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Abstract. With the development of information technology, industry data is in-

creasingly generated during the manufacturing process. Companies often want to 

utilize the data they collected for more than the initial purposes. In this paper, we 

report a case study with an industrial equipment manufacturer to analyze the op-

eration data and the failure records of the equipment. We first tried to map the 

working condition of the equipment according to the daily recorded sensor data. 

However, we found the collected sensor data is not strongly correlated with the 

failure data to capture the phenomenon of the recorded failure categories. Thus, 

we proposed a data driven-based method for anomaly identification of such low 

correlation data. Our idea is to apply a deep neural network to learn the behavior 

of collected records to calculate the severity degree of each record. The severity 

degree of each record indicates the difference of performance between each rec-

ord and all other records. Based on the value of severity degree, we identified a 

few anomalous records, which have very different sensor data with other records. 

By analyzing the sensor data of the anomalous records, we observed some unique 

combinations of sensor values that can potentially be used as indicators for failure 

prediction. From the observations, we derived hypotheses for future validation.   
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1 Introduction 

Recent advances in information and communication technologies have accelerated 

the application of automated and systematic monitoring systems in the manufacturing 

industry [1]. In the past few years, the dimensionality of monitoring data sets in the 

manufacturing industries has severely increased [2,3]. Hence, issues about how to lev-

erage those monitoring data to enhance the reliability and availability of the equipment 

are getting more and more significant [4].  

In this work, we want to help an industrial equipment manufacturer to analyze the 

data they collected, namely the operation data and the failure log of the equipment. Our 

initial target is to predict potential failures and working conditions of the target equip-

ment from its daily collected monitoring data, which has a total number of 197 param-

eters. We first applied a classification model to identify the difference between failure 
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and normal records. According to our analysis results, the applied data-driven model 

could not separate the failure records from the nonfailure records. We assume that the 

sensor data have no strong correlation to the failures. We generated a new parameter to 

indicate failure conditions and further validated and confirmed our assumption that 

available sensor data is not strong enough to capture the phenomenon of failures. Ac-

tually, how to extract valuable information and discover useful knowledge from low 

correlation data is a common dilemma in many practical applications [5]. To fill the 

gap, we proposed a method to discover knowledge and identify anomaly for low corre-

lation data. The applied data-driven model is constructed through a fully connected 

deep neural network since this structure has an excellent performance in discovering 

information and knowledge about failures [6]. The idea is to make the constructed neu-

ral network learn the behavior of collected samples and output the severity degree of 

each sample. The severity degree can indicate the difference of performance between 

individual record and all other records. From the severity degree, we can identify anom-

alous records. Through analyzing the sensor data of the identified anomalous records, 

we could acquire knowledge about which sensor data could be possible indicators or 

predictors of failures. Although the study is based only on one equipment data, 

knowledge acquired from the case study could help us derive hypotheses for validation 

by using other similar equipment.  

The rest of this paper is organized as follows: Section 2 explains the process of data 

correlation analysis and validation. Section 3 details the applied method for knowledge 

discovery and anomaly identification for low correlation data. Discussion and conclu-

sions are summarized in the last section of this paper. 

2 Data correlation analysis 

The data we used during the research is collected from the equipment of an industrial 

equipment manufacturer2. The primary datasets leveraged during analysis includes two 

parts: fault records and sensor data from the monitoring system. However, the sensor 

data is mainly collected to help the user understand the working condition of the equip-

ment, instead of to indicate fault information. The target of our study is to discover the 

potential correlation between the two databases and knowledge about impending fail-

ures. 

2.1 Data integration and normalization 

According to the measurement system, the sensor database includes 247269 records 

within 2931 timestamps. The number of recorded parameters varies with years, from 

57 parameters in 2009 to 197 parameters in 2017. Forty-two monitoring parameters, 

which have been collected all the time during the sampling period, are selected as the 

observation units for further analysis. The leveraged monitoring data mainly include a 

total number of starts, running time, load, voltage, and so on.  

 
2 Due to Non-Discloser Agreement, we are not allowed to give detailed information of the 

equipment and the company in the paper. 
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There are 538 records from 2009 to 2017 in the provided fault dataset. The collected 

data includes 315 days and 367 timestamps. Several failures may happen in one 

timestamp, and several timestamps may be recorded in one day. During the sampling 

period, most of the recorded failures are about faults in multi-hoisting.  

To integrate monitoring data and failure information, we used the recorded 

timestamps in each database as connections. Since both monitoring data and failure 

information are necessary for fault identification, we included only the records which 

have been recorded in both datasets as observations in the analysis. 

The number of valid records is 2931 after the merge, in which 307 records are la-

beled as failures, and 2624 ones are not labeled as failures. As mentioned above, the 

number of collected timestamps in monitoring dataset and failure dataset are 2931 and 

367, respectively. However, there are 60 records in fault dataset which are not recorded 

in monitoring dataset. Thus, we discarded these 60 records without monitoring infor-

mation in the analysis.  

To improve the performance of data mining and avoid potential inconvenience, we 

applied standard normalization to adjust values measured on different scales to a no-

tionally common scale. The parameter 𝑃𝑖  after normalization is 𝑃𝑖
′ , which is shown in 

Equation (1): 

𝑃𝑖
′ =  

𝑃𝑖−𝑃𝑖
𝑚𝑒𝑎𝑛

𝑃𝑖
𝑠𝑡𝑑                                                      (1)      

Here, 𝑃𝑖
𝑚𝑒𝑎𝑛  and 𝑃𝑖

𝑠𝑡𝑑 are the mean value and standard deviation of the parameter 

𝑃𝑖 , respectively. 

During normalization, we found that the standard deviations of seven parameters are 

zero or very close to zero, which means those parameters rarely changed during the 

sampling period. We removed these parameters from the merged dataset since constant 

values hold no meaning for condition monitoring. 

As mentioned above, since the currently available monitoring data is used for oper-

ation management, there is probably no direct connection between the available moni-

toring data and failure information. Therefore, our first research step focused on an-

swering whether the collected monitoring data is sensitive or strong enough to predicate 

impending failures. 

2.2 Data analytics for impending failure prediction  

In this section, we will introduce the process and test result of impending failure 

prediction. Our target of this step of analysis is to leverage the collected monitoring 

data and data-driven models to map the recorded fault conditions. If the collected mon-

itoring parameters are sensitive or relevant enough to identify the recorded failures, we 

can use them to predict whether there would be an impending failure. Thus, the problem 

is transformed into a classification issue with two groups, i.e., a non-fault group and a 

fault group. As mentioned above, our dataset includes 307 records under impending 

failure condition and 2624 records which are not labeled as failures. To balance the 

number of samples in both classes, we expanded the number of failure samples by re-

peatedly used them during the training stage. 



The applied data-driven model is established through the fully connected deep neural 

network with seven layers, Leaky Relu is used as activation functions of hidden layers, 

and SoftMax is used as activation functions of the output layer. Since the dimension of 

inputs is 35 (42 selected parameters minus seven constant values), the number of nodes 

in hidden layers of the constructed deep neural network is 64, 32, 32, 16, 16, 8, 2 (i.e., 

64 nodes in the first layer, 32 nodes in the second and third layer, 16 nodes in the fourth 

and fifth layer,  8 nodes in the sixth layer, and 2 nodes in the last layer) to learn and 

represent the inputs data smoothly. We selected Adam as the optimizer and categorical 

cross-entropy as the loss function due to their broad applicability. The maximum num-

ber of training epochs and dropout rate are 2000 and 0.3, respectively, to avoid overfit-

ting. Batch size has been set as 32 to accelerate the training process. Fig. 1 shows the 

training and validation error with training epochs. Fig. 2 illustrates the prediction result, 

in which values above 0.5 in y-axis can be considered as identified failure.  

 

 

      Fig. 1.  Training errors with epochs                   Fig. 2. Impending failure prediction  

Since we used SoftMax as the final output layer, records with higher values in y-axis 

are more likely to indicate a failure condition. According to the result, we can notice 

that only some extreme normal and failure conditions can be identified. Most records 

have the prediction result close to 0.5, which means those records are difficult to be 

separated by the sensor data. We assume the main reason is that current sensor data is 

not sensitive enough to capture the phenomena of failures, or not strong enough to iden-

tify the impending failures. 

 

2.3 Correlation validation 

To validate this assumption, we set up a new experiment with more parameters, gen-

erated from failure information with certain random fluctuations (0.7 – 1 for failure 

records and 0-0.3 for nonfailure records). The generated parameters can be considered 

as direct indicators, which are sensitive to recorded failures and can capture the phe-

nomena right before an impending failure. Fig. 3 shows the result of failure prediction 

with the generated parameters using the same deep neural network. According to the 

result in Fig. 3, the collected parameters are sensitive enough to the failures, and the 

data-driven model can identify the failure conditions. Results of Fig. 3 confirms that 

the original sensor data cannot capture the phenomenon of impending failures directly. 
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Fig. 3. Failure prediction with generated parameters 

3 Knowledge discovery and anomaly identification 

As the available sensor data is not sensitive enough to capture the phenomena of 

failures, we tried to leverage the data to discover possible useful knowledge hidden in 

the data. Since most of the records are collected without failures, i.e., only 307 in 2931 

records are labeled as a failure, our core idea is anomaly identification. The idea is to 

make a data-driven model learn behaviors of the equipment first. The second step is to 

give scores to each record to describe the degree of difference from other records. The 

high-level analysis process is shown in Fig. 4. 

 

Fig. 4. Knowledge discovery from low correlation data 

During data calibration, we labeled all the failure records as “1” and the nonfailure 

ones as “0”. Therefore, the records with higher scores are more likely to have impend-

ing failures or anomaly condition since their behaviors are different from others. The 

target is to identify records with abnormal behaviors [7], which are the records having 

very different sensor data with other records. The anomalous records may or may not 

have been labeled as failure ones in the original dataset.  

The applied data-driven model for anomaly identification is very similar to the fail-

ure identification model, which is deep neural works with seven fully connected layers. 

The difference from the failure identification model is that the final layer is replaced 

with a regression model to evaluate the anomaly degree and output severity degree. Fig. 

5 shows the evaluation results of the trained network with a hyperbolic tangent (Tanh) 

as the activation function of the final output layer. 



 

Fig. 5. Evaluation results of Tanh function 

During the evaluation phase, the first 307 records are the ones with failures, and the 

rest records are the nonfailure ones. In Figure 5, the red line indicates the actual severity 

degree, and the blue line represents the prediction result. According to the evaluation 

result, the severity degree of most records is around 0.2. Thus, we selected 0.22 as the 

threshold. Twenty-nine out of 2931 records are identified as the anomalous ones from 

the analysis. Among the anomalous 29 records, 15 records are labeled as nonfailure 

ones in the original dataset, and 14 are labeled as failure ones. According to the results, 

all records can be divided into four categories: 

• Category 1. 2609 nonfailure records are also identified by our data model as 

normal. Those samples represent normal behaviors without failures. 

• Category 2. 293 records, which are recorded as failure ones in the original da-

taset, are not identified as anomalous by our data-driven model. The data-driven 

model cannot identify any difference between these records labeled as failure 

and records labeled as nonfailure ones. We analyzed the sensor data of many of 

those records in details and compared their sensor data with the ones labeled as 

nonfailure and find that their sensor data are very similar to the sensor data of 

the nonfailure ones. As these records cover 95% of all the records labeled as 

failures, their sensor data may hide some interesting correlations between the 

sensor data and the failures. Such interesting correlations probably exist in 

some data but are not statistically significant. This probably explains why our 

initial analysis reported in Section 2 did not find strong correlations between the 

sensor data and the failure.  

• Category 3. 14 records, which are recorded as failures in the original dataset, 

are identified by our data-driven model as anomalies. Those samples are rec-

orded with failure and have very different sensor data with other records. Thus, 

they are captured by our data-driven model. The 14 records in Category 4 are 

the real interesting records to be analyzed further, because such record may con-

tain implicit knowledge that can potentially explain the reasons for the failures 

and can also possibly help us identify real indicators from the sensor data to 

predicate failures. Thus, we analyzed the sensor data of these records in details. 

Four out of the 14 records have similar conditions that one or several vital 
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parameters such as “total running time,” “Remaining Safe Working Period of 

the brake in percentage,” and “a total number of starts” are recorded with ex-

tremely high or low values. Those unusual high or low values indicate sensor 

failures of the equipment. Six of the records are identified as an anomaly be-

cause the “actual loads” of the equipment are higher than the average value, but 

values of other parameters are different with most samples with high actual 

loads. Thus, our data-driven model identifies them as anomalies since their con-

ditions are different from most. Among these 6 records, 4 records have high 

values in “actual load,” while one or several “line voltages” are lower or close 

to the average values. As these 4 records are also labeled as failures in the orig-

inal dataset, these records may make one out of many possible reasons for the 

failures stand out. Thus, we can hypothesize that “the target equipment under 

high load without enough line voltages is more likely to have an impending 

failure.” For the rest 4 records, our visual inspection could not find obvious 

abnormal of the value of their individual sensor parameter. As each record has 

35 sensor parameters, it is possible that some complex combinations of sensor 

parameter values make them very different from the other records. More domain 

knowledge and more data are needed to understand these 4 records in depth.  

• Category 4. Fifteen records, which are not categorized as failed one in the orig-

inal data set, are identified as abnormal by our data model. By analyzing the 

sensor data of the 15 records in depth, we found 4 out of the 15 records have 

sensor failures that were not recorded or noticed by the users. These indicate 

sensor errors. However, due to unknown reasons, the sensor errors do not lead 

to actual failures or the actual failures are overlooked. There are 9 records which 

have high “actual loads” as the 4 records, which also have high “actual loads,” 

in Category 3, Although these 9 records are not labeled as failures in the original 

dataset, their sensor data are very similar to the 4 failure records with high “ac-

tual loads.” That is probably why these 9 records are also identified as abnormal 

by our data-driven model. Again, there are 2 records we cannot figure out how 

different their individual sensor parameter values are from other records. We 

need more in-depth domain knowledge and more data to explain the reasons 

why our data-driven model classifies these 4 four records as abnormal. 

4 Discussion and conclusion 

According to the result of failure identification in Section 2, the currently available 

sensor data are not strong enough to predicate failures. Thus, we change our research 

focuses on anomaly identification and proposes a method to evaluate severity degree 

by comparing the behavior of each record with the records which are recorded as non-

failures. As shown in Section 3, we first established a data-driven model to evaluate the 

severity degree of each record. The core idea is to train the model and make it learn the 

behaviors of the majority. Thus, the evaluated severity can indicate the degree of anom-

aly condition of each record compared with all other records. A record with high sever-

ity is more likely to have anomaly behaviors.  



The proposed anomaly identification method can identify anomaly behaviors of the 

target equipment and obtain hypotheses about machine fault from low correlation data 

environment. In this case study, our approach filtered out most of the records which are 

labeled as failures in the original dataset but are not able to differentiate themselves 

from the nonfailure records by inspecting the sensor data. Our approach managed to 

find out 4 records which have extremely high or low sensor values and are labeled as 

failures. These 4 records indicate that sensor error is probably one reason for failure. 

Our approach also highlighted other 4 records which have high “actual load” but “line 

voltages” and are labeled as failures. Such 4 records may indicate that the parameters  

“actual load” and “line voltages” can possibly be used as indicators for predicting some 

categories of failures.  

The limitation of the study is that the proposed method is only applied and tested 

with data from one equipment. We, therefore, need to validate the method proposed in 

this study and the hypotheses identified from this study with data from several similar 

types of equipment.   
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