiae quadruplets. In Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW) (June 2011), IEEE, pp. 127–
133.

[83] INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS. Biomet-
ric council newsletter. http://ieee-biometrics.org/images/
pdf/Newsletter_Nov_2015_corrected.pdf, November 2015.
Last accessed: 2020–03–11.

[84] IQBAL, A., AND NAMBOODIRI, A. Cascaded filtering for fingerprint
identification using random projections. In Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW) (June 2012), IEEE,
pp. 77–82.

[85] ISO/IEC JTC1 SC27 IT SECURITY TECHNIQUES. ISO/IEC 24745:2011.
Information technology – Security techniques – Biometric information pro-
tection. International Organization for Standardization and Interna-
tional Electrotechnical Committee, June 2011.

[86] ISO/IEC JTC1 SC37 BIOMETRICS. ISO/IEC 19795-1:2006. Information
Technology – Biometric Performance Testing and Reporting – Part 1: Prin-
ciples and Framework. International Organization for Standardization
and International Electrotechnical Committee, April 2006.

[87] ISO/IEC JTC1 SC37 BIOMETRICS. ISO/IEC 2382-37:2017. Information
technology – Vocabulary – Part 37: Biometrics, 2 ed. International Orga-
nization for Standardization and International Electrotechnical Com-
mittee, February 2017.

[88] JADHAV, M., AND NERKAR, P. M. Implementation of an embedded
hardware of FVRS on FPGA. In International Conference on Information
Processing (ICIP) (December 2015), IEEE, pp. 48–53.

91



4. COMPUTATIONAL WORKLOAD IN BIOMETRIC
IDENTIFICATION SYSTEMS: AN OVERVIEW

[89] JAIN, A., KLARE, B., AND ROSS, A. Guidelines for best practices
in biometrics research. In International Conference on Biometrics (ICB)
(May 2015), IEEE, pp. 541–545.

[90] JAIN, A. K., FLYNN, P., AND ROSS, A. Handbook of biometrics.
Springer, 2007.

[91] JAIN, A. K., MURTY, M. N., AND FLYNN, P. J. Data clustering: A
review. Computing Surveys (CSUR) 31, 3 (September 1999), 264–323.

[92] JAIN, A. K., PRABHAKAR, S., HONG, L., AND PANKANTI, S.
Filterbank-based fingerprint matching. Transactions on Image Process-
ing 9, 5 (May 2000), 846–859.

[93] JAYARAMAN, U., AND GUPTA, P. Iris code hashing. In International
Conference on Communications (ICC) (June 2013), IEEE, pp. 2123–2127.

[94] JAYARAMAN, U., PRAKASH, S., AND GUPTA, P. Indexing multimodal
biometric databases using kd-tree with feature level fusion. In In-
ternational Conference on Information Systems Security (2008), Springer,
pp. 221–234.

[95] JAYARAMAN, U., PRAKASH, S., AND GUPTA, P. An efficient color
and texture based iris image retrieval technique. Expert Systems with
Applications 39, 5 (April 2012), 4915–4926.

[96] KAUSHIK, V. D., UMARANI, J., GUPTA, A. K., AND GUPTA, P. An
efficient indexing scheme for face database using modified geometric
hashing. Neurocomputing 116 (2013), 208–221.

[97] KAVATI, I., PRASAD, M. V. N. K., AND BHAGVATI, C. Vein pattern
indexing using texture and hierarchical decomposition of Delaunay
triangulation. In International Symposium on Security in Computing and
Communication (2013), Springer, pp. 213–222.

[98] KHALAF, E. T., MOHAMMED, M., AND MOORTHY, K. Robust par-
titioning and indexing for iris biometric database based on local fea-
tures. IET Biometrics (February 2018).

[99] KLARE, B. F., BLANTON, A., AND KLEIN, B. Efficient face retrieval
using synecdoches. In International Joint Conference on Biometrics (IJCB)
(September 2014), IEEE, pp. 1–7.

[100] KNUTH, D. Sorting and searching. The art of computer programming 3
(1998).

[101] KOMARINSKI, P. Automated Fingerprint Identification Systems (AFIS).
Elsevier, 2005.

92



4.6 BIBLIOGRAPHY
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Chapter 5

Database Binning and Retrieval in
Multi-Fingerprint Identification

Systems

Abstract

The increasingly large scale of deployed biometric systems necessi-
tates approaches for computational workload reduction in order to per-
form identification queries efficiently. Simple database binning based
on classification of features in biometric samples is amongst the most
frequently used and researched methods for achieving said goal. How-
ever, multi-instance database binning appears to be a neglected topic in
the scientific literature: best to the authors’ knowledge, for fingerprints
there exists only one, entirely theoretical, study on this subject. In this
paper, we propose a retrieval algorithm based on multi-instance binning
of fingerprint databases, along with usage of statistical information on
fingerprint classes and their correlations.

The aforementioned statistics are obtained from NIST SD9 database
and data obtained from the German Federal Criminal Police Office. Sub-
sequently, the experimental evaluation of the proposed algorithm is per-
formed on the NIST SD9 database. The proposed system is evaluated
using a classifier based on the PCASYS tool and neuronal networks.
The results show a significant workload reduction from a baseline ex-
haustive search scenario – down to 12.7% for this particular classifier
and 5.8% for a theoretical perfect (completely accurate) classifier. The
proposed method could be seamlessly integrated into operational sys-
tems, as it relies on well-established features and compatibility with the
current acquisition methods.

Addressed research question(s): RQ1, RQ3, RQ4
Reference: DROZDOWSKI, P., FISCHER, D., RATHGEB, C., SCHIEL, C., AND
BUSCH, C. Database binning and retrieval in multi-fingerprint identifica-
tion systems. In International Workshop on Information Forensics and Security
(WIFS) (December 2018), IEEE, pp. 1–7.
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5.1 Introduction

Nowadays, biometric technologies are already deployed in numerous nation-
wide large-scale applications, such as the Indian Aadhaar project [21]. With
the rapid growth of biometric systems’ sizes and popularity, technologies
supporting efficient and accurate processing of large amounts of biomet-
ric data are vital in order to guarantee practical response times. Conven-
tional biometric systems require exhaustive one-to-many comparisons in or-
der to identify biometric probes, i.e. comparison time frequently dominates
the overall computational workload of an identification attempt. In past
years, researchers have invested significant efforts to tackle the challenge
of computational workload reduction in biometric identification systems.
Basically, four different key concepts can be distinguished: classification or
“binning”, indexing, a serial combination of a computationally efficient and
an accurate (but more complex) algorithm and hardware-based acceleration.
Depending on the used biometric characteristic, the vast majority of clas-
sification approaches are designed to reliably extract human understand-
able attributes from a biometric sample, e.g. sex or ethnicity for face. While
not necessarily unique to an individual, those attributes allow for a binning
of biometric databases according to a predefined number of classes, i.e. the
search space (=̂ computational workload) for a given biometric probe can be
reduced to one (or a few) bin(s). In contrast, biometric indexing approaches
introduce hierarchical search structures (tolerating a certain amount of bio-
metric variance), where the process of search space reduction might not be
reproducible by human experts. Lastly, the latter two categories do not aim
at reducing the complexity of an identification attempt but response times.

Focusing on fingerprint recognition systems, the classification model of
Henry [12] has been widely used by researchers, as well as commercial ven-
dors, for computational workload reduction in identification scenarios. The
five fingerprint classes (or types), i.e. arch, tented arch, right loop, left loop and
whorl, which are depicted in figure 5.1, are unevenly distributed in the popu-
lation. Fingerprint classes are mainly determined based on the global (level-
1) features, in particular ridge line flow (orientation map) and the singular
points, i.e. core and delta, derived from it. Numerous approaches, which ei-
ther directly employ or further process those features, have been proposed
for the purpose of distinguishing between said classes. For more details on
the topic of fingerprint classification and a comprehensive survey of pro-
posed approaches, the reader is referred to [9, 10]. State-of-the-art finger-
print classification schemes obtain near-optimal classification accuracy. Ta-
ble 5.1 summarises most notable approaches and reported results in terms of
Correct Classification Rate (CCR) of the last five years. Note, that all of these
classification approaches aim to determine the class of a single fingerprint.

As opposed to the existing literature, this paper investigates fingerprint
classification in multi-finger identification systems. This is motivated by the
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Table 5.1: Most relevant fingerprint classification approaches proposed in
the last five years

Ref. Year Method Database(s) Classes CCR Reject
[4] 2013 MCC SD4 4 / 5 97.2% / 95.9% —
[11] 2014 FCA FVC00/02/04 4 92.74% —
[15] 2014 KNN SD4 4 / 5 96.8% / 94.6% —

[24] 2014 FCA FVC02-1 5 91.1% —
FVC04-1 5 91.8% —

[8] 2015 FCA
SD4 5 80.51% 12%

FVC02-1 5 90.11% —
FVC04-1 5 88.98% —

[14] 2015 RDM
FVC00 4 91.1% —
FVC02 4 97.8% —
FVC04 4 97.3% —

[7] 2016 FCA SD4 4 / 5 88.3% / 92.13% —
[22] 2016 ANN SD4 4 91.4% / 93.1% —
[2] 2017 ANN FVC2000 - 97.56% —

[19] 2017 MCC
SD4 5 92.97% —

SD14 5 93.76% —
SFinGe 5 94.38% —

MCC . . . multiple classifier combination
FCA . . . fixed classifier approach
KNN . . . k-nearest neighbour

RDM . . . ridge distribution models
ANN . . . artificial neuronal networks

facts that large-scale identification systems leverage the information of mul-
tiple fingerprints of data subjects, e.g. [21], and modern fingerprint capture
devices can acquire multiple fingerprints of data subject’s hand simultane-
ously, e.g. [13]. It is well-known that the classes of fingerprints obtained
from one hand are highly correlated. Nevertheless, to the best of the au-
thors’ knowledge, the potential of multi-fingerprint database binning has
only been theoretically analysed by Wayman [23]. It was confirmed that
bins formed by combinations of fingerprint classes highly vary in proba-
bility. Moreover, theoretical estimations about expected penetration rates
are reported. However, so far the potential of improving the overall finger-
print retrieval accuracy by consolidating information obtained from single
fingerprint classification scores has been neglected. In this work, we obtain
universally valid statistics of fingerprint class distributions and correlations
from two datasets, namely the NIST SD9 [17] and an in-house database of
the German Federal Criminal Police Office (BKA). Those statistics are used
to effectively retrieve bins representing combinations of fingerprint classes
according to their likelihood. In experiments on the SD9 database the well-
established, publicly available Pattern-level Classification Automation SYS-
tem (PCASYS) tool [3] in conjunction with a neuronal network-based classi-
fier are employed for the purpose of fingerprint classification. The proposed
approach is shown to substantially reduce the computational workload by
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combining the classifier scores obtained from up to five fingers of a data
subject’s hand.

The remainder of this paper is organised as follows: fingerprint class dis-
tributions and correlations are analysed in section 5.2. Section 5.3 describes
the proposed multi-finger binning and retrieval approach. Experimental re-
sults are reported in section 5.4. Conclusions are drawn in section 5.5.

Table 5.2: Fingerprint class distributions

(a) Percentages

Hand Finger NIST SD9 BKA
A L R T W A L R W

Right

Thumb 3.49% 0.71% 48.94% 0.22% 46.64% 1.49% 0.57% 49.02% 48.92%
Index 5.61% 14.72% 39.43% 7.06% 33.18% 4.23% 22.41% 36.62% 36.74%

Middle 4.76% 1.30% 69.48% 2.94% 21.52% 2.17% 2.66% 74.24% 20.93%
Ring 1.19% 1.41% 49.61% 1.19% 46.60% 0.65% 1.56% 50.84% 46.95%
Pinky 0.93% 0.19% 79.41% 0.82% 18.65% 0.38% 0.56% 83.47% 15.59%

All 3.20% 3.66% 57.37% 2.45% 33.32% 1.79% 5.55% 58.84% 33.82%

Left

Thumb 5.50% 53.31% 0.93% 0.48% 39.78% 2.60% 57.75% 0.42% 39.23%
Index 5.84% 37.72% 15.17% 9.63% 31.64% 3.60% 45.48% 16.35% 34.57%

Middle 5.61% 67.36% 1.49% 5.06% 20.48% 2.66% 74.01% 1.70% 21.63%
Ring 1.90% 58.66% 0.48% 1.67% 37.29% 0.81% 62.00% 0.62% 36.57%
Pinky 1.26% 83.95% 0.22% 1.08% 13.49% 0.47% 88.07% 0.19% 11.27%

All 4.02% 60.20% 3.66% 3.58% 28.54% 2.03% 65.46% 3.86% 28.65%
Both All 3.61% 31.93% 30.52% 3.01% 30.93% 1.91% 35.76% 31.11% 31.22%

(b) Heatmap
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5.2 Fingerprint class statistics

In the following subsections, the used databases are presented, along with
statistical distributions of fingerprint classes and their correlations.

5.2.1 Databases

Two databases were used for experiments in this paper:
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(a) Arch (A) (b) Tented arch (T) (c) Left loop (L) (d) Right loop (R) (e) Whorl (W)

Figure 5.1: Example fingerprints for each of the five classes displaying minu-
tiae, core and delta points (images generated using Synthetic Fingerprint
Generator (SFinGe) [5])

Figure 5.2: Sample images from the SD9 database

SD9 NIST Special Database 9 [17], containing fingerprint images from scanned
rolled-ink ten-print cards. 2 samples per finger are available for each of
the 2,700 subjects, hence the total number of images is 54,000. Finger-
print class annotations made by professional forensic examiners are
included. Example images from the database are shown in figure 5.2.

BKA A subset of the Automated Fingerprint Identification Systems (AFIS)
data of the BKA consisting of fingerprint type statistical data from
around 26,000 randomly selected subjects. Due to lack of actual im-
ages (data protection restrictions), this dataset was only used to vali-
date the statistical results obtained on SD9 and not the computational
workload reduction experiments. The data does not distinguish be-
tween arches and tented arches; instead classifying them together into
one class.

The subjects in both databases were selected from their respective AFIS’
randomly, hence ensuring a natural distribution of the fingerprint classes.

5.2.2 Distributions and Correlations

For the statistical analysis, only a single (first) sample from each finger is
considered in order to avoid using redundant information. The class distri-
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Table 5.3: Distributions of fingerprint class combinations for two contiguous
fingers

Hand Thumb, index Index, middle Middle, ring Ring, pinky
Cls. SD9 BKA Cls. SD9 BKA Cls. SD9 BKA Cls. SD9 BKA

Right

WW 26.53% 25.35% RR 35.12% 36.66% RR 41.66% 46.58% RR 46.93% 49.70%
RR 25.94% 26.31% WW 16.69% 17.04% RW 25.75% 26.00% WR 29.73% 30.93%
WR 11.82% 12.33% WR 15.98% 19.14% WW 19.47% 18.74% WW 16.76% 14.69%
RL 8.21% 11.57% LR 10.33% 14.89% AR 2.90% 1.76% RW 1.67% 1.47%
RW 6.43% 11.11% TR 5.65% — TR 2.30% — TR 1.11% —
WL 6.02% 7.14% LW 2.45% 2.07% WR 2.04% 1.81% LR 1.04% 1.13 %
RT 5.13% — AA 2.45% 1.28% RL 1.15% 0.94% AR 0.59% 0.54%
RA 3.23% 2.64% AR 2.42% 3.01% AA 0.93% 0.54% RT 0.52% —
WT 1.64% — RW 2.16% 1.53% RT 0.74% — AA 0.41% 0.11%
AA 1.45% 0.71% RT 1.00% — LR 0.71% 1.79% RA 0.37% 0.37%

Other 3.60% 2.84% Other 5.75% 4.38% Other 2.35% 1.84% Other 0.87% 1.06%

Left

LL 24.05% 32.50% LL 32.42% 40.77% LL 46.51% 52.45% LL 55.58% 58.05%
WW 21.56% 20.83% WW 16.17% 17.17% LW 19.41% 18.74% WL 25.69% 27.18%
WL 11.34% 11.99% WL 14.91% 16.60% WW 17.10% 18.34% WW 11.38% 10.41%
LR 9.59% 9.44% RL 10.71% 12.53% TL 4.13% — LW 2.04% 1.60%
LW 9.48% 13.13% TL 7.21% — AL 3.42% 2.69% TL 1.49% —
LT 7.10% — AA 2.94% 1.83% WL 3.38% 4.01% AL 0.93% 0.63%

WR 4.91% 5.69% LW 2.64% 3.32% AA 1.38% 0.69% AA 0.71% 0.31%
LA 3.09% 2.58% AL 2.12% 2.32% RL 1.23% 1.09% LT 0.48% —
AA 2.04% 0.86% RW 1.45% 1.95% LT 0.71% — LA 0.45% 0.43%
AL 1.93% 1.32% RT 1.45% — AT 0.56% — AT 0.26% —

Other 4.91% 1.66% Other 7.98% 3.51% Other 2.17% 1.99% Other 0.99% 1.39%

Table 5.4: Distributions of fingerprint class combinations for three contigu-
ous fingers

Hand Thumb, index, middle Index, middle, ring Middle, ring, pinky
Cls. SD9 BKA Cls. SD9 BKA Cls. SD9 BKA

Right

RRR 23.78% 24.47% RRR 24.19% 25.43% RRR 39.69% 44.77%
WWW 15.01% 14.09% WWW 15.46% 15.76% RWR 18.06% 19.05%
WWR 11.11% 11.00% WRW 10.89% 11.14% WWR 10.78% 10.94%
WRR 10.00% 11.34% RRW 9.92% 10.63% WWW 8.70% 7.77%
RLR 6.61% 9.84% LRR 6.54% 10.86% RWW 7.69% 6.72%
RWR 4.72% 8.00% WRR 5.02% 7.91% ARR 2.42% 1.62%
RTR 4.27% — TRR 4.46% — TRR 2.19% —
WLR 3.42% 4.82% LRW 3.49% 3.84% WRR 1.97% 1.67%
WLW 2.04% 1.36% LWW 2.04% 1.70% RRW 1.52% 1.30%
RWW 1.60% 2.89% RWW 1.82% 1.28% RLR 0.82% 0.77%
Other 17.44% 12.19% Other 16.17% 11.45% Other 6.16% 5.39%

Left

LLL 21.26% 29.64% LLL 23.35% 31.50% LLL 44.24% 50.82%
WWW 12.08% 12.36% WWW 14.13% 14.54% LWL 14.28% 14.85%
WLL 9.37% 9.99% RLL 8.85% 10.27% WWL 10.97% 11.87%
WWL 9.11% 8.27% LLW 8.62% 8.67% WWW 6.13% 6.47%
LRL 7.10% 8.07% WLW 8.40% 7.87% LWW 4.94% 3.83%
LWL 5.43% 8.13% WLL 6.51% 8.64% TLL 3.98% —
LTL 5.32% — TLL 5.99% — WLL 3.20% 3.75%

LWW 3.87% 4.81% LWW 2.12% 2.40% ALL 3.01% 2.46%
WRL 3.20% 4.18% WWL 2.04% 2.55% LLW 1.71% 1.34%
ALL 1.52% 2.46% ALL 1.82% 2.03% RLL 1.15% 1.03%

Other 21.74% 12.09% Other 18.17% 11.53% Other 6.39% 3.58%

butions for the SD9 and BKA datasets can be seen in table 5.2a, while table
5.2b presents the same information graphically in a heatmap format. It can
be observed, that the loop classes are the most prevalent; overwhelmingly,
their direction corresponds to the hand of the given finger (left loops on
left hand and analogously for the right hand). Together with whorls, they
account for around 95% of the total samples. The fingerprint class distri-
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butions (both for overall percentages and individual fingers) obtained from
both datasets tend to coincide. The largest (relative) discrepancies can be
seen for the arches and tented arches. Overall, however, the findings from
both datasets are very similar, which suggests the generality of the results.

As previously mentioned, the classes of fingers of one hand are also
known to be correlated. Tables 5.3 to 5.6 show the occurrence frequency
for the most prevalent (top 10 from SD9) class combinations between con-
tiguous sequences of two to five adjacent fingers of each hand. For example,
RL corresponds to a right and left loop fingerprint class (recall figure 5.1),
for the pair of fingers noted in the table header. It can be observed, that com-
binations of loops and whorls again account for the vast majority of cases;
furthermore, it is very often the case that same fingerprint classes are seen
across multiple or even all fingers of a given hand. As was the case for the
class distributions described earlier, the results for the class combinations
within both datasets tend to largely coincide.

Table 5.5: Distributions of fingerprint class combinations for four contiguous
fingers

Hand Thumb, index, middle, ring Index, middle, ring, pinky
Cls. SD9 BKA Cls. SD9 BKA

Right

RRRR 18.99% 18.34% RRRR 23.19% 24.35%
WWWW 14.12% 13.21% WWWR 8.18% 8.70%
WWRW 8.10% 6.72% WWWW 7.28% 7.03%
WRRW 5.46% 4.82% RRWR 6.91% 7.97%
RLRR 5.02% 7.80% WRWR 6.76% 7.57%
WRRR 4.31% 6.44% LRRR 6.21% 10.69%
RRRW 4.12% 5.61% WRRR 4.50% 7.54%
RTRR 3.53% — TRRR 4.38% —

WWRR 3.01% 4.05% WRWW 4.12% 3.52%
RWRW 2.71% 4.14% LRWR 3.08% 3.09%
Other 30.63% 28.87% Other 25.39% 19.54%

Left

LLLL 16.51% 24.14% LLLL 22.08% 30.70%
WWWW 10.86% 10.79% WWWL 8.85% 9.36%

LRLL 6.32% 6.87% RLLL 8.70% 9.99%
WWLW 5.87% 4.29% LLWL 6.39% 7.18%
WLLL 5.61% 6.44% WLLL 6.10% 8.21%
LTLL 4.65% — WLWL 5.91% 5.89%
LLLW 4.54% 5.04% TLLL 5.76% —
WLLW 3.64% 3.49% WWWW 5.28% 5.18%
WWLL 3.23% 3.95% WLWW 2.45% 1.95%
LWWW 3.12% 3.75% LLWW 2.16% 1.46%
Other 35.65% 31.24% Other 26.32% 20.08%

5.3 Multi-fingerprint binning and retrieval

Figure 5.3 shows the overview of the proposed multi-fingerprint binning
and retrieval algorithm. The binning step consists of enumerating all pos-
sible bins based on the combinations of fingerprint classes and accordingly
assigning the data from the enrolled subjects to the bins. Subsections 5.3.1
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Table 5.6: Distributions of fingerprint class combinations for five contiguous
fingers

Hand Thumb, index, middle, ring, pinky
Cls. SD9 BKA

Right

RRRRR 18.43% 17.75%
WWWWR 7.28% 6.97%
WWWWW 6.84% 6.21%
WWRWR 4.76% 4.28%

RLRRR 4.76% 7.68%
WRRRR 3.86% 6.10%
RTRRR 3.53% —
RRRWR 3.42% 4.20%

WWRWW 3.34% 2.61%
WRRWR 3.23% 3.57%

Other 40.55% 40.63%

Left

LLLLL 16.06% 23.58 %
WWWWL 6.51% 6.61%

LRLLL 6.25% 6.72%
WLLLL 4.87% 6.21%
LTLLL 4.42% —

WWWWW 4.35% 4.18%
WWLWL 3.90% 3.29%
LLLWL 3.61% 4.29%
WWLLL 2.94% 3.69%
LWLLL 2.94% 4.41%
Other 44.15% 37.02%

and 5.3.2 describe the combination and adjustment of classifier outputs, as
well as the utilised retrieval strategy.

Fingerprint
classification

Correction

Variable search
order retrievalPn×k

Class prediction matrix

Pmax

Row maxima

. . .

Fingerprint class
statistics

Fingerprint
database

R
Ranked list
of bins

Figure 5.3: System overview
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5.3.1 Combining classifier outputs

1. For each of the {n|2 ≤ n ≤ 5} considered fingers of a hand, the clas-
sifier produces a list of k classification probabilities (p), where k is
the number of possible fingerprint classes and

∑k
i=0 pi = 1. In other

words, a Pn×k matrix of class predictions is obtained for the given
hand, which may, for example, look as follows for n = 5 and k = 4:

P =




A L R W

Thumb 4% 92% 1% 3%
Index 1% 2% 1% 96%

Middle 5% 76% 2% 17%
Ring 1% 0% 0% 99%
Pinky 1% 12% 2% 85%




(5.1)

2. For each finger, the probability of the most probable class is deter-
mined (i.e. the row-wise maximum values). In this case:

Pmax =
[ Thumb Index Middle Ring Pinky

92% 96% 76% 99% 85%
]

(5.2)

3. All possible combinations (Cartesian product) of class labels for all fin-
gers and corresponding probabilities taken from P are recorded in ma-
trix Bkn×n:

B =




Bin Thumb Index Middle Ring Pinky

AAAAA 4% 1% 5% 1% 1%
AAAAL 4% 1% 5% 1% 12%

... . . . . . . . . . . . . . . .
WWWWW 3% 96% 17% 99% 85%


 (5.3)

For example, the second bin (AAAAL) consists of the A class probabil-
ities for the thumb, index, middle, and ring fingers, along with the L
class probability for the pinky finger taken from P.

4. In order to fix unreliable classifier outputs, for each row (i.e. possible
bin) in the above matrix, a classification correction algorithm is ran. It
works based on the previously described correlation statistics (subsec-
tion 5.2.2). For every classification probability in the given bin, if the
value is below a threshold (previously estimated on a disjoint training
set), the statistical data is used to adjust it. In the current case (n = 5),
data from table 5.6 is retrieved. For instance, if the algorithm is cor-
recting the second (index finger) probability in the bin AAAAA:
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a) The statistics for itself, along with ALAAA, ARAAA, and AWAAA
would be retrieved.

b) Subsequently, the sum of the statistical probabilities (p) for each of
those bins is computed, i.e. s = sum (pAAAAA, pALAAA, pARAAA, pAWAAA).

c) Finally, the probability for the bin is divided by said sum and
normalised by the maximum probability for the finger currently
under processing (derived in step 2), i.e. pAAAAA

s ∗ Pmax (index).

In other words, the probabilities below the threshold are considered
to contain no useful/significant information regarding the classifica-
tion output, so the global (statistical) information is incorporated in a
normalised manner to complement the classifier.

5. The probabilities are summed row-wise, and normalised to the inter-
val [0, 1] ∈ R. Thus, for each bin in the final list, the overall probability
that it matches the fingerprint classes of the probe is recorded.

O =




Bin Probability

AAAAA 2%
AAAAL 0.5%

... . . .
WWWWW 50%


 (5.4)

5.3.2 Retrieval strategy

The variable search order strategy [16] is employed in the retrieval step. The
previously acquired list of bin probabilities (O) for the probe is first sorted in
descending order of bin occurrence probability, thus producing a ranked list
of bins (R). Subsequently, the corresponding bins in the enrolment database
are successively searched using the one-to-first strategy, i.e. until a match is
found, whereupon the retrieval is concluded immediately.

5.4 Performance evaluation

The following subsections describe the experimental setup, the used finger-
print classification method, and the obtained results.

5.4.1 Experimental setup

Performance evaluations are conducted on the previously described SD9
database. A ten-fold cross-validation with randomly chosen disjoint train-
ing (20%) and test (80%) sets is performed using scikit-learn [18]. Classifica-
tion accuracy is measured in terms of CCR, while the computational work-
load reduction is estimated in terms of the number of visited database bins
and corresponding subjects for the identification transactions.
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5.4.2 Feature extractor and classifiers

To facilitate the reproducibility of presented results, the publicly available
PCASYS tool is employed for fingerprint classification. Extracted feature
vectors comprise 128 elements, which are further processed using the Keras
Framework [6] with Tensorflow 1.7 [1]. In order to obtain a suitable classifier
input feature vector, the elements are normalised and scaled to the range
[−2, 2] ∈ R using the Keras MinMaxScaler function. For the classification
task, a neuronal network-based classifier1, i.e. a Multi-Layer Perceptron, is
trained. The network consists of three (hidden) dense layers (192/64/32
nodes), each with a ReLU activation kernel, which are initialised with the
RandomNormal initialiser. The output layer comprises four nodes and is
initialised with zeroes. Four fingerprint classes are used, i.e. arch and tented
arch are represented as one class due to their rare occurrences. The output
of the classifier is determined by the Sigmoid activation function. In the
training (learning) step, a stochastic gradient descent is used with a learning
rate of 0.005, a beta1 of 0.95 and a beta2 of 0.999. Training feature vectors are
shuffled once and subsequently 150 epochs are performed with a batch size
of 64.

Table 5.7: CCR at a confidence interval of 95% for the classification of single
fingerprints

Class Mean Lower bound Upper bound
A 63.50% 61.02% 65.98%
L 90.95% 90.11% 91.78%
R 90.19% 89.50% 90.88%
W 86.73% 85.69% 87.78%

5.4.3 Results

The performance of the employed method for the single fingerprint classi-
fication task is summarised in table 5.7. Compared to the current state-of-
the-art (cf. table 5.1), the applied fingerprint classification scheme achieves a
moderate accuracy. Particularly, a significantly lower CCR can be observed
for the arch class, which results from natural (unbalanced) fingerprint class
distribution in the training data. The resulting workload reduction obtained
in a single-finger binning and retrieval strategy is listed in table 5.8 (average
values are given for “visited” bins and “visited subjects”).

With respect to the estimation of the maximum computational workload
reduction (denoted “best possible”), a perfect fingerprint recognition sys-

1Parameters of the DNN-based classifier are summarised according to the guidelines pro-
vided by the IEEE Signal Processing Society.
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Table 5.8: Single-finger binning and retrieval results

Hand Finger Visited
bins

Visited
subjects

% of
naı̈ve

Best
possible

Thumb 1.13 725.3 53.7% 45.9%
Index 1.19 524.6 38.8% 30.7%

Right Middle 1.14 821.7 60.8% 53.6%
Ring 1.12 731.1 54.1% 46.5%
Pinky 1.11 995.3 73.7% 66.6%

Thumb 1.12 728.0 53.9% 44.7%
Index 1.22 544.6 40.3% 29.1%

Left Middle 1.15 806.7 59.7% 50.9%
Ring 1.16 792.7 58.7% 48.6%
Pinky 1.14 1,102.1 81.6% 72.4%

tem is assumed. This means, the retrieval is considered successful, when
the fingerprints of the correct identity are reached in a closed set identifica-
tion. This assumption is reasonable considering the accuracy reported for
multi-fingerprint recognition systems [20]. Obtained workload reduction
(denoted “% of naı̈ve”) for the proposed multi-finger binning and retrieval
strategy for different number of contiguous fingers used (as described in
subsection 5.2.2), and combinations thereof is summarised in table 5.9. The
computational workload reduction is estimated by comparing the proposed
scheme to a naı̈ve system performing an exhaustive one-to-many search.
The results for multi-fingerprint binning represent a significant improve-
ment over a conventional single-finger binning, cf. table 5.8. Additionally,
the computational workload could be further reduced, by employing a more
accurate classifier

5.5 Conclusion

With the consistently growing size of deployed biometric databases, the
need to reduce the computational requirements of the biometric identifica-
tion scenario is clear. One of the popularly employed methods is arrang-
ing the enrolled database into bins based on the samples’ tangible features
(such as fingerprint classes). By doing so, during an identification transac-
tion, only a small fraction of bins (and thereby biometric references) needs to
be visited during the retrieval step. In this paper, the idea of multi-instance
fingerprint binning is explored. Best to the author’s knowledge, this is a ne-
glected topic in the scientific literature, with only a single theoretical analy-
sis done in the past.

In the proposed system, the classifier outputs for multiple fingers of one
hand are combined and adjusted with statistical information about the oc-
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Table 5.9: Multi-finger binning and retrieval results

Nr.
fingers Hand First finger Visited

bins
Visited
subjects

% of
naı̈ve

Best
possible

Thumb 1.47 349.4 25.9% 17.9%

Right Index 1.49 384.9 28.5% 20.2%
Middle 1.38 499.5 37.0% 28.3%

2 Ring 1.33 584.3 43.3% 33.8%
Thumb 1.50 345.0 25.5% 15.4%

Left Index 1.56 392.4 29.1% 18.3%
Middle 1.46 545.2 40.4% 29.4%

Ring 1.43 696.7 51.6% 39.1%
Thumb 2.12 261.9 19.4% 12.1%

Right Index 2.14 266.0 19.7% 12.4%

3 Middle 1.84 419.7 31.1% 22.0%
Thumb 2.17 254.2 18.8% 10.0%

Left Index 2.35 289.6 21.4% 11.6%
Middle 2.09 493.4 36.5% 24.4%

Right Thumb 3.81 199.1 14.7% 8.5%

4 Index 3.69 227.1 16.8% 9.5%

Left Thumb 4.08 197.7 14.6% 7.0%
Index 4.21 261.5 19.4% 9.3%

5 Right Thumb 8.35 171.6 12.7% 6.6%
Left Thumb 9.41 182.8 13.5% 5.8%

currences of fingerprint classes and correlations among them obtained from
two large databases (NIST SD9 and an in-house dataset of the German Fed-
eral Police). Subsequently, a variable search order strategy is applied to con-
duct a one-to-first search of the enrolled database. The experiments were
conducted using the publicly available and well-established PCASYS tool
and a neuronal network classifier. The results convince by significant reduc-
tion of the computational workload: for instance, when using all five fingers
of a hand, it is reduced to less than 15% of the naı̈ve exhaustive search. Ad-
ditionally, the theoretical limits of the approach are established for a perfect
(always accurate) classifier, with which the computational workload could
be brought down to approximately 5% of the naı̈ve exhaustive search.

Furthermore, several interesting observations can be made regarding the
choice of the binning parameters:

• One or few fingers: Few bins (each containing many subjects) have
to be visited, but more subjects have to be considered, i.e. the overall
search space is larger.

• Many fingers: Many bins (each containing few subjects) have to be
visited, but fewer subjects have to be considered, i.e. the overall search
space is smaller.’
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• Choice of fingers: the thumb appears to exhibit less correlation to other
fingers, which makes its inclusion in the binning scheme beneficial, cf.
table 5.9, where the lowest workload is always achieved by including
the thumb.

By using data from both hands (i.e. ten fingers instead of five), the com-
putational workload could presumably be further reduced, but this scenario
would be less practical for operational deployments, which typically per-
form acquisition for a single hand or individual fingers only. Since the pro-
posed approach utilises well-known and understood features, and is read-
ily compatible with the current fingerprint sample acquisition methods, it
could be seamlessly integrated into operational biometric deployments.
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Chapter 6

Multi-Iris Indexing and Retrieval:
Fusion Strategies for Bloom

Filter-based Search Structures

Abstract

We present a multi-iris indexing system for efficient and accurate
large-scale identification. The system is based on Bloom filters and bi-
nary search trees. We describe and empirically evaluate several possi-
ble information fusion strategies for the system. Those experiments are
performed using a combination of several publicly available datasets;
the proposed system is tested in an open-set identification scenario con-
sisting of 6,000 genuine and 100,000 impostor transactions. The system
maintains the near-optimal biometric performance of an iris-code, score
fusion based baseline system, while reducing the required lookup work-
load to less than 1% thereof.

Addressed research question(s): RQ1, RQ3
Reference: DROZDOWSKI, P., RATHGEB, C., AND BUSCH, C. Multi-iris in-
dexing and retrieval: Fusion strategies for Bloom filter-based search struc-
tures. In International Joint Conference on Biometrics (IJCB) (October 2017),
IEEE, pp. 46–53.

6.1 Introduction

The increased popularity of biometrics worldwide is reflected in the appear-
ance of several large-scale deployments. Of these, by far the largest is the
Indian National ID project – at the time of this writing, more than 1 billion
subjects have been enrolled [22] with biometric data from iris, face and fin-
gerprints.

In (open-set) identification and de-duplication scenarios, one of the key
challenges is the system accuracy, especially in terms of false positive oc-
currences. In a naı̈ve, brute-force approach 1:N comparisons per retrieval
of the enrolled reference are performed, i.e. the probe template is compared
against every template in the biometric reference database. Hence, for large
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databases, the possibility of false positive occurrenes quickly becomes un-
acceptable (see [3]). Fusing information from multiple sources can be used
to increase the discriminative power of a biometric system [11]. In this pa-
per, we utilise information from multiple instances of the same biometric
characteristic – images of the left and right irides. Since the operational sys-
tems often already capture images of both irides (e.g. the aforementioned
deployment in India), the proposed approach would not incur additional
hardware costs or acquisition time during enrolment and could be easily
integrated into existing systems.

The main contribution of this paper is a, best to the author’s knowl-
edge, first system for multi-iris indexing in the biometric literature and a
large-scale, open-set identification evaluation of several information fusion
strategies for said system. The key goal was to explore different strategies
for multi-instance Bloom filter-based indexing and conduct a benchmark in
terms of biometric performance and workload reduction. The paper is or-
ganised as follows: section 6.2 outlines related work; the basics of Bloom
filter-based indexing are described in section 6.3, while section 6.4 shows
how it can be extended to support multi-iris templates and which informa-
tion fusion strategies can be applied. Section 6.5 describes the experimental
setup; the results, discussion thereof and conclusions are presented in sec-
tions 6.6 and 6.7.

6.2 Related Work

The task solved by a biometric system in an open-set identification mode (i.e.
where no identity claim is made) can be generalised to the classic nearest-
neighbour search (NNS) problem. Additional non-trivial challenges are caused
by high dimensionality, as well as fuzziness of the biometric data, mean-
ing that the reference and probe sample from the same subject may be very
similar, but never identical. In large systems, it is desirable to avoid the
necessity of a naı̈ve, brute-force lookup for every search query, as such re-
trieval method is computationally expensive and prone to false positive oc-
currences. Database indexing is a commonly used method for achieving
this goal. In such systems, an index data-structure (e.g. a tree or hash table),
which allows to quickly locate the approximate location of the data, is cre-
ated and maintained. In other words, indexing systems utilise additional
storage space in order to decrease response times. For biometric data, the
indexing schemes must take into account the aforementioned issues of data
fuzziness and high dimensionality.

Iris indexing is a relatively new research topic. Albeit the first work in
the area by Mukherjee and Ross [15] has yielded only meagre results, it has
demonstrated the feasibility of indexing iris data. Hao et al. [8] have de-
veloped a general fast search algorithm for fuzzy databases containing iris

122



6.3 BLOOM FILTER-BASED SEARCH STRUCTURE

codes or similar data, with the key idea of placing ”beacons” in the search
space, thereby shrinking the search range. Mehrotra et al. [14] developed
an efficient scheme based on multi-resolution decomposition and B-trees,
while Gadde et al. [7], utilised the Burrows-Wheeler Transform and binary
pattern matching to obtain good results in terms of penetration and hit rates.
Proença [17] presented methods for indexing low-quality iris data, as well
as a more comprehensive survey of iris indexing approaches. Recently, in
a proof-of-concept study of Rathgeb et al. [19], the concept of Bloom-filter
based indexing and retrieval has been introduced with very promising re-
sults.

Information fusion in biometrics is used to consolidate data from multi-
ple sources in order to improve the discriminative power of a system. In an
identification system, several key categories of this data consolidation can
be distinguished:

Image level Consolidating the raw data of same subject (e.g. two or more
iris images).

Feature level Consolidating the feature vectors of various biometric instances
from the same subject (e.g. two or more iris-codes).

Score level Combining the scores yielded by multiple comparators (e.g. two
or more Hamming distance scores).

Rank level Combining the lists of candidate identities produced by multi-
ple comparators.

Decision level Combining the decisions yielded by multiple comparators.

For each of the methods listed above, multiple heuristics and schemes
have been proposed. Information fusion schemes have repeatedly been
shown to improve the systems’ biometric performance. The reader is re-
ferred to [21] and [18], as comprehensive references on the subject of multi-
biometric systems and information fusion basics.

In summary, while many single-iris indexing schemes and many infor-
mation fusion schemes exist, the field of multi-biometric indexing appears to
be unexplored as of yet. In the subsequent sections, the basics of Bloom
filter-based iris indexing and its extension to multi-iris indexing are de-
scribed.

6.3 Bloom Filter-based Search Structure

The idea of using Bloom filters [1] and binary search trees for iris index-
ing has been presented in a proof-of-concept study [19]. In this section, the
basics of Bloom-filter based indexing and retrieval are briefly reiterated.

123



6. MULTI-IRIS INDEXING AND RETRIEVAL: FUSION STRATEGIES
FOR BLOOM FILTER-BASED SEARCH STRUCTURES

The process of transforming the iris-code templates to the Bloom filter-
based representation is as follows: First, the two-dimensional iris-code is
divided into k blocks of equal size, WB × HB . All these blocks are subse-
quently transformed to sets of integers of variable cardinality. The trans-
formation function takes the decimal value of each of the binary columns
(int(c1), . . . , int(cWB

)) in a block and inserts them into the Bloom filter corre-
sponding to that block (i.e. b[int(ci)] = 1). The column values are obviously
always in range 0 ≤ int(ci) < 2HB . Thereby, the resulting biometric tem-
plate (denoted B) is a fixed-length (k) sequence of Bloom filters, [b1, . . . ,bk].
A dissimilarity score of two such biometric templates is calculated as nor-
malised Hamming distance between corresponding Bloom filters in the se-
quences, which was proposed in the proof-of-concept study [19], as shown
in equation (6.1), where B and B′ denote the reference and probe template,
respectively.

DS (B,B′) =
1

k

k∑

i=1

ds(bi,b
′
i)

ds(b,b′) =
|b⊕ b′|

(|b|+ |b′|)

(6.1)

Where | · | represents the population count, i.e. Hamming weight. Note,
that like in the case of the iris-code, the comparator utilises efficient bitwise
instructions and can be trivially parallelised. It is also worth mentioning,
that this data representation is, to a certain degree, rotation invariant [20],
at the cost of loss of local information and loss of information about the
number of identical columns in a block. In other words, the template align-
ment during comparison is not performed as in the case of the standard
iris-code based approach. The block size determines the sparseness of the
representation; the level to which a filter is filled is defined by the number
of values present in the filter as a fraction of the number of possible val-
ues in it (i.e. |b| /2HB ). As an example, suppose a system with block size 16
× 8. This means, that in each individual filter (b) in the template (B), the
number of 1’s will be at most 16 (in practice fewer, since the neighbouring
iris-code columns are strongly correlated [5] and identical columns map to
same value in the Bloom filter representation), out of possible 28 values, i.e.
it will be at most only approximately 6.25% filled. This data representation
sparseness is a crucial property in ensuring the system accuracy.

A binary tree data-structure is constructed from the templates of N en-
rolled subjects. First, the tree root is created from all enrolled templates
(i.e.

⋃N
i=1 Bi), while the children of the root node each contain half of the

enrolled templates (i.e.
⋃N

2
i=1 Bi and

⋃N
i=N

2 +1 Bi). The union of templates
corresponds to OR’ing the individual binary filters stored in the children
nodes. This process is repeated for node creation at subsequent tree levels,
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until at the end, the individual templates (B1, . . . ,BN ) are inserted as tree
leaves.

The complexity of a single lookup in such a tree is O(2 ∗ logN). The
tree construction and item retrieval processes are shown in figure 6.1. The
lookup in an identification scenario begins at the tree root. The tree is tra-
versed by calculating the dissimilarity scores (equation (6.1)) between the
probe template and two nodes at the next tree level; subsequently choos-
ing the one with lower score until a leaf is reached. The key idea is to
take advantage of a sparse data representation in the nodes – in that case,
for the probe comparisons against the tree, the relationship DSgenuine �
DSimpostor generally holds true. In other words, the genuine probes will be
able to traverse the tree using the correct path to reach a matching leaf tem-
plate. At the leaf, a final decision is made based on an acceptance threshold.

N
⋃

=1
B

N
2
⋃

=1
B

N
⋃

= N
2 +1

B

N
4
⋃

=1
B

N
2
⋃

= N
4 +1

B

DS(eƒ t1,B′)

DS(rght1,B′)
<

rght1eƒ t1

rght2
eƒ t2

. . .

. . .
DS(eƒ t2,B′)

DS(rght2,B′)
<

. . .

DS(B1,B′)

DS(B2,B′)
≥B1 B2 . . .

. . .

BN−1 BN

B′
retrievalindexinglist of N

iris codes

DS(B2,B′)
?
< threshod return B2 or ∅

Figure 6.1: Indexing and retrieval in the Bloom filter-based system. In this
case, the retrieval follows the bold arrow path down to a leaf, where the final
decision is made.

In the aforementioned small-scale proof-of-concept study [19], this sys-
tem has shown promising results both in terms of biometric performance
and workload reduction. For large-scale experiments, the system can be ex-
tended by constructing multiple search trees (T ) and, during a lookup, pre-
selecting a subset consisting of the most promising (t) trees based on dissim-
ilarity scores between the probe and tree roots. The trees are successively
traversed until the first candidate identity is found or all the pre-selected
trees have been checked. Note, that for the genuine transactions, the pre-
selection step ensures that trees most likely to contain the sought identity
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are traversed first. Additionally, as it is sufficient to pre-select only a small
fraction of constructed trees, i.e. t � T , the lookup workload remains low,
while arbitrarily many enrollees can be accommodated by the system.

6.4 Multi-Iris Indexing and Retrieval

This section describes how the Bloom Filter-based indexing scheme can be
extended to accommodate multi-iris templates and how various informa-
tion fusion techniques can be utilised during retrieval.

6.4.1 Bloom Filter Feature Fusion

The first matter that needs to be addressed is construction of trees with
multi-iris templates. Let BL and BR represent Bloom filter-based iris tem-
plates from a subject’s left and right eye, respectively. Prior to the construc-
tion of lookup trees, those two templates for each of the enrolled subjects
are combined. Two viable strategies for doing so are described in sub-
sections 6.4.1.1 and 6.4.1.2; one poised for better biometric performance,
another for more compact storage. The tree construction with the fused
templates works exactly as described in previous section and shown in fig-
ure 6.1.

6.4.1.1 Template Concatenation (TC)

One of the feature-level fusion methods is concatenation of feature vec-
tors. The biometric templates extracted from the left and right irides of
a subject (BL and BR) can be combined in this way, thereby producing a

single Bloom filter sequence of length 2k:

BL︷ ︸︸ ︷
[bL1

, . . . ,bLk
] ‖

BR︷ ︸︸ ︷
[bR1

, . . . ,bRk
] =

[bL1
, . . . ,bLk

,bR1
, . . . ,bRk

]. This is equivalent to first concatenating the iris-
codes and producing the sequence of Bloom filters as described in section
6.3.

6.4.1.2 Template Merging (TM)

Due to data representation sparseness, the Bloom filter-based representa-
tion lends itself to effortless combination of templates (which is the basis of
building the lookup tree, see section 6.3). Since the left and right irides of a
subject are mutually independent, the biometric templates BR and BL can
be merged (rather than just appended unto each other) by taking a pairwise

union of the two Bloom filter sequences:

BL︷ ︸︸ ︷
[bL1

, . . . ,bLk
]∪

BR︷ ︸︸ ︷
[bR1

, . . . ,bRk
] =
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[bL1
∪ bR1

, . . . ,bLk
∪ bRk

]. Observe that, contrary to the template concate-
nation, merging two templates does not increase the overall length (it re-
mains k) of the Bloom filter sequence (and hence the cost of a single template
comparison). On the other hand, some information loss may occur due to
collisions.

6.4.2 Traversal Strategies

Let B′
L and B′

R represent the probe templates from left and right irides of
a subject during a lookup. The presence of two templates makes it possible
to design several tree traversal techniques, described below. They can be
utilised with trees constructed using both the template concatenation and
merging methods.

6.4.2.1 Basic (B)

The simplest strategy is to combine the probe templates using the same
method as has been used during tree construction and traverse normally,
as shown in figure 6.1. Observe that, for the concatenated templates, this
method corresponds to a score-level fusion where comparison scores be-
tween tree nodes and B′

L and B′
R are averaged at each tree traversal step.

6.4.2.2 Iris-code at Leaf (ICL)

The basic lookup procedure is followed, however the template comparisons
at the tree leaves (i.e. the last step of the tree traversal depicted in figure 6.1)
are performed using iris-code based templates. The idea is that some of the
information loss incurred by the Bloom filter-based representation may be
mitigated, while still utilising the indexing scheme.

6.4.2.3 Path Fusion (PF)

Every individual tree is traversed using B′
L and B′

R simultaneously, whereby
at each step (see figure 6.1), 4 dissimilarity scores are produced:

sLl︷ ︸︸ ︷
DS (left,B′

L),

sLr︷ ︸︸ ︷
DS (right,B′

L),

sRl︷ ︸︸ ︷
DS (left,B′

R), and

sRr︷ ︸︸ ︷
DS (right,B′

R)

These scores should satisfy the following relation: sLl
< sLr

∧ sRl
< sRr

∨
sLl

≥ sLr
∧ sRl

≥ sRr
, i.e. a step of the path is valid if and only if the same

traversal direction has been chosen by both B′
L and B′

R. Should the paths
diverge (i.e. the above step scores relation is not satisfied), an early exit is
performed and, subsequently, the next tree is checked in the same fashion.
If none of the traversed trees yield an identical traversal path, the template
is deemed to be an impostor. Observe, that an enrolled template for any
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subject is stored as a leaf in one and only one tree – it is naturally expected,
that both genuine B′

L and B′
R ought to be able to reach it when traversing

the correct tree. If the traversal paths diverge, it can, with high confidence,
be assumed that the sought template is absent from the traversed tree and
the search can quickly proceed to the next one.

6.4.2.4 Pre-selection Fusion (PSF)

An additional heuristic for the path fusion: from the T constructed trees,
subsets of most promising trees (t) are found for the probe B′

L and B′
R based

on their dissimilarity scores with the tree roots. Only trees that have been
pre-selected for both the left and right template are traversed, i.e. t = tL∩tR.
This heuristic is aimed especially at reducing the workload associated with
the impostor transactions by means of the quicker rejection.

6.5 Experimental Setup

Table 6.1 lists the datasets used in the experiments, with example images
from each one shown in figure 6.2. The images in the first two datasets are
cropped, while the latter two are uncropped – as defined in the ISO/IEC
standard on biometric data interchange formats [9].

The CASIA-IrisV4-Thousand dataset was also considered, but was not
used, since only just over half of the segmented images had more than 70%
usable iris area (metric defined in [10]). Bearing in mind that in the real
biometric deployments high-quality data acquisition is nowadays feasible
and that specialised approaches for indexing of degraded data exist (e.g.
[17]), it was deemed more interesting to work with data of higher quality.

Table 6.1: Evaluation dataset overview

Dataset Instances Images Resolution
CASIA-IrisV4-Interval [2] 395 2639 320 × 280 px

IIT Delhi Iris Database v1 [13] 448 2240 320 × 240 px
BioSecure Iris Corpus [16] 420 1680 640 × 480 px

ND-Iris-Template-Aging1 [6] 214 5377 640 × 480 px

The raw near-infrared images were processed with the commonly used
methods: After segmentation, where the iris and pupil boundaries are lo-
cated, the iris textures were normalised according to the rubbersheet model
[4] and subsequently enhanced by applying Contrast Limited Adaptive His-
togram Equalization (CLAHE). Feature extraction was performed with the
Daugman-like 1D-LogGabor algorithm (LG), generating iris-codes of size

1Only a single point in time from the dataset was used.
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(a) CASIAv4-Interval (b) IIT Delhi Iris Database v1

(c) BioSecure Iris Corpus (d) ND-Iris-Template-Aging

Figure 6.2: Example images from the datasets

512 × 20 = 10,240 bits. Observe, that although a correlation between the
imaginary and real LG filter response exists, the Bloom filter-based index-
ing does not, in any way, depend upon this fact. In other words, the method
could also be utilised with e.g. only the real filter response, as is the case in
some systems.

256 subjects from the first two datasets listed in the above table have been
enrolled. All possible left-right iris combinations for each subject were con-
sidered when creating the multi-iris templates. In other words, all possible
genuine identification transactions are performed. The remaining templates
from all 4 datasets were cross-paired to produce a total of 100.000 multi-iris
impostor transactions. For every fusion and traversal strategy combination
(see section 6.4), there exists a large number of system configurations which
may differ in following parameters:

• Number of trees constructed (T ): 8 or 16

• Block size (H , W ): between (8, 8) and (12, 32)

• Number of trees traversed (t): 1 to T

• Feature extractor: the results presented in next section stem from tem-
plates produced using the LG feature extractor; however, repeated ex-
periments with other common feature extraction methods (e.g. Quadratic
Spline Wavelet) yielded comparable outcomes.

In total, over 1500 experiments were performed and the following three
metrics were used for the system performance and efficiency evaluation:

• TP0.01 – the true positive identification rate measured at a false posi-
tive identification rate of 0.01%

• � – the fraction of the required (iris-code) baseline workload (bit com-
parisons) per lookup
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• τ – inspired by the metric proposed in [17], the Euclidean distance
from the optimal operating point (TP0.01 = 1 and � ≈ 0), calculated

as follows: τ =

√
(TP0.01 − 1)

2
+�2

6.6 Results and Discussion

The baseline results are established using an iris-code based system, which
performs an exhaustive database search and averages the Hamming dis-
tance scores for the left and right iris. Expectedly, the results in terms of
biometric performance are near-optimal (TP0.01 > 0.999), albeit at a high
workload entailed by the naı̈ve, brute-force search and the necessity of align-
ment correction (±8 bit shifts, corresponding to approximately ±5.625◦).
As an intermediate step to show soundness of the template representation
change, a Bloom filter-based baseline is likewise established (i.e. the same
experiment as the iris-code baseline, only with the representation changed
to Bloom filter-based and no tree construction). In tables 6.2 and 6.3, the
experimental results of several generally best performing system configura-
tions are listed, with the bold typeface showing the best result (in terms of
τ ) for each experiment.

In order to better visualise the results of more than 1500 experiments,
a filtering has been applied. The idea is to consider only relevant system
configurations for each experiment, as shown in equation (6.2). Essentially,
for every experiment type, a system configuration (C) is considered relevant
if and only if there exists no other configuration (C ′) with higher (or same)
biometric performance and lower workload.

C is relevant ⇔
{
C ′|C ′

TP0.01
≥ CTP0.01

∧ C ′
� < C�

}
= ∅ (6.2)

Figure 6.3 visualises the trade-off between workload (�) and perfor-
mance (TP0.01) after the results have been filtered to consider only the rel-
evant configurations. Using the τ metric, the operating point closest to op-
timum is selected for each of the experiments and listed in table 6.4 as a
summary.

As table 6.4 demonstrates, the Bloom filter baseline maintains the bio-
metric performance of the iris-code baseline at a small fraction of the work-
load. It is evident, that the Bloom filter-based representation of an iris-code
is very efficient (due to compact template size and rotational invariance)
and does not suffer from too much information loss. Using the tree index-
ing scheme with some of the information fusion techniques allows to further
improve on these results in terms of biometric performance and workload.

The most significant improvements are achieved with the template fea-
ture fusion techniques (subsections 6.4.1.1 and 6.4.1.2). The workload of
a single template comparison between concatenated templates is naturally
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Table 6.2: Results of basic traversal approaches

Type Configuration
TP0.01 � τ

T H W t

TC + B 16

8

16
2 0.9869 0.0116 0.0175
4 0.9967 0.0173 0.0176
8 0.9978 0.0287 0.0288

32
2 0.9735 0.0058 0.0271
4 0.9941 0.0087 0.0105
8 0.9984 0.0144 0.0145

10

16
2 0.9963 0.0459 0.0460
4 0.9986 0.0684 0.0684
8 0.9987 0.1133 0.1133

32
2 0.9897 0.0232 0.0254
4 0.9986 0.0346 0.0346
8 0.9993 0.0572 0.0572

TM + B 16

8

16
2 0.9680 0.0058 0.0325
4 0.9819 0.0087 0.0201
8 0.9930 0.0144 0.0160

32
2 0.8677 0.0029 0.1323
4 0.9444 0.0043 0.0558
8 0.9760 0.0071 0.0250

10

16
2 0.9818 0.0231 0.0294
4 0.9953 0.0345 0.0348
8 0.9977 0.0573 0.0573

32
2 0.9686 0.0116 0.0335
4 0.9927 0.0173 0.0188
8 0.9957 0.0287 0.0290

TC + ICL 16

8

16
2 0.9866 0.0258 0.0291
4 0.9973 0.0456 0.0457
8 0.9988 0.0860 0.0860

32
2 0.9736 0.0207 0.0335
4 0.9937 0.0385 0.0390
8 0.9987 0.0743 0.0743

10

16
2 0.9964 0.0558 0.0559
4 0.9992 0.0882 0.0882
8 0.9994 0.1566 0.1566

32
2 0.9893 0.0359 0.0375
4 0.9982 0.0600 0.0600
8 0.9990 0.1096 0.1096

TM + ICL 16

8

16
2 0.9686 0.0207 0.0376
4 0.9829 0.0384 0.0420
8 0.9391 0.0743 0.0961

32
2 0.8679 0.0181 0.1333
4 0.9473 0.0348 0.0632
8 0.8769 0.0684 0.1408

10

16
2 0.9817 0.0359 0.0403
4 0.9959 0.0600 0.0601
8 0.9683 0.1096 0.1141

32
2 0.9692 0.0258 0.0402
4 0.9932 0.0456 0.0461
8 0.9531 0.0860 0.0980
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Table 6.3: Results of path fusion traversal approaches

Type Configuration
TP0.01 � τ

T H W t

TC + PF 16

8

16
2 0.9692 0.0103 0.0325
4 0.9767 0.0144 0.0274
8 0.9776 0.0226 0.0318

32
2 0.9450 0.0051 0.0552
4 0.9610 0.0072 0.0397
8 0.9635 0.0113 0.0382

10

16
2 0.9791 0.0410 0.0460
4 0.9796 0.0575 0.0610
8 0.9797 0.0911 0.0933

32
2 0.9673 0.0206 0.0386
4 0.9742 0.0288 0.0387
8 0.9742 0.0455 0.0523

TM + PF 16

8

16
2 0.9402 0.0066 0.0602
4 0.9516 0.0101 0.0494
8 0.9596 0.0174 0.0440

32
2 0.8259 0.0033 0.1741
4 0.8947 0.0051 0.1054
8 0.9214 0.0088 0.0791

10

16
2 0.9597 0.0266 0.0483
4 0.9722 0.0408 0.0494
8 0.9741 0.0695 0.0742

32
2 0.9362 0.0134 0.0652
4 0.9573 0.0206 0.0474
8 0.9590 0.0354 0.0542

TC + PSF 16

8

16
2 0.9556 0.0075 0.0450
4 0.9651 0.0098 0.0362
8 0.9723 0.0156 0.0318

32
2 0.8882 0.0039 0.1119
4 0.9362 0.0051 0.0640
8 0.9576 0.0079 0.0431

10

16
2 0.9703 0.0281 0.0409
4 0.9766 0.0371 0.0439
8 0.9791 0.0602 0.0637

32
2 0.9503 0.0151 0.0519
4 0.9715 0.0201 0.0349
8 0.9735 0.0312 0.0409

TM + PSF 16

8

16
2 0.8840 0.0078 0.1163
4 0.9301 0.0103 0.0707
8 0.9534 0.0155 0.0491

32
2 0.6190 0.0040 0.3810
4 0.8138 0.0056 0.1863
8 0.8989 0.0080 0.1014

10

16
2 0.9389 0.0298 0.0680
4 0.9661 0.0388 0.0515
8 0.9716 0.0591 0.0656

32
2 0.8872 0.0158 0.1139
4 0.9379 0.0212 0.0656
8 0.9580 0.0309 0.0521
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6.6 RESULTS AND DISCUSSION

(a) Basic traversal approaches

(b) Path fusion traversal approaches

Figure 6.3: Filtered experimental results. The iris-code baseline is not visible,
as it is located at � = 1.0 and TP0.01 ≈ 1.0.

twice as large as that between two merged templates. On the other hand,
concatenating the Bloom filter-based templates avoids the information loss
associated with merging (OR’ing) them. Thus larger block sizes and a smaller
number of traversed trees can be successfully used in the concatenation-
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Table 6.4: Best operating point in terms of τ for each of the experiments

Type Configuration
TP0.01 � τ

T H W t
Iris-code baseline — 0.9993 1.0000 1.0000

Bloom filter baseline — 8 32 — 0.9912 0.0235 0.0251
TC + B 16 8 32 4 0.9941 0.0087 0.0105
TM + B 16 8 16 8 0.9930 0.0144 0.0160

TC + ICL 16 8 16 2 0.9866 0.0258 0.0291
TM + ICL 16 8 16 2 0.9686 0.0207 0.0376
TC + PF 16 8 16 4 0.9767 0.0144 0.0274
TM + PF 16 8 16 8 0.9596 0.0174 0.0440
TC + PSF 16 8 16 8 0.9723 0.0156 0.0318
TM + PSF 16 8 16 8 0.9534 0.0155 0.0491

based feature fusion, thereby compensating for the increased cost of a single
template comparison. Ultimately, for the feature-level fusion, a near-optimal
biometric performance is attainable at around or less than 1% of the iris-code
based baseline workload.

The results achieved by other fusion types are worse than those of the
feature-level fusion. Any potential biometric performance gain due to us-
age of the iris-code based comparator at tree leaves (subsection 6.4.2.2) ap-
pears to have been unable to compensate for the increased computational
cost of the method (alignment compensation for the iris-code templates at
the leaf). While the early rejection heuristics (subsections 6.4.2.3 and 6.4.2.4)
are efficient in quickly rejecting impostors, they unfortunately appear to
have a non-negligible detrimental effect on the performance of the gen-
uine transactions. Consequently, the basic feature-level fusion appears to be
the preferred method in case of the Bloom filter-based indexing. Concate-
nating the templates yields best results in terms of biometric performance,
while merged templates achieve comparable results with an added benefit
of lower storage requirements.

In their “Guidelines for best practices in biometrics research” [12], in a point
pertaining to biometric fusion, Jain et al., state that:

The improvement in recognition accuracy as a result of biomet-
ric fusion should be weighed against the associated overhead in-
volved, such as additional sensing cost, enrolment and recogni-
tion times, computing resources, usability, etc.

Since, as has been mentioned in section 6.1, the current biometric de-
ployments already often capture both irides during acquisition phase, the
proposed information fusion scheme would generally not entail any addi-
tional overhead associated with sensing, enrolment and usability. Finally,
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the workload (and thereby computing resources) associated with the pro-
posed scheme is comparable with that of a single-iris Bloom filter-based in-
dexing, while conferring significant biometric performance improvement.

6.7 Conclusion

In this paper, a system for indexing and retrieval of multi-iris templates has
been presented. Best to the author’s knowledge, this is first such attempt in
the biometric literature. Numerous strategies of information fusion for us-
ing said system in the open-set identification scenario have been presented
and evaluated using a large dataset. It has been concluded, that two types
(concatenation and merging) of feature-level fusion with a standard search-
tree traversal heuristic offer the best results. The proposed scheme main-
tains the near-optimal biometric performance of an iris-code score fusion
based baseline, while reducing the necessary lookup workload to below 1%
of said baseline. In future work, it is intended to investigate how the pro-
posed scheme can be extended to perform indexing of multi-modal biomet-
ric data.
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[17] PROENÇA, H. Iris biometrics: Indexing and retrieving heavily de-
graded data. Transactions on Information Forensics and Security (TIFS)
8, 12 (December 2013), 1975–1985.

[18] RADU, P., SIRLANTZIS, K., HOWELLS, G., DERAVI, F., AND HOQUE, S.
A review of information fusion techniques employed in iris recognition
systems. International Journal of Advanced Intelligence Paradigms 4, 3/4
(February 2012), 211–240.

[19] RATHGEB, C., BREITINGER, F., BAIER, H., AND BUSCH, C. Towards
bloom filter-based indexing of iris biometric data. In International Con-
ference on Biometrics (ICB) (May 2015), IEEE, pp. 422–429.

[20] RATHGEB, C., BREITINGER, F., BUSCH, C., AND BAIER, H. On appli-
cation of Bloom filters to iris biometrics. IET Biometrics 3, 4 (December
2014), 207–218.

[21] ROSS, A., NANDAKUMAR, K., AND JAIN, A. K. Handbook of multibio-
metrics. Springer, 2006.

[22] UNIQUE IDENTIFICATION AUTHORITY OF INDIA. Aadhaar dashboard.
https://www.uidai.gov.in/aadhaar_dashboard/. Last ac-
cessed: 2020–03–11.

137





Chapter 7

Privacy-Preserving Indexing of
Iris-Codes with Cancelable Bloom

Filter-based Search Structures

Abstract

Protecting the privacy of the enrolled subjects is an important re-
quirement expected from biometric systems. In recent years, numer-
ous template protection schemes have been proposed, but so far none
of them have been shown to be suitable for indexing (workload reduc-
tion) in the computationally expensive identification mode. This pa-
per presents a, best to the authors’ knowledge, first method in the sci-
entific literature for indexing protected iris templates. It is based on
applying random permutations to Iris-Code rows, and subsequent in-
dexing using Bloom filters and binary search trees. In a security eval-
uation, the unlinkability, irreversibility and renewability of the method
are demonstrated quantitatively. The biometric performance and work-
load reduction are assessed in an open-set identification scenario on the
IITD and CASIA-Iris-Thousand datasets. The method exhibits high bio-
metric performance and reduces the required computational workload
to less than 5% of the baseline Iris-Code system.

Addressed research question(s): RQ1, RQ5
Reference: DROZDOWSKI, P., GARG, S., RATHGEB, C., GOMEZ-BARRERO,
M., CHANG, D., AND BUSCH, C. Privacy-preserving indexing of Iris-Codes
with cancelable Bloom filter-based search structures. In European Signal
Processing Conference (EUSIPCO) (September 2018), IEEE, pp. 2360–2364.

7.1 Introduction

In recent years, interest in biometric systems have spiked with many large-
scale deployments (e.g. national databases and border crossing control sys-
tems) appearing. Currently, the largest such system is the Indian National
ID system, into which, at the time of this writing, 1.2 billion Indian resi-
dents have been enrolled [30] with multi-biometric data and unique identi-
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fier numbers. In the United Arab Emirates, the border control agency em-
ploys an iris-based blacklist system, which aims to prevent undesirable trav-
ellers (e.g. visa violators and criminals) from re-entering the country [1].

Those and similar deployments have to operate in the identification or
duplicate-check modes. Due to the sheer size of such systems, they are faced
with strenuous requirements in terms of biometric performance and com-
putational workload. The naı̈ve algorithm for such scenarios requires an
exhaustive (1:N ) database search, i.e. comparing the probe against all the
references stored in the database. Notwithstanding the use of efficient hard-
ware and parallelism, with the growing database sizes, the cost of executing
such searches becomes computationally prohibitive. Simultaneously, the
probability of false positives quickly becomes unacceptable. In [3], Daug-
man shows the probability of at least one false positive (PN ) occurring in
a identification scenario to be: PN = 1 − (1 − P1)

N , where N is the num-
ber of enrolled subjects and P1 the false positive probability of a one-to-one
template comparison. For this reason, research has been conducted into bio-
metric workload reduction, whereby the exhaustive search is replaced with
more advanced techniques. Those techniques often take advantage of the
underlying biometric template data representation, thus facilitating efficient
search strategies; for example through indexing or serial combination of
algorithms. The aim thereof is to vastly reduce the necessary number of
template comparisons per lookup, while maintaining or only insignificantly
reducing the biometric performance achieved by the baseline, exhaustive
algorithm.

Figure 7.1: An overview of the proposed system.

A biometric system in an open-set identification mode (i.e. without an
identity claim) can be generalised to the classic nearest-neighbour search
(NNS) problem. However, additional non-trivial challenges arise due to
high dimensionality, as well as intra-class variation of the biometric data,
which means that the biometric templates extracted from the reference and
probe samples belonging to the same subject may be very similar, but (al-
most) never identical. Consequently, typical workload reduction approaches
such as indexing need to be adapted to account for the challenging proper-
ties of the biometric data (see e.g. [7, 11, 16, 17], and [21] for a more com-
prehensive survey). Other approaches used in (iris) biometric systems in-
clude: cascading algorithms, whereby a computationally efficient (albeit less
accurate) method first computes a shortlist of candidate identities, which is
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then searched exhaustively by a slower and more accurate comparator (see
e.g. [8, 14, 25]); and classification, whereby the database is split into buckets
containing certain template classes (e.g. based on gender, eye colour, some
statistical properties etc.), with the exhaustive search only being performed
inside the bucket corresponding to the probe (see e.g. [22, 28, 29]).

In addition to the aforementioned need for workload reduction, poten-
tial of data exposure is a large concern in biometric system deployments,
where the stored data is, in most cases, secured using traditional encryp-
tion algorithms [18]. Once compromised, this can lead to serious problems
such as identity theft, cross-matching without consent and severely limited
renewability. Furthermore, centralised storage of sensitive personal and bio-
metric data has been increasingly receiving attention from the general public
and various non-governmental organisations, thus leading to widened leg-
islation against privacy violations (e.g. GDPR in Europe [6]). Those matters
have led to research into biometric template protection (see e.g. [24] and [27]
for comprehensive surveys), with the aim of developing protection schemes
especially dedicated for biometric data. Such systems must guarantee the
properties stipulated by ISO/IEC IS 24745:2011 [12]:

Unlinkability It should be infeasible to determine whether or not two or
more protected templates were derived from the same instance. This
property prevents cross-matching across different databases.

Irreversibility Given a protected template and its corresponding secret, it
should be infeasible to reconstruct the original biometric data. This
property increases the security of the system against presentation and
replay attacks.

Renewability It should be possible to issue new and revoke old protected
templates from the same biometric instance and/or sample. This prop-
erty ensures that in case of the biometric database being compromised,
the data can be revoked and reissued, thereby preventing misuse.

Performance preservation The biometric performance is not significantly
degraded by the template protection scheme.

With the aforementioned issues as motivation, this paper presents a, best
to the authors’ knowledge, first method in the scientific literature for in-
dexing of protected iris templates. The method is based on Bloom filters
and search trees (see [23] and [5]), which were previously shown to exhibit
high workload reduction at an insignificant degradation to biometric per-
formance, as well as scalability for an arbitrary number of enrollees. In this
paper, said approach is extended by adapting ideas from [10] to accommo-
date cancelable iris templates which fulfil the aforestated properties and are
suitable for indexing.
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The remainder of this paper is organised as follows: in section 7.2, a
method for privacy-preserving indexing of iris data is proposed. Section 7.3
presents the experiments and results, while section 7.4 contains a summary
and concluding remarks.

7.2 Privacy-preserving Indexing of Iris-Codes

In this section, the key components of the proposed system are presented.
Subsection 7.2.1 describes a row-based permutation of Iris-Codes, while their
transformation to a Bloom filter-based representation, as well as indexing
and retrieval are outlined in subsection 7.2.2. Figure 7.1 shows a schematic
overview of the proposed system.

7.2.1 Row-based Permutation

To dissipate the statistical composition of the Iris-Code, a two-step feature
rearrangement adapted from [10] is applied:

1. The Iris-Code is split into a small number of parts (IC parts ). The aim
is to minimise the potential negative impact of the template protection
on the biometric performance by preserving more spatial information.
Several alternatives have been explored, namely: a) 2 parts – the real
and imaginary response of the feature extractor; b) 4 or 8 parts – a
further subdivision of each response into 2 or 4 parts, respectively.

2. A different row-based permutation is applied to each of the parts,
which, as will be shown later (section 7.3), makes inversion attacks in-
feasible (even under the full-disclosure attacker model, where the attacker
is in possession of the permutation key). Potential loss of discrimina-
tive power due to the permutation is (mostly) avoided, since the hori-
zontal neighbourhoods within rows persist. Note, that a column-wise
permutation would not have had the desirable effect, due to the nature
of Bloom filter-based Iris-Code representation explained in subsection
7.2.2.

7.2.2 Indexing and Retrieval

Following the permutation of the Iris-Codes, the enrolled templates are or-
ganised into tree-based search structures following the methods of [23] and
[5] described below.

1. The Iris-Codes are evenly split into j equally sized blocks of adjustable
height and width (H × W ). Subsequently, a simple transformation
function is applied to the blocks column-wise, whereby each column
(a binary string), is mapped to its corresponding decimal value.
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2. For each block, an empty (i.e. all bits set to 0) Bloom filter (b) of length
2H is created and the indices corresponding to the decimal column
values are set to 1.

3. Hence, the resulting template (B) is a sequence of j such Bloom filters
- [b1, . . . ,bj ].

4. The dissimilarity (DS ) between two Bloom filter-based templates (de-
noted B and B′) can be efficiently computed (utilising intrinsic CPU
operations and trivially parallelisable), as shown in the equation be-
low, where | · | represents the population count, i.e. Hamming weight.

DS (B,B′) =
1

j

j∑

i=1

|bi ⊕ b′
i|

|bi|+ |b′
i|

The Bloom filter-based templates are, to a certain degree, rotation-invariant,
which means that contrary to the Iris-Codes, no alignment compensation is
needed during the template comparison stage. Furthermore, the data rep-
resentation is sparse, which is a crucial property for the indexing step de-
scribed below. The representation sparseness is guaranteed, since for each
Bloom filter of length 2H , at most W (in practice fewer – due to the bit corre-
lations in the Iris-Codes) indices are activated, and for the considered system
configurations W � 2H .

1. The list of N enrolled templates is (approximately evenly) split and
assigned to T trees. This step is needed (for any sizeable N values) to
maintain the sparseness of the data representation.

2. Each node of a tree (containing M = N
T templates) is constructed

through a union of templates, which corresponds to the binary OR
applied to the individual Bloom filters in the sequence. The tree root
is constructed from all templates assigned to the respective trees (i.e.⋃M

m=1 Bm), while the children at subsequent levels are created each
from half of the templates from their parent node (e.g. at first level –

the children of the root node –
⋃M

2
m=1 Bm and

⋃M
m=M

2 +1 Bm).

3. The templates (B1, . . . ,BM ) are inserted as tree leaves.

After constructing the trees, the retrieval can be performed as shown
below.

1. A small number of the most promising trees (t) out of T constructed
trees can be pre-selected (denoted t⁄T) based on comparison scores be-
tween the probe and root nodes.
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2. The chosen trees are successively checked until the first candidate iden-
tity is found or all the pre-selected trees have been visited. Note, that
for the genuine transactions, thanks to the pre-selection step, the trees
most likely to contain the sought identity are visited first.
A tree is traversed by, at each level, computing the comparison score
between its nodes and the probe, and choosing the path with the best
score. Once a leaf is reached, a final comparison takes place. The idea
is based on the representation sparseness: as long as, at each level,
the relation DSgenuine � DSimpostor generally holds true, the genuine
probes will be able to traverse the tree using the correct path to reach
a matching leaf template. Note, that the row-based permutation (sub-
section 7.2.1) does not, in any way, impair the representation sparse-
ness, since the average number of activated indices remains identical
for the Bloom filters produced from permuted and unpermuted Iris-
Codes.

The complexity of a single lookup is O(T + t ∗ (2 ∗ logM)). As it is suf-
ficient to pre-select only a small fraction of the constructed trees, i.e. t � T ,
the lookup workload remains low, while arbitrarily many enrollees can be
accommodated. For reference, figure 7.2 shows the indexing and retrieval
in a single tree. If multiple trees are constructed, the search is trivially par-
allelisable by simultaneously traversing many trees at once.

M
⋃

m=1

M
2
⋃

m=1

M
⋃

m=M
2 +1

Bm

M
4
⋃

m=1

M
2
⋃

m=M
4 +1

Bm

DS(eƒ t1,B′)

DS(rght1,B′)
<

rght1eƒ t1

rght2
eƒ t2

. . .

. . .
DS(eƒ t2,B′)

DS(rght2,B′)
<

. . .

DS(B1,B′)

DS(B2,B′)
≥B1 B2 . . .

. . .

BM−1 BM

B′
retrievalindexinglist of M

Iris-Codes

DS(B2,B′)
?
< threshod return B2 or ∅

permuted
Bm

Bm

Bm

Figure 7.2: Indexing and retrieval in the Bloom filter-based system. In this
case, the retrieval follows the bold arrow path down to a leaf, where the final
decision is made.
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7.3 Experiments

This section presents experiments performed to assess the proposed sys-
tem. The experimental setup is outlined in subsection 7.3.1, while the per-
formance and privacy evaluations are presented in subsection 7.3.2.

7.3.1 Experimental Setup

Two publicly available datasets of near-infrared iris images were chosen for
the experiments: IITDv1 [15] and CASIA-IrisV4-Thousand [2] (henceforth
referred to as ”IITD” and ”CASIA”, respectively). They contain 1120 and
20000 images from 224 and 1000 subjects, respectively. Example images
from the datasets are shown in figure 7.3.

(a) IITD

(b) CASIA

Figure 7.3: Example images from the chosen datasets.

The raw images were processed with the commonly used methods using
open-source libraries: OSIRIS [20] and USIT [26]. After segmentation, where
the iris and pupil boundaries are located, the iris textures were normalised
according to the rubbersheet model [4] and subsequently enhanced by ap-
plying Contrast Limited Adaptive Histogram Equalization (CLAHE). Fea-
tures were extracted with the Daugman-like 1D-LogGabor algorithm (LG),
generating 512×20 bits Iris-Codes.

For the experiments, 256 references (from the IITD dataset – left and right
eye instances are mutually independent and thus treated as separate sub-
jects) were enrolled. The entire CASIA dataset together with the remainder
of the IITD data are used to supply an ample number of impostor compar-
ison trials. To make the evaluation more robust, 50 random permutations
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Figure 7.4: DET curves for the proposed system. The faint colours around
the curves represent the 95% confidence interval, while the black line rep-
resents the baseline (with EER of 0.66) – an Iris-Code system performing an
exhaustive search and using ±4 bit-shifts for sample alignment compensa-
tion.

are generated and used throughout the experiments. In other words, the
performance evaluation for each system configuration is repeated 50 times
with the different permutations of the Iris-Code templates.

Following metrics were used for evaluation of the various aspects of the
proposed system:

Biometric performance: ISO/IEC IS 19795-1:2006 [13] metrics are used.

• The false positive and false negative identification rates plotted
as detection error trade-off (DET) curves.

• The equal-error-rate (EER).
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Workload: metrics from ISO/IEC IS 19795-1:2006 [13], and proposed in [5]
is used.

• The penetration rate (p).

• The required number of bit comparisons per identification trans-
action expressed as a fraction (�) of the number of required Iris-
Code baseline bit comparisons.

Template protection: metrics introduced in [9] are adopted.

• Unlinkability: the overall measure of the linkability of a given
biometric template protection system (Dsys

↔ ). It is computed in
terms of the probabilities of having a mated or non-mated com-
parison for each possible linkage score between templates en-
rolled in different applications. It yields values in the closed range
[0, 1], and reports a decreasing degree of unlinkability (i.e. in-
creasing degree of linkability).

• Irreversibility: the success probability (Pguess ) of guessing an orig-
inal biometric template given a protected template under full-
disclosure attacker model (i.e. the used permutation sequence is known
to the attacker).

• Renewability: the number of possible permutation sequences,
|K| (i.e. the size of the key space).

7.3.2 Performance Evaluation and Protection Analysis

Figure 7.4 shows DET curves (with axes using a standard deviate scale [19])
for some of the best performing system configurations. Plots for each IC parts ∈
{2, 4, 8} show the three best configurations in terms of biometric perfor-
mance and three best configurations in terms of workload reduction. The
proposed protected indexing system exhibits high biometric performance,
albeit naturally suffering a relatively small loss from the baseline Iris-Code
based system. It can also be observed, that splitting the Iris-Code into more
groups than just the real and imaginary parts prior to applying the permu-
tation, is beneficial for the biometric performance. This is due to the fact that
by splitting the Iris-Code into more parts, the potential for information loss
due to permutation is decreased by preserving more spatial information.
The plotted confidence intervals show that the biometric performance of
the proposed system is stable across different permutations (in other words,
changing the applied random permutation does not adversely affect the bio-
metric performance of the system).

In table 7.1, the workload and security parameters of the proposed sys-
tem (for the configurations plotted in figure 7.4) are listed. A significant
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workload reduction is noticeable – the proposed system only requires be-
tween 1% and 10% of the workload incurred by the baseline system. This
is achieved partly by decreasing the penetration rate as can be seen in the
table, and partly by reducing the size of the biometric templates in terms of
number of bits. Table 7.1 also shows the unlinkability, irreversibility and re-
newability of the proposed system1. It can be readily seen, that the keyspace
(|K|) for the proposed system is huge, thereby ensuring renewability and
contributing to the infeasibility of reversing the protected templates (Pguess ),
which is further enhanced by the nature of the Bloom filter based representa-
tion (some loss of local information). Lastly, the measure of global unlinka-
bility (Dsys

↔ ) for the tree leaves puts the proposed system (depending on the
configuration) in close to fully unlinkable and semi-unlinkable region (as
defined in [9]). Thus, for appropriate configuration selection, the security
goals of a cancelable template protection scheme are accomplished.

Table 7.1: Results

IC parts H W t⁄T EER p � Dsys
↔ Pguess |K|

2

8 8
8⁄8 1.96 0.31 0.063 0.32

2−960 2100974⁄8 2.15 0.19 0.038 0.29
16 8⁄8 3.01 0.31 0.063 0.45 2−1472 24414

10 8
8⁄8 2.11 0.31 0.063 0.09

2−960 2100974⁄8 2.71 0.19 0.038 0.10
16 8⁄8 2.84 0.31 0.063 0.19 2−1536 24414

4

8 8 8⁄8 1.46 0.31 0.063 0.31

2−960

22019510 8

8⁄8 1.55 0.31 0.063 0.10
4⁄8 1.92 0.19 0.038 0.10
2⁄8 2.04 0.11 0.022 0.09
1⁄8 2.97 0.07 0.014 0.09

12 8 2⁄8 2.87 0.11 0.022 0.07 2−1080

8

8 8 8⁄8 1.12 0.31 0.063 0.31

2−960 240390

10 8
8⁄8 0.92 0.31 0.063 0.11
4⁄8 1.15 0.19 0.038 0.09
1⁄8 2.51 0.07 0.014 0.09

16 2⁄8 2.36 0.11 0.022 0.16 2−1536 217655

12 8 2⁄8 1.99 0.11 0.022 0.06 2−1080 240390

1In calculations, the average number of activated bits in the Bloom filters must be rounded
to the nearest integer, thus in some cases the resulting Pguess may be equal for different H
values (particularly when H = 8 or H = 10). Furthermore, since the full-disclosure attacker
model is used, the further effort of reversing the row-wise permutation (which would have
been differ depending on H values) is not included in Pguess , since the attacker is assumed to
be in possession of the used permutation sequences.
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7.4 Summary

In this paper, an approach for indexing cancelable iris templates has been
proposed. The approach is based on a row-wise permutation of the Iris-
Code rows and indexing them in Bloom filter-based tree structures. The
experiments show that the proposed system fulfils the pre-requisites stipu-
lated by ISO/IEC IS 24745:2011 for biometric template protection schemes
(unlinkability, irreversibility, renewability and biometric performance), and
additionally vastly reduces the workload associated with identification sce-
nario – to less than 5% of the baseline system.
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Chapter 8

Benchmarking Binarisation Schemes
for Deep Face Templates

Abstract

Feature vectors extracted from biometric characteristics are often
represented using floating point values. It is, however, more appealing
to store and compare feature vectors in a binary representation, since
it generally requires less storage and facilitates efficient comparators
which utilise intrinsic bit operations. Furthermore, the binary represen-
tations are very often necessary for some specific application scenarios,
e.g. template protection and indexing.

In recent years, usage of deep neural networks for facial recognition
has vastly improved the biometric performance of said systems. In this
paper, various binarisation schemes are applied to such feature vectors
and benchmarked for biometric performance. It is shown that with only
a negligible drop in biometric performance, the storage space and com-
putational requirements can be vastly decreased.

Addressed research question(s): RQ1
Reference: DROZDOWSKI, P., STRUCK, F., RATHGEB, C., AND BUSCH, C.
Benchmarking binarisation schemes for deep face templates. In International
Conference on Image Processing (ICIP) (October 2018), IEEE, pp. 191–195.

8.1 Introduction

Face is one of the most widely used biometric characteristics. Various meth-
ods have been proposed over the span of last three decades [7, 23]. In re-
cent years, methods based on deep learning (e.g. [15, 20, 21, 22]) have been
proposed, and significantly improved on the biometric performance of the
heretofore existing methods. With this improved biometric performance,
face has become an attractive characteristic for large-scale identification sys-
tems.

The deep face feature representations typically involve float-valued vec-
tors, for which the template comparison is performed using metrics such as
Euclidean distance (L2 norm) or Chi-square distance (χ2). Those metrics are
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computationally expensive – thus creating a potential efficiency bottleneck
for large-scale biometric identification systems, where 1:N template com-
parisons are performed during lookup. Additionally, transmission of such
feature vectors from low-cost mobile devices to central systems requires a
compact encoding, specifically when the bandwith of mobile networks is
limited. Binarisation of feature vectors offers an attractive alternative – such
templates can be stored efficiently and be compared quickly in the Ham-
ming domain utilising intrinsic CPU operations (i.e. xor and popcount) [18].

Over time, many methods of binarising data have been proposed, mostly
with template protection as motivation (to transform the features to cer-
tain input forms required by the different cryptographic primitives) [12]
and shown to work with, among others, classical facial recognition sys-
tems. However, it is unknown, whether or not those approaches are suit-
able for the vectors produced by deep learning based face feature extractors
and their potential biometric performance degradation due to information
loss has not been studied thoroughly. With this uncertainty as the motiva-
tion, the main contribution of this paper is such a benchmark, where various
binarisation methods are evaluated in terms of biometric performance and
computational workload incurred at the comparison stage.

The remainder of this paper is organised as follows: Section 8.2 intro-
duces the related work. In section 8.3, binarisation schemes for deep facial
templates are described. In section 8.4, the experimental setup and results
are presented, while section 8.5 contains a summary of the paper and future
work items.

Figure 8.1: Processing chain

8.2 Related Work

In the recent decade, several data binarisation approaches have been pro-
posed. Kevenaar et al. [8] extract the most reliable components of facial
feature vectors and binarise them for use in a template protection scheme.
Chen et al. [5] present a detection rate optimized bit allocation (DROBA)
principle, which is biometric characteristic-agnostic. Based on the discrim-
inative power of the features, it assigns more or fewer bits to them during
binarisation, thus improving the biometric performance of the binarised fea-
ture representation. Bringer et al. [2] transform fingerprint minutiae set us-
ing a vicinity-based approach, which in addition to producing a compact
feature representation, also exhibits self-alignment property. When present-
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ing a novel fingerprint minutiae representation scheme, Cappelli et al. [3]
note that it can also operate in binarised mode, without significantly de-
creasing the biometric performance of the scheme. Lee et al. [10] binarise
facial PCA/ERE-based templates using a generalised Linnartz and Tuyl’s
quantisation index modulation (QIM) scheme for the purpose of template
protection. Chen et al. [4] present a generic (for arbitrary characteristics with
float-valued feature vectors) binarisation scheme using pairwise adaptive
phase quantization and long-short pairing strategy. Lim et al. [13] describe
a DROBA-based approach, in which bit statistics (reliability and discrim-
inability) to improve the biometric performance of the binarised represen-
tation of facial features. In Lim et al. [11], the authors propose two new en-
coding schemes (LSSC and PLSSC – (Partially) Linearly Separable Subcode)
which exhibit full-ideal and near-ideal separability capabilities, respectively.
Schlett et al. [19] describe a simple, yet effective, scheme for binarising multi-
scale LBP histograms.

In general, the results presented in the summarised state-of-the-art show,
that various float-value based feature representations can be effectively trans-
formed into compact binary strings, without a significant drop in biometric
performance, when benchmarked against the original data representation.

8.3 Binarisation of Deep Face Templates

Figure 8.1 shows a high-level view of the facial image processing chain
used in this paper with the key steps (for this paper) highlighted. First,
common pre-processing steps including region of interest detection, align-
ment and normalisation are applied. The current state-of-the-art deep fa-
cial recognition frameworks then extract feature vectors consisting of a pre-
defined number of floating point values. Specific details regarding the pre-
processing and feature extraction steps are given in subsection 8.4.1. To
avoid computational overhead during comparison stage (computing Eu-
clidean distance with floating-point numbers, as mentioned in section 8.1),
the feature vector can be binarised. Normally, this process consists of two
steps [12]: 1. Quantisation (subsection 8.3.1) and 2. Encoding (subsection
8.3.2).

8.3.1 Quantisation

During quantisation, the values from the feature vector are mapped to a
number of integer-labelled intervals over the feature space probability den-
sity (feature extraction algorithm dependent, obtained via a training set). In
this paper, two quantisation schemes listed below are utilised and visualised
in figure 8.2.
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• Equal-width quantile: the feature space is divided into segments of
equal size (figure 8.2a)

• Equal-probable quantile: the feature space is divided into segments
containing equal population probability mass (figure 8.2b)
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Figure 8.2: Quantisation

8.3.2 Encoding

After quantisation, in the encoding step, the aforementioned quantised in-
tervals (represented as integers) are mapped to short binary strings, which
are subsequently concatenated to produce the final feature representation.
The dissimilarity of two such templates can be then computed using Ham-
ming distance. The encodings used in this paper are listed below.

• Boolean The simplest scheme, where the feature space is quantised
into 2 sub-spaces (i.e. the resulting encoding is a single 0 or 1).

• DBR (Direct Binary Representation) In which the decimal numbers
from quantisation are converted directly into their binary representa-
tions.

• BRGC (Binary Reflected Gray Code [6]) In which the encoding is done
so that the distance in the Hamming domain between codewords re-
sulting from successive decimal values is always 1.

• LSSC (Linearly Separable Subcode [11]) A more recent approach, which
offers ideal separability, i.e. the distances between two values are the
same in the decimal and Hamming domains.

• Sparse A simple scheme, in which the number of encoded bits is equal
to that of quantised sub-spaces (k) and only one bit is set to 1 – that
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corresponding to the sub-space index resulting from the quantisation
step. When quantising into larger number of sub-spaces, this can re-
sult in a sparse binary feature vector.

Table 8.1 shows an example with 4 quantisation intervals and the encod-
ing methods described above. Intuitively, there exists a trade-off between
the ability to obtain better separation, representation sparsity and the re-
quired length of the encoding. In the next section, the schemes are put to
test by assessing their biometric performance with deep facial feature vec-
tors.

Table 8.1: Encoding schemes

Quantisation
Interval

Encoding
Boolean DBR BRGC LSSC Sparse

1 0 00 00 000 0001
2 1 01 01 001 0010
3 — 10 11 011 0100
4 — 11 10 111 1000

8.4 Experiments

This section contains the evaluation of the binarisation schemes described
earlier. In subsection 8.4.1, the used datasets and experimental setup details
are outlined, while the results are presented and discussed in subsection
8.4.2.

8.4.1 Experimental Setup

Three commonly used facial datasets, summarised in table 8.2, were cho-
sen for experiments in this paper. From the FERET dataset, only frontal
images were used, while from the AR Face dataset, frontal images without
intentional obfuscations (such as sunglasses or scarves) were used. From
the FRGC dataset, the complete ”Fall2003” subset was used.

Table 8.2: Overview of the data used for experiments

Dataset Subjects Images Comparisons
Genuine Impostor

AR Face [14] 133 741 1757 8777
FERET [17] 994 2722 3649 493520
FRGC [16] 370 11358 219851 68264
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(a) FERET

(b) FRGC

(c) AR Face

Figure 8.3: Example images after pre-processing

In the pre-processing stage, the face of a subject is detected and nor-
malised according to eye coordinates detected by the dlib landmark detector
[9]. Subsequently, the normalised region is cropped to 320×320 pixels and
converted to grayscale. Example images from the used datasets (after pre-
processing) are shown in figure 8.3. Thereafter, two state-of-the-art, open-
source deep facial recognition frameworks (OpenFace [1] and FaceNet [20])
were used to extract features from the images. The resulting representation
is a 1-dimensional feature vector containing 128 float values. The frame-
works utilised pre-trained (on datasets disjoint from the ones used for the
binarisation experiments in this paper) models, made available by their au-
thors, were used.

Suitable thresholds for quantisation intervals are determined via train-
ing on the feature space of the AR Face dataset and then used directly in
tests on the remaining two datasets. For each binarisation method, all pos-
sible template comparisons (verification transactions) were performed to
compute the biometric performance of the system. The baseline biometric
performance was computed using the aforementioned original, float-based
templates, which are compared using squared Euclidean distance.
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The metrics used for evaluation were:

• Biometric performance: Detection error trade-off curve (DET) and
equal error rate (EER)

• Template size: bits

• Computational workload: CPU instructions required to perform a sin-
gle template comparison

8.4.2 Results

Figure 8.4 shows DET curves for the performed experiments on the FERET
(figure 8.4a) and FRGC (figure 8.4b) datasets. It can be seen, that using the
FaceNet feature extractor yields results vastly superior to that of OpenFace.
Furthermore, it can be seen, that the float-based representation performs
only marginally better than the best binarisation schemes.
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Figure 8.4: DET curves

In terms of EER, the baseline performance on the FERET dataset is 2.68%
and 0.23% EER for OpenFace and FaceNet, respectively, while on the FRGC
dataset, it is 7.35% and 2.13% EER for OpenFace and FaceNet, respectively.
The experimental results for binarisation schemes are shown in table 8.3
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with best result for each feature extractor/dataset pair marked in bold. Gen-
erally, the LSSC encoding has the best performance, which was to be ex-
pected, since it offers better separability than the remaining encodings. In
most cases, the equal-width quantisation was better than the equal-probable
quantisation. In summary, the best quantisation/encoding method pairs
suffer only a negligible loss of biometric performance (in terms of EER)
against the float-based baseline system: FaceNet loses 0.06 and 0.14 per-
centage points, while OpenFace loses 0.19 and 0.53 percentage points on
FERET and FRGC datasets, respectively.

Table 8.3: Results (best one(s) for each dataset/extractor pair marked in bold)

Encoding Quantisation Size (bits)
Performance (EER)

FERET FRGC
FaceNet OpenFace FaceNet OpenFace

Boolean eq. width 128 0.47% 3.34% 2.85% 9.10%
eq. probable 0.49% 3.56% 2.80% 9.49%

DBR
eq. width 256 0.52% 3.46% 2.99% 9.31%

384 0.98% 3.85% 3.72% 10.10%

eq. probable 256 0.71% 3.65% 3.31% 9.30%
384 0.76% 3.75% 3.60% 9.36%

BRGC
eq. width 256 0.29% 2.87% 2.32% 7.95%

384 0.31% 2.99% 2.36% 8.17%

eq. probable 256 0.35% 3.20% 2.61% 8.33%
384 0.36% 3.30% 2.73% 8.42%

LSSC eq. width 384 0.29% 2.82% 2.32% 7.88%
eq. probable 0.29% 2.92% 2.40% 7.97%

Sparse eq. width 512 0.34% 3.13% 2.54% 8.49%
eq. probable 0.47% 3.36% 2.92% 8.63%

The binary templates are compared using Hamming distance, i.e. by us-
ing a binary xor followed by a popcount, both of which are intrinsic op-
erations on the vast majority of modern processors. By storing the binary
vectors in arrays of unsigned integers, 64 bits at a time can be handled and
then summed up using add operations. Hence, for comparing a binary vec-
tor of length 64 ∗ n, the required number of operations is: 3 ∗ n − 1. The
float-based templates are in this case compared using squared Euclidean
distance, which in one dimension corresponds to computing the dot prod-
uct of the difference between the two feature vectors, i.e. a sum of element-
wise multiplication between two copies of the difference vector. Table 8.4
summarises the required instruction numbers for the template representa-
tion types and sizes used in this paper’s experiments. The original repre-
sentation requires an order of magnitude more instructions; furthermore,
those require floating point arithmetic instead of binary/integer arithmetic.
It is therefore clear, that the binarised representation is vastly more efficient
computationally.
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Table 8.4: CPU instructions per template comparison

Representation Instruction Type Count
128 floats float sub, mul and add 383
128 bits

binary xor and popcount

5
256 bits 11
384 bits 17
512 bits 23

8.5 Summary

In this paper, several methods for quantisation and encoding of float-valued
deep (OpenFace and FaceNet) feature representation of facial images were
benchmarked. In tests on commonly used large facial datasets, the bina-
rised templates suffer only a negligible biometric performance loss against
the original, float-valued representation of the deep facial templates, while
vastly reducing the template size in bits. As a consequence of the more com-
pact feature vector, and also by being able to use intrinsic CPU operations
for template comparison, the computational and storage requirements are
vastly reduced. This benchmark thus reveals that the existing binarisation
methods can be readily applied to feature vectors produced by deep neural
networks.

A promising future work avenue is using the binarised deep face tem-
plates to perform (multi-)biometric indexing for further workload reduction
in large-scale biometric identification systems.
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Chapter 9

On the Application of Homomorphic
Encryption to Face Identification

Abstract

The data security and privacy of enrolled subjects is a critical re-
quirement expected from biometric systems. This paper addresses said
topic in facial biometric identification. In order to fulfil the properties of
unlinkability, irreversibility, and renewability of the templates required
for biometric template protection schemes, homomorphic encryption is
utilised. In addition to achieving the aforementioned objectives, the use
of homomorphic encryption ensures that the biometric performance re-
mains completely unaffected by the template protection scheme.

The main contributions of this paper are: It proposes an architecture
of a system capable of performing biometric identification in the en-
crypted domain, as well as provides and evaluates an implementation
using two existing homomorphic encryption schemes. Furthermore, it
discusses the pertinent technical considerations and challenges in this
context.

Addressed research question(s): RQ1, RQ5
Reference: DROZDOWSKI, P., BUCHMANN, N., RATHGEB, C., MARGRAF,
M., AND BUSCH, C. On the application of homomorphic encryption to
face identification. In International Conference of the Biometrics Special Interest
Group (BIOSIG) (September 2019), IEEE, pp. 173–180.

9.1 Introduction

Data exposure is a potential risk in biometric system deployments, which
typically store their data secured using traditional encryption algorithms
[19]. If this protection were to be compromised, serious problems would
arise, including but not limited to, identity theft, cross-matching without
consent, and severely limited renewability. Increasingly, the public and non-
governmental organisations pay attention to those (and other) issues asso-
ciated with centralised storage of sensitive personal and biometric data. In
some areas, this contributes to the political process of widening legislation
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against privacy violations (e.g. GDPR in Europe [11]), which entail signifi-
cant responsibilities for the data controllers.

Recently, biometric template protection (see e.g. [22] for a survey) has been
an active research field attempting to address said security and privacy chal-
lenges. The ISO/IEC IS 24745 [17] mandates several properties, which must
be guaranteed by such schemes:

• Unlinkability referring to making it infeasible to determine if two or
more protected templates were derived from the same instance. By
fulfilling this property, cross-matching across different databases is
prevented.

• Irreversibility referring to making it infeasible to reconstruct the orig-
inal biometric data given a protected template and its correspond-
ing secret. With this property fulfilled, the privacy of the users’ data
is increased, and additionally the security of the system is increased
against presentation and replay attacks.

• Renewability referring to making it possible to revoke old protected
templates and creating new ones from the same biometric instance
and/or sample. With this property fulfilled, it is possible to revoke
and reissue the templates in case of the database being compromised,
thereby preventing misuse.

• Performance preservation referring to the requirement of the biomet-
ric performance not being significantly impaired by the protection scheme.

Three main biometric template protection approach classes can be dis-
tinguished: (1) biometric cryptosystems, which use the biometric data to
bind or extract a key [7], (2) cancelable biometrics, which utilise irreversible
transformations to the biometric samples or templates [20], and (3) (homo-
morphic) encryption of biometric data [2].

Homomorphic encryption (henceforth referred to as “HE”) makes it pos-
sible to compute operations in the encrypted domain, which render the
same result as those in the plaintext domain. Thus, provided that it is pos-
sible to implement a given biometric comparator to feasibly operate within
the homomorphic domain, such a template protection scheme would oper-
ate without any loss of biometric performance, whereas some impairment
is often inevitable in biometric cryptosystems and cancelable biometrics. In
general, an encryption algorithm E has the homomorphic property for an
operation � if it holds E(m1)� E(m2) = E(m1 �m2), ∀m1,m2 ∈ M where
M is the set of all possible messages. HE schemes are classified depending
on the number and type of supported � operations (see e.g. [1] for a detailed
survey). The following three HE scheme types exist today:
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• Partially Homomorphic Encryption (PHE) schemes are defined as al-
lowing only a single operation type an unlimited number of times.
PHE schemes have been around for over 30 years and are the old-
est HE schemes like the classical RSA scheme [23] and the El-Gamal
scheme [10] supporting only either addition or multiplication.

• Somewhat Homomorphic Encryption (SWHE) schemes allow multi-
ple operation types, but only a limited number of times. SWHE exam-
ples from literature are Yao’s garbled circuit scheme [26], which sup-
ports arbitrary operations a limited number of times and the Boneh-
Goh-Nissim (BGN) scheme [4], which supports unlimited number of
additions and one multiplication.

• Fully Homomorphic Encryption (FHE) schemes support an unlimited
number of operations. The first feasible FHE scheme was proposed
by Gentry [13] in 2009 and many newer FHE schemes are based on
Gentry’s general FHE framework. Brakerski and Vaikuntanathan [6]
utilise Gentry’s framework to make their SWHE scheme a FHE scheme
and introduce batching as an optimization [5]. The Brakerski’s scheme
was later optimised by Fan and Vercauteren [12].

While several authors investigated using FHE for biometric verification
(see e.g. [3, 15, 16]) with promising results, the biometric identification sce-
nario has not yet been addressed or merely considered a trivial extension
of the proposed schemes. However, there exist several challenges and is-
sues which must be dealt with for such schemes to be viable in the biomet-
ric identification scenario, especially if computational workload reduction
(i.e. decreasing the computational complexity of the retrieval, see e.g. [18]
for a survey) is to be employed. Accordingly, the contribution of this pa-
per is twofold: (1) an example architecture of a system capable of perform-
ing biometric identification with homomorphically protected templates is
described, implemented, and evaluated with a facial recognition system,
and (2) the practical considerations and challenges relevant to the biomet-
ric identification scenario are discussed in the context of HE and potential
solutions, along with the future research avenues being explored.

This paper is organised as follows: in section 9.2 the proposed system is
described. Section 9.3 outlines the experimental setup and the results of the
evaluations. The results and other relevant matters are discussed in section
9.4, while concluding remarks and a summary are given in section 9.5.

9.2 Proposed System

Figure 9.1 shows an overview of the proposed system. There are 3 entities
in the system: A client, where the biometric features are extracted (not de-
picted) and encrypted; a database, where the encrypted references of the
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enrolled subjects are stored and the distances between them and the probe
computed in the encrypted domain and applies a decision threshold; and a
trusted third party (TTP), which decrypts the thresholded scores and com-
municates a decision to the client. This description is an abstract one, the
concrete HE schemes used in the implementation and evaluation are listed
in section 9.3.

The proposed system ensures that the unencrypted, privacy-sensitive
biometric features are only available to the client. All network transfers of
the biometric probe, as well as the computations on the data happen in the
encrypted domain, thereby preventing eavesdropping attacks on the net-
work and malicious or rogue database system attacks. Since all database en-
tries are stored encrypted, a database breach or insider threats yield no valu-
able attack vectors. To further strengthen the security of the proposed sys-
tem, following measures are possible: 1) to curtail active attacks (e.g. Man-
in-the-Middle or skimming) against the transferred feature vectors and the
identification transaction decision, TLS can be deployed between the par-
ties; 2) to prevent the attacker from conducting an analysis of a single entry
or unsanctioned database audits, the order of the database entries could be
randomly shuffled during or after each identification transaction. Both mea-
sures would have a negligible impact on the access time and no impact on
the biometric performance.

Client Database TTP

capture probe v
p = Enc(v)

p

R = dist(p, c), ∀c ∈ E
d = R − t

d

d∗ = Dec(d)
∃d ∈ d∗ : d > 0 ? accept : reject

decision: accept/reject

Figure 9.1: System overview sketch

1. Let v denote a biometric feature vector, with a constant number (n)
of feature elements: v = (v1, v2, . . . vn) and c denote the element-wise
encrypted version of said reference vector using a HE scheme with
batching. Batching is a mechanism which allows to perform opera-
tions on vectors rather than individual numbers in the encrypted do-
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main, thereby allowing vast (by several orders of magnitude) speed-
ups on vectorisable operations. By design, the HE schemes used in
this paper support a certain number of slots (s) for the elements in the
encrypted vector. This number depends on the parameters of the en-
cryption algorithm, including the encryption security. In this case (see
subsection 9.3.1), n < s for any reasonable (from the security perspec-
tive) combination of parameters, which means that c must be padded
with zeroes beyond the n-th index, i.e. c = (c1, c2, . . . cn, 0 . . . 0).

2. Let E denote an enrolment database consisting of N such encrypted

vectors (subjects), i.e. E =




c1
c2
...

cN


. Let p denote an encrypted feature

vector of a probe and � an arbitrary function for distance computation
between two biometric feature vectors. In this work, the squared Eu-
clidean distance will be used, i.e. dist(c,p) =

∑s
i=0 (ci − pi)

2. While
performing the subtraction and exponentiation in the encrypted do-
main is done trivially by directly using the operators in the encrypted
domain, the summing up of the individual elements is not as straight-
forward, since batching techniques do not allow access to individ-
ual encrypted vector elements. To compute the sum, the observation
made in [14] is utilised – the vector is successively circularly shifted
and added onto itself s times. Afterwards, the sum of elements is
present in the first element of the vector. The other elements of the vec-
tor are now irrelevant and are cleaned by multiplying with 0. Mathe-
matically, a vector k = {1, 0, . . . 0} is defined and multiplied with the
result.

3. The goal of a biometric identification is to first compute the compari-
son scores between the probe and all the items in the enrolment database,
select the best one, and compare it against a predetermined threshold
to make the final decision. Let ri denote the result of comparison be-
tween the probe and the i’th entry in the database, i.e. ri = dist(p, ci) ·
k. After processing the whole enrolment database, N such result vec-

tors as separate ciphertexts are created: R =




r1
r2
...
rN


 =




(r1,1, 0, . . . 0)
(r2,1, 0, . . . 0)

...
(rN,1, 0, . . . 0)




note, that each of ri is encrypted in a separate ciphertext, rather than
R being encrypted in one ciphertext. In the next step, those indi-
vidual ciphertexts are combined. At this point, it is also possible to
randomly shuffle the order of the ciphertexts, thereby preventing the
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trusted third party from later learning which subject has been identi-
fied.

4. Through shifting the ri vectors, a structure conceptually akin to a di-

agonal matrix is reached, i.e. R =




(r1,1, 0, . . . 0)
(0, r2,1, . . . 0)

...
(0, 0, . . . rN,1)


. Those vectors are

combined by adding them together, thereby producing a single en-
crypted vector holding the comparison scores of p against E, i.e. a
mapping was introduced so that R �→ (r1,1, r2,1, . . . rN,1).

5. The next step is to compare the scores against a predefined thresh-
old, i.e. to transform from the continuous spectrum of the comparison
scores to the binary accept or reject decision. This is done by subtract-
ing an encrypted vector storing at each element the threshold value
(t), i.e. t = (t, t, . . . t) of length s, thus producing a decision vector
d = R − t, which is subsequently transmitted to the trusted third
party.

6. In the last step, d is decrypted to determine the identification outcome

(and communicate it to the client), i.e. decision =

{
accept if ∃d ∈ d : d > 0

reject if ∀d ∈ d : d ≤ 0
.

If any of the elements in d is above 0, it is necessarily because the cor-
responding score in R has been greater than t, thus yielding an accept
decision. Since due to batching access to individual elements in the
encrypted vector is not possible, the whole vector must be decrypted
by the trusted third party.

9.3 Experiments

9.3.1 Experimental Setup

The experimental evaluation was conducted on a frontal subset of the FERET
database [21] in an open-set identification scenario with 500 enrolled data
subjects, using 10-fold cross-validation. The features from the images were
extracted using FaceNet with a pre-trained model provided by its authors
[24]. FaceNet yields templates comprising of 512 floating-point feature ele-
ments; two such templates can then be compared using squared Euclidean
distance. The open-source Microsoft SEAL HE library [25] was utilised to
implement the identification protocol in the encrypted domain (see section
9.2). The choice was based on the presence of a high-level API and suitable
HE schemes, namely: Brakerski/Fan-Vercauteren (henceforth referred to as
“BFV”) [12] and Cheon-Kim-Kim-Song (henceforth referred to as “CKKS”)
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[8] for integer and float based computations, respectively (see [1] for a de-
tailed HE survey, including other available libraries). Thus, the templates
produced by FaceNet can be encrypted directly using CKKS. To utilise BFV,
a quantisation scheme is employed, whereby the continuously distributed
values of the feature elements are mapped into discrete intervals (see e.g.
[9] for more details). Although some information is lost through quantisa-
tion, the biometric performance should remain largely unaffected. Accord-
ingly, following evaluations were conducted on commodity hardware (one
2.5GHz CPU, 8 GB RAM) in a virtualised Linux environment:

• Biometric performance (DET curve) with the original and quantised
feature vectors.

• Time elapsed (in ms) for the computations in the HE domain.

9.3.2 Results

When applying the original float-based templates and CKKS scheme, the
distance computation between two encrypted feature vectors was around
5000ms. However, by applying a quantisation scheme, which enables the
use of BFV, significant speed-up was achieved – the distance computation
only taking 850ms. The time consumed by the encryption and decryption
operations was trivial in comparison to that of the distance computation,
taking around 7ms and 2.5ms for CKKS and BFV, respectively. The space
requirements for the generated keys are not excessive: <1MB for the public,
secret, and relinearization keys (each) and around 10MB for the Galois keys.
In figure 9.2, it can be seen that the biometric performance of the system was
not degraded by the application of quantisation.

9.4 Technical Considerations

By utilising HE, the security objectives of a biometric template protection
system (see section 9.1) are achieved. The unlinkability across different
databases can be guaranteed, insofar they use a different set of keys for the
encryption. The irreversibility of the templates is bound to the encryption
strength, which in the used library, depending on the chosen parameters,
can be 128, 192, or 256 bits. Renewability is ensured, since new protected
templates can always be generated by changing the encryption keys. Finally,
as the template comparator in the encrypted domain is functionally identi-
cal (yields the same comparison scores) to that of the plaintext domain, the
biometric performance is not impacted.

The speed of the current implementation may be prohibitive for larger
deployments. It should, however, be noted that the experiments were car-
ried out using an ordinary set-up, i.e. without powerful CPUs, parallelisa-
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Figure 9.2: DET curves for biometric identification with original and quan-
tised features (with 95% CI)

tion/distribution, etc. The hardware set-up notwithstanding, it would be
beneficial to incorporate the concepts of computational workload reduction
(see e.g. [18]) into such systems in order to narrow down the search space
for each identification transaction. However, one drawback of using HE is
that it limits the flexibility in the implementation – for instance, as previ-
ously mentioned, due to batching the feature vector elements cannot be ac-
cessed individually. This limitation makes e.g. the incremental recognition
schemes (which facilitate early acceptance/rejection of likely/unlikely can-
didates) infeasible. The incorporation of more complicated schemes, such
as indexing and binning, could be a potentially interesting future research
avenue. On the other hand, a 1-to-first search strategy could already be im-
plemented by slight alterations to the communication between the database
and the trusted third party described in section 9.2, however likely at the
cost of at least some information exposure.

In the evaluation of biometric systems, a multitude of factors need to be
considered. Some of the most important properties are the biometric perfor-
mance, computational workload, as well as data security and privacy. Those
goals typically counterbalance each other, and a biometric system operator
is inevitably faced with trade-offs. In the case of HE in the biometric identifi-
cation scenario described in this paper, currently the goals of high biometric
performance, as well as data security and privacy can be fulfilled, while
reducing or accelerating the computational workload could be pursued in
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future research to facilitate usage of such HE schemes in the practical, real-
time applications.

9.5 Summary

In this paper, an architecture and an implementation thereof for a facial iden-
tification system in HE domain were presented and subsequently evaluated
experimentally. The system fulfils the biometric template protection objec-
tives defined in ISO/IEC IS 24745, namely unlinkability, irreversibility, re-
newability, and does not negatively affect the biometric performance. The
paper also provided a discussion w.r.t. the technical considerations, chal-
lenges, and future work potential for utilisation of HE in the context of
biometric face identification systems. While not yet practical for real-time
applications, HE is definitely a promising avenue for future research and
developments in this context.
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Chapter 10

Multi-biometric Identification with
Cascading Database Filtering

Abstract

The growing scale and number of biometric deployments around
the world necessitates research into technologies which facilitate fast
identification queries and high discriminative power. In this context,
this article presents a biometric identification system which relies on
a successive pre-filtering of the potential candidate list using multiple
biometric modalities, coupled with a weighted score-level information
fusion. The proposed system is evaluated in a series of experiments
using a compound dataset constructed from several publicly available
datasets; an open-set identification scenario is considered with the en-
rolment database containing 1,000 chimeric instances. This evaluation
shows that the proposed system exhibits a significantly increased bio-
metric performance w.r.t. a weighted score-level or rank-level fusion
based baseline, while simultaneously providing a consequential com-
putational workload reduction in terms of penetration rate. Lastly, it
is worth noting that the proposed system could be flexibly employed
in any multi-biometric identification system, irrespective of the chosen
types of biometric characteristics and the encoding of their extracted
features.

Addressed research question(s): RQ1, RQ3, RQ4
Reference: DROZDOWSKI, P., RATHGEB, C., MOKROSS, B.-A., AND BUSCH,
C. Multi-biometric identification with cascading database filtering. Trans-
actions on Biometrics, Behavior, and Identity Science (TBIOM), (March 2020),
1–14.

10.1 Introduction

Various market value studies (see e.g. [5, 54, 78]) evince the rapid growth of
interest and investment in biometric technologies. Biometrics are being used
by various governmental organisations around the world for purposes such
as law enforcement and forensic investigations (see e.g. [26, 28, 56]), border
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control (see e.g. [24, 25, 29, 60]), national ID systems (see e.g. [12, 81]), as well
as during elections for voter registration (see e.g. [8, 11]). The largest of such
deployments to date is located in India, where the Unique Identification
Authority of India operates a national ID system (Aadhaar) which accom-
modates, at the time of this writing, almost 1.3 billion enrolled subjects (see
e.g. the online dashboard [80]). Additionally, the prevalence and computing
power of mobile devices (especially smartphones) has been steadily increas-
ing. Together with the advances in embeddable high-quality sensors, those
trends have sparked interest in (single and multi modal) mobile biometrics,
which has become an active area of research and product development (see
e.g. [4, 15, 32, 33, 71]).

With the aforementioned increase of the popularity and sizes of biomet-
ric systems in the governmental and commercial sectors alike, it is important
to develop technologies which facilitate accurate and efficient processing of
large amounts of biometric data. In particular, guaranteeing practical sys-
tem response times by means of algorithmic solutions, rather than merely
the scaling of the hardware architecture is of utmost interest. Those consid-
erations are especially important for biometric identification (and duplicate
enrolment check) scenarios, where the conventional biometric systems typi-
cally conduct an exhaustive search (entailing one-to-many comparison) to
identify the biometric probes. Daugman, the pioneer of iris recognition,
stated (in a recent interview) that performing accurate and efficient bio-
metric identification (i.e. without an exhaustive search) is one of the most
important, unsolved issues in biometrics in general. From the governmen-
tal side there exists a strong interest for computationally efficient biomet-
ric algorithms, as evidenced by multiple competitions and benchmarks (e.g.
1:N Evaluation under Face Recognition Vendor Test (FRVT) [57], one-to-
many evaluations under Iris Exchange (IREX) [58], and Biometric Technol-
ogy Rally [9]).

In recent years, a significant research effort has been devoted to address-
ing this topic by developing methods for computational workload reduc-
tion in biometric systems (see subsection 10.2.2 and a recent survey of Droz-
dowski et al. [20] for more details). The contribution of this work in this
context is a proposal of an information fusion scheme, as well as an exper-
imental evaluation thereof on a large compound dataset in the biometric
open-set identification scenario. The scheme is based on a successive filter-
ing of candidate shortlists coupled with information fusion on score level.
It is shown that the proposed scheme increases the biometric performance
w.r.t. the weighted score-level or rank-level fusion based baseline by an or-
der of magnitude, while simultaneously significantly reducing the compu-
tational workload (in terms of penetration rate) of the biometric identifica-
tion transactions. In related works, several authors utilised dimensionality
reduction and/or binarisation to create short-length templates, which are

178



10.2 BACKGROUND AND RELATED WORK

used to pre-filter the enrolment database in a two-stage framework (see e.g.
Gentile et al. [30], Billeb et al. [6], and Pflug et al. [62]), whereas Drozdowski
et al. [21] used biometric image morphing in a similar manner. All of those
methods considered single-modal systems. A decision-based cascade oper-
ating on the principle of sequential fusion of fingerprint and iris recognition
systems was presented by Elhoseny et al. [23]. Lastly, database pre-filtering
based on demographic and geographic metadata is a known and widely
used method of searching in large-scale databases (see e.g. Gehrmann et al.
[27]). Soft biometrics (see e.g. Dantcheva et al. [14]) can also be used in an
analogous manner. Best to the authors’ knowledge, previous research has
not considered a multi-modal fusion utilised in a cascading manner for the
simultaneous purpose of computational workload reduction and biometric
performance improvement.

The remainder of this article is organised as follows: section 10.2 pro-
vides a background overview of the two relevant related work areas – bio-
metric information fusion and computational workload reduction. In sec-
tion 10.3, the proposed system is described. The details of the experimental
setup are outlined in section 10.4, while the results of the experiments are
presented in section 10.5 and discussed in section 10.6. A summary and
concluding remarks are given in section 10.7.

10.2 Background and Related Work

In this section, relevant background information and related work w.r.t. the
two main topics of this article are outlined. Specifically, subsection 10.2.1
addresses biometric information fusion, while subsection 10.2.2 deals with
computational workload reduction in biometric systems. Furthermore, the
scope of this article and the proposed system is demonstrated within the
overall overview of those research areas.

10.2.1 Biometric Information Fusion

One of the key goals of biometric information fusion is to increase the over-
all discriminative power of a biometric recognition system. Systems where
biometric information fusion is utilised are referred to as multi-biometric
systems. In such systems, multiple information sources are considered and
combined (fused) with each other. In the context of biometrics, following
main fusion categories can be distinguished (see e.g. Ross et al. [72] and
ISO/IEC TR 24722 [42]):

Multi-type Information from multiple biometric characteristics (e.g. face and
fingerprint) is used.

179



10. MULTI-BIOMETRIC IDENTIFICATION WITH CASCADING
DATABASE FILTERING

Multi-sensorial Biometric data is acquired using several complementary
sensors (e.g. visible wavelength and near-infrared camera).

Multi-algorithm Biometric samples are processed using multiple comple-
mentary algorithms (e.g. texture and keypoint based image descriptors
for feature extraction and/or different concepts for comparison).

Multi-instance Information from multiple instances of the same character-
istic is used (e.g. left and right iris).

Multi-sample Multiple samples (acquisitions) of the same characteristic are
used (e.g. for sample quality assurance or detection of reliable regions).

The system proposed in this article pertains to the first scenario. Specifi-
cally, three types of biometric characteristics are chosen and are subsequently
used in a pre-filtering and fusion scheme. In addition to the coarse cate-
gories above, several levels of the biometric processing pipeline can be dis-
tinguished where information fusion can be performed (see e.g. Ross et al.
[72]):

Sensor Information from multiple sensors or multiple samples (e.g. on the
pixel level for images or phase level for audio/video signals) is com-
bined prior to any other processing steps. See e.g. Jain et al. [45] and
Kusuma et al. [52].

Feature Information from multiple extracted feature sets is consolidated.
The data could come from the same biometric characteristic (e.g. mul-
tiple, complementary feature extractors are used) or different biomet-
ric characteristics (e.g. a common feature representation is used for the
fusion). See e.g. Kanhangad et al. [47] and Yan et al. [84].

Score The comparison scores acquired from multiple information channels
are combined (e.g. summed or averaged). Depending on the used bio-
metric comparators, this often requires normalisation of the scores to
a common domain. See e.g. Snelick et al. [76] and Jain et al. [46].

Rank First, the ranks (order) of potential matches of a probe against an en-
rolment database are established. Subsequently, heuristics (e.g. choos-
ing the best rank or majority vote) are used to consolidate the informa-
tion from multiple systems. See e.g. Abaza et al. [2] and Kumar et al.
[50].

Decision The decisions (i.e. accept/reject) reached by multiple systems are
combined using heuristics (e.g. majority voting or statistics-based rule-
sets). See e.g. Prabhakar et al. [63] and Paul et al. [59].
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In the context of this work, information fusion on score and rank level
is of most interest. This is partially because score-level fusion is amongst
the most popular and best performing of the aforementioned methods (see
Ross et al. [72]), and partially because the proposed system (see section 10.3)
is designed to work at those levels of the biometric pipeline, i.e. irrespective
of the chosen biometric characteristics, acquisition methods, and feature ex-
traction algorithms.

Several extensive works and surveys on the topic of biometric informa-
tion fusion have been published in the scientific literature. The interested
reader is therefore referred to e.g. Ross et al. [72] for a comprehensive general
introduction to this topic, Jain et al. [46] and Snelick et al. [76] for score-level
fusion specifically, as well as Radu et al. [66], Dinca et al. [18], and ISO/IEC
TR 24722 [42] for more recent works concerning the overall topic of biomet-
ric information fusion.

10.2.2 Computational Workload Reduction

There exists a broad variety of ways in which biometric systems can oper-
ate. The main two of them (quoted directly from the ISO/IEC international
standards [41, 42, 43]) are:

Biometric verification Referring to the “process of confirming a biometric
claim through biometric comparison”.

Biometric identification Referring to the “process of searching against a
biometric enrolment database to find and return the biometric refer-
ence identifier(s) attributable to a single individual”.

In the context of biometric identification, two main scenarios can be dis-
tinguished, namely closed-set identification, where it is known that the enrol-
ment database contains all the potential system users as data subjects, and
open-set identification, where it is possible that some potential users (impos-
tors) are not enrolled in the system.

Open-set biometric identification, which is, arguably, the most challeng-
ing from the practical point of view, is the focus of this article. Due to the
necessity of protecting against impostors not enrolled with the system, as
well as the lack of an identity claim during a transaction, in the worst case
an exhaustive search (i.e. comparisons between the probe and the entire en-
rolment database) is required in order to make a decision. Unfortunately,
two non-trivial problems are quickly encountered by this naı̈ve approach:

Computational costs With an increasing size of the enrolment database, the
response times become proportionally slower, hence requiring hard-
ware investment and/or software optimisations to facilitate the grow-
ing number of the data subjects.
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False positives costs Daugman [16] has pointed to a demanding relation-
ship facing biometric identification systems:

PN = 1− (1− P1)
N (10.1)

This equation denotes the probability (PN ) of at least one false positive
occurrence in an identification transaction within a system which com-
prises N enrolled users and has a P1 false positive probability of a one-
to-one template comparison. Even when P1 is very low (i.e. the system
would exhibit good biometric performance in verification mode), PN

raises very quickly to unacceptable levels as N increases1.

Since the overall computational costs in a biometric identification sce-
nario are dominated by performing the biometric comparisons (see e.g. Droz-
dowski et al. [20]), most computational workload reduction approaches are
aimed at that step in the system pipeline. It should be noted, that due to
certain properties of biometric data (i.e. lack of inherent ordering, within-
subject variability, and high dimensionality), many traditional approaches
(such as normal database indexing) are often unsuitable or perform poorly
(see Hao et al. [37]). Therefore, approaches specifically tailored to those
properties have been developed. In particular, two main approach classes
can be distinguished:

Pre-selection Approaches in this category concentrate on reduction of the
potential search space, i.e. the number of necessary template compar-
isons (penetration rate) during a biometric identification transaction.
Three principal sub-categories can be distinguished here:

Pre-filtering Multiple algorithms or feature representations are used.
The idea is to first use computationally efficient (but somewhat
inaccurate) methods to create a candidate shortlist, whereupon a
computationally expensive (but accurate) method is used on this
small, pre-filtered subset of the database (see e.g. Ratha et al. [67],
Gentile et al. [30], and Billeb et al. [6]).

Binning The database is split into distinct bins/partitions based on
some coarse auxiliary features. Examples include metadata (such
as demographic and geographic attributes, see e.g. Gehrmann et al.
[27]) or biometric characteristic specific features, such as finger-
print classes (see e.g. Drozdowski et al. [19]). During a biometric

1Although this equation ignores other system errors, such as the failure-to-acquire rate and
also assumes that at a given threshold all subjects have the same false-match-rate (which likely
is not the case), it nonetheless is a useful approximation through which the challenges of the
biometric identification systems can be illustrated quantitatively.
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identification only the bins corresponding to the sample are con-
sidered, thereby reducing the search space. As an alternative to
such handcrafted features, unsupervised clustering can also used
(see e.g. Ross et al. [73] and Pflug et al. [61]).

Datastructures The enrolment database is reorganised to take advan-
tage of efficient ordering principles, for example based on search
trees (see e.g. Proença [64] and Rathgeb et al. [68]) or fuzzy hash-
ing (see e.g. Cappelli et al. [10] and Kaushik et al. [48]), thereby
enabling sub-linear/logarithmic search time.

Feature transformation Approaches in this category concentrate on reduc-
ing the computational cost of the individual template comparisons.
Typical approaches in this category accomplish this by reducing the
dimensionality of the biometric templates by extracting the most dis-
criminative parts (see e.g. Gentile et al. [31] and Rathgeb et al. [70]),
utilising more efficient comparators such as integer/bit-based instead
of float-based (see e.g. Lim et al. [53] and Drozdowski et al. [22]), or
providing sample alignment invariance (see e.g. Rathgeb et al. [69] and
Damer et al. [13]).

An exhaustive survey of this research area is out of scope for this article –
for more details, the interested reader is referred to other works on this topic.
Specifically, in a recently published work of Drozdowski et al. [20], a biomet-
ric characteristic-agnostic, concept-based taxonomy of computational work-
load reduction approaches in biometrics has been proposed. Additionally,
the authors conducted a comprehensive survey of computational workload
reduction in biometric identification systems in the context of said taxon-
omy. For biometric characteristic-specific works, surveys by Schuch [75]
(fingerprint), Proença et al. [65] (iris), and Kavati et al. [49] (fingerprint, face,
iris) are of interest.

In the context of the above categories of computational workload re-
duction approaches, the pre-selection (more specifically, pre-filtering) one
is most relevant to this work. This is because, as previously mentioned, this
article presents (see section 10.3) a method which relies on a successive can-
didate shortlist filtering, and works irrespective of the chosen type of bio-
metric characteristics and their feature representations, thereby precluding
any approaches which rely on specific feature transformations.

10.3 Proposed System

Consider a biometric enrolment database with references of N data subjects
for K different biometric modalities (i.e. types of biometric characteristics).
A standard approach for a biometric identification transaction would be to
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Figure 10.1: Overview of the proposed system

conduct the comparisons (C) exhaustively (i.e. #Cbaseline = K · N compar-
isons) for all the modalities and to fuse the scores using one of the traditional
strategies (such as score or rank level fusion) described in subsection 10.2.1.
This approach will serve as a baseline later on in the experiments. Here,
an alternative method is proposed with the aim of improving the biometric
performance and reducing the computational workload.

The conceptual overview of the proposed system (for K = 3) is shown in
figure 10.1. On the biometric database side, the stored modalities are given a
specific order (see subsection 10.3.2 and section 10.5 for more details on the
ordering of the chosen types of biometric characteristics). The key idea is to
successively filter the list of potential candidates based on the comparisons
within the individual modalities, thus creating a multi-stage (K-stage), cas-
cading filtering system. In the illustrated example, a biometric identification
transaction would proceed as follows:

1. Features are extracted for each of the probe sample of each biometric
type (i.e. modality).

2. Modality 1 (face) probe is compared exhaustively (N comparisons)
against the enrolment database. Based on the sorted comparison scores,
a certain fraction (denoted s2) of the most promising candidates (a can-
didate shortlist) is passed onto the next level.

3. Modality 2 (fingerprint) probe is compared against the (s2 · N ) most
promising candidates. A fraction of those (s3) is then passed onto the
last level.

4. Modality 3 (fingervein) probe is compared against the (s2 ·s3 ·N ) most
promising candidates to reach the final identification decision.
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The types of biometric characteristics (face, fingerprint, and fingervein)
were chosen based on the criteria that the three types be not correlated, that
they are widely deployed (in various operational systems), and exhibit de-
sirable properties w.r.t. presentation attack detection (the latter especially
concerning the fingervein). However, it should be noted that the system
is not in any way reliant on those specific characteristics or this particular
ordering thereof – the system design is applicable irrespective of the partici-
pating biometric characteristics and their feature representations. The order
of the characteristics in the cascade is also flexible – more on this topic in
subsection 10.3.2 and the experimental evaluation in section 10.5.

The sizes of the candidate lists passed between the levels of the cascade
(values in si) are estimated empirically in a training step, see subsection
10.3.1 for more details. Since at the first level the whole database is used for
the comparisons, s1 would equal 1.0 and is not depicted in figure 10.1. The
theoretical impact of the proposed system on the biometric performance and
computational workload is described in subsection 10.3.2.

10.3.1 Shortlist Size Estimation

For each considered type of biometric characteristic, a tolerable pre-selection
margin of error in terms of false negative identification rate is determined.
This margin is denoted as ε ∈ [0% . . . 100%] and can be set arbitrarily low or
high by the system operator depending on the system policy. The extreme
values are unlikely in a practical scenario and are listed for the purposes of
the mathematical definition only. This parameter is used for the purpose
of shortlist size estimation for the pre-selection algorithm described in the
previous subsection. The goal is to find the minimum fraction (denoted s)
of candidate identities to pass between two levels of the cascade, so that the
selected tolerable margin of error is not violated. Estimating s for a biomet-
ric type happens in a dedicated training step on a disjoint dataset, where a
closed-set identification experiment is carried out and a cumulative match
characteristic (CMC) curve is computed. Using the CMC curve, one first
needs to calculate the minimum rank (r), so that IR ≥ 100% − ε; then, r
is expressed relative to the size (Ntrain) of the training enrolment database
(Etrain ). An abstract, formal description of this concept is given in algorithm
10.1.

For a concrete example of the concept, see figure 10.2. There, a CMC
curve for an example system (purely for illustrative purposes; the chosen
type of biometric characteristic does not matter in this case) with 30 en-
rollees has been computed. Two operational points (with different ε values)
are considered, expressing different system policies: a liberal one, wherein
some pre-selection (false negative) errors are acceptable (depicted with the
orange line), and a stringent one, which seeks to minimise pre-selection er-
rors (depicted with the blue line). Consequently, in the case of the ε = 1%
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Algorithm 10.1: Shortlist size estimation
Input: Etrain , ε
Output: sε

1: CMC ← COMPUTECMC(Etrain)
2: rε ← min {r ∈ {1 . . . N} | CMC (r) ≥ 100− ε}
3: Ntrain ← LENGTH(Etrain)
4: sε ← rε

Ntrain

5: return sε
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Figure 10.2: Determining sε based on a training CMC curve and ε

policy, the lowest rank satisfying the IR constraint (see line 2 in algorithm
10.1) is 9, meaning that the candidate shortlist passed onto the next level
would be around sε=1% = 9

30 = 30% of the enrolment database. On the
other hand, for the ε = 0% policy, the constraint is satisfied only at rank
27, thus making the passed candidate shortlist sε=0% = 27

30 = 90% of the
enrolment database.

Thus, for each considered modality and ε, a theoretically optimal candi-
date shortlist size, expressed as a fraction of the enrolment database (s, s ∈
{x ∈ R | 0.0 < x ≤ 1.0}), can be ascertained w.r.t. the system policy. A multi-
stage system with K modalities would then have Sε = [s1 . . . sK ] shortlist
sizes, with s1 always equal to 1.0. Generally, more liberal (i.e. higher) values
of ε mean smaller candidate shortlists (i.e. lower penetration rate), but in-
creased potential of pre-selection (false negative) errors. On the other hand,
the reduction of penetration rate contributes to reducing the false positive
error rate. This is because the reduction in penetration rate corresponds to
the factor N in equation (10.1) being reduced, i.e. there being fewer poten-
tial comparisons in a biometric identification transaction where an impostor
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could, just by chance, get a better comparison score against a reference in the
enrolment database. Note, that this is true insofar there exists no correlation
between the comparison scores of the biometric characteristics in the sys-
tem, i.e. that they be statistically independent. Certain biometric modalities
can exhibit explicit or hidden symmetries and correlations (see e.g. Gomez-
Barrero et al. [34] and e.g. Kumar et al. [51]). Such correlations have a non-
trivial impact on the biometric performance of information fusion schemes
(see e.g. Ulery et al. [79]). Generally speaking, the utility (in terms of in-
crease of information entropy, see e.g. Adler et al. [3]) of correlated modalities
may be lower than that of uncorrelated ones. Furthermore, specifically for
the proposed scheme, using correlated modalities for the pre-filtering stage
would be counter-productive, as computational workload would have to be
expended on performing the comparisons, but little or no additional infor-
mation would have been gained for the pre-selection of candidates. In other
words, while the proposed scheme technically supports any combination
of biometric modalities by the virtue of operating at the level of comparison
scores, some attention is nevertheless required w.r.t. the choice of the modal-
ities participating in the scheme. Ideally, completely uncorrelated modali-
ties should be used. If correlated modalities are chosen, the results in terms
of biometric performance and computational workload reduction may be
degraded. Therefore, care and awareness is advised w.r.t. the choice of bio-
metric modalities for the proposed scheme. Note, that this caveat of corre-
lated data is also applicable to other existing biometric information fusion
schemes. In this article, three uncorrelated biometric characteristics have
been chosen for the experiments (see subsection 10.4.1).

10.3.2 System Ordering

The modalities participating in the cascade can be ordered arbitrarily – the
number of possible permutations for a system with K modalities is K!.
The ordering is expected to have a non-trivial impact on the computational
workload and biometric performance. If the computational cost of individ-
ual template comparisons is also considered (see section 10.6), the system
ordering has an impact not only on the biometric performance, but also the
overall computational workload. The total number of comparisons in the
proposed system is:

#Cproposed = N +
K∑

k=2

k∏

i=1

si ·N (10.2)

The key idea behind equation (10.2) being that #Cproposed � #Cbaseline,
i.e. reducing the penetration rate of the search. The lower bound of the pen-
etration rate is then p = 1

K + K−1
N , i.e. in the case of a 3-level system the
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minimum penetration rate could be around 33.(3)%. This limit is due to ex-
haustive search always having to be be conducted for the first modality in
the cascade. A potential extension of the proposed system could consider
another scheme of computational workload reduction (e.g. binning) to be
used prior to the first level of the cascade in order to avoid the necessity of
conducting an exhaustive search there.

10.3.3 Combination with Weighted Score-level Fusion

The system proposed in the previous subsections uses the comparison scores
in the shortlist from the final level of the cascade to make a decision. It is,
however, also possible to combine the traditional weighted score-level fu-
sion with the proposed scheme. Specifically, such a combined scheme would
work as follows:

1. Conduct the cascading filtering with K modalities as described in the
previous subsections.

2. Retrieve the identities of the subjects in the candidate shortlist pro-
duced at the last level of the cascade.

3. Retrieve the comparison scores corresponding to the candidate short-
list for the modality at the final level of the cascade and the previous
levels of the cascade.

4. Fuse the scores.

In other words, the database is first filtered to find the most likely can-
didates using the individual modalities in the cascade, whereupon the com-
parison scores (for all the modalities) of the candidates in the shortlist are
fused. In theory, such a system should exhibit a decreased computational
workload, as well as an increased biometric performance. This idea is eval-
uated experimentally in addition to the system proposed in the previous
subsections.

10.4 Experimental Setup

The following subsections outline the details of the experimental setup. The
chosen datasets and processing pipelines are described in subsections 10.4.1
and 10.4.2, respectively. The baseline and proposed system configurations,
as well as the evaluation metrics are described in subsections 10.4.3 and
10.4.4.
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10.4.1 Datasets

The research conducted in this paper is aimed at cooperative systems, i.e.
ones where biometric samples of reasonably good quality can be expected.
Hence, in-the-wild, large time-scale, and occluded facial datasets (or parts
thereof), as well as latent fingerprint datasets were not considered. Since
none large-scale multi-modal datasets were available to the authors, it was
decided to create a virtual dataset from existing single-modal ones.

While there exist several datasets with very large numbers of biometric
samples, their size in terms of data subjects is typically much smaller. As
such, several facial and fingervein datasets had to be considered in order to
obtain a suitable number of data subjects. For the fingerprint and fingervein
datasets, the individual instances (fingers) are not correlated and can there-
fore be treated as separate subjects.

(a) FERET (b) FRGC (c) ARFace (d) FEI

(e) BioSecure (f) PEAL (g) CASIA (h) MCYT

(i) UTFVP (j) IDIAP (k) PolyU

(l) SCUT-FV (m) FV-USM (n) SDUMLA

Figure 10.3: Example images from the selected datasets

The fingerprint database was used directly without any filtering. For the
facial datasets, frontal images without intentional occlusions (e.g. scarves or
sunglasses) were chosen, while some images with exceedingly poor quality

189



10. MULTI-BIOMETRIC IDENTIFICATION WITH CASCADING
DATABASE FILTERING

were removed from the fingervein and facial datasets (to facilitate repro-
ducible research, the lists of chosen images and other experimental setup
details will be made available online after this article is accepted for publi-
cation). It should be noted that the facial and especially fingervein data is
extremely inhomogeneous across the chosen datasets. The images were ac-
quired using different cameras/sensors, under varying lighting conditions,
and the images have been saved in several distinct resolutions. The cho-
sen datasets are listed in table 10.1 (the numbers given in the table are after
the filtering was applied). Example images from the datasets are shown in
figure 10.3.

Table 10.1: Used datasets

Characteristic Dataset Instances Samples

Face FERET 994 2,716
FRGC 453 2,754
ARFace 136 1,526
FEI 200 600
BioSecure 210 840
PEAL 429 3,274
CASIA 725 3,072

Fingerprint MCYT 3,300 39,600

Fingervein UTFVP 360 1,440
IDIAP 220 440
PolyU 312 3,132
SCUT-FV 600 3,600
FV-USM 492 5,904
SDUMLA 636 3,816

Following the selection, the datasets of the same biometric characteris-
tic have been merged and a compound dataset was constructed. This was
done by repeatedly (ten times) shuffling the instances and samples from
the original datasets to construct new chimeric instances. The ten copies
of the dataset enable a tenfold cross-validation in the experimental evalua-
tion. Each of the copies consists of 2,500 instances and approximately 15,000
samples (depending on availability, since different datasets contain different
number of samples per instance). Finally, the resulting compound dataset
has been split into two partitions:

Training Consists of 1,000 instances. Used for computing CMC curves in a
closed-set identification scenario to approximate the appropriate short-
list sizes for each modality. Additionally used for computing informa-
tion necessary for comparison score normalisation.
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Testing Consists of 1,500 instances. Used for evaluating the baselines (for
each modality individually and for several popular information fu-
sion schemes) and the proposed system in an open-set identification
scenario.

10.4.2 Processing Pipelines

The images were processed using exclusively open-source frameworks. While
commercial frameworks may have offered a better or even errorless bio-
metric performance on the dataset used in the experiments (see subsection
10.4.1), facilitating reproducible research has been deemed a higher prior-
ity, hence favouring the open-source frameworks. Furthermore, it has been
shown both theoretically and in practice (see e.g. Daugman et al. [17] and
Grother et al. [35]), that the biometric performance in the identification sce-
nario decreases with the growing size of the enrolment database. In other
words, in large-scale systems, optimal biometric performance is not to be
expected, even from the commercial systems. Lastly, to evaluate the pro-
posed fusion methods, the key metric is the relative biometric performance
gain/loss w.r.t. to a baseline and not the absolute biometric performance
achieved. Following tools and frameworks were used to extract features
from the images and compare the resulting templates:

Face A neural-network based approach is used. Specifically, the FaceNet
CNN of Schroff et al. [74] is used with a pre-trained model made avail-
able by the authors2. The network learns to map facial images to Eu-
clidean space, whereby the produced templates (embeddings) can be
directly compared using Euclidean distance.

Fingerprint The features (minutiae triplets, i.e. 2-D location and angle) are
extracted using a neural-network based approach. In particular, the
FingerNet CNN of Tang et al. [77] is used with a pre-trained model
made available by the authors3. To compare such templates, a minu-
tiae pairing and scoring algorithm of the sourceAFIS system of Važan
[82] is used4.

Fingervein A minutiae based approach is used. Specifically, the maximum
curvature algorithm of Miura et al. [55] is used to extract the skeleton
of the fingervein patterns, which is subsequently thinned using the

2https://github.com/davidsandberg/facenet
3https://github.com/felixTY/FingerNet
4The original algorithm uses minutiae quadruplets, i.e. additionally considers the minutiae

type (e.g. ridge ending or bifurcation). Since minutiae triplets are extracted by FingerNet, the
algorithm has been modified to ignore the type information. Using FingerNet instead of the na-
tive minutiae extractor provided by sourceAFIS is preferred, as it has yielded higher biometric
performance.
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method presented by Guo et al. [36]. The minutiae are retrieved from
the vein skeleton with a convolution kernel proposed by Olsen et al.
[1]. Lastly, using the method of Xu et al. [83] and Hartung et al. [38, 39],
the variable-sized minutiae vector is translated into the Spectral Minu-
tiae Representation (SMR), which is fixed-length and additionally of-
fers certain implicit rotation and scaling invariance. Such templates
can be compared using a simple correlation measure (likewise pre-
sented in [83]), which is a common approach in image processing.

Table 10.2 summarises the information about the utilised data processing
pipelines.

Table 10.2: Data processing pipelines

Characteristic Extraction Representation Size Comparison

Face FaceNet 1-D embedding 512 floats Euclidean distance
Fingerprint FingerNet Minutiae triplets set Variable Minutiae pairing
Fingervein Spectral minutiae 2-D matrix 256×128 floats Correlation

For the biometric fusion, two scenarios were considered (see e.g. Jain et al.
[46], Snelick et al. [76], and Ho et al. [40] for details):

Score level The scores were normalised using Z-score method, which is one
of the most commonly used score normalisation methods and relies on
the arithmetic mean and standard deviation of the scores data. This
method is expected to perform well when prior knowledge about the
score distributions is available – which is the case in this experimen-
tal setup (see subsection 10.4.1). Subsequently, the normalised scores
were fused with a sum-rule method (using those methods, very good
biometric performance has been observed in general, see e.g. Jain et al.
[44] and ISO/IEC TR 24722 [42]).

Rank level A Borda count based method (see Black [7]), which is a group
consensus function and a generalisation of the majority vote, was used.
The method relies on summing the ranks assigned to the probe-reference
pairs based on the comparison scores during a biometric identification
transaction and requires no prior training.

In both cases, a weighted variant was also included, whereby the indi-
vidual types of biometric characteristics are assigned relative weights, which
are multiplied with the normalised scores prior to the fusion. The opti-
mal weights’ combinations were estimated experimentally (see subsection
10.4.3).
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10.4.3 Baseline and Proposed System Configurations

To establish the baseline, against which the results of the proposed methods
can be benchmarked, the following experiments were conducted on the test-
ing subset of the compound dataset in an open-set identification scenario:

• Each of the 3 modalities individually.

• Weighted score-level and rank-level fusion (see subsection 10.4.2) of
all possible combinations of 2 modalities and of all 3 modalities.

Pairs of weights in the interval [0.05 . . . 0.95] with a step size of 0.05 were
considered for the score and rank level fusion, thus yielding a total of 19 and
171 weights combinations for the fusion of 2 and 3 modalities, respectively.

Two versions of the proposed system were evaluated:

• Cascading filtering.

• Cascading filtering + weighted score-level fusion with a sum-rule.

For the second item above, same combinations of weights as in the base-
line were used. Furthermore, all possible orderings of the modalities in
the cascade were evaluated. All the experiments with the baseline and the
proposed system were conducted using a tenfold cross-validation, as men-
tioned in subsection 10.4.1. Table 10.3 lists the number of configurations in
each of the experiment types.

Table 10.3: Configurations per experiment

Experiment Modalities Orderings Weights Epsilons Total

Individual baseline 1 3 — — 3
Weighted fusion baseline 2 1 19 — 19
Weighted fusion baseline 3 1 171 — 171
Cascading filtering 2 6 — 7 42
Cascading filtering 3 6 — 7 42
Cascading filtering + weighted score fusion 2 6 19 7 798
Cascading filtering + weighted score fusion 3 6 171 7 7,182

10.4.4 Evaluation Metrics

The systems were evaluated on two key aspects, using ISO/IEC standard
methods and metrics [41] as well as additional, commonly used ones:

Biometric performance DET curves, equal-error-rate (EER), and false neg-
ative identification rate at a certain (here 0.1%) false positive identi-
fication rate (denoted FPIR0.1). Additionally, the decidability index
over the genuine and impostor score distributions (defined as: d′ =
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Figure 10.4: Baseline results
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Table 10.4: Baseline results (with 95% CI)

Method Modality PR τ EER (in %) FPIR0.1 (in %) d’

Individual FA 1.000 22.240 ± 0.773 6.648 ± 0.473 22.216 ± 0.583 3.153 ± 0.079
FP 1.000 47.234 ± 3.435 2.864 ± 0.238 47.202 ± 2.592 3.638 ± 0.066
FV 1.000 29.204 ± 0.401 11.958 ± 0.508 29.186 ± 0.302 2.218 ± 0.044

Rank fusion FA+FP 1.000 2.784 ± 0.373 1.491 ± 0.199 2.594 ± 0.300 2.540 ± 0.038
FA+FV 1.000 6.360 ± 0.544 3.081 ± 0.250 6.280 ± 0.416 2.404 ± 0.047
FP+FV 1.000 6.332 ± 0.501 3.212 ± 0.314 6.252 ± 0.383 2.478 ± 0.034
FA+FP+FV 1.000 3.127 ± 0.374 1.862 ± 0.200 2.960 ± 0.297 3.502 ± 0.059

Score fusion FA+FP 1.000 25.340 ± 2.157 0.959 ± 0.152 25.253 ± 1.632 4.561 ± 0.082
FA+FV 1.000 17.830 ± 0.336 5.049 ± 0.303 17.802 ± 0.254 3.033 ± 0.053
FP+FV 1.000 14.587 ± 1.347 0.732 ± 0.092 14.430 ± 1.026 4.267 ± 0.048
FA+FP+FV 1.000 5.615 ± 0.481 0.379 ± 0.112 5.295 ± 0.382 4.851 ± 0.054

Rank fusion weighted FA(0.55)+FP(0.45) 1.000 2.743 ± 0.393 1.582 ± 0.195 2.550 ± 0.317 2.540 ± 0.039
FA(0.40)+FV(0.60) 1.000 6.153 ± 0.573 3.342 ± 0.265 6.070 ± 0.438 2.391 ± 0.051
FP(0.70)+FV(0.30) 1.000 5.970 ± 0.835 2.921 ± 0.294 5.884 ± 0.640 2.510 ± 0.043
FA(0.40)+FP(0.55)+FV(0.05) 1.000 2.349 ± 0.303 1.564 ± 0.117 2.121 ± 0.254 3.532 ± 0.049

Score fusion weighted FA(0.80)+FP(0.20) 1.000 5.107 ± 0.574 0.992 ± 0.146 4.901 ± 0.440 4.739 ± 0.079
FA(0.80)+FV(0.20) 1.000 10.511 ± 0.309 3.311 ± 0.367 10.459 ± 0.234 3.632 ± 0.072
FP(0.30)+FV(0.70) 1.000 8.533 ± 0.394 1.704 ± 0.103 8.459 ± 0.299 3.541 ± 0.049
FA(0.55)+FP(0.20)+FV(0.25) 1.000 1.986 ± 0.160 0.324 ± 0.063 1.504 ± 0.136 4.985 ± 0.063

|µg−µi|√
1
2 (σ

2
g+σ2

i )
, where µ and σ stand for the means and standard devia-

tions of the genuine and impostor score distributions, respectively) is
reported.

Computational workload Penetration rate (PR), i.e. the number of the pre-
selected candidate templates as a fraction of the total number of tem-
plates in the enrolment database.

Additionally, a metric which brings the two aspects together (adapted
from Proença et al. [65]) is used. The metric (τ ) calculates the Euclidean
distance from the optimal operating point (i.e. FPIR0.1 = 0 and PR ≈ 0) and

is defined as follows: τ =
√
(FPIR0.1)2 + PR2.

10.5 Results

In this section, the experimental results are presented. First, in subsection
10.5.1, the baseline is established. Subsequently, subsection 10.5.2 shows the
empirical shortlist sizes estimation for the proposed system, while its results
are presented in subsection 10.5.3. All the tables and figures in this section
use a short notation for the biometric characteristics: FA (face), FP (finger-
print), and FV (fingervein). For the weighted fusion variants, the relative
weights are written in parentheses immediately following their correspond-
ing biometric characteristics.

10.5.1 Baseline

The results of the baseline experiments are shown in figure 10.4 and table
10.4. All possible combinations of modalities are shown; whereas for the
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weighted scenario, the results of the configuration with the lowest FPIR0.1
value for each modality combination are given. Looking at the baseline re-
sults, following conclusions can be reached:

• The biometric performance of the individual modalities is only moder-
ate. This is to be expected due to open-source tools being used, as well
as the high degree of homogeneity and sometimes poor quality of the
facial and fingervein data. However, it is also demonstrated that the
biometric performance can be improved to useful levels by applying
information fusion.

• The score-level fusion performs better than the rank-level fusion.

• The results can be further improved by applying relative weighting
of the modalities. This is especially the case in terms of FPIR0.1 for
the score-level fusion and less so for the rank-level fusion. It should
be noted that the exact optimal weights are only pertinent for a par-
ticular experimental setup (i.e. the specific databases, algorithms, etc.)
and should not be used to reach general conclusions about weighted
biometric fusion.

• The biometric performance in terms of EER of the best combination of
2 modalities and weights is around 1%, whereas using all 3 modalities
reduces the EER down to around 0.35%. However, it should be noted
that the FPIR0.1 is relatively high in both cases – around 5% and 1.5%
for 2 and 3 modalities, respectively.

• Since the baseline setup relies on an exhaustive search method, the
penetration rate is 1.0 and τ depends solely on the values of FPIR0.1.

10.5.2 Shortlist Size Estimation

To estimate the shortlist sizes, the methodology outlined in subsection 10.3.1
is followed. Accordingly, CMC curves are computed on the training parti-
tion of the dataset and then used to estimate the shortlist size for several ε
values. In figure 10.5, the CMC curves are shown, along with the relation
between the ε value and the shortlist size. It can be seen, that relatively high
identification rate is achieved at very low ranks; however, it takes a while
before 100% is reached, especially for the fingerprint and fingervein modal-
ities. It should be noted, that those CMC curves do not provide a general
statement w.r.t. to the relative strength of the chosen types of biometric char-
acteristics; they merely provide a benchmark and overview relevant to the
particular experimental setup (i.e. the specific databases, algorithms, etc.)
used in this work.
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Figure 10.5: Estimation of the shortlist sizes

10.5.3 Proposed

The results of the experiments with the proposed system are shown in figure
10.6 and table 10.5. All possible modality combinations and orderings are
shown; whereas for the weighted scenario, the results of the configuration
with the lowest τ value for each modality combination and ordering are
given. Looking at the results of the proposed system, following conclusions
can be reached:

• Using the proposed technique alone improves the biometric perfor-
mance for 2 modalities. For 3 modalities, a relatively good biometric
performance is reached, albeit it is somewhat lower than the baseline.

• By combining the proposed technique with a weighted score-level fu-
sion, the biometric performance is significantly improved (by an order
of magnitude in some cases, cf. table 10.6). The best baseline weighted
score-level fusion configuration achieves approximately 0.992% and
0.324% EER for 2 and 3 modalities, respectively. The best configu-
ration of the proposed scheme achieves approximately 0.254% and
0.109% EER for 2 and 3 modalities, respectively. Even more significant
improvements can be seen in the higher security region of the error
curves. The best baseline weighted score-level fusion configuration
achieves approximately 4.901% and 1.504% FPIR0.1 for 2 and 3 modal-
ities, respectively. The best configuration of the proposed scheme achieves
approximately 0.333% and 0.125%. It should be noted that the exact
optimal weights are only pertinent for a particular experimental setup
(i.e. the specific databases, algorithms, etc.) and should not be used to
reach general conclusions about weighted biometric fusion.
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• In all the cases, the penetration rate (and hence the computational
workload) is significantly reduced – down to 0.545 and 0.388 for 2 and
3 modalities, respectively. Those results are close to the theoretical
maximum reduction (i.e. down to ∼ 1

K ) for the proposed scheme as de-
scribed in subsection 10.3.2.
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Figure 10.6: Proposed system’s results

10.6 Discussion

This section expands on the discussion items provided directly with the re-
sults in the previous section. Specifically, the results in terms of biometric
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Table 10.5: Proposed system’s results (with 95% CI)

Method Modality ε PR τ EER (in %) FPIR0.1 (in %) d’

Cascading FA+FP 1.0 0.501 2.769 ± 0.602 1.719 ± 0.172 2.721 ± 0.093 4.408 ± 0.093
FA+FV 1.5 0.500 18.015 ± 2.582 6.365 ± 0.446 18.008 ± 0.390 2.777 ± 0.050
FP+FA 1.5 0.501 4.333 ± 1.387 1.983 ± 0.162 4.302 ± 0.210 4.929 ± 0.118
FP+FV 1.5 0.501 17.518 ± 1.622 6.226 ± 0.356 17.511 ± 0.245 2.787 ± 0.044
FV+FA 1.0 0.525 7.252 ± 1.176 4.308 ± 0.348 7.232 ± 0.178 3.747 ± 0.141
FV+FP 1.0 0.525 5.015 ± 0.749 3.816 ± 0.342 4.987 ± 0.114 3.941 ± 0.082
FA+FP+FV 1.0 0.335 10.461 ± 2.695 3.011 ± 0.220 10.456 ± 2.033 3.426 ± 0.054
FA+FV+FP 1.5 0.334 2.652 ± 0.524 1.920 ± 0.177 2.630 ± 0.398 4.513 ± 0.093
FP+FA+FV 1.5 0.334 9.829 ± 1.967 3.069 ± 0.212 9.823 ± 1.484 3.409 ± 0.047
FP+FV+FA 1.0 0.335 3.673 ± 0.990 1.913 ± 0.125 3.657 ± 0.749 4.951 ± 0.098
FV+FA+FP 0.5 0.382 3.017 ± 0.424 2.172 ± 0.215 2.992 ± 0.322 4.444 ± 0.094
FV+FP+FA 0.5 0.386 5.028 ± 0.809 3.269 ± 0.267 5.013 ± 0.611 4.243 ± 0.140

Cascading + score fusion weighted FA(0.70)+FP(0.30) 0.05 0.545 0.648 ± 0.079 0.254 ± 0.051 0.333 ± 0.102 5.702 ± 0.083
FA(0.70)+FV(0.30) 0.05 0.545 2.713 ± 0.770 1.335 ± 0.171 2.654 ± 0.591 4.293 ± 0.076
FP(0.30)+FA(0.70) 0.5 0.541 0.838 ± 0.168 0.509 ± 0.101 0.626 ± 0.159 5.640 ± 0.099
FP(0.30)+FV(0.70) 1.5 0.501 2.440 ± 1.035 1.163 ± 0.144 2.380 ± 0.794 4.415 ± 0.061
FV(0.30)+FA(0.70) 0.1 0.710 2.685 ± 0.742 1.327 ± 0.172 2.583 ± 0.576 4.275 ± 0.080
FV(0.55)+FP(0.45) 0.5 0.573 1.482 ± 0.881 0.832 ± 0.134 1.338 ± 0.697 4.583 ± 0.064
FA(0.60)+FP(0.20)+FV(0.20) 0.05 0.388 0.409 ± 0.012 0.109 ± 0.022 0.125 ± 0.027 6.356 ± 0.076
FA(0.55)+FV(0.20)+FP(0.25) 0.05 0.386 0.407 ± 0.013 0.111 ± 0.027 0.121 ± 0.036 6.522 ± 0.073
FP(0.20)+FA(0.55)+FV(0.25) 0.1 0.537 0.592 ± 0.022 0.215 ± 0.041 0.242 ± 0.042 6.215 ± 0.071
FP(0.25)+FV(0.30)+FA(0.45) 0.1 0.605 0.642 ± 0.020 0.176 ± 0.047 0.204 ± 0.047 6.186 ± 0.077
FV(0.20)+FA(0.60)+FP(0.20) 0.1 0.483 0.553 ± 0.036 0.239 ± 0.065 0.259 ± 0.064 6.243 ± 0.085
FV(0.30)+FP(0.25)+FA(0.45) 0.1 0.554 0.597 ± 0.026 0.185 ± 0.048 0.213 ± 0.053 6.184 ± 0.077

performance and computational workload reduction are addressed in sub-
sections 10.6.1 and 10.6.2, respectively. Lastly, subsection 10.6.3 outlines and
discusses the potential limitations of this work.

10.6.1 Biometric Performance

It appears that the most successful system ordering follows the training
CMC curves, i.e. preferring the type of biometric characteristic with the
highest identification rate at low ranks to be used first. Accordingly, the best
orderings (in terms of the τ metric) in the experiments were Face-Fingerprint
and Face-Fingerprint-Fingervein for 2 and 3 modalities, respectively. In gen-
eral, as has been demonstrated in the previous section, the proposed system
increases the biometric performance when benchmarked against the base-
line. This increase happens both in terms of FPIR0.1, as well as EER. Al-
though the FNIR can be somewhat higher than that of the baseline (cf. fig-
ure 10.7), this happens at values of FPIR which are considered impractical
for operational systems. Those errors occur due to the pre-filtering – if, for
example, at the first level of the cascade a sample of bad quality is filtered
out, the proposed system cannot recover, whereas a score-fusion based sys-
tem might, provided excellent scores for the other modalities. On the other
hand, by the act of pre-filtering the database, the potential for false positives
is decreased (recall subsection 10.3.2), thus yielding better results in terms
of FPIR0.1. In other words, the proposed scheme can be used to increase the
security of biometric identification systems which already employ informa-
tion fusion of multiple biometric modalities.
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10.6.2 Computational Workload Reduction

In addition to the aforementioned biometric performance improvement, the
proposed system has an impact on the computational complexity of a bio-
metric identification transaction. In this context, two scenarios can be dis-
tinguished depending on the cost of template comparisons for the used modal-
ities:

Same cost irrespective of the modality In this case, the computational work-
load depends exclusively on the penetration rate (recall equation (10.2)).
To minimise it, the modalities should be ordered corresponding to the
ascending order of their respective shortlist sizes, i.e. S = {s1 . . . sK |
si ≤ sj , ∀i < j}. The computational workload (W ) of an identifica-
tion transaction in such a setup would be equal to the total number of
comparisons, i.e. W = #Cproposed.

Different cost This case adds an extra factor (wk) in the equations, repre-
senting the cost of the template comparison for the k’th modality, to
be multiplied with the shortlist and enrolment database sizes. To min-
imise the computational workload, the ordering of the system would
be S′ = {s′1 . . . s′K | s′i ∗ wi ≤ s′j ∗ wj , ∀i < j}, and the total com-
putational workload for a biometric identification transaction W =

N · w1 +
∑K

k=2

∏k
i=1 S

′
i ·N · wk.

In this work, exclusively the first scenario was considered, due to the
difficulty of consistently estimating the computational cost of individual
template comparisons (see e.g. Drozdowski et al. [20] for a more detailed
discussion on this topic). The main reason for this are the different feature
representations and comparators across the modalities. One could, in the-
ory, measure the execution time; however, this effectively amounts to mea-
suring the efficiency of the software implementation and/or the underly-
ing hardware architecture. This limited general use notwithstanding, such
experiments would be useful for a specific system implementation (e.g. a
commercial deployment).

Table 10.6: Summary of the results – best configuration for each of the tested
fusion methods (with 95% CI)

Method Modality ε PR τ EER (in %) FPIR0.1 (in %) d’

Rank fusion weighted FA(0.55)+FP(0.45) — 1.000 2.743 ± 0.393 1.582 ± 0.195 2.550 ± 0.317 2.540 ± 0.039
FA(0.40)+FP(0.55)+FV(0.05) — 1.000 2.349 ± 0.303 1.564 ± 0.117 2.121 ± 0.254 3.532 ± 0.049

Score fusion weighted FA(0.80)+FP(0.20) — 1.000 5.107 ± 0.574 0.992 ± 0.146 4.901 ± 0.440 4.739 ± 0.079
FA(0.55)+FP(0.20)+FV(0.25) — 1.000 1.986 ± 0.160 0.324 ± 0.063 1.504 ± 0.136 4.985 ± 0.063

Proposed cascading fusion FA(0.70)+FP(0.30) 0.05 0.545 0.648 ± 0.079 0.254 ± 0.051 0.333 ± 0.102 5.702 ± 0.083
FA(0.60)+FP(0.20)+FV(0.20) 0.05 0.388 0.409 ± 0.012 0.109 ± 0.022 0.125 ± 0.027 6.356 ± 0.076
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Figure 10.7: Summary of the results – best configuration for each of the
tested fusion methods

10.6.3 Limitations

In terms of computational workload reduction, the main limitation of the
proposed system is a hard limit of the potential penetration rate reduction,
as described in subsection 10.3.2. Specifically, the biometric comparisons
need to be conducted exhaustively on the first level of the cascade, thereby
effectively limiting the minimum penetration rate to 1

K , where K is the num-
ber of modalities in the cascade. Indeed, as reported in subsection 10.5.3, the
results of the proposed system closely approach this maximal penetration
rate reduction, while simultaneously improving the biometric performance.
The proposed scheme could, however, be extended by considering another
method of computational workload reduction (e.g. binning) prior to the cas-
cade in order to further reduce the penetration rate and avoid the exhaustive
search at the first level of the cascade.

Another potential limitation is the necessity of the training step, in or-
der to facilitate the shortlist sizes estimation, as well as score normalisation.
This, however, is a common property of many (if not most) effective biomet-
ric information fusion systems.

In terms of a practical implementation, it should be noted that fully par-
allelised computations of the comparison scores across all the cascade lev-
els are not possible. Specifically, while the computations on the individual
cascade levels are, naturally, trivially parallelisable, it is not possible to com-
pute all the cascade levels simultaneously. This is because the computations
at each subsequent level of the cascade need to wait for the completion of
the previous level, i.e. the creation of the candidate shortlist.
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10.7 Summary

This article presented a biometric information fusion-based system which
addresses two of the main challenges associated with biometric identifi-
cation: biometric performance and computational workload. By succes-
sively filtering the candidate lists using the individual modalities and sub-
sequently fusing the remaining comparison scores, the biometric perfor-
mance in the region of the DET curve which is relevant for security sen-
sitive applications, can be significantly improved, while simultaneously re-
ducing the penetration rate (computational workload) of a biometric iden-
tification transaction. The proposed method could be seamlessly integrated
into many operational multi-modal biometric identification systems, as it
is designed to work irrespective of the chosen biometric characteristics or
their respective feature representations, and only requires a straightforward
training step for the purpose of parameter estimation.

A summary of the results (best configurations in terms of τ ) for each of
the fusion methods is shown in figure 10.7 and table 10.6. It can be seen that,
w.r.t. using the weighted score-level or rank-level fusion alone, the proposed
system has the following effects:

Biometric performance is improved in terms of of EER and FPIR0.1 – by an
order of magnitude.

Computational workload is reduced in terms of penetration rate – down to
around 55% and 39% for 2 and 3 modal system, respectively.

Operational flexibility is retained due to lack of dependence on specific
biometric characteristics or template representations.

Future work in this area could consist of, for example, testing the pro-
posed system with an even larger database (albeit those are difficult to come
by in the research context), as well as using commercial off-the-shelf biomet-
ric recognition systems to assess the practicability of the proposed concept
in the context of real biometric applications and operational (not virtual)
datasets.
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Chapter 11

Turning a Vulnerability into an Asset:
Accelerating Facial Identification with

Morphing

Abstract

In recent years, morphing of facial images has arisen as an important
attack vector on biometric systems. Detection of morphed images has
proven challenging for automated systems and human experts alike.
Likewise, in recent years, the importance of efficient (fast) biometric
identification has been emphasised by the rapid rise and growth of large-
scale biometric systems around the world.

In this paper, the aforementioned, hitherto unrelated, topics within
the biometrics domain are combined: the properties of morphed im-
ages are exploited for the purpose of improving the transaction times of
a biometric identification system. Specifically, morphs of two or more
samples are used in the pre-selection step of a two-stage biometric iden-
tification system. In a proof-of-concept experimental evaluation using
two state-of-the-art open-source facial recognition frameworks it is shown,
that the proposed system achieves hit rates comparable to that of an ex-
haustive search-based baseline, while significantly reducing the pene-
tration rate (and thus the computational workload) associated with the
biometric identification transactions.

Addressed research question(s): RQ1, RQ3, RQ4
Reference: DROZDOWSKI, P., RATHGEB, C., AND BUSCH, C. Turning a
vulnerability into an asset: Accelerating facial identification with morphing.
In International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
(May 2019), IEEE, pp. 2582–2586.

11.1 Introduction

In recent years, the interest around biometric technologies has been growing
steadily. This is evidenced by various market value studies (see e.g. [1, 20]),
as well as flourishing deployments of national and international systems for
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purposes of, among others, personal identification, law enforcement, and
facilitating elections (see e.g. [2, 6, 7, 27]).

In this paper, two hitherto unrelated areas of biometric research are com-
bined:

1. Computational workload reduction in biometric identification.

2. Facial image morphing.

Specifically, facial image morphing, a crucial vulnerability of operational
biometric systems is turned into an advantage through which the penetra-
tion rate (computational workload) of biometric identification transactions
can be significantly reduced. This is achieved by employing a two-stage
retrieval approach, which exploits certain properties of morphed facial im-
ages.

The remainder of this paper is organised as follows: section 11.2 intro-
duces the relevant background concepts and the related work. In section
11.3, the proposed system is described and visualised conceptually. Section
11.4 presents the experimental setup and the achieved results, while a sum-
mary and concluding remarks are given in section 11.5.
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Figure 11.1: Proposed system overview (here, n = 2)

11.2 Background and Related Work

In this section, the research fields relevant to this paper are briefly intro-
duced: the operation modes of a biometric system and challenges associated
with biometric identification (subsection 11.2.1), and facial images morph-
ing (subsection 11.2.2).

11.2.1 Operation Modes of a Biometric System

Biometric systems generally operate in one of two modes:

Verification Resolved in a 1:1 comparison between a biometric probe and
the biometric reference of a claimed identity.
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Identification No identity claim is made. Thus, in the worst case, an ex-
haustive linear search is required in order to find a candidate list or to
reach a decision with the rank one on the list.

The second case is obviously more challenging from the practical point
of view. However, the naı̈ve approach of the exhaustive search suffers from
two key issues:

Computational cost The growing number of enrolled subjects, gradually
slows down the response times, which in turn requires investment into
optimisations and/or hardware architecture.

False positives costs The probability of at least one false positive (PN ) oc-
curring in a identification scenario is: PN = 1 − (1 − P1)

N , where
N is the number of enrolled subjects and P1 the false positive prob-
ability of a one-to-one template comparison (see Daugman [3]). This
relationship is very demanding – even for systems which perform ex-
tremely well in verification mode (i.e. have low P1), the value of PN

very quickly becomes unacceptably high, as the number of enrolled
subjects N increases.

Performing accurate and efficient biometric identification (i.e. not by an
exhaustive search) has been stated to be one of the important, unsolved
issues in the biometrics field in general by Daugman, the inventor of iris
recognition in a recent interview [12]. Over time, many approaches have
been developed in this field; for more insights, the reader is referred to sur-
veys by e.g. Proença et al. [22], Schuch et al. [25], and Kavati et al. [15].

11.2.2 Morphing of Facial Images

By using image morphing methods, it is possible to create biometric samples
which contain biometric information from two or more distinct data subjects. The
resulting artificial sample resembles the two (or more) original samples in
the image and feature domain; thus, breaking the unique link between data
subjects and their biometric reference data (i.e. the enrolment record). In
other words, the subjects whose biometric samples were used to create the
morphed image can both be matched (accepted) during subsequent biomet-
ric recognition transactions with the morphed reference image. This vulner-
ability was first introduced by Ferrara et al. [8] (the so-called “magic pass-
port”) and shown to be a feasible attack vector against automated systems
and human experts alike [9]. A typical morphing process includes:

1. Facial landmark detection and triangulation in two or more images.

2. Landmark averaging to a single set of landmarks.
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3. Image warping and alpha blending.

The process is quite simple, and even non-experts can generate realis-
tic looking morphed face images with a variety of inexpensive or even free
software tools. Figure 11.2 shows an example of facial image morphing.

(a) Subject 1 (b) Morph (c) Subject 2

Figure 11.2: Morphing example (from Scherhag et al. [23])

In recent years, significant research effort has been devoted to devel-
opment of methods capable of automatically detecting morphed images.
Among others, methods based on general purpose texture descriptors (e.g.
Scherhag et al. [23]), deep learning (e.g. Seibold et al. [26]), media forensics
(e.g. Hildebrandt et al. [11]), and camera noise (e.g. Debiasi et al. [4]) have
been proposed. For more detailed treatment of morph creation and detec-
tion methods, the reader is referred to a recent survey by Makrushin et al.
[18]. It is not the intention of this paper to develop morphing detection al-
gorithms; instead, the goal is to take advantage of morphing in the context
of a biometric identification system.

11.3 Proposed System

Figure 11.1 shows a conceptual view of the proposed system. Following
symbols are used:

N the number of enrolled subjects.

n the number of samples contributing to a morph.

k the number of morphs in the selected candidate short-list.

The key idea is to perform a fusion of the enrolled samples on image level
through morphing. Each thus created image contains biometric information
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from multiple subjects (recall subsection 11.2.2). The morphed images are
expected to retain enough discriminative power, so that upon retrieval the
comparison score of a biometric against the correct (mated) morphed im-
age will tend to be better than scores against other (non-mated) morphs. It
would then possible to select a candidate short-list based on the compari-
son scores between the biometric probe and the morphs. Hence, a biometric
identification transaction proceeds in a two-stage process (conceptually sim-
ilar to e.g. Gentile et al. [10]):

1. Perform template comparisons between the biometric probe and the
enrolled morphed samples exhaustively. Based on the comparison
scores, pre-select a short-list of the most likely candidates.

2. Within the candidate short-list, perform template comparisons between
the biometric probe and the normal enrolled samples.

In order for the system to reduce the computational workload associated
with an identification transaction, the following relation must be satisfied:
N
n + k ∗ n < N . Figure 11.3 visualises this relation between the parameters
n and k, and the number of necessary comparisons for a biometric identi-
fication transaction for N = 400 subjects. The baseline (exhaustive search),
which is not dependent on those parameters is plotted as a horizontal line
for reference.
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Figure 11.3: Template comparisons per identification transaction

11.4 Experiments

In this section, the experimental setup and the used dataset are described
(subsection 11.4.1), along with the results of the experiments (subsection
11.4.2).
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11.4.1 Experimental Setup

The experiments are conducted using the FERET facial image database [21],
which contains 14126 images from 1199 data subjects (with varying num-
ber of images per subject). Specifically, frontal images compliant with the
ISO/IEC requirements [14] for high quality facial images have been selected,
resulting in a subset consisting of 6963 images from 573 subjects. The mor-
phed images were automatically generated from pairs of images using land-
mark detection by dlib [16], Delaunay triangulation [17], and image warping
and alpha blending as described in [19]. The alpha value is always set to 1

n ,
i.e. the samples contribute equally to the morph.

Two state-of-the-art open-source facial recognition frameworks based on
deep neural networks were used: FaceNet [24] and ArcFace [5], both with
the pre-trained models provided by their authors. The frameworks extract
feature vectors (embeddings) from the non-morphed and morphed facial
images consisting of 512 float values, which can be subsequently compared
using metrics such as the cosine distance.

The experiments were conducted in the biometric identification mode,
utilising cross-validation over 10 folds. The variables mentioned in section
11.3 are as follows: N = 400 (200 men and 200 women; morphs were created
within the same gender only, but no other heuristics were used when decid-
ing which samples to morph, i.e. they were selected at random), n ∈ {2, 4, 8},
and k ∈ {1 . . . N

n }. Thus, for each experiment, several thousand identifica-
tion transactions are performed (depending on the enrolled subjects, since
the number of samples per subject in the dataset varies). The biometric per-
formance is evaluated in terms of metrics defined by ISO/IEC [13]: hit rate
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(HR)1, penetration rate (PR), and rank-1 identification rate (RR-1).

11.4.2 Results

The accuracies achieved by various configurations of the proposed system
in the pre-selection step are shown in table 11.1 and figure 11.4, where the
trade-off between hit rate and penetration rate is plotted. Best results for
the high hit rates (≥99%) are achieved using the ArcFace feature extractor,
whereby the penetration rate is approximately halved. The FaceNet feature
extractor achieves significantly poorer results, albeit it still manages to re-
duce the penetration rate somewhat. It can also be observed, that enough
biometric information for high hit rates and penetration rate reduction is
retained even when morphing n = 8 subjects together, although the best
results occur when n = 2 or n = 4.

Table 11.1: Pre-selection results

Feature
n

PR at
Extractor 95% HR 99% HR 99.5% HR

ArcFace
2 50.5% 52.0% 55.0%
4 32.0% 48.0% 57.0%
8 42.5% 70.5% 80.5%

FaceNet
2 57.0% 86.0% 95.0%
4 42.5% 70.5% 80.5%
8 60.5% 86.5% 94.5%

The results achieved by the baseline and the two-stage system (with op-
timal k values) are shown in tables 11.2 and 11.3, respectively. All the results
are reported with a 95% confidence interval. It is observed, that particularly
for the ArcFace feature extractor virtually no biometric performance loss oc-
curs at n = 2, while the penetration rate is significantly reduced.

Table 11.2: Baseline results

Feature Extractor RR-1 PR
ArcFace 99.18% ± 0.11% 1.0FaceNet 98.84% ± 0.16%

11.5 Summary

In this paper, two heretofore unrelated fields within the domain of biomet-
rics have been combined. Specifically, the properties of morphed facial im-

1i.e. 100% minus the pre-selection error rate.
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Table 11.3: Two-stage system results

Feature Extractor n k RR-1 PR

ArcFace
2 5 98.82% ± 0.12% 52.5%
4 20 97.57% ± 0.26% 45.0%
8 25 96.09% ± 0.19% 50.0%

FaceNet
2 30 96.97% ± 0.31% 65.0%
4 30 93.61% ± 0.56% 55.0%
8 30 96.51% ± 0.26% 72.5%

ages have been used at the pre-selection step of a two-stage biometric iden-
tification system. It has been shown, that through the morphing process of
two or even more data subjects, enough biometric information is retained to
facilitate an accurate pre-selection of a candidate short-list. The experiments
with two state-of-the-art open-source deep facial recognition frameworks
show high (≥99%) hit rates, while reducing the associated penetration rates
(and thus the computational workload) down to around 50% of the base-
line system. Future work could consist of a more comprehensive evaluation
extending this proof-of-concept study, for example utilising:

• Other feature extractors and recognition frameworks, particularly com-
mercial off-the-shelf systems.

• Additional morphing techniques and tools.

• Larger datasets.

Furthermore, improvements to the morphing process of the enrolled sam-
ples could be attempted – for instance, morphing most similar subjects to-
gether, rather than doing so randomly. Lastly, the morphed images could
possibly be organised into a tree-like hierarchical search structure with the
aim of further reducing the search space. One technical limitation of the
proposed method is that it requires frontal images of good quality, albeit
in practice such images are already being captured in data acquisition with
controlled environment and cooperative data subjects (e.g. passport issuance).
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Chapter 12

Towards Pre-alignment of
Near-infrared Iris Images

Abstract

The necessity of biometric template alignment imposes a significant
computational load and increases the probability of false positive occur-
rences in biometric systems. While for some modalities, automatic pre-
alignment of biometric samples is utilised, this topic has not yet been
explored for systems based on the iris.

This paper presents a method for pre-alignment of iris images based
on the positions of automatically detected eye corners. Existing work in
the area of automatic eye corner detection has hitherto only involved
visible wavelength images; for the near-infrared images, used in the
vast majority of current iris recognition systems, this task is significantly
more challenging and as of yet unexplored. A comparative study of two
methods for solving this problem is presented in this paper. The eye cor-
ners detected by the two methods are then used for the pre-alignment
and biometric performance evaluation experiments. The system utilis-
ing image pre-alignment is benchmarked against a baseline iris recog-
nition system on the iris subset of the BioSecure database. In the bench-
mark, the workload associated with alignment compensation is signifi-
cantly reduced, while the biometric performance remains unchanged or
even improves slightly.

Addressed research question(s): RQ1, RQ4
Reference: DROZDOWSKI, P., RATHGEB, C., HOFBAUER, H., WAGNER, J.,
UHL, A., AND BUSCH, C. Towards pre-alignment of near-infrared iris im-
ages. In International Joint Conference on Biometrics (IJCB) (October 2017),
IEEE, pp. 359–366.

12.1 Introduction

The iris is one of the main biometric characteristics used in biometric sys-
tems around the world. At the time of this writing, the Indian Aadhaar sys-
tem has enrolled over 1 billion subjects’ multi-modal (including iris) biomet-
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ric data [27]. The border control system of United Arab Emirates checks ev-
ery traveller against a growing blacklist consisting of hundreds of thousands
of subjects [1]. The deployments of this size and importance face strenuous
requirements in terms of, among other matters, biometric performance and
computational efficiency.

Following Daugman’s approach [5], which is the core of most public
operational systems, four major modules constitute an iris recognition sys-
tem: (1) acquisition of the near-infrared image, where most current deploy-
ments require subjects to fully cooperate with the capture device in order
to capture images of sufficient quality; (2) pre-processing, which involves a
detection of inner and outer iris boundaries, a detection of eyelids, an ex-
clusion of eyelashes as well as contact lens rings, a scrubbing of specular
reflections and an estimation of quality factors [14]. Subsequently, the iris
is mapped to dimensionless coordinates, i.e. a normalized rectangular tex-
ture, and an according noise mask is stored; (3) feature extraction, in which
a two-dimensional binary feature vector, i.e. iris-code, is generated by ap-
plying adequate filters to the pre-processed iris texture. This binary data
representation enables compact storage and rapid (4) comparison, which is
based on the estimation of Hamming distance (HD) scores between pairs of
iris-codes. In the comparison stage circular bit shifts are applied to iris-codes
and HD scores are estimated at ±K different shifting positions, i.e. relative
tilt angles, in order to compensate the biometric sample misalignment. The
minimal obtained HD , which corresponds to an optimal alignment, repre-
sents the final score.

Considering multiple shifting positions during a template comparison
increases the computational workload of the system and the probability of
a false match with K [6]. This is especially important for identification sys-
tems, where an exhaustive search of the reference database is performed
during an authentication attempt. By pre-aligning the eye images, the afore-
mentioned cost (in terms of computational workload and biometric perfor-
mance degradation) could be significantly reduced, thus partially alleviat-
ing the issues created by the necessity of alignment compensation. For the
biometric references, the pre-alignment could be performed at enrollment
stage, while any additional computational cost of pre-alignment of the bio-
metric probes would be inconsequential in relation to the template compar-
ison costs, since in any sizeable biometric identification system, the com-
putational costs are dominated by the template comparisons [9]. Although
image pre-alignment has been utilised in, for instance, fingerprint and face
based biometric systems (see e.g. [26] and [4]), as of yet it has not been ex-
plored in the context of iris recognition systems.

The remainder of this paper is organised as follows: In section 12.2, the
related work is presented. Section 12.2.2 explains the usage of eye corners
in eye images pre-alignment and outlines the proposed approaches to au-
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tomatic detection of eye corners in near-infrared images. The experimen-
tal set-up and obtained results are presented and discussed in section 12.3,
while concluding remarks are given in section 12.4.

12.2 Related Work

The work presented in this paper combines two areas of research - automatic
detection of eye corners and reduction of the alignment costs in iris identifi-
cation systems. This section is accordingly divided into two subsections.

12.2.1 Eye Corner Detection

Facial landmark detection represents a well-studied area in computer vision.
It forms the basis for numerous types of applications, such as face recogni-
tion or emotion estimation. Facial landmarks detected by state-of-the-art
methods tend to vary in number and type; however, the vast majority of ap-
proaches extracts eye corner positions as specified in ISO/IEC 19794-5 [12].

In the context of iris recognition, automatic eye corner detection ap-
proaches for visible spectrum images have been presented by a number of
researchers. Xu et al. [29] base their approach on the semantic features of
the inner and outer eye corners, an angle model based on the eyelids and
utilise a logistic regression classifier for the detection. Xia and Yan [28] use
weighted variance projection function to detect first the regions of interest
and then the eye corners themeselves. Erdogmus and Dugelay [8] use the
Hough transform to detect the eyelid contours and subsequently establish
the eye corners at the intersection of polynomials fitted to said contours.
Santos and Proença [24] perform experiments on low-quality data, in which
they utilise sclera segmentation and eyelid contours to generate a set of can-
didate points, from which the final eye corner locations are chosen based on
a fusion of a number of metrics calculated for all the points in the candidate
set. More recently, Zhang et al. [31] used a two-step process in which the
rough locations of the eye corners are estimated and refined using image
texture information.

All of the above report excellent results, ranging between 90% and 100%
correct detection of eye corners - depending on how the groundtruth was es-
tablished and what metrics and parameters were used to measure the detec-
tion accuracy. However, it is important to reiterate, that all of the mentioned
approaches use visible wavelength eye images (or regions of interest extracted
from facial images). Eye corner detection in near-infrared images, which are
currently used in operational (large-scale) iris recognition systems, is a sig-
nificantly more challenging task. In contrast to iris images acquired at visi-
ble wavelengths, near-infrared images exhibit a low contrast between sclera
and skin, cf. figure 12.4. Hence, a proper sclera segmentation, which is re-
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quired in some of the mentioned approaches, is not feasible for near-infrared
images.

12.2.2 Alignment Cost Reduction

As has been mentioned in section 12.1, the traditional iris-code based iris
identification systems require significant workload to be put into alignment
compensation. In recent years, some interest has been exhibited towards de-
veloping methods to reduce (or even eliminate) the number of relative align-
ment positions that need to be considered in order to achieve an acceptable
biometric performance. Du et al. [7] have presented a feature extractor for
iris recognition based on one-dimensional signatures and showed that such
an approach does not require an alignment of extracted templates. Alonso-
Fernandez et al. [2] suggested to apply scale invariant feature transform to
extract iris texture features prior to the normalisation step, where a com-
parison of keypoint-based feature vectors does not require the traditional
alignment procedure. A partial alignment-compensating representation of
the commonly used iris-code matrix was proposed by Rathgeb and Busch
[20]. However, published rotation-invariant feature representations either
require a more complex comparison process or reveal unpractical biometric
performance. In the latter case, these may still be applied in a pre-selection
step of a biometric identification scenario, see e.g. work of Konrad et al. [17].
Recently, Rathgeb et al. [21] introduced a method based on an analysis of
the nature of iris-code and comparison scores between those. In a two-step
process, the number of relative positions that need to be considered for two
biometric samples was significantly decreased.

In this paper, two methods for eye corner detection in near-infrared eye
images are presented. Before describing these, a brief outline of how the eye
corners are used to pre-align an eye image is given below. Based on the two
– left (L) and right (R) – eye corner points, the angle of a line through the
two points is calculated as shown in equation (12.1).

∠(L,R) = arctan

(
Ry − Ly

Rx − Lx

)
. (12.1)

The image is rotated by the given angle, such that a line drawn between
L and R is horizontal. The image is subsequently cropped in order to re-
move boundary artefacts resulting from the rotation. Those artefacts gen-
erate strong edges, which might negatively influence the segmentation pro-
cess. The center of rotation C, which serves as the center of the cropped
area, is based on the corner points as well:

Cx =
Lx +Rx

2
, Cy =

Ly +Ry

2
. (12.2)
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The size of the cropped image is set to 512×400 pixels. Figure 12.1 shows
the eye corner landmarks, the line between the landmarks and the framing
of the resulting cropping and rotation. As can be seen in the image, the inner
eye corner is hard to define due to missing color information.

(a) (b)

Figure 12.1: Iris image with eye corner landmarks (red), the rotation center
(green), the horizon line and the frame for cropping and rotation (a) as well
as the resulting image (b).

This method of absolute image pre-alignment is used with the eye cor-
ner locations produced with the methods outlined in following subsections.
Note, that the aim is to align iris images prior to the segmentation stage. Al-
ternatively, eye corners could be detected as part of the segmentation pro-
cess, which might allow for an application of geometrical constraints, e.g.
based on the detected pupil center.

12.2.3 Adapting Facial Landmark Detectors (FaceLD)

There exist many facial landmark detectors, which are made available in
open-source toolboxes, e.g. dlib [16] and Bob [3] with menpofit [11], which
were used in experiments performed for this paper. Those frameworks in-
clude pre-trained machine learning models, which are capable of detecting
a large number of specific landmarks on a human face, among which are
the eye corners. Naturally, these systems require an entire or at least a large
part of a face to be present in an image. The eye images captured for the
iris recognition systems only include a small part of the periocular area or
are cropped (those two image formats are standardised by ISO/IEC 19794-
6 [13]). A surprisingly effective idea is to utilise a high quality, noiseless
facial image and insert the eye images into it, as shown in figure 12.2, so
that the left and right face halves together with the inserted eye images are
mirror reflections of each other. As an optional post-processing step, a semi-
transparent smoothing transformation can be applied along the borders of
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the eye images. The two methods of inserting the eye image into the face im-
age are referred to as basic (12.2a) and smooth (12.2b). The facial landmarks
are then detected, as with processing a normal face image; the landmark po-
sitions from the left and right side of the face are averaged, expecting more
robustness. The last step is to translate the eye corners positions from the
coordinate system of the face image to that of the eye image and use them
in the pre-alignment experiments.

(a) Eye image plainly inserted
upon the facial image.

(b) A semi-transparent trans-
form applied around the eye im-
age edges.

Figure 12.2: Insertion of an iris image to a high resolution frontal face image.

12.2.4 Landmark Detection for Eye Images (EyeLD)

A logical next step is to train a model dedicated for eye images alone. The
open-source dlib package [16] implements a landmarking model presented
by Kazemi and Sullivan [15], which relies on an ensemble of randomized
regression trees. For the training, a groundtruth of 9 landmarks marked by
a single operator is used; it contains the eye corners themselves, pupil center
and points along the lower and upper eyelid arches, as shown in figure 12.3.
In the pre-alignment experiments, the detected eye corners are used directly
or computed using the intersection between the polynomials or circles fitted
(least-squares sense) to the eyelid landmarks.

12.3 Results

The evaluation of the proposed approaches is focused on following matters:
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Figure 12.3: The 9 landmarks automatically detected by the model on a sam-
ple image. The curves show locating the eye corners by fitting circles (green)
and polynomials (blue) to the eyelid landmarks.

Biometric performance By pre-aligning the images, the number of shifting
positions considered at the comparison stage is changed. This obvi-
ously affects the biometric performance of the system, which is evalu-
ated by calculating the equal-error rate (EER) and the false non-match
rate measured at false match rate of 0.01% (FNMR0.01). We are inter-
ested in the minimum EER found and also define diminishing returns
(DR) of the EER, where we allow the EER to be up to 10% over the
minimum EER. This usually results in a drastically reduced remain-
ing rotation. The cause for this are the outliers, which allow to slightly
improve the EER at a much higher cost of alignment compensation.

Workload The required alignment compensation (±K) after the pre-alignment
step.

Pre-alignment accuracy How far are the results yielded by the pre-alignment
step from the objectively optimal alignment.

Figure 12.4: Example images from the BioSecure database.

The dataset chosen for the evaluation of the proposed approaches is the
iris subset of the BioSecure database [19]. It contains 1680 left and right eye
images from 210 subjects; the images of size 640×480 pixels were captured
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using a near-infrared camera. Most of the publicly available iris datasets
come in the cropped image format, which makes them unsuitable for our
experiments; the images in the BioSecure dataset are uncropped. Addition-
ally, the quality of images varies in terms of eye position, rotation and il-
lumination conditions, as shown in figure 12.4. For the model training (see
subsection 12.2.4), the dataset is divided into 5 subsets, each containing 1344
training images and 336 test images. This allows to generate landmarks for
the whole dataset, while ensuring that the training and test sets are always
disjoint.

In the employed iris recognition system, the iris of a given sample image
is detected and transformed to a normalised rectangular texture of 512×64
pixels. The normalised iris texture is divided into texture stripes to obtain
10 one-dimensional signals, each one averaged from adjacent texture rows.
A row-wise convolution with a Log-Gabor wavelet is performed on each
signal and the two bits of phase information are used to generate a 512×20
bits iris-code. During alignment compensation, the rotation per bit corre-
sponds to 360

512 ≈ 0.7°. We have employed the algorithm that was made
available in [23] and described in detail in [22]. For the biometric perfor-
mance evaluation, all possible template comparisons are considered. This
results in a total of 2520 genuine comparisons and almost 1.4 million impos-
tor comparisons. It should, however, be noted, that the results presented
in the following sections can be achieved irrespective of the chosen feature
extraction algorithm.

12.3.1 Baseline and Groundtruth

First, in order to create a reference point for the proposed methods, baseline
and groundtruth results are established. The baseline is a normal, iris-code
based system, which performs K = ±24 bit shifts during a template com-
parison. The groundtruth consists of the manually marked landmark types
shown in figure 12.3; the eye corners for pre-alignment calculations are used
directly or computed as the intersection of polynomials or circles fitted to
eyelid landmarks. Those results are listed in table 12.1.

Table 12.1: Baseline and groundtruth results (in %).

Method Minimum DR
K EER FNMR0.01 K EER FNMR0.01

Baseline ±20 2.506 4.296 ±10 2.705 4.795

Groundtruth
Eye corners ±7 2.148 3.690 ±5 2.336 4.288

Polynomial fitting ±5 2.188 3.496 ±3 2.347 4.171
Circle fitting ±15 2.347 3.699 ±5 2.506 4.178

When benchmarked against the baseline system, the proposed pre-alignment
technique allows to significantly reduce the required remaining alignment
compensation (K). This verifies the conceptual soundness of the approach
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with manually marked landmark points. The diminishing returns (DR)
allows for a trade-off between biometric performance improvement and
workload reduction. As can be seen in table 12.1, the diminishing returns
EER for the groundtruth is the same (or better) as for the baseline with full
alignment compensation (minimum EER). In other words, by pre-aligning
the samples, the required workload can be dramatically decreased without
negatively affecting the biometric performance of the system.

Figure 12.5: Eye with muscles responsible for torsional movement in the eye
socket highlighted. Images by Patrick J. Lynch, medical illustrator (CC BY 2.5).

It is also important to address, why the pre-alignment does not fully
eliminate the need for further alignment compensation at the iris-code tem-
plate comparison stage, i.e. why K �= 0. This remaining rotation of up to
±7Bit ≈ ±4.92° is to be expected, since landmarks from the periocular re-
gion and not from the eye itself are used. The eye can rotate in the eye socket;
this includes torsional movement induced by the superior/inferior rectus
and superior/inferior oblique muscles [25] (see figure 12.5), with a range of
motion that is “generally limited to angles of less than 10°” [30]. In recent
years, methods for eye alignment during refractive surgery have been de-
veloped [10]. While extremely accurate, they depend on either continuous,
active tracking (video) or static tracking based on a set of points marked in
a reference image. The methods presented in this paper, however, perform
the pre-alignment based on a single sample image.

12.3.2 Algorithmic Landmark Detection

Figure 12.6 shows various example images with landmarks detected by the
proposed approaches marked. The results for the biometric performance
and workload evaluation of the two approaches (subsections 12.2.3 and 12.2.4)
are shown in table 12.2 and figure 12.7. Of interest are the benchmark against
the baseline, i.e. by how much K decreased in an automated setting and the
benchmark against the groundtruth (especially in case of EyeLD), i.e. by how
much the automated approaches could still be improved.
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Figure 12.6: Example images with landmarks detected by the proposed ap-
proaches: FaceLD - basic (black), EyeLD - Corners (red), EyeLD - Polyno-
mial (green), EyeLD - Circle (blue).
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(a) Adaptation of facial landmarks detection.
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(b) Dedicated eye landmarks detection.

Figure 12.7: Biometric performance comparison for the evaluated ap-
proaches (note the logarithmic scale of the y-axis).

Table 12.2: Algorithmic results (in %).

Method Minimum DR
K EER FNMR0.01 K EER FNMR0.01

FaceLD Basic ±10 2.589 3.961 ±6 2.748 4.625
Smooth ±12 2.665 4.280 ±7 2.864 4.654

EyeLD
Eye corners ±13 2.352 4.027 ±11 2.467 4.142

Polynomial fitting ±17 2.193 3.558 ±12 2.313 3.868
Circle fitting ±23 2.396 3.836 ±11 2.592 4.214

For both approach classes, we observe an improvement over the base-
line in both the minimum and diminishing returns EER setting. In all cases
(except for circle fitting), K is significantly reduced (up to being halved),
while the biometric performance in terms of EER and FNMR0.01 remains
unchanged or is improved. The FaceLD approach based on the Bob frame-
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work [3] and menpofit [11] model performs well. The model offered by
the dlib [16] package was also tried, but was left out due to very poor re-
sults. The smoothing transform around the eye image edges in FaceLD ap-
proach performs worse than the basic version of FaceLD approach. This
could be due to the eye corners being blurred out when they are located
near the border of the eye image. Thus, potentially a more sophisticated
approach would have to be applied. In terms of alignment workload re-
duction, the FaceLD approaches outperform the EyeLD approaches. On the
other hand, the biometric performance of EyeLD approaches is better than
both the FaceLD approaches and the baseline. It is also worth noting, that
while in terms of K reduction, the EyeLD approaches do not match the re-
sults achieved by the groundtruth, one could safely assume that with a large
enough training corpus, the results of the groundtruth and the automated
method would converge. One idea for future work is to mirror and rotate
the available images in each training set fold, thus dramatically enlarging
the training set and thereby the landmark detection accuracy.
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Figure 12.8: Cumulative distributions of the distance from the optimal align-
ment achieved by the presented pre-alignment approaches.

Table 12.3: Parameters of the impostor score distributions.

K 0 1 2 3 4 8 16 24
mean 0.498 0.495 0.492 0.489 0.486 0.478 0.469 0.466

st. deviation 0.024 0.023 0.023 0.022 0.021 0.018 0.016 0.014
skewness -0.026 -0.034 -0.052 -0.083 -0.127 -0.351 -0.598 -0.717

ex. kurtosis 0.291 0.378 0.466 0.550 0.650 1.202 2.225 2.842

Figure 12.8 shows a cumulative distribution of the distance from opti-
mal alignment after the pre-alignment step performed by the proposed ap-
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Figure 12.9: Kernel density estimate of impostor scores from no (red) to K =
±24 bits (blue) rotation compensation.

proaches. For example, it can be seen, that after a pre-alignment step around
80% of the images are less than 8 bits from the optimal alignment. Note, that
this figure does not necessarily reflect the EER scores, since optimal align-
ment is not a guarantee for an optimal score (bad quality images can have
a high HD score even at the optimal alignment position). In other words,
the distance from the optimal alignment would only be a good predictor
of biometric performance, if and only if the quality of images (apart from
rotational variation) was very high.

While the pre-alignment is not expected to have a significant positive
impact on the genuine scores, it affects the impostor scores significantly. As
can be seen in figure 12.9 and table 12.3, when no alignment compensation is
applied (i.e. K = 0), the impostor scores approximate a normal distribution
around HD = 0.5. However, with the growing K value, the distribution
moves towards left (i.e. towards genuine scores distribution). As has been
mentioned in section 12.1, this increases the probability of false positives
due to larger overlap between the genuine and impostor distributions. By
pre-aligning and decreasing K, this effect is counteracted, thereby slightly
improving the biometric performance in addition to reducing the workload.

12.4 Conclusion

In this paper, a software-based approach to alignment cost reduction in iris
recognition systems has been introduced. Experiments conducted on the
iris subset of the BioSecure database have lead to following key findings:

• Pre-alignment improves the biometric performance in terms of EER
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and FNMR0.01 when benchmarked against a baseline system.

• Pre-alignment reduces the required alignment compensation work-
load in terms of K when benchmarked against a baseline system.

• Proposed landmark detection approaches work, but as the groundtruth
experiments demonstrate, there is still room for improvement.

While there exists a number of approaches for automatic corner detec-
tion in visible spectrum images, the authors are not aware of such work
in the near-infrared spectrum. In this paper, two methods for achieving
this task were presented with the resulting landmarks used for image pre-
alignment. In addition to eye landmark detection accuracy refinement, a
potentially interesting area for future work is investigating the possibility
of application of the presented approaches to cropped eye images, as de-
fined in ISO/IEC 19794-6 [13]. It is worth noting, that many areas of bio-
metric research could benefit from iris image pre-alignment. This pertains
in particular to privacy-enhancing technologies, i.e. biometric template pro-
tection [18], in which comparisons are performed in an encrypted domain,
such that a proper alignment is (in many cases) not feasible.
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Chapter 13

Detection of Glasses in Near-infrared
Ocular Images

Abstract

Eyeglasses change the appearance and visual perception of facial
images. Moreover, under objective metrics, glasses generally deterio-
rate the sample quality of near-infrared ocular images and as a conse-
quence can worsen the biometric performance of iris recognition sys-
tems. Automatic detection of glasses is therefore one of the prerequi-
sites for a sufficient quality, interactive sample acquisition process in
an automatic iris recognition system. In this paper, three approaches
(i.e. a statistical method, a deep learning based method and an algorith-
mic method based on detection of edges and reflections) for automatic
detection of glasses in near-infrared iris images are presented. Those
approaches are evaluated using cross-validation on the CASIA-IrisV4-
Thousand dataset, which contains 20000 images from 1000 subjects. In-
dividually, they are capable of correctly classifying 95-98% of images,
while a majority vote based fusion of the three approaches achieves a
correct classification rate (CCR) of 99.54%.

Addressed research question(s): RQ2
Reference: DROZDOWSKI, P., STRUCK, F., RATHGEB, C., AND BUSCH, C.
Detection of glasses in near-infrared ocular images. In International Confer-
ence on Biometrics (ICB) (February 2018), IEEE, pp. 202–208.

13.1 Introduction

In recent years, iris recognition has become a popular modality for biomet-
ric systems and is used in many large-scale deployments (e.g. the Indian
National ID project [22]). The technology is also increasingly being used
in automatic (without human operator supervision) systems, such as smart
border/airport gates and mobile devices [14]. Operational systems typically
capture iris images in the near-infrared light spectrum, in which the iris pat-
terns are much more pronounced than in the visible light spectrum, even for
darkly pigmented irides [6]. According to recent reports [20, 21], over 50%
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of adult population in the developed world wear eyeglasses. The pervasive-
ness of short-sightedness (myopia) has been on an extreme rise in Eastern
Asia and around the world in general; a recent report in Nature News [7]
states:

East Asia has been gripped by an unprecedented rise in my-
opia, also known as short-sightedness. Sixty years ago, 10-20%
of the Chinese population was short-sighted. Today, up to 90% of
teenagers and young adults are. In Seoul, a whopping 96.5% of
19-year-old men are short-sighted. Other parts of the world have
also seen a dramatic increase in the condition, which now affects
around half of young adults in the United States and Europe -
double the prevalence of half a century ago. By some estimates,
one-third of the world’s population - 2.5 billion people - could
be affected by short-sightedness by the end of this decade.

Due to specular reflections, blur, scratches and other factors, glasses tend
to decrease the biometric sample quality and consequently often the biomet-
ric performance of the systems. While several researchers have investigated
the impact of glasses on face recognition systems, the scientific literature
on iris recognition contains very little related work on this subject, except
for a paper in which a small-scale quantification of the effects of glasses on
iris image pre-processing is presented [13] and glasses being mentioned as
a significant noise factor (e.g. [1, 3, 9]). ISO/IEC 29794-6 biometric sample
quality standard [10] specifically recommends to instruct data subjects to
remove glasses during acquisition or to perform the acquisition with addi-
tional care.

Therefore, and due to the prevalence of glasses in the world population,
automatic detection of glasses is an important matter in iris recognition (as
will also be substantiated by the experiments described in section 13.3). It is
of particular interest for automatic sample acquisition systems, where such
a detection module would enable an interactive sample acquisition and thus
facilitate higher sample quality. While this is a well-researched topic in sys-
tems working with images of the facial region (e.g. [2, 23]), doing so in im-
ages of ocular region alone has not received enough attention. In this paper,
three methods for accomplishing said task are presented and benchmarked.

This paper is organised as follows: in section 13.2, the used dataset and
experimental setup are described. Section 13.3 provides an overview of the
impact of glasses on iris recognition. In section 13.4 the three proposed auto-
matic glasses detection approaches are presented and evaluated. Conclud-
ing remarks are given in section 13.5.
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13.2 Experimental Setup

The Thousand subset of the CASIA-IrisV4 database [5] (henceforth referred
to as ”CASIA-Thousand dataset”) was chosen for the experiments performed
for this paper. Said dataset contains near-infrared iris images of size 640 ×
480 pixels and, due to its size, is suitable for large-scale testing. Addi-
tionally, for subjects who are glass-wearers, it contains images both with
and without glasses, thus enabling a direct biometric performance bench-
mark. Figure 13.1 shows example images from the dataset, while table 13.1
summarises its properties1. Observe the high fraction of subjects who are
glass-wearers coinciding with the statistics mentioned in section 13.1. The
groundtruth labels (with/without glasses) had to be assigned to all the im-
ages, which was done manually by a single researcher via visual inspection.

Table 13.1: Overview of the CASIA-Thousand dataset

Samples Subjects Instances
Total 20000 1000 2000

Without glasses 14664 1000 2000
With glasses 5336 617 1193

(a) Without glasses

(b) With glasses

Figure 13.1: Example images from the CASIA-Thousand dataset. Sam-
ples (a) and (b) are captured from the same eye instance.

1Observe, that since for every subject/instance there is at least one sample without glasses
in the dataset, the numbers for subjects/instances seemingly do not add up.
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The images were processed with commonly used methods (specifically,
Viterbi algorithm for segmentation [19], Daugman’s rubber sheet model for
normalisation, LogGabor wavelet for feature encoding and fractional Ham-
ming distance for template comparison [6]) implemented by the open-source
OSIRIS [15] and USIT [16] frameworks. Subsequently, two evaluations took
place:

• The impact of glasses on sample quality (some metrics from ISO/IEC
29794-6 standard [10]) and thereby on iris recognition in terms of bio-
metric performance measured in equal error rate (EER). (section 13.3)

• The classification accuracy of the proposed detection approaches us-
ing cross-validation over 4 folds (i.e. 15000 training and 5000 test im-
ages), measured in correct classification rate (CCR). (section 13.4)

13.3 Impact of Glasses on Iris Recognition

The topic of glasses in iris recognition systems has often been mentioned in
the scientific literature (e.g. [1, 3, 9]) and presentations [18]. It is commonly
agreed that they can have detrimental effect on sample quality due to spec-
ular reflections, dirt, optical distortions and shadows. A decrease in sam-
ple quality in turn negatively affects the segmentation accuracy and/or bio-
metric performance. Furthermore, as shown in figure 13.2, they introduce
potential for explicit failures, where the reflections or frame can be misun-
derstood as pupilliary or limbic boundaries by the segmentation algorithm
(the red blobs in the images represent areas masked out by the algorithm as
eyelids and noise). Those assertions notwithstanding, with an exception of
a small investigation [13], studies quantifying the effects glasses have on the
biometric performance of iris recognition systems are lacking in the scien-
tific literature.

Figure 13.2: Segmentation failures caused by glasses

The results of a biometric verification experiment on the CASIA-Thousand
dataset, shown in table 13.2, demonstrate the negative impact of glasses on
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an iris recognition system. In addition to the data shown in the table, the
motion blur in images with glasses was calculated to be twice as high as in
images without glasses, which in turn can negatively affect other iris image
quality metrics, such as the iris-pupil and iris-sclera contrast.

Table 13.2: Impact of glasses on iris recognition

Metric Without glasses With glasses
EER, all images 6.86% 12.16%

EER, no segmentation failures 3.79% 10.67%
Images with usable iris area ≥ 70% 59.19% 51.63%

The aforementioned issues are also mentioned in the ISO/IEC 29794-6
biometric sample quality standard [10], where it is recommended to perform
data acquisition so that the specular reflections on the iris are minimised or
even to instruct the data subject to remove their glasses. In some, partic-
ularly automatic systems, doing so would require automatically detecting
the glasses. In the next section, methods of automatic detection of glasses in
near-infrared iris images are described and evaluated.

13.4 Automatic Detection Approaches

As discussed earlier, automatic detection of glasses appears to be an over-
seen or underappreciated issue in the scientific literature. However, based
on the sheer numbers of glass-wearers in the population (section 13.1) and
the significant impact of glasses on the biometric performance (section 13.3),
it is abundantly clear that methods for automatic glasses detection are ben-
eficial for iris recognition systems. With it in place, such systems would
be enabled to provide actionable feedback to the capture subject - meaning
to ask the subject to take off the glasses and to subsequently initiate a re-
capture. In this section, three such approaches are presented and evaluated
on near-infrared iris image data.

13.4.1 Texture Descriptor

Binarized statistical image features (BSIF) [12] is a generic texture descriptor,
which uses filters learned from patches of natural images. Pre-trained filters
made available as part of the above publication are used. The process of
using BSIF to detect glasses in iris images is as follows:

1. An input image (figure 13.3a), is convolved with 8 stacked linear filters
of size 15 × 15 pixels; the sign of each filter response is used to bina-
rise it (such that negative responses become 0 and positive responses
become 1), resulting in a binary string of length 8 for each pixel of the
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image. The integer representation of those binary strings lies in range
(in range 0 to 28 − 1), and can be thus displayed as a 256-bit grayscale
image, as shown in figure 13.3b.

2. The aforementioned integer values for the whole image are stored in a
histogram, as shown in figure 13.3c.

3. Using the previously (section 13.2) mentioned cross-validation loop
for training and testing, the classification decision is obtained by pass-
ing the histogram as an input to a support vector machine (SVM). It
uses a linear kernel, which is suitable for high-dimensional vectors. A
lightweight implementation provided by the libsvm (version 3.22) [4]
library was used; for training the SVM, 1000000 was used as cost pa-
rameter and 0.001 was used for termination tolerance. The parameters
were estimated empirically on a small, disjoin training set.

(a) Image (b) BSIF applied
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(d) BSIF histogram value frequencies
(mean and one standard deviation as er-
rorbars) for the entire CASIA-Thousand
dataset

Figure 13.3: BSIF-based approach

As shown in figure 13.3d, subtle differences in the BSIF-histogram val-
ues’ frequency distribution are perceivable. The SVM is capable of using

244



13.4 AUTOMATIC DETECTION APPROACHES

those to distinguish between and correctly classify images with and with-
out glasses. To facilitate reproducible research, the trained SVM is released
publicly at [8].

13.4.2 Deep Learning

Deep neural networks convince by successful application with a huge va-
riety of tasks [17], including classification specifically [24]. The problem of
classifying images with and without glasses falls well within the areas in
which deep neural networks are commonly applied.

Using the Caffe framework (version 1.0) [11], a deep convolutional neu-
ral network for classification of images has been created; its topology can be
seen in table 13.3. The neural network is trained and tested using the previ-
ously (section 13.2) mentioned cross-validation loop. The images are resized
to 320 × 240 pixels and the training is run over 20000 iterations, with batch
size of 32 images and 20000 as step size. Using 15000 input images and 5
steps, the network was trained for about 213 epochs. The learning rate is set
to 0.0001 and gets multiplied by 0.25 after every step.

Multiple other architectures, which differed mostly in the input dimen-
sions and the size of the convolution layers, were tested. It turned out that
input dimensions larger than 320 × 240 (e.g. 640 × 480) are not necessary
to achieve good classification results. Thus, for computational performance
reasons the relatively small network was chosen in order to attain an ac-
ceptable trade-off between classification accuracy and throughput. The di-
mensions of the convolution layers were determined by the size of potential
feature blocks, which are effected by glasses being present in an image. To
facilitate reproducible research, the trained network is released publicly at
[8].

Table 13.3: Topology of the DNN-based approach

Part Layer Iterations Details

Feature Extraction
Convolution

2

1. 17× 17 pixels, 48 filters
2. 7× 7 pixels, 96 filters

ReLu —
Pooling Max, 3× 3 pixels, 1 filter, stride 2

Classification

Fully connected
2

96 neurons
ReLu —

Dropout —
Fully connected 1 2 neurons

Decision linear classifier

13.4.3 Edge and Reflection Detection based Algorithm

Two key differences between images with and without glasses are more
pronounced specular reflections and stronger edges due to the frames of
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glasses. The classification approach described in this subsection is based on
detection and quantification of those image features.

13.4.3.1 Reflections

The image is divided into blocks of equal size (chosen empirically to be
30 × 30 pixels and the brightness of each block is computed relative to the
brightness of the entire image, thus producing a map of relative brightness
deviation. The block size filters out small, natural reflections (figure 13.4a),
whereas large, artificial reflections are very well pronounced (figure 13.4b).

(a) Without glasses (b) With glasses

Figure 13.4: Reflection detection with a relative brightness measure. The
two specular reflections caused by the glasses are clearly observed by this
proposed metric.

13.4.3.2 Edges

The process of detecting and measuring edges for glasses detection in an iris
image is described below and shown in figure 13.5 and described below.

1. The image is convolved with a simple kernel which detects horizontal
edges. This process is independent of the average brightness of the
image, since only the local brightness gradients are computed. (fig-
ure 13.5b)
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2. The grayscale image is transformed into a black and white image. This
is done by applying a brightness threshold (usually between 128 and
129, estimated empirically on a small disjoint training set), which only
accepts sharp brightness transitions and ignores blurred edges. (fig-
ure 13.5c)

3. Due to illumination artefacts or image compression many edges have
small gaps. A dilation filter of size 7× 7 pixels (estimated empirically
on a small disjoint training set) is used to fill those gaps. (figure 13.5d)

4. The edges in the middle of the image are masked out, since they tend
to be natural eye edges. (figure 13.5e)

5. To distinguish between individual edges, the flood fill algorithm with
8 directions is applied. This algorithm finds connected pixels and rep-
resents them with different colours. (figure 13.5f)

6. The width and height of the found edges is calculated using the left-
most and rightmost, and topmost and bottommost pixels. Very small
edges are discarded (e.q. the small points on the right top corner in fig-
ure 13.5f) are discarded because they do not contain information. Sub-
sequently, then the ratio between widths and heights of the remaining
edges is computed. (figure 13.5g)

13.4.3.3 Classification

The reflection and edge detection methods described in subsections 13.4.3.1
and 13.4.3.2, respectively, are applied to an iris sample. Using the previ-
ously (section 13.2) mentioned cross-validation loop, tuples containing the
values of largest relative brightness block and the edge with the highest
width-to-height ratio are passed to a SVM, which performs the classifica-
tion decisions. A radial basis function (RBF) kernel was chosen, since it is
well suited for low-dimensional vectors. For training the SVM, 10000 was
used as cost parameter, which was estimated using a small, disjoint training
set. As shown in figure 13.6, the two metrics (reflection and edge scores)
contain sufficient discriminative power to distinguish quite accurately be-
tween images with and without glasses, albeit some overlap (and thereby
classification errors) is still present.

13.4.4 Results

The classification accuracy of the proposed methods is estimated by per-
forming cross-validation over 4 folds. The results are shown in table 13.4.
All three proposed approaches perform well, with overall accuracy rang-
ing between 95-99%. Notice, however, that the CCR for images with and
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(a) Image (b) Detection (c) Binarisation

(d) Dilation (e) Outmasking (f) Assignment

Edge colour Width Height Ratio
Red 639 111 5.76
Blue 279 66 4.23

Green 142 100 1.42
...

...
...

...
(g) Measurement

Figure 13.5: Edge detection and measurement

without glasses vary - for instance, the neural network classifies more im-
ages without glasses correctly, whereas the statistical approach does so for
images with glasses. This suggests a possibility of fusing the decisions of
the approaches, so that their individual weaknesses are compensated for.
Performing a majority vote of all three approaches was able to significantly
increase the CCR. A conjunction based fusion of all three or different con-
figurations of two approaches was also tried, but was found to be less suc-
cessful than the majority vote (albeit still improving upon the accuracy of
the individual approaches).

13.4.5 Classification Errors

It is of interest to investigate what types of images were incorrectly classified
by the proposed approaches. Figure 13.7 shows such example images and
corresponding error reasons. With a larger dataset and hence more training
data, the classification errors could potentially be further reduced.
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Figure 13.6: A scatter plot of edge and reflection scores for all images from
the CASIA-Thousand dataset, which shows significant separation between
the two image classes

Table 13.4: Results of the evaluation (with 95% CI)

Approach CCR (in%)
Without Glasses With glasses Overall

Texture Descriptor (13.4.1) 97.79 ± 0.95 98.54 ± 0.69 98.08 ± 0.44
Deep Learning (13.4.2) 99.28 ± 0.22 97.33 ± 1.60 98.97 ± 0.29

Edges and Reflections (13.4.3) 97.18 ± 0.38 92.37 ± 2.23 95.43 ± 0.36
Majority vote 99.72 ± 0.08 98.79 ± 0.66 99.54 ± 0.12

13.5 Conclusion

Glasses make iris recognition more challenging, since they can have a detri-
mental effect on sample quality and thereby biometric performance of a sys-
tem. In section 13.3, it has been shown that on the CASIA-Thousand dataset,
the equal error rate on the subset of images with glasses is twice that of the
subset of images without glasses. It is therefore of interest to automatically
detect glasses in iris images in order to handle such images separately or re-
acquire once the data subject has been asked to remove their glasses. In this
paper, three approaches for automatically detecting glasses in near-infrared
ocular images have been presented. They achieve classification accuracy in
range of 95-98%, which can be further improved on by a decision-level fu-
sion. A majority vote of all three approaches achieved an overall 99.54%
correct classification rate, whereas slightly lower (but still above 99%) cor-
rect classification rate was achieved with an conjunction-based fusion of two
approaches. In contrast to other approaches for glasses detection, the pro-
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(a) Strong eye edge (b) Strong make-up (c) Thin/no frame

(d) Frame at upper margin (e) Frame position (f) Transparent frame

Figure 13.7: Examples of incorrectly classified images from all 3 methods.
Figures (a)-(b) falsely classified as glasses, figures (c)-(f) falsely classified as
non-glasses.

posed methods require only a single-frame image and work with the ocular
area alone instead of whole face. They could be seamlessly integrated into
operational automatic systems, for instance to facilitate interactive image
acquisition, where the data subjects would be required to take off glasses
if detected. Furthermore, such systems often capture images of both eyes
simultaneously, thus the accuracy of glasses detection could be further im-
proved by performing a multi-instance fusion, i.e. a conjunction of the deci-
sions from both eyes.
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Chapter 14

SIC-Gen: A Synthetic Iris-Code
Generator

Abstract

Nowadays large-scale identity management systems enrol more than
one billion data subjects. In order to limit transaction times, biometric
indexing is a suitable method to reduce the search space in biometric
identifications. Effective testing of such biometric identification systems
and biometric indexing approaches requires large datasets of biometric
data. Currently, the size of the publicly available iris datasets is insuffi-
cient, especially for system scalability assessments. Synthetic data gen-
eration offers a potential solution to this issue; however, it is challenging
to generate data that is both statistically sound and visually realistic - for
the iris, the currently available approaches prove unsatisfactory.

In this paper, we present a method for generation of synthetic binary
iris-based templates, i.e. Iris-Codes, which are the de facto standard used
throughout major biometric deployments around the world. We vali-
date the statistical properties of the synthetic templates and show that
they closely resemble ones produced from real ocular images. With the
proposed approach, large databases of synthetic Iris-Codes with flexi-
bly adjustable properties can be generated.

Addressed research question(s): RQ2
Reference: DROZDOWSKI, P., RATHGEB, C., AND BUSCH, C. SIC-Gen: A
synthetic Iris-Code generator. In International Conference of the Biometrics
Special Interest Group (BIOSIG) (September 2017), IEEE, pp. 61–69.

14.1 Introduction

The iris is one of the most widely applied biometric modalities. In recent
years, several large-scale deployments have been created, most notably the
Indian National ID program [14], which has, at the time of this writing, en-
rolled over one billion subjects with biometric data including the irides. De-
spite using efficient comparators (e.g. Hamming distance for the iris) and
parallelism, the computational load faced by such deployments in the iden-
tification scenario is extremely high. With biometric workload reduction as

253



14. SIC-GEN: A SYNTHETIC IRIS-CODE GENERATOR

a motivation, many approaches for indexing of iris data have been devel-
oped [11]. However, evaluation of such approaches and their scalability is
often questionable due to lack of large test datasets. While various pub-
licly available iris databases with near-infrared (NIR) data exist, they are
relatively small. At the time of this writing, some of the largest publicly
available datasets, CASIA-IrisV4-Thousand and ND-CrossSensor-Iris-2013,
contain merely 20.000 images from 1000 subjects and 146.550 images from
676 subjects, respectively. This is several orders of magnitude smaller than
some of the large-scale deployments nowadays.

Synthetic data generation is one possible way of dealing with the issue
of testing efficient indexing methods. Most of the existing approaches for
synthetic iris generation attempt to synthesise an entire iris image or tex-
ture [1, 7, 8, 12, 13, 15, 16, 17, 18]. The main issues with such approaches
include the computational costs and the difficulty in guaranteeing the sta-
tistical properties of the real data. The vast majority of operational iris bio-
metric systems are based on the Iris-Code [2], making it a de facto stan-
dard. Generating Iris-Codes (feature vectors) directly is therefore also vi-
able and may offer better control over the statistical properties of the syn-
thetic data. Recently, two such approaches have been proposed. Proença
and Neves [12] provide a method of Iris-Code synthesis based on bit correla-
tions; the method is shown to attain some of the desired statistical properties
(the shapes of the genuine and impostor distributions). It is also somewhat
flexible with adjustable parameters; however, it does not allow to gener-
ate a set of templates following a desired score distribution. Furthermore,
the filter response resulting from the typical feature extraction process is
not modelled (in other words, the produced synthetic Iris-Codes scantily re-
semble the ones produced from real iris images through the commonly used
iris processing pipeline). Lastly, typical error patterns between two mated
templates are not modelled. Daugman [3] proposed to use a simple hidden
Markov model to generate a stream of bits and showed that it can be ad-
justed, so that the produced templates mimic the impostor distribution of
real iris templates. However, the produced streams are 1-dimensional (i.e.
do not model the correlation between the Iris-Code rows); furthermore, the
method does not offer a way to generate more than one template per subject
(i.e. it is not possible to use it for simulating genuine comparisons). As such,
it might only be useful for stress-testing of iris identification systems.

In this paper, we present a synthetic Iris-Code generator, which both re-
flects the statistical properties of the real Iris-Codes and resembles the real
templates visually. An important feature of the proposed approach is its
flexibility, in that it allows to generate Iris-Codes with an arbitrary resolu-
tion and an arbitrary score distribution of mated templates, unlike any of the
approaches currently in the literature. To facilitate reproducible research,
the software written in Python3 programming language, is released to the
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scientific community under a permissive license.
The remainder of this paper is organised as follows: section 14.2 de-

scribes the proposed method of synthetic Iris-Code generation. In section 14.3
the properties of the generated templates are validated, while section 14.4
contains concluding remarks.

14.2 Proposed Method

When generating synthetic Iris-Codes, several matters have to be taken into
account:

• Dataset

Score distributions The distributions of Hamming distance scores must
closely resemble the ones produced by real data.

Degrees of freedom Based on a large number of comparison scores
from non-mated templates, the effective number of independent
bits (degrees of freedom) can be calculated. Degrees of freedom
can be seen as discrimination entropy as a measure of informa-
tion content in iris images and has to be close to that of the real
data.

• Individual templates

Bit correlation The bits in an Iris-Code are far from independent. There
exist correlations between both rows and columns, which result
in long sequences of identical consecutive bits. The reason for
this is partially the anatomy of iris patterns, as well as the nature
of the commonly used feature extractors [3]. Those correlations
have to be reflected in the synthetic data.

Error patterns The majority of bit mismatches between two mated
Iris-Codes occurs for bits resulting from wavelet response close to
0 (i.e. where the response phase changes). Those occur mostly on
the edges of the bit sequences, and are called the ”fragile” bits [5].
They have to be present in the synthetic data. Additional noise
sources, such as the occlusions resulting from the eyelids, have to
be modelled as well.

Rotation In the real data, rotations of the eye, which are mainly caused
by head tilts (i.e. roll pose), potentially result in misalignment be-
tween two mated samples. In Iris-Codes, this is represented by
circular horizontal shifts of the matrix columns, which have to be
modelled in the synthetic data.
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The proposed generator synthesises Iris-Codes as pairs of mated tem-
plates, referred to as Iris-Codes IC1 and IC2 in the algorithm description
and figure 14.1 below. The bold-filled arrows denote the changes to the tem-
plate throughout the process, while the thin arrows denote the system pa-
rameters.

Target genuine
distribution

Parameter
Estimation

Preparation

25%

50%

75%

...

...

Iterative random bit flipping

Initial bar-code template

100%

...

Post-processing

HDintra

HDtemp

IC1 IC2Final templates without noise

Final shifted templates with noise

HDtarget

Figure 14.1: The process of generating an Iris-Code pair with SIC-Gen

1. Preparation, during which a base Iris-Code matrix is created as fol-
lows:

• The first row is created by generating alternating sequences of 0’s
and 1’s with lengths drawn from a normal distribution. The dis-
tribution parameters can be estimated empirically, by measuring
the sequence lengths in real Iris-Codes.

• By duplicating that row, a simple bar-code pattern is generated.

2. Parameter Estimation, during which system configuration variables
are calculated based on the user input.

• A target Hamming distance (HD target ) between IC1 and IC2 is
drawn from a random distribution.
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• HD temp and HD intra (see figure 14.1 and next step of the pro-
cess description), are estimated based on HD target . Following
relations are satisfied: HD temp + HD intra = C and HD target =
2HD intra −O, where O is the expected overlap of bit mismatches
introduced by the process described in the next step; C remains
constant for a batch of generated templates, and affects the ef-
fective number of independent bits (degrees of freedom) in the
synthetic data.

3. Iterative bit flipping, during which a pair of mated Iris-Code tem-
plates is created from the base Iris-Code.

• The bits at the edges of consecutive bit sequences (i.e. where se-
quences of 1’s turn to 0’s and vice versa) are randomly flipped.
After HD temp from the original bar-code template is reached, the
template is split into IC1 and IC2 . Subsequently, bit flipping oc-
curs until HD intra between them is reached.

• Additionally, majority voting and median filtering are applied to
make the patterns visually smoother. Furthermore, the chances
of bit flips are adjusted on per-row basis to simulate the collarette
and furrow structures in real irides.

• This step can be accelerated by applying an initial shifting pattern
to the bar-code template produced in step 1.

4. Post-processing, during which additional noise factors are accounted
for. Those include:

• Adding the characteristic pattern resulting from an eyelid, as well
as the noise beneath it.

• Adding additional noise in the row near the pupil and simulating
occlusions.

• Storing the noise masks.

• Applying circular shifts to the Iris-Code to simulate sample roll
pose.

The process generates Iris-Codes of a default size; smaller sizes, if de-
sired, are sampled from this size. The default dimension is motivated by the
ISO/IEC international standard on Biometric sample quality [6]. There, the
minimum iris radius is recommended to be at least 80 pixels (for the smallest
reported human iris), which corresponds to a texture width of 80 ∗ 2π ≈ 502
pixels when unrolled. The recommended optimal iris-pupil ratio is 0.2,
which corresponds to a pupil of 80 ∗ 0.2 = 16 pixels, and thus an iris texture
of 64 rows. Thus, the default size of the generated Iris-Codes is 512×64 bits.
There are numerous adjustable parameters, which allow to mimic different
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properties of the Iris-Code (e.g. the correlations between rows and columns,
noise). Notably, it is also possible to guarantee an arbitrary distribution of
genuine scores and thereby simulate sample quality. For the data generated
in this paper, the HDs are drawn from a Weibull distribution, due to its close
resemblance to real data; another candidate could be the Gamma distribu-
tion. Yet another approach could be to empirically estimate a distribution
from real data and use it instead.

14.3 Validation

In this section, the properties of the synthetically generated data are val-
idated with respect to the requirements outlined in section 14.2. The vi-
sual comparison between real and synthetic Iris-Codes can be seen in fig-
ure 14.2. The real Iris-Codes were produced by using the OSIRIS toolkit [10]
to process the near-infrared images from the iris subset of the BioSecure [9]
database. The toolkit provides the commonly used 2D-Gabor feature extrac-
tion algorithm to produce the Iris-Codes. The synthetic Iris-Codes bear an
excellent resemblance to the real ones.

(a) Real (b) Synthetic

Figure 14.2: Example Iris-Codes produced from real eye images and gener-
ated by the proposed method

After confirming the visual appearance of the synthetic Iris-Codes to
closely resemble that of the real data, their statistical properties are vali-
dated. Figure 14.3d shows the distribution of scores for non-mated tem-
plates for a large number of comparisons (N ). The resulting distribution
and its statistical properties (the yellow box in the image), including degrees
of freedom (ν), are identical to that exhibited by the real data, shown by
Daugman in [2]. In figures 14.3a, 14.3b and 14.3c, example distributions of
comparison scores for mated templates are shown, representing simulating
of optimal, good and non-optimal quality data, respectively. As mentioned
earlier, the mated distributions can be specified arbitrarily due to the nature
of the template generation process (see section 14.2). The score distributions
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in figure 14.3 were produced using Iris-Codes of size 256×8 bits (same as
used by Daugman in the paper cited above), sampled from the default size
Iris-Codes generated by the process described in the previous section.
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Figure 14.3: Distributions of Hamming distances for a large number of com-
parisons between synthetic templates

Due to correlations between bits in an Iris-Code, its rows comprise of se-
quences of consecutive identical bits. It is of interest to verify, that the syn-
thetic data follows that property. As real data reference, sequence lengths
for all templates from the iris subset of the BioSecure database were com-
puted. In figure 14.4, those distributions are shown, along with sequence
lengths produced by Daugman’s HMM from [3]. The distribution for the
synthetic data generated by SIC-Gen closely follows the one exhibited by
the real data.

Figure 14.5 shows example error patterns for comparisons between mated
and non-mated templates. For the mated template pairs, the bit mismatches
occur at the edges of sequences of consecutive identical bits, resulting in the
pattern akin to that shown in real data by Hollingsworth et al. [5].
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Figure 14.4: Visualisation of lengths of sequences of consecutive bits in real
data from BioSecure database, SIC-Gen synthetic templates and synthetic
templates generated with Daugmann’s HMM

(a) Real, mated (b) Synthetic, mated

(c) Real, non-mated (d) Synthetic, non-mated

Figure 14.5: Example error patterns for comparisons between the real Iris-
Codes from the BioSecure dataset and between the synthetic Iris-Codes

14.4 Conclusion and Future Work

In this paper, a method for generating synthetic Iris-Codes has been pre-
sented. The proposed method allows for a flexible specification of the score
distribution between mated templates, to allow simulating different sam-
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ple quality, acquisition environments etc.; the bit mismatches between two
mated templates follow the so-called ”fragile bits” patterns observed in real
data. Simultaneously, the important statistical properties (e.g. degrees of
freedom) of the distribution of non-mated comparison scores are maintained.
Additionally, the synthetic Iris-Codes resemble the real ones visually. They
reflect the correlations between Iris-Code bits resulting in long sequences
of consecutive identical bits, as well as the typical noise sources, such as
the eyelid pattern, circular shifts, wavelet noise and additional noise near
the pupil. By accounting for all the aforementioned statistical and visual
properties of real iris data, the proposed method represents a significant
improvement over the current state-of-the-art and can be used in research
cases where large iris datasets are needed, but unavailable. In future work,
the authors intend to employ the synthetic Iris-Codes in large-scale testing
of biometric indexing approaches, as well as to attempt to generate iris tex-
tures and/or images from the synthetic data using learning-based methods,
e.g. Galbally et al. [4].
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Chapter 15

Score Fusion Strategies in Single-Iris
Dual-Probe Recognition Systems

Abstract

Multiple samples can be utilised at the comparison stage of a bio-
metric system in order to increase its biometric performance via in-
formation fusion or decision heuristics. It has been shown, that in a
single-instance dual-probe setup, fusing the probe scores yields signifi-
cant biometric performance increase over the single-probe baseline. Ad-
ditionally, using the probe-probe comparison score was demonstrated
to further improve the biometric performance of a fingerprint recogni-
tion system in a study by Cheng et al. In this paper, through a bench-
mark on the CASIA-IrisV4-Interval dataset and on the iris corpus of the
BioSecure dataset, the aforementioned method is shown to be viable
for an iris recognition system. However, since it requires an additional
parameter, which must be estimated empirically, we propose a simpler
method which exhibits similar biometric performance, while requiring
no additional parametrisation.

Addressed research question(s): RQ3
Reference: DROZDOWSKI, P., WIEGAND, N., RATHGEB, C., AND BUSCH,
C. Score fusion strategies in single-iris dual-probe recognition systems.
In International Conference on Biometric Engineering and Applications (ICBEA)
(May 2018), ACM, pp. 13–17.

15.1 Introduction

In past years, several multi-biometric iris recognition systems have been
proposed [14, 16], some of which consolidate information from multiple
samples of a single eye instance during enrolment. Some of these single-
instance multi-sample fusion approaches have been found to significantly
improve the recognition accuracy of iris recognition systems. The vast ma-
jority of proposed iris-based multi-sample fusion schemes process multiple
extracted feature vectors, i.e. binary iris-codes, at the time of enrolment. The
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first conceptual scheme of this kind was presented in [6], in which a ma-
jority vote-based coding is applied for each bit position of an odd number
of iris-codes, with the goal of reducing the intra-class variation between the
resulting reference and probe iris-codes. In [19], a weighted majority vot-
ing was proposed to improve the accuracy of an iris recognition system. A
weight map, which indicates the stability of iris-code bits, is obtained from
several iris-codes at enrolment. Comparison scores are then estimated as
a weighted sum of mis-matching bits. A similar approach based on per-
sonalized weight maps has been presented in [7]. In [10], so-called “frag-
ile” bits, i.e. bits which exhibit a higher probability than others to flip their
value during a genuine comparison, are detected by comparing several iris-
codes obtained from a single eye. Incorporating those bits into noise masks
extracted in the iris segmentation stage was shown to improve the over-
all biometric performance of the iris recognition system. In contrast to the
aforementioned approaches, a signal-level fusion of iris texture information
extracted from multiple frames of a video was proposed in [9]. Based on
a pixel-wise averaging, a single normalised iris texture is obtained. Such
textures exhibit higher quality/reliabiltiy, and have been shown to improve
the biometric performance of an iris recognition system. This scheme has
been derived from a concept which was first introduced for face recognition
[1]. Similar schemes have been proposed for fingerprint recognition systems
[11, 17]. In [2], a score fusion of single-fingerprint dual-probe is proposed,
where in addition to utilising the reference-probe comparison scores, the
probe-probe comparison score is incorporated into a score fusion. In this
paper, said score fusion method, along with proposal of further heuristics
are applied in an iris-based system and benchmarked.

The remainder of this paper is organised as follows: in section 15.2, the
employed fusion strategies for single-iris dual-probe iris recognition are de-
scribed. In section 15.3, the experimental setup and results are presented,
while section 15.4 contains a summary of the paper.

15.2 Fusion Strategies

State-of-the-art iris recognition systems capture multiple samples during ac-
quisition stage for the purpose of supporting compensation of pose or gaze
variations or for providing some fundamental presentation attack detection
(PAD) [8]. Those additional samples can then be utilised at comparison
stage. Specifically, in a system where two probe samples are present at com-
parison stage, three comparison scores can be computed as shown in figure
15.1: two (HD1 and HD2) between the reference and each probe and one
(HD3) between the two probes themselves. It is then possible to fuse the
scores, for example, in following ways:

• Using only the scores between the reference and probes, an Average

266



15.2 FUSION STRATEGIES

Reference-Probe score (referred to as ”ARP”): (HD1 + HD2)/2. Ob-
serve, that for fusing the scores no normalisation is required, since the
experimental scores stem from a single biometric system (same modal-
ity and same comparison algorithm).

• Using all three scores, an Average Reference-Probe score weighted by
the probe-probe score (referred to as ”w-ARP”): (HD1 − a ∗ HD3 +
HD2 − a ∗HD3)/(2− a), where a is estimated on a training set, so that
it maximises the biometric performance.

• Based on the probe-probe score, the reference-probe scores are either
fused using ARP or only the minimum is used (referred to as ”Min-or-
ARP”). Here, the probe-probe score functions as a quality check – if
one (or both) probes are of bad quality, then HD3 is likely to be high.
In this case, if HD3 exceeds the acceptance threshold of the biometric
system, it will therefore be better, instead of ARP, to simply use the
minimum of HD1 and HD2. Doing so will disproportionally favour
genuine transactions, by providing better chances of acceptance even
in case of one sample being of bad quality; whereas the impact on
impostor scores is expected to be negligible.

HD3

HD2

HD1

Enrolled

Probe 1

Probe 2

Figure 15.1: Single-iris dual-sample iris recognition
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15.3 Performance Evaluation

This section contains the evaluation of the dual-sample fusion schemes de-
scribed in section 15.2. In subsection 15.3.1, the used dataset and the ex-
perimental setup details are outlined, while the results are presented and
discussed in subsection 15.3.2.

15.3.1 Dataset

The experiments were performed on the CASIA-IrisV4-Interval database [3]
(henceforth referred to as ”CASIA”) and the iris corpus of the BioSecure
database [12] (henceforth referred to as ”BioSecure”), both containing im-
ages captured in near-infrared light spectrum. An overview of the datasets
is shown in table 15.1, while example images are shown in figure 15.2. Sev-
eral subjects had to be removed from the BioSecure dataset due to labelling
errors.

(a) CASIA

(b) BioSecure

Figure 15.2: Example images from the datasets

Table 15.1: Dataset overview

Dataset Subjects Instances Images Resolution
CASIA 249 395 2639 320 × 280 px

BioSecure 210 420 1680 640 × 480 px

The raw images were processed with the commonly used methods, as
shown in figure 15.3. After segmentation using the Viterbi algorithm [18],
where the iris and pupil boundaries are located, the iris textures were nor-
malised according to the rubbersheet model [5] and subsequently enhanced
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Table 15.2: Numbers of comparisons performed during experiments. (”Fu-
sion” refers to all three fusion experiments, i.e. ARP, w-ARP and Min-or-
ARP, since for each one of those the transactions numbers are identical)

Dataset Experiment Genuine Impostor

CASIA Baseline 41594 7993888
Fusion 20797 3996944

BioSecure Baseline 10080 2111632
Fusion 5040 1055816

by applying Contrast Limited Adaptive Histogram Equalization (CLAHE).
Feature extraction was performed with the Daugman-like 1D-LogGabor al-
gorithm (LG), generating iris-codes of size 512 × 20 = 10240 bits. Such
templates are compared using fractional Hamming distance with circular
shifts applied to account for sample misalignment. The implementations of
the aforementioned algorithms were provided by open-source frameworks
OSIRIS [13] and USIT [15]. The evaluation of the methods described in sec-
tion 15.2 along with a single-sample baseline were performed in verification
mode. In the experiments, all possible transactions were performed; table
15.2 shows the numbers of transactions for each experiment.

(a) Iris detection in a raw image (b) Normalised and enhanced texture

(c) 1D Log-Gabor Iris-Code

Figure 15.3: Iris recognition processing chain

15.3.2 Results

Figure 15.4 shows the receiver operating characteristic (ROC) curves of the
benchmarked approaches. The baseline is not shown, since its biometric
performance is well below that of the fusion approaches (see table 15.3).
It can be seen, that by incorporating the third comparison score (between
the two probes – w-ARP) into the score fusion, biometric performance can
be improved over that of a simple score fusion of the two reference-probe
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Figure 15.4: ROC curves

scores (ARP). It also appears that said third comparison score can be ef-
fectively used as a quality check, since the Min-or-ARP algorithm slightly
outperforms the plain score fusion strategy (ARP) and has a biometric per-
formance comparable to that of w-ARP. In figure 15.5, it can be seen that the
biometric performance of w-ARP varies strongly with the value of the a pa-
rameter. This provides strong motivation for introducing the Min-or-ARP
scheme, as a parameter-free alternative.
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Figure 15.5: Scatter plots for w-ARP scheme showing the dependence of
biometric performance on the a parameter

In table 15.3, additional metrics for benchmarking the strategies are listed.
Those are: equal-error-rate (EER), area under ROC curve (AUC) and decid-
ability (d’). The decidability is computed using the means and standard
deviation of the genuine and impostor score distributions: d′ = |µ1−µ2|√

1
2∗(σ2

1+σ2
2)

(higher values are better). This metric is useful in assessing the intrinsic de-
cidability of a biometric decision problem, although with the limitation of ig-
noring statistical moments higher than second-order [4]. It can be observed,
that the dual-sample set-ups all outperform the baseline significantly, while
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the benefits of the additional heuristics (w-ARP, Min-or-ARP) over ARP are
noticeable, especially in the significantly higher decidability values.

Table 15.3: Results

Dataset System EER AUC d’

CASIA

Baseline 0.00334 0.99938 5.88276
ARP 0.00130 0.99968 6.69575

w-ARP 0.00110 0.99969 7.07860
Min-or-ARP 0.00115 0.99968 6.74932

BioSecure

Baseline 0.04563 0.97855 3.80808
ARP 0.02698 0.98806 4.25278

w-ARP 0.02317 0.99103 4.60225
Min-or-ARP 0.02455 0.98919 4.49606

In addition to the biometric performance and decidability metrics, it is
interesting to take a look at the statistical and visual properties of the gen-
uine and impostor score distributions produced by the algorithms described
in section 15.2. Those are listed in table 15.4, while figure 15.6 shows kernel
density estimates of the distributions. Most noticeable is that the genuine
distribution for w-ARP has significantly shifted to the left, while its cor-
responding distribution has only done so slightly, which explains the im-
proved biometric performance.

Table 15.4: Distribution statistics

Dataset Type System Min Max Mean Std Skew Ex. kurt.

CASIA

Genuine

Baseline 0.076 0.484 0.242 0.051 0.377 0.390
ARP 0.090 0.484 0.242 0.045 0.383 0.506

w-ARP 0.079 0.487 0.223 0.044 0.532 0.821
Min-or-ARP 0.090 0.484 0.242 0.044 0.363 0.496

Impostor

Baseline 0.354 0.524 0.463 0.016 -0.568 0.479
ARP 0.371 0.520 0.463 0.014 -0.599 0.587

w-ARP 0.355 0.530 0.461 0.018 -0.397 0.277
Min-or-ARP 0.355 0.520 0.463 0.014 -0.607 0.616

BioSecure

Genuine

Baseline 0.064 0.497 0.266 0.072 0.972 0.846
ARP 0.142 0.491 0.266 0.065 0.959 0.875

w-ARP 0.120 0.497 0.248 0.063 1.078 1.415
Min-or-ARP 0.142 0.491 0.262 0.062 1.031 1.304

Impostor

Baseline 0.351 0.526 0.465 0.015 -0.591 0.499
ARP 0.370 0.511 0.465 0.013 -0.631 0.669

w-ARP 0.356 0.522 0.460 0.017 -0.395 0.087
Min-or-ARP 0.370 0.511 0.464 0.013 -0.639 0.667
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Figure 15.6: Kernel density estimates for the score distributions

15.4 Summary

In this paper, several methods for fusing information in single-iris dual-
probe authentication scenario were benchmarked. It has been shown that
using two probe samples can yield significant biometric performance im-
provements over the single probe sample baseline. Specifically, aside from
a simple score fusion of the two reference-probe scores, a third score – be-
tween the two probes – can be utilised. Here, two methods were tested: one
a direct re-implementation of the idea from single-fingerprint dual-probe
system of Cheng et al., where the third score is directly incorporated into
the score fusion. A second method was proposed, where the third score
acts as a probe quality check, based on which the reference-probe scores
are either fused or only the minimum is used. Both methods yield slight
improvements over the simple score fusion method in terms of biometric
performance (ROC curves) and decidability (d’). The advantage of the pro-
posed method (Min-or-ARP) over the existing weighted fusion method (w-
ARP) is that it does not require additional parametrisation (in w-ARP, the a
parameter has to be estimated on a training set to minimise the EER).

For the systems operating in verification mode, the additional computa-
tional workload of the dual-sample approach is negligible – 2 or 3 template
comparisons instead of 1, while in the identification mode, the workload
would be doubled (the score between the two probes need only be calcu-
lated once). Lastly, the dual-sample approach could be effortlessly incor-
porated into some operational systems, since they might already capture
multiple samples, e.g. for PAD.

Acknowledgements

This work was partially supported by the German Federal Ministry of Ed-
ucation and Research (BMBF) as well as by the Hessen State Ministry for

272



15.5 BIBLIOGRAPHY

Higher Education, Research and the Arts (HMWK) within Center for Re-
search in Security and Privacy (CRISP).

15.5 Bibliography

[1] CHELLAPPA, R., KRUGER, V., AND ZHOU, S. Probabilistic recognition
of human faces from video. In International Conference on Image Process-
ing (ICIP) (September 2002), vol. 1, IEEE, pp. 1–4.

[2] CHENG, X., TULYAKOV, S., AND GOVINDARAJU, V. Multiple-sample
fusion of matching scores in biometric systems. In Computer Vision and
Pattern Recognition Workshops (CVPRW) (June 2011), IEEE, pp. 120–125.

[3] CHINESE ACADEMY OF SCIENCES’ INSTITUTE OF AUTOMATION. CA-
SIA iris image database. http://biometrics.idealtest.org/,
December 2010. Last accessed: 2020–03–11.

[4] DAUGMAN, J. Biometric decision landscapes. Tech. Rep. UCAM-CL-
TR-482, University of Cambridge - Computer Laboratory, January 2000.

[5] DAUGMAN, J. How iris recognition works. Transactions on Circuits and
Systems for Video Technology (TCSVT) 14, 1 (January 2004), 21–30.

[6] DAVIDA, G., FRANKEL, Y., AND MATT, B. On enabling secure applica-
tions through off-line biometric identification. In Symposium on Security
and Privacy (May 1998), IEEE, pp. 148–157.

[7] DONG, W., SUN, Z., AND TAN, T. Iris matching based on personalized
weight map. Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) 33, 9 (September 2011), 1744–1757.

[8] GALBALLY, J., AND GOMEZ-BARRERO, M. A review of iris anti-
spoofing. In International Conference on Biometrics and Forensics (IWBF)
(March 2016), IEEE, pp. 1–6.

[9] HOLLINGSWORTH, K., PETERS, T., BOWYER, K. W., AND FLYNN, P. J.
Iris recognition using signal-level fusion of frames from video. Trans-
actions on Information Forensics and Security (TIFS) 4, 4 (December 2009),
837–848.

[10] HOLLINGSWORTH, K. P., BOWYER, K. W., AND FLYNN, P. J. The best
bits in an iris code. Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI) 31, 6 (June 2009), 964–973.

[11] JAIN, A., AND ROSS, A. Fingerprint mosaicking. In International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP) (May 2002),
vol. 4, IEEE, pp. 4064–4067.

273



15. SCORE FUSION STRATEGIES IN SINGLE-IRIS DUAL-PROBE
RECOGNITION SYSTEMS

[12] ORTEGA-GARCIA, J., FIERREZ, J., ALONSO-FERNANDEZ, F., GAL-
BALLY, J., FREIRE, M. R., ET AL. The multiscenario multienvironment
BioSecure multimodal database (BMDB). Transactions on Pattern Analy-
sis and Machine Intelligence (TPAMI) 32, 6 (June 2010), 1097–1111.

[13] OTHMAN, N., DORIZZI, B., AND GARCIA-SALICETTI, S. OSIRIS: An
open source iris recognition software. Pattern Recognition Letters 82, 2
(September 2016), 124–131.

[14] RADU, P., SIRLANTZIS, K., HOWELLS, G., DERAVI, F., AND HOQUE, S.
A review of information fusion techniques employed in iris recognition
systems. International Journal of Advanced Intelligence Paradigms 4, 3/4
(February 2012), 211–240.

[15] RATHGEB, C., UHL, A., WILD, P., AND HOFBAUER, H. Design de-
cisions for an iris recognition SDK. In Handbook of Iris Recognition,
K. Bowyer and M. J. Burge, Eds., 2 ed., Advances in Computer Vision
and Pattern Recognition. Springer, July 2016, pp. 359–396.

[16] ROSS, A., NANDAKUMAR, K., AND JAIN, A. K. Handbook of multibio-
metrics. Springer, 2006.

[17] RYU, C., HAN, Y., AND KIM, H. Super-template generation using
successive Bayesian estimation for fingerprint enrollment. In Interna-
tional Conference on Audio- and Video-Based Biometric Person Authentica-
tion (AVBPA) (July 2005), Springer, pp. 710–719.

[18] SUTRA, G., GARCIA-SALICETTI, S., AND DORIZZI, B. The Viterbi algo-
rithm at different resolutions for enhanced iris segmentation. In Inter-
national Conference on Biometrics (ICB) (March 2012), IEEE, pp. 310–316.

[19] ZIAUDDIN, S., AND DAILEY, M. N. Iris recognition performance en-
hancement using weighted majority voting. In International Conference
on Image Processing (ICIP) (October 2008), IEEE, pp. 277–280.

274



Part IV

Conclusions

275





Chapter 16

Summary of Results

Abstract

In this chapter, the research questions (see section 2.1) are answered
by summarising the insights and results from the research articles con-
tained in this thesis.

16.1 Research Question 1

Most of the research articles in this thesis concern themselves with this ques-
tion. It is indeed possible to vastly reduce the computational workload in
biometric identification through various methods at different levels of the
biometric data processing pipeline. For the truly large gains in computa-
tional efficiency there usually (albeit not always, see e.g. chapter 10) fol-
lows a slight trade-off with biometric performance. Nevertheless, the results
show that reduction down to less than 1% of the baseline (exhaustive search)
computational workload is feasible before the impact on the biometric per-
formance becomes prohibitive.

16.2 Research Question 2

The current state-of-the-art in this thesis’ research area has been described
and harmonised:

• In chapter 4, a biometric characteristic independent taxonomy of ap-
proaches for computational workload reduction in biometric identifi-
cation systems has been developed based on a comprehensive survey
of the scientific literature.

• Metrics, as well as experimental protocol prerequisites for modality
and method agnostic reporting of computational workload reduction
have been developed (see chapter 4 and appendix A) and they are cur-
rently being considered for inclusion in the revision project of ISO/IEC
19795-1 [2].
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Some other aspects relevant to the operation of large-scale identification
systems have also been investigated:

• In chapter 13 and [3], the impact of eyeglasses on iris recognition sys-
tems is assessed for near-infrared and visual wavelength images. Fur-
thermore, methods for detection of glasses in such images have been
developed.

• In chapter 14, a generator of visually and statistically realistic synthetic
iris templates (Iris-Codes) has been conceptualised and implemented
in order to facilitate creation of large synthetic databases which can be
used e.g. for system stress testing and evaluation.

16.3 Research Question 3

Most of the existing methods surveyed in chapter 4 do not incorporate in-
formation fusion. Several research articles contained in this thesis address
this matter:

• In chapter 5, an auxiliary feature (fingerprint type) has been utilised to
perform multi-instance binning.

• In chapter 6, a multi-instance fusion (left and right iris) has been per-
formed on the feature level, prior to organising the templates into a
hierarchical search structure (see also appendix A).

• In chapter 10, a method of candidate short-list filtering which works
with an arbitrary number and type of biometric characteristics and
representations has been presented.

• In chapter 11, information fusion on the signal level has been per-
formed, whereby biometric information from multiple data subjects
has been fused into one image to enable a pre-selection step using the
fused data.

16.4 Research Question 4

Although many methods of computational workload reduction are tied to a
specific feature representation (i.e. they take advantage of its intrinsic prop-
erties), it is possible to create methods which can be used prior to the feature
extraction or even irrespective of the chosen feature representation. This has
been demonstrated in several research articles contained in this thesis:

• The methods presented in chapter 5 and 11 operate with raw samples
(images – i.e. irrespective of the feature representation) to facilitate the
computational workload reduction.
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• The method presented in chapter 10 requires, irrespective of the cho-
sen type of biometric characteristic and feature representations thereof,
only the comparison scores and ranked candidate lists. The method
filters the candidate lists in a cascading framework, thereby resulting
in successively smaller candidate short-lists and a reduced computa-
tional workload.

• In chapter 12, the iris images have been pre-aligned (i.e. prior to seg-
mentation and feature extraction), which results in a smaller compu-
tational workload associated with the sample alignment typically per-
formed on the feature vectors (i.e. Iris-Codes).

16.5 Research Question 5

Data security and privacy are important in the context of biometric systems.
Previous state-of-the-art work on computational workload reduction has
not addressed this aspect. Two research articles in this thesis are devoted
to this topic:

• In chapter 7, a row-based permutation has been applied to the feature
vectors, which have subsequently been organised into a hierarchical
search structure (see also appendix A). The resulting system fulfils the
privacy and security objectives of ISO/IEC 24745 [1] by ensuring the
unlinkability, irreversibility, and renewability of the protected tem-
plates (i.e. biometric references). Furthermore, the proposed system
significantly reduces the computational workload, while maintaining
a comparable biometric performance w.r.t. to the baseline system.

• In chapter 9, a general purpose method (homomorphic encryption)
has been used to design a protocol which fulfils the aforementioned
privacy and security objectives in a biometric identification system.

16.6 Summary

Computational workload constitutes one of the key challenges and design
considerations w.r.t. biometric identification systems. With the increasing
size of a biometric enrolment database, the naı̈ve retrieval method (i.e. ex-
haustive search) becomes impractical, especially in terms of the needed com-
putational effort, which in this case grows linearly with the number of en-
rollees. As the number, size, and scope of the worldwide deployments of
biometric identification systems steadily increases, it necessitates research
into the topic of computationally efficient biometric identification. A num-
ber of methods exist in this field; they can be coarsely divided into two cat-
egories (see chapter 4 for a more fine-grained taxonomy):
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Workload reduction: Methods which seek to minimise the required com-
putational effort (e.g. by reducing the search space) associated with
the biometric identification transactions.

Acceleration: Methods which seek to optimise the software (e.g. implemen-
tations or level of abstraction of the algorithms) and/or hardware (e.g.
distributed processing or reconfigurable computing), thereby speed-
ing up the biometric identification transactions, but not actually re-
ducing the required computational effort.

This thesis concerned itself with the first category. Specifically, a number
of pre-selection and feature transformation methods were developed, con-
centrating on incorporating additional constraints and extensions, which
have not previously been sufficiently addressed in the scientific literature,
such as:

• Being agnostic w.r.t. type of biometric characteristic and/or their fea-
ture representations.

• Being applied prior to feature extraction.

• Facilitating or directly utilising biometric information fusion.

• Including biometric template protection.

Additionally, the previous research in this field has been surveyed and
systematised into a biometric characteristic agnostic taxonomy. This, as well
as the propositions listed above, formed the core of the research questions
addressed in this thesis. The results of the individual research articles in
this context have been outlined in sections (16.1–16.5) dedicated to each of
the five individual research questions, respectively. Summarising the points
made in those sections, all five research questions posed in section 2.1 have
been answered positively.

The issues pertaining to computational workload in biometric identifica-
tion systems can be expected to remain an active focus of future research. A
number of promising avenues exist in this area; several of those are briefly
outlined and discussed in chapter 17.
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Chapter 17

Future Work

Abstract

This chapter outlines some avenues of potential future research in
the areas addressed by this thesis.

17.1 Scalability

The publicly available datasets for biometric research are relatively small
(cf. tables 2.1 and 4.1). Furthermore, the acquisition environments in such
datasets may or may not correspond to the real conditions in the operational
systems. Therefore, there exists a need to validate (e.g. in terms of scalabil-
ity) the academic approaches with real, large-scale, operational data. As per-
sonal biometric data is currently legally (i.e. due to GDPR [2] in the European
Union) categorised within “special categories” of personal data (formerly,
“sensitive personal data”), it is subject to numerous protections, thereby of-
ten making data sharing legally and practically inconvenient. Those difficul-
ties notwithstanding, for one of the research articles in this thesis (chapter 5),
anonymised operational data (albeit not the images themselves) was kindly
provided by the German Federal Police (Bundeskriminalamt)1 and used to
validate the approach proposed in the aforementioned research article.

17.2 Unconstrained Data

The research in this thesis concentrated on computational workload reduc-
tion for cooperative data, i.e. data with relatively high quality (with a possi-
ble/arguable exception of chapter 5, which used a scanned/rolled-ink fin-
gerprint dataset), such as that used in the national identity registries or bio-
metric passports. However, depending on the operational scenario, such
data may not be available, e.g. in surveillance (see e.g. [4]) or mobile data
acquisition (see e.g. [1]). The development of computational workload re-
duction methods specifically tailored to such data would definitely be of

1https://www.bka.de/EN
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interest. An example of a practical application, where computationally ef-
ficient biometric identification would be important could be a quick (real-
time) criminal blacklist check for images acquired by a police officer in the
field using a mobile device (e.g. during a routine traffic control).

17.3 Deep Learning

Deep learning has been an extremely active field of research in recent years,
with many impressive achievements in various domains, including com-
puter vision and pattern recognition. Biometrics has also already experi-
enced the benefits of deep learning methods, e.g. the breakthrough biometric
performances in facial recognition. Although certain inherent challenges ex-
ist (e.g. model and decision transparency, explainability, and interpretability
– see e.g. [6]), the deep learning methods are being embraced in many re-
search areas within biometrics.

In the context of the biometric identification, deep learning could also be
of interest. For example, one might investigate challenges such as learning
to map variable-length feature vectors into fixed-length ones and learning
compact (e.g. binary and/or short) encodings from the extracted features.
Those could then be used directly for the template comparisons with effi-
cient comparators or as a basis for indexing (or other) algorithms for search
space reduction. The recent thesis of Schuch [5] has addressed some of those
topics for the fingerprint-based biometric identification systems. The results
presented there clearly show the potential of deep learning in this context
and invite research in this field (also for other types of biometric character-
istics).

17.4 Standardisation

First steps towards standardising the topic of computational workload in
biometric systems have been described in appendix A, while several perti-
nent issues have also been discussed in chapter 4. Based on those, contri-
butions to ISO/IEC 19795-1 [3] have been made, thereby making the SC37
committee aware of the issue and providing a platform for subsequent dis-
cussions. Parts of the comments have already been accepted for inclusion
in the standard, while others are still under consideration. As such, and
due to standardisation being an ongoing process, a continuous engagement
with the works of the committee is necessary to ensure that the matter of
computational workload (and the reduction thereof) in biometric systems is
adequately represented in the standard.
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Appendix A

Bloom Filter-based Search Structures
for Indexing and Retrieving Iris-Codes

Abstract

Large-scale biometric deployments are becoming ubiquitous. The
computational workload of the conventional retrieval method, which
requires performing 1:N comparisons in the identification mode, quickly
becomes impractical for large systems. This issue necessitates the re-
search into algorithms for efficient biometric identification. In recent
years, many such approaches have been proposed, but the scalability
of the proposed systems is often questionable. Furthermore, the lack
of a unified methodology for biometric workload reduction reporting
often makes a direct benchmark or even a thorough evaluation of the
proposed schemes cumbersome.

In this article, we propose an iris indexing scheme based on Bloom
filters and binary search trees. With the help of a statistical model,
the system is shown to be theoretically scalable for an arbitrary num-
ber of enrollees. We evaluate this system empirically on a combined
database from numerous publicly available datasets, containing a total
of 11,936 iris images from 1477 instances. The system tested in an open-
set identification scenario maintains the biometric performance yielded
by an iris-code 1:N baseline - a true positive identification rate (TPIR) of
approximately 98%, measured at 0.1% false positive identification rate
(FPIR). These results are achieved at less than 10% of the baseline work-
load. In a proof-of-concept multi-iris indexing experiment, the TPIR
measured at 0.1% FPIR is increased to over 99%, while the workload
remains the same as in the case of the single-iris system above. We seek
to report our experimental results clearly and exhaustively; in order to
do so, we define a number of prerequisites necessary for a transparent
and comprehensive methodology of reporting biometric workload re-
duction results.

Addressed research question(s): RQ1, RQ2
Reference: DROZDOWSKI, P., RATHGEB, C., AND BUSCH, C. Bloom filter-
based search structures for indexing and retrieving Iris-Codes. IET Biomet-
rics 7 (May 2018), 260–268.
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AND RETRIEVING IRIS-CODES

A.1 Introduction

In recent years, several large-scale biometric systems have been introduced
worldwide. By far the largest of these is the Indian National ID project,
which at the time of this writing has successfully enrolled over 1 billion sub-
jects [28] with biometric data from iris, face and fingerprints. Two main
challenges associated with large-scale biometric identification are the com-
putational cost and the risk of false positives. A naı̈ve, brute-force approach
is to perform template comparisons between the probe and all enrolled ref-
erence templates (i.e. 1:N comparisons). Even with excellent hardware and
reliance on parallelism, the computational cost quickly becomes prohibitive.
Similarly, the possibility of false positive occurrences quickly becomes unac-
ceptable. In [4], Daugman shows the probability of at least one false positive
(PN ) occurring in a identification scenario to be calculated using equation
(A.1), where N is the number of enrolled subjects and P1 the false positive
probability of a one-to-one template comparison.

PN = 1− (1− P1)
N (A.1)

A biometric system which performs well in the verification mode (i.e.
has a low P1) is not necessarily suitable for the much more demanding
identification mode. Observe, that for values of P1 which are acceptable
for biometric verification, the value of PN might very quickly become unac-
ceptably high as the number of enrolled subjects N increases. The equation
ignores other system errors (e.g. FTA).

Following Daugman’s approach [5], which is the core of most public op-
erational systems, four major modules constitute an iris recognition system:
(1) image acquisition, where most current deployments require subjects to
fully cooperate with the capture device in order to capture images of suf-
ficient quality; (2) pre-processing, which involves a detection of inner and
outer iris boundaries, a detection of eyelids, an exclusion of eyelashes as
well as contact lens rings, a scrubbing of specular reflections and an estima-
tion of quality factors. Subsequently, the iris is mapped to dimensionless
coordinates, i.e. a normalised rectangular texture, and an according noise
mask is stored; (3) feature extraction, in which a two-dimensional binary
feature vector consisting of WIC × HIC bits, i.e. iris-code, is generated by
applying adequate filters to the pre-processed iris texture. This binary data
representation enables compact storage and rapid (4) comparison, which is
based on the estimation of Hamming distance (HD) scores between pairs of
iris-codes. In the comparison stage circular bit shifts are applied to iris-codes
and HD scores are estimated at K different shifting positions, i.e. relative tilt
angles, resulting in WIC ∗HIC ∗K bit comparisons. The minimal obtained
HD , which corresponds to an optimal alignment, represents the final score.
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Despite the rapid comparison and high resilience against false matches
offered by the iris-code representation, the sheer scale of the major biomet-
ric deployments makes biometric workload reduction a very relevant and
important research topic. Recently, a promising workload reduction ap-
proach employing a Bloom filter-based representation of iris-codes and bi-
nary search trees has been proposed in a proof-of-concept study [23]. In this
article, we further analyse and expand upon said idea.

A.1.1 Contribution of Work and Article Organisation

The remainder of this article is organised as follows:

1. The related works in the area of biometric workload reduction for iris
recognition are outlined. (section A.2)

2. A proposal for a standardised way of biometric workload reduction
reporting is made. (section A.2)

3. A basic Bloom filter-based system for biometric indexing is described
in detail. This system forms the basis of the work performed for this
article. (section A.3)

4. A general model for Bloom filter-based indexing is introduced along
with a number of improvements for the basic system; those include
scalability to an arbitrary number of enrollees and a first of its kind
attempt of multi-iris indexing. (section A.3)

5. The experiment methodology and results are presented and discussed,
along with future work items and concluding remarks. (sections A.4 -
A.6)

A.2 Workload Reduction in Iris Biometric Systems

A.2.1 Categories

In this work, we distinguish between three main categories of workload re-
duction approaches for iris biometric identification, as listed below. Other
biometric modalities often use similar approach types; however, as of this
writing, there exists no generalised, modality-agnostic, categorisation of work-
load reduction methods.

• Cascading Algorithms: a computationally efficient algorithm finds a
short-list of most likely candidates. A slower, more accurate algorithm
then runs over only this short-list.
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• Binning: extraction of one or more distinguishing features from the
biometric references and organising the enrolled database into ”bins”.
During an identification transaction, template comparisons are per-
formed only in the bin to which the probe has been classified.

• Indexing: approaches that strive for space search reduction. Often,
hierarchical and/or probabilistic data structures are utilised.

A.2.2 Related Works

Table A.1 provides a summary of related works on the topic of biometric
workload reduction for the iris modality.

Table A.1: Related works (results as reported by the authors, or if unavail-
able, extracted from the presented plots)

Category Method Dataset Biometric performance Workload reduction Remarks

Cascading Algorithms

Gentile et al. [9] MMU TPIR 93% 12-fold reduction
high pre-selection
error rate (limited
TPIR)

Konrad et al. [16]
CASIA-V1 92% IR, 0% FAR

70-80% time reductionCASIA-V3-Interval 89% IR, 0.85% FAR low alignment cost
MMU 79% IR, 0.85% FAR

Rathgeb et al. [25] CASIA-V3-Interval 97.2-99.2% RR-1 5% bit comparisons early rejection of un-
likely templates

Binning

Qiu et al. [22] CASIA-V2, UPOL, UBIRIS 86% CCR number of classes

Ross et al. [26] UPOL 0% EER 30% bits used tested on very high
quality images

Sun et al. [27]
CASIA-V4 0% EER

number of classesND 0.9% EER
Clarkson 0.54% EER

Indexing

Mukherjee et al. [19] CASIA-V3 80-84% hit rate 8-30% penetration rate first work on iris in-
dexing

Gadde et al. [8] CASIA-V3 99.8% hit rate 17.2% penetration rate

Hao et al. [10] UAE 0% FAR, 0.64% FRR 0.006% penetration rate

twice the original
storage required;
tested on very high
quality images

Jayaraman et al. [14] UBIRIS 98.7% hit rate 7.1-8.3% penetration rate low quality images

Mehrotra et al. [18]
CASIA 1.6-43.6% bin miss rate 39.96-0.63% penetration rate
BATH 4-72% bin miss rate 26.14-0.06% penetration rate
IITK 1.5-44% bin miss rate 41.4-0.2% penetration rate

Proença [21] CASIA-V4-Thousand 94% TPIR at 0.1% FPIR 2.5− 7.5% av. penetration rate low quality imagesUBIRIS 85% TPIR at 10.0% FPIR 38− 65% av. penetration rate

Rathgeb et al. [23] IITDv1 same or better as baseline O(logN) penetration rate small test dataset
(∼200 subjects)

Despite being a relatively new topic, many approaches for reducing work-
load in iris identification systems have been proposed. While the results of-
ten appear promising, in many cases the way the results are reported is not
following an uniform, standard methodology. Specifically, one can observe
many different metrics in which the authors report the workload reduction.
Furthermore, many of the schemes have hidden costs or limitations (espe-
cially in terms of scalability), which are sometimes not explicitly stated or
explored. Overall, these issues often make the direct benchmark and scala-
bility assessment impractical. This leads us to presenting, in the next subsec-
tion, a proposal for standardising the way of reporting workload reduction
for biometric identification systems.

A.2.3 Workload Reduction Reporting

Unlike the biometric performance reporting (see [12]), the current method-
ology for biometric workload reduction reporting is not standardised. The

292



A.2 WORKLOAD REDUCTION IN IRIS BIOMETRIC SYSTEMS

aforementioned standard does contain metrics related to workload reduc-
tion (e.g. penetration rate), however, their definitions do not reflect the total
workload faced by an identification system. This has lead the researchers
to adapt many different ways of reporting the workload reduction achieved
by their system (table A.1). It is therefore evident, that the biometric re-
search community could greatly benefit from a clear, transparent and uni-
fied methodology. Below, we present a set of abstract, high-level prerequi-
sites (in bold typeface) necessary for a clear and unambiguous reporting of
workload reduction in biometric identification systems. Those prerequisites
are universal and modality-agnostic. Using the regular typeface, the ratio-
nale for each of the prerequisites is provided and, where applicable (particu-
larly in P1 and P6), possible concrete metrics for an iris system are proposed.
This topic is of interest to the research community – we thus create a solid
starting point for further discussions and deliberations in the community
and at ISO/IEC JTC 1/SC 37 Biometrics.

P1 The baseline workload should be explicitly stated. This is to be ex-
pressed in terms of template (e.g., the iris-code) size in bits, with the
alignment compensation and other costs accounted for, the number
of enrolled subjects and the penetration rate (defined as a fraction of
the number of necessary template comparisons and the number of en-
rolled templates - in case of the baseline, the penetration rate is 1.0,
since no optimisations occur) in an open-set identification scenario.
Otherwise, there is no clear and direct point of reference for the work-
load of the proposed system.

P2 The baseline biometric performance of a state-of-the-art algorithm should
be explicitly stated, in a manner described in the ISO/IEC interna-
tional standard 19795-1 on biometric performance testing and re-
porting [12]. In particular, of interest is the biometric performance
of an open-set identification scenario, expressed with the true positive
identification rate (TPIR) and false positive identification rate (FPIR)
plotted as an ROC curve. Otherwise, akin to P1, it will not be possi-
ble to establish potential biometric performance costs incurred by the
workload reduction of the proposed scheme.

P3 The workload of the proposed scheme is to be stated in the manner
described in P1. If these parameters vary (e.g. due to different scheme
configurations or non-determinism), then a range or an upper bound
should be given. If a pre-selection step is involved, then it should be
accounted for within the above parameters; if that is not feasible, then
its cost should be stated separately.

P4 The biometric performance of the proposed scheme should be reported
according to the ISO/IEC 19795-1 standard [12]. In particular, of inter-
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est is the biometric performance of an open-set identification scenario,
expressed with the true positive identification rate (TPIR) and false
positive identification rate (FPIR) plotted as an ROC curve. This is nec-
essary, because without regard for biometric performance, arbitrarily
high workload reduction can be claimed. A scheme will, for the most
part, only be viable if the biometric performance does not become sig-
nificantly lowered; in any case, the trade-offs should be mentioned.

P5 The additional costs and benefits of the proposed scheme should be
listed (e.g. offline costs, storage requirements, alignment invariance).
It should also be stated whether or not the template comparisons can
be performed using fast CPU instructions (bitwise operators in partic-
ular). This is important to allow a general, well-informed evaluation of
the system and the trade-offs associated with the workload reduction.

P6 The total workload for both the baseline and the optimised system
should be computed. By applying equation (A.2), the total work-
load reduction of the proposed system can be succinctly and precisely
stated as a fraction (�) of the workload of the baseline (e.g. ”� = 0.4
of the baseline workload”) in the worst and average case. Using this
metric to summarise the results is advantageous, as it provides the
readers with a single value, with which they can immediately and reli-
ably assess the workload reduction conferred by the proposed system.
The reasoning behind this requirement is including all the workload
related variables in for the sake of accuracy and transparency.

Formula (equation (A.2)) to describe the system workload in a single
lookup during an identification scenario (W) is derived from the parameters
stated in the requirements above: N - the number of subjects enrolled, p -
the penetration rate and C - the cost of a single step (i.e. cost of a one-
to-one template comparison). In case of iris recognition, the templates are
represented as binary vectors; the cost of a single step can be then expressed
in terms of bit comparisons, so C = WIC ∗HIC ∗K.

W = N ∗ p ∗ C (A.2)

The results in this article will be presented in conformance with the method-
ology proposed in this section.

A.3 Methodology

In [23], a proof-of-concept study of an iris identification system based on
Bloom filters and binary search trees is presented. Its basics are briefly de-
scribed in subsections A.3.1 and A.3.2, since that system forms the founda-
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tion for the work performed for this article. In subsection A.3.3, a general
model for Bloom filter-based indexing is introduced.

A.3.1 Bloom Filter

A Bloom filter [1] is a probabilistic data structure for the purpose of efficient
membership queries in one against set retrievals. Bloom filters convince by
successful application in a variety of scenarios [2]. Recently in [24], the ap-
plicability of Bloom filters to iris-based biometrics has been assessed with a
proposed template protection scheme. In our article, the Bloom filter-based
representation is used for the purpose of a scalable and efficient biometric
indexing scheme for open-set identification, vastly extending on the proof-
of-concept work in [23].

A Bloom filter is a binary vector of fixed length. This can also be repre-
sented as a set of integers (i.e. activated indexes). Data addition proceeds
by applying transformation/mapping function(s) to the data and inserting
the resultant items into the filter (i.e. activating bits at the according posi-
tions). The retrieval is performed by applying the same function(s) to the
probe data and comparing if the produced items match with the ones stored
in the reference filter. In its original form, this concept considers only full
matches (binary yes/no decision); however, it can be extended for fuzzy
matching by employing a (dis)similarity metric between two filters. Finally,
it is worth noting, that two or more Bloom filters can be seamlessly com-
bined using a set union. This useful property along with the sparseness of
the data representation form the basis of the system described in the next
subsection.

A.3.2 Bloom Filter-based Indexing

The process of transforming the iris-code templates to a Bloom filter-based
representation is as follows: First, the two-dimensional iris-code is divided
into l blocks of equal size, WB × HB , which are then inserted into Bloom
filters. Instead of using multiple hash functions as in the original Bloom
filter concept, a single transformation function is applied. It interprets the
columns (c1, . . . , cWB

) in a block as binary numbers, converts them to base-
10 integers and inserts those into the Bloom filter corresponding to that
block (i.e. b[int(ci)] = 1). The column values are obviously always in range
0 ≤ int(ci) < 2HB . Thereby, the resulting biometric template (denoted B)
is a fixed-length (l) sequence of Bloom filters (b1, . . . ,bl). A dissimilarity
score of two such biometric templates is calculated as an average of pairwise
Hamming distances between corresponding Bloom filters in the sequences,
as shown in equation (A.3), where B and B′ denote the reference and probe
template, respectively.
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DS (B,B′) =
1

l

l∑

i=1

ds(bi,b
′
i)

ds(b,b′) =
|b⊕ b′|

(|b|+ |b′|)

(A.3)

Where | · | represents the population count, i.e. Hamming weight. Ob-
serve, that like in the case of the iris-code, the comparator utilises efficient
bitwise instructions and can be trivially parallelised. It is also worth noting,
that this data representation is, to a certain degree, rotation invariant, at the
cost of loss of local information and loss of information about the number
of identical columns in a block. The block size determines the sparseness
of the representation; we define the level to which a filter is filled as the
number of values present in the filter as a fraction of the number of possible
values in the filter (i.e. |b| /2HB ). In order to identify suitable configurations
of WB × HB for tree construction, we estimate the level to which a filter is
expected to be filled when holding just one iris-code template. The results
are shown in table A.2.

Table A.2: Approximation of filling a Bloom filter resulting from a block of
height HB and width WB with random data (lower values reflect higher
data representation sparseness and fewer potential collisions)

HB
WB 8 16 32 64
5 0.22 0.4 0.64 0.87
6 0.12 0.22 0.4 0.64
7 0.061 0.12 0.22 0.39
8 0.031 0.061 0.12 0.22
9 0.016 0.031 0.061 0.12

10 0.0078 0.016 0.031 0.061
11 0.0039 0.0078 0.016 0.031
12 0.0020 0.0039 0.0078 0.016

The presented values come from random data and thus represent an up-
per bound. A model accounting for the characteristics of an iris-code is pre-
sented in the next subsection. Nevertheless, this simple estimation provides
a good intuition regarding the relation between block size, filter size and its
sparseness. As will be demonstrated later, the data representation sparse-
ness is a crucial factor for the system accuracy. Before expanding upon this
matter, we describe the system operation in the identification mode.

A binary tree data-structure is constructed from all the enrolled tem-
plates. First, the tree root is created from all enrolled templates (i.e.

⋃N
i=1 Bi),
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while the children of the root node each contain half of the enrolled tem-
plates (i.e.

⋃N/2
i=1 Bi and

⋃N
i=N/2+1 Bi). The union of templates corresponds

to ORing the individual binary filters. This process is repeated for node cre-
ation at subsequent tree levels, until at the end, the individual templates
(B1, . . . ,BN ) are inserted as tree leaves. Since the scheme inherently re-
quires no specific insertion ordering, the templates are always inserted into
the next available position in the tree. In other words, the insertion does not
occur at a deeper level until the previous one is completely filled, thus en-
suring that the tree always remains balanced and its height is �log2(N)+ 1�.

The lookup in an identification scenario begins at the tree root. The tree
is traversed by calculating the dissimilarity scores (equation (A.3)) between
the probe template and two nodes at the next tree level; subsequently choos-
ing the one with lower score until a leaf is reached. The key idea is to take
advantage of a sparse data representation in the nodes - in that case, for
the probe comparisons against the tree DSgenuine � DSimpostor generally
holds true. In other words, the genuine probes will be able to traverse the
tree using the correct path to reach a matching leaf template. At the leaf,
a final decision is made based on an acceptance threshold. The complexity
class of a single lookup is O(logN). Note, however, that there is also a non-
trivial constant factor: for each step, the scores at both child nodes have to
be computed in order to make a traversal decision. Thus, while still of loga-
rithmic complexity, the actual number of template comparisons per lookup
is 2∗ logN −1. The tree construction and item retrieval processes are shown
in figure A.1.

In a proof-of-concept study [23], this system has shown promising re-
sults both in terms of biometric performance and workload reduction. How-
ever, the scalability of the scheme has, until now, not been assessed. The
obvious limitation of the basic scheme is lack of support for a large num-
ber of enrollees. As more subjects are added to the single tree, the data
representation at the top tree levels will lose its sparseness, thus decreas-
ing the difference between the genuine and impostor scores (i.e. eventually
DSgenuine �� DSimpostor at the top tree levels). The lack of large difference
between genuine and impostor scores impairs the ability to make correct
traversal direction decisions for genuine probes, thus yielding a severe neg-
ative impact on the rate of true positives. In other words, it becomes increas-
ingly more difficult to distinguish between genuine and impostor probes as
the sparseness of the data representation diminishes.

To summarise, we are interested in being able to pinpoint when a Bloom
filter reaches its capacity and is unable to accommodate more templates
without accuracy loss and how the system design can be altered to be able
to accommodate more enrollees. These two matters are explored in the fol-
lowing sections. They introduce a statistical model and implementation im-
provements for Bloom filter-based indexing, which ensure that the scheme
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Figure A.1: Indexing and retrieval in the Bloom filter-based system. In this
case, the retrieval follows the bold path down to a leaf, where the final deci-
sion is made.

can be theoretically applied to an arbitrary number of enrolled subjects.

A.3.3 Generic Model for Bloom Filter-based Indexing

A Bloom filter-based template can be equivalently represented as a sequence
of sets of unique integer values within a certain range. The integer values
then correspond to activated indices in the filters, which are obtained via a
simple transformation shown earlier in this section. For the purpose of the
model, the set-based representation is used in order to simplify the argu-
ment and notation. During an authentication, a pairwise comparison of the
sets from probe and reference templates takes place. Given the assumption
that all sets for a given WB × HB configuration exhibit similar characteris-
tics, for the purposes of the model, the discourse is simplified to looking at
a single set of integers (i.e. one member of the sequence of sets).

Let b denote a Bloom filter created from an iris-code block of size WB ×
HB . Assuming that all values in the block are mutually independent and
drawn from a uniform distribution, then:

b =
{
x ∈ N0 | 0 ≤ x < 2HB

}
, |b| = 1−

(
1− 1

2HB

)WB

(A.4)

However, iris-code columns are not mutually independent - neighbouring
columns have a high probability of being equal. This is partly due to the nat-
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ural correlation in the iris (e.g. radial furrows) and partly due to the nature
of the commonly used iris feature extractors, and comprehensibly analysed
in the recent work ”Information Theory and the IrisCode” [6]. Due to said
data correlation, a block of data from an iris-code will have fewer unique
values than shown in the equations above. Let ε denote the difference be-
tween expected number of duplicate values in an iris-code and randomly
generated, mutually independent values (i.e. ε will be subtracted from the
value of WB in the above equation). ε varies depending on parameters such
as the dataset itself, feature extractor and block sizes. It can be readily ap-
proximated using a training set, or potentially by a more elaborate analysis
of the nature of an iris-code (see e.g. [15]).

The equations above can be used for estimation of a filter containing a
single template (recall table A.2). By extension of the above reasoning, a
root of a Bloom filter template tree can also be modelled as a set of unique
integers. The root (R) consists of r1 . . . rl filters and is created by taking the
union of multiple Bloom filter templates. As the overall model is simplified
to consider only a single item in a template, a tree root model can be denoted
as shown in equation (A.5).

ri =

N⋃

i=1

bi (A.5)

It follows trivially, that
∑N

i=1 |bi| is the expected number of non-unique
items in ri. However, it is necessary to account for the collisions; the ex-
pected number of unique items in a root can be estimated as shown in equa-
tion (A.6).

|ri| =
(
1−

(
1− 1

2HB

)N∗(WB−ε)
)

∗ 2HB (A.6)

As a concrete example, consider the following system configuration: WB =
16, HB = 8, ε = 8 and N = 25. Using above equation, the expected number
of unique items is |ri| ≈ 139, corresponding to the filter being around 54%
full.

The final step is estimating the overlap between ri and an arbitrary, ran-
dom (impostor) Bloom filter b. This simply means computing the expected
cardinality of a set intersection of these two. Let O denote this overlap:

O = |ri ∩ b| (A.7)

The probability of the expected overlap outcome follows a hypergeomet-
ric distribution:
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P (O=o) =

(|b|
o

)(
2HB−|b|
|ri|−o

)
(
2HB

|ri|
) (A.8)

This distribution can be used to validate the fit of the model to real data.
The mean of above distribution will be used where a single number metric
of tree root filling is needed instead of an entire distribution. Let Θ denote
said metric.

Θ = |ri| ∗
|b|
2HB

(A.9)

Later on in this article, the model’s correspondence with real data will be
shown and it will be demonstrated how the model can be used to identify
viable configurations of the Bloom filter-based system.

A.3.4 Scalable System

As has been shown earlier, the number of enrolled subjects that can be ac-
commodated by the basic, single-tree scheme is severely limited due to over-
filling of the nodes near the top of the tree. The single-tree scheme can be
trivially extended to store the enrolled templates in multiple (T ) trees in-
stead of one, thereby alleviating the overfilling issue. By doing so, an arbi-
trarily large number of subjects can be accommodated. This system can be
operated in two modes:

1. Simple During a lookup, the constructed trees are successively tra-
versed. The final decision can be made either once the first candidate
identity is found or once all the trees are traversed.

2. Selective The tree roots are utilised in a pre-selection step. From the T
constructed trees, a subset of t most promising trees (t � T ) is selected
based on the dissimilarity scores between the probe and tree roots -
DS (R1,B

′), . . . ,DS (RT ,B
′). The t chosen trees are then traversed as

described in the ”simple” mode.

The penetration rate of the proposed system in worst case is determin-
istic as shown in equations (A.10) and (A.11). On average, a match will be
found after considering approximately half of the templates/trees, thus re-
ducing the results of below equations by a factor of 2. Observe also, that in
the selective traversal scheme, this factor is likely to be larger, since trees are
traversed in descending order of likelihood of finding a match.

psimple =

{
T∗(2∗(log N

T −1))

N if T < N
2

1.0 otherwise
(A.10)
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pselective =

{
T+t∗(2∗(log N

T −1))

N if T < N
2

1.0 otherwise
(A.11)

Figure A.2 visualises above equations. The x-axis is normalised w.r.t.
the number of enrolled templates. Note, that values for T/N larger than
1/4 are only plotted for completeness - they do not make much sense as
a system configuration, since they correspond to performing a brute-force
search among the individual Bloom filter-based templates. The theoretical
penetration rates for the proposed system are very low - compare that to the
naı̈ve iris-code baseline with a penetration rate of 1.0 and 0.5 in worst and
average case, respectively.

Figure A.2: Lookup in the Bloom filter-based system

Finally, recall (subsection A.3.2) that when a tree is traversed, both child
node scores need to be calculated and compared at every level. One can take
advantage of the fact that genuine score sequences are expected to decrease
as the tree is traversed and make a quick decision about the traversal direc-
tion. A simple heuristic is proposed: calculate the score for one child node
first and if the score of the first child node is lower than its parent, then
this node is immediately selected as the correct traversal direction. While
the factor of 2 is not entirely eliminated, its non-deterministic decrease is
substantial.

A.3.5 Multi-Iris Indexing

In this section, an early study into feasibility of multi-iris indexing is pre-
sented. Although, in itself, multi-iris biometrics (possible due to the mutual
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independence of irides from the left/right eye of the same subject) is not a
new idea, best to the authors’ knowledge, it is the first such attempt in the
scientific literature for biometric indexing schemes. The proposed approach
is based on the Bloom filter template representation and a feature level fu-
sion of two irides from a single subject upon enrolment and prior to an au-
thentication transaction. Let BM denote a multi-iris template of a subject. It
consists of the left eye template (BL) and the right eye template (BR) fused
together, as shown in equation (A.12). In the concrete implementation, this
is simply an element-wise union of two Bloom filter sets.

BM = BL ∪BR (A.12)

With this scheme, one can expect a drop in the false positive identifica-
tion rate and an increase in the true positive identification rate - overall a
biometric performance superior to that of a standard Bloom filter-based sys-
tem, which uses only a single iris per subject. Observe also, that the multi-
iris system works in precisely the same way as described earlier in section
A.3; the only change and additional, negligible, computational cost is the
template fusion.

A.4 Experimental Setup

Table A.3 shows the datasets selected for the system evaluation in this work,
while figure A.3 shows example images from the chosen datasets.

Table A.3: Evaluation dataset overview

Dataset Instances Images Resolution Av. iris diameter Quality
CASIAv4-Interval [3] 395 2639 320x280 px ∼210 px High

IITDv1 [17] 448 2240 320x240 px ∼205 px High
Biosecure [20] 420 1680 640x480px ∼225 px Medium

ND-Iris-Template-Aging1 [7] 214 5377 640x480px ∼250 px High

Above data has been merged into one large dataset. The purpose of this
is a higher number of enrolled subjects and a larger number of impostor
transactions compared to the proof-of-concept study [23]. Henceforth, this
dataset will be referred to as ”Combined”. The CASIAv4-Thousand dataset
was also considered, but was not used, since only just over half of the seg-
mented images had more than 70% usable iris area (metric defined in [13]);
furthermore, in many images, the subjects are wearing glasses. Thus, in lieu
of the feasibility of high-quality data acquisition nowadays and a specialised
work concerning degraded data (e.g. [21]), it was deemed more interesting
to work with biometric data of high quality. Nevertheless, some images had

1Only a single point in time from the dataset was used.
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(a) CASIAv4-Interval

(b) IITDv1

(c) Biosecure

(d) ND-Iris-TemplateAging

Figure A.3: Example images from the datasets

to be excluded from the experiments due to the datasets containing dupli-
cate, identical images and labelling errors. The dataset was then split into
disjoint groups as shown in table A.4. The IITD and CASIA images were
used for enrolment and genuine comparisons as well as impostor compar-
isons, while the Biosecure and Ageing images were used exclusively for im-
postor comparisons.

Table A.4: Dataset split (templates) for the experiments

Dataset Enrolled Genuine Impostor
Combined 512 2240 9073

Combined multi-iris 256 824 3534

The images were processed using the commonly used method, whose

303



A. BLOOM FILTER-BASED SEARCH STRUCTURES FOR INDEXING
AND RETRIEVING IRIS-CODES

steps are illustrated in figure A.4. The technique generates iris-codes of size
512 × 20 = 10,240 bits.

(a) Detection (b) Enhanced texture

(c) 1D Log-Gabor (d) Quadratic Spline Wavelet

Figure A.4: Iris recognition processing chain: (a) iris detection in the raw
image, (b) normalized pre-processed iris texture, and (c)-(d) iris-codes of
applied feature extractor. Image taken from CASIA-v4-Interval iris database
[3].

Using thus produced iris-codes, the conducted performance-related ex-
periments, in which the maximum possible number of genuine and impos-
tor transactions were performed to ensure robustness of the results, were as
follows:

• The baseline - an iris-code based system performing a brute-force search
in the identification scenario.

• The basic Bloom filter system as described in subsection A.3.2.

• The proposed improvements to the basic Bloom filter scheme presented
in subsection A.3.4.

The metrics used for system evaluation were:

• Biometric performance: True positive identification rate (TPIR) and
false positive identification rate (FPIR) ROC curve. Additionally, a
fixed point on the ROC curve corresponding to TPIR at 0.1% FPIR (de-
noted TP0 .1 ).

• Workload: W and � as defined in subsection A.2.3.
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A.5 Results

In this section, the proposed statistical model and Bloom filter system im-
provements are evaluated.

A.5.1 Parameter Estimation

A simple metric is used to measure whether or not the model is a reasonable
representation of the real iris data. The Hellinger distance quantifies the
dissimilarity between two distributions with a single value between 0 and
1, where small values indicate a good fit. To assess the general applicability
of the model, the value of this metric was computed for all relevant system
configurations. As figure A.5 reveals, the model corresponds quite well to
the real data.

(a) LG (b) QSW

Figure A.5: Fit between the model and real data for all the relevant system
configurations

With the model accuracy established, we turn attention to the Θ metric
described earlier. Figure A.6 shows the correlation between true positive
identification rate and the Θ metric from the model for all relevant system
configurations (block size, number of constructed and traversed trees). Ob-
serve that TP0 .1 generally declines when Θ increases. Extrapolating from
these results, the model could be used to instantly assess viability of an arbi-
trary system configuration by merely calculating Θ. Doing so could poten-
tially be immensely time-saving, since only the likely viable configurations
pointed out by the model would have to be tested empirically.

In other words, the true positive accuracy depends on the degree to
which the Bloom filters are filled at the top levels of the tree. Table A.5,
created from empirical data, illustrates the Bloom filter filling in the single-
tree system for the Combined dataset. Observe that at the top tree levels, the
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Figure A.6: The correlation between biometric performance and top tree
level node filling

filters are nearly full for almost all relevant system configurations. This thus
severely affects the ability to make correct tree traversal direction decisions
and has a negative impact on the system performance in terms of TPIR (see
next subsection).

Table A.5: % of bits set to 1 at the top levels of the basic, single-tree system
(level 0 is the tree root)

Configuration LG QSW
Tree level

HB WB 0 1 0 1
8 8 98.10 95.38 99.63 98.48
8 16 99.67 98.74 99.97 99.79
8 32 99.99 99.79 100.00 99.99

10 8 78.39 69.20 87.51 78.81
10 16 90.73 84.38 96.57 92.08
10 32 97.29 94.21 99.42 98.06
12 8 40.01 32.40 48.36 39.29
12 16 57.86 48.73 68.78 58.58
12 32 75.85 67.06 86.15 77.79

A.5.2 Performance Evaluation

The baseline score for the datasets is established with a brute-force, iris-code
identification system with alignment compensation of ±8 bits, correspond-
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ing to approximately ±5.625◦. The total workload for a lookup in the base-
line system is W = 8.91 ∗ 107 and W = 4.46 ∗ 107 in the worst and average
case, respectively. As expected with high-quality data, the system achieves
excellent TP0 .1 rates: 98.03% and 97.90% for the LG and QSW feature ex-
tractor, respectively.

Subsequently, the proposed Bloom filter-based system was tested in iden-
tification mode with varying configurations and improvements (block width,
height, number of trees constructed, number of trees traversed etc.). Table
A.6 shows results achieved by the basic Bloom filter system, with a single
and multiple trees constructed. Observe, how construction of multiple trees
increases the biometric performance, albeit at the cost of heavier workload
in relation to the single-tree system.

Table A.6: The results of the 3 configurations with best performance in the
single and multiple tree schemes

Configuration Workload per lookup Extractor

HB WB T
Worst case Average case LG QSWW � W �

10 8 1 2.10 ∗ 106 0.0235 2.10 ∗ 106 0.0471 91.19% 89.97%
12 8 1 8.39 ∗ 106 0.0941 8.39 ∗ 106 0.1882 94.68% 93.64%
12 16 1 4.19 ∗ 106 0.0471 4.19 ∗ 106 0.0941 94.32% 93.43%
8 16 16 2.10 ∗ 106 0.0235 1.05 ∗ 106 0.0235 96.87% 97.18%
10 16 16 8.39 ∗ 106 0.0941 4.19 ∗ 106 0.0941 97.19% 97.16%
12 16 16 3.36 ∗ 107 0.3765 1.68 ∗ 107 0.3765 97.48% 97.50%

To resolve the matter of increased workload due to construction of mul-
tiple trees, the pre-selection of t promising trees for traversal is applied (see
subsection A.3.4). In table A.7, it can be seen that this technique allows
to decrease the workload tremendously - for instance, traversing 1/4 of the
constructed trees essentially maintains the performance of a full traversal.
Further workload reduction is possible (even traversing only a single most
promising tree), albeit for most system configurations the biometric perfor-
mance decrease is then significant.

The workload reduction effects of the quick traversal direction selection
heuristic (abbreviated ”qd”) can be taken advantage of without loss in bio-
metric performance. For the viable system configurations (i.e. with low
Θ) the biometric performance of the scheme with and without the heuris-
tic applied are virtually indistinguishable. Further biometric performance
improvement can be obtained using the multi-iris indexing scheme with
selective tree traversal. In experiments, we observe for many system con-
figurations TP0 .1 > 99%, which is better than the single-iris baseline and
comparable to a multi-iris baseline with a score level fusion scheme.

A summary of the results of well-performing configurations of each pro-
posed system version is presented in figure A.7 and table A.8. It can be seen,
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Table A.7: The results of the Bloom filter scheme with selective tree traversal

Configuration Workload per lookup Extractor

HB WB T t
Worst case Average case LG QSWW � W �

8 16 16 8 1.31 ∗ 106 0.0147 7.86 ∗ 105 0.0176 96.76% 96.95%
10 16 16 8 5.24 ∗ 106 0.0588 3.15 ∗ 106 0.0706 97.17% 97.50%
12 16 16 8 2.10 ∗ 107 0.2353 1.26 ∗ 107 0.2824 97.50% 97.31%
8 16 16 4 7.86 ∗ 105 0.0088 5.24 ∗ 105 0.0118 96.22% 95.53%
10 16 16 4 3.15 ∗ 106 0.0353 2.10 ∗ 106 0.0471 97.05% 97.45%
12 16 16 4 1.26 ∗ 107 0.1412 8.39 ∗ 106 0.1882 97.42% 97.45%
8 16 16 2 5.24 ∗ 105 0.0059 3.93 ∗ 105 0.0088 94.05% 93.21%
10 16 16 2 2.10 ∗ 106 0.0235 1.57 ∗ 106 0.0353 96.79% 96.91%
12 16 16 2 8.39 ∗ 106 0.0941 6.29 ∗ 106 0.1412 97.32% 97.31%
8 16 16 1 3.93 ∗ 105 0.0044 3.93 ∗ 105 0.0088 90.58% 88.15%
10 16 16 1 1.57 ∗ 106 0.0176 1.57 ∗ 106 0.0353 95.95% 95.62%
12 16 16 1 6.29 ∗ 106 0.0706 6.29 ∗ 106 0.1412 97.15% 96.56%

that when benchmarked with the iris-code baseline, the proposed schemes
greatly reduce the necessary lookup workload in the identification mode,
while maintaining a very high biometric performance.

Table A.8: A summary of the results for various system improvements

System/Improvement Biometric performance (TP0 .1 ) Worst case workload per lookup (�)
Baseline 97.90− 98.03% 1.0

Single tree 89.97− 94.68% 0.0235− 0.0941
Multiple trees 96.87− 97.50% 0.0235− 0.3765

Selective traversal 93.21− 97.50% 0.0059− 0.1412
Multi-iris > 99% Same as selective traversal

Quick traversal decision Same as selective traversal 0.0043− 0.1264

A.5.3 Discussion

In order to accommodate a larger number of enrolled templates, the basic
Bloom filter-based approach was expanded with construction of multiple
search trees and efficient pre-selection of the trees to traverse upon lookup.

The empirical experiments on the Combined dataset with 512 enrollees
show, that the system is capable of achieving biometric performance com-
parable with the naı̈ve baseline implementation and better than the basic,
single-tree Bloom filter-based implementation. This performance has been
achieved by having to traverse only 1/4 or less of the constructed search
trees. It can be reasonably assumed, that this property will hold when more
subjects are enrolled (and thereby more trees built), thus maintaining the
low workload requirements for larger systems. This assumption is reason-
able, since in order to be in the worst 3/4 of the trees, a genuine probe tem-
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(a) LG

(b) QSW

Figure A.7: ROC curves comparison for different system versions

plate would have to be of very bad quality - an issue, which can be effec-
tively eliminated by a sampling quality check.

The overall workload in the identification mode is vastly reduced: in
several configurations, � < 0.05 with only a minor impact on the biometric
performance. The performance and workload reduction achieved by our
system are on par with, or exceed the current state of the art (table A.1).

The numerous available system configurations offer significant flexibil-
ity in adjusting the biometric performance and workload to the individual
needs of a given application. This is beneficial in terms of feasibility for real-
world deployments, since their varying requirements can be accommodated
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by fine-tuning the system parameters. In addition to the empirical results,
the statistical model can instantly assess whether or not a given system con-
figuration is likely to perform well, thus decreasing the number of required
empirical tests.

Most importantly, however, we have shown that the improved Bloom
filter-based indexing scheme is scalable both in terms of the biometric per-
formance and the workload. In other words, the low workload and high
biometric performance can be expected for arbitrarily sized systems. This
is a key point differentiating our approach from the majority of the related
works (table A.1), which for most part offer no scalability analysis. A direct
benchmark in terms of biometric performance and workload is infeasible,
partly due to different datasets used and partly due to the wildly varying
result reporting methodologies across the current literature. This is the chief
reason for our proposal of a standardisation of biometric workload reduc-
tion reporting methodology (subsection A.2.3).

A.6 Conclusion and Future Research

The global interest for biometrics has been steadily growing and several
large-scale deployments have appeared around the world. The current trends
make biometric workload reduction a relevant and attractive research area.
In a recent interview, Daugman, the inventor of iris recognition, has stated
that performing accurate and efficient biometric identification (e.g. by means
of indexing, rather than exhaustive search) is one of the important, unsolved
issues in the biometrics field in general [11].

In this article, we expanded on a recently proposed biometric indexing
approach based on Bloom filters and binary search trees. Several improve-
ments were proposed; with these in place, the system is capable of sup-
porting an arbitrarily large number of enrollees. The biometric workload in
identification scenario is greatly reduced (below 10%), while a high (¿98%
TPIR at 0.1% FPIR) biometric performance of a baseline system is main-
tained. Additionally, in a proof-of-concept study, the Bloom filter-based
system is shown to be capable of accurate and efficient multi-iris indexing,
which shows promise for future research. Experiments on a larger dataset,
as well as a study into multi-biometric capabilities of the system and combi-
nation with soft biometric traits are planned.

Furthermore, due to differences in methods for workload reduction re-
porting in the scientific community, we proposed a set of prerequisites for a
more transparent and unified reporting methodology. We encourage ISO/IEC
JTC 1/SC 37 Biometrics to take up work on a standardised framework for
biometric workload reduction reporting, using the prerequisites proposed
by us as a starting point for discussions and deliberations.
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Nomenclature

d′ Sensitivity/Decidability index

CCR Correct classification rate

CMC Cumulative match characteristic

DET Detection error trade-off

DS Dissimilarity

EER Equal-error rate

FMR False match rate

FNIR False-negative identification-error rate

FNMR False non-match rate

FPIR False-positive identification-error rate

FTA Failure-to-acquire rate

HD Hamming distance

HR Hit rate

IS International standard

ISO/IEC International Organization for Standardization and the Interna-
tional Electrotechnical Commission

PR Penetration rate

ROC Receiver operating characteristic

RR-1 Rank-1 identification rate

TPIR True-positive identification rate
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