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Abstract
Offshore jacket platforms are widely used for oil and as extraction as well as 
transportation in shallow to moderate water depth. Tubular cross-sectional elements 
are used to construct offshore platforms. Tubular cross sections impart higher 
resistance against hydrodynamic forces and have high torsional rigidity. During 
operation, the members can be partially or fully damaged due to lateral impacts. The 
lateral impacts can be due to ship collisions or through the impact of falling objects. 
The impact forces can weaken some members that influence the overall performance of 
the platform. This demonstrates an urgent need to develop a framework that can 
accurately forecast dent depth as well as dent angle of the affected members. This study 
investigates the use of an adaptive metaheuristics algorithm to provide automatic 
detection of denting damage in an offshore structure. The damage information 
includes dent depth and the dent angle. A model is developed in combination with the 
percentage of the dent depth of the damaged member and is used to assess the 
performance of the method. It demonstrates that small changes in stiffness of 
individual damaged bracing members are detectable from measurements of
global structural motion.
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1 INTRODUCTION

The steel jacket of an offshore structure can be designed with geometric variations in lateral brac-
ing. Several bracing patterns such as X, D, K, V, knee-braced type provide high horizontal stiffness,
ductility and redundancy to support the large gravity loads of production equipment placed on the
platform deck to resist large lateral loads from wave and seismic actions. Tubular braced mem-
bers are the primary structural elements used because their shapes provide high torsional rigidity
and the same buckling resistance in all directions. Because of their proximity to the waterline,
bracing members of the platform jackets can often fall prey to ship collisions. The inclined nature
of these members makes them exposed to the objects falling from the platform deck.

Attempting to diagnose local dent-damaged tubular lateral bracing members is often a diffi-
cult task for offshore engineers. The estimation of the reduction in strength and consequences
of the damage are important issues and can be assessed completely only if the information of the
precise local denting damage (dent depth and dent angle) on bracing members can be exactly
defined.1-3 The denting in tubular members is a common phenomenon for older offshore struc-
tures. The reasons are pitting due to corrosion, effects from equipment, accidents due to ship
collisions or dropping of heavy objects. Several methodologies and frameworks have been devel-
oped to identify the consequences due to dents in structural members. In some cases, researchers
provided additional suggestions to the existing guidelines. Subsea pipelines are susceptible to face
denting due to heaving lateral forces. The forces can be generated due to excavation equipment.
Karamanos and Andreadakis4 found that the presence of internal pressure influences the dent-
ing force significantly in the case of internally pressurized pipes. Cosham and Hopkins5 explored
burst strength and fatigue life for different types of dents. Burst strengths are not affected signif-
icantly by plain and smooth dents but will influence the overall fatigue life. Smooth dents along
with gauges are risky for both burst strength and fatigue life. They increase the fatigue damage
noticeably. Kinked dents are dangerous for longitudinal cyclic stresses. The internal pressures
reduce dent length but escalate the local deformations. In the context of fixed offshore platform,
finite element models have been developed and compared with the available denting test data.
Storheim and Amdahl6 suggested considering a wide variety of bows with higher vessel sizes
and different bow configurations in the design of offshore structures against accidental ship col-
lisions. The response characteristics of impact loading were presented. Cho et al7 identified the
consequences of the denting damage in tubular members in offshore structures and a relation-
ship between dent depth and denting force was established. The damaged part geometries are
illustrated mathematically for convenient beam-column analysis through proposing equations.
Cho et al8 demonstrated the response characteristics of impact loading in the context of tubular
members in maritime structures. Drop tests and statistical analysis were incorporated to esti-
mate the behavior from dynamic impact loading. The consequences of local denting and global
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bending were evaluated from both experimental and numerical results. Pacheo and Durkin9

found minor dent damages causes a major reduction of ultimate capacity. Li et al10 reported that
ship stiffness is important for impact analysis of offshore structures. Present guidelines11 under-
estimate the outcome due to shipside impacts. Structures may lose all strength and collapse due
to failure of a single member.12 If the location of damage occurs in members near the sea level,
the safety factor decreases significantly.13 On the contrary, the structures become unstable if
there is damage in the members close to the foundation.

Methods for direct damage detection include technology from the most conventional nonde-
structive tests (NDT) to high-tech three-dimensional (3D) laser scanning techniques. NDT does
not need a baseline and they can be carried out locally after the damage has been located. How-
ever, for large and complex offshore platforms, it is difficult to accurately identify using these NDT
techniques.14

Another approach is called the vibration-based damage identification technique. The tech-
nique involves the use of vibration time signals coming from acceleration sensors placed on the
structure. The modal parameters (e.g., natural frequencies, mode shapes, mode shape curvatures,
modal flexibility, modal strain energy, and damping ratios) can then be extracted from several
measured responses. The modal parameters are functions of the physical parameters (mass, stiff-
ness, and damping) hence existence of damage leads to changes in the modal properties of the
structure. Among these data types, natural frequencies and mode shapes are widely used to com-
bine with the feasibility of using flexibility matrix updated based, neural networks, fuzzy logic,
statistical process control to obtain the element stiffness reduction in the finite element method
(FEM) model of trusses, beams, and bridges.15-19 During that process, such local modifications
can indicate damage in the studied structure. In an attempt to integrate the FEM model updating
into a structural damage tracking process, researchers have investigated the application of meta-
heuristic and evolutionary algorithms in performing FEM model updating for structural damage
detection in 3D structures. For example, genetic and particle swarm optimization algorithms have
been combined to model the normal (undamaged) vibration condition of structures as data clus-
ters and then estimate a set of structural physical parameters (in the population that represents
a candidate solution) that specifies the actual structural damage condition based on the learned
clustered using the complementary pair of different nature-inspired optimization strategies. With
this technique, the damage detection problem is treated as an inverse optimization problem where
the unknown parameters of damage can be tuned automatically and accurately through the devi-
ation minimization the norm of the difference between normal and simulated damage natural
frequencies and mode shapes. Some other studies proposed well-known self-adaptive meta-
heuristic methods such as JADE, EGSA, PSO, sine cosine algorithm (SCA), CMAES, MARSHAL,
and Success-history-based adaptive differential evolution (SHADE) to improve the optimization
performance.20-26 Recently, Bureerat and Pholdee27 presented an adaptive SCA integrated with
differential evolution to further improve its performance. The proposed adaptive sine cosine
algorithm hybridized with differential evolution (ASCA-DE) algorithm is a more reliable method
in the simulation experiments compared with other well-known methods. This provides the pos-
sibility of hybridizing SCA with a differential evolution (DE) technique that is efficient for struc-
tural damage detection problems. A broad- ranging application and development of metaheuristic
optimizations in solving other engineering problems are demonstrated in previous studies.28-34

The goal of this study is to enhance dent damage detection of tubular jacket braced and
leg members through an adaptive optimization algorithm. By following back to the research
conducted previously, the ASCA-DE is adopted and combined with the parameter separation
technique to be called as ASCA-DE-ps. The ASCA-DE-ps is used to solve the objective function
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that addresses the optimization problem of dent-damaged offshore platform bracing to determine
the correct geometrical parameters of dents, namely, dent depth and dent angle. For a struc-
tural damage identification problem, the changes in natural frequencies and correlation index of
mode shapes from the FEM model of the intact and those measured from the dented structure
are employed to develop the objective function. The proposed framework is tested against other
well-established self-adaptive metaheuristics (MHs). The overall strong performance of the sug-
gested method is maintained even in the case when two local members dent differently in both
magnitude and directions.

2 OFFSHORE STRUCTURAL MODEL DESCRIPTION

2.1 Offshore platform

Offshore jacket platforms for oil and gas operation are deployed to conduct the adaptive meta-
heuristic analysis. It is adopted from Punurai et al35 for this study. Dynamic analyses of the
offshore structures are performed by using the FEM. Three-dimensional frame elements are
employed to model the structural members of the platform. The jacket structure is symmetrical
along both horizontal axes. The physical configurations of the jacket platform are demonstrated
in Figure 1.

The jacket consists of four legs to carry the topside about 2 500 000 kg for operations in a water
depth of 65.31 m as shown in Figure 2. Fixed support is adopted as a foundation system to simplify
the model. The topside is modeled as a top mass to distribute over the top of the jacket legs equally.
Only the jacket substructure is simplified to perform the optimization. The structural dimension
of the jacket structure at the seabed is 21.76× 21.76 m and at the top level is 8× 8 m. The majority
of the bracing systems in the jacket structures is the single brace to optimize the weight of struc-
tures except for the bottom elevation, in which K-bracing is used to compromise the connecting
angle between chord and brace members of more than 30◦ to avoid welding problems.

The platform is designed to carry the offshore environmental loading including wind, wave,
current, and payloads according to the design specifications.36 The structural members con-

(A) 3D view (B) Top view (C) Front view (D) Side view

F I G U R E 1 Configuration of steel jacket offshore platform in the different perspectives:
A, three-dimensional view. B, top view. C, front view. D, side view
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(A) Three dimensional figure (B) Elevation (C) Top view

F I G U R E 2 A, Three-dimensional figure. B, Elevation of jacket. C, Topside view of the jacket

T A B L E 1 Specifications of structural members of jacket platform

Group Element numbers Outside diameter (m) Thickness (m) Denting in element

G1 1 to 20 1.067 0.038 5, 10, 15 and 20

G2 21 to 28 0.457 0.010 No denting

G3 29 to 32 0.406 0.013 No denting

G4 33 to 44 0.356 0.010 No denting

G5 45 to 52 0.457 0.013 No denting

G6 53 to 60; 117 to 120 0.356 0.013 No denting

G7 61 to 68 0.406 0.016 No denting

G8 69 to 72 0.324 0.010 No denting

G9 73 to 80; 85 to 92 0.559 0.013 86, 88, 90 and 92

G10 81 to 84 0.559 0.019 No denting

G11 93 to 116 0.610 0.025 No denting

sist of 11 section members as listed in Table 1. Different types of members are shown using
different colors. All structural members have the same material properties as elastic modulus,
E = 205× 108 Pa, Poisson ratio ν = 0.3, steel density 7850 kg/m3. The member group specification
of offshore jacket structure is shown in Figure 3.

2.2 The dynamic analysis of offshore structure

Free vibration analysis is incorporated to determine the natural frequencies of the offshore struc-
tures. The governing dynamic equation for the free vibration of the structure can be expressed in
Equation (1).

ma + cv + ku = 0 (1)
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F I G U R E 3 Member group specifications of jacket platform

where, m is the mass matrix, a is acceleration vector, c is the damping matrix, v is velocity vector,
k is the stiffness matrix, and u is displacement vector. The mass matrix is developed following the
lump mass method37 and the stiffness matrix is derived using the direct stiffness method.37 For
finite element analysis, the eigenvalue analysis is applied to determine the natural modes of the
offshore structure. The formulation is given in Equation (2).

[k − 𝛚2
nm]𝝓n = 0 (2)

where 𝜔2 is the eigenvalue, which is associated with the natural frequency of the structures, 𝜔
rad/s, 𝜑 is the eigenvector, which demonstrates the mode shape of the structures. The calcula-
tion of the vibration response of the considered shallow water offshore platform is required for
the numerical calculation and damage identification scheme based on a modified metaheuris-
tic approach. To approximate the vibration response, a program written in MATLAB is used. For
the considered identification problem, a benchmark offshore platform described in Azad et al13

is used. The geometry and structural characteristics are taken as is from Punurai et al.28

2.3 Denting data and assumptions

The local damage in the members of jacket structures typically occurs due to accident scenar-
ios such as dropped objects or ship collisions. Structural health monitoring is significant to
maintain the safety condition of the platform. Subsequently, local damages are typically pre-
sented through the dented members. Three members of the jacket structure from two different
groups are assumed to be subjected to ship collisions. Member numbers 10 and 20 from G1
group and member number 88 from G9 group are the dented members. The vessel can impact
the jacket platform in two directions, either in a bow or starboard direction. The location of
dented members and impact directions are shown in Figure 4. Two members from the leg and
one bracing member are impacted in accordance with Figure 5. Denting can be defined as
the reduction of diameter from a single direction due to impact load according to the code of
practices.38
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F I G U R E 4 Ship collision and denting

F I G U R E 5 Denting of G1 and G9
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F I G U R E 6 Dented members with different angles

For this research, the dented sections of jacket structures are modeled using algorithms of
polygon geometry in MATLAB to estimate the sectional properties of the structural members such
as area, moment of inertia, and radius of gyration.

Examples of the dented section with different angles are demonstrated in Figure 6. In this
study, five different angles are adopted consisting: 0◦, 22.5◦, 30◦, 45◦, and 60◦. Thirty percent
denting is considered in this research. The member stiffness and cross-sectional property will be
changed except member mass. A single point of the dented section will affect the whole member
length and hence the cross-sectional property will be modified over the member’s length. The
angle of dent depth is not certain. It can occur in any direction. The denting angle can be different,
based on the direction of the vessel’s impact on the platform. These different directions can cause
different moments of inertia about the corresponding axes. The cross-sectional area remains the
same for any direction of dent depth. The cross-sectional area is only dependent on the dent depth,
while moment of inertia depends on both depth and direction of impact. The angles for denting
direction are also considered based on these phenomena in this study.

3 OPTIMIZATION PROBLEM OF OFFSHORE DENT
DETECTION AND NUMERICAL EXPERIMENT SETUP

In this work, vibration-based damage detection is presented for offshore health monitoring. The
main concept of such damage detection is that updated mechanical properties of a mathematical
model, such as a finite element model and the modal data of the model are first set to coincide with
the measured data. Damage of the structure is identified by detecting changes of those mechanical
properties. In this work, an optimization problem for offshore dent detection is posed to find
percentages of dent in element diameters (Pd) and impact angles (𝜃 ) which consequently lead to
changes in mechanical properties (cross-sectional areas, second moment of areas with respect to y
and z directions) and natural frequencies of the offshore structure, while the objective function is
to minimize root mean square error of natural frequencies and correlation index of mode shapes
between measured from the dented structure and the intact structure computed by using the finite
element model. The problem is expressed in Equation (3) as:

Min ∶ f(x) =

√√√√√∑nmode
j=1

(
1 − 𝜔j,damage

𝜔j,computed

)2

nmode
+

nmode∑
j=1

(1 −
√

macj)2

macj
(3)
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T A B L E 2 Natural frequency
frequencies of the dented and undented
structures (hz)

Mode Undented structure Dented structure

1 0.68 0.674

2 0.69 0.714

3 0.919 0.989

4 2.506 2.507

5 2.527 2.527

6 3.179 3.145

where 𝜔j, damage and 𝜔j, computed are the structural natural frequency of mode j obtained from a
dented structure and that from the finite element model, respectively. The variable nmodel is the
number of vibration modes used. The mac is a correlation index between mode shape from
the dented structure and that from the finite element model which can be calculated using
Equation (4) as:

macj =
|V′

damage × Vcomputed|
(Vdamage◦Vdamage) × (Vcomputed◦Vcomputed)

(4)

where Vdamage and Vcomputed are mode shapes obtained from a dented structure and that from
the finite element model, respectively. x is design variables including percentages of dent in
element diameters and impact angles (x= {Pd1, Pd2,… Pdn, 𝜃1, 𝜃2,… , 𝜃n}T). In this work, only
element numbers 5, 10, 15, 20, 86, 88, 90, and 92 which are located at the sea level are set to
have dent possibilities. Therefore, the total number of design variables is set to be 16 (eight for
percentages of dent and other eight for impact angles of the elements). The degrees or percent-
ages of dent (P) are set in a range of [0, 0.7] while the possible values for the impact angle are
{0, 22.5, 45}.

To investigate the search performance of optimization methods in solving the proposed opti-
mization problem of dent detection of the offshore structure, the percentages of dent in element
diameters and impact angles are predefined, while natural frequencies are simulated employing
finite element analysis instead of using real measured data. The percentages of dent in element
diameters and impact angles are set as 0.3% of dent at elements 10, 20, and 88 with impact angles
of 0◦, 22.5◦, and 45◦, respectively. The natural frequencies for the first six modes of the dented
and undented structures are shown in Table 2.

4 ASCA-DE AND THE PROPOSED ASCA-DE-PS
TECHNIQUE

The SCA is a population-based optimization method proposed by Mirjalili.23 The algorithm con-
tains three main steps include an initialization phase, a reproduction phase, and a selection phase,
where the reproduction phase can be performed based on sine and cosine functions. Given a cur-
rent population having NP members X= {x1, x2,… , xNP}T, an element of a solution vector for the
next generation can be calculated as follows:

xnew,k =

{
xold,k + r1 sin(r2)|r3xbest,k − xold,k|, if r4 < 0.5,
xold,k + r1 cos(r2)|r3xbest,k − xold,k|, otherwise

(5)
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where xbest,k is the kth matrix element of the current best solution. The variables r2, r3, and r4 are
random parameters in the ranges of [0, 2π], [0, 2], and [0, 1], respectively. The variable r1 is an
iterative adaption parameter,

r1 = a − T a
Tmax

(6)

where a is a constant parameter while T is an iteration number. Tmax is the maximum number of
iterations.

The search process of SCA starts with generating an initial population at random, and then
calculating their objective function values where the best solution is found. The new popula-
tion for the next generation is generated using Equation (5) and the objective function values
of its members are calculated. The current best will be compared with the best solution of the
newly generated population and the better one is saved to the next generation. The process is
repeated until a termination criterion is met. The computational steps of SCA are shown in
Algorithm 1.

Algorithm 1 Sine Cosine Algorithm

Input: population size (Np), number of generations (Tmax), number of design variable (D)
Output: xbest, f best
Main algorithm
1: Initialize a population and set as the current population.
2: Find the best solution (xbest)
3: For T=1 to Tmax
4: Calculate parameter r1 using Equation (6)
5: For l= 1 to Np
6: For k = 1 to D
7: Generate the parameter r2, r3, and r4
8: Update the kth element of the lth population (xl) using Equation (5)
9: End For
10: End For
11: Calculate objective function values of the newly generated popula-
tion and find the best ones (xbest,new) using Equation (5)
12: Replace xbest by xbest,new if f (xbest,new) < f (xbest)
13: End

The adaptive SCA with integration of DE mutation was proposed by Bureerat and Pholdee.27

In the algorithm, the DE mutation operator as used in Pholdee and Bureerat32 is integrated into
the updating operation. The mutation equation is detailed as shown in Equation (7).

xnew = xbest + rand(−1,+1)F(xr,1 + xr,2 − xr,3 − xr,4) (7)

where rand (−1, 1) gives either −1 or 1 with equal probability. F is a scaling factor while xr,1–xr,4
are four solutions randomly selected from the population.

At the ASCA-DE updating operation, if a generated uniform random number in the interval
[0,1] is lower than a probability value (rand < PDE), the population will be updated using the
SCA updating scheme based on Equation (5), otherwise, the population will be updated by DE
mutation as detailed in Equation (7).
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The term of self-adaption of the proposed algorithm is accomplished in such a way that the
parameters r2, r3, and F are regenerated for each calculation based on the information from the
previous iteration. For each calculation, r2 and r3 are generated based on normally distributed
random numbers with mean values, r2m and r3m, respectively, and standard deviation values,
SD= 0.1, for both r2 and r3. The values of r2m and r3m are iteratively adapted based on the following
Equations (8) and (9).

r2m(T + 1) = 0.9 r2m(T) + 0.1 mean(good r2m), (8)

and,

r3m(T + 1) = 0.9 r3m(T) + 0.1 mean(good r3m), (9)

where mean (goodr2m) and mean (goodr3m) are the mean values of all values of r2 and r3 used
in the current iteration that lead to successful updates. The successful update means the created
offspring is better than its parent from the previous iteration. In addition, for each calculation,
the scaling factor F is generated by Cauchy distribution randomization with the mean value Fm
and SD value of 0.1.27 The Fm is iteratively adapted using the Lehmer mean defined as shown in
the following Equation (10).

Fm(T + 1) = 0.9Fm(T) + 0.1
sum(good2

F)
sum(goodF)

(10)

where goodF is a tray of all F used in the current iteration with successful updates.
The parameter PDE is also regenerated in a similar fashion to r2 and r3 before updating a

population. For an individual solution, the PDE is generated by normal distribution randomizing
with the mean value of PDEm and SD of 0.1. PDEm is iteratively adapted based on the following
Equation (11).

PDEm(T + 1) = 0.9 PDEm(T) + 0.1 mean (good PDEm) (11)

where goodPDE means all PDE values used in the current iteration with successful updates. It
should be note that the SD use in each parameter adaption process is set to be 0.1 based on the
successful record from the previous study.26

The search process of ASCA-DE starts with initializing a population, r2m, r3m, Fm, and
PDEm. The goodr2m, goodr3m, goodF, and goodPDE trays are empty initially. After having calcu-
lated objective function values, the current best solution will be obtained. To firstly update
a population, PDE is defined and a uniform random number in [0,1] is generated. If the
generated random number is lower than PDE, a scaling factor (F) is generated based on
Fm and a new solution is created using Equation (7), otherwise, a new solution is gen-
erated based on Equation (5). For each calculation of Equation (5), r2 and r3 are gener-
ated based on r2m and r3m. If a newly generated solution is better than its parent, the
new solution will be selected for the next generation while saving all used parameters PDE,
r2, r3, and F into the goodPDE, goodr2m, goodr3m, and goodF trays, respectively. Then, r2m,
r3m, Fm, and PDEm are updated using Equations (8) to (11). The search process is repeated
until a termination criterion is reached. The computational steps of ASCA-DE are shown in
Algorithm 2.
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Algorithm 2 ASCA-DE
Input: population size (Np), number of generations (Tmax), number of design variable (D)
Output: xbest, f best
Main algorithm
1: Initialize a population, r2m, r3m, Fm, and PDEm.
2: Find the best solution (xbest)
3: For T=1 to Tmax
4: Calculate parameter r1 using Equation (6)
5: Empty goodr2m, goodr3m, goodF, and goodPDE
5: For l=1 to Np
6: Generate PDE by normal distribution random with
mean values PDEm and SD =0.1
7: IF rand< PDE
8: Generate F by Cauchy distribution random
with mean value Fm and SD = 0.1
9: Updated a population using Equation (7)
10: Else
11: For k = 1 to D
12: Generate the parameter r2 and r3 by normal
distribution random with mean values r2m, r3m, and SD = 0.1
13: Random generate r4 in rank [0, 1]
14: Update the kth element of the lth population (xl) using Equation (5)
15: End For
16: End IF
17: Calculate objective function values of the newly generated population
18: IF f (xl,new) < f(xl,old)
19: Replace xl,old by xl,new
20: Add all generated r2, r3, F, and PDE, into the goodr2m, goodr3m, goodF and goodPDE
tray, respectively.
21: End IF
22: End For
23: Find the best solution (xbest)
24: Update r2m, r3m, Fm, and PDEm using Equation (8) to (11)
25: End

To increase the searching performance of the ASCA-DE in solving such a problem, a parame-
ter separation technique is applied to the original ASCA-DE, denoted as ASCA-DE-ps. The search
process of ASCA-DE-ps can be carried out based on a simple concept that the optimization search
process of the original ASCA-DE is divided into two steps. In the first step, the original ASCA-DE
is used to find only percentages of dents while the set of dent angle variables is fixed to be 0.
After obtaining the optimum results from the first step, the original ASCA is applied again to find
the dent angles while the percentages of dent are fixed to be the best-obtained values from the
first step. Moreover, only the elements having percentages of dent higher than 1 are allowed to
be the values of dent angles. This means that the design variables in the second step are equal
to the number of elements which are found to have the percentages of dent from the previous
calculation.
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Algorithm 3 ASCA-DE-ps

Input: population size (Np), number of generations (Tmax), number of design variable (D)
Output: xbest, f best
Main algorithm
1: Set the design variables as x= {Pd1, Pd2,…Pd,n}T while the design variables of {𝜃1, 𝜃2,… , 𝜃n}
are set to be 0.
2: Applied ASCA-DE to find x= {Pd1, Pd2,…Pd,n}T which minimizing the Equation (3)
3: Set the design variables as x= {𝜃1, 𝜃2,… , 𝜃n}T while the design variables of {Pd1, Pd2,…Pd,n}
are set based on xbest obtained from step 2.
4: Applied ASCA-DE to find x= {𝜃1, 𝜃2,… , 𝜃n}T which minimizing the Equation (3)
5: End

5 PERFORMANCE ASSESSMENT

To investigate the performance, the proposed technique along with six other well-established,
self-adaptive MHs, the proposed technique is used to solve the optimization problem for offshore
dent detection as detailed above. The MHs (details of notations can be found in the corresponding
references of the methods) include:

• JADE.20

• SHADE.26

• SHADE with linear population size reduction (LSHADE).26

• SCA (Algorithm 1).23

• ASCA-DE, Algorithm 2.27

• SCA-ps (Algorithm 3) which replaces the ASCA-DE in step 2 and step 4 by SCA.
• ASCA-DE-ps (Algorithm 3).

Each optimizer is used to solve the offshore structure dent detection problem for 5 optimiza-
tion runs. The population size is set to be 50 whereas the number of iterations is set to be 1000.
All methods will be terminated with two criteria: the maximum numbers of functions evaluation
as 50 × 1000, and the objective function value being less than or equal to 1 × 10−31. Six vibration
modes are used for calculating the objective function.

6 RESULTS AND DISCUSSIONS

After performing 5 optimization runs of the various self-adaptive MHs for solving the proposed
problem, the results are shown in Table 3. The mean and SD of the objective function are used to
measure the algorithm rate of convergence and consistency in cases in which the objective func-
tion threshold (1× 10−31) is not reached during searching. Otherwise, the mean number of FEs
and the number of successful runs out of 5 runs are used to measure the search convergence
and consistency. The algorithm that is terminated by the objective function threshold is obviously
superior and any run being stopped with this criterion is considered a successful run.27
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T A B L E 3 Numerical results obtained by the state of the art metaheuristics on dent detection problem

MHs
Mean
objective

SD
objective

Min
objective

Max
objective Mean FEs Successful runs

SCA 3.93E-06 5.27E-06 3.6E-08 9.8E-06 50 000 0

ASCA-DE 6.43E-07 1.44E-06 6.0E-23 3.2E-06 50 000 0

LSHADE 0.004667 0.004265 2.5E-04 1.2E-02 50 000 0

JADE 0.00413 0.000206 3.8E-03 4.2E-03 50 000 0

SHADE 0.005569 0.003515 3.8E-03 1.2E-02 50 000 0

ASCA-DE-ps 0 0 0 0 25 050 5

SCA-ps 6.01E-06 6.36E-06 1.9E-20 1.26E-05 50 000 0

Abbreviations: ASCA-DE, adaptive sine cosine algorithm hybridized with differential evolution; ASCA-DE-ps, ASCA-DE
combined with the parameter separation; FE, finite element; JADE, adaptive differential evolution; LSHADE, SHADE
with linear population size reduction; MHs, metaheuristics; SCA, sine cosine algorithm; SCA-ps, sine cosine algorithm
with parameter separation; SHADE, success-history-based adaptive differential evolution.

T A B L E 4 Statistical Wilcoxon rank sum test

Optimizers SCA ASCA-DE LSHADE JADE SHADE ASCA-DE-ps SCA-ps

SCA 0 0 0 0 0 1 0

ASCA-DE 0 0 0 0 0 1 0

LSHADE 1 1 0 0 0 1 1

JADE 1 1 0 0 0 1 1

SHADE 1 1 0 0 0 1 1

ASCA-DE-ps 0 0 0 0 0 0 0

SCA-ps 0 1 0 0 0 1 0

Sum 3 4 0 0 0 6 3

Ranking 3 2 5 5 5 1 3

Abbreviations: ASCA-DE, adaptive sine cosine algorithm hybridized with differential evolution; ASCA-DE-ps, ASCA-DE
combined with the parameter separation; JADE, adaptive differential evolution; LSHADE, SHADE with linear population
size reduction; SCA, sine cosine algorithm; SCA-ps, sine cosine algorithm with parameter separation; SHADE,
success-history-based adaptive differential evolution.

From Table 3, the best performer based on mean objective function values is ASCA-DE-ps
while the second and the third best algorithms are ASCA-DE and SCA, respectively. When con-
sidering the number of successful runs, ASCA-DE-ps is said to be the most efficient optimizer
which can detect the dent and impact angles accurately from totally 5 optimization runs with the
average of 25 050 function evaluations.

In addition, the ranking of the MH optimizers was made based upon the statistical Wilcoxon
rank sum test33 as shown in Table 4. Since there are seven MHs implemented, a comparison
matrix sized 7× 7 whose elements are full of zeros is initially generated. The null hypothesis for
the Wilcoxon rank sum test is that, for the optimization problem, the median of five objective
function values obtained from method I is not different from the median of five objective func-
tion values obtained from using method J at the 5% significance level. If the null hypothesis is
rejected and the median from method J is lower, the element IJ of the matrix is set to be “1.” After
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T A B L E 5 The results on finding the percentages of dent and impact angles obtained from all MHs
Element
number

Simulated
dent SCA ASCA-DE LSHADE JADE SHADE ASCA-DE-ps SCA-ps

10 0.3 0.3098 0.3000 0.7000 0.7000 0.7000 0.3000 0.3112

20 0.3 0.2965 0.3000 0.2393 0.5387 0.5387 0.3000 0.3009

88 0.3 0.2929 0.3000 0.1563 0.7000 0.7000 0.3000 0.2836

5 0 0.0000 0.0002 0.7000 0.7000 0.7000 0.0009 0

15 0 0.0000 0.0000 0.0005 0.7000 0.7000 0 0

86 0 0.0000 0.0007 0.2553 0.0051 0.0004 0.0003 0

90 0 0.0000 0.0000 0.0079 0.0100 0.0037 0 0

92 0 0.0000 0.0003 0.0002 0.0012 0.0001 0 0

Simulated impact angle

10 0 0 45 0 0 45 0 22.5

20 22.5 0 45 45 22.5 45 22.50 0

88 45 0 0 0 22.5 45 45.00 22.5

5 — 45 0 22.5 45 22.5 0 0

15 — 0 45 45 22.5 45 0 0

86 — 0 0 22.5 22.5 45 0 0

90 — 0 0 0 45 0 0 0

92 — 0 0 0 45 45 0 0

Abbreviations: ASCA-DE, adaptive sine cosine algorithm hybridized with differential evolution; ASCA-DE-ps, ASCA-DE
combined with the parameter separation; FE, finite element; JADE, adaptive differential evolution; LSHADE, SHADE with
linear population size reduction; MHs, metaheuristics; SCA, sine cosine algorithm; SCA-ps, sine cosine algorithm with
parameter separation; SHADE, success-history-based adaptive differential evolution.

summing up all values in the matrix columns, the best optimizer is the one that has the high-
est score. The summation and the ranking are also given in the table. Based on this assessment,
the best performer is still ASCA-DE-ps while the second best is ASCA-DE. The SCA and SCA-ps
algorithms have the same ranking which is the third best while LSHADE, JADE and SHADE
also have the same ranking as the fifth best. This implies that there is no significant difference
between SCA and SCA-ps and there is also no significant difference between LSHADE, JADE,
and SHADE.

Table 5 shows the best results on finding the percentages of dent and impact angles obtained
from all optimizers while Figure 7 shows their search history. From Table 4, ASCA-DE-ps can
correctly detect both the percentages of dents and impact angles, while ASCA-DE, SCA, and
SCA-ps can correctly detect both the percentages of dents in the offshore structure. The oth-
ers failed to achieve such results. The search history from Figure 7A shows that there are two
groups of optimizers. The first group converged to approximately 0.005 while the other group
converged to the desired value that is near zero. When zooming into the figure as shown in
Figure 7B, the optimizers which converged to approximately 0 are SCA, ASCA-DE, ASCA-DE-ps,
and SCA-ps.

Overall, it was found that ASCA-DE-ps is the most efficient optimizer for solving the
proposed problem. The self-adaptive scheme is said to be advantageous as it requires no
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(A)

(B)

F I G U R E 7 Search
histories of ASCA-DE-ps as
the best found objective
function vs number of
function evaluations A,
Overall. B, Zoom in

optimization parameter settings, and results in increased convergence speed. Applying a
parameter separation technique into the algorithms leads to increase in search perfor-
mance. The application of the technique on a case study cannot provide reliable infor-
mation about the broader problem, but it would be useful in the preliminary stages of
an investigation. More should be tested systematically with a larger number of cases.
Conclusion on advantages and disadvantages of the proposed ASCA-DE-ps is provided in
Table 6.
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T A B L E 6 Conclusion on advantage and disadvantaged of the proposed ASCA-DE-ps

Advantage Disadvantage

No optimization parameter settings
required.

Using successive history-based self-adaption may
reduce the algorithm search exploration.

High convergence rate for the proposed
problem.

High consistency for the proposed problem. The performance may not guarantee for other
optimization problems having higher number of
design variables, highly nonlinear, and nonconvex.

High accuracy for the proposed problem
which is an inverse optimization
problem.

7 CONCLUSION

This paper describes the implementation of a new strategy for the optimizer incorporated with FE
model updating used for finding the percentages of dents and impact angles of offshore platform
members. The proposed method applied to the model test structure and is particular effective
in the case of localization of dent damage occurring simultaneously in jacket legs and diagonal
braces after impacts or ship collisions. Moreover, good results are obtained with accuracy and
lower computational time. Further, research is planned to extend the proposed ASCA-DE-ps with
additional assumptions for the probability density function of variables and considers its use for
practical deteriorating systems imposed uncertainties. In addition, taking into account the noisy
environment and the absence of complete mode shapes would confirm the reliability and valid-
ity of the proposed technique for future structural health monitoring and damage localization
activities in offshore and wind turbine structures.
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