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Preface

This thesis has been prepared at the Department of Industrial Economy and

Technology Management at the Norwegian University of Science and Technology

(NTNU) in partial fulfillment of the requirements of the Doktor Ingeniør degree.

The work has been carried out in the period from January 2000 to December

2004. The main advisor of the thesis has been Professor Alexei A. Gaivoron-

ski and co-advisor has been Jan A. Audestad. The project has been funded for

three years by Telenor R & D whereas the department financed a further half year.

The main subject of the thesis is the analysis of decision problems that are charac-

terised by uncertainty and a hierarchic structure. Both theoretical and practical

issues are considered in this thesis. The background of the applications is to

be found in telecommunications. One reason for this is the fact that the recent

development of the telecommunications sector naturally gives rise to the type of

problems considered here. Another reason is that the major part of the project

was funded by a telecom company. However, this background is not restrictive

and most of the results can easily be generalised. The thesis consists of two parts:

the first part is an introduction that discusses the framework of my research and

outlines the contents of the papers in part two. The second part consists of the

four papers.

The subject of the thesis is located at an intersection of telecommunications,

stochastic programming and economic modeling. Thus a broad field is covered

providing many impulses for exciting and challenging research. Although there

were hard periods filled with frustration and doubts I really enjoyed doing re-

search on this field and overcoming one obstacle after the other. Furthermore,

Trondheim is an excellent place to work on a PhD project, especially due to its

surroundings. I spent much of my spare time outdoors hiking and staying in

small cabins in the mountains or bicycling. Such activities provided both energy

and calmness which were important for mastering the everyday challenges.
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Abstract

We analyse several facets of bilevel decision problems under uncertainty. These

problems can be interpreted as an extension of stochastic programming problems

where part of the uncertainty is attributed to the behaviour of another actor.

The field of decision making under uncertainty with bilevel features is quite new

and most approaches focus on the interactions and relations between the de-

cision makers. In contrast to these studies, the approach of bilevel stochastic

programming pursued here stresses the stochastic programming aspect of the

problem formulation. The framework enables a direct application of stochastic

programming concepts and solution methods to the bilevel relationship between

the actors. Thus more complex problem structures can be studied and the aspect

of uncertainty can be treated adequately.

Our analysis covers both theoretical and more practically oriented issues. We

study different formulations of one and two stage bilevel stochastic program-

ming problems and state necessary optimality conditions for each of the problem

instances. Additionally we present a solution algorithm utilising a stochastic

quasi-gradient method. A further study is concerned with the uniqueness of the

minima of a convex stochastic programming problem with uncertainty about the

decision variables. We state conditions on the distribution of the parameters rep-

resenting the uncertainty such that the minima of the optimisation problem are

unique. We formulate a model of competition and collaboration of two different

types of telecom service providers, the owner of a bottleneck facility and a virtual

network operator. This represents an application of a bilevel stochastic program-

ming formulation to a liberalised telecommunications environment. Furthermore,

the utilisation of the bilevel stochastic programming framework and the devel-

oped solution concepts for the analysis of principal agent models is demonstrated.

Also here the background of a regulated telecom environment, more specific the

relations between a regulator and a regulated telecommunications company, was

chosen.





Contents

Introduction 1

1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Hierarchical optimisation under uncertainty . . . . . . . . . . . . 4

2.1 Stochastic programming . . . . . . . . . . . . . . . . . . . 4

2.2 Bilevel programming . . . . . . . . . . . . . . . . . . . . . 7

2.3 Hierarchical decision making under uncertainty . . . . . . 9

3 Application background . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Virtual Operators . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Agency theory . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Research contribution and description of the papers . . . . . . . . 18

5 Conclusions and future research . . . . . . . . . . . . . . . . . . . 21

Paper 1: Extending the stochastic programming framework for the

modeling of several decision makers: pricing and competition in

the telecommunication sector 27

Paper 2: A solution method for bilevel stochastic programming

problems 57

Paper 3: Utilisation of stochastic programming methods for the

analysis of agency problems 99

Paper 4: Influence of perturbed input data on convexity properties

of stochastic programming problems 133





1

Introduction

The studies in this thesis focus on aspects of decision making under uncertainty

when part of the uncertainty derives from actions of another actor. This describes

a stochastic programming problem with bilevel structure. The analysis was con-

ducted against the background of a liberalised telecommunications environment

since the major part of the work was financed by the Norwegian telecom com-

pany Telenor. This background is, however, not restrictive and the results can

be applied easily to similar environments such as liberalised electricity markets or

general principal agent processes.

The thesis consists of an introductory chapter and four self contained and com-

plementary papers.

In Paper 1, ”Extending the stochastic programming framework for the model-

ing of several decision makers: pricing and competition in the telecommunication

sector”, a model of competition and collaboration between two different types of

telecom service providers in a common market is developed and studied.

This model motivated the analysis in Paper 2, ”A solution method for bilevel

stochastic programming problems”. In this study necessary optimality conditions

and a solution algorithm are presented for several variants of bilevel stochastic

programming problems.

Considering a principal agent problem of regulation in telecommunications, Pa-

per 3, ”Utilisation of stochastic programming methods in the analysis of agency

problems”, illustrates the application of the framework of bilevel stochastic pro-

gramming to agency theory.

In Paper 4, ”Influence of perturbed input data on convexity properties of stochas-

tic programming problems”, we study the effect of uncertainty about the decision

variables on the properties of convex optimisation problems, especially on the

uniqueness of the optimal solutions.

The remainder of this introductory chapter is organised as follows. First, Section

1 elucidates the motivation of our studies. Section 2 gives an overview over the

theoretical context of the work. It comprises the fields of stochastic program-

ming and of bilevel programming, but especially their intersection leading to the

framework of bilevel stochastic programming. Section 3 outlines the practical
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background of our work motivating the choice of the application examples. We

present several aspects of the relationship between independent decision makers

which can be found for example in a modern telecom environment. Section 4 ex-

plains the research contribution and gives a brief description of each of the papers

before in Section 5 main conclusions of the thesis are stated and directions for

further research are indicated.

Finally, the four papers constituting the main part of the thesis follow.

1 Motivation

In the recent years industrial sectors such as telecommunications, electricity mar-

kets or transportation have been subject to a comprehensive process of reorgani-

sation which is not yet finished. Liberalisation and the rapid pace of technological

development fundamentally changed the structures of these sectors. They were

transformed from monopolies with a relatively stable and often small range of

available products to oligopolies with a broad and constantly changing variety of

offered services. At the same time new actors with various different characteristics

enter the sector and may, by means of collaboration and competition, form a va-

riety of strategic alliances. Results of this process are for example the absence of

perfect markets, complex relationships between the decision makers and a highly

dynamic and uncertain environment. This makes the application of traditional

microeconomic approaches difficult and alternative concepts are necessary. The

rapidly changing environment requires robust strategies and a quick adaptation

to new conditions. Furthermore a decision maker must take into account the un-

certainty about the environment as well as the influence of his decisions on the

behaviour of other actors and vice versa. This suggests the analysis of such models

as decision problems under uncertainty taking into account interdependencies of

several actors.

Most approaches for strategic decision support under uncertainty focus solely on

the uncertainty aspect [BHS92, DST03, RSM98]. They consider the behaviour

of other participants in the sector as random events, i.e. as part of the ran-

dom environment parameters. This simplification ignores the existing interde-

pendencies between the actors and may therefore raise problems as illustrated in



1 MOTIVATION 3

a cautionary note by Haugen and Wallace [HWng]. Another group of approaches

puts attention on these interdependencies and utilises concepts of game theory

or of bilevel programming. This approach is typically followed in agency theory

[GH83, Ros73, Dem95]. However, the development of efficient solution methods

is made difficult due to the situation of several interacting decision makers in an

uncertain environment and the resulting problem structure. Therefore insights

into the mechanisms of such a constellation are often obtained by the study of

simplified models with deterministic equivalent formulations of the stochastic com-

ponents and often only simple or no constraints. This does not regard the effects

of the actors’ uncertainty about the environment. It is, however, important to

treat this uncertainty adequately and to analyse its implications carefully.

The highly dynamic environment makes the utilisation of for example game the-

oretic concepts inappropriate. Typically, the focus of game theory is on equilib-

ria and a stable environment state. However, stability will never be established

in quickly changing environments such as a modern telecommunications sector.

Therefore the focus should be rather on the nearest future, on a few subsequent

periods where the changes of the environment still can be assessed. This suggests

the utilisation of stochastic programming concepts such as recourse problems.

The approach followed in this thesis combines the ideas of stochastic programming

and of bilevel programming. We single out the uncertainty about the behaviour of

other actors as a separate problem. The interactions between the decision makers

can be treated by a suitable methodology such as concepts of bilevel programming.

Hence, we enhance the framework of stochastic programming by selected methods

from bilevel programming and form a new framework, the methodology of bilevel

stochastic programming. Utilising this framework it is possible to take into ac-

count the influence of own decisions on the responses of other actors (which in

turn affect own decisions) and at the same time to consider the uncertainty about

environment parameters which can not be influenced such as certain features of

demand behaviour, failure rates, natural phenomena etc. The following section

explains basic ideas of this approach.
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2 Hierarchical optimisation under uncertainty

This section gives an overview over the theoretical background of my thesis. At

first some concepts of stochastic programming are reviewed which will be impor-

tant for the analysis. Section 2.2 describes relevant notions of bilevel program-

ming. Finally, Section 2.3 is concerned with problems of decision making under

uncertainty with a bilevel structure. We survey approaches for the analysis of such

problems and present the main principles of the framework of bilevel stochastic

programming.

2.1 Stochastic programming

Stochastic programming represents a framework for the analysis of decision prob-

lems characterised by uncertainty. Providing techniques for an adequate treatment

of this uncertainty, it helps to increase the accuracy and flexibility of solution ap-

proaches as well as of found solutions. The methodology has been studied already

for some decades but gained increasing popularity in the last decades. A reason

for this is the recent state of hardware and software enabling the investigation

of more realistic and comprehensive models utilising sophisticated approaches.

Introductions can be found in the books by Birge and Louveaux [BL97], by Er-

moliev and Wets [EW88] or by Kall and Wallace [KW94]. Previous research

shows the capability of the stochastic programming framework for the modelling

and analysis of strategic decision problems, for example in telecommunications

[ALMP02, BG94a, FGM97, Gai95, Gai04, Rii03, SDC94, TAD+98].

Generally a stochastic programming problem can be described as finding a ”good”

decision without knowing exactly in which state the environment will be when this

decision is implemented. This uncertainty is expressed by the help of random vari-

ables, say ω ∈ Ω, such that a general formulation of a stochastic programming

problem is given by

” min
x

” F (x, ω) (1)

s.t. g(x, ω) ” ≤ ” 0

However, such a problem is not well defined and an evaluation is therefore difficult.

Since the decisions x must be found before the actual realisations of the random
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parameters ω are known, the meaning of the optimality as well as of the feasibility

of a decision x is not clear. For example, the optimality of a problem depends on

the context: an objective may be to avoid disastrous decisions but also to do as well

as possible under the expected future conditions. In anticipative models decisions

must be chosen without taking into account future observations of the random

values. Here the feasibility of a decision x can be evaluated by formulations

requiring the satisfaction of a constraint in the average

EI ω{g(x, ω)} ≤ 0 (2)

or with a certain given level of reliability

PI {ω ∈ Ω|g(x, ω) ≤ 0} ≥ α (3)

Similar expressions can be utilised for the evaluation of the optimality of a de-

cision. In Paper 3 several such formulations are discussed in the light of agency

theory.

Another important formulation is the framework of (multistage) stochastic pro-

gramming problems with recourse which combines anticipative and adaptive con-

cepts. It reflects a situation where a (long-term) decision is implemented under

incomplete knowledge about parameters of the model but there exists a possibility

of correcting (short-term) decisions at later stages when information about these

parameters reveals. These correcting decisions compensate for example for a vi-

olation of constraints involving random parameters. Consequently, the initial or

first-stage decision should be determined such that e.g. the costs induced by this

decision and the expected (and discounted) costs from the recourse decisions at

the later stages are minimised. A model of a two-stage stochastic programming

problem with linear constraints can be formulated as follows:

min
x

F1(x) + EI ω{Q(x, ω)} (4)

Ax ≤ b

Q(x, ω) = min
y

F2(x, y, ω)

Wy = h(ω)− T (ω)x

A comprehensive treatment of stochastic programming problems with recourse

can be found for example in Ermoliev and Wets [EW88]. Recourse problems
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possess a broad field of applications. For example, they enable the analysis of dy-

namic aspects such as the consideration of an uncertain future. This is especially

important for the study of models situated in a highly dynamic environment such

as a modern telecom sector. Here, the rapidly changing structures and policies

together with a nearly constant emergence of new technologies and the resulting

uncertainty require strategies with a high degree of adaptability. In our work the

concept was used in order to describe adaptive actions of the considered decision

maker.

Solution approaches for stochastic programming problems can be classified into

two main types. One class of approaches utilises an approximation by a determin-

istic nonlinear or linear programming problem whereas the other class employs

statistical methods and treats the continuous distributions of the random vari-

ables directly.

The original stochastic programming problem can be transformed into a numeri-

cally tractable deterministic equivalent problem by expressing the uncertain data

through a finite number of scenarios and utilising deterministic equivalent formu-

lations, for example in the shape (2) or (3). Then standard solution techniques

for nonlinear or linear programming problems can be applied. This approach is

utilised in Paper 1 for the implementation and numerical study of a stochastic

programming problem with a specific structure. However, especially for models

with dynamic features such as recourse problems or other multistage stochastic

programming problems the size of the deterministic equivalent may become quite

large and specific structures of the problem should be exploited.

Scenarios describe possible realisations of the random parameters. They occur

when the uncertain parameters describe discrete events or phenomena with a

countable, finite number of outcomes or when only relatively few events have to

be considered. Scenarios can also be generated by a discretisation of a continuous

probability distribution of the random variables. In a dynamic setting a scenario

describes a set of possible future sequences of outcomes of the random variables.

This can be represented by so-called scenario trees, see for example [KW94].

Although the scenarios should be chosen such that they are a good represen-

tation of the reality this is not always practicable. The discretisation process

of originally continuous variables may therefore be an arbitrary approximation.
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Especially for complex problems characterised for example by nonconvexity or

nondifferentiability the optimal solutions may be highly sensitive with regard to

the problem parameters. This means that small changes of the parameter values

on the scenarios can have great effects on the found optima which may undermine

the relevance of the found results. It may therefore prove valuable to evaluate the

stability of the found solutions, for example through a sensitivity analysis with

regard to perturbations of the approximated parameters.

The other class of solution approaches employs statistical techniques such as sam-

pling for a direct consideration of the distribution of the random values. It com-

prises for example stochastic decomposition [HS91] or stochastic quasi-gradient

methods [Erm88, Gai88, Gai04]. The utilisation of statistic estimates of the ran-

dom data directly in the solution process gives the flexibility to use various rep-

resentations of the uncertain variables, for example by continuous or discrete but

also independent or dependent random variables.

Stochastic quasi-gradient methods represent a generalisation of steepest descent

methods. They were developed for the iterative solution of decision problems

with complex objective functions and constraints. This makes them applicable

to a broad variety of models also beyond the field of stochastic programming

problems, including problems with nondifferentiable or nonconvex functions. The

main topic of this thesis is the analysis of stochastic programming problems with

a bilevel design. Such decision problems exhibit a complicated structure where

linearity and convexity properties are typically not present. This motivates the

utilisation of a stochastic quasi-gradient method in a solution algorithm which is

developed in Paper 2. Paper 3 contains an illustrating example.

2.2 Bilevel programming

Bilevel programming problems represent a system of optimisation problems that

consists of two (or more) levels. This structure enables for example the descrip-

tion of decision problems of several actors in a hierarchical relationship from the

viewpoint of one of the actors. The upper level decision maker has to find a deci-

sion y that optimises some goal under given constraints. However, in order to do

so, he must take into account a decision z∗ of another decision maker such that
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his optimisation problem is

min
y∈Y

FU(y, z∗) (5a)

s.t. gU(y, z∗) ≤ 0 (5b)

The decision z∗ represents a response of the lower level decision maker to the

upper level decisions y and is thus an optimal solution of the (parametric) decision

problem

min
z∈Z

FL(y, z) (6a)

s.t. gL(y, z) ≤ 0 (6b)

This way the upper level decision maker can control the decisions of another actor

influencing his decision process. In terms of bilevel programming the upper level

decision maker is typically called the leader and the lower level decision maker the

follower whereas in agency theory the notions of respectively principal and agent

are applied. Often the lower level problem (6) is given in the shape of a paramet-

ric nonlinear or linear programming problem having explicit solutions for given

upper level decisions, but the optimal response may also be defined implicitly,

for example by variational inequalities. This leads to the generalisation of bilevel

programming problems as mathematical programs with equilibrium constraints

[PW97, PW99].

A prominent example of bilevel relationships are Stackelberg games. Other ap-

plications can be found for example in game theory [ER01, FJ03], investigations

of oligopolies [FMM02, LS92], network design problems [CP91, Mar86] or traffic

management [PR02]. A further large application area is constituted by agency

theoretic problems [Dem95, GH83, Mir99]. In this thesis we analyse bilevel rela-

tionships with background in telecommunications. Paper 1 describes the bilevel

relationship between a Network Owner (representing the leader) and a Virtual

Operator (the follower). The examples in Paper 3 represent a principal agent

relationship between a telecom regulator and a regulated service provider.

Deterministic bilevel programming problems were intensely studied during the

past decades and a variety of solution methods was developed [Dem02, Dem03,

VC94]. The problems show inconvenient properties that complicate the devel-

opment of effective solution algorithms. They are NP hard even in the linear
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case [Bar91]. Taking into account the follower’s response, the leader’s objective

function is generally not convex and neither differentiable. If the leader’s con-

straints depend also on the follower’s response (so called connecting upper level

constraints) then the region of feasible leader decisions may even be not connected

and, consequently, the leader’s objective function discontinuous. Therefore it is

often assumed that the feasibility of the leader’s decisions is not influenced by

the follower’s behaviour. However, contrary to most studies in our investigations

the connecting upper level constraints are explicitly taken into account. This is

motivated by a number of applications: Paper 1 describes a case from telecommu-

nications where the customer numbers of one decision maker are influenced also

by the decisions of the other actor. Also the participation constraint typically

present in a principal relationship represents such a connecting upper level con-

straint, see Paper 3.

Generally it is conceivable that the follower’s decision problem (6) may have

nonunique optimal solutions for some decisions of the leader, e.g. due to a lower

level objective function which is not strictly convex. In such a case, bilevel theory

offers two methods, depending on the degree of control the leader can exert on

the follower. The optimistic approach assumes that the leader can direct the fol-

lower to the most preferable choice whereas in the pessimistic approach the leader

tries to bound the damage from unwelcome responses. Also penalty algorithms

can treat nonunique lower level responses [IA92]. In the presence of imperfect

information about the follower’s decisions the approach studied in Paper 4 is

promising. The uncertainty can have an ”improving” effect on the convexity of

the objective function under some assumptions on the distribution function of

the random variables. As a result, the responses of the follower may be uniquely

determined taking into account imperfect knowledge even if this was not the case

in a deterministic formulation.

2.3 Hierarchical decision making under uncertainty

The problem of decision making under uncertainty with several decision makers

creates a new field of research. Depending on the viewpoint on the problem, differ-

ent approaches evolved combining concepts of decision making under uncertainty
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with methods of game theory or of bilevel programming.

Stochastic games [BV00, NS99] can take into account the interplay of the decision

makers as well as different types of uncertainty. This framework does not nec-

essarily presuppose a hierarchical relationship between the actors. However, the

solution of more complex models involving for example continuous decision vari-

ables or nontrivial constraints possibly even depending on the decisions of several

actors is very difficult if not even impossible for realistic situations. Furthermore

the game theoretic focus on equilibria and related optimality notions can not be

applied to problems where dynamic phenomena are important.

The aspect of a decision maker who controls the responses of other actors at least

to a certain degree can better be taken into account by employing concepts from

bilevel optimisation. Stochastic bilevel programming problems (SBLP) were intro-

duced and studied by Patriksson and Wynter [PW97, Wyn01]. A generalisation

is represented by stochastic mathematical programs with equilibrium constraints

(SMPEC) [EP04, PW99, Sha04]. They can be interpreted as an extension of the

respective deterministic programming problems by allowing for uncertain model

parameters such that the focus is on the hierarchical structure of the problem..

Suggestions for solution approaches comprise a penalty method [EP04] or the util-

isation of a finite number of scenarios and deterministic equivalent formulations

[PW99, Sha04]. This results in large deterministic bilevel programming problems

which are computationally expensive for problems of a realistic size.

In this thesis a complementary viewpoint is taken. We interpret the decisions

of the other actor(s) as a specific type of the uncertainty of the decision maker.

This kind of uncertainty has the characteristic that it can be treated by specific

methods, namely by the concepts of bilevel programming. Therefore we consider

hierarchical decision problems under uncertainty as an extension of stochastic

programming problems by a bilevel structure. The resulting bilevel stochastic

programming (BLSP) framework underlines the stochastic programming roots of

the problem.

The stochastic programming framework is based on techniques of mathematical

programming and allows the analysis of problems with complex objective func-

tions and constraints. We consider the bilevel structure as such a complex feature.

The BLSP methodology allows then to apply concepts of stochastic programming
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directly to complete relationship between the actors and to deal so with the diffi-

culties. The stochastic programming framework seems more flexible and investi-

gations connected with the bilevel structure can be incorporated more efficiently

into the stochastic programming context than vice versa. Therefore the BLSP

approach can treat the implications of the bilevel features adequately. To our

knowledge hierarchical optimisation problems under uncertainty were not studied

from that point of view before.

In terms of BLSP a general stochastic programming problem with bilevel structure

can be formulated as follows. Expressing the uncertainty about the environment

by a random variable ω ∈ Ω the leader wants to find a solution y of his decision

problem

” min
y∈Y

” FU(y, z∗, ω) (7a)

s.t. gU(y, z∗, ω) ” ≤ ” 0 (7b)

where z∗ is an optimal solution of the leader’s perception of the follower’s decision

process

” min
z∈Z

” FL(y, z, ω) (8a)

s.t. gL(y, z, ω) ” ≤ ” 0 (8b)

In order to describe these models more precisely the concepts presented in Sec-

tion 2.1 can be utilised. Several formulations are presented and studied in the

papers. In Paper 1 mainly a scenario formulation was utilised. Paper 2 consid-

ers a bilevel one-stage stochastic programming problem and variants of bilevel

two-stage stochastic programming problems with a recourse problem in the up-

per level and one-stage or two-stage problems in the lower level. The utilisation

of recourse problems allows to take into account also dynamic features such as

an adaptation to a changing environment. Paper 3 gives further formulations of

bilevel stochastic programming problems.

In a stochastic programming problem with bilevel structure two main types of

uncertainty can be identified. Both decision makers face ”natural” uncertainty

about the environment. It can be taken into account by concepts from stochas-

tic programming. Furthermore, since the problem is studied from the leader’s
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viewpoint, he may face ”man-made” uncertainty about the follower’s response. If

he can assume that he is perfectly informed about the follower’s decision process

he can eliminate this uncertainty completely by solving the lower level decision

problem (8). If, however, he assumes or knows that he has only an uncertain

perception of the follower’s decision process, additional stochastic programming

concepts should be utilised for the treatment of this type of uncertainty. An

approach is to introduce a random variable η denoting the noise or uncertainty

connected with the leader’s perception of the follower’s response. Then he obtains

an estimate z of the follower’s response by solving problem (8) but, regarding his

uncertainty, he includes an estimation z + η of the actually implemented decision

in his problem (7). Alternatively, the leader’s uncertainty may be incorporated

directly in his perception of the follower’s decision process. This can be done by

solving problem (8) for an uncertain follower decision z + ω and to utilise the

obtained decision z in the leader’s decision problem. Such a proceeding is investi-

gated in Paper 4 whereas other ideas of approaching this type of uncertainty are

illustrated in Paper 3.

The additional complexity of the bilevel relationship added to the stochastic pro-

gramming problem makes the development of effective solution methods for BLSPs

far more challenging. Difficult properties of bilevel programming problems such

as the absence of convexity dominate also the complex structure of stochastic pro-

gramming problems with bilevel features. However, again stochastic programming

approaches are applicable. A direct solution of BLSPs utilises statistical meth-

ods for the treatment of the uncertain parameters. The complex nonlinear and

nonconvex structure of the problems suggests the application of stochastic quasi-

gradient methods. This is demonstrated by the solution approaches presented in

Paper 2. The examples stated in Paper 3 illustrate our approach.

3 Application background

This section provides a brief background on the industrial environment that di-

rectly motivated the work presented in two of the papers. It highlights only a few

topics, for more comprehensive information see Papers 1 and 3 and the literature

referred to there. At first the development of the telecom sector is outlined before
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the subsections address closer the issues of Virtual Operators, of regulation and

of agency theory in telecommunications. They describe different aspects of hier-

archical relationships which can be observed in modern telecom environments.

In the recent years the telecommunication sector was subject to fundamental

transformations crucially changing its character. Several effects overlap, the main

issues being a progressing liberalisation and rapid technology development as well

as convergence processes. External influences such as globalisation trends and

political restructuring gave additional impulses. As a result, the complexity of

the telecommunications industry increased enormously. Before the liberalisation

the telecom markets in each country were clearly defined and predictable with

a monopolist providing a few quite simple and immutable services. Now there

is a multitude of technologies resulting in a great amount of offered services as

well as in competition within a country and over its borders. The telecom service

providers play various roles and may participate in various strategic alliances.

The problems to be considered in this context can be classified according to three

scale levels with increasing degree of aggregation [Gai04]. The technological level

focusses on the elements of telecom networks such as switches or routers or on

the evaluation of their performance [ACM01, BG94b, Ton04]. Problems located

at the network level are concerned with issues of design and planning of the net-

works [ALMP04, Gai95, LR03, SDC94]. Finally, at the enterprise level strategic

decisions such as regulation, pricing policies, the range and amount of the pro-

vides services or investments are analysed. The considered enterprise is studied

in a larger scale taking into account its placement in the industrial environment,

interactions with other actors or heterogeneous customer populations. The topics

focussed on in this thesis are located at this enterprise level.

As a result of the transformation processes, the telecom sector shows characteris-

tics that are different from standard economic environments. Most important are

a high degree of uncertainty at all areas, a fundamental nonstationarity (implying

for example the absence of equilibrium concepts), complex relationships between

the actors and the absence of perfect markets. The rapidly changing environment

requires robust strategies characterised by a high reaction speed and a nearly con-

tinuous adaptation to new conditions. At the same time any given actor must take

into account interactions with other decision makers as well as the uncertainty,
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for example due to unpredictable market behaviour, emerging new technologies,

substitution effects or the nearly constantly changing structures in the sector.

In this focus many interesting problems arise and an important field of research

opened that spreads into several directions and involves quite different disciplines.

A number of research areas emerges investigating issues of market regulation and

licensing, market structures or strategies of cooperation and competition between

the operators. The evolution and convergence of technologies is discussed as well

as topics of value chain and service convergence. With the start of the liberali-

sation process the study of interrelations between the different actors became an

important topic. The aspects considered there span from problems of regulation

and licensing in order to control development and the entry of providers over issues

of pricing and cooperation to questions of competition.

3.1 Virtual Operators

Traditionally, a telecom operator possessed his own network. Due to the high sunk

costs of essential network facilities which made their duplication unreasonable the

telecommunications sector was long considered as a ”natural” monopoly. Also long

after the initialisation of the liberalisation process these network components are

often owned by one or a few licensed providers whereas other service providers buy

access to such bottleneck facilities. The latter type of operators is called Virtual

Operators. This concept emerged in the early nineties when Virtual Operators

often acted as pure resellers with only marginal enhancement of the provided

services. In the recent years the issue of Virtual Operators became much more

comprehensive. A reason is the emergence of new types of value-added services

due to the progress of Internet technologies in combination with Third Generation

mobile services. Therefore an exact definition can not be given and the only

common denominator is that Virtual Operators act as resellers by buying access

to the bottleneck facility. The opinions about their role are very widespread, not

at last since they can be designed very differently, ranging from pure resellers

to Virtual Operators acting much like licensed Network Operators. Since the

issue of Virtual Operators is relatively new the extent of a possible regulatory

intervention (comprising for example regulation of prices or conditions for access
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to the bottleneck facilities) is still discussed in many countries.

The presence of Virtual Operators may lead to increased competition with regard

to prices as well as to service quality, development of new, innovative services or a

better utilisation of network capacity with lower average costs of service provision.

Since product differentiation is easy, typically the services offered by the single

providers are no direct substitutes. The market structure prevailing in such an

environment is therefore called an oligopolistic monopoly. Due to their position

the providers owning the bottleneck facilities can control the decision process of

the Virtual Operators to a certain degree and have often considerable market

power. They can discriminate against the Virtual Operators and restrict their

access by several methods. Therefore the relationship between the operators is

characterised by competition and, at the same time, collaboration. From the point

of view of one of the operators (e.g. the Network Operator) this can be interpreted

as a problem of decision making under uncertainty. The behaviour of the other

decision maker can be singled out as a specific kind of the uncertainty which

can be treated by a different methodology. Several aspects of this interpretation

are analysed closer in our work. In Paper 1 a modeling framework is developed

whereas Paper 2 is concerned with solution approaches for such models.

3.2 Regulation

Regulation describes the interference of an authority with the decisions of actors in

a certain (industrial) environment. The activity of a regulator shall create condi-

tions such that competition can take place. Possible scopes of regulation comprise

therefore issues of consumer protection, antitrust policy or the encouragement of

efficiency and implementation of new technologies. With transformations taking

place in the regulated sector also the character of regulation must adapt. Dur-

ing a liberalisation process different stages can be identified, each with according

degrees of regulatory activity and challenges for the regulator [HT01]. When the

monopoly still exists, regulation must prevent monopolistic behaviour and ensure

customer protection. Once the liberalisation process started and competition is

introduced, the regulator should encourage and control the entry of new com-

petitors. This comprises control of the relations of incumbents and entrants, of
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possible abuse of incumbents’ market power or of the access to bottleneck facili-

ties. Finally, competition is established. The regulator can decrease his activity

gradually, limiting it to the protection of customers against negative aspects of

competition. In the telecom environment these aspects may concern compatibil-

ity, privacy and security questions or minimum amount of service provision.

The regulator has to deal with different types of uncertainty. Typically, he is not

perfectly informed about the characteristics of the regulated firms. Therefore the

effects of an implemented policy, i.e. the response of the regulated firms, can not

be evaluated sufficiently. Furthermore, there exists uncertainty about parame-

ters of the environment (e.g. customer demand, technology development, product

life cycles). Often the regulated firms have more precise information about these

characteristics than the regulator such that an information asymmetry exists.

Additionally the interactions of regulatory measures with other fields of public

economics such as taxation or licensing must be taken into account. This yields

a further source of uncertainty.

Consequently, the determination of a good or even optimal regulatory policy rep-

resents a quite complex problem. Since it intervenes with existing or developing

mechanisms in an industrial environment, regulation may have promoting but

also constraining effects on the economic development. A careful analysis of such

effects is therefore indispensable. But typically only simplified models are studied

and advice for a general framework is given. This does not take into account the

specifics of the considered industry sector. Neither the implications of the uncer-

tainty can be studied sufficiently.

However, taking into account the fundamental uncertainty, the problem can be

interpreted as a decision problem under uncertainty. Moreover, it is possible to

separate the uncertainty about the response of the regulated firms and about

the interactions with other fields of public economy from the uncertainty about

the environment. These types of uncertainty can be analysed utilising concepts

of game theory or of bilevel programming. Then the regulation problem can be

interpreted and analysed along the lines of the framework of bilevel stochastic

programming. This is demonstrated in Paper 3. We outline approaches for the

determination of optimal regulation policies and study different measures in order

to take into account the existing uncertainty.
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3.3 Agency theory

The issues discussed in the preceding two subsections, Virtual Operators and regu-

lation, are examples of principal agent problems in a modern telecommunications

environment. More generally, agency models describe an asymmetric social or

economic interaction of several actors in a common environment. One actor, the

principal, delegates the task of decision making to another actor, the agent. In the

context of a regulated telecom environment the principal may be represented by a

regulator and the agent(s) by the regulated service provider(s). Another example

is the relationship between Network Operator (principal) and Virtual Operator

(agent). Both actors possess individual utility functions and choose their deci-

sions in order to maximise their expected utility. However, the principal’s utility

is influenced also by the agent’s actions. Therefore he wants to find an incentive

schedule inducing the agent to the choice of a decision which is favourable for the

principal. This incentive schedule is a function of the agent’s decisions and the

environment state. Consequently, the agent chooses an action that maximises her

utility from this action and the according incentive fee, taking into account the

state of the environment. At the same time the principal maximises his utility

depending on the agent’s action, the according incentive fee and the state of the

environment. Often the incentive schedule has a monetary nature but it may also

be a success indicator such as reputation or ranking.

Generally it is assumed that the actors have imperfect knowledge about environ-

ment parameters and that the principal has limited knowledge about the agent’s

decision process. Consequently, the principal may initiate a monitoring process in

order to decrease his uncertainty about the agent. Often the monitoring turns out

to be a difficult and costly task, for example due to a highly complex and dynamic

environment, such that an optimal monitoring intensity must be determined.

Although principal agent models are widely studied in economic theory, usually

only little effort has been dedicated to the analysis of their mathematical proper-

ties, quite simply structured problems are considered and the inherent uncertainty

is treated inadequately. However, agency problems can be interpreted as specific

problems of hierarchical decision making under uncertainty and are thus amenable

to an analysis following the concepts outlined in Section 2.
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The model developed in Paper 1 illustrates the agency relationship between a

Network Operator and a Virtual Operator. Both decision makers compete in the

provision of service to a common customer population. At the same time they

must collaborate in order to give the Virtual Operator access to a bottleneck fa-

cility owned by the Network Operator. In Paper 3 agency theory is applied to

a regulated telecommunications environment and approaches for the determina-

tion of optimal incentive schedules utilising stochastic optimisation concepts are

outlined. More generally, these studies are applicable also to other oligopolistic

environments characterised by mutual dependencies of the actors and a dominat-

ing decision maker, combined with possible uncertainty about vital parameters of

the analysed model. An example is a liberalised electricity market.

4 Research contribution and description of the

papers

This section describes briefly the subject of the single papers contained in this

thesis and indicates their research contribution. In all the papers I have done the

major part of the research and the writing.

Problems of hierarchical decision making under uncertainty establish a quite new

research area which has been studied only recently. The approach applied in this

thesis utilising the concept of a bilevel stochastic programming problem was not

considered until now.

Paper 1. Extending the stochastic programming framework

for the modeling of several decision makers: pricing and

competition in the telecommunication sector

This paper was written together with my supervisor Alexei A. Gaivoronski and

my co-supervisor Jan A. Audestad.

Most approaches concerned with pricing schemes for access and service in a

telecommunication environment consider the market from above, for example by

taking on the standpoint of a regulator. Thus the implications on the total or
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the social welfare of that environment are studied. The approach pursued in this

paper is contrary. The aim is the development of a tool for decision support for

one of the actors. Consequently, the viewpoint of that actor is taken on and

the implications of his decisions on his welfare are analysed in interaction with

the behaviour of competitors. We developed a modeling framework for stochastic

programming problems with a bilevel structure. Based on this framework we de-

veloped models for network planning and pricing. They describe the competition

and cooperation relationship between a Network Operator and a Virtual Operator

from the point of view of the Network Operator. Finally, the paper contains an

implementation and numerical studies of the properties of such models.

Ideas and results of this work were presented at the 9th International Conference

on Stochastic Programming SP01, Berlin, Germany in August 2001 and at the

Sixth INFORMS Telecommunications Conference, Boca Raton, Florida, in March

2002. The paper is accepted for publication in the special issue of Annals of Op-

erations Research devoted to SP01. An earlier, more popular scientific version of

the paper was published in Telektronikk 4.2001 (vol. 97) pp. 46–64, a special is-

sue devoted to Mobile Virtual Network Operators. It emphasises modeling issues

together with a visualisation and interpretation of model characteristics under

different sets of environment parameters.

Paper 2. A solution method for bilevel stochastic program-

ming problems

This paper was written together with my supervisor Alexei A. Gaivoronski. Our

approach considers bilevel stochastic programming problems as extension of stochas-

tic programming problems by adding bilevel features. It can thus take into ac-

count the stochastic features more adequately than the frameworks of stochastic

games (mainly based on game theoretic concepts) or of stochastic bilevel program-

ming (mainly based on bilevel programming concepts) allow. At the same time

it enables the consideration of continuous decision variables and of more complex

decision problems. In particular it is possible to incorporate so-called connecting

upper level constraints depending on follower decisions. We analyse several vari-

ants of the bilevel stochastic programming problem and give necessary conditions
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for a local optimal solution. Furthermore we propose a solution algorithm utilising

a stochastic quasi-gradient method and prove its convergence to a local optimum

for different problem formulations.

The paper is submitted for publication in Mathematical Programming.

Paper 3. Utilisation of stochastic programming methods in

the analysis of agency problems

This paper was written together with my supervisor Alexei A. Gaivoronski. The

focus of this study is on another aspect of the interplay of two modern telecom-

munication actors, the principal-agent relationship of a regulator and a regulated

telecom service provider. Agency relationships are widely studied in economic

theory, but due to the complex structure of such problems typically only models

with quite simple mathematical structures are analysed. Usually these models

contain only trivial or no constraints and the inherent uncertainty is not treated

adequately. It is often replaced by the expected values of the uncertain parameters

which can lead to incorrect results. This paper demonstrates that the application

of the bilevel stochastic programming framework helps to consider much more

complex models and at the same time to treat the uncertainty adequately.

Paper 4. Influence of perturbed input data on convexity

properties of stochastic programming problems

This paper was written together with my supervisor Alexei A. Gaivoronski. The

purpose of this paper is to investigate the influence of the stochasticity on proper-

ties of the BLSP problem. In particular we study if the properties of the objective

function can be improved. In the previous papers we assumed that the follower’s

response was uniquely determined for all leader decisions. Here we investigate

if this assumption can be relaxed when the principal takes into account his un-

certainty about the decisions actually implemented by the agent. We found that

the uncertainty can improve the quality of the leader’s decision process. To our

knowledge no similar approach was investigated so far.
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5 Conclusions and future research

The work presented in this thesis focuses on a framework for decision making

under uncertainty when part of this uncertainty can be attributed to the actions

of another decision maker pursuing own goals. This field of research is quite

new and some studies have been conducted highlighting either the bilevel or the

game theoretic aspects of the relations between the decision makers. However,

the studies in this thesis focus on the existent uncertainty and employ stochastic

programming techniques.

We developed a framework for modeling stochastic programming problems with a

bilevel structure. A solution approach based on stochastic programming methods

enhanced by concepts of bilevel programming and game theory is presented and

implemented. Additionally, the influence of the uncertainty on properties of the

BLSP problem is investigated. We apply the presented framework to several

problems such as the interplay between Network Owner and Virtual Operator,

principal agent relationships or regulation issues.

The inclusion of bilevel features into two-stage stochastic programming problems

introduced nonlinearity and, especially, nonconvexity of the objective functions

as well as of the constraints. The problems studied in this thesis raise a number

of questions. In addition to the suggestions made in the single papers, further

research may be concerned with a more general analysis of the bilevel stochastic

programming framework. The uncertainty has quite dramatic implications on the

leader’s choice of an optimal solution. Therefore attention should be directed on

investigations regarding the effects of the uncertainty. Furthermore alternative

solution approaches may be investigated as well as different problem structures,

comprising for example recourse problems also in the lower level problem or the

case of nonunique follower responses to certain upper level decisions.
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1 Introduction

We describe a modeling approach to provide decision support for strategy evalu-

ation of an industrial agent in complex relations of competition and collaboration

with other agents in the same industrial environment. This is the situation many

telecom service providers find now, with a deregulation process and convergence

between telecommunications, computer industry and content provision being well

under way. The objective of the approach is to provide a set of quantitative de-

cision support tools which would enhance the quality of strategic and tactical

decisions.

Microeconomic theory [MW95] provides important theoretical insights in these

issues, especially when the studied system is under conditions of equilibrium.

However, classical theory often treats uncertainty inadequately. Unfortunately,

central features of today’s telecommunication environment are the presence of

uncertainty and, usually, the absence of equilibria. This makes many established

approaches inapplicable. Therefore we employed techniques specially designed

to incorporate uncertainty and dynamics in decision models and in particular

stochastic programming [EW88, BL97]. On the theoretical level, such techniques

have been under development for a few decades, but only relatively recently the

state of software and hardware allowed large scale applications. We supplement

this by selected ideas from game theory [Bin92] because part of the uncertainty

a given decision maker faces results from actions of other decision makers.

Quantitative decision models for a competitive telecommunication environment

recently became the subject of intensive research effort. An alternative and com-

plementary approach is constituted by simulation models of systems of interacting

agents known as agent nets [BEG98, Gai98, Gai99]. Different models which utilise

game theoretical concepts were proposed in [LS92, QR01, SL88]. The distinctive

feature of the approach presented here is the utilisation of a stochastic program-

ming methodology for the adequate treatment of the uncertainty and the absence

of an equilibrium coupled with selected notions from game theory.

Another promising approach for a description of the relations between the providers

is the use of stochastic games [BV00], especially in combination with topics of

multiagent learning. This framework takes into account both the uncertainty and
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the interdependencies between the actors. However, again it is the absence of an

equilibrium due to rapid changing technologies (and therefore a rapid changing

environment for the agents) that makes such methods of limited applicability to

our case.
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Figure 1: Relations between service providers and customers

We illustrate our approach by a case study which describes relations between

service providers and a customer population, see Figure 1. The considered time

horizon consists of several time periods. In the simplest case we assume that the

operators provide a common market with the same type of service based on a

telecommunication network. For delivery of this service they utilise network ca-

pacity. Whereas one of the providers owns the network, the other one is a virtual

operator without her own network facilities. In order to provide service she must

lease capacity from the network owner. We develop a decision model that is de-

composed in three submodels: the customer model, the enterprise model and the

competition model. These models contain a number of simplifying assumptions,

although they are not essential and more specific details can be incorporated eas-

ily.

Since the aim is to provide decision support tools for a given actor we do not

follow the usual economic view on a market ”from above”, i.e. the maximisation

of a general welfare [MW95]. Instead, our approach adopts the point of view of

one of the providers. His main focus lies on maximising his own welfare. We
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take the point of view of the network operator, but the virtual operator could be

considered similarly. In order to achieve his goal the network provider formulates

models describing customer behaviour and predicting his rival’s responses to his

policy. These models depend on a number of parameters with uncertain values,

which makes an adequate treatment of uncertainty particularly important.

Although we placed our approach in a telecommunication setting it is also appli-

cable to other competitive environments where mutual dependencies of actors in

an oligopoly may occur, combined with possible uncertainties about vital param-

eters of the setting.

In the subsequent sections we develop this approach in more detail. In the next

section we present more formally the general structure of the model. After that

the simplest possible case is considered which deals with one time period and a

deterministic setup. Later this model is extended by allowing for uncertainties

both about the network owner’s policy and about other model parameters. A

further extension is made by introduction of a multiperiod model. Theoretical

considerations are supplemented by numerical experiments.

2 A general description of the modeling approach

From the point of view of the network owner our modeling approach can be

divided into the subproblems enterprise model, competition model and customer

model that are connected as illustrated on Figure 2.

n = n(y, z) -

�
�

��

customer model

maxz F2(y, z, n)
n = n(y, z)

@
@

@I

competition model

maxy F1(y, z, n)

n = n(y)
z = z(y)

enterprise model

Figure 2: General structure of the approach
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At the beginning of each time period the network operator performs the following

steps to determine his optimal decision under the current circumstances:

• predict the customer response for a given decision and a given competition

response using the customer model. This comprises customer numbers for

both the network operator and the competition.

• predict the competition response for a given decision using the competition

model.

• select an optimal policy from the enterprise model using as input the predic-

tions of the customer and the competition response obtained in the previous

two steps.

The following notations are utilized here:

y – decisions of the network operator (NO): price y1 for service provision to own

customers and price y2 for capacity leased by his rivals.

z – decisions of the virtual network operator (VNO): price z1 for service provision

and amount z2 of capacity leased from the NO.

n = (n1, n2) – total numbers of customers of the NO and the VNO respectively.

These numbers depend on the respective decisions y and z.

F2(y, z, n) – objective function of the VNO, depending on both provider’s deci-

sions y and z and on the number of her customers n = n(y, z) obtained from the

customer model. It comprises the network operator’s knowledge about his rival’s

aims, namely the NO thinks that the VNO chooses his decisions from maximiza-

tion of this function. More formally, the network operator takes as predictions

z(y) for decisions of the virtual operator the solution of the following problem:

max
z∈Z

F2(y, z, n(y, z))

where Z is the set of admissible decisions of the VNO. Examples of such an

objective function could be profit or market share.

F1(y, z, n) – objective function of the NO, depending on both provider’s decisions,

y and z, and on the number of his customers n = n(y, z) obtained from the

customer model. For a fixed decision y the value of this function is computed

using the prediction z(y) of the virtual operator’s response and the prediction
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n(y) = n(y, z(y)) of the network owner’s customer number. Consequently, the

decision y is found by maximisation of his objective function solving the problem

max
y∈Y

F1(y, z(y), n(y))

where Y is the set of admissible decisions of the network operator.

In the following this general problem structure is used to develop specific models

with special attention to uncertainty and dynamics.

3 Single time period

We start with the simplest possible case which we will use as a benchmark for

more complex models, and also because it allows an analytic solution. It employs

only one time period and assumes full information of the network owner about

the single parameters defining both customer and competition model.

3.1 Deterministic case

The network owner’s profit is defined as the difference between revenue earned

by service provision and capacity leasing and costs of service provision. Likewise

the profit of the virtual operator is the difference between revenue from service

provision and costs of capacity leasing and service provision. The decisions about

the service and capacity prices and about the leased capacity have to be chosen

within some limits. Whereas it is assumed that the network owner always has

sufficient capacity to serve all customer demand, there exists a Quality of Service

constraint for the virtual operator: the amount of leased capacity should be

enough to serve all demand from her customers. However, in this simple model

she does not face opportunity costs when she cannot serve all demand.

The decisions of the virtual operator result from her profit maximization model

with the mentioned constraints and regarding the network owner’s decisions and

the customer behaviour. The network owner knows how the virtual operator

determines her response to his prices and therefore solves the same model as her.

Then he can substitute these decisions into his own problem. Now we describe

this model more formally, following the structure given in the previous section.
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3.1.1 Customer model

This model represents a module providing detailed input for the complete model.

Customers can subscribe to each of the providers for delivery of service. In

return, the providers charge a price for this service. We employ a simple and

nondifferentiated price structure, although arbitrarily complex schemes can be

incorporated similarly considering different customer types. Also other ideas such

as an implementation of a customer feedback are not pursued here. At present we

assume that the customer behaviour is influenced only by price considerations.

Since it also has relevance to the subsequent exposition, we develop the customer

model in a general form, which is then somewhat simplified by regarding just one

period. A schematic description of the customers’ decision process is shown in

Figure 3.

q0
i , n

0
i

q1
i n1

i q2
i n2

i

t = 0 t = 1 t = 2
time-

Figure 3: Customer decision process

Here qt
i , t = 0, 1, ... denotes the service price charged by provider i at time t and

nt
i, t = 0, 1, ... the number of customers at the end of period t who utilise the

service supplied by provider i. This number depends on the providers’ prices qt
i

and is structured as follows

nt+1
i = nt

i + mt
i + mt

ij (1)

where mt
i is the number of first time customers subscribed to provider i at time

t and mt
ij is the number of customers who switch from provider j to provider

i at time t. Both mt
i and mt

ij depend on the prices qt
i . By linearisation of the

assumed price/demand relationship in the vicinity of the reference price q we can

approximate the relations between customer flow and service price changes:

mt
i = lti + ci(x

t−1
i − xt

i) (2)

mt
ij = ltij + cij(x

t
j − xt

i) (3)

with the price structure

qt
i = q + xt

i
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Here xt
i is the price increment of provider i at time t, lti is the amount of new

customers who would subscribe to the service of provider i at time t in the absence

of price changes, ltij is the number of customers who would migrate from provider

j to provider i in the absence of price differences between these providers and

ct
i, c

t
ij are coefficients to be estimated from market data. The parameters lti and ltij

model other aspects of customer behaviour besides the response to price changes.

In the case of a single period it is convenient to denote y1 = x1
1, z1 = x1

2. Then

the number of customers served by the network owner and the virtual operator

respectively can be described as follows using relations (1) – (3):

n1(y, z) = k1 − r11y1 + r12z1 (4)

n2(y, z) = k2 + r21y1 − r22z1 (5)

where the parameters k1, k2, r11, r12, r21, r22 can be expressed through the param-

eters found in (1) – (3). Note that the parameters k1, k2 also include the initial

customer numbers and the initial prices of the respective operators.

3.1.2 Competition model

This model describes the network owner’s perception of the virtual operator’s

profit. Denoting

y2 – price charged by the NO for a unit of leased capacity;

z2 – amount of capacity leased by the VNO;

we can express revenue and costs of the VNO as follows:

Revenue. Given that the service price charged by the virtual network operator is

q + z1 and her number of customers is given by (5) her revenue is (q + z1)n2(y, z).

Costs. They are composed of two components:

– cost for leasing of network capacity y2z2;

– cost of service provision g2 + e2n2(y, z), where e2 and g2 are respectively the

VNO’s variable service provision cost per customer and fixed service provision

cost.

Therefore the virtual operator’s profit can be expressed as

(q − e2 + z1)n2(y, z)− y2z2 − g2



3 SINGLE TIME PERIOD 35

There are two decisions of the VNO that affect her profit in this model:

– the price difference z1 between the reference service price and the price charged

by the VNO;

– the amount of the network capacity z2 to lease from the NO.

The network operator assumes that the virtual operator maximises her profit

under Quality of Service constraints. Then he can predict her decision z(y) as

the solution of the following optimisation problem:

Find z1 and z2 which maximise

(q − e2 + z1)n2(y, z)− y2z2 − g2

subject to constraints

z2 ≥ dn2

n2(y, z) ≥ 0

∆1 ≤ z1 ≤ ∆

0 ≤ z2 ≤ U2

where d is the average amount of capacity required for service provision of one

user with admissible service quality, U2 the upper limit for the amount of leased

capacity and ∆1, ∆ are the respective lower and upper limits for the price change.

Note that the solution of this problem depends on the network owner’s price

decisions y1 and y2. When the unconstrained solution lies within the stated

bounds, it can be expressed analytically as follows:

z1(y) =
k2 − (q − e2)r22 + r21y1 + dr22y2

2r22

(6)

z2(y) =
d

2
(k2 + r21y1 + (q − e2)r22 − dr22y2) (7)

which means that the decisions of the VNO depend linearly on the decisions of

the NO.

3.1.3 Enterprise model

This model describes the profit of the network operator as dependent on the

decisions of the customers and the competitors. It can be determined similarly
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to the competition model presented in the previous section. The network owner’s

revenue and costs are defined as follows:

Revenue. It is composed from two components:

– revenue from service provision to customers. Given that the price charged by

the network operator for its service is q +y1 and his number of customers is given

by (4) this part of the revenue is

(q + y1)n1(y, z(y))

– revenue from leasing of capacity to the VNO y2z2.

Costs. They are costs of service provision:

g1 + e1n1(y, z(y))

where g1 is the network owner’s fixed and e1 the variable cost of service provision

per customer. There are two decisions of the NO which affect his profit in this

model:

– the price difference y1 between the reference service price and the price charged

by the NO;

– the price y2 charged to the VNO for a unit of leased capacity.

Furthermore, his profit depends on decisions z1 and z2 of the VNO. Now the

network operator can substitute the virtual operator’s predicted decisions into

the expressions for his profit and for his customer number. Note that the network

operator’s optimisation problem may become infeasible since also his constraints

depend on both the virtual operator’s and his own decisions. This problem is

addressed in Section 6. If the virtual operator’s decisions take on the analytical

expressions (6) – (7) then, assuming profit maximisation, the network operator’s

decisions are the solution of the following optimisation problem:

Find y1 and y2 which maximise

−
(

r11 −
r12r21

2r22

)
y2

1 + dr12y1y2 −
d2

2
r22y

2
2 + a1y1 + a2y2

subject to the constraints

n1(y, z(y)) ≥ 0

∆1 ≤ y1 ≤ ∆

0 ≤ y2 ≤ U1
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where a1 and a2 are expressed through parameters introduced before, ∆1, ∆ are

lower and upper limits for the service price change and U1 is an upper bound for

the price charged for leased capacity fixed by the regulation authorities.

This problem is a simple quadratic programming problem which can be easily

solved analytically if it is concave. This, however, is not always the case and con-

cavity conditions should be derived from the parameters which describe customer

and competition behaviour.

3.2 Allowing for uncertainties

So far we assumed full knowledge of the providers about all model parameters.

However, this is usually not the case. In our further studies we therefore take into

account uncertainty of both providers about customer behaviour and incomplete

knowledge of the virtual operator about the pricing decisions of the network

owner. Other sources of uncertainty such as changing demand or uncertainty

about the costs for service provision may be incorporated but are omitted here.

Since the virtual operator now cannot predict the exact customer demand, she

may face opportunity costs for the unserved demand due to a lack of capacity.

We assume that she is also uncertain about the exact level of these opportunity

costs. Furthermore now we have to bear in mind that revenue and costs are

caused only by the actually served customers whose number is limited by the

amount of available capacity.

The network owner’s decision process will proceed as presented before. However,

it will become more complicated for the network owner to estimate the virtual

operator’s response. In the competition model he must also find out how the

virtual operator perceives his decisions by help of uncertain (random) parame-

ters and his actual prices. Also the customer model includes estimations of the

customer numbers. Note that only average or expected profits are maximised due

to the described uncertainties.
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4 Mathematical description of the modeling ap-

proach: general case

For the sake of simplicity, here we consider only two time periods, the studies

can be easily extended to the case of more periods. Figure 4 shows the decision

process performed for the case of two time periods.

-
y1 ω1 y2(y1, z1, ω1) ω2

z1(y1) z2(y1, y2, z1, ω1)

Period 1 Period 2

Decision

Prediction

? ?
H

HHHY

Figure 4: Decision process for two periods in the presence of uncertainty

Here we introduce the following notations:

ωt, t = 1, 2 – uncertain parameters from the point of view of the NO at time

period t. They describe the quantities from the customer and the competition

model about which the network operator has uncertain knowledge. The informa-

tion about these parameters available for the network operator is described by

probability distributions. We assume that the values of these parameters become

known at the end of period t.

yt, t = 1, 2 – decisions taken by the NO at the beginning of period t before the

values ωt of the uncertain parameters become known. These decisions are taken

with the aim to improve some enterprise performance measure averaged with re-

spect to the values of the uncertain parameters.

zt, t = 1, 2 – reaction of the competitors to the decisions of the NO. The network

operator forecasts this reaction using the competition model assuming that the

competitors take their decisions with the aim to improve some enterprise perfor-

mance measure averaged with respect to the values of the uncertain parameters.

At the beginning of the considered time horizon the network owner implements

the decision y1. In order to take this decision he must foresee its influence on

the decisions taken by the network owner, the competitors and the customers in

subsequent periods. This takes place in a decision/prediction process as depicted

in Figure 4. Whereas a more specific form is considered in the next section we
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will present it here briefly in the most general form which consists of the following

steps.

1. Prediction of the competitor’s reaction during period 2.

Dependent on y1, y2, z1, ω1 obtain the prediction z2(y1, y2, z1, ω1) for the de-

cision of the competitors during period 2.

2. Finding the optimal decision for period 2.

Dependent on y1, z1, ω1 and for a given prediction z2(y1, y2, z1, ω1) for the

decision of the competitors during period 2 find the optimal decision

y2 = y2(y1, z1, ω1) for period 2.

3. Prediction of the competitor’s reaction during period 1.

Dependent on y1 obtain the prediction z1(y1) for the decision of the com-

petitors during period 1.

4. Finding the optimal decision for period 1.

Having a prediction z1(y1) for the decision of the competitors during period

1, find the optimal decision y1 of the NO for period 1.

When applied to our model this decision process looks fairly involved. However,

given the present state of the art in the optimization methods and the related

software it is feasible to build a decision support system based on this approach.

In this connection numerical approaches developed in the field of stochastic pro-

gramming become pivotal. One possible way to proceed consists of the following

steps.

• Approximate the probabilistic distributions of the uncertain parameters by

a finite number of scenarios which take the form

(
p1i, ω

i
1

)
,
(
p2ij, ω

ij
2

)
, i = 1 : N, j = 1 : Mi (8)

where it is assumed that ω1 takes the value ωi
1 with the probability p1i and

ω2 takes the value ωi
2 with the probability p2ij under the condition that ω1

takes the value ωi
1.
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• Construct the so-called deterministic equivalent of the problem in the last

step [EW88, BL97] which makes the problem amenable to solution. A

specific form of the deterministic equivalent depends on the structure of

the problem and an example can be found in the next section.

• Use commercial software as building blocks for a solution of the determin-

istic equivalent and for the development of a decision support system.

An alternative stochastic programming approach allows a direct use of continu-

ous distributions by application of sampling techniques and stochastic gradient

methods [Gai88].

5 Two stage model

5.1 An intermediary model

A first extension of the one stage model is the following intermediary model. The

considered time horizon is extended by a second time period. The providers make

all decisions on service and capacity prices and on the amount of leased capacity

at the beginning of the first time period on the basis of the expected behaviour

of the rival and the customers in both time periods. These decisions are fixed

throughout the second stage. However, now we assume that also the network op-

erator has only limited capacity and when the customer demand becomes known

at the end of the first time period he has the possibility to extend his network.

Furthermore, we refine the model by assuming that the network owner can state

an upper limit on the amount of capacity leased by the virtual operator. This

gives the contract between the providers a new quality: so far, such a limit was

settled by an ”outside force” like a regulation authority. Now the network oper-

ator can intervene.

Since all decisions depending on the respective rival’s policy do not change through-

out the considered time horizon both the prediction model and the decision model

can be solved by combining the models of the single stages to one model using

a discount factor. In the following Section 5.2 we present a general variant of

the two stage model with the possibility of a network extension. Therefore we

dispense here with an explicit formulation.
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5.2 Two period model with uncertainty and investment

in infrastructure

Using the general approach described in Section 4 we can now develop a spe-

cific decision model for our environment with a network operator and virtual

operator(s). It is a further development of the one period deterministic model

presented in Section 3.1 including uncertainty, two time periods and investment

in the infrastructure as outlined in Sections 3.2 and 5.1, respectively.

Decisions of the network owner:

y1 = (y11, y12, y13) – decisions during period 1;

y11 – price to charge for his service to customers during period 1;

y12 – price to charge for capacity to the VNO during period 1;

y13 – maximal amount of capacity to lease to the VNO during period 1.

y2 = (y21, y22, y23, y24, y25) – decisions during period 2;

y21 – price to charge for his service to customers during period 2;

y22 – price to charge for capacity to the VNO during period 2;

y23 – maximal amount of capacity to lease to the VNO during period 2, we as-

sume that y23 ≥ y13;

y24 – amount of capacity to add at the beginning of period 2;

y25 – binary variable which equals 1 if the decision to add capacity is taken and

0 otherwise.

Decisions of the virtual operator:

zt = (zt1, zt2) – decisions during period t, t = 1, 2;

zt1 – price to charge for her service to customers;

zt2 – amount of capacity to lease from the NO.

The uncertain parameters ωt, t = 1, 2 determine the customer and the competi-

tion model from Sections 3.1.1 and 3.1.2:

ωt = (rt
1, r

t
2, η

t), rt
1 = (rt

11, ..., r
t
15), rt

2 = (rt
21, ..., r

t
23), t = 1, 2

where rt
1 and rt

2 describe the uncertainty related to the enterprise and the com-

petition model respectively. Here rt
11, r

t
12, r

t
21, r

t
22 are taken from the relations

nt
1 = kt

1 − rt
11yt1 + rt

12zt1

nt
2 = kt

2 + rt
21yt1 − rt

22zt1
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describing the customer model in the case of two periods similar to the model

(4) – (5) and rt
21 = rt

12. Note that the parameters kt
1, k

t
2 include the number of

customers and the service price decision of the respective provider in the previous

time period. The parameters et
1, e

t
2 denote the variable costs of service provision

per customer taken from the providers’ profit expressions

gt
1 + et

1n
t
1(y, z(y))

gt
2 + et

2n
t
2(y, z(y))

similar to Sections 3.1.2 and 3.1.3. The other parameters have the following

meaning:

rt
13 – opportunity cost of not meeting a unit of demand for the NO during period

t;

rt
14 – variable cost of adding a unit of capacity;

rt
15 – fixed cost of adding capacity, this parameter together with rt

14 is defined

only for t = 2; rt
23 – virtual provider’s opportunity cost of not serving one unit of

demand during period t;

The parameter b denotes the current network capacity of the NO and dt
1, d

t
2 are

the amounts of capacity required to satisfy demand from one customer of the NO

and the VNO respectively;

The variable ηt is used to describe uncertainty in the virtual operator’s knowledge

about the decisions of the network operator as it is seen by this network operator.

More precisely, if the decision of the network owner is yt then he assumes that

the virtual network operator thinks that this decision is

ŷt = yt + ηt

and uses this value in his competition model. In order to keep our model simple

a relation between the size of the NO’s decisions and the VNO’s uncertainty is

ignored. It is assumed that also ŷt is in the stated bounds for the decisions of the

network owner although it would of course be more correct in the applied context

to model this aspect more profoundly.

Generally, the uncertain parameters ωt are described by continuous probability

distributions. Following the scenario approach outlined at the end of Section 4,
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we approximate the possible values of the uncertain parameters by a finite number

of values with given probabilities as in (8):

ωi
1 =

(
r1i
1 , r1i

2 , η1i
)
, ωij

2 =
(
r2ij
1 , r2ij

2 , η2ij
)
, i = 1 : N, j = 1 : Mi

In accordance with the framework described in this section, the decisions of both

providers in period 2 depend on the values of the random variables ω1. For a

finite number of scenarios i = 1 : N this leads to the notions:

yi
2 – decision of the NO in period 2 under scenario i;

zi
2 = zi

2(y
i
2) – prediction of the VNO’s response to the decision yi

2 of the NO in

period 2 under scenario i.

Now we apply the deterministic equivalent of the decision process as outlined in

Section 4 to our special environment.

1. Decision model for the network operator. This model combines the

network operator’s decision models for both periods. We assume that he

has the predictions z1(y1) and zi
2(y

i
2) of the virtual operator’s decisions in

period 1 and period 2 under the scenarios i = 1 : N respectively. Using

these predictions the network operator tries to find the optimal decisions

y1 for period 1 and yi
2 for period 2 and scenarios i = 1 : N by solving the

following problem.

Find y1 and y2 = (y1
2, ..., y

N
2 ) which maximize

f1(y1, z1(y1)) + α

N∑
i=1

p1if
i
2(y

i
2, z

i
2(y

i
2)) (9)

subject to constraints

∆1
1 ≤ y11 ≤ ∆1, (10)

∆2
1 ≤ yi

21 ≤ ∆2, i = 1 : N, (11)

0 ≤ y12 ≤ U1, (12)

0 ≤ yi
22 ≤ U1, i = 1 : N, (13)
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0 ≤ y13 ≤ b, (14)

y13 ≤ yi
23 ≤ b + yi

24, i = 1 : N, (15)

yi
24 ≤ Y i

24y
i
25, i = 1 : N, (16)

n1i
1 (y1, z1(y1)) ≥ 0, i = 1 : N, (17)

n2ij
1 (y1, y

i
2, z

i
2(y

i
2)) ≥ 0, i = 1 : N, j = 1 : Mi (18)

The objective function in (9) consists of two terms: the profits of the net-

work owner during period 1 described by function f1(·) and his average

profits during period 2 discounted with the discount coefficient α ≤ 1 which

are described for scenario i by the function f i
2(·). The function f1(·) can be

expressed as follows.

f1(y1, z1(y1)) =
N∑

i=1

p1i

(
(n1i

1 (y1, z1(y1))− w1i)(q − e1
1 + y11)− r1i

13w1i

)
+ y12z12(y1)

where w1i are the potential customers of the network owner which are lost

during period 1 under scenario i due to lack of capacity for the service

provision:

w1i = max

(
0, n1i

1 (y1, z1(y1))−
1

d1
1

(b− z12(y1))

)
and r̄1

1 are the expected values of the uncertain parameters r1
1:

r̄1
1 = (r̄1

11, r̄
1
12, r̄

1
13) =

N∑
i=1

p1ir
1i
1

The first part of the expression for f1(·) is the profit defined as in the

enterprise model of Section 3.1.3. The revenue stems only from the actually

served customers. Their number is the number of potential customers minus

the number of customers that can not be served. The function f i
2(·) for the

profit during period 2 is very similar to f1(·) and can be expressed as follows:

f i
2(y

i
2, z

i
2(y

i
2)) =

Mi∑
j=1

p2ij

(
(n2ij

1 (y1, y
i
2, z

i
2(y

i
2))− w2ij)(q − e2

1 + yi
21)

−r2ij
13 w2ij

)
+ yi

22z
i
22(y

i
2) − r2ij

14 yi
24 − r2i

15y
i
25
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with w2ij the potential customers lost during period 2 under scenario j

due to lack of capacity for service provision provided that the uncertain

parameters during period 1 followed scenario i:

w2ij = max

(
0, n2ij

1 (y1, y2, z2(y2))−
1

d2
1

(b + yi
24 − zi

22(y
i
2))

)
and r̄2i

1 are the expected values of the uncertain parameters r2i
1 conditioned

on scenario i of period 1:

r̄2i
1 = (r̄2i

11, r̄
2i
12, r̄

2i
13) =

Mi∑
j=1

p2ijr
2ij
1

Observe that the costs for the infrastructure upgrade are taken into account

in the profit calculation for period 2 through the variables yi
24 and yi

25.

The predictions z1(y1) and zi
2(y

i
2) of the virtual operator’s decisions which

enter this model are obtained through the respective prediction models for

periods 1 and 2. However, unlike the network operator’s decision model,

these prediction models allow the virtual operator only to assess the imme-

diate consequences of her decisions. This gives a further slight bias towards

the network owner.

2. Prediction model for period 1. For a given y1 obtain a prediction

z1(y1) for the decision of the virtual operator during period 1 by solving the

following problem.

Find z1 and v1 = (v11, ..., v1N) which maximize

F10(y1, z1, v1) =
N∑

i=1

p1i

(
(ñ1i

2 (y1, z1(y1))− v1i)(q − e1
2 + z11)

−r1i
13v1i

)
− (y12 + η̄1

2)z12 (19)

subject to constraints

v1i ≥ ñ1i
2 (y1, z1(y1))−

1

d1
2

z12, i = 1 : N, (20)

v1i ≥ 0, i = 1 : N, (21)

∆1
1 ≤ z11 ≤ ∆1, (22)

0 ≤ z12 ≤ y13, (23)

ñ1i
2 (y1, z1(y1)) ≥ 0, i = 1 : N, (24)
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where v1i are the potential customers of the VNO which are lost during

period 1 under scenario i due to lack of capacity for service provision. The

term ñ1i
2 denotes the customer number of the VNO taken into account her

uncertainty about the NO’s decisions:

ñ1i
2 (y1, z1(y1)) = k1i

1 − r1i
21(y11 + η1i

1 )− r1i
22z11

where the parameter k1i
1 is also dependent on the initial customer number

and the initial service price of the VNO. The structure of the profit function

F10(y1, z1, v1) is very similar to the one period competition model from

Section 3.1.1. The new elements are the sums containing parameters η1i
1

and η1i
2 which are used to model imprecise knowledge of the virtual operator

about the network owner’s decisions. In addition, the last term under the

sum represents opportunity costs for not meeting demand.

3. Prediction model for period 2.

For a given scenario i of period 1 and a given decision yi
2 of the network

operator during period 2 obtain a prediction zi
2(y

i
2) for the virtual operator’s

decision during period 2 by solving the following problem.

Find zi
2 and v2i = (v2i1, ..., v2iMi

) which maximize

F20(y
i
2, z2, v2i) =

Mi∑
j=1

p2ij

(
(ñ2ij

2 (yi
2, z1(y1), z

i
2(y

i
2))− v2ij)(q − e2

2 + zi
21)

−r2ij
23 v2ij

)
− (yi

22 + η̄2i
2 )zi

22 (25)

subject to constraints

v2ij ≥ ñ2ij
2 (yi

2, z1(y1), z
i
2(y

i
2))−

1

d2
2

zi
22, i = 1 : N j = 1 : Mi, (26)

v2ij ≥ 0, i = 1 : N, j = 1 : Mi, (27)

∆2
1 ≤ zi

21 ≤ ∆2, i = 1 : N, (28)

0 ≤ zi
22 ≤ yi

23, i = 1 : N, (29)

ñ2ij
2 (yi

2, z1(y1), z
i
2(y

i
2)) ≥ 0, i = 1 : N, j = 1 : Mi (30)

where v2ij are the potential customers of the VNO lost during period 2 under

scenario i of period 1 and scenario j of period 2 due to lack of capacity for
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service provision. The term ñ2ij
2 denotes the customer number of the VNO

taking into account her uncertainty about the NO’s decisions:

ñ2ij
2 (yi

2, z1(y1), z
i
2(y

i
2)) = k2ij

1 − r2ij
21 (yi

21 + η2ij
1 )− r2ij

22 zi
21

where the parameter k2ij
1 also depends on the customer number and the

service price of the VNO in the previous time period. The structure of

the profit function and of the constraints (26) – (30) is very similar to the

prediction model for period 1.

Observe that both prediction problems are quadratic programming problems

which are easily solvable with standard software.

6 Implementation and numerical experiments

The methodology described above underlies a decision support system for the

analysis of strategic and tactical decisions in a competitive telecommunication

environment which is currently under development. It consists of the following

main components.

• Spread sheet front. It is used for data entry and the communication with

the user.

• MATLAB engine. It provides the connection between the blocks, a common

implementation platform, a quick prototyping capability for new models and

customised top level algorithms for model solution, scenario generation and

postprocessing.

• Model suite. Contains a set of models based on the approach described in

the previous sections.

• Problem solvers. This block utilises commercial and custom developed

solvers for model solution and analysis, in particular commercial linear and

nonlinear programming solvers.
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Considering the deterministic one stage case, we conducted studies on concavity

and differentiability properties of the function measuring the network owner’s

performance (here profit). Although this function is quadratic it turns out to

have quite a complex shape when the explicit expression for the virtual oper-

ator’s response to his decisions is substituted. This response is the result of a

quadratic programming problem including constraints on her decision variables

and a constraint requiring nonnegative customer numbers. Therefore this expres-

sion has a rather complex shape. However, we can state exact expressions for

the virtual operator’s optimal decision depending on the network owner’s prices

y = (y1, y2).

According to which constraints are active at the optimal solution of the virtual

operator’s problem the domain of the network operator’s decisions is divided into

regions that are divided further when the constraint on his customer number is

taken into account. Not all of these regions exist for the same set of model param-

eters, exact conditions on the parameter set can be stated for the existence and

location of each region in the network operator’s domain. Furthermore the net-

work owner’s profit function can be specified exactly in each of the regions. This

function is concave on most of the regions under quite general assumptions on

the parameter set. It suffices to ensure positive r1, r2, r12 resp. c1, c2, c12, i.e. pa-

rameters connected with the customer flow dependent on the price changes and

the price differences between both providers. More exactly this denotes ordinary

behaviour of the customers, where more subscribe to a provider if he charges

lower service prices than in the previous period and they move to the provider

that charges lower service prices. However, these concavity properties are only

valid for the respective region, not over the total domain [∆1, ∆] × [0, U1] of the

network owner’s profit function. There exist also regions where the objective

function is linear, convex or has a saddle point. Furthermore, whereas the net-

work operator’s profit function is differentiable on all the single regions it does

not show this property on its whole domain.

The two player Stackelberg game considered in our models can be formulated as
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a bilevel problem with a general formulation given as follows:

min
y

F1(y, ẑ)

s.t. f1i(y, ẑ) ≤ 0, i = 1, ...,m (31)

ẑ ∈ Ψ(y) = arg min
z
{F2(y, z)|f2j(y, z) ≤ 0, j = 1, ..., n} (32)

In such terms the network operator constitutes the leader whereas the virtual op-

erator represents the follower. The problems in both levels have linear constraints

and quadratic goal functions that are concave in the respective decision variable.

Note that not only does the feasible area of the follower’s problem depend on

both providers’ decisions but so does the feasible area of the leader’s problem,

which may have implications on the feasibility of the upper level problem for

some decisions of the leader.

We turn our attention again to the deterministic one stage model and try to

attack this problem by means of necessary and sufficient optimality conditions

as studied for example in [Dem91] or [Out93] and utilizing the special properties

of our model. Some of the assumptions necessary for these optimality condi-

tions turn out to be satisfied for each feasible decision pair of the leader and the

follower:

Theorem 1. The virtual operator’s problem satisfies the Slater’s condition

ZI = {z|f2i(z, y
0) < 0} 6= ∅ (33)

for any feasible decision y0 of the network operator when the model parameters

satisfy the conditions

∆1 <
k2

c2

(34)

∆ >
k2

c2

− U2

dc2

(35)

∆1 < ∆, 0 < U2. (36)

Note that this implies that customers are sensitive to a price change of the oper-

ator compared to his initial price (c2 6= 0).

Proof. When the constraints (36) are satisfied then the domain [∆1, ∆]× [0, U2] of

the VNO’s problem has interior points. We show now that the complete feasible
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area of this problem as formed by all constraints has a nonempty interior for all

feasible decisions y0 of the NO, i.e. that then points z ∈ (∆1, ∆) × (0, U2) exist

which satisfy the constraints which depend on the network operator’s decisions

0 ≤ n2(y
0, z) = k2 + r21y

0
1 − r22z1 (37)

z2 ≥ dn2(y
0, z) = dk2 + dr21y

0
1 − dr22z1 (38)

with strict inequality.

Constraint (37) can be rewritten as

z1 <
k2

r22

+
r21

r22

y0
1

In order to be valid for all feasible NO decisions a feasible z1 must also exist for

the smallest possible right hand side value of this inequality which is taken on for

y0
1 = ∆1. Then the variable z1 must satisfy

∆1 < z1 <
k2

r22

+
r21

r22

∆1

This holds when the constraint (34) is satisfied. (Note that r22 − r21 = c2.)

When n2(y
0, z) > 0 then z2 ≥ dn2 > 0 holds automatically, i.e. only z2 < U2 for

any y0 must still be verified. For z2 < U2 constraint (38) gives

z1 >
k2

r22

+
r21

r22

y0
1 −

U2

dr22

For any feasible y0
1 this constraint must be satisfied by a z1 ∈ (∆1, ∆). The right

hand side of this inequality has its greatest possible value for y0
1 = ∆. In order

to be in the interior ZI of the feasible area for this y0
1, the variable z1 must then

satisfy

∆ > z1 >
k2

r22

+
r21

r22

∆− U2

dr22

which is true when constraint (35) holds.

Summarizing and taking into account constraint (36) this means that under con-

ditions (34) – (36) for any feasible y0 = (y0
1, y

0
2) a point z = (z1, z2) exists which

satisfies all conditions of the virtual operator’s problem with strict inequality,

i.e. which is in the interior of the feasible area ZI of this problem.

Theorem 2. Under a normal customer behaviour with ci, cij > 0, i, j = 1, 2 the

virtual operator’s problem satisfies the following strong second-order sufficient
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optimality condition (A3) [Dem91] for any feasible decision y0 of the network

operator:

(A3) For each triple (z, d, u) with

z ∈ Ψ(y0), u ∈ U(z, y0)

∇zf2i(z, y
0)d = 0 ∀i ∈ J+(u) := {j|uj > 0}

the inequality

dT∇zzL(z, y0, u)d > 0

is fulfilled where U(z, y0) denotes the set of KKT multiplier vectors.

Proof. The Lagrangian of the lower level problem is

L(z, y0, u) = r22z
2
1 − (k2 − (q − e2)r22 − r21y

0
1)z1 + y0

2z2

+u1(r22z1 − r21y
0
1 − k2) + u2(−dr22z1 − z2 + d(k2 + r21y

0
1))

+u3(∆1 − z1) + u4(z1 −∆)− u5z2 + u6(z2 − U2)

Since the Hessian ∇zzL(z, y0, u) is positive definite for a normal customer be-

haviour the condition

dT∇zzL(z, y0, u)d > 0

is satisfied for all d 6= 0 and thus for all decisions y0 of the network operator.

The conditions (33) and (A3) are fulfilled for all y ∈ [∆1, ∆] × [0, U1]. There-

fore z(·) is continuous at each y0 and directionally differentiable. An alternative

consideration of the function z(·) yields that this function is a PC1 function and

has these properties nevertheless. Other necessary assumptions like the Constant

Rank Constraint Qualification or the Linear Independence Constraint Qualifi-

cation raise more problems due to the existence of both nonunique optima and

optima not fulfilling a strict complementarity condition in our model. A further

complication might also be the dependency of the leader’s feasible area on the

follower’s response. This problem may be overcome by for example adding the

constraints of the leader’s problem which depend on the follower’s decisions also

to the follower’s problem. By this means all decisions of the follower are excluded
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which lead to infeasibility of the leader’s problem. Another possibility is to pe-

nalize the follower for a choice of such decisions.

However, a deeper study of the theoretic properties of both the one stage and

the multistage models and of the effects of the stochasticity as well as suitable

solution procedures tailored to the special properties of our models will be the

subject of a subsequent paper.

A graphical presentation of the enterprise performance and other model charac-

teristics allows study of the impact on the performance using more information

than just the optimal decisions derived from the solution of the model (9) - (18).

Furthermore, dependencies on parameters like market behaviour or degrees of un-

certainty can be analysed, which is particularly important due to the imprecise

nature of the input data. We give here an example of the network operator’s en-

terprise performance in the case of an assumed moderate customer sensitivity to

the service prices (Figure 5) and in the case of a very sensitive customer popula-

tion (Figure 6). Such a presentation helps to give comprehensive interpretations

by studying interesting areas in each of the functions. A further analysis of these

results in connection with theoretical insights into the problem as sketched above

can provide the network owner with advice for profit maximising strategies in

specific situations of customer behaviour, information flow or other values of the

considered model parameters.

Figure 5: One stage stochastic model: moderate customer sensitivity
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Figure 6: One stage stochastic model: sensitive customer population

7 Maximising market share

In the models presented in the previous sections we used the providers’ profit as a

measure of the enterprise performance. However, other measures are conceivable,

for example market share. Starting from the general definition of market share

as the relationship of an enterprise’s sales in a defined market to the total sales

in that market, we define it in our approach based on the total service sold

by the providers, which is the same as the demand served. Assuming that all

customers show the same demand we measure then the network owner’s enterprise

performance using the function

FM1 =
Number of customers served by the network provider

Total number of customers served by both providers

The market share function of the virtual operator is constructed similarly. Nat-

urally the customer behaviour is uninfluenced by a different choice of the per-

formance measure. However, in the presence of uncertainty the providers must

also estimate the rival’s customer number in order to calculate their own market

share. Therefore the network operator’s competition model for the prediction

of the virtual operator’s response will include both a term for her estimated

customer number and a term for the network operator’s customer number as per-

ceived by the virtual operator. Depending on the degree of the uncertainty the

total amount of served demand may be estimated differently by both providers.
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Note that the models show no dependence on the capacity price anymore; their

focus lies entirely on the market share and all economic aspects are now ignored.

Furthermore the goal functions are no longer quadratic and a solution will become

more complicated.

8 Conclusions and future work

We developed a framework for modeling complex competition relationships and

for evaluating strategic decisions in the telecommunication environment. The

methodological foundation draws upon selected ideas from game theory and

stochastic programming. A decision support system based on this framework

is under development. In this paper we utilized it for the analysis of interactions

between a network operator and a virtual operator for the deterministic problem.

Although at present the models have a quite simple structure, they allow us to

obtain fairly interesting and nontrivial insights into this situation.

Further work planned is organized along the following interrelated directions.

• A further development of the model suite including the development of

more sophisticated customer models with feedback and more differentiated

pricing structures.

• The study of mathematical properties of the modeling framework. This will

provide insights into the structure of the optimal strategies and facilitate

the development of efficient solution techniques.

• The implementation of the architecture of the decision support system. The

objective is to create a user friendly and robust tool suite for evaluation of

strategic decisions in a competitive telecommunication environment.
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Abstract

We analyse stochastic programming problems characterised by a bilevel

structure. An additional feature is the presence of connecting constraints

in the leader’s (upper level) subproblem. Necessary optimality conditions

of Fritz John type are given and a solution algorithm utilising a stochastic

quasi-gradient method is presented.

Key words: Bilevel stochastic programming, decision making under un-

certainty, bilevel programming, principal agent problem.

1 Introduction

In this paper we consider several variants of the bilevel stochastic programming

problem (BLSP) with different degrees of uncertainty and complexity. We study

necessary optimality conditions and develop an algorithm for the solution of these

problems utilising a Lagrange multiplier method.

Bilevel stochastic programming problems can be interpreted as an extension of

stochastic programming problems when part of the uncertainty a decision maker

faces can be attributed to the decisions of another actor. Traditionally, this type

of uncertainty has been interpreted as part of the environment such that the in-

fluence of the decision maker on other actors was ignored. However, it can be

treated separately by utilising a bilevel problem structure. Interpreting the con-

sidered decision maker as leader, this means that he makes his decision taking

57
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into account the response of the other actor, the follower.

Deterministic bilevel programming problems were studied intensely during the

past decades and a variety of solution methods was developed [Dem02, VC94].

Such problems show inconvenient properties which complicate the analysis. Tak-

ing into account the follower’s response, the leader’s objective function is generally

not convex and neither differentiable. If the leader’s constraints include also the

follower’s response (so called connecting upper level constraints) then the region

of feasible leader decisions may even be not connected and, consequently, the

leader’s objective function discontinuous. Therefore it is often assumed that the

feasibility of the leader’s decisions is not influenced by the follower’s behaviour.

In this paper we do not make such an assumption and will take into account the

connecting upper level constraints. Our viewpoint is motivated by a number of

applications, for example in telecommunications [AGWng], in energy and power

management [GR02] or more generally in agency theory [GH83, Mir99, WGng].

We deal with the mentioned implications by first dividing the inducible region

into convex segments and then applying a gradient algorithm restricted on such

a segment.

Little work is done at the intersection of the fields of decision making under un-

certainty and of bilevel programming. Stochastic games [BV00, VM01] analyse

the interplay of several actors under uncertainty. Although both the uncertainty

and the interdependencies between the decision makers can be regarded, the

application of this methodology to more general decision problems under un-

certainty with a bilevel structure is complicated. For example, it is difficult to

take into account continuous decision variables or nontrivial constraints which

is of interest regarding the stochastic programming focus. A viewpoint comple-

mentary to our approach are stochastic bilevel programming problems (SBLP)

[PW97, Wyn01] and their generalisation, stochastic mathematical programs with

equilibrium constraints (SMPEC) [EP04, PW99, Sha04]. They can be interpreted

as an extension of the respective deterministic programming problems by allow-

ing for uncertain model parameters. Suggestions for solution approaches comprise

a penalty method [EP04] or the utilisation of a finite number of scenarios and

deterministic equivalent formulations [PW99, Sha04]. This results in large deter-

ministic bilevel programming problems which are computationally expensive for



2 NOTATIONS AND ASSUMPTIONS 59

problems of a realistic size. In contrast, the BLSP approach considers the problem

as an extension of stochastic programming problems [EW88a, RS03] by adding

a bilevel structure. This way it is possible to apply the stochastic programming

methodology to the complete bilevel relationship. The concept of stochastic pro-

gramming problems with recourse [EW88b, Wet89] allows to take into account

dynamic aspects. In particular, we employ sampling techniques such as stochas-

tic quasi-gradient methods [Erm88, Gai88, Gai04]. This gives the possibility to

use various representations of the uncertain variables, for example continuous

distributions. Our viewpoint enables therefore a more comprehensive treatment

of the uncertainty and more complex problem structures. A related approach is

discussed in [BGL04] for the solution of stochastic mathematical programming

problems with complementarity constraints. Such problems emerge for example

from reformulations of SBLP or SMPEC problems.

The following section defines notations which will be utilised throughout the pa-

per. In Section 3 we analyse the deterministic bilevel programming problem.

Necessary optimality conditions are studied and a solution algorithm utilising a

gradient method is developed. These considerations are extended in Section 4.

Several formulations of bilevel two-stage stochastic programming problems with

different complexity are analysed. Also for these problems necessary optimality

conditions are given and a solution algorithm is presented utilising a stochas-

tic quasi-gradient method. A numerical illustration of the approach is given in

Section 5. Section 6 concludes the paper.

2 Notations and assumptions

Consider the following decision problem

min
y∈Y

F (y, z) (1a)

G(y, z) ≤ 0 (1b)

where the considered decision maker directly controls the variables y ∈ Y ⊆ RI n.

The variables z ∈ Z ⊆ RI m denote the response of another decision maker to
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these decisions y and are determined by the parametric optimisation problem

min
z∈Z

f(y, z) (2a)

g(y, z) ≤ 0 (2b)

with the parameter y. This represents a bilevel programming problem with the

upper level problem (1a) – (1b) and the lower level problem (2a) – (2b). We

assume F, f : RI n × RI m → RI 1, G : RI n × RI m → Rp and g : RI n × RI m → Rq.

Furthermore we assume that the sets Y and Z are convex and compact.

For a given upper level parameter y0 denote the Lagrangian function associated

with the lower level problem (2a) – (2b) by

L(y0, z0, λ0, µ0) = f(y0, z0) + (λ0)T g(y0, z0)

and define the following index sets:

I(y0, z0) = {i ∈ {1, ..., q}|gi(y
0, z0) = 0}

J(λ0) = {i ∈ {1, ..., q}|λ0
i > 0}

Definition 1. The inducible region denotes the set over which the leader may

optimise:

IR = {y ∈ Y |∃z∗ ∈ M(y) : G(y, z∗) ≤ 0} (3)

with the lower level solution set M(y) and the feasible lower level area N(y)

defined for a given upper level decision y ∈ Y by

M(y) = arg min{f(y, z)|z ∈ N(y)}

N(y) = {z ∈ Z|g(y, z) ≤ 0}

Definition 2. The Mangasarian-Fromowitz Constraint Qualification (MFCQ)

holds for problem (2a) – (2b) at a point (y0, z0) if there exists a direction d with

∇zgi(y
0, z0)d < 0, i ∈ I(y0, z0)

Definition 3. The Constant Rank Constraint Qualification (CRCQ) holds for

problem (2a) – (2b) at a point z0 for an upper level parameter y0 if there exists

an open neighbourhood Uε(z
0) such that for all subsets I ⊆ I(y0, z0) the gradients

{∇zgi(y
0, z0), i ∈ I} have constant rank for all z ∈ Uε(z

0) and the upper level

parameter y0.
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Definition 4. The Linear Independence assumption (LI) holds for problem (2a)

– (2b) at a point z0 with a given upper level parameter y0 when the gradients of

the constraints {∇zgi(y
0, z0), i ∈ I(y0, z0)} are linearly independent.

Definition 5. The Strong Second Order Sufficient Optimality Condition (SSOC)

holds for problem (2a) – (2b) at a point z0 if for all Lagrange multipliers λ0 ∈ RI q
+

associated with z0 and for all d 6= 0 with

∇zgi(y
0, z0)d = 0, i ∈ J(λ0)

the condition

dT∇2
zL(y0, z0, λ0)d > 0

holds for a given upper level parameter y0.

Assumption (A1). The objective functions F (y, z) and f(y, z) are convex in y

and z and at least C2 (twice continuously differentiable).

The upper level constraints Gi(y, z), i = 1, ..., p, are convex in y and z and at

least C1. The lower level constraints gj(y, z), j = 1, ..., q, are linear in y and z.

Assumption (A2). The conditions (MFCQ) and (SSOC) are satisfied at all

stationary solutions z0 = z(y0) of the lower level problem (2a) – (2b) for an

upper level parameter y0 ∈ IR.

Remark 1. In the following we suppose that Assumption (A2) holds for all

y0 ∈ IR. Then the response z0 = z(y0) and the Lagrange multipliers λ0 are

uniquely determined for all upper level decisions.

3 The deterministic problem

We start with an analysis of the deterministic bilevel programming problem. This

analysis is especially important due to the connecting upper level constraints

which affect the development of a solution algorithm. We consider the following
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problem.

min
y∈Y

F (y, z∗) (4a)

G(y, z∗) ≤ 0 (4b)

z∗ = arg min
z∈Z

f(y, z) (4c)

g(y, z) ≤ 0 (4d)

At first necessary optimality conditions for this problem are studied. Then im-

plications of the connecting upper level constraints are discussed in more detail

before a solution algorithm is developed.

Theorem 1. Suppose that

1. Assumptions (A1) and (A2) hold,

2. for an upper level decision y0 there exists a solution z0 = z(y0) of prob-

lem (4c) – (4d) with the Lagrange multipliers λ0 ∈ RI p
+ such that the point

(y0, z0, λ0) satisfies the upper level constraints (4b),

3. the sets I(y0, z0) of active lower level constraints and J(λ0) of nonzero La-

grange multipliers do not change in the vicinity of the point y0.

Then the following composite problem represents an equivalent formulation of

problem (4) which holds in the vicinity of the point (y0, z0, λ0):

min
y,z,λ

F (y, z) (5a)

∇zf(y, z) + λT∇zg(y, z) = 0

G(y, z) ≤ 0

gi(y, z) = 0 i ∈ I(y0, z0) (5b)

λi = 0 i /∈ J(λ0) (5c)

gi(y, z) ≤ 0 i /∈ I(y0, z0) (5d)

λi ≥ 0 i ∈ J(λ0) (5e)

A local optimal solution of problem (4) is also a local optimal solution of (5).
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Proof. Due to Assumptions (A1) and (A2) the optimal solution of the lower level

problem (4c) – (4d) is unique for given y0. Therefore z0 and λ0 can be expressed

by the Karush Kuhn Tucker optimality conditions of problem (4c) – (4d) and

substituted in the upper level problem (4a) – (4b):

min
y,z,λ

F (y0, z0) (6a)

G(y0, z0) ≤ 0

∇zf(y0, z0) + (λ0)T∇zg(y0, z0) = 0 (6b)

(λ0)T g(y0, z0) = 0 (6c)

g(y0, z0) ≤ 0 (6d)

λ0 ≥ 0 (6e)

This system is, however, nonlinear due to the complementarity condition (6c).

Therefore this condition is, together with (6d) and (6e), replaced by the constraint

min{−g(y0, z0), λ0} = 0

where the minimum is taken componentwise. Under assumption 3. this constraint

is equivalent to constraints (5b) – (5e).

Problem (5) describes a section of the feasible set of problem (4). Each point

which is feasible for problem (5) is also feasible for problem (4) and a local

optimal solution of problem (5) is locally optimal for (4).

The following propositions give necessary optimality conditions of Fritz John type

for problem (4). If not stated otherwise, here the gradient is taken with respect

to (y, z).

Proposition 1. Assume that

1. Assumptions (A1) and (A2) are valid,

2. (y0, z0, λ0) is a local optimal solution of problem (4).

Then there exists a nonvanishing vector of multipliers (κ0, κ, γ, ζ, ξ) such that the

following system is satisfied:

κ0∇F (y0, z0) + κT∇G(y0, z0) +∇(∇zf(y0, z0)γ) + ζT∇g(y0, z0) = 0 (7a)
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∇zg(y0, z0)T γ − ξT = 0 (7b)

gi(y
0, z0)ζi = 0 ∀i

κT G(y0, z0) = 0

λ0
i ξi = 0 ∀i

ζiξi ≥ 0, i ∈ I(y0, z0) ∩ J(λ0)

κ0, κ ≥ 0

Proof. Dempe [Dem02] considered the bilevel programming problem

min
y∈Y

F (y, z∗) (8a)

G(y) ≤ 0 (8b)

z∗ = arg min
z∈Z

f(y, z) (8c)

g(y, z) ≤ 0 (8d)

h(y, z) ≤ 0 (8e)

without connecting upper level constraints and with equality constraints in the

lower level problem. He established the necessary optimality conditions

κ0∇F (y0, z0) + κT (∇yG(y0), 0) +∇(∇zL(y0, z0, λ0, µ0)γ)

+ ζT∇g(y0, z0) + τT∇h(y0, z0) = 0 (9a)

(∇zg(y0, z0),∇zh(y0, z0))T γ − (ξ, 0)T = 0 (9b)

gi(y
0, z0)ζi = 0 ∀i

κT G(y0) = 0

λ0
i ξi = 0 ∀i

ζiξi ≥ 0, i ∈ I(y0, z0) ∩ J(λ0)

κ0, κ ≥ 0

with L(y0, z0, λ0, µ0) the Lagrangian of the lower level problem (8c) – (8e). For

the lower level problem (4c) – (4d) with linear constraints we obtain

∇(∇zL(y0, z0, λ0, µ0)γ) = ∇(∇zf(y0, z0)γ)

and constraint (9b) takes on the shape (7b). Furthermore the presence of the

connecting upper level constraints G(y0, z0) changes the term κT (∇yG(y0), 0) in
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condition (9a) to

κT (∇yG(y0, z0),∇zG(y0, z0)) = κT∇G(y0, z0)

Summarising, system (7) represents the adaptation of the necessary optimality

conditions (9) to problem (4).

Before a solution algorithm can be presented the structure of problem (4) must be

analysed closer. This problem shows two important features prohibiting a direct

application of gradient solution methods. The first feature is that the leader’s

objective function depends on the response of the follower. Therefore the deter-

mination of a descent direction at an upper level iterate has to take into account

the behaviour of the follower’s response. This problem, however, can be overcome

by a sensitivity analysis of the lower level problem. Additionally, even if F (y, z)

is convex and differentiable with respect to both y and z, the function F (y, z(y))

taking into account the optimal lower level response may be nondifferentiable

and nonconvex in y. The second important feature is the presence of connect-

ing upper level constraints. Their feasibility can be investigated only after the

follower’s response was determined. If Assumption (A2) and (CRCQ) hold, then

the lower level solution function z(y) is continuous. However, there may exist

responses z(y) which do not satisfy the upper level constraints G(y, z) ≤ 0. A

consequence is that the inducible region may not be connected and not convex.

Then the upper level objective function F (y, z(y)) taking into account the opti-

mal lower level response z(y) may not be continuous in y and the convergence of

the solution algorithm can not be guaranteed. However, it is possible to partition

the inducible region into a finite number of segments. Such a segment comprises

all upper level decisions y with the same characteristic of the response z(y), i.e.

with the same indices of active lower level constraints and of nonzero Lagrange

multipliers.

Definition 6. A segment Y s is defined by

Y s = {y ∈ Y |Is
L(y) = Is

1 , I
s
C(y) = Is

2} (10)

Is
L(y) = {i ∈ {1, ..., q}|λi(y) > 0}

Is
C(y) = {i ∈ {1, ..., q}|gi(y, z(y)) = 0}

Is
1 , I

s
2 ∈ 2{1,...,q}
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where 2{1,...,q} denotes the family of all subsets of the index set {1, ..., q}.

The union of all such segments is the upper level domain Y . However, the in-

ducible region

IR =
⋃
s

{y ∈ Y s|G(y, z(y)) ≤ 0} = {y ∈ Y |G(y, z(y)) ≤ 0}

may be nonconnected. This is demonstrated in the following example.

Example 1. Consider the problem

min
y

y + z∗ (11a)

z∗ ≥ 2 (11b)

y ≥ 0 (11c)

z∗ ∈ arg min
z
{z ∈ RI |y + z ≥ 3, y − z ≤ 3, z ≥ 1} (11d)

The optimal solution of the lower level problem (11d) is

z(y) =


y − 3, 4 ≤ y

1, 2 ≤ y ≤ 4

−y + 3, y ≤ 2

However, only for y ∈ [0, 1] ∪ [5,∞) the upper level constraint (11b) is satisfied.

In order to apply a gradient algorithm we need some properties of the segments.

Theorem 2. Assume that the following conditions are satisfied:

1. Assumption (A1) holds.

2. The conditions (LI) and (SSOC) hold for the response z = z(y) to y ∈ Y s.

3. For y ∈ ri Y s and the response z the Karush Kuhn Tucker conditions

∇zf(y, z) + λT∇zg(y, z) = 0 (12a)

λT g(y, z) = 0 (12b)

g(y, z) ≤ 0 (12c)

λ ≥ 0 (12d)

are satisfied with strict complementarity.
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Then the upper level objective function F (y, z(y)) is continuously differentiable

on the relative interior ri Y s of the segment.

Proof. Consider an upper level decision y0 ∈ ri Y s. If the response z0 = z(y0)

satisfies conditions (LI), (SSOC) and strict complementarity then the Jacobian of

the Karush Kuhn Tucker conditions is nonsingular. This means that the function

z(y) is uniquely determined and continuously differentiable in the vicinity of the

parameter y0 [Jit84]. Due to Assumption (A1) the upper level objective function

F (y, z) is differentiable with respect to z. Therefore, F (y, z(y)) is differentiable

with respect to y on ri Y s.

Theorem 3. Assume that

1. Assumption (A1) holds and

2. the gradient ∇zf(y, z) is linear in y and z.

Then the segment Y s is convex and compact.

Proof. According to Definition 6 the constraints of the set Y s are equivalent

to the system (12) of Karush Kuhn Tucker conditions characterising z as the

optimal lower level response to the upper level parameters y ∈ Y s. This system

describes a convex set if the involved equality constraints are linear and the

inequality constraints convex. These conditions are given under Assumption (A1)

and condition 2. The compactness of the segment Y s follows directly from the

compactness of Y and from Definition 6.

Remark 2. At a point yb on the boundary of a segment Y s to an adjacent seg-

ment the Karush Kuhn Tucker conditions (12) may not be satisfied with strict

complementarity. Therefore the function F (y, z(y)) may be nondifferentiable at

the boundary between adjacent segments. However, if Assumption (A2) and

(CRCQ) hold for all y ∈ IR, the response function z(y) is PC1 (piecewise contin-

uously differentiable) [Dem02]. This means that z(yb) and thus also F (yb, z(yb))

are directionally differentiable into all directions, but the directional derivatives

may not coincide.
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Utilising the partition into segments, problem (4) can be decomposed into a family

of one-level problems:

min
y,z,λ

F (y, z)

E(y, z, λ) ≤ 0 (13)

e(y, z, λ) = 0

with

E(y, z, λ) =


gi(y, z), i /∈ Is

C

−λi, i ∈ Is
L

G(y, z)

 (14)

e(y, z, λ) =


∇zf(y, z) + λT∇zg(y, z)

gi(y, z), i ∈ Is
C

λi, i /∈ Is
L

 (15)

(y, z, λ) ∈ X = Y × Z ×RI q
+ (16)

During the solution algorithm the change of the response z(y) under a perturba-

tion of the upper level decision y must be evaluated. Under certain assumptions

this can be done by a sensitivity analysis of the optimal lower level response.

Theorem 4. Assume that the conditions of Theorem 2 hold for the optimal re-

sponse z0 = z(y0) to an upper level decision y0. Then

1. The lower level response zε = z(y0 + ε) to the perturbed upper level decision

y0 + ε is a locally unique optimal solution of the lower level problem.

2. The associated Lagrange multipliers λε are uniquely determined.

3. Also zε satisfies the assumptions of Theorem 2 and the set of active con-

straints is not changed for ε near zero.

An approximation of zε and λε is given by the following expression[
zε

λε

]
=

[
z0

λ0

]
+ (M∗)−1N∗ε + o(||ε||) (17)
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with

N(ε) =
[
−∇2

ε,zL
T , λ0

1∇εg1, . . . , λ
0
q∇εgq

]

M(ε) =


∇2L ∇gT

1 . . . ∇gT
q

−λ0
1∇g1 −g1 0
...

. . .

−λ0
q∇gq 0 . . . −gq


L = f(y0 + ε, z0) + (λ0)T g(y0 + ε, z0)

gi = gi(y
0 + ε, z0), i = 1, ..., q

M∗ = M(0) N∗ = N(0)

If not stated otherwise, here the gradient ∇ and the Hessian operator ∇2 are

taken with regard to z.

Proof. Assumption (A2) is supposed to hold at the optimal lover level response z0.

Therefore the associated Lagrange multipliers are unique and the application of

the Basic Sensitivity Theorem [Fia76] to the lower level problem (4c) – (4d) yields

the theorem. Thereby expression (17) is obtained by applying Corollary 3.2.4

[Fia83] to problem (4c) – (4d). The matrix M(ε) represents the Jacobian of the

Karush Kuhn Tucker conditions of this problem under the perturbed parameter

y+ε with respect to the point (zε, λε)T . The matrix N(ε) is the negative Jacobian

of these conditions with respect to ε. Both are evaluated at [zε, λε, ε].

Now the solution algorithm can be presented:

Algorithm 1: Find local optimum among stationary points on seg-

ments.

Step 0. (Initialisation) Find an initial upper level decision y0, set s = 0.

Step 1. (Determination of segment) Solve the lower level problem (4c) – (4d)

with the parameter ys. This gives the optimal lower level response zs =

z(ys), the associated Lagrange multipliers λs, the index set Is
C of active lower

level constraints and the index set Is
L of nonzero Lagrange multipliers.
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Step 2. (Iteration) Utilising the initial point xs = (ys, zs, λs), solve problem

(13) – (15) with a descent algorithm (Algorithm 2) and obtain a stationary

solution xs = (ys, zs, λ
s
).

Step 3. (Optimality test) If the point xs = (ys, zs, λ
s
) satisfies the necessary

optimality conditions of Proposition 1 go to Step 5.

Step 4. (Perturbation into feasible descent direction)

If a descent direction d exists which is feasible on the current segment Y s:

perturb ys into that direction

ys+1 = ys + βd

with small β > 0 and estimate the response (zs+1, λs+1) = (z(ys+1), λ(ys+1))

according to formula (17). Set Is+1
C = Is

C , Is+1
L = Is

L and s = s + 1.

Go to Step 2.

Otherwise: choose a descent direction d which is feasible on an adjacent

segment. Perturb ys into that direction

ys+1 = ys + βd

with small β > 0. Set s = s + 1 and go to Step 1.

Step 5. (Termination) The point ys with the optimal lower level response zs

is a local optimal solution of problem (4).

Remark 3. 1. Determination of an initial point in Step 0. An initial point y0

is assumed to be feasible together with the response z0, i.e. it may be any

x0 = (y0, z0, λ0) ∈ Y1 × Z ×RI q
+ satisfying

∇zf(y0, z0) + (λ0)T∇zg(y0, z0) = 0 (18a)

(λ0)T g(y0, z0) = 0 (18b)

g(y0, z0) ≤ 0 (18c)

G(y0, z0) ≤ 0 (18d)

Here, conditions (18a) – (18c) characterise z0 as optimal lower level response

and (18d) denotes the upper level feasibility.
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2. In this case the response z0 and the Lagrange multipliers λ0 are already

determined such that Step 1 in Algorithm 1 is basically completed. It

remains only to determine the sets Is
C and Is

L.

3. If the set of active lower level constraints changes in the close vicinity of

an initial point y0 this means that this point is located on the boundary of

several adjacent segments. In such a case an initial segment may be chosen

arbitrarily among these segments.

4. Determination of feasible descent directions in Step 4. The conditions of

Theorem 4 are only satisfied if the perturbation ys+1 = ys + βd is also

on the current segment Y s, i.e. if ys+1 and the response (zs+1, λs+1) =

(z(ys+1), λ(ys+1)) satisfy the constraints (14) – (16). In this case the re-

sponse (zs+1, λs+1) can be estimated utilising expression (17) and the de-

scent condition on the direction d can be formulated as

∇(y,z)F (ys, zs)T (xs+1 − xs)

= ∇(y,z)F (ys, zs)T ((yε, zs+1, λs+1)− (ys, zs, λ
s
))

= ∇(y,z)F (ys, zs)T β(d, (M−1Nd)T ) < 0

Due to the linearity of the constraints (14), (15) a feasible descent direction

on the current segment Y s can therefore be determined as solution d 6= 0

of the system

∇(y,z)F (ys, zs)T β(d, (M−1Nd)T ) < 0 (19a)

E(ys, xs, λ
s
) + βE(d, (M−1Nd)T ) ≤ 0 (19b)

e(d, (M−1Nd)T ) = 0 (19c)

ys + βd ∈ Y1 (19d)

(zs, λ
s
)T + βM−1Nd ∈ Z ×RI q

+ (19e)

Constraint (19a) is the descent condition, constraints (19b) and (19c) ensure

the satisfaction of the constraints (14), (15) and conditions (19d) and (19e)

give the feasibility of the perturbation and the response.

If no feasible descent directions on the same segment exist, the iterate ys
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is on the boundary of the segment Y s and there must be directions of

descent into an adjacent segment, say Y t. However, then the sets of active

lower level constraints and of nonzero Lagrange multipliers associated to a

response to the perturbed point yt = ys + βd change. Therefore Theorem

4 can not be utilised. The behaviour of F (yt, zt) can not be evaluated

without solving the lower level problem. However, the perturbed point yt

is in the relative interior of the segment Y t and it can be assumed that

condition (18b) is satisfied with strict complementary slackness. Therefore

a possible approach to find a feasible descent direction on another segment

is the following.

Determine all possible index sets I t
C 6= Is

C . Test then for each set I t
C if the

system

∇zf(ys + βd, zt) + (λt)T∇zg(ys + βd, zt) = 0 (20a)

gi(y
s + βd, zt) = 0, i ∈ I t

C (20b)

λt
i > 0, i ∈ I t

C (20c)

gi(y
s + βd, zt) < 0, i /∈ I t

C (20d)

λt
i = 0, i /∈ I t

C (20e)

G(ys + βd, zt) ≤ 0 (20f)

F (ys + βd, zt)− F (ys, zs) < 0 (20g)

with small β > 0 has solutions zt, λt and d 6= 0. If this is the case for an

index set I t
C , a feasible descent direction and a new segment Y s+1 = Y t are

found. Here, constraints (20b) – (20e) specify the strict complementarity,

constraint (20f) ensures the upper level feasibility and constraint (20g) the

descent of the direction d.

The stationary point xs = (ys, zs, λ
s
) as solution of problem (13) can be deter-

mined in Step 2 of Algorithm 1 by the following gradient projection method:

Algorithm 2: Find stationary point on a segment.

Step 0. (Initialisation) Set k = 0, the initial point x̂0 = (ŷ0, ẑ0, λ̂0) is passed

from Algorithm 1.
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Step 1. (Objective function) Calculate the values of the objective function

F (ŷk, ẑk) and of the estimation

F
k

=
1

k

k∑
i=1

F (ŷi, ẑi)

Step 2. (Search direction and step size) Determine a search direction

dk = (∇yF (ŷk, ẑk),∇zF (ŷk, ẑk), 0)T (21)

and a step size αk according to the Armijo rule.

Step 3. (Update) Determine a new iterate for the upper level decision:

x̂k+1 = ΠXs(x̂k − αkdk)

Step 4. (Convergence) If a convergence test is satisfied, for example if

|F k − F
k−1| ≤ εc

for k ≥ 1 with a specified precision εc, go to Step 5.

Otherwise set k = k + 1 and go to Step 1.

Step 5. (Termination) The point xs = x̂k is a stationary solution of problem

(13) – (16), i.e. stationary on the segment Y s.

Remark 4. Determination of new iterate in Step 3. The operator ΠXs denotes

the projection on the feasible region. The obtained iterate x̂k+1 = (ŷk+1, ẑk+1, λ̂k+1)

is therefore the optimal solution of the following quadratic programming problem

min
x
||x− (x̂k − αkdk)||2

E(x) ≤ 0

e(x) = 0

x ∈ X = Y × Z ×RI q
+

where E(x) and e(x) are defined by (14), (15).
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Theorem 5. Assume that

1. Assumption (A2) holds,

2. the conditions of Theorem 3 are valid,

3. the upper level constraints Gi(y, z), i = 1, ..., p, are linear in y and z,

4. the search direction dk is defined by (21) and the step size αk is determined

by the Armijo rule.

Then Algorithm 1 utilising Algorithm 2 stops at a local minimum of problem (4).

Proof. The upper level objective function F (y, z(y)) as function of y can be dis-

continuous and nondifferentiable. Therefore the inducible region IR is divided

into segments where F (y, z(y)) is continuous and differentiable. Step 2 of Algo-

rithm 1 restricts the determination of a local optimum to a search on the segment

Y s. This search is conducted by finding an stationary point solving problem

(13) – (16). Under conditions 1. – 3. this problem represents a convex nonlin-

ear optimisation problem subject to linear constraints. The objective function

F (x) = F (y, z) is continuously differentiable with respect to y and z. Therefore

problem (13) – (16) is amenable to a solution by a standard gradient method

such as the Gradient Projection Method implemented in Algorithm 2. With de-

scent directions dk defined by (21) and step sizes αk according to condition 4.

the direction sequence {dk} = {αkdk} is gradient related [Ber99]. Consequently,

every limit point xs of the sequence {xk} generated by Algorithm 2 is stationary

on the considered segment Y s.

If this point xs satisfies the necessary optimality conditions specified in Step 3 of

Algorithm 1, a local minimum of problem (4) is found and Algorithm 1 stops. If

the optimality conditions are not satisfied then there exist feasible descent direc-

tions at the point xs. First, it is then tested if descent directions d exist which are

feasible on the current segment Y s. The index sets Is
C and Is

L do not change for

the perturbed point ys+1 = ys +βd and Theorem 4 is applicable for an estimation

of the response (zs+1, λs+1) = (z(ys+1), λ(ys+1)). Therefore the direction d can be

found as solution of system (19). If this system has no solution, this means that

only directions of descent into adjacent segments exist. These adjacent segments



4 STOCHASTIC TWO-STAGE PROBLEMS 75

are characterised by different index sets IC and IL. Therefore in this case a di-

rection d can be found as solution of system (20). In both cases the stationary

point ys is then perturbed into the found direction and the search is repeated

on the according segment Y s+1 with the initial point (ys+1, zs+1, λs+1). Since the

segments describe a finite number of convex optimisation problems, Algorithm 1

stops at a local optimum after a finite number of steps.

4 Stochastic two stage problems with bilevel

structure

In this section the deterministic problem (4) is extended to a two-stage stochastic

programming problem with bilevel structure. Remember that the leader’s uncer-

tainty can be divided into two types, his uncertainty about other decision makers

and about random model parameters. The first type of uncertainty is treated

separately by the bilevel structure and the follower’s response can be determined

by solving the lower level decision problem. The second type of uncertainty is

expressed by a vector ω ∈ Ω of random variables with a given probability distri-

bution and then taken into account by a second stage problem. In a first variant

only the leader can take into account a recourse decision. Assuming the case

of simple recourse, we state necessary optimality conditions and adapt the solu-

tion algorithm developed in the previous section to the new structure. Then the

problem formulation is extended such that also the follower’s decision problem

involves a second stage decision. We analyse show that such a model can be re-

formulated similarly to the first problem. Thus the presented solution algorithm

can be applied also to this more complex problem.

Consider at first the following formulation with a two-stage stochastic program-

ming problem in the upper level and a one-stage stochastic programming problem

in the lower level:
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min
y1∈Y1

{F1(y1, z
∗
1) + EI ωQ(y1, ω)} (22a)

G(y1, z
∗
1) ≤ 0 (22b)

z∗1 = arg min
z1∈Z1

EI ωf1(y1, z1, ω) (22c)

g(y1, z1) ≤ 0 (22d)

Q(y1, ω) = min
y2∈Y2

F2(y1, y2, ω) (22e)

W1(ω)y2 = h1(ω)− T1(ω)y1 (22f)

with Q : RI n × Ω → RI 1, F2 : RI n × RI n2 × Ω → RI 1, W1 ∈ RI n2 × RI p2 , h1 ∈ RI p2 ,

T1 ∈ RI n × RI p2 and Y2 ⊆ Rn2 . We assume that the second stage objective

function F2(y1, y2, ω) is differentiable in y1 and y2 and that the constraints of all

subproblems are linear.

Problem (22) represents the most simple formulation of a two-stage stochastic

programming problem with bilevel structure. In order to find a first stage decision

y1, the leader takes into account his recourse decision y2 and predicts the follower’s

response z∗1 . We assume that the influence of the follower’s decisions is not strong

enough to be regarded in the second stage. Therefore this response is not included

into the recourse problem here.

In order to describe necessary optimality conditions similar to the conditions

stated in Proposition 1, we need the convexity and differentiability of the objective

functions F1(y1, z1) + EI ωQ(y1, ω) and EI ωf1(y1, z1, ω).

Proposition 2. If the function F1(y1, z1) is convex in y1 and F2(y1, y2, ω) is

convex in y1 and y2 for all ω then the function F1(y1, z1)+EI ωQ(y1, ω) is convex in

y1. It is differentiable with respect to y1 almost everywhere. If the random variable

ω is absolutely continuously distributed, then the function F1(y1, z1)+EI ωQ(y1, ω)

is continuously differentiable with respect to y1.

Proof. See for example Birge and Louveaux [BL97].

Proposition 3. Assume that the function f1(y1, z1, ω) satisfies the following con-

ditions:

1. the gradients ∇xf1(y1, z1, ω) and ∇x(∇zf(y1, z1, ω)) are integrable,
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2. at the point x̂ = (ŷ1, ẑ1) ∈ RI n ×RI m the residues

ρf (x̂, ω, t) =
f1(x̂ + tei, ω)− f1(x̂, ω)

t
− ∂f1(x̂, ω)

∂xi

ρgf (x̂, ω, t) =
∇zf1(x̂ + tei, ω)−∇zf1(x̂, ω)

t
− ∂∇zf1(x̂, ω)

∂xi

approach zero for t → 0 and all i = 1, ..., n + m where ei ∈ RI n+m denotes

the i-th unit vector.

Then

1. EI ωf1(y1, z1, ω) is convex and

2. EI ωf1(y1, z1, ω) is at least twice differentiable at (ŷ1, ẑ1) with

∇zEI ωf1(ŷ1, ẑ1, ω) = EI ω∇zf1(ŷ1, ẑ1, ω)

∇(∇zEI ωf1(ŷ1, ẑ1, ω)) = EI ω∇(∇zf1(ŷ1, ẑ1, ω))

Proof. See for example Kall and Wallace [KW94].

The recourse problem affects the first stage problem only through the leader’s

objective function. Thus problem (22) can be approximated in the vicinity of a

feasible point x0 = (y0
1, z

0
1 , λ

0) by a one-level two-stage stochastic programming

problem similar to formulation (5):

min
y1,z1,λ

F (y1, z1) + EI ωQ(y1, ω) (23a)

∇z1EI ωf1(y1, z1, ω) + λT∇z1g(y1, z1) = 0

G(y1, z1) ≤ 0

gi(y1, z1) = 0, i ∈ I(y0
1, z

0
1)

λi = 0, i /∈ J(λ0)

gi(y1, z1) ≤ 0, i /∈ I(y0
1, z

0
1)

λi ≥ 0, i ∈ J(λ0)

Q(y1, ω) = min
y2∈Y2

F2(y1, y2, ω) (23b)

W1(ω)y2 = h1(ω)− T1(ω)y1 (23c)
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Then the necessary optimality conditions stated in Proposition 1 can be adapted

to the problem structure (22). For given first stage decision y0
1 and observation ω

of the random variable the optimal recourse decision is denoted by y0
2(y

0
1, ω) and

the associated Lagrange multiplier by vR(y0
1, ω).

Proposition 4. Assume that

1. the conditions of Proposition 2 on the leader’s objective functions hold

2. the point (y0
1, z

0
1 , λ

0) is a local minimum of problem (22)

Then there exists a nonvanishing vector of multipliers (κ0, κ, γ, ζ, τ, ξ) such that

the following system is satisfied:

κ0(∇F1(y
0
1, z

0
1) + EI ω{∇F2(y

0
1, y

0
2(ω), ω)− vR(ω)T1(ω)}

+ κT∇G(y0
1, z

0
1) + EI ω∇(∇z1f1(y

0
1, z

0
1)γ) + ζT∇g(y0

1, z
0
1) = 0

∇z1g(y0
1, z

0
1)

T γ − ξT = 0

gi(y
0
1, z

0
1)ζi = 0 ∀i

κT G(y0
1, z

0
1) = 0

λ0
i ξi = 0 ∀i

ζiξi ≥ 0 i ∈ I(y0
1, z

0
1) ∩ J(λ0)

κ0, κ ≥ 0

Proof. Under the assumptions of Proposition 2 the recourse function EωQ(y0
1, ω)

is differentiable at y0
1. For given decision y0

1, observation ω and recourse deci-

sion y0
2(y

0
1, ω) the gradient of the recourse function with respect to (y, z) can be

determined using the Lagrangian function of the recourse problem

∇EI ωQ(y0
1, ω) = ∇EI ωLR(y0

1, y
0
2(y

0
1, ω), vR(y0

1, ω))

= EI ω{∇F2(y
0
1, y

0
2(y

0
1, ω), ω)− vR(y0

1, ω)T1(ω)}
(24)

Now, keeping in mind that the follower’s objective function in problem (23) is

F1(y
0
1, z

0
1) + EI ωQ(y0

1, ω), we apply the necessary optimality conditions stated in

Proposition 1 to this problem and obtain the required result.
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We direct now our attention to a solution method for problem (22). It is possible

to proceed as described in the previous section: The original problem is parti-

tioned into a family of stochastic one-level problems described by segments of the

upper level domain. Then, a local optimum is found on a segment by a stochastic

quasi-gradient method [Erm88, Gai88, Gai04]. However, a direct application of

the partitioning strategy yields the following system to be solved by Algorithm 2

on the segment Y s:

min
y1,z1,λ

{F1(y1, z1) + EI ωQ(y1, ω)} (25a)

E(y1, z1, λ) ≤ 0 (25b)

EI ωe(y1, z1, λ, ω) = 0

Q(y1, ω) = min
y2∈Y2

F2(y1, y2, ω) (25c)

W1(ω)y2 = h1(ω)− T1(ω)y1 (25d)

(y1, z1, λ) ∈ Y1 × Z1 ×RI q
+

with E(y1, z1, λ) defined by (14) and

e(y1, z1, λ, ω) =


∇zf1(y1, z1, ω) + λT∇zg(y1, z1)

gi(y1, z1), i ∈ Is
C

λi, i /∈ Is
L

 (26)

This formulation, however, contains stochastic equality constraints which may

complicate a solution by a projection method. Furthermore the second stage

problem (25c) – (25d) must be taken into account. Therefore Algorithm 2 is

modified utilising a Lagrange multiplier method [NV77] solving the problem

min
x

max
u≥0,v

EI ωL(x, u, v, ω) (27)

where

L(x, u, v, ω) = F1(x) + Q(x, ω) + uE(x) + ve(x, ω) (28)

is the Lagrangian function of problem (25) with x = (y1, z1, λ).
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Algorithm 3: Find stationary point in a segment utilising Lagrangian;

recourse problem.

Step 0. (Initialisation) Set k = 0, the initial point x̂0 = (ŷ0
1, ẑ

0
1 , λ̂

0) is passed

from Algorithm 1. The Lagrange multipliers u0 ∈ RI m+q and v0 ∈ RI p+q are

associated to this point x̂0.

Step 1. (Recourse decision) Determine a sample {ω1, ..., ωNk} of observations

of the random variable ω.

For each observation ων , ν = 1, ..., Nk solve the recourse problem (25c) –

(25d) with the first stage iterate x̂k = (ŷk, ẑk, λ̂k) and obtain the recourse

decision yk,ν
2 = y2(x̂

k, ων), the Lagrange multipliers vk,ν
R = vR(x̂k, ων) and

the recourse function Q(x̂k
1, ω

i).

Step 2. (Objective function) Calculate an approximation F̃ (ŷk
1 , ẑ

k
1 ) of the ob-

jective function and the estimation F
k

F̃ (ŷk
1 , ẑ

k
1 ) = F1(ŷ

k
1 , ẑ

k
1 ) +

Nk∑
i=1

Q(x̂k
1, ω

i)

F
k

=
1

k

k∑
i=1

F̃ (ŷk
1 , ẑ

k
1 )

Step 3. (Search direction and step size) Determine search directions

ξk
x = ∇xF1(x̂

k) + uk∇xE(x̂k)

+
1

Nk

Nk∑
ν=1

(
vk∇xe(x̂

k, ων) +∇xF2(x̂
k, yk,ν

2 , ων)− vk,ν
R T1(ω

ν)
)

(29)

ξk
u = E(x̂k) (30)

ξk
v =

1

Nk

Nk∑
ν=1

e(x̂k, ων) (31)
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and step sizes αk
x, α

k
u and αk

v satisfying the conditions

αx → 0+,

∞∑
k=1

αk
x = ∞,

∞∑
k=1

(αk
x)

2 < ∞

αu → 0+,

∞∑
k=1

αk
u = ∞,

∞∑
k=1

(αk
u)

2 < ∞ (32)

αv → 0+,

∞∑
k=1

αk
v = ∞,

∞∑
k=1

(αk
v)

2 < ∞

αk
x

αk
u

→ 0,
αk

x

αk
v

→ 0

Step 4. (Update) Determine new iterates for the upper level decision x and

the Lagrange multipliers u and v:

x̂k+1 = ΠXs(x̂k − αk
xξ

k
x)

ûk+1 = max{0, ûk + αk
uξ

k
u}

v̂k+1 = v̂k + αk
vξ

k
v

The operator ΠXs denotes the projection on the feasible area

Xs = {x̂ ∈ Y1 × Z1 ×RI q
+|E(x̂) ≤ 0,

1

Nk

Nk∑
i=1

e(x̂, ωi) = 0}

with E(x̂) defined by (14) and e(x̂, ωi) by (26).

Set k = k + 1.

Step 5. (Convergence) If a convergence test is satisfied, for example if

|F k−j − F
k−j−1| ≤ εc, ∀ j = 0, ..., n

for k ≥ n + 1 with given precision εc and test horizon n ≥ 0, go to Step 6.

Otherwise go to Step 1.

Step 6. (Termination) The point xs = x̂k is a stationary solution of problem

(25), i.e. xs is stationary on the segment Y s.
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Remark 5. Convergence test in Step 5. Since the random parameters are ap-

proximated by a sample of observations there may occur periods with apparently

stationary iterates which are obviously not optimal. Especially if such a period

occurs during the first iteration steps the estimation F
k

seems to converge. In

order to avoid the termination of the algorithm in such a case the convergence

test evaluates the estimation over a horizon of n iteration steps. (See also the

implementation example in Section 5.)

Theorem 6. (Convergence of Algorithm 3) Assume that

1. Assumptions (A1) and (A2) hold,

2. the gradient ∇zEI ωf1(ŷ1, ẑ1, ω) is linear in y1 and z1,

3. the conditions of Proposition 2 are satisfied,

4. the search directions ξk
x, ξk

u and ξk
v are defined by (29) – (31),

5. the step sizes αk
x, α

k
u and αk

v satisfy the conditions (32)

Then Algorithm 3 converges with probability 1 to the vicinity of a stationary point

xs of problem (25).

Proof. Under Assumption (A1) and Proposition 2 the objective function of prob-

lem (25) is convex and continuously differentiable in y1 and z1. Due to As-

sumption (A2) the response z1(y1) is uniquely determined. If condition 2. holds,

problem (25) represents then a convex optimisation problem and its optimal so-

lution coincides with the optimal solution of the problem (27). This problem is

solved by Algorithm 3 utilising a Lagrange multiplier method.

In order to determine the search directions an estimate of the subgradient of the

recourse function is needed. For an iterate x̂k and an observation ων of the ran-

dom variable such an estimate is for example the gradient with respect to x of

the Lagrangian of the recourse problem:

∇xL
R(x̂k, yk,ν

2 , vk,ν
R , ων) = ∇xF2(x̂

k, yk,ν
2 , ων)− vk,ν

R T1(ω
ν)
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Taking now into account that the inequality constraints E(x) are deterministic,

the search directions (29) – (31) satisfy the stochastic quasi-gradient conditions

EI ω{ξk
x|x̂0, ..., x̂k} = ∇xEI ωL(x̂k, ûk, v̂k, ω)

EI ω{ξk
v |x̂0, ..., x̂k} = ∇vEωL(x̂k, ûk, v̂k, ω)

ξk
u = ∇uEI ωL(x̂k, ûk, v̂k, ω)

Then, with the step size conditions (32), Algorithm 3 converges with probability

1 to the vicinity of a stationary point xs of problem (25) [Erm88].

Theorem 7. Assume that

1. Assumption (A1) holds,

2. the gradient ∇zEI ωf1(y1, z1, ω) is linear in y1 and z1,

3. the conditions of Propositions 2 and 3 are satisfied,

4. the optimality test in Algorithm 1 utilises the necessary optimality condi-

tions stated in Proposition 4.

Then Algorithm 1 utilising Algorithm 3 stops at a point in the vicinity of a local

minimum of problem (22).

Proof. If condition 2. holds, the expectation EI ω∇(y,z)f1(y1, z1, ω) is linear in y1

and z1. With assumption 3. the objective functions F1(y1, z1) + EI ωQ(y1, ω),

EI ωf1(y1, z1, ω) and the gradient vector EI ω∇(y,z)f1(y1, z1, ω) are continuously dif-

ferentiable. Employing then the necessary optimality conditions of Proposition

4 and arguing similarly to the proof of Theorem 5 it is proved that Algorithm 1

stops in the vicinity of a local optimal solution of problem (22).

Remark 6. If it is not possible to calculate the expectations, they can be approx-

imated using a sufficiently large sample of observations of the random variable.

However, then the satisfaction of the optimality conditions can be verified only

with a certain precision such that Algorithm 1 stops at a point in the vicinity of

a local optimum of problem (22) only with probability.
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Now the two-stage problem (22) is extended by taking into account a reaction of

the follower on changed conditions at the second stage. This means that there

exists a bilevel relationship between the actors’ problems at each stage. However,

it is assumed that the follower does not regard the future when she determines

her action z1 in the first stage, i.e. her second stage problem is not interpreted as

recourse problem. This way she only adapts her strategy when new information

reveals whereas the leader can take into account a later adaptation of his strategy

already at the first stage. Furthermore it is assumed that the leader’s first stage

decision can directly influence the follower’s second stage decision. This reflects

the case when some of the leader’s first stage decisions still are valid for the

control of the follower’s decision problem, such as certain regulatory obligations

on the follower. Such a model can be formulated as follows.

min
y1∈Y1

{F1(y1, z
∗
1) + EI ωQ(y1, z

∗
1 , ω)} (33a)

G(y1, z
∗
1) ≤ 0 (33b)

Q(y1, z
∗
1 , ω) = min

y2∈Y2

F2(y1, y2, z
∗
2 , ω) (33c)

W1(ω)y2 = h1(ω)− T1(ω)y1 − U1(ω)z∗1 − V1(ω)z∗2 (33d)

z∗1 = arg min
z1∈Z1

EI ωf1(y1, z1, ω) (33e)

g(y1, z1) ≤ 0 (33f)

z∗2 = arg min
z2∈Z2

f2(y1, y2, z
∗
1 , z2, ω) (33g)

V2(ω)z2 = h2(ω)− T2(ω)y1 − U2(ω)z∗1 −W2(ω)y2 (33h)

where Q : RI n × RI m2 × RI n → RI 1, f2 : RI 2m2 × RI 2n2 → RI 1, U1 ∈ RI m × RI p2 ,

T2 ∈ Rn×RI q2 , U2 ∈ RI m×RI p2 , V1 ∈ RI m2×RI p2 , V2 ∈ RI m2×RI q2 , W2 ∈ RI n2×RI q2 ,

h2 ∈ RI q2 and Z2 ⊆ RI m2 .

The leader finds an optimal solution of his first stage problem (33a) – (33b) tak-

ing into account the recourse problem (33c) – (33d). For this purpose he predicts

the response z∗1 on his first stage decision y1 and the response z∗2 on his first stage

decision y1 and on his recourse decision y2. These responses can be determined

by solving the follower’s decision problems (33e) – (33f) respective (33g) – (33h).

It is assumed that the follower’s first stage objective function satisfies the con-

ditions of Proposition 3 such that EI ωf1(y1, z1, ω) is convex and differentiable. Fur-

thermore it is assumed that the follower’s second stage response z∗2 = z2(y1, y2, z
∗
1 , ω)
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is uniquely determined for all y1, y2, z
∗
1 and ω and that the matrix W2(ω) has full

rank for any ω.

Theorem 8. Assume that

1. the second stage objective function f2(y1, y2, z
∗
1 , z2, ω) of the follower is con-

tinuously differentiable in z2

2. the gradient ∇z2f2(y1, y2, z
∗
1 , z2, ω) is linear in y2, z1 and z2.

Then problem (33) can be formulated stochastic programming problem with a

structure similar to problem (22).

Proof. The follower’s second stage decision is an optimal response to the leader’s

decisions at both stages. Therefore problem (33) can be reformulated to the

following bilevel stochastic programming problem with recourse

min
y1∈Y1

{F1(y1, z
∗
1) + EI ωQ(y1, z

∗
1 , ω)} (34a)

G(y1, z
∗
1) ≤ 0

z∗1 = arg min
z1∈Z1

EI ωf1(y1, z1, ω) (34b)

g(y1, z1) ≤ 0

Q(y1, z1, ω) = min
y2,z2,µ

F2(y1, y2, z2, ω) (34c)

∇z2f2(y1, y2, z1, z2, ω) + µT V2(ω) = 0 (34d)

W1(ω)y2 + V1(ω)z2 = h1(ω)− T1(ω)y1 − U1(ω)z1 (34e)

W2(ω)y2 + V2(ω)z2 = h2(ω)− T2(ω)y1 − U2(ω)z1 (34f)

Under condition 2. constraint (34d) can be expressed as

A(ω)y2 + B(ω)z2 + µT V2(ω) = cT (ω)−D1(ω)y1 −D2(ω)z1 (35)

with A ∈ RI n2×RI m2 , B ∈ RI m2×RI m2 , c ∈ RI m2 , D1 ∈ RI n×RI m2 , D2 ∈ RI m×RI m2 .

Resulting, constraints (34d) – (34f) can be collected in one linear constraint

W (ω)v2 = h(ω)− T (ω)v1
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with

T (ω) =


D1(ω) D2(ω)

T1(ω) U1(ω)

T2(ω) U2(ω)

 (36)

W (ω) =


A(ω) B(ω) V T

2 (ω)

W1(ω) V1(ω) 0

W2(ω) V2(ω) 0

 (37)

h(ω) = (c(ω), h1(ω), h2(ω))T (38)

v1 = (y1, z1)
T (39)

v2 = (y2, z2, µ)T ∈ X2 = Y2 × Z2 ×RI q2
+ (40)

This way all information of the follower’s second stage problem is included into

the leader’s recourse problem. Consequently, problem (33) is similar to problem

(22) and necessary optimality conditions for problem (33) are equivalent to the

conditions stated in Proposition 4.

Reformulating problem (33) in the vicinity of a feasible point x0 = (y0
1, z

0
1 , λ

0) a

one-level two-stage stochastic programming problem is obtained which is similar

to the formulation (23).

min
y1,z1,λ

{F1(y1, z1) + EI ωQ(y1, z1, ω)} (41a)

∇z1EI ωf1(y1, z1, ω) + λT∇z1g(y1, z1) = 0

gi(y1, z1) = 0 i ∈ I(y0
1, z

0
1)

λi = 0 i ∈ J(λ0)

gi(y1, z1) ≤ 0 i /∈ I(y0
1, z

0
1)

λi ≥ 0 i /∈ J(λ0)

G(y1, z1) ≤ 0

Q(y1, z1, ω) = min
y2,z2,µ

F2(y1, y2, z2, ω) (41b)

W (ω)(y2, z2, µ) = h(ω)− T̂ (ω)(y1, z1) (41c)

Then the necessary optimality conditions stated in Proposition 4 can be applied

to problem (33) in an equivalent way.

Finally, the following theorem states that Algorithm 1 coupled with Algorithm 3
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can be utilised without modification for the solution of the bilevel stochastic

two-stage problem problem (33).

Theorem 9. Assume that

1. Assumption (A1) holds,

2. the conditions of Proposition 2 are satisfied,

3. the gradient ∇zEI ωf1(y1, z1, ω) is linear in y1 and z1,

4. the search directions ξk
x, ξk

u and ξk
v are defined by (29) – (31) and the step

sizes αk
x, α

k
u and αk

v satisfy the conditions (32)

5. the optimality test in Algorithm 1 utilises the necessary optimality condi-

tions stated in Proposition 4.

Then Algorithm 1 together with Algorithm 3 yields a local optimal solution of

problem (33).

Proof. Theorem 8 stated that problem (33) can be reformulated in such a way

that it assumes the structure of problem (22):

min
y1∈Y1

F1(y1, z
∗
1) + EI ωQ(y1, z

∗
1 , ω) (42a)

G(y1, z
∗
1) ≥ 0

z∗1 = arg min
z1∈Z1

EI ωf1(y1, z1, ω) (42b)

g(y1, z1) ≤ 0

Q(y1, z
∗
1 , ω) = min

v2∈X2

F2(y1, v2, ω) (42c)

W (ω)v2 = h(ω)− T (ω)(y1, z1) (42d)

with T (ω), W (ω), h(ω), v2 according to (36) – (38) and (40).

The second stage decision variable v2 of problem (42) comprises the leader’s re-

course decision y2, the follower’s second stage decision z2 as response to y2 and

the Lagrange multipliers µ associated to this response. Since the follower’s sec-

ond stage response is unique for all recourse decisions of the leader the variable

v2 can be determined as optimal solution of the recourse problem (42c) – (42d).
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Therefore, following the reasoning of Theorem 6, Algorithm 1 together with Al-

gorithm 3 can be applied to problem (33) without modification. It yields a local

optimal solution of the reformulation (42) and thus also a local optimal solution

of the original problem (33).

5 Numerical studies

This section demonstrates the viability of the presented approach. We applied

Algorithm 1 with Algorithm 3 to an example of a principal agent relationship in

telecommunications. Such a relationship is described in more detail in [AGWng].

Here, we study a simplified formulation.

We assume that both decision makers maximise their profits from the provision

of a similar product (e.g. a telecom service) to a common customer population.

The follower is lacking essential infrastructure necessary for the provision of the

product and relies on the leader for access to such equipment. The customer

demand depends on the decisions of both providers and is subject to several

constraints. This means that connecting upper level constraints are present.

Both actors make their first stage decisions on the base of estimations of the

environment data. When the actually realised values of these data are observable

at the end of the first stage, the leader can make a further decision (for example

extend the infrastructure).

The following bilevel stochastic programming problem with a recourse problem

in the upper level can be formulated. It represents a version of model (33) with

simple recourse and no second stage decisions of the follower such that W1(ω) = 1

and V1(ω) = 0. The leader’s first and second stage decision problems are

max
y1

yT
1 C11y1 + yT

1 C12z + dT
11y1 + dT

12z + EI ωQ(y1, z, ω) (43a)

A1y1 + B1z + f1 ≤ 0 (43b)

y1 ∈ Y1 ⊂ RI 3

Q(y1, z, ω) = max
y2≥0

q(ω)y2 (43c)

y2 = h1(ω)− T1(ω)y1 − U1(ω)z (43d)
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The follower’s response on a first stage decision y1 is found as an optimal solution

of the following problem:

max
z

yT
1 C21z + zT C22z + dT

21y1 + dT
22z (44a)

A2y1 + B2z + f2 ≤ 0 (44b)

z ∈ Z ⊂ RI 3

For a given initial point a segment Y s is described by the sets of nonzero Lagrange

multipliers and of active lower level constraints Is
L∪Is

C . The second stage problem

is not affected by the partitioning since it has no bilevel structure. This results

in the following one-level problem.

min
y1,z,λ

F1(y1, z) + EI ωQ(y1, z, ω) (45a)

E(y1, z, λ) ≤ 0 (45b)

e(y1, z, λ) = 0 (45c)

Q(y1, z, ω) = min
y2≥0

q(ω)y2 (45d)

y2 = h1(ω)− T1(ω)y1 − U1(ω)z (45e)

with

E(y1, z, λ) =


A1y + B1z + f1

A2iy + B2iz + f2i, i /∈ Is
C

−λi i ∈ Is
L



e(y1, z, λ) =


A3y1 + B3z + C3λ + f3

A2iy + B2iz + f2i, i ∈ Is
C

λi i /∈ Is
L


The algorithm has been implemented in MATLAB utilising the optimisation tool-

box. In order to decrease the computation time we employed two types of iteration

steps. In a normal step only one observation of the random data is utilised for

the calculations. At regular intervals, a control step is performed utilising a suf-

ficiently large sample of observations. Furthermore at such a step the step sizes

are adjusted, either automatically or interactively. In the first case the step sizes

are calculated according to a rule satisfying the conditions (32). An interactive

step size adjustment allows the user to revise the step size according to his ob-

servations of the progress of the iteration. With this strategy the step sizes can
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reach arbitrarily small values but do they not approach zero such that only the

vicinity of the optimal solution can be reached. Therefore an interactive step size

selection can be utilised as an indicator for a good automatic step size strategy.

The convergence test performed in the iteration evaluates the behaviour of the

estimation F
k

over the previous three iteration steps.

Generally, the iterates show the following behaviour which is typical for SQG

methods: after a period with heavy oscillations the vicinity of the optimal solu-

tion is reached quite fast. From that point on the approximation improves only

slowly, small oscillations in the vicinity of the optimum persist. More specific,

four different sections can be distinguished in our implementation. At first the it-

erates oscillate heavily around two clusters relatively far away from the optimum,

possibly some periods with stable objective function values exist. In the second

period, the oscillations shift slowly towards a further cluster in the vicinity of the

optimum. A short period of consolidation follows. The variance of the oscillations

decreases rapidly and the iterates concentrate more and more in the vicinity of

the optimal solution. Finally, the iterates oscillate in the vicinity of the opti-

mum. Especially due to the behaviour of the iterates in the first two periods the

estimation F̂ of the objective function converges only very slowly. Typically the

iteration terminates because a predefined number of iteration steps was reached.

The optimality conditions stated in Proposition 4 are often not satisfied and the

existence of feasible ascent directions is analysed. Here, a reasonable relaxation

of this test is appropriate in order to identify points in a close vicinity of an op-

timum.

The numerical experiments were conducted with the following specifications. The

step sizes were determined according to the rules

αk
x =

C1

C3 + s
, αk

u =
C2

C4 + sγ
(46)

Here k denotes the number of the current iteration step whereas s is the iteration

step at which the previous control step was performed. We used a regular review

interval of 10 steps such that s = dk/10e, the greatest integer which is smaller

than or equal to k/10. Furthermore we chose C1 = C2 = 0.1, C3 = C4 = 1

and γ = 0.9. A stationary point xs was identified as optimal when it was within

a vicinity of 0.02 % of the actual optimum. We studied uniformly distributed
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random data with slight, moderate and high stochasticity. The variances of these

data were respectively 0.1 – 1 %, 0.5 – 5 % and 10 – 40 % of the mean values.

Two sets of experiments were performed. At first the segment Is
C = {2, 5, 7}

was studied. It is found when for example the initial points y0
1 = (0, 3.6, 0) or

y0
1 = (5.2, 6.2, 0) are chosen. On this segment the deterministic problem has a

local optimum at y∗1D = (2.533, 4.867, 0) with the recourse decision is y∗2D = 0,

the follower’s response z∗D = (3.867, 0, 0) and the optimal value F ∗
D = 2233.3057.

Here, the step size strategy (46) proved quite efficient. In the case of slightly

stochastic data the periods with heavy oscillations were small and a vicinity of

2 % of the optimal solution was reached already after approximately 100 itera-

tion steps and a precision of 0.5 % after further 20 steps. However, even after

additional 150 steps the approximation did not increase significantly, the iterates

where in a vicinity of about 0.3 % of the optimum. A similar behaviour of the

iterates can be observed in the case of more random data. Table 1 compares

iterates obtained on this segment using highly stochastic and deterministic data.

However, the second set of experiments shows that the good performance of rule

(46) can not be generalised. Choosing the initial point y0
1 = (0.83, 0, 210), the

iteration is conducted on the segment Is
C = {2, 7}. The local optimum of the

deterministic problem is then y∗1D = (2.533, 0.867, 0) with the recourse decision

y∗2D = 0, the follower’s response z∗D = (1.867, 1000, 0) and the objective value

F ∗
D = 1333.297. Here, the strategy (46) shows a weaker performance. After a

few, large initial oscillations a long period of about 300 steps with quite stable

iterates follows. During the next 100 steps the vicinity of the optimum is ap-

proached with only a few oscillations. Finally, the iterates oscillate in the vicinity

of the optimum. For the case of low stochasticity, Figure 1 depicts a typical

behaviour of the iterates for this strategy on both segments.

Alternatively, the step size rule

αk
x =

C1

Cs
3

, αk
u =

C2

Cs
4

, k ∈ [Cs−1
3 , Cs

3 ] (47)

was tested with the parameters C1 = C2 = 0.25, C3 = 2, C4 = 1.9. Now, the

algorithm performs slightly better for the initial point y0
1 = (0.83, 0, 210), but

with the initial point y0
1 = (0, 3.6, 0) the performance is worse (see Figure 2).

This observation underlines that a step size strategy which performs equally well
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Figure 1: Estimated values of objective function, step size rule (46)

for all problems can hardly be found. Rather, at first the algorithm should be

run tentatively in interactive mode in order to obtain a conjecture for a good

automatic strategy. Such an automatic strategy can for example be chosen from

a toolbox containing several alternatives.

Figure 2: Estimated values of objective function; step size rule (47)
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Table 1: Heavily stochastic and deterministic data, y0
1 = (0, 3.6, 0)

heavily stochastic data deterministic data

k y1 F̂ F s y1 F̂ F s

1 (0.00, 3.60, 0) 650.00 650.00 (0.00, 3.60, 0) 650.00 650.00

2 (5.20, 6.20, 0) -325.00 -1300.00 (5.20, 6.20, 0) -325.00 -1300.00

3 (5.20, 6.20, 0) -650.00 -1300.00 (5.20, 6.20, 0) -650.00 -1300.00

4 (-0.00, 3.60, 0) -325.00 650.00 (-0.00, 3.60, 0) -325.00 650.00

5 (-0.00, 3.60, 0) -260.63 -3.16 (-0.00, 3.60, 0) -130.00 650.00

6 (-0.00, 3.60, 0) -108.86 650.00 (-0.00, 3.60, 0) 0.00 650.00

7 (5.20, 6.20, 0) -279.02 -1300.00 (5.20, 6.20, 0) -185.71 -1300.00

8 (5.20, 6.20, 0) -406.65 -1300.00 (5.20, 6.20, 0) -325.00 -1300.00

9 (5.20, 6.20, 0) -505.91 -1300.00 (5.20, 6.20, 0) -433.33 -1300.00

10 (-0.00, 3.60, 0) -409.86 454.59 (-0.00, 3.60, 0) -325.00 650.00

100 (3.65, 5.42, 0) 560.52 1408.30 (2.72, 4.96, 0) 898.32 2159.00

150 (3.89, 5.55, 0) 1030.89 1096.62 (2.53, 4.87, 0) 1343.40 2233.79

250 (2.99, 5.09, 0) 1439.17 2008.21 (2.53, 4.87, 0) 1699.36 2233.31

300 (2.78, 4.99, 0) 1561.57 2131.30 (2.53, 4.87, 0) 1788.35 2233.31

350 (2.40, 4.80, 0) 1655.28 2269.37 (2.53, 4.87, 0) 1851.92 2233.31

500 (2.83, 5.01, 0) 1815.00 2104.29 (2.53, 4.87, 0) 1966.33 2233.31

1000 (2.58, 4.89, 0) 2007.75 2216.37 (2.53, 4.87, 0) 2099.82 2233.31

1500 (2.87, 5.03, 0) 2077.38 2081.52 (2.53, 4.87, 0) 2144.32 2233.31

2000 (2.36, 4.78, 0) 2114.53 2278.31 (2.53, 4.87, 0) 2166.56 2233.31

6 Conclusions

We studied a deterministic and several formulations of stochastic programming

problems with bilevel structure where connecting upper level constraints are

present. Necessary optimality conditions of Fritz John type were stated. Fur-

thermore we developed an algorithm for the solution of the bilevel (stochastic)

programming problems. This required a two-stage solution process due to the

possible nonconvexity of the inducible region caused by the connecting upper

level constraints. We proved that, under certain conditions on the involved func-

tions, the represented solution algorithm yields a local optimal solution of the

studied problems. Numerical experiments testify to a reasonable numerical effi-

ciency of the proposed approach.
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Future research may include more complex multiperiod problems. For example,

the follower’s second stage problem may represent a recourse problem instead

of the two-stage relationship implemented now. Another conceivable extension

takes into account that the leader’s perception of the follower’s decision process

may be imperfect. This means that the leader may obtain certainty about the

actually implemented response only at the end of the first stage. Such a con-

sideration of the uncertainty about the lower level decision process is especially

important for the analysis of agency problems.
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Abstract

We study the application of a stochastic programming framework to

the analysis of agency problems. To be more specific, we consider an

agency model in a regulated telecommunication environment. This model

consists of a regulator or license allocator (the principal) and of a service

provider or licensee (the agent) but our results are applicable also to more

general agency models. We demonstrate that the utilisation of a stochastic

programming framework can help to derive parameters of an incentive

schedule inducing the agent to follow regulation or licensing obligations

imposed by the principal.

1 Introduction

The analysis of hierarchical relationships between actors in an industrial environ-

ment received a great deal of attention in the recent years. Typically, the focus

has been on economic aspects and mechanisms and the feature of uncertainty was

not regarded adequately. However, the latter is an important feature of agency

problems. The objective of this paper is to demonstrate analytical methods of

stochastic programming for an adequate treatment of the uncertainty in these

problems. Stochastic programming techniques were developed explicitly for deci-

sion problems under uncertainty and have found many applications for example

∗Norwegian University of Science and Technology, N - 7491 Trondheim, Norway
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in finance, telecommunications, production control or transportation.

Principal agent relationships are widely studied in economic theory. They de-

scribe the social or economic interaction of two (or more) parties in a common

environment. One party, called the principal, wants the other one, called the

agent, to take certain actions. The actors possess individual utility functions and

choose their actions in order to maximise their expected utility. However, the

agent’s action affects not only her own but also the principal’s utility function.

Therefore the principal must find an incentive schedule controlling the agent’s

choice of an action such that it is favourable for the principal. Agency problems

occur in a broad field of applications. Insurance theory assumes that the insur-

ant’s level of caution can not be observed by the insurer; often this issue is studied

together with the problem of moral hazard [AS91, RS76, SZ71]. In innovation

or employment processes firm owners may not be able to observe the effort re-

searchers or employees exert [AT94, Gua03, HH82, Hol99, Mir76]. Investors are

often assumed to have only limited or no investment information. Therefore they

may hire an advisor obtaining this information such that the return of a portfo-

lio is optimal. The investor may have imperfect knowledge about the effort the

investment advisor applies and the effect of the advisor’s effort on the portfolio

return must be distinguished from general market effects [BH80, Gol92, Sta87].

An important topic which is considered in this paper is the application of agency

theory to regulation issues. Basically, regulation denotes any type of interference

of a government with the behaviour of industrial agents and can therefore have

positive as well as negative implications. Regulatory methods may constrain the

feasibility of the regulated firm’s actions. At the same time often a redistribution

of wealth is achieved. This can be observed in telecommunications for example in

cross subsidisations from long distance to local calls, from urban to rural areas or

from business users to domestic calls [HT01]. The field of studies concerning reg-

ulation is widespread. However, often only advice or quite general frameworks for

regulation policies are given which requires further adjustments to the specifics

of the industry sector under consideration. An agency relationship in a regulated

telecom environment can be formulated as follows. In order to implement several

regulatory goals the regulator develops an incentive schedule that shall induce

the regulated firm to appropriate decisions. This schedule may be of a monetary
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nature but also a ”success indicator” such as reputation or ranking.

The topic of licensing is closely connected with the regulation of a liberalised

telecom environment. The provision of a right to use telecommunication infras-

tructure is often tied to technological or economic requirements such as to avoid

disturbing interferences of the licensees. Therefore it involves several levels: the

process of the license allocation itself, technical specifications, legal enforcement

etc. Typically, licenses are allocated to service providers by market based, ad-

ministrative or hybrid methods. The allocation process follows different guide-

lines such as stimulation of competition, consumer protection, encouragement of

development and implementation of new technologies and services but also the

generation of additional wealth for the regulator by cream skimming. Here, we

focus on obligations connected with such guidelines.

In the case considered here as well as in many other applications the principal has

often limited knowledge about the industry specifics, the agent’s decision process

and the decisions chosen by the agent. Often a full observation of the actions is

either impossible or prohibitively costly. Therefore imperfect estimations must

be used when the incentive schedule is designed. This information asymmetry is

the source of moral hazard [Hol79, Hol99, Mir99]. The agent may be tempted to

provide incorrect or incomplete information. The principal can not rely on the

information provided by the agent and needs additional information in order to

assess her behaviour. Hence, he starts a monitoring process that helps to reduce

the uncertainty. However, this process is expensive and often the additionally ob-

served signals are affected by other random factors. Consequently, compromises

have to be found with regard to monitoring and agency costs as well as to the

allocation of additional risk and the reduction of uncertainty. It is difficult, if

not even impossible, to remove all uncertainty and a certain degree of imperfect

information will always persist. This calls for the utilisation of specialised tools

for an adequate treatment of the incomplete knowledge.

A framework dealing with imperfect information in decision processes is stochastic

programming [BL97, EW88, KW94]. In this paper we apply it to agency models

with the aim to increase the accuracy and flexibility of the decisions by exploit-

ing the inherent uncertainty. This is especially important in environments with

a high speed of technological and structural changes and a resulting high degree
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of uncertainty such as the telecom industry. The invention and implementation

of new technologies yield new market structures and providers which again raises

new requirements on the regulation policy. The stochastic programming formu-

lation has the capability to deal with an uncertain future, an important issue

in the study of agency models placed in a telecommunication environment. Dy-

namic aspects such as uncertainty in the evaluation of future investments or the

future development of customer demand should not be ignored. Another source

of uncertainty are inevitably modelling simplifications of the real life relation-

ships between the decision makers. In our work we demonstrate the utilisation

of stochastic programming concepts for the derivation of an incentive schedule

under different aspects of imperfect information.

Laffont [Laf94] recognised that the problem of regulation is essentially a special

case of a decision problem under incomplete information. More exactly, the in-

terrelations between the principal and the agent can be described using concepts

of bilevel programming such that agency problems represent bilevel program-

ming problems or Stackelberg games under uncertainty. In this formulation the

principal is interpreted as leader and the agent as follower. However, a ma-

jor difference is that the principal has no or only partial information about the

agent’s decisions and her decision process. He can only observe the agent’s util-

ity as the outcome of this process. Mirrlees [Mir99] underlines the formulation

of the agency model as a bilevel programming problem and the implications of

this viewpoint. He conducts a fundamental analysis concerning the mathemati-

cal structure of agency models in insurance, focussing on the uncertainty of the

principal about the agent’s decision process. However, although published first

recently, the study was completed already in 1975 and well developed bilevel and

stochastic programming approaches were not yet available then.

Most of the agency models studied in the literature up to now include no or only

a few simple constraints. Then typically first order optimality conditions on the

agent’s optimal decisions can be employed. This is essentially a reformulation of

the bilevel programming problem to a one level nonlinear programming problem

which can be analysed easily. However, in order to study more realistic problems

it is frequently necessary to control the feasibility of the principal’s and especially

of the agent’s decisions by more complex constraints. Then an analysis of the
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one-level programming problem becomes complicated. At this point, the utilisa-

tion of bilevel programming concepts can help.

In the analysis of agency models often little effort is dedicated to an adequate

treatment of the analytical features of the problems, for example as decision

problems under uncertainty. Usually the initial formulations take into account

the imperfect information, but subsequent discussions ignore more or less the im-

plications of uncertainty and the uncertain parameters are typically replaced by

their expectations. This, however, is not always recommendable. Although this

deterministic equivalent formulation reduces the complexity of the model, such

a rough treatment may decrease the value of the obtained insights drastically

[Wal00, PW97]. With the progressing development of computer technology as

well as of powerful algorithms the additional effort tied to an adequate treatment

of the uncertainty became rather small. Therefore concepts of stochastic and

bilevel programming can be utilised thoroughly.

The central topic of this paper is the treatment of the risk and uncertainty char-

acterising agency models by a stochastic programming framework with bilevel

features. This is demonstrated by means of an agency model based on a regu-

larised telecom environment. We restricted ourselves to a model with one agent,

considering this as a base for a possible future generalisation to the case of several

agents. Section 2 gives some background on agency theory whereas Section 3 de-

scribes regulation and licensing with regard to telecom. We turn then over to the

application of stochastic programming methods for the analysis of such agency

models. First, Section 4 discusses the utilisation of stochastic programming con-

cepts for the treatment of different types of uncertainty. Section 5 outlines then

suitable solution approaches. Finally, Section 6 rounds up with conclusions.

2 Agency theory and monitoring

This section provides some background on agency theory focussing on analytical

features such as a characterisation of incentive schedules and, especially, issues of

uncertainty and monitoring.

Agency theory studies the interdependency of two or more actors with individual

utility functions in a common environment. One actor, the principal, delegates
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the task of decision making to the other actor, called the agent. Therefore both

actors’ utility functions depend on the agent’s decisions a. But the interests of

the principal and of the agent may conflict such that the agent’s decision may

not be according to the principal’s objectives. Consequently, the principal seeks

to induce the agent to make a decision which is in his interest. This is often

realised by the help of an incentive fee or contract φ which is a function of the

agent’s action. Thus the agent maximises the utility UA resulting from her own

decision and from the according incentive fee whereas the principal maximises

his utility UP depending on the agent’s action and the incentive for this choice.

Both actors may face restrictions (of technical or other nature) on their decisions

typically expressed by constraints. So far, the theoretical analysis was often

simplified considerably by ignoring such constraints. Usually only a threshold

value for the agent’s utility is taken into account reflecting that otherwise the

agent would withdraw from a participation in the according environment. In

our exposition we will, however, assume explicitly the existence of constraints

on both actors’ decisions. This opens for the interpretation that the incentive

schedule can influence the feasibility (in terms of constraint parameters) as well

as the optimality (in terms of penalties or rewards included in the agent’s utility

function) of the agent’s decisions.

The agency relationship can then be formulated in the following model.

max
φ

UP (a, φ) (1)

gP (a, φ) ≥ 0

where the agent’s decision a is an optimal solution of her problem

max
a

UA(a, φ) (2)

gA(a, φ) ≥ 0

This simple formulation indicates that the principal’s incentive schedule may take

on a number of different shapes comprising fees or penalties as well as constraints

on the agent’s decision. In addition to these explicit types also implicit incentives

such as reputation (a good performance of the agent improves her future situ-

ation) or ratchet effects (discouraging the agent’s effort) are conceivable. They

become important especially in dynamic formulations of agency models [MV97].
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Depending on the nature of the agent’s decisions, explicit incentive schedules are

often provided as vectors or linear functions affecting the agent’s objective func-

tion. In Stark [Sta87] two frequent types of schedules and their effects on the

agent’s behaviour are analysed: bonus performance incentive schedules solely re-

warding good performance and symmetric schedules additionally penalising bad

performance.

A main feature in the analysis of agency problems is an incorporation of the

existing fundamental uncertainty. It is assumed that both actors have imper-

fect knowledge about the environment. Usually, the parties agree on a contract

and the agent decides on an action before the actual state of the environment

becomes known. This uncertainty must be therefore taken into account in the

process of decision making. Basically both parties may have different perceptions

of the uncertain environment parameters. However, for the sake of simplicity it

is often assumed that the subjective perceptions coincide although this simplifi-

cation is again a source of imprecision. Furthermore the agent faces generally a

disutility for the provision of information, be it in terms of effort, monetary terms

or competitive advantage. Therefore in addition to a greater uncertainty about

environment parameters the principal may lack information about the agent’s de-

cision process such that only parts of the decision or the outcome of the decision

process are observable.

The principal may not be able to evaluate the agent’s actions properly due to his

imperfect knowledge. He can not distinguish clearly between effects of the agent’s

actions and effects of random environment events. This problem is referred to

as moral hazard. In order to provide a correct incentive schedule the principal

is forced to obtain additional information, for example by a monitoring process.

Usually such a process causes costs depending on the monitoring intensity. On

the other hand may the acquired information help to reduce the costs of the in-

formation asymmetry and to induce the agent to better performance. Therefore

the principal seeks to determine also an optimal amount of monitoring. Ideally,

monitoring does not constrain the agent’s decision space but enables the prin-

cipal to deduce information from already observed characteristics. It may also

be designed as part of the incentive schedule, thus inducing the agent to reveal

more data about her decision process or about the environment. The monitoring
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process can be described as a learning process and becomes therefore especially

important in a dynamic setting [Hol99].

Much attention was given to the problem of information asymmetry and mon-

itoring processes in principal agent relationships. Harris and Raviv [HR79] in-

vestigated conditions when monitoring yields potential gains, especially to the

principal. Guangzhou Hu [Gua03] studied a one-period agency model where the

principal finds an optimal amount of monitoring in order to induce the agent to an

optimal effort. An important paper concerned with the mathematical treatment

of the principal’s uncertainty about the agent’s decision process is by Mirrlees

[Mir99]. Additionally he observed that the study of first-order conditions may

not be sufficient for an analysis of more general models. However, he had not

yet at hand suitable methods of stochastic and bilevel optimisation in order to

extend his considerations.

Mainly focussing on the hierarchical relationship between principal and agent,

typically previous studies were not able to take properly into account the preva-

lent uncertainty. This is even more true when sophisticated agency models are

considered. However, this problem can be resolved by concentrating foremost on

the feature of uncertainty and first then, in a next step, taking into account the

bilevel structure of the problem. The utilisation of the stochastic programming

framework supports this proceeding and enables thus the analysis of models with

a more complex structure. This approach will be illustrated in Sections 4 and 5.

3 Regulation and licensing in telecommunica-

tions

Regulation is becoming a major area of economics because in a world

which has given up the debates between socialism and capitalism it is

going to be the major battleground of the opposition between more

or less governmental interference in economics, ... [Laf94]

This section highlights issues that are important for the study of an agency re-

lationship between a regulator and a regulated firm in a telecommunication en-

vironment. Regulation describes any type of interference of a government with
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the behaviour of industrial agents. It may therefore possess catalytic but also

constraining effects on the economic development. This underlines the necessity

of a carefully designed regulation policy and an analysis of all its effects on the

considered industry sector. Also interactions with other fields of public economics

should be evaluated since regulation is only one dimension of public economics.

In telecommunications it is for example closely connected with licensing, taxation

and other revenue generating issues.

With the liberalisation of the telecommunication sector in the previous decades

the character and the purposes of regulation changed. Before the liberalisation

started telecom services were provided in each country by a monopolist. The

main purpose of regulation was then customer protection and the observation

and control of this monopolist in order to prevent monopolistic behaviour. With

progressing liberalisation the former monopoly is softened gradually and more

competitors are allowed entry. This calls for an adaptation of the regulatory pol-

icy. On the one hand the entry of the new competitors is encouraged but also

controlled. Theory states that generally the encouragement of competition in an

oligopoly should be one of the main goals of a regulation policy, although physical

factors such as high infrastructure costs prohibit an extension of the number of

entrants beyond a certain measure. Regulation theory must deal with the be-

haviour of incumbents and entrants towards each other. On the other hand –

since telecommunication services are a public good – customer protection against

negative aspects of the competition is important. It includes universal access

(compatibility), a minimum amount of service provision (for example in terms of

coverage rate) or security and privacy issues. Furthermore, regulatory tools may

encourage efficiency and fast implementation of new technology. Finally, when

competition is sufficiently established, regulatory activities can be gradually de-

creased, limited to issues of customer protection. [HT01]

A result of the restructuring process in many countries was an extensive growth

of the market for mobile services whereas the capabilities of fixed network services

improved only slowly. Future development will be dominated by the Internet and

related services. Due to the intrinsic character of the telecom sector the neces-

sity of a national regulation authority and a telecom policy will persist also in

the future [HSM03]. Among important issues of this development are questions
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of multisector regulation, technology neutral regulation or convergence issues.

Multisector regulation denotes the responsibility of a single regulator for diverse

industry sectors, for example telecom, energy, water and transportation sectors,

mainly due to effects of economies of scope. Another topic is technology neutral

regulation. In the past, often different regulation policies were applied to fixed

or mobile telecommunication networks or to broadcast networks. Present efforts,

however, tend to an equal treatment of these infrastructures. A reason is the

progressing convergence such that contents can be provided over different media.

Here it is important to distinguish between the notions of technological and reg-

ulatory convergence. Technological convergence in telecommunications denotes

several issues such as convergence of information technology and telecommuni-

cations and the according merging of technologies, fixed-mobile convergence or

C4 convergence. This development demands an adaptation of regulation to the

new conditions. It raises the widely discussed question of regulatory convergence,

taking place in several ways such as mergers of existing regulation authorities or

the establishment of completely new regulators. For a more extensive study of

multisector regulation, technology neutral regulation or regulatory convergence

confer for example Henten, Samarajiva and Melody [HSM03], of technological

convergence see Audestad [Aud98].

A licensing process can help to impose regulatory goals such as network roll

out, geographic or population coverage and development obligations in order to

achieve political, social and economic objectives. Obligations on the license tak-

ers comprise efficient use of the spectrum, access to infrastructure and bottleneck

facilities, pricing constraints or contributions towards universal service. [Lic01]

Usually each license comprises certain frequency capacities and firms can acquire

several licenses. Economic considerations together with physical spectrum con-

straints limit the number of licenses and thus the number of participating firms.

Often licenses are allocated for a certain time period ahead, the license fee has

to be paid either as a lump sum or with additional periodical fees and resale

is prohibited. However, the impact of the fee on the licence takers’ policy may

be quite serious and restrictive. For example, their decisions about implemented

technology and provided services will be motivated rather by short-term consider-

ations in order to recover the paid license fee. Therefore a regulatory intervention



3 REGULATION AND LICENSING ... 109

is necessary to direct the policy of the licensees also to long-term goals such as

growth of the respective industry sector. [Lic01] However, here we do not want

to go into detail about the licensing process and refer rather to a widespread

literature such as Bauer [Bau01], Gruber [Gru02], Jehiel and Moldovanu [JM01]

or Licensing of Third Generation (3G) Mobile: Briefing Paper [Lic01].

The relationship between a licensing regulator and a license taking service provider

in the telecommunication sector constitutes a typical agency problem. The reg-

ulator wants the service provider to follow certain policy guidelines tied to the

provision of the license. However, the notions of an incentive schedule or fee and

of a license fee cannot be equated directly. An incentive fee is transferred by

the principal to the agent as a reward or a penalty after the agent implemented

her decisions and after the principal has evaluated the agent’s performance. A

license fee is an entry fee paid by the agent to the principal usually once and

prior to her decisions. Actually, it is necessary in order to implement the agent’s

decisions, because she is not allowed to provide service otherwise. An inclusion

of the licensing process into the agency model is therefore possible by means of

obligations the agent has to meet after acquiring a license. The principal may

then control the satisfaction of the obligations by an incentive schedule compris-

ing constraints, penalties, rewards or even the withdrawal of the license.

In this agency relationship uncertainty exists at several levels. The telecom sec-

tor constitutes a highly dynamic and uncertain environment with a complex and

continuously changing structure. Typically, both decision makers may have only

imperfect knowledge about vital features such as future technology development,

costs or customer behaviour but also the behaviour of other actors. Due to its sit-

uation the regulated firm has typically a better knowledge about the mechanisms

in the environment than the regulator. Furthermore the regulator lacks exact

information about the licensee’s characteristics such that an evaluation of the

agent’s performance or of the satisfaction of license obligations is complicated.

A monitoring process can help to remove part of the information asymmetry.

However, it is difficult due to the described features of a modern telecom envi-

ronment which complicate a thorough analysis of observed data. The provision

of a license may imply an obligation to report key data about the agent’s or the

considered sector’s characteristics. But such an obligation raises again a question
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of credibility of the obtained information, especially when provided by an actor

who may benefit from a provision of biased data. Another measure may be the

utilisation of benchmarks by comparing the considered agent’s performance or

the provided information with similar agents or with insights obtained by general

information and theories. However, in a modern telecom environment typically

the providers have quite different specifications and suitable benchmarks are hard

to obtain. Even the identification of a specific sector may be difficult since often

providers may operate across sector bounds and product differentiation is easily

possible. Due to this often highly individualistic environment the collection of

reliable information for the construction of a benchmark is complicated. Possibly

the studied characteristics can be split up into single components with individ-

ual benchmarks, for example by evaluating past performance under comparable

conditions or providers with similar characteristics.

Again stochastic programming concepts represent important tools for the analysis

of the existing uncertainty and of monitoring processes. Dynamic learning and

adaptation procedures under uncertainty suggest the application of multistage

stochastic programming problems which will be discussed in the subsequent sec-

tions. For this purpose we selected typical, yet tractable, examples demonstrating

the potential of these concepts.

4 Stochastic programming formulations of

agency problems

This section motivates the utilisation of stochastic programming techniques in

the analysis of agency problems. We specify model (1) – (2) in the spirit of the

preceding exposition and indicate how to treat the inherent uncertainty.

Agency models represent a variant of bilevel programming problems or Stackel-

berg games. This type of decision problems is quite intricate already in a deter-

ministic version. Taking moreover into account the stochastic nature of several

model parameters, especially the partial inobservability of the agent’s decisions,

the considered problem is highly complex. However, an adequate treatment of

the uncertainty is very important. Therefore an interpretation of these models
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as decision problems under uncertainty is more suitable. Such problems can be

formulated and solved utilising the methodology of stochastic programming. The

advances made on the fields of stochastic programming and bilevel programming

may contribute to a more serious utilisation of stochastic programming methods

in the area of agency theory and to a more sophisticated study of the complex

relationships.

Problems containing uncertain parameters are not well defined and their evalu-

ation is therefore difficult. Since the incentive schedule and the agent’s response

must be found before the actual realisations of the random parameters are known,

the meaning of neither the constraints nor the optimality of the objective func-

tion(s) is clear at this point of time. It is therefore important to start with a clear

characterisation of the random elements. In an agency model two main types can

be distinguished, the uncertainty of both actors about environment parameters

that realise at the current time period and the uncertainty of the principal about

the agent’s decision. Especially in the case of very limited information about the

agent it is important to distinguish effects which can be attributed to the agent’s

behaviour from effects caused by the environment state. A ”good” quality of

service may for example be achieved due to efforts of the service provider such

as capacity extension or implementation of more effective transfer technology. It

may, however, also be caused by a decreased user demand for services from that

provider due to the entrance of other providers or the migration of users to other

services.

Sources of uncertainty about the environment may be technological innovation,

uncertain demand due to unpredictable user response on new services, quality

of service issues (failures etc.). The uncertainty tied to these parameters can be

expressed by the help of random variables, say ω ∈ Ω ⊆ RI p, with a known or es-

timated probability distribution. In the following we demonstrate several formu-

lations regarding an agency relationship between regulator and service provider.

We denote the agent’s decision by a ∈ RI m and assume that the principal’s ob-

jective is the maximisation of his expected utility composed of the social welfare

WS and the incentive schedule φ ∈ RI n. This schedule can be expressed by help

of a vector but also, more generally, as a function. The social welfare consists of

the customers’ welfare WC and the agent’s welfare WA. The exact values of these



112 PAPER 3: Utilisation of stochastic programming methods ...

entities depend on uncertain parameters ω such that

WS(a, φ, ω) = WC(a, ω) + WA(a, φ, ω)

or more generally

WS(a, φ, λ, ω) = λWC(a, ω) + (1− λ)WA(a, φ, ω)

where the weight λ ∈ [0, 1] represents the importance which the principal attaches

to the customers’ welfare WC in comparison to the agent’s welfare WA. In the

second variant the principal’s task may additionally comprise the determination

of an optimal composition of the social welfare. However, this case can be treated

similarly to the first version and we do not consider it further here.

The agent maximises the expected utility from her welfare and the according

incentive. Her problem is therefore to find an optimal action a taking into account

the incentive schedule φ whereas the principal wants to determine a schedule φ

that maximises his expected utility taking into account the agent’s reaction. This

yields the regulator’s decision problem

max
φ∈Φ(a,ω)

EI ωUP (WS(a, φ, ω), a, φ, ω) (3)

where the agent’s decision a is obtained as optimal solution of the regulator’s

perception of the agent’s problem

max
a∈A(φ,ω)

EI ωUA(WA(a, φ, ω), a, φ, ω) (4)

The sets Φ(a, ω) and A(φ, ω) denote the sets of feasible decisions of the princi-

pal and the agent, respectively. Typically, they comprise both deterministic and

stochastic constraints such that the feasibility of the decisions depends also on

the actually realised values of the random parameters. We will describe these

sets in more detail below.

Often a regulation policy can be expressed in the form of rules. Some of these

rules may have a concrete character such as requirements of a minimum amount

of service provision or maximal market share. They can be formulated in the

shape of constraints on the provider’s decision problem thus influencing the fea-

sibility of her decisions. Other rules may be less concrete, for example inducing a

behaviour that is as good as possible. In this case the decisions of the agent may
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be controlled by way of penalties or rewards including tax breaks or subsidies,

possibly with selective properties such as to encourage investments into unpopu-

lar areas. These penalties or rewards affect the agent’s utility function and thus

the optimality of her decisions.

Consequently, the agent’s problem may contain constraints which are determined

by the regulator as part of the incentive schedule and which depend on both

the agent’s decision a and the incentive φ. Furthermore the problem comprises

typically constraints that are independent of the incentive. Such constraints may

concern for example the agent’s technology or environment conditions. Also the

regulator faces restrictions (of technical or other nature) on components of the in-

centive schedule. They include the participation constraint EI ωWA(a, φ, ω) ≥ W0

expressing a withdrawal of the agent if the expected welfare is too low.

Generally, the set of feasible decisions of the regulator can be described by

Φ(a, ω) = {φ|gP (a, φ, ω) ≥ 0}

and likewise the set of feasible decisions of the agent by

A(φ, ω) = {a|gA(a, φ, ω) ≥ 0}

These sets may comprise deterministic and stochastic constraints. The satisfac-

tion of the stochastic constraints involving random parameters ω is contingent

on the exact realisation of these parameters. Dependent on the meaning of the

constraints several deterministic equivalent formulations are conceivable. The

concerning constraint may be satisfied on average, such as coverage rates or cer-

tain quality of service requirements. This results in the deterministic equivalent

formulation

EI ωg(a, φ, ω) ≥ 0 (5)

Reliability requirements or coverage issues demand a satisfaction with a given

minimal probability α. An according deterministic equivalent formulation is

PI {ω|g(a, φ, ω) ≥ 0} ≥ α (6)

The satisfaction of other constraints may be required for any realisation of the

random variables. This comprises modelling requirements necessary to establish
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a concise model of the reality such as nonnegative customer numbers or capac-

ity constraints. Possibly the realisations of the random variables ω ∈ Ω can be

expressed by a finite set of scenarios (ω1, ..., ωN), obtained for example by ob-

servations or by a discretisation of the random variables. Then the following

deterministic equivalent formulation can be utilised

g(a, φ, ω1) ≥ 0 (7)
...

g(a, φ, ωN) ≥ 0

For continuously distributed random variables this type can be interpreted as a

special case of formulation (6) with α = 1.

An alternative approach is to consider the loss arising from a violation of the

random constraints. This loss is determined at a second stage after the values

of the random variables realised and is then included in the actor’s objective

function as a recourse function. Thus the optimality of a solution is balanced

against its feasibility. In the agent’s problem the loss may be considered as a

part of the incentive schedule and includes therefore rewards for a satisfaction

of certain constraints. This reflects for example tax breaks. Such a formulation

may have the following shape:

max
φ

EI ω{UP (WS(â, φ, ω)−QP (â, φ, ω), â, φ, ω)} (8)

â ∈ arg max
a

EI ω{UA(WA(a, φ, ω)−QA(a, φ, ω), a, φ, ω)} (9)

with the recourse functions

QP (a, φ, ω) = hP (gP+
i (a, φ, ω), i = 1, ..., nP ) (10)

QA(a, φ, ω) = hA(gA+
j (a, φ, ω), j = 1, ..., nA) (11)

where

g+
P,i(a, φ, ω) = max{0, gP,i(a, φ, ω)}, i = 1, ..., nP (12a)

g+
A,j(a, φ, ω) = max{0, gA,j(a, φ, ω)}, j = 1, ..., nA (12b)

By spirit this problem is an extension of the stochastic programming problem

with simple recourse to a bilevel formulation. However, in the model (8) – (12)
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the recourse functions QP and QA represent only penalties (or rewards) for a vio-

lation of the respective constraints. We refrained in this formulation from explicit

recourse decisions which, after observing the realised values of the random vari-

ables ω, may compensate for a violation of the stochastic constraints and correct

the initial decisions φ and a, respectively. In such a case the functions QP and

QA would include the costs of these actions.

Imperfect knowledge of the principal about the agent’s decision can basically be

treated similarly to the uncertainty about environment parameters but the anal-

ysis is more elaborate. Generally, the regulator has no insight into the agent’s

decision process. Often he has also imperfect knowledge about her actually im-

plemented decision. However, it can be assumed that the principal has a certain

conjecture about the agent’s decision process, obtained by theoretic analysis or

by observations. Additionally the agent may have committed to report key data.

The formulation of the agent’s problem (4) reflects thus the principal’s perception

of the agent’s decision process. Recognising that this formulation is imprecise he

utilises an estimation, say b(η) = a + η, of the decision actually implemented

by the agent instead of the value a obtained as solution of his formulation of

the agent’s decision problem. The random parameter η reflects the principal’s

uncertainty about the quality of his information and its distribution function is

assumed to be known. Then the problem to be solved by the principal is

max
φ∈Φ(b(η),ω)

EI ωEI ηUP (WS(b(η), φ, ω), b(η), φ, ω) (13)

whereas his perception of the agent’s problem is represented by problem (4).

An incentive schedule may include the evaluation of the agent’s performance by

the help of benchmarks. As benchmarks serve for example the performance of

comparable providers or characteristics deduced from observations or theoretical

considerations. An example is a licensing process where the licence taker’s actual

performance is evaluated after some time. Assume that the regulator has the

possibility to evaluate the agent’s behaviour at a second stage after the random

state of the environment became known. He compares then the characteristics

X(a, ω) resulting from the agent’s decision a against benchmarks XP (ω). In this

process he takes into account the realised state ω of the environment and imposes

a penalty for deviations from the benchmark which is included into the principal’s
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incentive schedule. The resulting model exhibits again the shape of a stochastic

programming problem with recourse, but the bilevel structure is different than in

problem (8) – (12).

The regulator maximises his expected utility from the social welfare, taking into

account the incentive schedules φ1 and φ2 implemented in the first and second

stages (i.e. before and after the random state of the environment realises).

max
φ1,φ2

EI ωUP (WS(a, φ1, ω), a, φ1, φ2, ω)

φ1 ∈ Φ1(a, ω) (14)

φ2 ∈ Φ2(a, ω)

The agent finds a decision a such that her expected utility from her own welfare

is maximised taking into account the penalty for deviations from the benchmark,

max
a

EI ωUA(WA(a, φ1, ω), Q(a, φ2, ω), a, φ1, ω) (15)

a ∈ A(φ1, ω)

where the penalty Q(a, φ2, ω) is determined when the random variable ω becomes

known.

Q(a, φ2, ω) = min
y

φ2y (16)

T (ω)y = XP (ω)−X(a, ω)

In this formulation the penalty function was assumed linear in the deviation, but

also nonlinear penalty functions are conceivable. Furthermore, problem (16) can

be designed as penalty for bad behaviour (i.e. a deviation X(a, ω) < XP (ω)) or

as reward for good behaviour.

Monitoring provides additional information. It helps to increase the precision of

the regulator’s information and so to improve his incentive schedule. However,

generally the costs connected with a monitoring process are increasing with the

dedicated monitoring effort and the additionally obtained information. Therefore

the principal must determine an optimal amount of monitoring in addition to

the optimal incentive schedule. A model including a monitoring process can be

formulated as follows. Assume that the regulator has a perception of the agent’s
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decision problem

max
b

EI ωUA(WA, b, φ, ω) (17)

b ∈ B(φ, ω)

However, he knows that the obtained solution b is an imperfect estimation of the

actually implemented decision a:

b = a + η with η ∼ N(0, δ2)

The estimation b represents the basis for the incentive fee φ(b) = φ(a + η) trans-

ferred from the regulator to the agent. The purpose of this fee, however, is to con-

trol the actually implemented decision a such that the social welfare WS(a, φ, ω)

is maximised. The principal starts therefore a monitoring process that, depen-

dent on the monitoring intensity θ, reduces the variance of the noise or estimation

error η:

δ2 = θδ
2

where δ
2

denotes the inherent or original variance of η. The intensity θ ∈ (0, 1]

is defined such that θ = 1 when no monitoring takes place and higher intensity

corresponds to lower values of θ. The monitoring causes costs c(θ) that are

increasing with the intensity and diminish the principal’s utility. Concluding, the

principal’s decision problem can be formulated as

max
φ,θ

EI ωEI ηUP (WS(a, φ, ω)− c(θ), a, φ, η, ω)

φ ∈ Φ(a, η, ω) (18)

θ ∈ (0, 1]

A further aspect of imperfect knowledge of the regulator about the agent’s deci-

sion process is the possible existence of several optimal responses of the agent to

a given incentive schedule. In this case the regulator can not properly evaluate

the schedule which induced these nonunique responses. He may then increase the

monitoring intensity in order to obtain more precise indications about the agent’s

decisions. In the case of discrete responses they can be interpreted as possible

scenarios of the agent’s behaviour and analysed separately. Possibly the incentive
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schedule can be refined in order to exclude nonunique responses. Alternatively,

the regulator may assume that the agent will choose that decision which is least

preferable for him and evaluate his problem for this choice. This method is an

adaptation of the pessimistic concept of bilevel programming. An alternative

approach is analysed in Werner and Gaivoronski [WGnga]. It takes into account

the principal’s uncertainty about the actually implemented decisions.

5 Solution approaches

This section discusses approaches for the solution of the described agency prob-

lems with focus on the uncertainty. Such problems represent stochastic program-

ming problems with a bilevel feature. Due to the complex structure a nontrivial

adaptation of known stochastic programming methods and the development of

new methods tailored to this problem type is necessary. For this task the utili-

sation of concepts of stochastic programming as well as of bilevel programming

is of interest. Different solution concepts are applicable depending on the ac-

tual formulation of the agency relationship. They can be classified into two main

types. One class of approaches utilises a finite number of scenarios and an accord-

ing construction of deterministic equivalents. The other class employs statistical

methods that are capable of treating continuous distributions of the random vari-

ables directly.

Utilising a finite number of scenarios, a deterministic equivalent of the agency

problem can be formulated, for example as indicated by formulations (3) – (7).

Thus the stochastic agency problem is reduced to a (possibly large scale) de-

terministic bilevel programming problem. Such problems have been studied in-

tensely in the past decades. Therefore we outline here only a few issues. Bilevel

programming problems are not easily solvable since they often exhibit some un-

pleasant properties. Taking into account the agent’s response, the principal’s

objective function is generally not convex and neither differentiable. The par-

ticipation constraint represents a so-called connecting upper level constraint. It

is located in the principal’s subproblem but its feasibility depends also on the

agent’s response. As a consequence the set of feasible principal decisions may not

be connected and not convex. Also a possible existence of nonunique responses
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of the agent to some principal decisions complicates the evaluation of the prin-

cipal’s problem. In order to deal with these difficulties several concepts can be

employed. Among these concepts are penalty methods in the case of connecting

upper level constraints or the optimistic and pessimistic approaches for nonunique

agent responses. A variety of solution methods for bilevel programming problems

has been developed comprising among others descent algorithms [VSJ94], penalty

approaches [IA92] or reformulations to one-level nonlinear programming problems

[BM90, JF94]. For a broader overview see for example Dempe [Dem02] or the

bibliographies [Dem03] and [VC94].

The identification of a finite number of scenarios or the discretisation of the ran-

dom variables is often a rather arbitrary process. However, due to the bilevel

structure small changes of model parameters may have great effects on an opti-

mal response to a given regulatory decision and consequently on the optimality of

an incentive schedule. Therefore the stability of a found optimal decision of the

principal should be investigated. Sensitivity analysis helps to study the behaviour

of the agent’s response in dependence on small changes of the random model pa-

rameters [PW97]. Further considerations of bilevel programming problems with

regard to uncertain model parameters can be found in Wynter [Wyn01].

The second class of solution approaches treats continuous distributions of the

random variables directly and allows so for the development of flexible solu-

tion methods. This is achieved by the utilisation of statistical methods such

as stochastic decomposition [HS96] or stochastic quasi-gradient (SQG) methods

[Erm88, Gai88, Gai04]. Stochastic quasi-gradient methods are suitable for the so-

lution of optimisation problems with complex objective functions and constraints.

This makes them especially applicable to stochastic programming problems with

a bilevel structure as represented by agency relationships. The following example

based on the general formulations (3), (4) shall illustrate the main ideas and the

potential of this methodology.

Example 5.1. Consider the principal agency relationship between a telecom

service provider and a regulator. In this relationship the regulator takes on the

role of a principal who wants the service provider (the agent) to choose decisions

which comply with a certain regulation policy. We assume that both decision
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makers are uncertain about parameters of the environment. This uncertainty

is expressed by making these parameters dependent on random variables ω. We

consider a one-stage relationship, i.e. the actors can not take into account possible

corrective actions after observing the state of the environment.

The agent’s decision a = (a1, a2) consists of a price a1 for service provided to

customers and of an ”effort” a2 (for example Quality of Service). We assume

that the agent’s welfare depends only on the revenue from service provision and

on the costs due to the chosen level of effort. Simplifying we assume that the

agent’s revenue from service provision depends linearly on the demand d(ω) for

the service. This demand is not perfectly known.

R(a1, ω) = d(ω)a1

The costs due to the chosen effort depend quadratically on the effort.

E(a2, ω) = c(ω)a2
2

Hence the agent’s welfare is

WA(a, ω) = R(a1, ω)− E(a2, ω)

= d(ω)a1 − c(ω)a2
2

The customers assess the provided service by means of the price a1 and the quality

a2. For the sake of simplicity also this dependence is assumed linear such that

S(â, ω) = s1(ω)â1 + s2(ω)â2

where â1, â2 denote the agent’s decisions as perceived by the principal. Typically

the coefficients are such that s1(ω) ≤ 0 and s2(ω) ≥ 0 for any ω. The customers’

welfare is then

WC(â, ω) = S(â, ω)−R(â, ω)

= (s1(ω)− d(ω))â1 + s2(ω)â2

Hence the principal assumes that the social welfare WS(â, ω) generated by the

agent’s decisions â = (â1, â2) is

WS(â, ω) = WC(â, ω) + WA(â, ω)

= s1(ω)â1 + s2(ω)â2 − c(ω)â2
2
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The principal’s incentive schedule φ = (φ1, φ2) consists of both obligations and

rewards. The obligations φ1 control the agent’s pricing decisions by defining an

upper bound on the service price and are thus part of the agent’s constraints. Also

the principal’s choice of the incentive schedule is subject to constraints. Thus the

agent’s set A(φ, ω) of feasible decisions is

A(φ, ω) = {a1, a2 ∈ RI : a1 ≥ EI ωc(ω), a1 ∈ [a1,L, φ1], a2 ∈ [a2,L, a2,U ]}

and the principal’s set Φ(â, ω) of feasible decisions is

Φ(â, ω) = {φ1, φ2 ∈ RI : φ1 ∈ [φ1,L, φ1,U ], φ2 ∈ [φ2,L, φ2,U ],

hP (ω)− n1(ω)â1 − n2(ω)â2 −m1(ω)φ1 −m2(ω)φ2 ≥ 0}

The reward φ2 encourages the agent’s effort by affecting the agent’s utility. Fur-

thermore it influences also the principal’s utility. Consequently, the agent’s and

the principal’s utility functions are

UA(a, φ, ω) = WA(a, ω) + φ2a2

= d(ω)a1 − c(ω)a2
2 + φ2a2

UP (â, φ, ω) = WS(â, ω)− φ2â2

= s1(ω)â1 + (s2(ω)− φ)â2 − c(ω)â2
2

For the sake of simplicity we assume that the regulator’s and the agent’s decision

problems contain only one linear constraint each. These constraints are required

to be satisfied on average according to formulation (5). Moreover, we assume that

the principal is perfectly informed about the agent’s decision process such that

â = a. Assuming that both decision makers maximise their utility the following

bilevel stochastic programming problem can be formulated.

max
φ1,φ2

EI ω{s1(ω)a1 + (s2(ω)− φ2)a2 − c(ω)a2
2} (19a)

EI ω{hP (ω)− n1(ω)a1 − n2(ω)a2 −m1(ω)φ1 −m2(ω)φ2} ≥ 0 (19b)

φ1 ∈ [φ1,L, φ1,U ]

φ2 ∈ [φ2,L, φ2,U ]
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where the agent’s response a = a(φ, ω) is obtained as the optimal solution of her

decision problem

max
a1,a2

EI ω{d(ω)a1 + φ2a2 − c(ω)a2
2} (20)

a1 ≥ EI ωc(ω)

a1 ≥ a1,L

a1 ≤ φ1

a2 ∈ [a2,L, a2,U ]

This problem can now be solved by a stochastic quasi-gradient (SQG) method

(see Appendix A.1). In Werner and Gaivoronski [WGngb] it was proved that this

method converges with probability 1 to the vicinity of a local optimal solution.

This means that an optimal incentive schedule φ∗ = (φ∗1, φ
∗
2) of the regulator and

at the same time an optimal response a∗ = a(φ∗) of the agent can be obtained.

Consider for example the following case. Assume that the agent has the prospect

to receive financial allowances (from another authority than from the principal)

subsidising his effort. Furthermore the value of the coefficient n2 in constraint

(19b) is not perfectly known. Therefore the principal distinguishes two scenarios

and assumes that scenario 1

(s1, s2, c(ω
1), d, hP , m1, m2, n1, n2(ω

1)) = (−5, 25, 7, 50, 150, 2, 3, 4,−100)

will realise with probability p1 = 2/3 and scenario 2

(s1, s2, c(ω
2), d, hP , m1, m2, n1, n2(ω

2)) = (−5, 25,−7, 50, 150, 2, 3, 4, 0)

with probability p2 = 1/3. The bounds on the actors’ decisions are

(φ1, φ2) ∈ [0, 50]× [0, 50]

(a1, a2) ∈ [.5,∞]× [−3, 10]

The negative lower limit on the regulator’s reward φ2 symbolises the possibility

of a penalty for too low effort of the agent. The traditional approach utilising the

expectation of the uncertain parameters

(s1, s2, EI ωc(ω), d, hP , m1, m2, n1, EI ωn2(ω))

= (−5, 25, 2.33, 50, 150, 2, 3, 4,−66.67)
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yields an optimal schedule φE = (φE
1 , φE

2 ) = (2.33, 46.67) with the agent’s re-

sponse a = (aE
1 , aE

2 ) = (2.33, 10). If scenario 1 realises, this schedule will yield a

utility

UP (ω1, φE) = −5aE
1 + (25− φE

2 )aE
2 − 7(aE

2 )2 = −928.33

whereas in the case of scenario 2 the principal’s utility will be

UP (ω2, φE) = −5aE
1 + (25− φE

2 )aE
2 + 7(aE

2 )2 = 471.67

An application of the proposed SQG approach taking into account the scenar-

ios ω1 and ω2 does not yield a unique schedule but a range of advices. This

is due to the utilisation of a finite number of samples reflecting realisations of

both scenarios. At each iteration step a new set of such samples is determined.

Therefore only a vicinity of the optimal schedule is reached. Utilising a sample of

100 realisations the proposed algorithm determines utility maximising schedules

in the range φS = (φS
1 , φS

2 ) ∈ [1.8, 3.6]× [30, 50] and responses aS = (aS
1 , aS

2 ) with

aS
1 = φS

1 and aS
2 ∈ [6, 10]. An example is φS = (3.03, 34.13) with the response

aS = (3.03, 9.38). With this schedule the principal obtains the following utilities

under the single scenarios

UP (ω1, φS) = −5aS
1 + (25− φS

2 )aS
2 − 7(aS

2 )2 = −716.31

UP (ω2, φS) = −5aS
1 + (25− φS

2 )aS
2 + 7(aS

2 )2 = 514.73

For both scenarios these utilities are higher than the utilities obtained by applying

the schedule φE.

This simple example illustrated some principles of the application of concepts of

stochastic programming to agency problems. Here, the methodology of bilevel

stochastic programming problems was utilised for the determination of an optimal

incentive schedule in an agency relationship between a telecom regulator and a

service provider. However, an extensive analysis of these concepts, for example

with regard to an application to the more complex models of Section 4, is beyond

the scope of this exposition. Partly it was considered in [WGngb], partly it will

be the subject of further research.
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6 Conclusions

In this exposition we studied the utilisation of stochastic programming concepts

for the treatment of the uncertainty present in agency models. For this purpose a

model of a principal agency relationship between a regulator and license provider

and a regulated service provider and licensee in a liberalised telecom environment

was considered. We restricted the studies to the case of one agent. However, the

models were held quite general, providing the base for an extension to a multi-

lateral formulation with several regulated agents.

After we provided some background on agency theory as well as on regulation

and licensing in telecommunications we presented a framework for solving agency

problems under uncertainty. It is based on concepts of stochastic and bilevel pro-

gramming. This makes it possible to enhance the flexibility of agency theoretic

studies since changes in the environment and other uncertain factors can be taken

better into account. However, the purpose of this exposition was not to consider

these analytical techniques as a substitution of qualitative economic considera-

tions. Both branches should be conducted on an equal footing and stochastic

optimisation approaches should rather be seen as an indispensable supplement.

They allow for the study of more intricate models involving a considerable ex-

tent of uncertainty at several levels, complex types of objective functions and

constraints on the choices of both actors’ or model formulations with decisions

spanning over several stages such as stochastic programming problems with re-

course. Together with the economical analysis powerful interpretations of the

obtained results and concepts can be achieved.

Further research may be organised along these lines, combining economic stud-

ies with the analytical framework in terms of bilevel stochastic programming

concepts. It is for example more appropriate to represent effects caused by the

presence of further agents by a multilateral formulation than by uncertain envi-

ronment parameters. However, at the same time the interactions of the agents

with the regulator and the customer population as well as possibly among each

other complicate the model further. Therefore, as indicated in Section 4, an

extension of the considerations to more complex models including multistage or

multilateral formulations with dependent or independent agents is also of interest.
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A Appendix

A.1 Algorithm for solution of Example 5.1

In the following we describe main details of an application of the proposed solution

algorithm to Example 5.1. A thorough analysis of the method is given in Werner

and Gaivoronski [WGngb].

An optimal response a(φ, ω) of the agent on a schedule φ can be characterised

by the Karush Kuhn Tucker optimality conditions of the agent’s problem. Then

the bilevel stochastic programming problem (19), (20) can be formulated as a

nonlinear one-level stochastic programming problem. The decision variables of

this problem consist of the actors’ decision variables a and φ and of the Lagrange

multipliers λ = (λ1, ..., λ5) associated to the response a.

max
a,φ,λ

EI ω{s1(ω)a1 + (s2(ω)− φ2)a2 − c(ω)a2
2)} (21a)

EI ω{d(ω) + λ1 − λ2 + λ5} = 0 (21b)

EI ω{−2c(ω)a2 + φ2 + λ3 − λ4} = 0 (21c)

EI ω{λigA,i} = 0 i = 1, ..., 5 (21d)

EI ω{hP (ω)− n1(ω)a1 − n2(ω)a2 −m1(ω)φ1 −m2(ω)φ2} ≥ 0 (21e)

gA(a, φ) ≥ 0 (21f)

λ1, ..., λ5 ≥ 0 (21g)

φ1 ∈ [φ1,L, φ1,U ]

φ2 ∈ [φ2,L, φ2,U ]

where

gA(a, φ) = (a1 − a1,L, φ1 − a1, a2 − a2,L, a2,U − a2, a1 − EI ωc(ω))T

This problem (21) comprises the nonlinear equality constraint (21d). In order

to deal with this difficulty the algorithm employs a decomposition of the prob-

lem into a family of subproblems with linear constraints. With a given initial

point x0 = (a0, φ0, λ0) where a0 is the optimal response to the decision φ0 and

λ0 = (λ0
1, ..., λ

0
5) the associated Lagrange multipliers, such a subproblem can be
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formulated as follows.

max
a,φ,λ

EI ω{s1(ω)a1 + (s2(ω)− φ2)a2 − c(ω)a2
2} (22a)

EI ωf1(a, φ, λ, ω) ≥ 0 (22b)

EI ωf2(a, φ, λ, ω) = 0 (22c)

where

f1(a, φ, λ, ω) =


gA,i(a, φ), i ∈ {i = 1, ..., 5 : gA,i(a

0, φ0) > 0}
λi, i ∈ {i = 1, ..., 5 : λ0

i > 0}
gP (a, φ, ω)



f2(a, φ, λ, ω) =


gA,i(a, φ), i ∈ {i = 1, ..., 5 : gA,i(a

0, φ0) = 0}
λi, i ∈ {i = 1, ..., 5 : λ0

i = 0}
d(ω) + λ1 − λ2 + λ5

−2c(ω)a2 + φ2 + λ3 − λ4



gP =



hP (ω)− n1(ω)a1 − n2(ω)a2 −m1(ω)φ1 −m2(ω)φ2

φ1 − φ1,L

φ1,U − φ1

φ2 − φ2,L

φ2,U − φ2


This subproblem (22) is now solved iteratively by a SQG method. At each step k

of this method new values for the iterates xk = (φk
1, φ

k
2, a

k
1, a

k
2, λ

k
1, ..., λ

k
4), uk and

vk are determined where xk denotes the current iterates of the decision variables,

uk the Lagrange multipliers of the inequality constraints (22b) and vk the La-

grange multipliers of the equality constraints (22c). These variables are updated

according to the rules

xk+1 = ΠX(xk − αk
xξ

k
x) (23a)

uk+1 = max{0, uk + αk
uξ

k
u} (23b)

vk+1 = vk + αk
vξ

k
v (23c)

The operator ΠX denotes the projection on the domain

X = {x = (a, φ, λ) ∈ RI 9 :
1

Nk

Nk∑
i=1

f1(x, ωi) ≥ 0,
1

Nk

Nk∑
i=1

f2(x, ωi) = 0}
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where (ω1, ..., ωNk), Nk > 0, is a collection of independent samples according to

the distribution of the random variable ω ∈ Ω.

The step sizes αk
x, α

k
u and αk

v can be determined for example according to

αk
x =

C1

C2 + k
, αk

u =
C3

C4 + kγ1
, αk

v =
C5

C6 + kγ2

with nonnegative constants C1, ..., C6 and γ1, γ2 ∈ (0, 1).

For the determination of the current search directions ξk
x, ξk

u and ξk
v we utilise the

Lagrangian function of problem (22) for the iterates xk, uk, vk and given observa-

tion ωi of the random parameters

L(xk, uk, vk, ωi) = −s1(ω
i)ak

1 − (s2(ω
i)− φk

2)a
k
2 + c(ωi)(ak

2)
2

− (uk)T f1(a
k, φk, λk, ωi) + (vk)T f2(a

k, φk, λk, ωi)

Then the search directions can be determined by means of statistical estimates

of the gradients of this Lagrangian, for example by

ξk
x =

1

Nk

Nk∑
i=1

∇xL(xk, uk, vk, ωi)

ξk
u = − 1

Nk

Nk∑
i=1

f1(a
k, φk, λk, ωi)

ξk
v =

1

Nk

Nk∑
i=1

f2(a
k, φk, λk, ωi)
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Abstract

We consider convex optimisation problems with nonunique minima and

study the effect of uncertainty about the decision variables. Such a type of

problems may occur for example in agency theory due to the information

asymmetry between the principal and the agent. In the unconstrained case

we state conditions on the uncertainty such that the perturbed function

has a unique minimum. Under stricter assumptions we prove that this

minimum converges to one of the original minima. In the presence of

nontrivial constraints the uncertainty affects also the feasibility. We state

conditions such that the perturbed problem has a unique minimum.

Key words: Strict convexity, bilevel stochastic programming, nonunique

minima.

1 Introduction

In this paper we study how uncertainty about decision variables may affect con-

vexity properties of optimisation problems. This problem evolved from the anal-

ysis of a specific class of stochastic programming problems where part of the

uncertainty of the considered decision maker can be attributed to the response of

another actor. In this sense the decisions of the former actor represent parameters

which influence the other actor’s decision process and vice versa. This situation

∗Norwegian University of Science and Technology, N - 7491 Trondheim, Norway
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can be modelled by a stochastic programming problem with bilevel structure.

The considered decision maker finds a decision y solving the problem

min
y

EI ξg(y, z∗, ξ) (1)

s.t. EI ξH(y, z∗, ξ) ≤ 0

taking into account the response z∗ of the other actor. This response is determined

as optimal solution of the problem

min
z

EI ξf(y, z, ξ) (2)

s.t. EI ξh(y, z, ξ) ≤ 0

where the uncertain parameters are expressed by the help of a random variable

ξ ∈ Ξ. Interpreting the former decision maker as principal or leader and the latter

one as agent or follower, problem (1) – (2) can be analysed utilising concepts of

bilevel programming in addition to stochastic programming methods.

Decision problems under uncertainty with a bilevel structure can be found in

a variety of applications, for example in telecommunications [AGWng], energy

and power management [GR02] and especially in agency theory [GH83, Mir99,

WGng]. Typical for such models is the uncertainty of the principal about the

agent. He has a perception of the agent’s decision process but often he is un-

certain about which decisions the agent actually implements. A further source

of imperfect knowledge is the existence of nonunique responses. In this case the

principal does not know exactly which decision the agent will choose even if her

decision process may be perfectly known. This complicates the principal’s deci-

sion process since he can not exactly evaluate the optimality and the feasibility of

his decisions. Then in deterministic bilevel programming typically the so-called

optimistic or pessimistic concepts are utilised, depending on the degree of control

the principal can exert on the agent’s choice.

In this exposition we follow a different approach. We investigate if the principal

can improve his decision process (1) if he is aware of his imperfect knowledge

about the agent and takes it explicitly into account. Much work has been di-

rected to the analysis of stochastic programming problems when the distribu-

tion function of the random or uncertain parameters is not completely known
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[AW96, DR98, RR02, Sch00, Sha93, Sha94]. These studies focus mainly on sta-

bility properties of the optimal solutions and of the solution function in a general

setting. However, the effects of perturbations on the convexity properties of the

problems and thus on quantitative properties of the solution set have not yet

been analysed. Here, we study the effect of noisy decision variables of the agent

on the convexity properties of her decision problem (2). Especially we focus on

the uniqueness of the optimal solutions. To our knowledge no similar problem

was studied so far.

We investigate the properties of the agent’s decision problem (2) for a given prin-

cipal or upper level decision. In the following we ignore therefore the dependency

of this problem on the upper level parameter y. For the sake of transparency

we assume furthermore that the model parameters are perfectly known. Conse-

quently, our starting point is a convex deterministic function f : RI n → RI with a

set of nonunique minima

A = arg min
z

f(z) (3)

We assume then that the decision variables z ∈ RI n are affected with uncertainty

expressed by a random variable ω ∈ B ⊆ RI n. This means that, instead of the

original function f(z), a perturbed function F (z) = EI ωf(z + ω) is minimised

min
z

F (z) = min
z

EI ωf(z + ω) (4)

Our focus is on conditions on the perturbation ω such that the minimum found in

problem (4) is unique. However, the optimum z∗P of the perturbed problem may

be different from the original optima, z∗P /∈ A. In a further step we want to know

therefore under which conditions the unique minimum of F (z) converges to one

of the nonunique minima of the original function. Finally, we consider problems

(3) and (4) for the case when the decision variable z is subject to nontrivial

constraints g(z) ≤ 0. In this case the uncertainty about the decision variables

affects also the feasible area of the considered problem.

The paper is structured as follows. The following section gives some notations and

conventions needed for the further exposition. In Section 3 the unconstrained case

is analysed and the main results of the work are presented. Section 4 considers

the constrained case. Finally, Section 5 rounds up the paper with conclusions

and indicates further research directions.
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2 Preparatory material

This section provides definitions and conventions that are utilised throughout the

subsequent analysis.

Considering a vector x = (x1, ..., xn) ∈ RI n, we denote the i-th component of this

vector by xi. Furthermore we denote by ei the i-th basis vector of RI n.

We assume that the original function f : RI n → RI 1 considered in our analysis is

continuous and convex (see for example [Ber99]). To be more specific, we assume

that the set A of the minima of f is bounded and has a nonempty interior. This

means that f has nonunique minima and is therefore not strictly convex.

A convex function is differentiable almost everywhere. At the points of nondif-

ferentiability directional derivatives can be utilised.

Definition 1. The (one-sided) directional derivative of a function f : RI n → RI 1

at a point z ∈ RI n in direction r ∈ RI n is defined by

f ′(z; r) = lim
t→0+

f(z + tr)− f(z)

t

The directional derivatives in directions ei and −ei for i = 1, ..., n are then given

by

Di
+f(z) = f ′(z; ei)

Di
−f(z) = f ′(z;−ei)

Due to the convexity of the considered function f we have then

Di
−f(z) ≤ Di

+f(z)

for all z ∈ RI n. If f is differentiable at the point z then the directional derivatives

Di
+f(z) and Di

−f(z) in directions ei and −ei coincide and form the gradient

∇zf(z) = (D1f(z), ..., Dnf(z))

with Dif(z) = Di
+f(z) = Di

−f(z), i = 1, ..., n

Definition 2. A function f : RI n → RI 1 is called separable if it is the sum of a

finite set of univariate functions

f(z) =
n∑

i=1

fi(zi) (5)

for z = (z1, ..., zn) ∈ RI n.
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The perturbation of the input data z ∈ RI n is expressed by the random variable

ω which is defined on a probability space (B,B, P ). Here the set B ⊆ RI n is

a Borel set with nonempty interior, B is the Borel field of subsets of B and P

a probability measure on B. Furthermore we assume that the density function

h : B → RI 1 of ω exists. Then the perturbed function F (z) is

F (z) = EI ωf(z + ω) =

∫
B

f(z + ω)P (dω) =

∫
B

f(z + ω)h(ω)dω

Since the original function f is convex also the expectation F is convex. If h is

absolutely continuous then F is continuously differentiable [BL97].

Throughout the analysis we assume that the sets A and B have a quite general

shape. However, sometimes a more precise description of the sets and especially

of their boundary is needed. Traditionally, the boundary of a set is defined as

follows.

Definition 3. Assume that the set A ⊂ RI n is convex and compact. The interior

of A is the open set

int A = {x ∈ A : ∃ε > 0 : Uε(x) ⊂ A} (6)

with Uε(x) = {y ∈ RI n : ||y − x|| ≤ ε} a neighbourhood of the point x.

The boundary of the set A is then defined by

bd A = A \ int A (7)

However, in our analysis we will utilise a slightly different notion which is il-

lustrated by the Examples 1. The equivalence of both definitions is proved in

Proposition 1.

Definition 4. The boundary of a convex and compact set A ⊂ RI n is given by

bd A =
⋃
z∈A

i=1,...,n

{αi(z), αi(z)} (8)

with αi(z) = (αi
1(z), ..., αi

n(z)), αi(z) = (αi
1(z), ..., αi

n(z)), z = (z1, ..., zn) and

αi(z) = z + ei inf{y ∈ RI 1 : z + yei ∈ A} (9a)

αi(z) = z + ei sup{y ∈ RI 1 : z + yei ∈ A} (9b)

for i = 1, ..., n.
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This definition can be represented by cuts through the set A at the point z ∈ A

parallel to each of the dimensions i = 1, ..., n (Figure 1).
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Figure 1: Description of the boundary of a set at a given point

Proposition 1. Assume that the set A ⊂ RI n is convex and compact. Then the

definitions (7) and (8) of the boundary of A are equivalent.

Proof. We prove that a point x ∈ RI n is on the boundary of the set A according to

definition (7) if and only if x satisfies expression (8). For this purpose we define

yi(z) = inf{y ∈ RI 1 : z + yei ∈ A} (10)

yi(z) = sup{y ∈ RI 1 : z + yei ∈ A} (11)

for z ∈ A and a dimension i ∈ {1, ..., n}.
Consider the point x ∈ A on the boundary of A satisfying expression (8). Then

there exist z ∈ A and i ∈ {1, ..., n} with

x ∈ {z + eiy
i(z), z + eiy

i(z)}

We assume at first that x = z +eiy
i(z). Due to the compactness of A there exists

no ε > 0 such that z + ei(y
i(z)− ε) ∈ A. Hence, since

z + ei(y
i(z)− ε) = z + eiy

i(z)− eiε = x− eiε

there exists no ε > 0 such that x−eiε ∈ A. Therefore, there is no neighbourhood

Uε(x) of x with Uε(x) ⊂ A. This is equivalent to definition (7).

The case x = z + eiy
i(z) is proved similarly. Since A is assumed compact there
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exists no ε > 0 with z + ei(y
i(z) + ε) ∈ A. This means that there is no ε > 0

such that

z + ei(y
i(z) + ε) = z + eiy

i(z) + eiε = x + eiε ∈ A

Therefore there exists no neighbourhood Uε(x) of x with Uε(x) ⊂ A and the point

x is on the boundary of A as defined by expression (7).

Finally, assume that the point x ∈ A does not satisfy expression (8), i.e. that

x /∈ {z + eiy
i(z), z + eiy

i(z)}

for all dimensions i = 1, ..., n. This means that there exists some ε > 0 such that

Uε(x) ⊂ A. Hence x ∈ int A, i.e. according to definition (7) the point x is no

boundary point.

Concluding, Definitions 3 and 4 of the boundary of a convex and compact set A

are equivalent.

The following examples illustrate the idea of Definition 4.

Example 1. a) Assume that the set A1 is an n-dimensional rectangle (cf.

Figure 1 a)). Then for all z ∈ A and i = 1, ..., n we have

αi
i(z) = ci and αi

i(z) = ci

with constants ci, ci ∈ RI 1. Consequently,

A1 = [c1, c1]× ...× [cn, cn].

b) If A2 describes a sphere around the origin with radius a

A2 = {z ∈ RI n :
n∑

i=1

z2
i ≤ a2}
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then the points αi(z) and αi(z) are determined for z ∈ A2 by

αi
i(z) = −(a2 −

n∑
j=1

j 6=i

z2
j )

1/2

αi
i(z) = (a2 −

n∑
j=1

j 6=i

z2
j )

1/2

αi
j(z) = αi

j(z) = zj, j 6= i

i, j = 1, ..., n

c) Consider the set A3 depicted in Figure 1 b). At the point z1 = (1, 2) the

boundary of this set is

α1(z1) = (0.33, 2) α1(z1) = (2, 2)

α2(z1) = (1, 0) α2(z1) = (1, 3)

whereas at the point z2 = (−1,−1) we have

α1(z2) = (−1.67,−1) α1(z2) = (−1,−1)

α2(z2) = (−1,−1) α2(z2) = (−1, 0)

Remark 1. Observe that generally

A 6= [α1
1(z), α1

1(z)]× ...× [αn
n(z), αn

n(z)]

at any point z ∈ A. However, if the convex function f is separable and has

nonunique minima, then the set A of nonunique minima is a rectangle

A = [α1
1, α

1
1]× ...× [αn

n, α
n
n]

with αi
i ≤ αi

i for all i = 1, ..., n and αi
i < αi

i for at least one i.

Remark 2. If the support B of the perturbation ω is convex and compact the

boundary of B is given in a similar way by

bd B =
⋃
ω∈B

i=1,...,n

{βi(ω), β
i
(ω)} (12)
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with βi(ω) = (βi

1
(ω), ..., βi

n
(ω)), β

i
(ω) = (β

i

1(ω), ..., β
i

n(ω)), ω = (ω1, ..., ωn) and

βi(ω) = ω + ei inf{y ∈ RI 1 : ω + yei ∈ B} (13a)

β
i
(ω) = ω + ei sup{y ∈ RI 1 : ω + yei ∈ B} (13b)

for i = 1, ..., n.

Definition 5. The set A − B denotes the Minkowski sum of the sets A and

(−1) ·B:

A−B = {x ∈ RI n : x = z − ω, z ∈ A, ω ∈ B} (14)

The set I(z) defines a subset of the support B for given z ∈ RI n:

I(z) = {ω ∈ B : z + ω ∈ A} (15)

Proposition 2. Assume that the sets A and B are compact and convex and

have a nonempty interior. Then there exist αi(z), αi(z) ∈ bd A, z ∈ A and

βi(ω), β
i
(ω) ∈ bd B, ω ∈ B defined by expressions (9) and (13), respectively,

such that the boundary of the set A−B is given by

bd (A−B) =
⋃

x∈A−B
i=1,...,n

{ϕi(x), ϕi(x)}

with

ϕi(x) = αi(z)− β
i
(ω) (16a)

ϕi(x) = αi(z)− βi(ω) (16b)

and x = z − ω.

Proof. We study a point ϕ̃ ∈ bd (A − B) and show the existence of boundary

points αi(z), αi(z) ∈ bd A and βi(ω), β
i
(ω) ∈ bd B with z ∈ A, ω ∈ B such that

x = z − ω and relations (16a) and (16b) hold.

Consider the set C = A−B. Then, according to definition (8), the boundary of

this set is given by

bd C =
⋃
x∈C

i=1,...,n

{ϕi(x), ϕi(x)}
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with

ϕi(x) = x + ei inf{y ∈ RI 1 : z + yei ∈ C}

ϕi(x) = x + ei sup{y ∈ RI 1 : z + yei ∈ C}

This means that a point ϕ̃ = ϕ(x), x ∈ C, is on the boundary of C if and only if

there exists a dimension i ∈ {1, ..., n} such that either ϕ̃ = ϕi(x) or ϕ̃ = ϕi(x).

Assume at first

ϕ̃ = ϕi(x) = x + ei inf{y ∈ RI 1 : z + yei ∈ C}

Since x ∈ C = A−B there exist z ∈ A and ω ∈ B such that x = z − ω. Then

ϕi(x) = z − ω + ei inf{y ∈ RI 1 : z − ω + yei ∈ A−B}

= z − ω + ei(inf{y ∈ RI 1 : yei ∈ A− {z}}

+ inf{y ∈ RI 1 : yei ∈ (−1) ·B + {ω}})

= z − ω + ei(inf{y ∈ RI 1 : yei ∈ A− {z}} − sup{y ∈ RI 1 : yei ∈ B − {ω}})

= z + ei inf{y ∈ RI 1 : z + yei ∈ A} − (ω + ei sup{y ∈ RI 1 : ω + yei ∈ B})

= αi(z)− β
i
(ω)

A similar analysis can be performed for ϕ̃ = ϕi(x) such that

ϕi(x) = x + ei sup{y ∈ RI 1 : z + yei ∈ C}

= z − ω + ei(sup{y ∈ RI 1 : yei ∈ A− {z}}

+ sup{y ∈ RI 1 : yei ∈ (−1) ·B + {ω}})

= z − ω + ei(sup{y ∈ RI 1 : yei ∈ A− {z}} − inf{y ∈ RI 1 : yei ∈ B − {ω}})

= αi(z)− βi(ω)

Consequently, the assertion of the proposition holds.

The following example shows that not for all z ∈ A, ω ∈ B with x = z − ω also

relations (16a) and (16b) are satisfied.

Example 2. Assume that the sets A and B are spheres around the origin with

the radii a = 1 and b = 2, respectively (cf. Example 1 b)). The set C = A−B is
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a sphere around the origin with the radius c = 3.

Consider the point x = (−(3 +
√

3)/4, 1.5) = (−1.183, 1.5) ∈ C. Then

ϕ1(x) = (−2.598, 1.5) ϕ1(x) = (2.598, 1.5)

ϕ2(x) = (−1.183,−2.757) ϕ2(x) = (−1.183, 2.757)

For z1 = (−0.25, 0.5) ∈ A and ω1 = ((2 +
√

3)/4,−1) = (0.933,−1) ∈ B we have

α1(z1) = (−0.866, 0.5) α1(z1) = (0.866, 0.5)

α2(z1) = (−0.25,−0.968) α2(z1) = (−0.25, 0.968)

β1(ω1) = (−1.732,−1) β
1
(ω1) = (1.732,−1)

β2(ω1) = (0.933,−1.769) β
2
(ω1) = (0.933, 1.769)

Then x = z1 − ω1 and relations (16a) and (16b) hold for i = 1, 2.

However, consider now the points z2 = (0, 1) ∈ A and ω2 = (1.183,−0.5) with

α1(z2) = (0, 1) α1(z2) = (0, 1)

α2(z2) = (0,−1) α2(z2) = (0, 1)

β1(ω2) = (−1.936,−0.5) β
1
(ω2) = (1.936,−0.5)

β2(ω2) = (1.183,−1.613) β
2
(ω2) = (1.183, 1.613)

Also here x = z2 − ω2, but relations (16a) and (16b) are not satisfied.

Definition 6. Consider a convex function f : RI n → RI 1. The level set of f at the

level c ∈ RI 1 is the set

L(c) = {z ∈ RI n : f(z) ≤ c} (17)

The contour of the function f at the level c is the boundary of the level set L(c)

L̃(c) = {z ∈ RI n : f(z) = c} (18)

In this work we consider the class of functions f which are representable by an

auxiliary function f̂ : RI n → RI 1 and a constant c = min
z

f(z) as follows:

f(z) =

f̂(z), z 6∈ A

c, z ∈ A
(19)
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We assume that the function f̂ is convex and continuously differentiable at least

on A − B. Furthermore we assume f̂(z) < c for all z ∈ int A. Then description

(19) implies that the minimum of the function f̂ is in A. It illustrates furthermore

that the set A represents a level set of the function f̂ and is therefore convex and

compact. Moreover, the expectation function F can be expressed by

F (z) =

∫
B

f(z + ω)h(ω)dω

=

∫
B

f̂(z + ω)h(ω)dω +

∫
I(z)

(c− f̂(z + ω))h(ω)dω (20)

where the set I(z) is defined according to (15).

The following propositions state properties of the set A−B.

Proposition 3. Assume that

1. the function f : RI n → R1 is convex with a set A of nonunique minima

A = arg min
z

f(z)

2. the support B is convex and compact.

Then the set A−B is compact and convex.

Proof. The set A represents a level set of the convex function f and is therefore

compact and convex. Due to assumption 2. then also A−B is compact.

In order to prove the convexity of A−B we consider points

x1 = z1 − ω1

x2 = z2 − ω2

with z1, z2 ∈ A and ω1, ω2 ∈ B. Then x1, x2 ∈ A−B. Due to the convexity of A

and B also

z = λz1 + (1− λ)z2 ∈ A

ω = λω1 + (1− λ)ω2 ∈ B
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with λ ∈ [0, 1]. Therefore

λx1 + (1− λ)x2 = λz1 − λω1 + (1− λ)z2 − (1− λ)ω2

= z − ω ∈ A−B

i.e. the set A−B is convex.

Proposition 4. Assume that 0 ∈ B. Then A ⊆ A−B.

Proof. The set A−B is defined by

A−B = {x ∈ RI n : x = z − ω, z ∈ A, ω ∈ B}

Under the assumption 0 ∈ B we have

A = {x ∈ RI n : x = z − 0, z ∈ A, }

⊆ {x ∈ RI n : x = z − ω, z ∈ A, ω ∈ B} = A−B

such that the assertion of the proposition holds.

3 Unconstrained problem

In this section we begin our analysis with the unconstrained case represented

by problems (3) and (4). Considering the case of nonunique minima, we state

conditions on the random variable ω ∈ RI n such that strict convexity of the

perturbed function F is established on the set A − B. As Proposition 4 proves,

this set is a superset of the set A of the minima of the original function f(z).

Furthermore we give conditions on ω ensuring that the unique minimum of F (z)

is on A−B or even on A. Our focus is on convexity properties of the considered

functions in connection with their minima. Therefore we are less interested in the

behaviour of the functions on regions where extremal values can not be expected,

as long as the functions are convex and thus the obtained minima are global.

Theorem 1. Assume that the following conditions are satisfied.

1. the set A of nonunique minima of the convex function f : RI n → RI 1 has a

nonempty interior,

2. the support B of the random variable is convex and compact,
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3. the function f̂ satisfying relation (19) is convex and continuously differen-

tiable on A−B,

4. the density function h : B → RI 1 of the random variable ω is absolutely

continuous and h(ω) > 0 for ω ∈ B,

5. 0 ∈ B and A ⊆ B.

Then the perturbed function F (z) = EI ωf(z + ω) is strictly convex on A−B.

In order to prove this theorem we need the following relation.

Proposition 5. Assume that

1. the conditions of Theorem 1 are satisfied,

2. for z, y ∈ A−B, z 6= y at least one of the sets I(z) and I(y) has a nonempty

interior.

Then the relation∫
I(z)

(c− f̂(y + ω))h(ω)dω <

∫
I(y)

(c− f̂(y + ω))h(ω)dω (21)

holds where c = min
x

f(x).

Proof. For z, y ∈ A−B the sets I(y) and I(z) exist and can be split up into the

pairwise disjoint subsets

S1 = {ω ∈ B : z + ω ∈ A, y + ω 6∈ A}

S2 = {ω ∈ B : z + ω ∈ A, y + ω ∈ A}

S3 = {ω ∈ B : z + ω 6∈ A, y + ω ∈ A}

such that I(z) = S1 ∪ S2 and I(y) = S2 ∪ S3.

At first we prove that at least one of the sets S1 and S3 has a nonempty interior.

Assume that S1 is a null set. If I(z) has an empty interior, then also the set

S2 = I(z) \S1. Then, however, I(y) has a positive measure due to assumption 2.

and therefore also the set S3 = I(y) \ S2, i.e. S3 has a nonempty interior.

If I(z) has a nonempty interior then also S2. Assume now at first that S3 6= ∅.
Then, since S2 and I(y) are closed, the set S3 = I(y) \ S2 is not closed and has
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therefore a nonempty interior. The case S3 = ∅ means that I(y) = S2 and thus

I(y) ⊆ I(z). However, for y 6= z and compact set A we have

A− {y} 6= A− {z}

and therefore

I(y) = B ∩ (A− {y}) 6= B ∩ (A− {z}) = I(z)

Hence I(y) ⊂ I(z) if S3 = ∅ and therefore S1 6= ∅. However, since I(z) and S2

are closed, the set S1 = I(z) \ S2 is not closed and, consequently, not a null set

which contradicts the above assumption.

Resulting, at least one of the sets S1 and S3 has a nonempty interior.

If S1 has a nonempty interior then y + ω /∈ A and therefore c− f̂(y + ω) < 0 for

ω ∈ S1. Hence, due to assumption 4. of Theorem 1,∫
S1

(c− f̂(y + ω))h(ω)dω < 0 (22)

If S3 has nonempty interior then∫
S3

(c− f̂(y + ω))h(ω)dω > 0 (23)

since y + ω ∈ int A and hence c− f̂(y + ω) > 0 for any interior point ω ∈ int S3.

Consequently, we obtain∫
I(z)

(c− f̂(y + ω))h(ω)dω

=

∫
S1

(c− f̂(y + ω))h(ω)dω +

∫
S2

(c− f̂(y + ω))h(ω)dω

<

∫
S2

(c− f̂(y + ω))h(ω)dω +

∫
S3

(c− f̂(y + ω))h(ω)dω

=

∫
I(y)

(c − f̂(y + ω))h(ω)dω

and relation (21) holds.

Now Theorem 1 can be proved.
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Proof. The function F (z) is convex and differentiable and therefore

F (y)− F (z) ≥ 〈∇zF (z), y − z〉 (24)

In the following we verify that this expression is satisfied with strict inequality

for y, z ∈ A−B.

The function f̂(z) was assumed convex and differentiable such that

〈∇zf̂(z + ω), y − z〉 − f̂(y + ω) + f̂(z + ω) ≤ 0

Since furthermore I(z) 6= ∅ for all z ∈ A−B and by definition I(z) ⊆ B, we have∫
B

(〈∇zf̂(z + ω), y − z〉 − f̂(y + ω) + f̂(z + ω))h(ω)dω

≤
∫

I(z)

(〈∇zf̂(z + ω), y − z〉 − f̂(y + ω) + f̂(z + ω))h(ω)dω

Assume now that at least one of the sets I(y) and I(z) has a nonempty inte-

rior such that relation (21) holds. Then the following inequality chain can be

established:∫
B

(〈∇zf̂(z + ω), y − z〉 − f̂(y + ω) + f̂(z + ω))h(ω)dω

≤
∫

I(z)

(〈∇zf̂(z + ω), y − z〉 − f̂(y + ω) + f̂(z + ω))h(ω)dω

=

∫
I(z)

(〈∇zf̂(z +ω), y− z〉− c+ f̂(z +ω))h(ω)dω +

∫
I(z)

(c− f̂(y +ω))h(ω)dω

<

∫
I(z)

(〈∇zf̂(z+ω), y−z〉−c+ f̂(z+ω))h(ω)dω+

∫
I(y)

(c− f̂(y+ω))h(ω)dω

This is the same as∫
B

〈∇zf̂(z + ω), y − z〉h(ω)dω −
∫
B

f̂(y + ω)h(ω)dω +

∫
B

f̂(z + ω)h(ω)dω

<

∫
I(z)

〈∇zf̂(z+ω), y−z〉h(ω)dω−
∫

I(z)

(c−f̂(z+ω))h(ω)dω+

∫
I(y)

(c−f̂(y+ω))h(ω)dω
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Recalling the expression (20) of the expectation F , this inequality can be rear-

ranged to

F (y)− F (z) =

∫
B

f̂(y + ω)h(ω)dω +

∫
I(y)

(c− f̂(y + ω))h(ω)dω

−
∫
B

f̂(z + ω)h(ω)dω −
∫

I(z)

(c− f̂(z + ω))h(ω)dω

>

∫
B

(〈∇zf̂(z + ω), y − z〉)h(ω)dω −
∫

I(z)

(〈∇zf̂(z + ω), y − z〉)h(ω)dω

= 〈∇zF (z), y − z〉

This means that for y, z ∈ A−B, y 6= z such that I(y) or I(z) have a nonempty

interior expression (24) is satisfied with strict inequality.

The sets I(y) and I(z) have an empty interior for y, z ∈ A−B only if

y, z ∈ {x ∈ A−B : x = x̃− ω̃, x̃ ∈ bd A, ω̃ ∈ bd B}

This set is a null set. Since the function F is convex everywhere and strictly

convex on A−B except possibly on a null set, it is strictly convex on A−B.

Remark 3. If the density function h(ω) of the perturbation is positive on the

whole space, i.e. if B = RI n, then also A−B = RI n. Then F (z) is strictly convex

on RI n if all other assumptions of Theorem 1 are satisfied.

If the original function f has a unique minimum, i.e. if the set A is a single-

ton, then strict convexity of the perturbed function F can be established in a

surrounding of this point by considering a perturbation ω with a support B ⊃ A.

The following theorems study the location of the unique minimum z∗P of the

perturbed function F (z) = EI ωf(z + ω). Theorem 2 states conditions such that

z∗P ∈ A−B. Under the conditions of Theorems 3 or 4 we have finally z∗P ∈ A.

Theorem 2. Assume that

1. the conditions of Theorem 1 hold,

2. the function f is separable,
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3. the support B of the perturbation ω is rectangular

B = [β1

1
, β

1

1]× ...× [βn

n
, β

n

n]

Then the function F (z) has a unique minimum z∗ ∈ A−B.

Proof. At first we prove that for all i = 1, ..., n points z = (z1, ..., zn) ∈ A−B exist

with a unique component zi such that ∂F (z)
∂zi

= 0. Then we show that this implies

the existence of a unique point z∗P ∈ A − B such that
∂F (z∗P )

∂zi
for all i = 1, ..., n,

i.e. the existence of a unique minimum of F .

Due to the separability of f the set A is rectangular (see Remark 1). Taking

additionally into account that also the support B is rectangular we have

αi
i(z) = αi αi

i(z) = αi αi
j(z) = αi

j(z) = zj

βi

i
(ω) = βi β

i

i(ω) = β
i

βi

j
(ω) = β

i

j(ω) = ωj

for all z ∈ A and all ω ∈ B and i, j = 1, ..., n with j 6= i. With the expressions

(16) for the boundary of A−B we obtain therefore

ϕi

i
(x) = ϕi

i
= αi

i − β
i

i

ϕi
i(x) = ϕi

i = αi
i − βi

i

ϕi

j
(x) = ϕi

j(x) = zj − ωj

for all x ∈ A−B.

We consider a dimension i ∈ {1, ..., n} and study at first the point ϕi = αi − β
i
.

Then

ϕi

j
+ ωj ≤ αi

j

for j = 1, ..., n and all ω ∈ B. Hence, due to the convexity of f ,

∂f(ϕi + ω)

∂zi

≤ Di
−(αi(z)) ≤ 0 ∀ω ∈ B

The first relation is satisfied strictly for all ω = (ω1, ..., ωn) ∈ B with ωi < β
i

i(ω).

Consequently, since we assumed that B has a nonempty interior and that the

distribution function h(ω) is strictly positive on B,

∂F (ϕi)

∂zi

=

∫
B

∂f(ϕi + ω)

∂zi

h(ω)dω < 0 (25)
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Now, consider the point ϕi = αi − βi. Here

ϕi
j + ωj ≥ αi

j

for j = 1, ..., n and all ω = (ω1, ..., ωn) ∈ B and therefore

∂f(ϕi + ω)

∂zi

≥ Di
+(αi(z)) ≥ 0

where the first relation is satisfied strictly for all ω ∈ B with ωi > βi

i
(ω). Since

B has a nonempty interior and h(ω) > 0 for ω ∈ B,

∂F (ϕi)

∂zi

=

∫
B

∂f(ϕi + ω)

∂zi

h(ω)dω > 0 (26)

Under the conditions of Theorem 1 the function F is strictly convex on A − B.

Therefore the inequalities (25) and (26) mean that there exist points z̃ ∈ A− B

with a unique component z̃i = zi ∈ [ϕi
i
, ϕi

i] such that ∂F (z̃)
∂zi

= 0.

Since f is assumed separable and the ωi are not correlated, the above analysis

can be conducted for any dimension i = 1, ..., n. This implies that the point

z∗ = (z∗1 , ..., z
∗
n) ∈ A− B with z∗i = zi, i = 1, ..., n is the unique minimum of the

function F .

Theorem 3. Assume that

1. the conditions of Theorem 1 are satisfied,

2. the function f is separable,

3. the support B of the perturbation ω satisfies

A ⊆ B ⊆ A− A (27)

Then the function F (z) = EI ωf(z + ω) has a unique minimum z∗ ∈ A.

Proof. We proceed similarly to the proof of Theorem 2. First we prove that for

all i = 1, ..., n there exist points z = (z1, ..., zn) ∈ A with a unique component zi

such that ∂F (z)
∂zi

= 0. We show then that this implies the existence of a unique

minimum z∗ = arg minz F (z) ∈ A.

Consider a dimension i ∈ {1, ..., n}. Due to assumption 2. and since the ωi are
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uncorrelated we can express the partial derivative of the function F at a point

z ∈ RI n with respect to the component zi by

∂F (z)

∂zi

=

∫
B

∂f(z + ω)

∂zi

h(ω)dω

=

∫
B

∂fi(zi + ωi)

∂zi

h(ω)dω (28)

Due to the separability of f we have

A = [α1
1, α

1
1]× ...× [αn

n, α
n
n]

such that the boundary of the set A is independent of the choice of a point x ∈ A.

Then condition (27) means

βi

j
(ω) ≥ αi

j − αi
j (29)

β
i

j(ω) ≤ αi
j − αi

j (30)

for all ω ∈ B and j = 1, ..., n. Utilising the pairwise disjoint sets

B1(z) = {ω ∈ B : zi + ωi < αi
i}

B2(z) = {ω ∈ B : zi + ωi ∈ [αi
i, α

i
i]}

B3(z) = {ω ∈ B : zi + ωi > αi
i}

such that B1(z)∪B2(z)∪B3(z) = B we find that expression (28) is equivalent to

∂F (z)

∂zi

=

∫
B1(z)

∂fi(zi + ωi)

∂zi

h(ω)dω

+

∫
B2(z)

∂fi(zi + ωi)

∂zi

h(ω)dω +

∫
B3(z)

∂fi(zi + ωi)

∂zi

h(ω)dω (31)

If the sets B1(z) and B3(z) exist they have a nonempty interior since it was

assumed that the interior of B is not empty.

For ω ∈ B2(z) we have ∂fi(zi+ωi)
∂zi

= 0. Therefore the middle term in expression

(31) vanishes:∫
B2(z)

∂fi(zi + ωi)

∂zi

h(ω)dω = 0
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For ω ∈ B1(z) we have ∂fi(zi+ωi)
∂zi

< 0. Due to the positivity of the density function

h(ω) on B1(z) ⊆ B and since int B1(z) 6= ∅, it holds therefore∫
B1(z)

∂fi(zi + ωi)

∂zi

h(ω)dω ≤ 0

Likewise we have ∂fi(zi+ωi)
∂zi

> 0 for ω ∈ B3(z) and hence, since h(ω) > 0 for

ω ∈ B3(z) ⊆ B and int B3(z) 6= ∅,∫
B3(z)

∂fi(zi + ωi)

∂zi

h(ω)dω ≥ 0

Consider now the point z1 = αi. Then the sets B1(α
i) and B3(α

i) are

B1(α
i) = {ω ∈ B : ωi < 0}

B3(α
i) = {ω ∈ B : ωi > αi − αi}

Under condition (30) the set B3(α
i) is empty. Furthermore the set B1(α

i) has a

positive measure such that

∂F (αi)

∂zi

=

∫
B1(αi)

∂fi(α
i
i + ωi)

∂zi

h(ω)dω < 0 (32)

Similarly we have for z2 = αi

B1(α
i) = {ω ∈ B : ωi < αi − αi}

B3(α
i) = {ω ∈ B : ωi > 0}

Therefore B1(α
i) = ∅ under condition (29) and B3(α

i) has a positive measure.

Hence

∂F (αi)

∂zi

=

∫
B3(α)i

∂fi(α
i
i + ωi)

∂zi

h(ω)dω > 0 (33)

Due to the strict convexity of F (z) on A ⊆ A− B there exist thus points z̃ ∈ A

with a unique component z̃i = zi such that ∂F (z̃)
∂zi

= 0. Taking into account the

separability of f and that the ωi are not correlated this implies that the point

z∗ ∈ A with z∗i = zi, i = 1, ..., n is the unique minimum of the function F .

If the condition (27) on the support B of the perturbation ω is not satisfied, it is

more difficult to state conditions such that the unique minimum of the expecta-

tion F is in A. In this case more information about the original function f and
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about the perturbation is required. The following theorem gives such conditions

for the case of a piecewise linear function f .

For the characterisation of the perturbation we utilise here additionally the marginal

distribution function at a point x = (x1, ..., xi, ..., xn)

Hi(x) =

∞∫
· · ·

∫
−∞

xi∫
−∞

h(ω)dωidωj

with j = 1, ..., n and j 6= i. Recall that the support B is determined at the

random variable x ∈ B in dimension i by the interval [βi

i
(x), β

i

i(x)]. Therefore we

have

Hi(x) =

∞∫
· · ·

∫
−∞

xi∫
βi

i
(x)

h(ω)dωidωj

Hi(β
i

i
(x)) = 0, Hi(β

i

i(x)) = 1

Theorem 4. Assume that

1. the conditions of Theorem 1 are satisfied,

2. the function f(z) is separable and piecewise linear

∂fi(zi)

∂zi

=


ci < 0, zi < αi

i

0, zi ∈ [αi
i, α

i
i]

ci > 0, zi > αi
i

for all i = 1, ..., n,

3. for each dimension i = 1, ..., n either

βi(ω) ≥ αi − αi (34)

or ci(Hi(0)− 1) ≤ ciHi(α
i − αi) (35)

4. for each dimension i = 1, ..., n either

β
i
(ω) ≤ αi − αi (36)

or ciHi(0) ≤ ci(Hi(α
i − αi)− 1) (37)
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Then the function F (z) = EI ωf(z + ω) has a unique minimum z∗P ∈ A.

Proof. The function f was assumed separable and the ωi are uncorrelated. There-

fore we can again conduct the analysis for an arbitrary dimension i ∈ {1, ..., n}.
Utilising expression (31) for the partial derivative of the expectation function F

at the point z we have

∂F (z)

∂zi

=

∫
B1(z)

∂fi(zi + ωi)

∂zi

h(ω)dω +

∫
B3(z)

∂fi(zi + ωi)

∂zi

h(ω)dω

This expression is now studied at z1 = αi such that

B1(α
i) = {ω ∈ B : ωi < 0}

B3(α
i) = {ω ∈ B : ωi > αi

i − αi
i}

If condition (34) is satisfied we can follow the proof of Theorem 3 and obtain
∂F (αi)

∂zi
< 0 with relation (32). If, however, condition (34) is violated we have

B1(α
i) = {ω ∈ B : ωi < 0}

B3(α
i) = {ω ∈ B : ωi ∈ [αi

i − αi
i, β

i

i]}

Therefore

∞∫
−∞

∂fi(α
i
i + ωi)

∂zi

h(ω)dωi =

0∫
βi

i

∂fi(α
i
i + ωi)

∂zi

h(ω)dωi +

β
i
i∫

αi
i−αi

i

∂fi(α
i
i + ωi)

∂zi

h(ω)dωi

Due to the piecewise linearity of f this gives

∂F (αi)

∂zi

= ci

∞∫
· · ·

∫
−∞

0∫
βi

i

h(ω)dω + ci

∞∫
· · ·

∫
−∞

β
i
i∫

αi
i−αi

i

h(ω)dω

= ci(Hi(0)−Hi(β
i

i
)) + ci(Hi(β

i

i)−Hi(α
i
i − αi

i))

= ciHi(0) + ci(1−Hi(α
i
i − αi

i))

Therefore ∂F (αi)
∂zi

≤ 0 under condition (35).

A similar analysis can be performed for z2 = αi. If condition (36) holds, relation

(33) in the proof of Theorem 3 yields ∂F (αi)
∂zi

. If condition (36) is violated, we have

B1(α
i) = {ω ∈ B : ωi ∈ [βi

i
, αi

i − αi
i]}

B3(α
i) = {ω ∈ B : ωi > 0}



156 PAPER 4: Influence of perturbed data on convexity properties ...

such that

∞∫
−∞

∂fi(α
i
i + ωi)

∂zi

h(ω)dωi =

αi
i−αi

i∫
βi

i

∂fi(α
i
i + ωi)

∂zi

h(ω)dωi +

β
i
i∫

0

∂fi(α
i
i + ωi)

∂zi

h(ω)dωi

and therefore due to the piecewise linearity of f

∂F (α)

∂zi

= ci

∞∫
· · ·

∫
−∞

αi
i−αi

i∫
βi

i

h(ω)dω + ci

∞∫
· · ·

∫
−∞

β
i
i∫

0

h(ω)dω

= ci(Hi(α
i − αi)−Hi(β

i)) + ci(Hi(β
i
)−Hi(0))

= ciHi(α
i − αi) + ci(1−Hi(0))

Hence ∂F (αi)
∂zi

≥ 0 if condition (37) holds.

Due to the strict convexity of F (z) on A ⊆ A−B there exists then a unique value

for the component zi such that ∂F (z̃)
∂zi

= 0 for all z̃ ∈ A with z̃i = zi. Taking into

account the separability of f and that the ωi are not correlated this implies that

the point z∗ ∈ A with z∗i = zi, i = 1, ..., n is the unique minimum of F (z).

The following examples underline the statements of Theorems 3 and 4.

Example 3. Consider the original function f : RI 1 → RI 1 with

f(z) =


−z − 3, z < −3

0, z ∈ A = [−3, 3]

z − 3 z > 3

This means that α = −α = −3 and α = α = 3. Assume that the decision variable

z ∈ RI 1 is perturbed by a random variable ω ∈ RI 1 with a density function

h(ω) =

 1
2β

(−ω
β

+ 1), ω ∈ B = [−β, β]

0, ω /∈ B

such that β = −β and β = β.
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a) The parameter β = 5 ∈ [α, 2α] satisfies the assumptions of Theorem 3.

Then

F (z) =



−4
3
− z, z < −8

1
10

(
1
30

z3 + 4
5
z2 − 18

5
z + 56

15

)
, z ∈ [−8,−2)

1
10

(
1
15

z3 + z2 − 16
5
z + 4

)
, z ∈ [−2, 2)

1
10

(
1
30

z3 + 1
5
z2 + 2

5
z + 4

15

)
, z ∈ [2, 8)

z − 14
3
, z ≥ 8

and the unique minimum z∗P of this function is z∗P = −5 +
√

41 = 1.40 with

F (z∗P ) = 0.17. In this case z∗P ∈ A. (See Figure 2 a).)

b) The parameter β = 8 violates condition (27) of Theorem 3. However, the

conditions (35), (37) of Theorem 4 are satisfied.

The unique minimum of the perturbed function F (y) = EI ωf(y + ω) can

then be determined as y∗P = −8 +
√

119 = 2.908 with F (y∗P ) = 0.905. Also

here y∗P ∈ A.

c) Finally, assume that β = 9. For this parameter both condition (27) of

Theorem 3 and the conditions (35), (37) of Theorem 4 are violated. Here

the function F (z) = EI ωf(z+ω) has the unique minimum z∗P = −9+3
√

17 =

3.37 with F (z∗P ) = 1.21. Although z∗P ∈ A − B = [−12, 12] we find that

z∗P /∈ A = [−3, 3]. (See Figure 2 b).)

4 Constrained problem

Now we extend the analysis to the constrained optimisation problem

min f(z) (38)

z ∈ G = {z ∈ RI n : gj(z) ≤ 0, j = 1, ...,m}

If the decision variable z ∈ RI n is afflicted with uncertainty then this uncertainty

affects also the feasible area of the considered problem. Therefore the following
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Figure 2: Original and perturbed functions f(z) and F (z) in Example 3 a) with

β = 5 and c) with β = 9

perturbed optimisation problem is analysed

min F (z) = min EI ωf(z + ω) (39)

z ∈ H = {z ∈ RI n : hj(z) = EI ωgj(z + ω) ≤ 0, j = 1, ...,m}

We assume that the uncertainty is expressed by a random variable ω ∈ B ⊆ RI n

with an absolutely continuous density function h : B → RI 1 with convex and

compact support B.

Under the conditions stated in Theorem 2 the unconstrained function F (z) takes

on a unique minimum on A−B. In order to analyse effects of the perturbation on

the feasibility of this minimum we distinguish the minima of the unconstrained

and of the constrained problems.

Definition 7. We denote by z∗D and z∗P the minima of the unconstrained deter-

ministic and perturbed objective functions f(z) and F (z), respectively,

z∗D ∈ A = arg min
z

f(z)

z∗P = arg min
z

F (z)

and by z̃∗D and z̃∗P the minima of the constrained deterministic and perturbed

problems (38) and (39),

z̃∗D ∈ Ã = arg min
z
{f(z), z ∈ G}

z̃∗P = arg min
z
{F (z), z ∈ H}
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With these notations the feasibility of the unconstrained minima can be described

by their location with regard to the feasible sets of the deterministic and the

perturbed problems, respectively. The following cases can be distiguished:

(D1): A ⊆ G. All nonunique minima of the unconstrained function f(z) satisfy

the constraints G of the deterministic problem (38) such that Ã = A.

(D2): A 6⊆ G and A∩G 6= ∅. Some of the minima of f(z) are feasible, Ã = A∩G.

(D3): A∩G = ∅. None of the minima of f(z) satisfy the constraints G, Ã∩A = ∅.

(P1): z∗P ∈ H. The unique minimum of F (z) satisfies the constraints H of the

perturbed problem (39), z̃∗P = z∗P .

(P2): z∗P /∈ H. The minimum of F (z) does not satisfy the constraints H, z̃∗P 6= z∗P

In the following we study relationships between these cases. Utilising informa-

tion about the deterministic problem, we give statements about the feasibility

of the unique minimum z∗P of the perturbed function F (z) = EI ωf(z + ω). This

analysis is conducted under the assumption that the unique minimum z∗P of the

unconstrained function F (z) is element of A. Therefore we study the location of

A with respect to the feasible area H of the perturbed problem. Furthermore we

assume that EI ω = 0.

If the constraints gj are linear it can be proved that case (D1) implies (P1).

Theorem 5. Assume that

1. the constraints gj, j = 1, ...,m, of the deterministic problem (38) are linear,

2. A ⊆ G, i.e. all nonunique minima of the unconstrained function f(z) are

feasible for the deterministic problem (38) (case (D1)).

Then the minimum z∗P of the perturbed problem (39) is unique.

Proof. The linear constraints of the deterministic problem can be expressed by

G = {z ∈ RI n : Cz + B ≤ 0}
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Consequently, the feasible set of the perturbed problem is

H = {z ∈ RI n : EI ω{C(z + ω) + B} ≤ 0}

= {z ∈ RI n : Cz + B + CEI ω ≤ 0} = G (40)

Since z∗P ∈ A and A ⊆ G, the minimum z∗P is also feasible for the perturbed

problem (39). This characterises case (P1) and the perturbed problem has a

unique minimum z∗P = z∗P .

If the first assumption of the above theorem is relaxed then it can only be proved

that case (P1) follows from (D1) and not from (D2) or (D3). It may, however, be

possible that (D1) implies also (P2). This case is demonstrated in Example 4.

Theorem 6. Assume that

1. the constraints gj, j = 1, ...,m, of the deterministic problem (38) are convex,

2. A ⊆ H, i.e. all nonunique minima of the unconstrained unperturbed func-

tion f(z) satisfy the constraints of the perturbed problem (39),

3. in the perturbed problem (39) case (P1) is present.

Then the constraints gj were satisfied by all nonunique minima of the uncon-

strained function f , i.e. case (D1) was present in the original problem.

Proof. Due to the convexity of the constraints gj(z) Jensen’s inequality can be

applied. Then, since EI ω = 0,

gj(z) ≤ EI ωgj(z + ω) = hj(z)

for all j = 1, ...,m. This means that

H = {z : hj(z) ≤ 0, j = 1, ...,m}

⊆ {z : gj(z) ≤ 0, j = 1, ...,m} = G (41)

Case (P1) is characterised by z∗P ∈ A ⊆ H. Due to relation (41) A ⊆ H implies

A ⊆ G. Concluding, if in the perturbed problem case (P1) occurs then in the

deterministic formulation case (D1) was present.
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This means that cases (D2) and (D3) yield the constellation (P2), i.e. the unique

minimum z∗P of the unconstrained perturbed function F (z) does not satisfy the

perturbed constraints. The following example demonstrates that from case (D1)

also case (P2) may follow, for example when the deterministic problem (38) has

strictly convex constraints.

Example 4. Consider the deterministic optimisation problem

min
z

f(z)

g(z) = z2 − 13 ≤ 0

z ∈ RI 1

where

f(z) =


25(z + 3)2, z < −3

0, z ∈ A = [−3, 3]

(z − 3)2, z > 3

This means that A ⊂ G = {z ∈ R1 : g(z) ≤ 0}, i.e. case (D1) is present.

Assume that the perturbation ω is uniformly distributed on B = [−6, 6] such

that the perturbed optimisation problem is

min
z

F (z) = EI ωf(z + ω) (42)

h(z) = EI ωg(z + ω) = z2 − 1 ≤ 0

where

F (z) =



25(z + 3)2 + 300, z < −9

25
36

(3− z)3, z ∈ [−9,−3)

1
36

(25(3− z)3 + (3 + z)3), z ∈ [−3, 3)

1
36

(3 + z)3, z ∈ [3, 9)

(z − 3)2 + 12, z ≥ 9

The unique minimum of the function F (z) is z∗P = 2 with F (z∗P ) = 25/6 = 4.167.

However, this point does not satisfy the constraint h. This represents case (P2).

Taking into account the constraint h, problem (42) has the solution z∗P = 1 with

F (z∗P ) = 22/3 = 7.33.
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Only in the cases (D1) and (D2) the existence of nonunique minima in the de-

terministic problem (38) can be attributed directly to the convexity properties

of the objective function f(z). In case (D3) the nonunique minima of the un-

constrained function f(z) are not feasible. Consequently, the minima of the

constrained problem (38) are situated on the boundary of the feasible area G.

This is illustrated in Figure 3. Here the objective function f(z) is represented by

its contours L̃(e) = {z ∈ RI n : f(z) = e}. Then the solution of problem (38) is

e∗ = min{f(z), z ∈ G} = inf{q ∈ RI 1 : f(z) ≤ q, z ∈ G} (43)

If the active constraints of Problem (38) and the contour L̃(e∗) of the objective

function are linear they may coincide on a set Ã. Then obviously f(z̃∗D) = e∗ for

all z̃∗D ∈ Ã which means that problem (38) has nonunique minima represented by

the set Ã. The conditions of Theorem 1 ensure strict convexity of the function

F (z) on the set A−B. However, outside of A−B this function may be linear. If it

is additionally subject to linear constraints, the perturbed problem (39) may have

nonunique minima in the case (P2). This illustrates that the consideration of a

perturbation of the decision variable z may not always eliminate the nonunique

minima of the original deterministic problem. A further analysis of this situation,

however, requires more information about the exact location of the minimum z∗P

and in particular of the feasible set H in dependence on the perturbation and the

original functions. This necessitates a more detailed knowledge of the perturba-

tion as well as of the involved original functions. Such studies are only indirectly

connected with the convexity properties of the functions and therefore beyond

the scope of the present paper. Also a relaxation of the assumptions of Theorems

5 or 6 makes it more difficult to state conditions on the perturbation such that

the perturbed problem (39) has a unique minimum. Again a closer knowledge

of the deterministic functions and of the characteristics of the perturbation is

necessary.

5 Conclusions

We considered convex optimisation problems with nonunique minima and un-

certainty about the decision variables. Such a problem type can be found in
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Figure 3: Nonunique and unique minima in case (D3)

stochastic programming problems with a bilevel structure, for example agency

models. Our approach is aimed at establishing a third concept for the analysis of

bilevel programming problems with nonunique lower level optimal solutions, in

addition to the well-known concepts of optimistic and pessimistic formulations of

deterministic bilevel programming.

To begin with we analysed an unconstrained convex function f(z) with a set A

of nonunique minima. We stated conditions on the uncertainty ω such that the

perturbed function F (z) = EI ωf(z + ω) is strictly convex. Additionally we inves-

tigated conditions such that the function F (z) will have a unique minimum and

when this minimum is in the set A. In a next step we extended the analysis to

constrained optimisation problems. In this case the perturbation affects also the

feasible area of the considered problems. We specified several cases describing the

location of the minima of the unconstrained functions f(z) and F (z) in compar-

ison to the feasible sets. Relations between these cases in the deterministic and

the perturbed problems can be established under certain assumptions. A relax-

ation of the assumptions requires a better knowledge of the considered functions

in order to state conditions for unique minima. Further research should focus on

this problematic as well as on the case of nonunique minima on the boundary

of the feasible area. Also in this case conditions for a unique minimum of the

perturbed problem can be given only if the impact of the perturbation on the

feasibility of the minima can be evaluated more precisely.
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