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Introduction
Natural selection is a key mechanism of evolution and the central process in nature. It occurs

when there is a difference between phenotypical traits in expected relative fitness (Gardner and

Grafen, 2009; Hansen, 2017). It also plays a role in shaping life cycles in ways that optimize re-

productive fitness (Charnov, 1993; Stearns, 2000) and the mechanism of which has been studied

in the framework of life history theory. In population biology, one of the fundamental questions

is which selection, under which circumstances and to what extent, can have an appreciable im-

pact on population dynamics (Charlesworth, 1971; Saccheri and Hanski, 2006). Understanding

the genetic basis of the traits that selection operates on and the signatures of past and present

selection in patterns of variation in the genome remain as a priority in the research agenda for

evolutionary biologists (Stinchcombe et al., 2017). Even though the interplay between selection

and life history evolution, selection and population dynamics has been approached from various

perspectives in each study area over the past years, to obtain a better understanding of the role of

natural selection in driving evolutionary changes, accurate estimates of the strength of selection

acting in the wild is an essential prerequisite (Linnen and Hoekstra, 2009).

Most of the previous work attempting to measure natural selection within populations drew on

the seminal studies of Price (1970); Lande (1979); Lande and Arnold (1983), in which the se-

lection is characterized by the relationship between traits and relative fitness. Building on their

foundational work, Schluter (1988) provides a non-parametric estimate of the fitness function

and uses it to suggest an appropriate parametric model. Thomson and Hadfield (2017) shows

that using offspring fitness components as part of parental fitness (“mixed fitness” in their terms)

is common in studies of birds and mammals, but will only lead to correct estimates of selection

and evolutionary change under very restrictive conditions. Among many others, the enormous

literature contains conceptual, methodological and statistical recommendations to estimating the

phenotypic covariances between traits and some aspect of relative fitness (Stinchcombe et al.,

2017). In empirical studies, the mode and intensity of natural selection are estimated by regress-

ing relative fitness onto phenotypic values. The selection gradient (β) analysis has now been

applied to a wide range of plant and animal taxa (reviewed by Kingsolver et al., 2001; Siepielski

et al., 2009).

Fluctuating and auto-correlated selection
The publication of synthetic reviews of form and strength of selection (Kingsolver et al., 2001;

Siepielski et al., 2009) confirms that phenotypic selection commonly fluctuates in strength and

frequently changes in direction among years. The variance in phenotypic selection was usually

estimated by computing the variance of the strength of selection using selection gradients estim-

ated separately at each time point which reflects both random sampling error and real variation

in selection (Morrissey and Hadfield, 2012). Since temporal variation in natural selection is a

fundamental determinant of evolutionary outcomes and an appealing hypothesis to explain evol-

utionary stasis (Price and Liou, 1989; Merilä et al., 2001; Siepielski et al., 2010), more accurate

models with a detailed look at the extent of variation in selection, accounting for sampling error,

are desirable. Among the previous empirical studies accounting for the sampling error of vari-

ation, Calsbeek (2011) presents a non-parametric analysis in exploring the variation of fitness

surfaces over time or space. In contrast, using a log-quadratic generalized linear mixed model
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with a random effect on the regression slope implemented using Integrated Nested Laplace Ap-

proximations (INLA, Rue et al., 2009), Chevin et al. (2015) estimated yearly fluctuations and

autocorrelation in optima of a Gaussian fitness function. Using instead the more flexible frame-

work of Template Model Builder (TMB, Kristensen et al., 2016), Gamelon et al. (2018) fitted

a model of fluctuating selection via several non-overlapping selection episodes with non-linear

random effects added directly on the location of the fitness optima and on the peak of the fitness

function. The latter two identify the pattern of temporal dynamics in the selection not only by

its variance but also by its temporal auto-correlation. Previous theory has shown that the auto-

correlation of selection strongly affects whether (and how much) genetic responses to selection

optimize long-term fitness and population growth in a fluctuating environment (Charlesworth,

1993; Lande and Shannon, 1996; Bürger and Gimelfarb, 2002; Chevin, 2013; Tufto, 2015). The

empirical estimate of auto-correlation in the location of the fitness optima turned out to be sig-

nificant in Chevin et al. (2015); Gamelon et al. (2018); Cao et al. (2019). The generality of this

finding, however, needs to be confirmed across a wider range of species, populations, and traits,

using the same, statistically robust approach. As of yet, estimating auto-correlation in selection

may require a large sample size with many time points (Chevin and Haller, 2014).

A straightforward extension of previous models with temporally varying selection strength for

stabilizing selection is to allow all the properties (height, location of maximum and width) of

a Gaussian fitness function at population level to be temporally fluctuating and even cross-

correlated. Such a statistical model including all these possibilities into one framework can be as

complex as that powerful enough model-fitting techniques are required for statistical inference.

Cao et al. (2019) is among the few to have done this with an R package named Template Model

Builder (TMB, Kristensen et al., 2016), which is developed for fast-fitting complex, linear or

nonlinear statistical models. The temporal fluctuation in the strength and even the direction of

selection can be captured by using appropriate statistical approaches. However, changes in the

form of selection, which are likely common, are harder to quantify (Siepielski et al., 2009).

Selection on correlated traits
The target trait that selection acts on can be correlated with fitness either because they impact

fitness directly (direct selection) or because they are correlated with other traits that affect fitness

(indirect selection) (Linnen and Hoekstra, 2009). For the great tits, the brood size is correlated

with the egg-laying date and the early breeders tend to lay bigger clutches (Perrins and McCleery,

1989; Barba et al., 1995). In a black-throated blue warbler population, the egg-laying date of the

first brood is positively correlated with the propensity a second brood to be laid from a given

female (Townsend et al., 2013). We tend to focus on traits that we have a priori reasons to

believe are targets of selection. In fact, strong indirect selection can overcome direct selection

in an opposing direction (Linnen and Hoekstra, 2009). How can we determine the actual target

of selection? Lande and Arnold (1983) shows elegantly how total selection can be partitioned

into direct selection on a trait and indirect selection through correlated traits, in which selection

gradients (β) are calculated using multiple regression to control for indirect selection, thereby

estimating direct selection on a trait. The famous Darwin’s finches also illustrate the importance

of measuring multiple traits and estimating both direct and total selection.

The correlated characters that selection is acting simultaneously on might likely be genetically
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correlated, so selection on one trait can result in a change in the other. The total response to

selection will be a combination of direct selection on a particular trait, plus indirect selection

resulting from a correlated response to selection on some other traits, and therefore leads to an

accurate picture of adaptation and evolutionary constraint in natural populations. In reality, the

data on genetic structure of correlated traits are not always available, it is thus necessary to con-

duct simulations with various genetic and phenotypic covariance structures for correlated traits,

explore the evolutionary trajectories under different scenarios and compare them with the reality,

to gain a better understanding of the mechanism behind the correlational selection on the traits.

Alternatively, Reed et al. (2016) uses an animal model to obtain the genetic covariance matrix

of clutch size and laying date and then calculates predicted response to selection based on the

Robertson–Price Identity and the multivariate breeder’s equation (MVBE). It finally concludes

that the similar prediction indicates that unmeasured covarying traits were not missing from the

analysis.

Selection via multiple fitness components
Most studies estimating natural selection focus on a specific component. For short-lived hole-

nested species, pre-breeding mortality is one of the major sources of individual variation in life-

time reproductive success (Clutton-Brock, 1988; Newton et al., 1989), which implies that the fate

of individual fledglings is completely altered after recruiting to the population. This phenomenon

can be recognized as a straightforward reason of different selection patterns estimated with the

same populations since either number of fledglings or recruits is taken as the fitness component

(for example Verboven and Visser, 1998; Reed et al., 2013a; Chevin et al., 2015), but rarely both

(except for Gamelon et al., 2018). How the temporal dynamics of phenotypic selection may

vary among fitness components (e.g. fecundity and survival) is poorly understood thus (Siepiel-

ski et al., 2010). Furthermore, many previous studies (for example Siikamäki, 1998; Verboven

and Visser, 1998) have demonstrated that the date of fledgling affects post-fledgling survival,

the usual pattern being early fledglings experienced higher survival. An advancement of mean

annual egg-laying date is thus expected to be observed to maximize offspring fitness, however,

the reality contradicting the expectation is that an enlarging mistiming between the egg-laying

date and food peak date over the course of study is observed (Visser et al., 1998; Chevin et al.,

2015; Cao et al., 2019). One potential explanation is that the adaptive evolutionary change is

determined by relative form and strength of selection acting among different fitness components

(Schluter et al., 1991; Hoekstra et al., 2001). Besides, integrating multiple fitness components

into one modeling framework is a start point to explore the evolution of life history traits (e.g.

size at birth, number, size, and sex of offspring, lifespan) and the dynamic interaction between

them, which is research objectives in life history theory.

Even though the importance of measuring selection through separate episodes of selection over

the reproductive cycle was pointed out by Arnold and Wade (1984), the empirical measurements

on selection have rarely done this. The exceptions include Engen et al. (2011), in which selection

is estimated separately with fitness components (fecundity and survival) in different age classes.

Gamelon et al. (2018) proposes a multi-episodic approach where different reproductive stages

(clutch size, survival from egg to fledgling, from fledgling to recruit and breeding mothers) are

included in one statistical model. Potential ecological drivers of selection on both laying dates
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and clutch sizes were accounted and the method was applied to a dipper population.

Partial and complete brood failure
In altricial birds, the nestlings are brooded for 1 to 2 weeks after hatching and typically obtain

extensive parental care from both parents before independence (Liker et al., 2015). Partial and

complete brood failure is common in this period and this is a key determinant of variation in re-

productive success in such species (Santema and Kempenaers, 2018). The underlying causes of

nestling mortality are usually unknown unless the nest predation is identified (Martin and Briskie,

2009). In some bird species, complete brood failure is found associated with nest predation, (Mc-

Cleery et al., 1996) which might be related to nest-site security (Wesołowski, 2002) and to the

sudden and permanent disappearance of one of the parents (Santema and Kempenaers, 2018). It

is often hypothesized that offspring mortality results from a particular factor such as breeding

timing that determines brood success through its effect again on parental care. Even though it is

plausible that a particular factor influences both partial and complete brood mortality, the effect

sizes of the factor on them likely differ. Moreover, if partial and complete brood mortality has

different proximate causes, it might give misleading results on the effects of biological factors

on offspring mortality when they are lumped together. Therefore, it is biologically and statistic-

ally necessary to separate complete brood failure from partial brood failure when exploring the

proximate mechanism of offspring mortality.

Ecological selective agents
Changes in ecological conditions driven by climatic fluctuations appear to be common and im-

portant. Natural selection on wild populations is driven by such changes in biotic and abiotic

conditions (Bell, 2010). Despite of increasing interests in the environmental sensitivity of phen-

otypic selection, few studies have identified causal mechanisms underlying temporal variation

in the form, direction, and strength of selection (Siepielski et al., 2009). Several studies have

linked temporal variation in natural selection through survival or fecundity to variation in ecolo-

gical factors such as density, temperature, precipitation, predation, competition, and many other

factors. These factors are heterogeneous at both temporal and spatial scales. For example, the

survival of juveniles is identified to be strongly density-dependent (Reed et al., 2013a,b) and

density is shown to be a varying selective agent in a dutch great tit population (Sæther et al.,

2016). The temporal variation in optimal phenotypic maximizing yearly fitness subjects to fluc-

tuating spring temperature (Chevin et al., 2015; Gamelon et al., 2018). Predation is a selective

pressure leading to fledglings hatched early in the season suffering lower probability of complete

brood failure in great tits (Sæther and Bakke, 2000). In turn, the changing climate conditions

lead phenotypic distribution to be constantly shaped and reshaped by various agents of natural

selection (Endler, 1986). Even though these studies have accumulated our understanding of en-

vironmental sensitivity in natural selection, incorporating abiotic and biotic factors as potential

selective agents into the big picture of estimating varying selective selection on various traits

throughout the life cycle has remained challenging.
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Double brooding evolution
Multiple breeding (more than one reproductive attempt in a breeding season) is a common re-

productive strategy in short-lived species (Verhulst et al. 1997 and references therein). The fre-

quency of double brooding is an important factor determining the productivity of a population,

as Nagy and Holmes (2004) shows that 19% of the annual variance in fecundity is explained by

double brooding in a black-throated blue warbler population in America. Since annual fecundity

plays a major role in determining population growth (Sæther and Bakke, 2000), understanding

the mechanism of multi-brooding in short-lived species has implications on the future viability

of a population. Several studies of birds have investigated the intra-seasonal costs (Mulvihill

et al., 2009) or determinants (Jacobs et al., 2013) of multiple-breeding, either experimentally

(Parejo and Danchin, 2006) or using longitudinal studies (Townsend et al., 2013) or combination

of them (Evans Ogden and Stutchbury, 1996; Verboven and Verhulst, 1996). These studies find

that delaying hatching date, as well as increasing clutch size and/or brood size, commonly lead

to a lower probability of initiating a second clutch (Lindén, 1988; Geupel and DeSante, 1990;

Evans Ogden and Stutchbury, 1996; Verboven and Verhulst, 1996; Verboven et al., 2001; Parejo

and Danchin, 2006; Townsend et al., 2013). The study species include wren tit, hooded warbler,

black-throated blue warbler, great tit, and many others. Husby et al. (2009) shows that in four

long-term study populations of great tits in the Netherlands, the proportion of females that double

brood has declined in all populations. They stated that the decline has two-fold reasons. The first

is the increase in the mistime to the food peak experienced by the population over the study years

and thus birds are less likely to attempt a second clutch. The second is the temporal decline

in the number of recruits produced from the second clutch. They concluded that changing en-

vironmental conditions are important in determining the number of clutches a female lays and

therefore potentially alter important life-history traits in the species.

These studies no doubt give us a better understanding of the mechanism of multiple brooding and

provide promising explanations for the observational temporal fluctuations in the frequency of

double-brooding. However, little theoretical and mechanical hypotheses for the double-brooding

evolution exists. It is unclear if there is a genetic basis of the liability of multiple brooding and

how the genetic structure interacts with different climate scenarios to produce different evolu-

tionary consequences of double brooding. Due to the lack of genetic data on these reproductive

traits of natural bird populations, investigating the mechanism of double brooding evolution is

probably feasible only through theoretical genetic models.

Bayesian analysis of ecological processes
Both frequentist and Bayesian inferences are powerful tools for a better understanding of eco-

logical processes in population and community ecology. In the frequentist framework, the most

state-of-the-art model fitting technique, an R package named Template Model Builder (TMB,

Kristensen et al., 2016) is gaining popularity recently due to its power and efficiency in fitting

complex nonlinear mixed models, which are common when modelling complicated ecological

processes (for example Cadigan, 2015; Albertsen et al., 2016; Auger-Méthé et al., 2017). One

worth mentioning feature of TMB is that it enables Laplace approximation of the marginal like-

lihood where the random effects are automatically integrated out. Maximum marginal likelihood

estimation with the Laplace approximation tends to be orders of magnitude faster but poten-
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tially leads to biased inference (Monnahan and Kristensen, 2018). In spite of the flexibility and

efficiency of TMB, however, the lack of capability of working in the Bayesian framework has

hindered the adoption of it for Bayesians. In the Bayesian framework, Bayesian statistical in-

ference is used extensively to model dynamics of single species, population dispersal, growth,

and extinction (Ellison, 2004). The software package Stan (Gelman et al., 2015), a probabilistic

programming language for Bayesian statistical inference written in C++ is attracting people’s

attention in many fields as an alternative to BUGS (Lunn et al., 2000) and recommended to be

widely applied in ecology due to its improved efficiency (Monnahan et al., 2017).

To best utilize the merits of both TMB and Stan, a new R package tmbstan (Kristensen, 2018)

was developed to allow users to make Bayesian statistical analysis with TMB models. It provides

MCMC sampling for TMB models while the integration of randoms effects can be calculated

either with Laplace Approximation (by specifying laplace=TRUE) or with Stan. Monnahan and

Kristensen (2018) conducts simulation studies and real case studies to compare the computational

efficiency of tmbstan with and without Laplace approximation and check the validity of Laplace

approximation. They found that enabling the Laplace approximation was less efficient than full

MCMC integration, but it is unclear whether this will typically be true. The case studies also

showed the Laplace approximation is not always met. Even though it is intuitive to apply tmbstan

to estimating fluctuating natural selection especially when prior knowledge on some parameters

is available, this has not been done to date. Therefore, there exists no guideline on whether

Laplace approximation should be used to achieve better efficiency especially when the statistical

model for estimating selection is extremely complicated. To answer this question, simulation

studies under different scenarios in different statistical frameworks are necessary.
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Aims
Linking the sources of natural selection to the dynamics of evolution has been a major goal of

evolutionary biology, however, the lack of a unified framework to quantify the fluctuations in

selection accurately has hampered this progress. Previous empirical findings show that fitness

landscapes are not constant over time, and populations are evolving towards a continuously chan-

ging fitness optimum. A more statistically robust approach, however, is needed to be applied to

a wider range of species, populations, and traits. This thesis contributes to this end by show-

ing how current methods for estimating fluctuations in selection can be extended using a more

flexible statistical framework. Due to the flexibility of the method equipped with state-space

models and TMB, it can be extended to estimating fluctuating selection of life history for differ-

ent life cycle segments while identifying biotic and abiotic factors exerting selective pressures

and identifying which traits (egg-laying date or clutch size in our study), or combinations of

traits (potentially correlated), will be targets of the selection. The method can be alternatively

implemented in the Bayesian framework by taking prior information into account and using the

Bayesian inference tool tmbstan. Using long-term brood-based data from a great tit population

in the Netherlands, we hope to be able to answer the questions below:

1. Is there temporal variation, auto-correlation, and cross-correlation in phenotypic selec-
tion on the egg-laying date? (paper I, III)

2. What is the possible explanation for the observed decline in the frequency of double
brooding? (paper I, II)

3. How selection operates on phenotypes differently in different selective episodes? (paper
III)

4. Which ecological variables drive the temporal variation in the phenotypic selection?
(paper III)

5. Is Bayesian inference made by ”tmbstan” comparable with frequentist inference for
estimating phenotypic selection and should Laplace approximation be used? (paper IV)

The diagram in Fig. 1 shows the connection and transition of the papers in my dissertation. To

be specific, paper II, III and IV are extended from paper I by asking specific questions listed

above that are not addressed in paper I. According to the modeling approach used in the study,

paper I, III and IV are grouped into ”statistical model” and for paper II, it is ”theoretical genetic

model”. Furthermore, Paper I and III are classified in the frequentist framework, while paper IV

in the Bayesian framework, as illustrated by different colors of the blocks in the last row of the

diagram.
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Figure 1: A diagram showing how the papers in this dissertation are connected. Paper II, III

and IV are extended from paper I by asking specific questions listed above. Generally, paper

I, III and IV involve statistical modeling approaches and paper II theoretical genetic modeling

approach, as illustrated by the last row. Furthermore, the studies in paper I and paper III were

carried out in the frequentist framework, while paper IV in the Bayesian framework, as indicated

by the different colors of the blocks.
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Methods
The central elements of our statistical methods are great tit data (paper I, II, III and IV), state-

space models (paper I, III, and IV), vector autoregression (paper I, III, and IV), zero-inflated

models (paper I, III), Template Model Builder (paper I, III, and IV), tmbstan (paper IV), and

evolution of double brooding (paper II).

The great tit study system

Figure 2: Map of the park (National Park of

Hoge Veluwe in the Netherlands) where the

great tit data have been collected.

Figure 3: A great tit.

The great tit (Parus major, Fig 3) is 18-20g small passerine bird species widespread throughout

European woodlands and gardens. As a cavity nester, it readily accepts nest-boxes for breeding,

which allows monitoring of the whole population if a surplus of nest-boxes is provided (Harvey

et al., 1979). The study area (52◦02’ - 52◦07’N, 5◦51’ - 5◦32’E in The Netherlands, Fig 2)

consists of mixed pine-deciduous woodland on poor sandy soils. From 1955 to 2015, more

nest boxes than needed were placed in the study area at approximately constant availability.

On average the ratio of nest boxes to breeding females was around 3:1 in a typical year. A

surplus of nest boxes is supplied so that the actual number of individuals that survive is generally

determined by selection and not by external limiting factors such as the number of nest sites.

During the breeding season from April to June/July, nest boxes were visited once per week. At

each visit, the number of eggs or nestlings was counted and nestlings were given metal leg rings

on day 7 and the parents caught on the nest using a spring trap. For some years, clutch or brood

size manipulation experiments were carried out, which possibly affected fledgling production or

recruitment probability, therefore, manipulated broods were excluded from our studies.
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State-space models
A State-Space Model (SSM) is a time series model where observations are regarded as made

up of distinct components such as trend, seasonal, regression elements and disturbance terms

(Durbin and Koopman, 2012). A typical SSM consists of two equations:

xt = g(xt−1, c); (1)

yt = h(xt, ν), (2)

where equation (1) is a process model describing the relationship between unobserved states

with function g and parameter c and xt denotes the state at time t. The observation model in

equation (2) links the observation or measurement yt with state xt at time t through function h
and parameter ν.

State-space models are often used for analyzing complex ecological processes that can not be

observed directly, such as marine animal movement (Albertsen et al., 2015), population dynam-

ics (Wang, 2007) and animal behavior (Morales et al., 2004). It provides a natural paradigm

for ecosystem modeling (Pedersen et al., 2011). In spite of the flexibility of SSMs for estim-

ating the unobserved states while simultaneously relating them to various environmental (and

other) covariates of interest, these models and their implementations still have limitations arising

from underlying difficulties of likelihood computation and maximization for non-Gaussian and

nonlinear models. Johnson et al. (2008) utilized the computationally efficient Kalman filter to

compute the model likelihood but it is applicable only to linear Gaussian SSM formulations.

Jonsen et al. (2005) and McClintock et al. (2012) relied on Markov Chain Monte Carlo (MCMC)

techniques performed by sampling from the posterior likelihood of the parameters and the unob-

served states, but it is computationally expensive and comparatively slow. Pedersen et al. (2011)

examines and compares the estimation performance of three methods for fit of a theta logistic

model for population dynamics with simulated data, namely Hidden Markov Model (HMM), AD

Model Builder (ADMB) and the popular Bayesian framework of BUGS. It concludes that estima-

tion performance for all three methods are largely identical, while ADMB establishes computing

time superiority. The most state-of-the-art statistical tool named Template Model Builder (TMB)

that can be used for fitting state-space models will be introduced later.

Vector autoregression
Vector autoregression (VAR) is a stochastic process model used to capture the linear interde-

pendencies among multiple time series. It is an extension of the univariate autoregression model

to multivariate time series data and consists of a list of models that can be hypothesized to affect

each other intertemporally. All variables in a VAR enter the model in the same way: each vari-

able has an equation explaining its evolution based on its own lagged values, the lagged values

of the other model variables, and an error term.

The basic p-lag vector autoregressive (VAR(p)) model has the form:

yt = c+A1yt−1 +A2yt−2 + · · ·+Apyt−p + et, t = 1, . . . , T, (3)

where each yi is a vector of length k, each Ai is a k × k coefficient matrix and ei is a k × 1
unobservable zero mean white noise vector. Here I write a first-order VAR (VAR(1)) in a large
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matrix notation as

⎡
⎢⎢⎢⎣
y1,t
y2,t

...

yk,t

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
c1
c2
...

ck

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
a11,1 a11,2 · · · a11,k
a12,1 a12,2 · · · a12,k

...
...

. . .
...

a1k,1 a1k,2 · · · a1k,k

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
y1,t−1

y2,t−1

...

yk,t−1

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
e1,t
e2,t

...

ek,t

⎤
⎥⎥⎥⎦. (4)

Each variable (y1,t, y2,t, · · · , yk,t) in the model has one equation. The current (time t) observa-

tion of each variable depends on its own lagged values as well as on the lagged values of each

other variable in the VAR(1). Vector (c1, c2, · · · , ck) is a k-vector of constants (intercepts). The

matrix consisting of a11,1 and so on is called transition matrix or autoregressive matrix. Vector

(e1,t, e2,t, · · · , ek,t) is errors that are usually assumed to be multivariate normal distributed. Vari-

ables (y1,t, y2,t, · · · , yk,t) are cross-correlated either through the transition matrix or variance-

covariance matrix of (e1,t, e2,t, · · · , ek,t). To guarantee this VAR(1) process to be stationary, it

is sufficient to ensure that the eigenvalues of the transition matrix lie in unit circle (Lütkepohl,

2005; Wei, 2006).

Zero-inflated models
In ecological research, most count data are zero-inflated. In our analyzed data set, for example,

the response variable (number of chicks, number of fledglings, number of recruits) contain more

zeros than expected based on the Poisson or negative binomial distribution. A zero-inflated

model is a statistical model based on a zero-inflated probability distribution that can deal with

the excessive number of zeros. The common used zero-inflated models for count data include

zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB), zero-altered Poisson (ZAP)

and zero-altered negative binomial (ZANB) models. The latter two differ from ZIP and ZINB in

terms of the nature of zeros. ZAP and ZANB are two-part models that can deal with false zeros

(see Zuur et al. (2009) for the definition of false zeros). The negative binomial models (ZINB

and ZANB) can cope with overdispersion not only due to excessive numbers of zeros but also

due to extra variation in the count data. The main R packages for modeling zero-inflated data

include pscl, INLA, MCMCglmm, glmmADMB, mgcv, brms, gamlss and glmmTMB (Zeileis

et al., 2008; Rue et al., 2009; Hadfield et al., 2010; Skaug et al., 2013; Wood et al., 2016; Bürkner

et al., 2017; Stasinopoulos et al., 2017; Magnusson et al., 2017). Brooks et al. (2017) makes a

comparison between the packages and claims that glmmTMB is most appealing to users in terms

of the combination of speed and flexibility.

In our analysis, zero-inflated Poisson (ZIP) model was used to deal with the excessive num-

ber of zeros in the number of fledglings and zero-inflated Beta-Binomial (ZIBB) was used to

model the offspring viability (in our study offspring viability is defined as non-zero inflation

probability×offspring survival probability), in which there are excess zeros and the remaining

component (offspring survival probability) can be modeled with predictors instead of being a

fixed parameter. To be specific, a ZIP model consists of two components (equations (5) and (6))

corresponding to two zero generating processes. The first is governed by a binary distribution and

second by a Poisson distribution, which also generates zero counts. The two model components
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are described as follows with probability mass functions f :

f(y = 0) = π + (1− π)e−λ; (5)

f(y|y ≥ 1) = (1− π)
λye−λ

y
, (6)

where the outcome variable y has any non-negative integer value. The expected Poisson count is

denoted as λ and π is the probability of extra zeros.

A ZIBB model (see Hu et al. (2018) for more details) also consists of two zero-generating pro-

cesses. One is again governed by a binary distribution and the other one by a Beta-binomial

distribution in which the probability p is a random variable drawn from a beta distribution para-

meterized by α and β. The two components are given below:

f(y = 0) = π + (1− π)fbeta-bino(0|n, α, β); (7)

f(y|y ≥ 1) = (1− π)fbeta-bino(y|n, α, β), (8)

where n is the total number of events with any non-negative integer value and y is the number

of successes. π is again the probability of extra zeros. The probability mass function of a Beta-

binomial distribution fbeta-bino is given by:

fbeta-bino(y | n, α, β) =
(
n

y

)
B(y + α, n− y + β)

B(α, β)
, (9)

which consists of a binomial function and a beta function B.

Laplace approximation to deal with random effects
Consider a hierarchical model where the data y depend on a parameter vector θ and random

effects u, then maximum likelihood inference requires maximization of

L(θ) = Pθ(y) =

∫
Pθ(y | u)Pθ(u)du. (10)

The evaluation of this integral proves often difficult. Various numerical or analytical approaches

were proposed to calculate the approximation of the integral. Among them, Laplace’s method

has been widely used to approximate likelihoods (Raudenbush et al., 2000). In standard Laplace

approximation, the natural log of the integrand is expanded in a second-order Taylor series and

higher order terms diminish with big sample size, the approximation to the likelihood is thus

given as

L∗(θ) ∝ det(|H(θ)|)− 1
2 × Pθ {y | û(θ)}Pθ {û(θ)} , (11)

where

û(θ) = argmax
u

Pθ(y)Pθ(u)
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and

H(θ) =
∂2L

∂u2
ln {Pθ(y)Pθ(û(θ))}

(see Kristensen et al. (2016) for the review of Laplace approximation).

I mentioned glmmTMB as an R package that can deal with zero-inflated models. In our analyses,

however, I used another R package named Template Model Builder (TMB, Kristensen et al.,

2016) instead of glmmTMB as a model fitting technique to benefit from the flexibility in model

formulation in TMB. The relationship between them is that glmmTMB is built on TMB and

provides a user-friendly interface similar to lme4 for researchers who have difficulties with TMB

since TMB requires users to formulate models with C++. The core feature of TMB is that it

evaluates the integral with Laplace approximation. The procedure of using TMB to fit a statistical

model can be summarized into three steps. Firstly, the joint likelihood for the data, the fixed

effects, and the random effects are defined by the user as a C++ template function. Then the

package evaluates and maximizes the Laplace approximation of the marginal likelihood where

the random effects are automatically integrated out. This approximation and calculation of its

derivatives are achieved by using reverse-mode automatic differentiation (up to order three) of

the joint likelihood. At last, the approximated likelihood function and its derivatives are passed

to optimizers in R such as nlminb and optim.

The combination of reverse-mode automatic differentiation and Laplace approximation for high-

dimension integrals allows for the efficient fitting of complex (nonlinear, non-Gaussian, and

hierarchical) models with large multivariate data sets to perform parameter estimation (Fournier

et al., 2012). The performance of TMB is superior to ADMB (Kristensen et al., 2016) and thus is

gaining researchers to use it instead of ADMB to fit state-space models (for example Albertsen

et al., 2015; Cadigan, 2015; Albertsen et al., 2016; Berg and Nielsen, 2016). Another model

fitting tool that uses the Laplace approximation and is known to be computationally efficient is

INLA (Rue et al., 2009), but it is restricted to fit a class of models where the random effects are

Gauss-Markov random fields (Kristensen et al., 2016).

MCMC sampling from a TMB model
I mentioned in the introduction that tmbstan (Kristensen, 2018) as an R package developed for

MCMC Sampling from TMB model objects using Stan (Team, 2017; Carpenter et al., 2017),

is able to make efficient Markov chain Monte Carlo (MCMC) sampling for a broad range of

Bayesian models. It is worth noting that tmbstan not only provides TMB users with a possibility

of making Bayesian statistical analysis with Stan, but also takes advantage of the features of both

TMB and Stan by utilizing the flexibility of TMB in the model specification as well as the high

computational efficiency of Stan.

I have introduced that TMB uses the Laplace approximation to integrate random effects. How-

ever, Laplace approximation is not always accurate especially when the random effects u are

not Gaussian distributed. In addition, the higher-order terms in the Taylor series not necessarily

diminish as sample size increases in some special model classes (Raudenbush et al., 2000). In

a Bayesian analysis, MCMC integrates all parameters and this allows us to check the accuracy

of Laplace approximation in TMB. tmbstan is featured with an argument ’laplace’. When this
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argument is enabled, TMB would integrate random effects and Stan integrates the rest fixed ef-

fects. The accuracy of the Laplace approximation thus can be tested by comparing the posterior

distributions of the fixed effects with and without Laplace approximation enabled in tmbstan

(Monnahan and Kristensen, 2018).

The evolution of double brooding
For a great tit population, consider reproductive traits z1 and z2, for example, z1 is the laying

date of first brood and z2 is the liability of initializing a second brood. The phenotypic values z1
and z2 are assumed to be jointly multivariate normal. I also assume the genetic and phenotypic

variance-covariance matrix G and P of z1 and z2, as well as the age-specific fecundity and

mortality rates for each phenotype, remain nearly constant for a few generations.

With above assumptions and let z̄1 and z̄2 be the mean phenotypic values in a given generation,

then the change in mean phenotypic values from one generation to the next is given by

Δz̄ = G� ln w̄(z̄1, z̄2), (12)

where � = ( ∂
∂z̄1

, ∂
∂z̄2

)�is the gradient operator, G is the additive genetic variance and covari-

ance matrix and w̄(z̄1, z̄2) is the mean of individual fitness taken over the phenotype distribution

of the population (Lande, 1982; Lande and Arnold, 1983; Caswell, 2006). The population re-

sponds to selection by moving uphill in the steepest direction that the selection gradient points

at, ln w̄(z̄1, z̄2), which is a vector of directional selection pressures (Lande, 1982).
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Main results and discussion
Zero-inflated observations
In our analyzed great tit dataset, the proportion of zero observations in the number of chicks,

fledglings, and recruits is 6.56%, 15.5%, 74.91% respectively. A zero-inflated Poisson model

is used by Chevin et al. (2015) to estimate selection for the same population and the number of

fledglings is taken as a fitness component. In the study, the zero-inflation probability is treated as

a parameter instead of a separate selective episode. From a biological viewpoint, it is reasonable

to assume that the complete brood failure is going though a selective process different from the

expected number of fledglings. Our statistical results in paper I and III also indicate that the

model where the zero-inflated observations were regarded as a separate selective episode acting

on laying dates report much better model fit than the models where zero-inflated probability is

taken as a model parameter.

Directional selection via complete brood failure
In paper I, the number of fledglings was partitioned into two fitness components, namely, the ex-

pected number of fledglings and the brood failure probability. The expected number of fledglings

can be recognized as a straightforward extension of the conceptualization of propensity fitness,

which is measured as expected rather than actual numbers of offspring (Brandon, 1978; Mills

and Beatty, 1979). The best model suggested directional selection through complete brood fail-

ure and stabilizing selection via the expected number of fledglings. The direction and strength

of selection via complete brood failure fluctuated over the course of study, but in most of the

study years (78%) the selection favors early broods implying that females that bred late relative

to the food peak were more likely to fail to raise any fledglings. Similarly, the offspring viability

at each reproductive stage, from egg to chick, chick to fledgling, fledgling to recruit was split

into offspring survival probability and the brood failure probability in paper III. The complete

brood failure was assumed to go through directional selection in the study. The results show that

selection favors early broods from stage egg to chick and implies again that early broods suffered

lower probability of complete brood failure, while laying dates show no effect on complete brood

failure probability from neither chick to fledgling nor from fledgling to recruit. Altogether, even

though there is a much higher proportion of zero observations in number of recruit than the other

episodes, directional selection operates on laying dates through complete brood failure only in

the early stage of a brood, from egg to fledgling.

Stabilizing selection via expected number of fledgling (and off-
spring survival)
The offspring mortality is the result of malnutrition due to the mismatch between the rearing

and the abundance of caterpillar peak, the main food of great tit chicks (Visser et al., 1998).

Therefore, in theory, the broods laid either too early or too late relative to the peak of food

resource would suffer high offspring mortality, which leads to stabilizing selection favoring the

laying dates that can synchronize the chicks rearing with a narrow window of food peak. Indeed,
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the analyzed great tit data set supports the best model in paper I with stabilizing selection against

the model with directional selection through the expected number of fledglings on laying dates. It

is thus reasonable in paper III to assume that the offspring mortality in consecutive reproductive

cycle segments from egg to chick, chick to fledgling and fledgling to recruit all experienced

stabilizing selection on laying dates. The properties in stabilizing fitness function (the height,

location, and width) turn out to fluctuate over the course of study. The episode from chick to

fledgling experienced the strongest selection implied by the smallest estimate of the width of the

fitness function, compared to the other two selective episodes. Even though these three properties

are assumed to be a VAR(1) process, it turns out that only the optimal laying date and width of

fitness function are temporally auto-correlated and no significant cross-correlation between the

fitness properties are found. It is thus safe to conclude that the annual optimal laying date and

width of fitness function follow an AR(1) process respectively. The auto-correlation of optimal

laying dates is estimated to as large as 0.49 and for the width of the fitness function, it is 0.64.

Even though with such strong auto-correlation estimated, the simulation studies in paper I and

IV suggest that the auto-correlation is probably underestimated. The temporal variation in the

optimal laying dates for the different selective episodes from egg to recruit is estimated to be

the same, while the variation in the width of fitness function from egg to chick is almost four

times larger than the other selective episodes. In addition, the episode from fledgling to recruit

estimates a much early mean optimal laying date (18.7 ± 3.1) compared to episode from egg

to chick (40.7 ± 2.6) and chick to fledgling (33.5 ± 2.4). The annual overall optimal laying

date calculated by maximizing the multiplication of the fitness (only for offspring survival) for

the three episodes shows a close track with the optimal laying date for the third episode, from

fledgling to recruit. The offspring viability (multiplication of offspring survival and non-zero

inflation probability) from fledgling to recruit is also the determinant of recruit value for a specific

brood and dominating the other episodes for annual reproductive success contribution. All of

these imply that the cue used for timing of breeding is only available in the early breeding season,

this might result from that climate change is not at constant pace through the entire breeding

season, or other factors than climate have larger effects on the population outside the breeding

season.

Ecological drivers of selection
One of the study aims of paper III is to identify causal mechanisms underlying temporal variation

in the strength and direction of phenotypic selection on laying dates and compare the effect sizes

of selective agents between the life cycle segments. We found no correlational selection on laying

date and clutch size. Clutch size and laying date are negatively correlated but the correlation is

weak. We found neither adult survival cost to lay broods early nor to lay big broods. The

beech crop index (BCI) have lager effects on offspring survival from fledgling to recruit than

from egg to fledgling, where BCI shows almost no effect. Higher BCI level is found to be

positively correlated with higher female survival. Bigger clutch size is associated with higher

offspring survival from egg to chick, while negatively affects offspring survival from chick to

recruit. The size of the effect reduced along with the life cycle segments from egg to recruit.

We also found that bigger clutches suffered a lower probability of complete brood loss from

egg to chick and chick to fledgling, the effect is much stronger for the former. Not surprisingly,

clutch size is negatively correlated with population density. Higher population density is found
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also linked to higher offspring survival from chick to fledgling. As expected, higher population

density is linked to earlier optimal laying date for offspring survival, the effect is especially

strong for the episode from fledgling to recruit. The food resource peak is positively correlated

with optimal laying date for each episode. In an average environment and year, the stabilizing

selection strength is strongest for the episode from chick to fledgling. Higher spring temperate

is associated with the wider fitness function, which suggests a weaker strength of selection.

Early laying date is also linked to lower risk of complete brood loss from egg to chick but early

caterpillar peak date is linked to a higher risk of complete brood loss from chick to fledgling.

Breeding females differ to each in the clutch size they lay, also in the ability to survive, the

ability to rear offspring successfully, and the ability to protect their broods against complete loss

from egg to chick. The difference is relatively more significant for the episode from chick to

fledgling.

Decreasing probability of double-brooding
The double-brooding behavior reported in our study population has been less common over the

study years and the probability that a female breeds twice in a breeding season is related to

the timing of her first clutch relative to the peak in caterpillar abundance (Husby et al., 2009).

Indeed, we estimated the phenotypic correlation between the breeding time of first brood and

liability of producing a second brood to be -0.302. Using a genetic model with parameter values

estimated from the study population and a large cost of double-brooding, we show that the ad-

aptive topography of mean population fitness exhibits two peaks at a location where there is no

double-brooding or there is 100% double-brooding and the observed mean reproductive traits are

overall moving towards the adaptive peak where there is no double-brooding. As long as there

is no strong negative genetic correlation between the breeding time of first brood and liability of

producing a second brood, the genetic model provides another possible explanation for the ob-

served decline in the frequency of double brooding in this population in addition to the empirical

study.

Laplace approximation in tmbstan
When using R package tmbstan for Bayesian inference, the built-in feature Laplace approxim-

ation to the marginal likelihood with random effects integrated out can be switched on and off.

Both the simulation results and case study result in paper IV show that the Laplace approxima-

tion is accurate. In addition, turning on Laplace approximation in tmbstan would probably lower

the computational efficiency. I conclude that only when there is a good amount of data, both

tmbstan with and without Laplace approximation are worth trying since in this case, Laplace

approximation is more likely to be accurate and may also lead to slightly higher computational

efficiency. The transition parameters and scale parameters in a VAR(1) process are hard to be es-

timated accurately and increasing the sample size at each time point does not help in estimation,

only more time points in the data contain more information on these parameters and make the

likelihood dominate the posterior likelihood, thus lead to accurate estimates for them.
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Conclusions and perspectives
In this thesis, we have built a statistical framework to measure fluctuating and potentially tem-

porally auto-correlated selection, extended the framework to include more life cycle segments

while taking selective forces of variation in selection into account. A simpler statistical model

for estimating fluctuating selection has also been implemented in the Bayesian framework and by

which we conducted simulation studies to evaluate the performance of Laplace approximation,

one core feature of the Bayesian inference tool tmbstan. We also developed quantitative genetic

models to provide a possible explanation for observed decreasing double-brooding frequency in

the study population.

Either from a biological point of view or the result of statistical analysis, we found that offspring

viability in the Dutch great tit population is ongoing two separate selective processes, both of

which produce zero chicks/fledglings/recruits for a given brood. The nest failure experienced

temporally varied directional selection and the selection generally favors early broods. The ex-

pected number of fledglings, as well as offspring survival given that the brood is successful,

experienced stabilizing selection. The maximum value, optimal laying date, and width of the

fitness function tend to fluctuate and auto-correlate temporally. Mother survival cost of laying

eggs early is not detected. Clutch size increased along with a shift towards earlier laying date,

but the effect is too small (one day earlier the laying date is, 0.0635 bigger the clutch would be)

to produce a noticeable increase in clutch size even though the mean laying date has advanced

around 19 days in past 50 years. We find no evidence of correlational selection on laying date

and clutch size. The ecological variables, including beech crop index (BCI), population density,

food peak date tend to affect one selective episode and another, in different sizes and directions.

The recruit probability is the determinant of recruit value and reproductive success. The seasonal

reproductive success contributed by second broods is diminishing when the first brood is laid too

late provided there is no strong negative genetic correlation between the laying date of first brood

and liability of attempt second brood, which provides a possible explanation for the observed de-

creasing frequency of double-brooding. In the state-space model, the parameters in the transition

matrix and variance-covariance matrix of unobserved states are of our main interest, which are

also the most difficult parameters to estimate. The simulation study in the Bayesian analysis

shows that to estimate these parameters accurately, it is necessary to increase the time points in

the data instead of the sample size at each time point. Laplace approximation would probably

slow down the computational efficiency of MCMC especially when there is a small sample size

in the data. The rule of thumb might be using Laplace approximation when you have more than

50 time points in the data.

Thanks to the new model-fitting techniques TMB and tmbstan, using state-space models to es-

timate a large number of parameters and random effects in complicated biological processes

or ecological systems become possible even in cases where the state-space equations are highly

nonlinear or non-Gaussian. By treating the phenotypical selection process as a time series and al-

lowing a flexible covariance structure for the Gaussian fitness parameters, our method is capable

of modeling different forms of variation and autocorrelation in phenotypic selection. Besides

VAR(1), it can also accommodate other autoregressive structures, such as VAR(p) (p-order vec-

tor autoregressive process) and vector ARMA(p,q) processes. Within species, there is substantial

geographic variation in the response to climate change, therefore, another direction of extending

our studies could be estimating the temporal-spatial variation and correlation in fluctuating se-
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lection and investigating the causes of geographic variation in selection within species to get a

better understanding of avian responses at a broader geographic scale.

Although our studies have developed applicable statistical tools for the measurement of natural

selection on reproductive traits (breeding time and clutch size) through life cycle segments, how-

ever, the relationship between the timing of breeding and breeding performance is still unclear.

In our studies, the clutch size has no noticeable increase in the population with a temporal shift

towards earlier egg-laying. We also found no evidence of adult survival cost being laying early

and selection through complete brood failure favors early broods. The probability of initializing

second brood is also decreasing with delayed first brood. Take all these together, there seems no

reason not to advance laying date of first brood to match the seasonal breeding time with food

abundance, which is not happening in reality. One explanation could be that the timing of laying

is adapted to other factors besides the timing of food supply for the chicks, or the birds are just

not capable enough to track the cues of climate change. Another missing piece in our analysis is

the social interaction between the phenotype (the laying date) of breeding females and males and

the phenotypes of the species they associate with. At last, developing a mechanistic and theoret-

ical understanding of the relationship between reproductive decisions and breeding performance

as well as the physiological basis for these relationships are beyond the scope of our studies, but

should be top priorities in extended studies since they are essential for linking the responses of

birds to climate models and predicting long-term change in populations.
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Supporting Information (SI) for

A time series model for estimating temporal variation in phenotypic selection on laying dates

in a Dutch great tit population

About TMB

Template Model Builder (TMB; Kristensen, Nielsen, Berg, Skaug, & Bell, 2015)) is an R package for fitting

statistical latent variable models. It is functionally similar to ADMB (Fournier et al., 2012). The joint

likelihood for the data and the random effects are defined by the user as a C++ template function. Then the

package evaluates and maximizes the Laplace approximation of the marginal likelihood where the random

effects are automatically integrated out. This approximation is achieved by using reverse-mode automatic

differentiation (up to order three) of the joint likelihood. The combination of reverse-mode automatic differ-

entiation and the Laplace approximation for high-dimension integrals allows for the efficient fitting of complex

(nonlinear, non-Gaussian, and hierarchical) models with large multivariate data sets to perform parameter

estimation (Fournier et al., 2012). TMB takes maximal advantage of sparseness structure (Kristensen et al.,

2015) and the first derivatives of the Laplace approximation obtained with automatic differentiation of the

negative log-likelihood can be used by other approaches such as hybrid MCMC.

More details on study population

The great tit is 18–20g small passerine bird species widespread throughout European woodlands and gardens.

As a cavity nester, it readily accepts nest-boxes for breeding, which allows monitoring of the whole population

if a surplus of nest-boxes is provided (Harvey, Greenwood, & Perrins, 1979). The study area consists of

mixed pine-deciduous woodland on poor sandy soils. From 1955 to 2015, more nest boxes than required

were placed in the study area at approximately constant availability. On average the ratio of nest boxes to

breeding females was around 3 : 1 in a typical year. During the breeding season from April to June/July,

nest boxes were visited once per week. At each visit, the number of eggs or nestlings was counted and

nestlings were given metal leg rings on day 7 and the parents caught on the nest using a spring trap. For

some years clutch or brood size manipulation experiments were carried out, which possibly affected fledgling

production or recruitment probability, therefore, manipulated broods were excluded from our analysis. We

also deleted 35 third clutch observations for simplifying the comparison between the different brood types.

We also deleted the records with uncertainty of the brood type, and clutch size being smaller than number

of fledglings. Unknown females were not included in our analyses, as their mother effects as random effects

in the model could not be determined. Eventually, 5892 out of 6353 records were kept for our analysis.
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Simulation study

A simulation study was carried out to test the power of our method in identifying the best model. We simu-

lated laying dates z which stabilizing selection acts on with a mixture of normal distribution 0.7N(23, 7.5)+

0.3N(62, 10.5), which is close to the reality of the Dutch great tit population. We considered 50 years and for

each year the sample size was drawn from a Poisson distribution with a mean of n = 100 individuals. To sim-

plify the simulation study, we considered stabilizing selection via the expected number of fledglings (episode

W ) while the zero-inflated probability (episode P ) was kept as a fixed parameter (set to 0.12). In terms

of the parameters in equation (3) and (4) in the main text, vector (ᾱ, θ̄, ω̄) was set to (2, 18, log(45)) and

the vector of standard deviation of the random effects (σα, σθ, σω) was set to (0.2, 18, 0.2). For brevity the

variance-covariance matrix Σ was set diagonal and only φα,α and φθ,θ in the transition matrix Φ were con-

sidered as non-zero. They were set to be equal (φα,α = φθ,θ) and took values from (0, 0.1, 0.25, 0.5, 0.75, 0.9).

The standard deviation of random mother effects was set to 0.05 and added only to episode W .

Since there is a potentially long list of candidate models, we did not fit all the possible models and

instead considered, in addition to the true model, five models that can help us to test if our model selection

procedure has the power to: identify the zero-inflation probability as a parameter of a selection episode;

distinguish models with and without fluctuation in ωt; identify the auto-correlation parameters in Φ; dis-

tinguish models with and without off-diagonal parameters in Φ; identify random mother effects in the ‘true’

model. Specifically, based on the true model we fitted (i) a model with zero-inflation probability regressed

against laying dates with random intercepts but without random slopes; (ii) a model with fixed ωt; (iii)

a model with all entries in Φ equal to zero; (iv) a model with 2 × 2 upper-left non-zero entries in Φ; (v)

a model without random mother effects. For each value of φα,α and φθ,θ, we ran 100 simulations and for

each simulation we compared the reported AIC between the true model and each of the alternative models

respectively. The true model was selected against the alternative model only when the AIC of it is at least

two points lower than that of the alternative model.

Fig. S1 shows the simulation result. The left plot shows the percentage of cases for which the true

model was selected over each of the alternative models against the actual auto-correlation values used in the

simulations. It is clear that when zero-inflation probability is only a fixed parameter in the model, the model

selection procedure never wrongly favours the model with fluctuating zero-inflation probability. When ωt was

set to fixed in an alternative model, the true model with random ωt was detected in approximately 80% of

the simulations. If φα,α and φθ,θ were excluded from the true model, it then reduced to an alternative model

with αt, θt and ωt following iid processes. The true model (including auto-correlation) is rarely selected

as best over the alternative model when the auto-correlation value is as small as 0.1. However, when the
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Figure S1: Left: test the power of our method. Each of the line in the plot shows the percentage of our true
model was selected against an alternative model out of total 100 simulations. The x axis is the actual values
of φα,α = φθ,θ used in simulations. The five lines represent five alternative models that the true model were
compared with and the true model was chosen by at least two points lower in AIC than the alternative model.
The five alternative models are described in the legend. Right: estimated auto-correlation (φα,α and φθ,θ) in
all the simulations. The red triangles represent the mean of φ̂α,α under each setting of the auto-correlation,
with error bars representing ± one standard deviation of the estimates over 100 simulations. The similar
explanation applies to φ̂θ,θ, which is shown with blue color. The dashed grey line plots the expected value
if the MLEs are unbiased.
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auto-correlation magnitude increased to 0.5, in over 90% of the simulations the AR(1) structure in αt and θt

can be detected. When cross-correlation between αt and θt (φα,θ, φθ,α) was added to the true model, only

in around 60% of the simulations was the true model selected against the more complex alternative model.

It is even more challenging when the random mother effects were excluded from the true model, that in only

around 20% of the simulations that the true model with random mother effects was chosen.

The right plot in Fig. S1 shows the estimated auto-correlation against the true auto-correlation used in

the simulations. Red and blue color corresponds to φα,α and φθ,θ respectively. The triangles and round dots

show the mean estimate of φα,α and φθ,θ respectively with error bars representing one standard deviation of

all the estimates over 100 simulations. The dashed grey line represents the expected value if the MLEs are

unbiased and it goes across all the error bars of φ̂α,α. Estimating φθ,θ accurately turns more difficult than

that for φα,α indicated by the larger deviation from the unbiased MLEs.

To sum up, our model fitting and model selection procedure has promising power to capture the basic

structure (fixed zero-inflation probability, fluctuated ωt and auto-correlation in αt and θt) of the true model.

However, it also shows that the cross-correlation between the fitness parameters might be overestimated

and therefore wrongly included in the selected model. In addition, cautions should be made when excluding

random mother effects from the model especially when the models with and without random mother effects

report similar AIC values since the random mother effects might be too small to be detected with AIC. At last,

both our simulation study and the one in Chevin, Visser, and Tufto (2015) shows that the auto-correlations

in the fitness parameters are potentially underestimated.

Supplementary model selection procedure

In the main text we have shown the model selection procedure only for the best model and the models

around it. The updating procedure from a null model to the best model is supplemented in Table S1. Model

1 is consistent with stabilizing selection via episode W and episode P and the fitness function parameters

remain unchanged across years but vary across episode W and P . Based on the estimates of the parameters

in model 1, we changed stabilizing selection into directional selection for episode W (model 2, 2a, 2b, 2c)

or for episode P (model 3, 3a, 3b, 3c). The models with correlated random intercepts and slopes (model 2c

and 3c) perform best in each situation. Next, from model 4 to model 8b, we updated each model (model 1,

2c, 3c) such that αt, θt and ωt are either white noise (model 4 to model 4e, note that model 4a, 4c, 4e are

hard to get converged, thus they were updated through model 4, 4b and 4d respectively), or AR(1) (model

5 to model 5b), or VAR(1) (model 6 to model 6b) processes. Model 7, 7a, 7b, 7c were updated with only

significant entries of Φ kept. Auto-correlations between errors of αt, θt and ωt were introduced into model
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8, 8a and 8b. So far, model 8 reports the smallest AIC, therefore, mother effect was added to it (model 9),

and model 9 was eventually confirmed to be the best model, as have shown in the main text.

It is worth to mention that our candidate models were generally updated from the simple ones to the

complicated ones and therefore the subsequent models are subject to the choice of the initial models. The

choice should be made carefully especially when the initial models report similar AIC values. In this case,

one suggestion is that the subsequent models can be updated simultaneously based on the competitive initial

models and another suggestion is the neighbor models of the selected model should be carefully tested to

ensure it is indeed the best one.

Table S1: Supplementary Model selection procedure of phenotypic selection on breeding time of great
tits. The order of models listed below is accordance with the order of models fitting, from model 1 to 9.
The following model selection procedure can be found in the main text. ΔAIC and Δp is the difference
in AIC and number of parameters p between each model and the best model (model 9). The column of
description gives the details of updating model based on the previous ones. For simplification, the probability
of successful-brooding component is denoted as episode P and the mean number of fledglings as episode W .

Model ΔAIC Δp Description

1 1246.99 -12 η
(α)
s,t , η(θ)s,t , η

(ω)
s,t fixed across t, vary across s

based on model 1, change stabilizing selection via episode P into directional selection

2 1246.01 -13 only with fixed intercept and slope

2a 1011.41 -12 add random intercepts on model 2

2b 919.21 -11 add random slopes on model 2a

2c 877.37 -10 add covariance to random intercepts and slopes on model 2b

based on model 1, change stabilizing selection via episode W into directional selection

3 1247.54 -13 only with fixed intercept and slope

3a 708.48 -12 add random intercepts on model 3

3b 509.98 -11 add random slopes on model 3a

3c 437.33 -10 add covariance to random intercepts and slopes on model 3b

change fixed αt, θt and ωt into white noise

4 241.24 -10 based on model 1, white noise αt and ωt, fixed θt

4a 114.45 -9 based on model 4, white noise αt, θt and ωt

4b 114.08 -8 based on model 2c, white noise αt and ωt, fixed θt

4c 110.11 -7 based on model 4b, white noise αt, θt and ωt

4d 129.33 -8 based on model 3c, white noise αt and ωt, fixed θt

Continued on next page
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Table S1 – continued from previous page

Model ΔAIC Δp Description

4e 96.48 -7 based on model 4d, white noise αt, θt and ωt

change random αt, θt and ωt into AR(1)

5 81.74 -6 based on model 4a, AR(1) αt, θt and ωt

5a 40.84 -4 based on model 4c, AR(1) αt, θt and ωt

5b 74.57 -4 based on model 4e, AR(1) αt, θt and ωt

change random αt, θt and ωt into VAR(1)

6 89.02 0 based on model 4a, VAR(1) αt, θt and ωt

6a 88.83 2 based on model 4c, VAR(1) αt, θt and ωt

6b 80.59 1 based on model 4e, VAR(1) αt, θt and ωt

keep only significant (at significance statistics 0.05) entries in Φ

7 82.17 -7 update based on model 6, AR(1) αt and θt

7a 39.13 -5 no significant entries in Φ in model 6a, so update based on model 5a, AR(1)

αt and θt

7b 76.48 -5 update based on model 6b, AR(1) αt and θt

7c 76.1 -6 update based on model 6b, AR(1) αt

add correlations to the errors of αt, θt and ωt

8 57.8 -3 update based on model 5, which is the best model so far for stabilizing selection

for both episode P and W

8a 19.1 -2 update based on model 7a, which is the best model so far for directional selec-

tion via P

8b 74.82 -1 update based on model 5b, which is the best model so far for directional selec-

tion via episode W

add mother effect

9 0 0 update based on model 8a, which is the best model so far (directional selection

via episode P and stabilizing selection via episode W )
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Supplementary model evaluation

In addition to the model evaluation in the main text, we here further illustrate the performance of our

selected model in predicting successful-brooding indices and non-zero number of fledglings. Each panel in

Fig. S2 shows the observed indices and the predicted probability of successful-brooding against laying date

for a specified year (from 1955 to 2015). Our analyzed data includes three brood types. The red, green

and blue dots represent the observed indices of successful-brooding for first broods, replacements broods

(first broods failed) and second broods (first broods succeeded) respectively. The solid grey curve represents

nonparametric loess regression through the points with the dashed grey lines being associated 95% confidence

band. The dark curve shows the predicted probability of successful-brooding at laying dates along the whole

breeding season and conditional on zero random mother effects. It can be shown that it is a function of both

the zero inflation probability and the mean number of fledglings:

P (Yi > 0 | pi, wi) = 1− P (Yi = 0 | pi, wi)

= 1− P (Ii = 0 | pi)− P (Xi = 0 | Ii = 1, wi)P (Ii = 1 | pi)

= (1− pi)(1− e−wi),

(S1)

where pi and wi are zero-inflation probability and mean number of fledglings for brood i and estimated

with our selected model. Similarly, each panel in Fig. S3 shows the observed number of fledglings (only

nonzero observations plotted) and the expected number of fledglings predicted with our selected model for

each year. The dots with different colors illustrate the observed number of fledglings from three brood types

and the grey line again indicates the nonparametric loess regression with its 95% confidence band (dashed

grey lines). The dark curve is the conditional expectation of number of fledglings (E(Yi | Yi > 0)) as a

function of wi estimated with our selected model with associated 95% confidence band (dashed black lines).

Specifically, using the law of total expectation, we know that

E(Yi | pi, wi) = E(Yi | Yi > 0, wi)P (Yi > 0 | pi, wi) + E(Yi | Yi = 0, pi, wi)P (Yi = 0 | pi, wi).

Hence
E(Yi | Yi > 0, wi) =

E(Yi | pi, wi)

P (Yi > 0 | pi, wi)

=
(1− pi)wi

(1− pi)(1− e−wi)

=
wi

1− e−wi
.

(S2)

It is worth noting that pi and wi in equation (S1) and equation (S2) were calculated conditional on zero
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Figure S2: Observed indices and predicted probability of successful-brooding (P (Yi > 0 | pi, wi)) against
the laying date for each year. The blue, red and green dots represent the observed indices of successful-
brooding for three different brood types (red dot represents first brood, green dot is replacement brood with
first brood failed, and blue dot is second brood with successful first brood). The grey curve is loess regression
(with default degree of smoothing = 0.75) through the scatter points with 95% confidence band (dashed grey
lines). The black line indicates the probability of successful-brooding predicted with our selected model at
laying dates along the whole breeding season and conditional on zero random mother effects and the dashed
black lines represent associated 95% confidence band.
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Figure S3: Observed and predicted nonzero number of fledglings (E(Yi | Yi > 0, wi)) against the laying date
for each year. Note that only nonzero number of fledglings are plotted. The blue, red and green dots represent
the observed number of fledglings for three different brood types (red dot represents first brood, green dot
is replacement brood with first brood failed, and blue dot is second brood with successful first brood). The
grey curve is loess regression (with default degree of smoothing = 0.75) through the scatter points with
95% confidence band (dashed grey lines). The black line indicates the number of fledglings predicted with
our selected model conditional on zero random mother effects with dashed black lines representing its 95%
confidence band.
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random mother effects for simplification. From both Fig. S2 and S3 we can see that for most of the years

the dark line lies within the 95% confidence band of loess regression, indicating a good fit of our selected

model. Moreover, we find from both figures that the replacement broods (first brood failed, green dots)

were laid earlier than the second broods (first brood succeed, blue dots). Interestingly, it is hard to see any

difference in the probability of successful-brooding between the replacement broods and second broods after

successful first broods, but the mean number of fledglings for the second broods after successful first broods

are strikingly smaller than that of the replacement broods. This might result from the increasing mistiming

between the breeding time and optimal breeding time, and the fitness effects of being mismatched relative

to the food peak are stronger at the individual level for the mean number of fledglings compared with the

probability of successful-brooding. However, it is interesting to see that for most of the years the second

broods suffer higher probability of complete loss than the first broods, as have been discussed in the main

text.

Model fitting with partial data

In our study we used the great tit data of 1955-2015 (61 years) from the Hoge Veluwe. However, because

a severe storm damaged the pine plantation in the winter of 1972-1973, some of the nest-boxes had to be

replaced or relocated. Therefore, some of previous study on HV great tit population treated the HV1 (1955-

1972) and HV2 (1973-2004) as two temporally separate populations (see Husby, Kruuk, & Visser, 2009).

Other studies only focused on the HV great tit data after 1973 (for example Reed, Jenouvrier, & Visser,

2013; Gamelon et al., 2016). It is of our interest to fit the selected model with the data after 1973 and make

a comparison between the estimates with this partial data set and full data set.

Table S2 shows the comparison between the estimates from our selected model with full data (1955-2015,

5892 records) and partial data (1973-2015, 4449 records), and the estimates from the model with fixed ω

with partial data. We find from the second and third column that most of the estimates with the full data

and with partial data are close to each other, but three differences are worth noting. First, the estimate

of θ̄ is smaller (14.95 days) with partial data, which is reasonable and consistent with what can be seen

from Fig. S4, where for recent years the estimated optimal laying dates are earlier compared with that in

previous years. Second, the estimates of transition (φα,α and φθ,θ) are slightly smaller with partial data.

At last, the estimates with full data generally have less uncertainty (smaller estimate of standard error).

Since the selected model from Chevin et al. (2015) assumed fixed ωt across the study period from 1973 to

2015, it is interesting to get a flavor that how our result obtained from a candidate model with fixed ωt

and with data after 1973 differ from theirs. The last column in Table S2 therefore lists the estimates of
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Table S2: Estimates(standard error) of model parameters from the selected model with full data and partial
data, and the model with fixed ωt and partial data.

Parameter
Estimate(S.E.)

Selected model Model with fixed ω
Full data Partial data Partial data

ᾱ 2.000(0.036) 1.996(0.041) 1.998(0.041)
θ̄ 18.227(5.826) 14.950(5.753) 15.841(5.159)

eω̄ (days) 47.395(3.234) 45.985(3.835) 44.785(2.774)
γα,α 0.176(0.024) 0.181(0.031) 0.182(0.029)
γθ,θ 21.180 (3.422) 18.131(3.330) 19.423(2.838)
γω,ω 0.205 (0.049) 0.191(0.056) NA
φα,α 0.334(0.122) 0.206(0.173) 0.251(0.161)
φθ,θ 0.524(0.110) 0.386(0.157) 0.338(0.146)
σα 0.166(0.023) 0.177(0.032) 0.176(0.029)
σθ 18.034(2.808) 16.728(3.095) 18.278(2.694)
σω 0.205(0.049) 0.191(0.056) NA
β
(0)
p 2.946 (0.220) 2.742(0.233) 2.739(0.234)

β
(1)
p -0.025(0.005) -0.028(0.005) -0.028(0.005)
σ1
p 0.032(0.004) 0.028(0.004) 0.029(0.005)

ρp -0.827(0.054) -0.830(0.062) -0.831(0.061)
βm
p 0.701(0.092) 0.654(0.103) 0.653(0.103)

βm
w 0.041(0.013) 0.041(0.016) 0.041(0.016)
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Figure S4: Position of optimal laying date estimated from our selected model with partial data from 1973
to 2015. The estimated movement of optimal laying date from the selected model is shown with solid blue
line, along with its 95% confidence interval (dashed blue lines). The black dots are the observed within-year
mean laying dates.
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parameters in a model with the same formulation as our selected model except for that ωt is assumed to be

constant. We can see that the estimates in the last column are not far from that in the third column and

the basic conclusion made from comparison with estimates from Chevin et al. (2015) remain the same, that

our result reports larger width of fitness function, larger autocorrelation of the optimum laying dates and

larger standard deviation of the fluctuated optimum laying dates.

Fig. S4 shows the movement of optimal laying date estimated from our selected model with partial data

from 1973 to 2015. The estimated movement of optimal laying date from the selected model is shown

with solid blue line, along with its 95% confidence interval (dashed blue lines). The black dots indicate

the observed within-year mean laying dates. The pattern of the optimum movement in Fig. S4 is exactly

identical to the movement of optimum in Fig. 2 in the main text from 1973 to 2015. This again implies

that the full data set from 1955 to 2015 can be assumed to be generated from the same great tit population

without invalidating the general results of our analysis.

Supplementary figures

The estimates of ωt from our selected model range from 3.47 to 4.04 over the study period, and the corre-

sponding natural exponent eωt fluctuates from 32.15 to 56.65 days and the fluctuation can be seen clearly

from the top-left plot of Fig. S5, even though the estimate of variance of ωt is negligible and the candidate

model with fixed ωt does not perform much worse then our selected model. The movement of estimated

within-year max fitness αt (max mean number of fledglings), probability of successful-brooding and mean

number of fledglings are shown in the top-right, bottom-left and bottom-right plot respectively, with the

colorful lines representing non-parametric local regressions. 1988 is a standing-out year with a narrow width

(32.49), large maximum number of fledglings (11.29) and early optimal laying date (14th March), which

implies strong stabilizing selection via the mean number of fledglings (episode W ) on laying dates. From

the bottom plots the good years (1979, for example) with high mean probability of successful-brooding and

mean number of fledglings can be differentiated from the bad years (1984, for example). The information

obtained from the plots might provide insights for future researches which investigate the potentially abiotic

variables driving the selection.

Although our approach offers an advance in the study of phenotypic selection, we believe we have not yet

made best use of their full potential. Here, the estimates of random slopes produce order 1 autocorrelation

in the annual directional selection as shown in Fig. S6. This implies that our model specification failed to

capture the correlation structure of the fluctuated directional selection. While it does not bias the random

slopes estimates, the standard deviation of the random slopes tends to be underestimated when the lag 1
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Figure S5: Annual movement of width of fitness function (top-left), maximum fitness (top-right), mean
probability of successful-brooding (bottom-left) and mean number of fledglings (bottom-right). The black
fluctuated lines are the corresponding estimates from our selected model (the discrete estimates are connected
across years) and the colorful lines represent non-parametric local regressions.

autocorrelation of estimates is present.
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Evolution of double brooding

Jarle Tufto∗†, Yihan Cao∗, Marcel E. Visser‡
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Abstract

In some populations of birds, females produce a second brood after raising a
successful first brood. The proportion of females doing so varies strongly among
study populations and years. To understand the adaptive significance of double
brooding we consider double brooding jointly with the evolution of onset of breeding
in a model with resources limited to a finite window in time. Double versus single
brooding is modeled as a threshold character. Onset of breeding and the liability of
double brooding follows a binormal phenotypic distribution. Depending on the cost
of laying two broods versus one and the delay between the first and second brood
relative to the width of the resource window and the phenotypic variance of onset
of breeding, the adaptive topography may have single or multiple, purely single-
or purely double-brooding adaptive peaks. Despite no frequency-depedence, an
adaptive peak at an intermediate frequency of double brooding can exist if double
brooding has a sufficiently negative phenotypic correlation with onset of breeding.
If the location of the resource windows in time fluctuates between years, double-
brooding has an additional adaptive value as a conservative bet-hedging strategy.
Climate change, producing a linear trend in the location of the resource window
towards earlier dates, may select for a reduced frequency of double brooding. An
opposite effect is also possible if the additive genetic covariance between the liability
and onset of breeding is negative. Finally, the model is discussed in terms of an
empirical example.
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Bayesian inference with tmbstan for a state-space
model with VAR(1) state equation

Yihan Cao,∗ Marcel E. Visser,† Jarle Tufto∗

1 Introduction
Both frequentist and Bayesian statistical inference have been used for investigating ecolog-
ical processes. In the frequentist framework, Template model builder (TMB, Kristensen
et al., 2016), an R package developed for fast fitting complex linear or nonlinear mixed
models, has gained the popularity recently, especially in the field of ecology which usu-
ally involves in modeling complicated ecological processes (for example Cadigan, 2015;
Albertsen et al., 2016; Auger-Méthé et al., 2017). The combination of reverse-mode au-
tomatic differentiation and Laplace approximation for high-dimension integrals makes
parameter estimation with TMB very efficient even for non-Gaussian and complex hier-
archical models. TMB provides a flexible framework in model formulation and can be
implemented even for statistical models where the predictor is nonlinear in parameters
and random effect. However, the lack of capability of working in the Bayesian framework
has hindered the adoption of it for Bayesians.

Within the Bayesian framework, the software package Stan (Gelman et al., 2015),
a probabilistic programming language for statistical inference written in C++ attracts
peoples attention. It uses the No-U-Turn Sampler (NUTS) (Hoffman & Gelman, 2014),
an adaptive extension to Hamiltonian Monte Carlo (Neal et al., 2011), which itself is a
generalization of the familiar Metropolis algorithm, to conduct sampling more efficiently
through the posterior distribution by performing multiple steps per iteration. Stan is a
valuable tool for many ecologists utilizing Bayesian inference, particularly for problems
where BUGS (Lunn et al., 2000) is prohibitively slow (Monnahan et al., 2017). As such,
it can extend the boundaries of feasible models for applied problems, leading to a better
understanding of ecological processes. Fields that would likely benefit include estimation
of individual and population growth rates, meta-analyses and cross-system comparisons,
among many others.

Combining the merits of TMB and Stan, the new software package tmbstan (Monnahan
& Kristensen, 2018) which provides MCMC sampling for TMB models was developed.
This package provides ADMB and TMB users a possibility for making Bayesian statis-
tical analysis when prior information on the unknown parameters is available. From the
user’s perspective, it implements NUTS sampling from a target density proportional to
the product of marginal likelihood (computed by TMB or Stan) and the prior density

∗Centre for Biodiversity Dynamics, Department of Mathematical Sciences, Norwegian University of
Science and Technology, 7491 Trondheim, Norway

†Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Post Office Box
50, 6700AB Wageningen, Netherlands
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specified by the user. The user has the flexibility to decide which random effects are in-
tegrated out via the Laplace approximation in TMB and then the TMB model is passed
to function Stan in the RStan package so that the rest of the parameters are integrated
by Stan. This methodology might therefore potentially be more computationally efficient
than using MCMC alone to integrate out all parameters. Monnahan and Kristensen
(2018) introduced the tmbstan package, applied it to simulation studies and compared its
capabilities (computational efficiency and the accuracy of Laplace approximation) with
other platforms such as ADMB and TMB.

However, it is unclear that if Bayesian inference with arbitrary prior distribution
implemented with Stan would perform comparatively with frequentist inference when
modeling complex ecological processes. It is also unclear that when using tmbstan, if
using the Laplace approximation to integrate latent variables is more computationally
efficient than handling all latent variables via MCMC. In the case studies in Monnahan
and Kristensen (2018), Laplace approximation turned out to reduce the computational
efficiency of MCMC. Another issue arose in the case studies is that the Laplace approxi-
mation to the integration of random effects is not accurate to a degree and this could lead
to biased parameter estimates or uncertainties in parameter estimation. To gain more
insights on these issues, in this paper we conduct simulation studies and a case study in
the context of modeling fluctuating and auto-correlated selection with state-space models
(SSM). These forms of models are more generally increasingly used in ecology to model
time-series such as animal movement paths and population dynamics (for example Cadi-
gan, 2015; Albertsen et al., 2016; Auger-Méthé et al., 2017). Furthermore, following Cao,
Visser, and Tufto (2019), we also use order-1 vector autoregressive model (VAR(1)) to
model the unobserved states, which in our study are temporally fluctuating and poten-
tially auto-correlated height, width and location of a Gaussian fitness function. This
also allows us to make a further investigation into the issue of underestimation of the
auto-correlation parameter in auto-regressive models shown in Chevin et al. (2015) and
Cao et al. (2019).

Through the simulation and empirical studies, our paper aims to (1) compare esti-
mates between frequentist inference and Bayesian inference under different simulation
schemes; (2) investigate how the choice of prior influence Bayesian inference; (3) compare
the computational efficiency of MCMC with and without integrating out some of the
random effects via Laplace approximation.

2 Methodology

2.1 Model formulation

We consider a typical ecological process, the fluctuating selection in a bird species, the
great tit (Parus major). We conduct the study in the context of temporally changing
selection on the laying date with the number of fledglings as the fitness component, but it
can be generalized to any episode of viability or fertility selection, or to overall selection
through lifetime fitness. The discrete nonnegative variable, number of fledglings, is best
modelled by distributions such as Poisson, or zero-inflated Poisson (for example Chevin
et al., 2015; Cao et al., 2019). Within the framework of generalized linear models,
the expected value of response variable is commonly linked to the linear predictors of
biologically interest by logarithm. When both linear and quadratic effects of the traits are
included, this leads to a Gaussian model of stabilizing selection. In this study, the number
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of fledglings in a specific brood is assumed to be Poisson distributed, Xi|wi ∼ Poisson(wi),
where i indicates the breeding event. The fitness (the expected number of fledglings wi )
of individuals with phenotype zi is then given by

lnwi = η
(α)
t − (zi − η

(θ)
t )2

2(eη
(ω)
t )2

, (1)

where η
(α)
t , η(θ)t and eη

(ω)
t (e based to guarantee positive) are parameters determining the

logrithm of maximum fitness, optimum laying date and width of the fitness function in
year t respectively. We further model η(α)t , η(θ)t and η

(ω)
t , the three stochastic processes as

following:
η
(α)
t = μα + σααt,

η
(θ)
t = μθ + σθθt,

η
(ω)
t = μω + σωωt.

(2)

The elements of vector μ = (μα, μθ, μω)
T are the means of the three processes. The

stochastic processes αt, θt, ωt are assumed to be multivariate normal distributed (αt, θt, ωt)
T ∼

N3(0,Γ0) with Γ0 =

⎡
⎣ 1 ρα,θ ρα,ω
ρα,θ 1 ρθ,ω
ρα,ω ρθ,ω 1

⎤
⎦, where ρα,θ, ρα,ω and ρθ,ω indicate the correla-

tions and are assumed to be mutually independent. (αt, θt, ωt)
T are further assumed to

follow a first-order vector autoregressive (VAR(1)) process as below:⎡
⎣αt

θt
ωt

⎤
⎦ = Φ

⎡
⎣αt−1
θt−1
ωt−1

⎤
⎦+wt, (3)

where Φ is 3× 3 transition matrix and wt is a 3-dimentional vector of white noise. The
covariance matrix of wt is calculated as Γ0−ΦΓ0Φ. Correlations between the elements of
wt are determined by both ρ = (ρα,θ, ρα,ω, ρθ,ω) and Φ. If ρ is 0 vector and Φ is diagonal,
then wt reduces to be three independent and identically distributed white noise processes.
In this case, αt, θt and ωt simplify to three independent first-order autoregressive (AR(1))
processes. If ρ is 0 and all entries of Φ are zero, both (αt, θt, ωt)

T and wt reduce to three
independent and identically distributed white noise processes. In any case, our non-
centered parameterization implies that the standard deviation of αt, θt and ωt is only
determined by σα, σθ and σω respectively. We expect the non-centered parameterization
yields simpler posterior geometries (Betancourt & Girolami, 2015) and will be much more
efficient in terms of effective sample size when there is not much data (Stan Development
Team, 2018b, chapter 20).

It is worth mentioning that one objective of this study is to provide another case study
beyond the ones in Monnahan and Kristensen (2018). Therefore, even though αt, θt and
ωt are assumed to be VAR(1) in the model, in the simulation study we consider only
AR(1) θt and white noise of αt and ωt. The alternative simulation studies in which αt, θt
and ωt are formulated as other possible stochastic processes can be conducted similarly
and exhaustively, but that is an enormous amount of work in one single study. When αt,
θt and ωt are assumed to be VAR(1), one caution to be taken is that all the eigenvalues
of Φ must lie in the unit circle to guarantee the VAR (1) process to be stationary (Wei,
2006). At last, in the simulation study, we assume that the model structure is known,
which means that we already know θt is AR(1) process since the aim of the study is not
to explore the structure of the true model.
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2.2 Prior distribution

The priors are assumed to be independent to each other π(μ,Φ,Σ) = π(μ)π(Φ)π(Σ). We
take a normal N(m, qI3) prior distribution for the process mean vector μ = (μα, μθ, μω)
and input weak prior information on the process mean by taking m = 0 and q = 100.
Since in this study we assume constant η

(α)
t and η

(ω)
t , φθ,θ is the only non-zero entry in

Φ. We used truncated normal prior on φθ,θ since it outperforms Jeffreys’ prior (Jeffreys
& Jeffreys, 1961), g prior (Zellner, 1986) and natural conjugate prior (Schlaifer & Raiffa,
1961) in terms of posterior sensitivity using Highest Posterior Density Region (HPDR)
criterion concluded from the simulation study in Karakani et al. (2016). Lei et al. (2011)
also uses truncated normal distribution as subjective prior for the auto-regressive param-
eter in its AR (1) model. The mean and standard deviation of the truncated normal
distribution are arbitrarily set to be 0 and 0.5 respectively.

For the variance of the error term σ2
θ (σ2

α and σ2
ω are assumed to be zero), two priors

are used:
(1) half-Cauchy (0, 10) prior on σθ (Prior1);
(2) lognormal (1, 0.5) prior on σθ (Prior2).
These two priors are referred to Prior1 and Prior2 respectively in the rest of this paper.
It is worth mentioning that we also tested uniform prior on log(σθ) (non-informative im-
proper prior which equals to 1/σ prior on σ (Gelman et al., 2006)) and inverse-gamma (1,
1) prior on σ2

θ (non-informative proper prior, also illustrated in (Gelman et al., 2006)),
but both of them render an issue that the sampler traps in a subspace of the whole pa-
rameter space of log(σθ) and results in numerous divergent transitions. It was potentially
caused by the posterior becoming improper and consisting of a mode and an infinite
low-posterior-density ridge extending to infinity as illustrated in Tufto et al. (2012). We
thus in this study only consider the two proper informative priors (Prior1 and Prior2),
while more information on the MCMC with inverse-gamma (1, 1) prior on σ2

θ is given in
Supporting Information.

Note also that the scale parameters log(σθ) is declared in the TMB template in the
logarithmic format, but the half-Cauchy prior and lognormal prior contributed to the
total likelihood with the log density in terms of σθ and for inverse-gamma prior, it is in
terms of σ2

θ , where σθ is a positive transform σ = elogσ. Therefore, Jacobian adjustment
(see chapter 20.3 in Stan Development Team (2018b) for Jacobian adjustment) was con-
ducted by adding logσθ to the total likelihood when half-Cauchy prior and lognormal
prior are used. When testing inverse-gamma prior, it was log 2 + 2 log σθ added to the
total likelihood.

2.3 Software implementation

The model is formulated with C++ and passed to TMB for frequentist inference. The
model objective (fn) and gradient (gr) functions are fed to optimization function nlminb
with default setting to optimize the objective function.

For Bayesian inference, the TMB model objective and gradient functions are passed
to tmbstan which uses the stan function and executes the No-U-Turn sampler (NUTS)
algorithm by default to sample. Currently the other options are "HMC" (Hamiltonian
Monte Carlo), and "Fixed param". We ran the simulation study on a multicore com-
puting server with enough RAM to avoid swapping to disk. The number of warmup
iterations to be excluded when computing the summaries is set to 1000 and for total
sample length, it is 3000. We thin each chain to every second sample and set the value
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adapt delta to 0.95, which is the average proposal acceptance probability Stan aims for
during the adaption (warmup) period. We set a seed for each simulation including data
set and tmbstan to make sure all the simulation results are reproducible.

Divergent transitions during sampling may occur due to a large step size in the sampler
or a poorly parameterized model, meaning that the iteration of the MCMC sampler runs
into numerical instabilities (Carpenter et al., 2017) and thus inferences will be biased.
RStan team suggested that the problem may be alleviated by increasing the adapt delta
parameter (gives a smaller step size), especially when the number of divergent transitions
is small (Stan Development Team, 2018a). In our simulation studies, we find it difficult
to completely avoid divergent transitions across all data sets even though adapt delta
is increased to 0.95. Similar to Fuglstad, Hem, Knight, Rue, and Riebler (2019), we
thus removed simulations where 0.1% or more divergent transitions in the iterations after
warmup occur during the inference to avoid reporting biased results.

It is worth mentioning that the execution of Markov chains can be done in parallel.
While the default of RStan is to use 1 core, the RStan team recommended to set it to
as many processors as the hardware and RAM allow and at most one core per chain
(Stan Development Team, 2018a). The simulations we run are done with a server that
has 28 available cores. We thus set the number of cores to be 4 for the 4 Markov
chains. However, since for frequentist inference, optimization algorithm used in R function
"nlminb" makes the best use of all available cores of CPU, we thus only compare the
computational efficiency between tmbstan with and without Laplace approximation and
ignore the computational efficiency with "nlminb" to ensure fair comparisons.

3 Simulation scheme and results

3.1 Simulation scheme

All the data simulated are in natural units and considered to be biologically realistic
according to the empirical studies of natural birds populations (e.g. Grant & Grant, 2002;
Vedder et al., 2013). Samples were modeled from a population undergoing stabilizing
selection with AR(1) θt, fixed η

(α)
t and η

(ω)
t . Vector μ = (μα, μθ, μω)

T is set to (2, 20, 3.5).
The autocorrelation φθ,θ is set to 0.1, 0.4 and 0.7 (only positive values considered since
the estimate of auto-correlation in temporal optimal laying date is positive, for example
0.3029 in Chevin et al. (2015) and 0.524 in Cao et al. (2019)), the variance of fluctuating
optimal laying date σθ is set to 20.

For each value of φθ,θ, tmax = 25 or 50 time points were simulated and for each time
point the sample size was drawn from a Poisson distribution with mean n = 25, 50 or
100 individuals. We considered four combinations of tmax and n, which are (tmax =
25, n = 50), (tmax = 25, n = 100), (tmax = 50, n = 25) and (tmax = 50, n = 100).
These four combinations are refered as simulation setting 1, 2, 3, 4 respectively in the
following sections. Similar to Cao et al. (2019), we neglected response to selection and
used the same normal distribution for simulating individual phenotype each year. The
phenotypic standard deviation before selection σz was set to 20, such that the strength
of stabilizing selection S = σ2

z/(e
η
(ω)
t )2+σ2

z (e.g. Chevin et al., 2015) was 0.267. For each
individual, its fitness was computed from its phenotype using equation (1), and its actual
number of offspring was then drawn from a Poisson distribution with mean wt(z).
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3.2 Frequentist vs. Bayesian estimates

The results of one single simulation obtained from maximum likelihood in the frequentist
framework are compared with those from tmbstan. The summaries of the estimates with
tmbstan are computed after dropping the warmup iterations and merging the draws from
all the four chains. The frequentist and Bayesian estimates with different sample sizes
and φθ,θ = 0.4 are shown in Table 1, the estimates with other values of auto-correlation
in θt (φθ,θ =0.1 and 0.7) can be found in Supporting Information.

From Table 1 we find that both frequentist and Bayesian inferences show good es-
timates for μα and μω. It is interesting to see that the auto-correlation for θt is not
always under-estimated under all settings (for example (tmax = 25, n = 50)), this can be
also seen from the tables for parameter estimates in Supporting Information. Bayesian
inference with Prior1 (half-Cauchy prior) generally reports smaller estimates of μθ than
MLE and Prior2 (lognormal prior) but larger estimates of φθ,θ and logσθ. The estimates
with MLE and Prior2 are close to each other while the estimates with Prior2 show fewer
uncertainties for φθ,θ and logσθ implied by the smaller standard errors in the brackets.
Prior2 also reports smaller estimates for logσθ compared with MLE and Prior1 since it
puts very large weight on small values of the variance, as will be graphically demonstrated
in section 3.4. We also find that φθ,θ and log σθ are difficult parameters to estimate since
none of these three techniques can estimate them accurately across all the cases. How-
ever, the estimates are based on one realization of simulation, the discrepancy between
estimates to the true value would vary from simulation to simulation.

We also compare the estimates across the different sample sizes. We typically compare
the estimates between setting (tmax = 25, n = 50) and (tmax = 25, n = 100), (tmax =
50, n = 25) and (tmax = 50, n = 100), (tmax = 25, n = 100) and (tmax = 50, n = 100).
We find that increasing the mean sample size at each time point does not necessar-
ily increase the certainty of the estimates, but the data set with increased time points
(tmax = 50, n = 100) contains more information on the parameters of interest and thus
reports more certain estimates compared with the data set with (tmax = 25, n = 100).
The same conclusion can be also drawn by making similar comparisons among the esti-
mates in Table S1 and S2 in Supporting Information.

We can also find from Table 1, Table S1 and S2 from Supporting Information that the
Bayesian inference with Prior1 in some cases report 1 or 2 divergent transitions while with
Prior2 there are no divergent transitions reported. This implies that the geometric shape
of posterior likelihood with Prior1 is more challenging for sampling probably due to light
tails and thus potentially leads to an incomplete exploration of the target distribution.

3.3 Bias Plot

The comparison between the estimates in the last section is based on one realization of
the simulation. To make comparisons of estimates over more realizations, the simulation
was repeated 50 times under the setting of (tmax = 50, n = 25). Due to divergent
transitions, only 44 out of 50 replicates were kept and the replications with more than
0.1% divergent transitions (in 2000 iterations) were excluded from the analysis. For the
estimate of φθ,θ and logσθ in each replication, the bias was calculated in a frequentist
framework as the absolute difference between the true value and the mean estimate from
each inference technique. The absolute bias for φθ,θ and logσθ are graphically displayed
in the upper and lower plot in Fig. 1 respectively. From the upper plot we find that
in most replications, Bayesian inference with Prior1 slightly outperforms the frequentist
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Table 1: Frequentsit and Bayesian estimates (standard errors) from the model with AR(1)
θt, autocorrelation in θt φθ,θ = 0.4, and different sample sizes ((tmax = 25, n = 50),
(tmax = 25, n = 100), (tmax = 50, n = 25) and (tmax = 50, n = 100)) from one realiza-
tion of the simulation. For each sample size setting, the number of divergent transitions in
the MCMC is also reported and is used as a measure of stability of the inference scheme.
MLE stands for maximum likelihood estimate, Prior1 and Prior2 represent half-Cauchy
(0, 10) and lognormal (1, 0.5) prior respectively.

φθ,θ = 0.4, tmax = 25, n = 50
Parameters True value MLE Prior1 Prior2
no. divergent transitions NA NA 1 0
μα 2 2.017(0.015) 2.017(0.015) 2.016(0.015)
μθ 20 18.5(3.7) 18.3(5.1) 18.5(3.7)
μω 3.5 3.472(0.028) 3.475(0.028) 3.469(0.028)
φθ,θ 0.4 0.14(0.20) 0.23(0.23) 0.16(0.18)
logσθ 2.996 2.77(0.15) 2.88(0.19) 2.70(0.14)

φθ,θ = 0.4, tmax = 25, n = 100
Parameters True value MLE Prior1 Prior2
no. divergent transitions NA NA 2 0
μα 2 1.995(0.011) 1.995(0.012) 1.995(0.012)
μθ 20 20.2(8.7) 18.3(17.5) 20.1(7.4)
μω 3.5 3.506(0.022) 3.508(0.022) 3.504(0.021)
φθ,θ 0.4 0.50(0.17) 0.59(0.18) 0.46(0.13)
logσθ 2.996 3.25(0.18) 3.43(0.28) 3.13(0.14)

φθ,θ = 0.4, tmax = 50, n = 25
Parameters True value MLE Prior1 Prior2
no. divergent transitions NA NA 0 0
μα 2 1.974(0.015) 1.974(0.015) 1.973(0.015)
μθ 20 20.0(3.8) 19.8(4.9) 20.1(4.2)
μω 3.5 3.520(0.032) 3.523(0.032) 3.515(0.031)
φθ,θ 0.4 0.42(0.14) 0.48(0.15) 0.42(0.13)
logσθ 2.996 2.84(0.13) 2.92(0.16) 2.79(0.13)

φθ,θ = 0.4, tmax = 50, n = 100
Parameters True value MLE Prior1 Prior2
no. divergent transitions NA NA 0 0
μα 2 1.9865(0.0076) 1.9864(0.0076) 1.9861(0.0076)
μθ 20 20.7(3.9) 20.0(5.0) 20.7(4.1)
μω 3.5 3.512(0.015) 3.513(0.015) 3.510(0.015)
φθ,θ 0.4 0.41(0.13) 0.47(0.15) 0.41(0.12)
logσθ 2.996 2.89(0.12) 2.97(0.17) 2.85(0.11)
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Figure 1: Bias plots for the auto-regressive parameter φθ,θ (the upper plot) and for the
scale parameter logσθ (the lower plot) respectively under the setting with time series
length tmax = 50, average annual sample size n = 25, autocorrelation in θt φθ,θ = 0.4
and 44 replications (50 replications were conducted, among which 6 replications report 3
or more divergent transitions for the MCMC of Bayesian inference and thus are removed
from the analysis).

inference and Bayesian inference with Prior2, the latter two reported very close estimates
for φθ,θ. One striking thing is that the bias is close to or even larger than 0.4 for some
replications, this suggests that the inferences report even negative estimates of φθ,θ and
it again turns out to be a difficult parameter. In the lower plot, we can see no single
inference technique stands out in estimating the scale parameter logσθ.

3.4 Prior-posterior distribution

Fig. 2 shows histograms of posterior samples of the scale parameter σθ from models with
the two different prior distributions: half-Cauchy (0, 10) and log-normal (1, 0.5), which
are represented by solid lines in the left and right plot on each subplot respectively. The
true value of σθ is indicated by a solid red line. Plot (a), (b), (c) and (d) correspond
to setting (tmax = 25, n = 50), (tmax = 25, n = 100), (tmax = 50, n = 25) and
(tmax = 50, n = 100) respectively. We can see from plot (a) that the priors are quite
informative and pull the posteriors towards small values away from the true value and
this prior-domination is more clear with log-normal prior where the prior distribution
sharply peaks at 2. The domination is not mitigated even though the mean annual
sample size is increased to 100 as shown in plot (b). With the same total sample size
in plot (c) (tmax = 50, n = 25) as that in plot (a) (tmax = 25, n = 50), the posterior
likelihoods in plot (c) are, however, not dominated by the priors. The prior-domination
is also mitigated in plot (d) compared with plot (b) by increasing the time points from
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(a) (tmax = 25, n = 50). (b) (tmax = 25, n = 100).

(c) (tmax = 50, n = 25). (d) (tmax = 50, n = 100).

Figure 2: Histograms of posterior samples of the scale parameter σθ from models with
two different prior distributions. Plot (a), (b), (c) and (d) correspond to sample size
setting (tmax = 25, n = 50), (tmax = 25, n = 100), (tmax = 50, n = 25) and (tmax =
50, n = 100) respectively. On each subplot, the left one shows the histogram of posterior
samples given half-Cauchy (0, 10) prior on σθ and similarly, the right one displays the
histogram of posterior samples given log-normal (1, 0.5) prior on σθ. Overlain on each
subplot (the solid black lines) is the corresponding prior density function. The red lines
indicate the true value of σθ. Only φθ,θ = 0.4 was considered in the simulations.
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25 to 50.
Altogether, the informative log-normal prior pulls more of the posterior towards a

narrower range of smaller parameter values especially when the number of time points
in the data is small. The posterior samples are less dominated by the half-Cauchy prior
in this case. Increasing the annual mean sample size does not necessarily lead to better
identification of the small region of parameter space. Only the amount of time points is
the matter for the likelihood to overwhelm the prior distribution and to dominate the
posterior distribution.

3.5 Computational efficiency with and without Laplace approx-
imation

In tmbstan, sampling can be performed with or without Laplace approximation for the
random effects. It is possible to mix the Laplace approximation with MCMC by speci-
fying laplace=TRUE, such that the random effects are integrated with the Laplace ap-
proximation in TMB and other parameters (such as fixed effects and hyperparameters
specifying the distribution of the random effects) are handled by the NUTS in Stan. In
the case studies in Monnahan and Kristensen (2018), the Bayesian inference algorithms
with Laplace approximation is less computationally efficient than without Laplace ap-
proximation, where the efficiency is defined as the minimum effective sample size per sec-
ond. Following that definition, we calculated the efficiency of tmbstan with and without
Laplace approximation with simulated data. Different from Monnahan and Kristensen
(2018), we did not consider the computational efficiency of Frequentist inference with the
Laplace approximation, as explained in the last section.

In Fig. 3, plot (a) displays violin plots of computational efficiency without (orange) and
with (green) Laplace approximation (la) of Bayesian inference with Prior1 under different
sample size settings. The setting 1, 2, 3, 4 on x axis stand for setting (tmax = 25, n = 50),
(tmax = 25, n = 100), (tmax = 50, n = 25) and (tmax = 50, n = 100) respectively. Only
φθ,θ = 0.4 was considered and the divergent transitions were not taken into account.
Inside the violin plots are box plots showing the quantiles of 50 realized computational
efficiencies. Similarly, the violin plots of computational efficiency with Prior2 are shown
on plot (b). We find from both plot (a) and (b) that Bayesian inference without Laplace
approximation generally is more efficient under setting 1, 2, and 3, the outperformance
is more manifest when the sample size is small (tmax = 25, n = 50). However, when the
sample size is increased to (tmax = 50, n = 100), inference with Laplace approximation
turns out to be slightly more efficient than that without Laplace approximation, the
boxplots and violin plots also tend to be more compact under this setting.

Even though the technique in which the random effects are integrated out by Laplace
approximation in TMB turns out to be less efficient in most settings, we still provide a
counterexample from Monnahan and Kristensen (2018) in which the enabling of Laplace
approximation is always less computationally efficient in the case studies.

3.6 Laplace approximation check

By comparing the Bayesian posteriors with and without Laplace approximation, we are
allowed to check how well the Laplace approximation works. Fig. 4 shows pair plots of
posterior samples with and without Laplace approximation done by TMB under different
sample size settings with Prior2. Only autocorrelation in θt φθ,θ = 0.4 was considered.
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(a) Computational efficiency with Prior1.

(b) Computational efficiency with Prior2.

Figure 3: Violin plots of computational efficiency (minimum effective sample size per
second) without (orange) and with (green) Laplace approximation (la). The four settings
on x axis correspond to sample size setting (tmax = 25, n = 50), (tmax = 25, n =
100), (tmax = 50, n = 25) and (tmax = 50, n = 100) respectively. Plot (a) shows
the computational efficiency of Bayesian inference with Prior1 and plot (b) with Prior2.
Only φθ,θ = 0.4 was used in simulations. Inside the violin plots are box plots showing
the quantiles of 50 realized computational efficiencies. For each realization among the 50
simulations and across the settings, the same specifications in tmbstan are used.
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(a) (tmax = 25, n = 50) with Prior2. (b) (tmax = 25, n = 100) with Prior2.

(c) (tmax = 50, n = 25) with Prior2. (d) (tmax = 50, n = 100) with Prior2.

Figure 4: Pair plots of posterior samples for Laplace approximation check from one
realization of the simulation with Prior2. The four plots (a) (b) (c) and (d) correspond
to the four settings of sample size in simulation. The random effects in the TMB model
can be integrated with two techniques: (1) full MCMC integration via NUTS and (2)
Laplace approximation. To check the accuracy of Laplace approximation to the posterior
likelihood density, the posterior samples for all the fixed effects in the model without
(yellow dots) and with Laplace approximation (green dots) are shown pair-wisely on the
same plot. Columns and rows on the lower diagonal correspond to pair-wise parameters,
with the diagonal showing QQ-plot of posterior samples from Bayesian inference without
(yellow dots) and with (green dots) Laplace approximation for that parameter including
a 1:1 line in yellow. The large red circles on the off-diagonal plots represent the pairwise
means. On each off-diagonal plot, there are 4000 yellow dots corresponding to 1000
samples retained from each of four chains without Laplace approximation, so as the green
dots with Laplace approximation. Posterior rows were randomized to prevent consistent
overplotting of one integration technique. Overlaps in the two colored dots suggest that
the Laplace approximation is accurate.
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Plot (a), (b), (c) and (d) correspond to setting (tmax = 25, n = 50), (tmax = 25, n =
100), (tmax = 50, n = 25) and (tmax = 50, n = 100) respectively. On each subplot,
the lower diagonal plots contain pairwise parameter posterior points. The green dots
represent posterior points from full MCMC integration via NUTS and the yellow points
from enabled Laplace approximation of the random effects. The hollow red circles on
the off-diagonal plots represent the pairwise means. The diagonal shows QQ-plot of
posterior samples from Bayesian inference without (yellow dots) and with (green dots)
Laplace approximation for that parameter including a 1:1 line in yellow. Even though
the posterior points are densely packed, the overlap of the red circles with each technique
shows seemingly good alignment of the two versions of the posterior, and this suggests that
the Laplace approximation to the marginal likelihood where random effects are integrated
out works well. Similar pair plots for Laplace approximation check with Prior1 can be
found in Supporting Information.

4 Real-data case study
Having established the utility of our modeling approach and frequentist and Bayesian
inference in the context of simulated data, we also applied the same statistical model
to the analysis of a real great tit dataset of practical interest. The observed data were
collected from a Dutch great tit (Parus major) population at the Hoge Veluwe National
Park in the Netherlands (52°02’ - 52°07’N, 5°51’ - 5°32E). The recorded variables include
the number of chicks, number of fledglings, mother ID, brood laying date and so on
for each brood. Laying dates are presented as the number of days after March 31 (day
1=April 1, day 31=May 1). Similar to Reed et al. (2013), only the broods with one or
more chicks were considered in our analysis due to the high proportion (15.7%) of zero-
observations in the number of fledglings among the broods. The number of fledglings was
taken as the fitness component and assumed to be Poisson distributed. The analyzed
dataset consists of brood records breeding in 61 years from 1955 to 2015 and the sample
size in a specific year ranges from 10 to 164 with an average of 81 across the study years.
See Reed et al. (2013) for more details on the study population and fieldwork procedures.

The focus of this empirical study is to compare the computational efficiency of Bayesian
inference with and without Laplace approximation and to check the accuracy of Laplace
approximation. However, since the true structure of the model is unknown, we first
conducted model selection under the frequentist framework and the candidate models
considered are different from each other only in the model structure of stochastic αt, θt
and ωt. The details of all the candidate models including the best model are given in
Supporting Information. We then made Bayesian inference with the two different pri-
ors as in the simulation study using the selected model. For each prior distribution, we
implemented tmbstan with and without Laplace approximation to check the accuracy of
Laplace approximation.

Table 2 lists the reported estimates of model parameters from maximum likelihood
(MLE) and Bayesian estimates with half-Cauchy (0, 10) prior (Prior1) and log-normal (1,
0.5) prior (Prior2). The best model indicates VAR(1) structure of αt and θt and non-zero
correlation ρ̂α,θ. The width of stabilizing fitness function turned to be constant over the
study years implied by zero ω̂t. Frequentist inference and Bayesian inference with Prior2
report close estimates for φθ,θ but the estimates with Prior2 show again less uncertainty
for most of the estimates except for ρα,θ. In terms of log σθ, Bayesian inference with Prior1
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Table 2: Frequentist and Bayesian estimates of parameters in the selected model with
great tit dataset. The Bayesian estimates (in column Prior1 and Prior2) are obtained
without Lapalace approximation done by TMB.

parameter MLE Prior1 Prior2
μα 2(0.0369) 2(0.0491) 2(0.0379)
μθ 18.5(5.35) 18.8(7.12) 19.4(5.09)
μω 3.88(0.055) 3.89(0.0563) 3.86(0.0522)
φα,α 0.379(0.12) 0.458(0.13) 0.398(0.124)
φθ,θ 0.48(0.112) 0.545(0.114) 0.477(0.102)
logσα -1.72(0.14) -1.63(0.152) -1.76(0.126)
logσθ 3.07(0.137) 3.16(0.155) 2.98(0.125)
ρα,θ -0.728(0.0825) -0.715(0.0895) -0.661(0.0987)

Table 3: Comparison of computational efficiency between Bayesian inference without (in
the row "Full MCMC") and with Laplace approximation (in the row "Laplace approxi-
mation") for random effects for the great tit case study.

Model Inference Time(s) min.ESS Efficiency(ESS/t)

Prior 1 Full MCMC 1542.215 186.7651 0.1211019
Laplace approximation 15491.85 1004.643 0.06484975

Prior 2 Full MCMC 1266.096 291.0717 0.229897
Laplace approximation 7815.218 1111.257 0.1421914

reports the largest estimate and least certainty compared with the other two techniques.
The close resemblance between estimates of log σθ based on maximum likelihood and
Bayesian inferences suggests that the data contains a good amount of information on
log σθ so that the maximum likelihood overwhelms the log-normal prior and dominates
the posterior likelihood.

Table 3 shows computational efficiencies of Bayesian inference without and with
Laplace approximation. It turns out that the computational efficiency with Laplace ap-
proximation is approximately half of that without Laplace approximation in both models
with Prior1 and Prior2.

Similar to Fig. 4, Fig. 5 and Fig. 6 display pair plots of posterior samples to check
the accuracy of Laplace approximation with Prior1 and Prior2 respectively. Both the
figures seemingly suggest a good mix of posterior samples with and without Laplace
approximation for all the parameters in the selected model, indicating that the Laplace
approximation assumption is met.

5 Conclusions and extensions
In this study, we have investigated frequentist inference and Bayesian inference with two
different priors. The inferences were implemented with a state-space model estimating
temporal fluctuating selection and with simulated biological data under four different sim-
ulation settings. A state-of-the-art R package (tmbstan) for fast fitting statistical models
was used for Bayesian inference with Laplace approximation turning on or off. The simu-
lation studies show that the choice of prior can have an important impact on the geometric
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Figure 5: Pair plots of posterior samples for Laplace approximation test for the great
tit case study with Prior1. The random effects in the great tit TMB model can be in-
tegrated with two techniques: (1) full MCMC integration via NUTS and (2) Laplace
approximation. To check the accuracy of Laplace approximation to the posterior likeli-
hood density, the posterior samples for all the fixed effects in the model without (yellow
dots) and with Laplace approximation (green dots) are shown pair-wisely on the same
plot. Columns and rows on the lower diagonal correspond to pair-wise parameters, with
the diagonal showing QQ-plot of posterior samples from Bayesian inference without (yel-
low dots) and with (green dots) Laplace approximation for that parameter including a
1:1 line in yellow. The large red circles of the off-diagonal plots represent the pairwise
means. On each off-diagonal plot, there are 4000 yellow dots corresponding to 1000 sam-
ples retained from each of four chains without Laplace approximation, so as the green
dots with Laplace approximation. Posterior rows were randomized to prevent consistent
overplotting of one integration technique. Overlaps in the two colored dots suggest the
Laplace approximation assumption is met.

shape of the posterior distributions of the model parameters and a non-informative prior
(in this study uniform prior and inverse-gamma prior on the scale parameter) may lead
to unstable inference since the Markov chains may not converge or get stuck in part of
the ridge of posterior. With unobserved states following a VAR(1) process, we also found
that the autoregressive parameters and the scale parameters in the variance-covariance
matrix of the states are difficult and challenging to be estimated accurately. The in-
creased sample size at each time point does not necessarily provide more information for
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Figure 6: Pair plots of posterior samples for Laplace approximation test for the great tit
case study with Prior2. The random effects in the great tit TMB model can be integrated
with two techniques: (1) full MCMC integration via NUTS and (2) Laplace approxima-
tion. To check the accuracy of Laplace approximation to the posterior likelihood density,
the posterior samples for all the fixed effects in the model without (yellow dots) and with
Laplace approximation (green dots) are shown pair-wisely on the same plot. Columns
and rows on the lower diagonal correspond to pair-wise parameters, with the diagonal
showing QQ-plot of posterior samples from Bayesian inference without (yellow dots) and
with (green dots) Laplace approximation for that parameter including a 1:1 line in yel-
low. The large red circles of the off-diagonal plots represent the pairwise means. On each
off-diagonal plot, 4000 yellow dots correspond to 1000 samples retained from each of four
chains without Laplace approximation, so as the green dots with Laplace approximation.
Posterior rows were randomized to prevent consistent overplotting of one integration tech-
nique. Overlaps in the two colored dots suggest the Laplace approximation assumption
is met.

the transition parameters and scale parameters. Only more time points in the data could
make the likelihood dominate the posterior likelihood and thus lead to better estimates of
these parameters. Half-Cauchy prior on the scale parameter leads to less stable inference
than log-normal prior indicated by the number of divergent transitions in the Markov
Chains. Laplace approximation for the random effects turns out to be accurate suggested
by the pair plots of the posterior samples with and without Laplace approximation for
both the simulation studies and the great tit case study. Turning on Laplace approxi-
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mation in tmbstan would probably reduce computational efficiency but it is worth trying
when there is a good amount of data, in which case the Laplace approximation is more
likely to be accurate and also potentially improve the computational efficiency of MCMC.

In our study, we used arbitrary prior distributions, however, the prior information can
be obtained from different sources. For example, in our great tit case study, the timing
and width of the caterpillar peak can provide a clue for the time window of optimal laying
dates, thus the information can be used to decide the prior for the scale parameter of
the optimal laying dates. Prior information can also be generated from previous studies
on the same species and more general ecological knowledge coming from other related
species (Tufto et al., 2000).

We conducted simulation studies with only AR(1) process of the optimal laying dates,
but the model is formulated and coded in a way that can be effortlessly extended to
order-1 vector autoregression (VAR(1)). It can be widely used for modeling ecological
processes where auto-correlation and cross-correlation in the processes arise due to shared
environmental variables at either temporal or spatial scale. We expect more ecologists to
adopt these two new estimation methods, TMB, and tmbstan, given its flexibility in either
frequentist or Bayesian inference for a wide range of models, including the models where
the unobserved ecological processes are treated as latent variables and assumed to be VAR
processes. However, the drawback of Bayesian VAR (BVAR) methods is that it usually
requires estimation of a large number of parameters and thus the over-parameterization
might lead to unstable inference and inaccurate out-of-sample forecasts. Some shrinkage
methods (Sims & Zha, 1998; Koop et al., 2010; Giannone et al., 2015; Sørbye & Rue,
2017, for example) were thereby developed, in which Bayesian priors provide a logical
and consistent method of imposing parameter restrictions that can be potentially applied
to ecological data cases.
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Supporting Information (SI) for

Bayesian inference with tmbstan for a state-space model with VAR(1) state equation

1 Supplementary results of simulation studies

Similar to Table 1 in the main text, we here show the frequentist and Bayesian estimates of the same

parameters but with different true values of φθ,θ. Table S1 and Table S2 list the estimates of parameters

under different simulation settings with φθ,θ = 0.1 and 0.7 respectively. From these two tables, we find

generally similar patterns to the table of estimates in the main text. For example, dataset with more time

points (tmax = 50, n = 100) leads to more accurate estimates compared with the dataset with shorter time

series (tmax = 25, n = 100). Increasing the sample size at each time point improves neither the accuracy

nor the certainty of the estimates for the parameters of interest, only a bigger sample size is required for this

purpose.

In the main text, we only present the pair plots of posterior samples for Laplace approximation check

with Prior2. We here supplement the pair plots (Fig. S1) with Prior1 under the four different sample

size settings. Fig. S1 also suggests accurate Laplace approximation indicated by the good mix of posterior

samples. To further validate this conclusion, we visually inspect the accuracy of Laplace approximation by

plotting bivariate contour plots of posterior samples from the Bayesian model with and without Laplace

approximation on the same figure, as shown in Fig. S2. Only the joint posterior distribution (φθ,θ and

log(σθ)) is considered and other parameters are ignored for simplifying the analysis. The overlap of contours

with (yellow) and without (green) Laplace approximation for the random effects suggests again that the

Laplace approximation in these cases is accurate.
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Table S1: Frequentsit and Bayesian estimates from the model with AR(1) θt, autocorrelation in θt φθ,θ =

0.1, and different sample sizes.

φθ,θ = 0.1, tmax = 25, n = 50

Parameters True value MLE Prior1 Prior2

no. divergent transitions NA NA 1 0

μα 2 2.006(0.016) 2.005(0.016) 2.006(0.016)

μθ 20 19.6(6.4) 19.3(9.3) 19.8(6.1)

μω 3.5 3.475(0.030) 3.479(0.030) 3.472(0.030)

φθ,θ 0.1 0.26(0.19) 0.34(0.22) 0.25(0.16)

logσθ 2.996 3.21(0.16) 3.34(0.20) 3.11(0.14)

φθ,θ = 0.1, tmax = 25, n = 100

Parameters True value MLE Prior1 Prior2

no. divergent transitions NA NA 1 0

μα 2 1.996(0.010) 1.996(0.010) 1.997(0.010)

μθ 20 17.1(3.7) 16.4(5.0) 17.0(3.8)

μω 3.5 3.493(0.021) 3.494(0.022) 3.491(0.022)

φθ,θ 0.1 0.07(0.21) 0.15(0.24) 0.10(0.18)

logσθ 2.996 2.85(0.15) 2.95(0.18) 2.78(0.13)

φθ,θ = 0.1, tmax = 50, n = 25

Parameters True value MLE Prior1 Prior2

no. divergent transitions NA NA 0 0

μα 2 1.977(0.015) 1.977(0.015) 1.976(0.015)

μθ 20 19.8(2.7) 19.7(3.1) 19.9(2.8)

μω 3.5 3.529(0.033) 3.535(0.033) 3.525(0.033)

φθ,θ 0.1 0.04(0.15) 0.07(0.17) 0.06(0.14)

logσθ 2.996 2.88(0.12) 2.93(0.12) 2.83(0.12)

φθ,θ = 0.1, tmax = 50, n = 100

Parameters True value MLE Prior1 Prior2

no. divergent transitions NA NA 0 0

μα 2 1.9858(0.0076) 1.9857(0.0078) 1.9856(0.0077)

μθ 20 20.3(2.8) 20.3(2.9) 20.3(2.9)

μω 3.5 3.515(0.015) 3.515(0.016) 3.513(0.015)

φθ,θ 0.1 0.09(0.14) 0.12(0.16) 0.11(0.14)

logσθ 2.996 2.89(0.10) 2.93(0.11) 2.86(0.10)
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Table S2: Frequentsit and Bayesian estimates from the model with AR(1) θt, autocorrelation in θt φθ,θ =

0.7, and different sample sizes.

φθ,θ = 0.7, tmax = 25, n = 50

Parameters True value MLE Prior1 Prior2

no. divergent transitions NA NA 1 0

μα 2 2.012(0.015) 2.012(0.015) 2.011(0.014)

μθ 20 15.7(4.8) 15.0(8.7) 16.0(5.0)

μω 3.5 3.483(0.031) 3.486(0.031) 3.480(0.031)

φθ,θ 0.7 0.45(0.18) 0.55(0.19) 0.43(0.16)

logσθ 2.996 2.72(0.18) 2.89(0.27) 2.65(0.16)

φθ,θ = 0.7, tmax = 25, n = 100

Parameters True value MLE Prior1 Prior2

no. divergent transitions NA NA NA 0

μα 2 1.987(0.011) 1.980(0.014) 1.986(0.011)

μθ 20 18.3(9.7) 20(18) 18.4(8.1)

μω 3.5 3.539(0.022) 3.566(0.049) 3.537(0.022)

φθ,θ 0.7 0.70(0.13) 0.60(0.35) 0.63(0.11)

logσθ 2.996 3.10(0.23) 3.36(0.29) 2.95(0.16)

φθ,θ = 0.7, tmax = 50, n = 25

Parameters True value MLE Prior1 Prior2

no. divergent transitions NA NA 1 0

μα 2 2.021(0.016) 2.021(0.016) 2.021(0.016)

μθ 20 19.3(8.9) 20(14) 19.7(7.8)

μω 3.5 3.488(0.031) 3.490(0.030) 3.482(0.030)

φθ,θ 0.7 0.739(0.094) 0.781(0.091) 0.692(0.081)

logσθ 2.996 3.24(0.18) 3.39(0.25) 3.13(0.14)

φθ,θ = 0.7, tmax = 50, n = 100

Parameters True value MLE Prior1 Prior2

no. divergent transitions NA NA 1 0

μα 2 1.9899(0.0076) 1.9899(0.0076) 1.9896(0.0075)

μθ 20 21.1(6.2) 20(12) 21.6(5.5)

μω 3.5 3.511(0.015) 3.511(0.015) 3.510(0.015)

φθ,θ 0.7 0.71(0.10) 0.76(0.10) 0.667(0.086)

logσθ 2.996 2.93(0.17) 3.09(0.27) 2.84(0.14)
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(a) (tmax = 25, n = 50) with Prior1. (b) (tmax = 25, n = 100) with Prior1.

(c) (tmax = 50, n = 25) with Prior1. (d) (tmax = 50, n = 100) with Prior1.

Figure S1: Pair plots of posterior samples for Laplace approximation check for one realization of the

simulation with prior1. The four plots (a), (b), (c), and (d) correspond to the four schemes of simulation.

The random effects in the TMB model can be integrated with two techniques: (1) full MCMC integration

via NUTS and (2) Laplace approximation. To check the accuracy of Laplace approximation to the posterior

likelihood density, the posterior samples for all the fixed effects in the model without (yellow dots) and with

Laplace approximation (green dots) are shown pair-wisely on the same plot. Columns and rows on the lower

diagonal correspond to pair-wise parameters, with the diagonal showing QQ-plot of posterior samples from

Bayesian inference without (yellow dots) and with (green dots) for that parameter including a 1:1 line in

yellow. The large red circles of the off-diagonal plots represent the pairwise means. On each off-diagonal

plot, there are 4000 yellow dots corresponding to 1000 samples retained from each of four chains without

Laplace approximation, so as to the green dots with Laplace approximation. Posterior rows were randomized

to prevent consistent overplotting of one integration technique. Overlaps in the two colored dots suggest the

Laplace approximation assumption is met.

4



Prior1

(a) (tmax = 25, n = 50) (b) (tmax = 25, n = 100) (c) (tmax = 50, n = 25) (d) (tmax = 50, n = 100)

Prior2

(e) (tmax = 25, n = 50) (f) (tmax = 25, n = 100) (g) (tmax = 50, n = 25) (h) (tmax = 50, n = 100)

Figure S2: Bivariate contour plots of posterior samples of φθ,θ and log(σθ) from one realization of the

simulation with Prior1 (the first row) and Prior2 (the second row) for Laplace approximation check. The

posterior samples data used are the same as that in Fig. S1 and Figure 4 in the main text. The yellow

contours indicate the joint posterior distribution of (φθ,θ, log(σθ)) from the estimation technique full MCMC

integration via NUTS, and the green contours correspond to the technique that Laplace approximation is

used. The yellow and green dots in each plot represent the mean of the bivariate posterior samples in each

setting respectively.
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Table S3: Model selection for the real data case study. The table lists all the candidate models fitted with

the great tit data. Model 7 is selected as the best model due to the smallest AIC value. Column Δp and

ΔAIC lists the difference between the selected model and the corresponding candidate model in the number

of parameters and reported AIC value respectively. The rightmost column describes the candidate models.

The elements in matrix Φ and vector ρ are set to 0 if not otherwise specified.

Model Δp ΔAIC Description

1 -5 821.51 αt = θt = ωt = 0

2 -4 295.07 θt = ωt = 0, random αt

3 -3 34.81 ωt = 0, random αt and θt

4 -2 176.51 random αt, θt and ωt

5 -4 265.32 αt = ωt = 0, random θt

6 2 2.52 ωt = 0, VAR(1) αt and θt: φα,α 	= φθ,θ 	= φα,θ 	= φθ,α 	= 0, ρα,θ 	= 0

7 (best model) 0 0 ωt = 0, AR(1) αt and AR(1) θt: φα,α 	= φθ,θ 	= 0

8 1 1.92 ωt = 0, VAR(1) αt and θt: φα,α 	= φθ,θ 	= φθ,α 	= 0, ρα,θ 	= 0

9 1 1.21 ωt = 0, VAR(1) αt and θt: φα,α 	= φθ,θ 	= φα,θ 	= 0, ρα,θ 	= 0

10 -1 12.93 ωt = 0, random θt, AR(1) αt: φα,α 	= 0

11 -1 6.7 ωt = 0, random αt, AR(1) θt: φθ,θ 	= 0

2 Supplementary info on real data case study

Beside half-Cauchy and lognormal priors for the scale parameters of the great tit model as shown in the

main text, we also tested inverse-gamma (1, 1) prior for the scale parameter σ2
α and σ2

θ . To visualize MCMC

diagnostics we show trace plots for the two scale parameters along with the prior densities in Fig. S3. The

solid black line in plot (a) shows prior density function of σα (or σθ) given a Inverse-gamma (1, 1) prior

density on σ2
α (or σ2

θ). The details on density function transformation are omitted here. The solid red line

indicates the density mode. The prior density mode of σα at 0.71 translates to density mode of logσα at

-0.34. However, the left trace plot in plot (b) for logσα implies that the posterior likelihood is dominated

by the prior so that the sampler gets trapped in the subspace of the parameter, which is a space near -0.34,

while the true posterior density mode locates around -1.7.

As mentioned in the main text, the great tit model implemented with Bayesian inference was selected in

the frequentist framework with model selection procedure. Table S3 lists all the candidate models fitted with

the great tit data. Model 7 is selected as the best model due to the smallest AIC value reported. Colomun

Δp and ΔAIC lists the difference between the selected model and the corresponding candidate model in the

number of parameters and reported AIC value respectively. The rightmost column describes the candidate

models.

We also plot the contours of posterior samples with and without Laplace approximation for a subset
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(a) Prior density function on σα or σθ given Inverse-gamma (1, 1) prior on

σ2
α or σ2

θ respectively.

logSigma[1] logSigma[2]

0 1000 2000 3000 0 1000 2000 3000

−2

0

2

4

−2

−1

0

chain

1

2

3

4

(b) Trace plots for logσα (left) and for logσθ (right).

Figure S3: A prior density and trace plots for the great tit case study. In plot (a), the solid curve indicates

an equivalence of the density to inverse-gamma (1, 1) prior on σ2
α or σ2

θ , the equivalent density on σα or σθ is

calculated with rules of density function transformation, which is omitted here. The red solid line indicates

the density mode. Plot (b) shows trace plots with the inverse-gamma (1,1) priors for parameter σ2
α (left)

and σ2
θ (right) respectively. The grey areas indicate warm-up iterations.
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(a) Bivariate contour plots with Prior1.

(b) Bivariate contour plots with Prior2.

Figure S4: Bivariate contour plots of posterior samples of a subset of the parameters in the selected great

tit model for Laplace approximation check. The posterior samples used here are the same as that in Figure

5 and Figure 6 in the main text. The plots in row (a) correspond to the Bayesian model with Prior1, and in

row (b) they are with Prior2. Similar to Fig. S2, the yellow contours indicate the joint posterior distribution

of the parameters from the estimation technique full MCMC integration via NUTS, and the green contours

correspond to the technique that Laplace approximation is used. The yellow and green dots in each plot

again represent the mean of the bivariate posterior samples in each plot respectively. Only a subset of the

parameters is considered for simplification.
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of parameters in the great tit model on the same graph (Fig. S4), to get a clearer visualization of the

posteriors’ distribution. The first and second row of the contour plots corresponds to the Bayesian great tit

model with Prior1 and Prior2 respectively. The round dots on the plots are the mean of posterior samples

for each estimation technique. The good amount of overlap of the yellow contours, dots (without Laplace

approximation), and green contours, dots (with Laplace approximation) again suggests a good accuracy of

Laplace approximation.
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