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a b s t r a c t

Several applications rely on data assimilation methods for complex spatio-temporal problems. The focus of this 
paper is on ensemble-based methods, where some approaches require estimation of covariances between 
state variables and observations in the as-similation step. Spurious correlations present a challenge in such 
cases as they can degrade the quality of the ensemble represen-tation of probability distributions. In 
particular, prediction vari-ability is often underestimated. We propose to replace the sample covariance 
estimate by a parametric approach using maximum likelihood estimation for a small number of parameters in 
a spatial covariance model. Parametric covariance and precision estimation are employed in the context of the 
ensemble Kalman filter, and applied to a Gauss-linear autoregressive model and a geological process model. 
We learn that parametric approaches reduce the underestimation in prediction variability. Furthermore rich, 
non-stationary models do not seem to add much over simpler models with fewer parameters.

1. Introduction

The ensemble Kalman filter (EnKF) is a popular Monte Carlo method for sequential data assim-
ilation in complex systems (Evensen, 2009a). At each step of this approach, Monte Carlo samples, 
also called ensemble members, are first forecasted using the forward model and then updated with 
respect to data. The update step of the EnKF is based on covariances between forecast variables and 
data, the updated ensemble members being linear combinations of the forecast ensemble members
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with weights determined by estimated covariances. Empirical covariance matrices are typically used
to specify the Kalman gain, i.e. the matrix of update weights. Although this empirical approach gives
unbiased estimates of covariances, the formulation tends to produce inaccurate state estimates, espe-
cially when the number of state variables is much larger than theMonte Carlo sample size (Furrer and
Bengtsson, 2007; Evensen, 2009b). The effect is undesired overfitting, and ensemble representations
produced by the standard EnKF typically underestimate variability (Sætrom and Omre, 2013).

Localization and inflation of the covariance are common remedies for reducing the underestima-
tion of variance in the EnKF (Furrer and Bengtsson, 2007; Asch et al., 2016). Hierarchical Bayes for-
mulations have also been considered as a means of stabilizing the EnKF matrix expressions (Myrseth
and Omre, 2010; Ueno and Nakamura, 2016; Tsyrulnikov and Rakitko, 2017; Stroud et al., 2018). In a
similar vein, penalization of the inverse covariancematrix has been used in various ways, for instance
by imposing a sparse neighborhood structure (Ueno and Tsuchiya, 2009) or by an ℓ1 norm penalty to
get a sparse graph structure (Hou et al., 2016).

Albeit promising in many applications of the EnKF, none of the mentioned approaches make
explicit use of the spatial elements seen in many application domains (Cressie and Wikle, 2011;
Katzfuss et al., 2016). In this paper we advocate stronger links between spatial statistics and EnKF
approaches to improve the properties of the analysis ensemble. Our focus is to use Gaussian random
field models and spatial covariance functions in the specification of covariances entering in the
Kalman gain. Within this framework we apply maximum likelihood estimation to specify covariance
parameters. This geostatistical approach means that only a small number of covariance parameters
must be estimated on the basis of the ensemble, reducing the risk of overfitting and giving less
underestimation of prediction variability. Ueno et al. (2010) used likelihood analysis within the
EnKF for estimation of parameters in the measurement model. Similarly, Ueno and Nakamura (2016)
and Stroud et al. (2018) used a Bayesian formulation for parameter estimation. Our approach is
different in that we embed the forecast ensemble in a Gaussian process framework, and estimate
the parameters of that approximation to the forecast distribution.

Many applications for which the EnKF has turned out to be useful are characterized by complex
dynamical behavior giving rise to non-stationarity. Irregular data sampling design can also lead to
non-stationarity because some regions are densely sampled while others are hardly informed by data
at all. A parametric approach must accommodate these aspects in a realistic manner, and we explore
how a trade off between model flexibility and complexity is sought.

In Section 2 we describe the ideas underlying linear updating of an ensemble in a static situation.
In Section 3 we extend this to a dynamic state-space model, using parametric covariance or precision
matrices in the EnKF update. In Sections 4 and 5 we study the performance of the suggested
approaches on a linear model and on an example from geology.

2. Approximate linear posterior sampling

Here we describe the underlying idea of posterior sampling with linear conditioning to data,
considering a static situation. The time-dependent case is studied in Section 3.

2.1. Notation and assumptions

Let x = (x1, . . . , xn)′ denote the uncertain variables of interest, and p(x) the prior probability
density function of x. The size n of the target vector is in our case equal to the number of grid cells in
a discretized spatial domain, typically in the order of 105 or higher. We assume, as is often the case
for numerical simulations of physical systems, that it is comparatively easy to generate samples from
p(x), but that density evaluation is difficult or infeasible. The prior ensemble consists of B independent,
equally likely realizations

{x1,f , . . . , xB,f }. (1)

The superscript f denotes forecast in this context. In applications involving computer-intensive
numerical simulations, the ensemble size B is usually on the order of 10 to 100 because of limitations
in computing resources (processing and memory).
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The data are denoted by y = (y1, . . . , ym)′. In our context we use the common linear and Gaussian
likelihood model; p(y|x) = Normal(Gx, T ). The posterior distribution of the target vector x, given
the data y, is defined by p(x|y) ∝ p(x)p(y|x). We consider approaches that construct a posterior
ensemble

{x1,a, . . . , xB,a}, (2)

of equallyweighted realizations, approximately representative of the posterior p(x|y). The superscript
a denotes analysis or assimilated.

2.2. Simulation and linear updating

When the prior is represented by a forecast ensemble (1) it is possible, in principle, to use the
likelihood p(y|xb,f ) to re-weight the prior samples and get a posterior representation. However,
methods going in this direction, such as the particle filter (Doucet et al., 2000), tend to place all weight
on one ensemble member in high-dimensional settings (Snyder et al., 2008). Hence, practical use of
these approaches is limited. One can try to reduce the data dimension in various ways, for instance by
conditioning only on some summary of the data as in approximate Bayesian computation (Beaumont,
2010), but methods of this type typically require that a large number of proposed realizations be
generated, to the point of having a prohibitive computational cost in the kind of setting we are
envisioning. Nor is it clear how to construct viable summary statistics or acceptance criteria for large
spatial models.

We focus on approaches that use linear updating to construct the analysis ensemble (2). This class
of updating schemes correctly approximates the posterior distribution when the prior distribution
and likelihood are both Gaussian, andwhen the ensemble size tends to infinity.While no performance
guarantees can be given in the general case, for instance when assumptions of Gaussianity cannot be
justified, this approach has shown itself to be very useful in several applications (Asch et al., 2016).

The linear update means that approximate posterior samples are generated by

xb,a = xb,f + K̂ (y − yb), (3)

where K̂ is a weight matrix or gain that must be specified, and yb is a synthetic observation or
perturbed model equivalent given by

yb
= Gxb,f + ϵb, (4)

and the observation error realization ϵb is drawn from a zero-mean multivariate normal with
covariance matrix T . Underlying the update in (3) is the joint covariance

Cov
([

x
y

])
=

[
Σx Σx,y
Σy,x Σy

]
, (5)

from which the gain matrix K is defined as

K = Σx,yΣ
−1
y . (6)

When the model is correctly specified, the gain matrix in (6) is the optimal linear regression weight
for regressing the forecast state ensemble in (3) on the ensemble of synthetic observations in (4).
In practice, the optimal gain is unknown, and an estimated gain matrix K̂ is obtained from samples
xb,f and yb, b = 1, . . . , B. Since we assume that the likelihood model, including G and T , is known,
the ensemble is only used to estimate the prior covariance matrix Σ = Σx. The estimated gain then
becomes

K̂ = Σ̂x,yΣ̂
−1
y = Σ̂G ′(GΣ̂G ′

+ T )−1. (7)

We will also use of a formulation with the precision matrix Q = Σ−1, which sometimes has
a sparse (Markovian) structure. Moreover, for some models one can incorporate non-stationarity
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directly through the precision structure (Section 3.3). An algebraically equivalent formulation of the
assimilation step specified by (3), (4) and (6) is then[

Q̂ + G ′T−1G
]
(xb,a − xb,f ) = G ′T−1(y − yb). (8)

Computing the updated ensemble using this expression requires the solution of a system of linear
equations with coefficient matrices that are sparse in most cases.

2.3. Empirical and parametric covariance specification

An empirical or non-parametric estimate of the covariance based on the prior ensemble is

Σ̂ =
1
B

B∑
b=1

(xb,f − x̄f )(xb,f − x̄f )′, x̄f =
1
B

B∑
b=1

xb,f . (9)

When the dimension of x is large, compared with the sample size B, the empirical estimates of the
sample covariances are prone to large Monte Carlo errors (Furrer and Bengtsson, 2007; Sætrom and
Omre, 2011).

In a parametric approach, the covariance is defined by a few model parameters θ, and we use
Σθ to denote the covariance matrix controlled by this parameter vector. The parameters must be
chosen so that the resulting covariancematrix describes the simulation resultswell. Using a likelihood
function

l(θ) = l(θ; x1,f , . . . , xB,f ) (10)

for this purpose, the parameter estimate is

θ̂ = argmax
θ

l(θ). (11)

We assume that the likelihood is representative of a Gaussian process, where the mean is computed
directly from the ensemble. Moreover, the B ensemble members are assumed to be independent and
identically distributed, so that the likelihood is given by

l(θ) = −
B
2
log |Σθ| −

1
2

B∑
b=1

(xb,f − x̄f )′Σ−1
θ (xb,f − x̄f ). (12)

The parametric estimate of the covariance matrix Σ is then Σ̂ = Σ
θ̂
.

For common parametrizations of spatial dependence in Σθ , there are closed form expressions for
the derivatives of the likelihood (12), see e.g. Petersen et al. (2008). These are calculated at every
iteration of the optimization procedure. Parameter estimates typically converge after no more than 5
to 10 Fisher-scoring iterations,

θ̂ = θ̂ +

[
E

(
d2l(θ̂)
dθ2

)]−1
dl(θ̂)
dθ

. (13)

If derivatives are not available, other optimization schemes must be used, such as Nelder–Mead
search (Lagarias et al., 1998).

2.4. Illustrative spatial example

We compare the results of empirical and parametric covariance estimates for different sample
sizes (B = 100 and B = 1000). The spatial variable x is here represented on a regular 25 × 25 grid,
and entry xi represents the variable in grid cell i ∈ {1, . . . , 625}. The prior mean values are 0, and the
covariance model is stationary with variance σ 2

= 1 in all grid cells and an exponential correlation
function. DefiningD to be the 625× 625matrix of distances between all grid cells, the true covariance
matrix is Σ = σ 2 exp(−3D/η), where η = 10 indicates an effective correlation range of 10 grid cells.
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Table 1
Performance of different covariance specifications. Matrix norms are means of 100 
replicates, and parentheses represent the standard deviation of these.
B = 100 Kullback–Leibler Bhattacharyya Frobenius

emp 96000 (741) 558 (0.212) 63.3 (2.6)
emp, loc 113 (1.6) 26.2 (0.3) 88.1 (0.2)
par 0.01 (0.01) 0.002 (0.002) 4.54 (3.2)
semi-par 11.5 (0.9) 2.78 (0.2) 31.1 (1.4)

B = 1000 Kullback–Leibler Bhattacharyya Frobenius

emp 370 (2.7) 40.3 (0.2) 20.2 (0.8)
emp, loc 52.1 (0.07) 16 (0.07) 87 (0.02)
par 0.001 (0.001) 0.0004 (0.0003) 1.8 (1.3)
semi-par 5.6 (0.5) 1.36 (0.1) 13.6 (1.6)

We study covariance estimation performance using three criteria: Kullback–Leibler divergence,
Bhattacharyya distance and the Frobenius norm. For all these measures we compare the specified
covariance Σ̂ with the true covariance matrix Σ. For zero-mean multivariate Gaussian vectors, the
Kullback–Leibler divergenceDKL, Bhattacharyya distanceDB and Frobenius norm distanceDF between
Σ̂ and Σ are

DKL(Σ̂,Σ) =
1
2
[trace(Σ̂−1Σ) − n + log |Σ̂| − log |Σ|], (14)

DB(Σ̂,Σ) =
1
2
log |Σ̃| −

1
4
|log|Σ̂|−

1
4
log|Σ|, Σ̃ = [Σ + Σ̂]/2, (15)

DF(Σ̂,Σ) =

√
trace[(Σ̂ − Σ)(Σ̂ − Σ)′]. (16)

Results of the covariance estimation are presented in Table 1. The empirical estimate (emp) is poor
for all measures, even though the norms decrease when the sample size B is increased. When using
a localized version of the empirical approach (emp, loc), the performance is clearly improved from
the straightforward empirical covariance specification method, except for the Frobenius norm which
might carry some localization artifacts. Localization is here done by elementwise multiplication of
the estimated covariance matrix with a tapering matrix setting covariance entries beyond a 10-cell
range to 0. In Table 1 we further see that the parametric approach (par), which has the same form
as the generating mechanism in this case, is clearly the best for all norms. For a semi-parametric
approach (semi-par), the norms are smaller than for the localized empirical approach. In the semi-
parametric approach we set the diagonal entries of the covariance matrix from sample variances,
while a single exponential correlation decay parameter is estimated by maximizing the likelihood,
given the assigned variances. (See Section 3.) In summary, the results indicate that the empirical
approaches have very large Monte Carlo errors. They do not estimate Σ very well.

We next simulate data to study properties of the different covariance specification approaches
under linear data updating. Data are collected at all locations in the 25 × 25 grid, according to
y(si) = x(si) + N(0, τ 2), i = 1, . . . ,m = n = 625, with τ = 0.5. As every grid cell is observed, the
conditioning will not introduce significant non-stationarity, and apart from edge effects the posterior
covariancewill be stationary.We study the performance in terms of posteriormean square prediction
error (MSPE), ensemble coverage probabilities (CovPr) at the 80% nominal level and continuously
ranked probability score (CRPS), see e.g. Gneiting et al. (2007).

Table 2 summarizes the results. For all prediction measures, the fully parametric and semi-
parametric approaches give the best results. The localized empirical method is a little worse, but
much better than the straightforward empirical estimate. When the sample size increases, the latter
improves markedly, but for B = 1000 it is still not at the performance levels of the other approaches.
The poor performance of the empirical approach is largely due to sampling variability causing
erroneous covariances which are again influencing the linear updating. In particular, the coverage
probabilities of this empirical approach are very small at the 80% nominal level.



J. Skauvold and J. Eidsvik / Spatial Statistics 

Table 2
Performance of linear updating using different covariance specifications. The results are 
means of 500 replicates, and the parentheses represent the standard deviation of these.
B = 100 MSPE CovPr(80) CRPS

emp 0.372 (0.035) 32.3 (2.1) 0.241 (0.007)
emp, loc 0.263 (0.009) 76.7 (1.8) 0.209 (0.007)
par 0.245 (0.008) 79.2 (1.9) 0.197 (0.006)
semi-par 0.246 (0.008) 79.1 (1.9) 0.198 (0.006)

B = 1000 MSPE CovPr(80) CRPS

emp 0.252 (0.011) 72.7 (1.9) 0.216 (0.007)
emp, loc 0.2622 (0.008) 79.7 (1.7) 0.205 (0.006)
par 0.2470 (0.008) 80.0 (1.6) 0.198 (0.006)
semi-par 0.2471 (0.007) 80.0 (1.6) 0.198 (0.006)

Fig. 1. Coverage probabilities for different measurement noise levels in the data.

Fig. 1 shows the relationship between the coverage probabilities and the measurement noise
standard deviation τ .

The two parametric approaches are close to the nominal level of 80% for all noise levels, for
B = 100. The localized empirical specification also performswell, while the straightforward empirical
approach is very poor for small noise levels and only gradually goes towards the nominal level for
larger noise levels. It is not surprising that the deviation from the nominal coverage level gets smaller
for large measurement errors since the data has little influence on the update in that case. The very
low coverage (10%) for noise standard deviation 0.1 is more surprising. In fact, one might expect
the gain Σ(Σ + τ 2I)−1 to be close to the identity matrix, because the addition of τ 2 is negligible.
In this case, however, the Monte Carlo errors in the sample covariance matrix are too large relative
to τ 2.

Since the computing time is larger for the parametric approaches one could argue that for a fair
comparison a larger sample size should be used for the empirical approaches. Then again, typical
applications of linear updating have long evaluation times for the mechanism providing xb,f , b =

1, . . . , B, so the additional time spent on covariance estimation is negligible in comparison.
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3. Parametric covariance estimation in the EnKF

Herewe extend the parametric covariance estimation approach to dynamical systems.Webegin by
presenting some modeling and methodological assumptions. Then we describe the updating scheme
incorporating parametric covariance estimation. Finally we show how this scheme can be applied to
non-stationary models.

3.1. Assumptions

The state vector is denoted xt = (xt,1, . . . , xt,n)′, for time t = 0, 1, . . . ,N . Assuming a prior density
p(x0) at the initial step, the state evolves according to a dynamic model

xt = ft (xt−1, δt ), t = 1, . . . ,N, (17)

where δt is a noise term and the functional relationship defined by ft is known. In realistic situations,
this relationship is often obtained by forward integration of a system of differential equations.
Moreover, data at time t = 1, . . . ,N is denoted by yt = (yt,1, . . . , yt,m)′ and the likelihood model
is defined by

yt = Gtxt + ϵt , ϵt ∼ Normal(0, Tt ), t = 1, . . . ,N, (18)

where the design matrix Gt and covariance matrix Tt are known.
The goal of filtering is assessing the conditional density p(xt |y1, . . . , yt ), for times t = 1, . . . ,N .

Because of the non-linear relationship in (17), there is no closed form expression for the filtering
density. The EnKF sequentially computes and maintains an ensemble representation of the filtering
distribution at all times. Assimilation is accomplished by linear updates of ensemble members with
respect to observations. Starting from an analysis ensemble representation xb,at−1, b = 1, . . . , B, at the
previous time step, the EnKF iteration proceeds in two steps:

(i) Forecasting by advancing each ensemble member through time by forward integration of the
dynamical model,

xb,ft = f (xb,at−1, δ
b
t ), b = 1, . . . , B. (19)

(ii) Updating the ensemble members with respect to data, based on a linear relationship between
the two,

xb,at = xb,ft + K̂−1
t (yt − yb,f

t ) (20)

K̂t = Σ̂tG ′

t (GtΣ̂tG ′

t + Tt )−1. (21)

As in the static case described in Section 2, the Kalman gain relies on an estimate of the forecast
covariancematrixΣt = Cov(xt |y1, . . . , yt−1). The standard formulation of the EnKF uses the empirical
or non-parametric covariance matrix of the forecast ensemble for this purpose,

Σ̂t =
1
B

B∑
b=1

(xb,ft − x̄ft )(x
b,f
t − x̄ft )

′, x̄ft =
1
B

B∑
b=1

xb,ft . (22)

However, as was discussed in the previous section, this direct empirical estimate is prone to large
Monte Carlo errors. We proceed instead by describing parametric estimates of this covariancematrix,
or the associated precision matrix.

3.2. Parametric EnKF update

Denote a parametric specification of the forecast covariance by Σt = Σt,θt . As suggested in (11)
and (12), a parametric specification of the covariance is defined by Σt,θ̂t

where

θ̂t = argmax
θt

l(θt; x
1,f
t , . . . , x

B,f
t ). (23)
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Againwe assume this likelihood is that of a Gaussian process and, although therewill be coupling over
time because the Kalman gain is formed from ensemble-based covariance estimates, we proceed as if
the B ensemble members are independent and identically distributed. This means that the likelihood
is

l(θt ) = −
B
2
log |Σt,θt | −

1
2

B∑
b=1

(xb,ft − x̄ft )
′Σ

−1
t,θt (x

b,f
t − x̄ft ). (24)

In our formulation the parameters will vary over time. However, the change from one time point
to the next tends to be small, so we start the optimization of the likelihood using the estimate from
the previous time step. The actual maximization will depend on the functional form of the parametric
covariance model, and whether derivatives are available (see (13)).

Again, it can sometimes be useful to fit parameters of the precision matrix Qt,θt , rather than
working with the covariance matrix (see Section 3.3).

3.3. Choice of parametric models

Common spatial covariance functions include the spherical andMatern-type with the exponential
and the Gaussian as extreme cases (Cressie and Wikle, 2011). The exponential covariance function
was used in Section 2.4.

In the simplest, stationary model, the forecast variances Diag(Σt,θt ), are the same at all spatial
locations, and pairwise correlation depends only on distance and not on specific locations. This is
attractive from a computational point of view because there are only a few model parameters to
estimate. For instance, the exponential covariance function has one variance parameter and one
correlation decay parameter. Assuming that the target random field is stationary might be unrealistic
in situations where the dynamical model affects various parts of the domain differently. Also, sparse
data would lead to much smaller variance near data locations than far away, and possibly to a non-
stationary correlation decay.

Non-stationary models are more flexible and, in the context of data assimilation for non-linear
dynamical systems, arguably better suited at capturing relevant features of the spatio-temporal
process. The main challenge of building a non-stationary model is that there are several kinds of non-
stationarity. Which kind is useful for our situation? We discuss some approaches, and then pursue a
couple of them in more detail.

There are several popular non-stationary covariance models, e.g. Paciorek and Schervish (2006)
and Jun and Stein (2008). Various attempts have been made to impose structure in the spatial
domain or via spatially varying covariates (Neto et al., 2014; Parker et al., 2016). However, non-
stationary spatial models have been found to be relatively difficult to parameterize, mainly due
to the requirement that the fitted model must give positive definite covariance matrices for any
configuration of spatial sites. Another approach involves non-stationary modeling of the precision
matrix or inverse covariance matrix: Fuglstad et al. (2015a) used spatially dependent basis functions
to represent the precision structure. However, it has been difficult to estimate model parameters in
such rich model formulations, particularly when many basis functions are involved, and sometimes
much simpler parsimonious models perform equally well in practice (Fuglstad et al., 2015b).

The first non-stationary model we consider here is a semi-parametric approach where marginal
variances can differ between spatial locations, while the correlation structure is the same everywhere
(semi-par in Section 2.4), see also Asfaw and Omre (2016). Thismodel entails that the diagonal entries
σ̂ 2
t,1, . . . , σ̂

2
t,n of the forecast covariance matrix Σ̂t are specified empirically from the data,

σ̂ 2
t,i =

1
B

B∑
b=1

(xf ,bt,i − x̄ft,i)
2. (25)

Assuming a parametric spatial correlation function, the likelihood is maximized using fixed variances
as calculated in (25), meaning the likelihood is

l(θt ) = −
B
2
log |Σt,θt | −

1
2

B∑
b=1

(xb,ft − x̄ft )
′Σ

−1
t,θt (x

b,f
t − x̄ft ),
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Σt,θt = diag(σ̂t,1, . . . , σ̂t,n)Rt,θtdiag(σ̂t,1, . . . , σ̂t,n), (26)

where Rt,θt is the correlation matrix with unknown parameters, and diag(·) forms a diagonal matrix
of the vector input.

Another parametric model we consider here is based on a stochastic partial differential equation
(SPDE) formulation (Lindgren et al., 2011). Let∆ be the Laplacian operator, κ a model parameter and
W(s) a white noise spatial process, and define the process x(s) by

(κ2
−∆)α/2x(s) = W(s), s ∈ R2. (27)

Lindgren et al. (2011) showed how spatial discretization naturally connects the SPDE in (27) to
the precision matrix coefficients of the Gaussian Markov random field representation. The model
parameters κ and α are not directly interpretable like the marginal variance or correlation decay,
but Lindgren et al. (2011) showed closed-form relations between these parameters and variance,
correlation range and smoothness parameters for the Matern covariance function. Fuglstad et al.
(2015a) extended the SPDE in (27) to a non-stationary formulation,

(κ2(s) − ∇ · H(s)∇)α/2x(s) = W(s). (28)

Here, ∇ is the differential operator and the 2 × 2 matrix H(s) contains basis functions with location-
dependent covariates, giving non-stationarity. We present a particular parametrization for the geo-
logical example in Section 5, where the shape of a basis function is set on the basis of information
from the forecast ensemble.

With precision matrix Qt,θt , the likelihood equals

ℓ(θt ) =
B
2
log |Qt,θt | −

1
2

B∑
b=1

(xb,ft − x̄ft )
TQt,θt (x

b,f
t − x̄ft ). (29)

The maximum likelihood estimate of parameter θt is computed by optimizing (29). As stated
in Fuglstad et al. (2015a), the parametrization should not be too rich, as the optimization procedure
can be hampered by a difficult likelihood surface. Analytical expressions for log-likelihood derivatives
are available in some cases. However, for stability reasons, the numerical experiments of this paper
use the simplex method for derivative-free optimization.

4. Simulation study for linear dynamic model

In this part we extend the 25 × 25 grid example to an autoregressive case in the spatio-temporal
domain (Cressie and Wikle, 2011). As in Section 2.4, the Gaussian initial distribution has mean 0, a
covariance matrix Σ0 = Σ specifying a variance of 1 and an exponential covariance function with
effective correlation range η = 10 cells. The dynamic model is

xt (s) = φxt−1(s) + δt (s), δt ∼ N(0, (1 − φ2)Σ), t = 1, . . . , 10,

for all grid cells s. With this covariance structure for the additive noise terms, xt is a stationary spatial
process over time. In the experiments we set the autoregressive coefficient φ = 0.9.

The data gathering scheme is defined by sampling at m = 15 irregular sites, which are the same
at all 10 time steps. This sparse sampling scheme will induce non-stationarity in the covariance over
time. The measurement noise terms are independent with variance 0.52.

Estimation approaches are again compared in terms of MSPE, coverage probability and CRPS. We
consider two locations: Grid cell (2,13), which is far from data locations, and grid cell (18,13) which is
near data locations. Results for ensemble size B = 100 are shown in Table 3. These are averages over
500 replicates.

We notice that the straightforward empirical or non-parametric EnKF approach (emp) underes-
timates the variability in the prediction, especially for the cell far from data. Localization (emp, loc)
improves this coverage problem, but it seems to give larger MSPE than the other approaches for sites
far from data. The performance of the localized approach might be improved by tuning the tapering
matrix, but considering the results of a particular taper still gives a basis for comparisonwith the other
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Table 3
Performance of EnKF variants using B = 100 ensemble members. Results at time step 10 
in the autoregressive process.

Far from data — Cell (2,13) Near data — Cell (18,13)

MSPE CovPr(80) CRPS MSPE CovPr(80) CRPS

emp 1.93 65 0.62 0.23 74 0.20
emp, loc 1.94 79 0.55 0.23 78 0.19
par 1.89 80 0.54 0.27 78 0.21
semi-par 1.89 80 0.54 0.23 78 0.19

Fig. 2. Coverage probabilities for the grid cell far from data, plotted over time indices.

estimation methods. Perhaps surprisingly, the results of the simple parametric approach (par) are
rather good even for this sparse design, where the true covariance is non-stationary. For the cell near
data, however, its MSPE and CRPS are larger than those of the semi-parametric (semi-par) approach,
which has the overall best performance.

Fig. 2 shows the coverage probabilities (at the 80% nominal level) plotted against time indices.
All approaches are shown for the grid cell far from data. The probabilities are roughly constant over
time, except for the empirical approach where probabilities decline, likely due to the coupling of the
ensemblemembers in the estimation of the Kalman gain (SætromandOmre, 2013). This effect ismuch
smaller with localization and with parametric specification of the covariance parameters.

For this linear andGaussian dynamicalmodel, the optimal solution is provided by the Kalman filter,
and we next compare the filtering results at time step 10 with this solution. The Kalman filter results
are shown in Fig. 3, empirical EnKF results in Fig. 4, and semi-parametric EnKF results in Fig. 5.

The prediction obtained by the semi-parametric approach shows less small-scale variability than
the straightforward empirical solution, because of smaller Monte Carlo errors in the covariance
estimates. This smoothness makes the semi-parametric prediction more similar to the Kalman filter
result. Moreover, the empirical approach has smaller standard deviations on average, leading to the
low coverage probability in Table 3.

Fig. 6 shows the exact prediction covariance (solid) of this model at time step 10. This is plotted
for the grid cells near and far from data, with the horizontal axis giving distance measured towards
the south from each starting point. The covariance at distance 0 is much higher for the cell far from
data, but it is more difficult to detect differences in the rate of decay with distance. Along with the
exact calculation, the display shows the fitted prediction covariance using semi-parametric estimation
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Fig. 3. Prediction (left) and prediction standard deviation (right) of the Kalman filter, at time step 10.

Fig. 4. Prediction (left) and prediction standard deviation (right) of the standard empirical EnKF, at time step 10.

Fig. 5. Prediction (left) and prediction standard deviation (right) of the semi-parametric EnKF approach, at time step 10.

(dashed). There are random variations caused by the empirical variance estimates, but the covariance
decay appears similar to the Kalman filter results, indicating that non-stationarity in correlation is
moderate for this sampling design. This reasonably good fit in terms of covariance seems to account
for the good prediction efficiency of the semi-parametric approach.

5. Example: Geological process model

We now apply the EnKF with parametric covariance estimation to a non-linear data assimila-
tion problem from geology. The Geological Process Model (GPM) simulates erosion, transport and
deposition of clastic sediment on length scales of tens to hundreds of kilometres over millions of
years (Tetzlaff, 2005). In this case it is used to simulate sedimentation taking place in block F3 of
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Fig. 6. Prediction covariances in the south direction from two grid cells near and far from data locations, at time step 10. Exact
covariance (solid) and the fitted by the semi-parametric approach (dashed).

the Dutch sector of the North Sea between 5 and 3.5 million years ago, during the early to mid
Pliocene (Ogg et al., 2016).

Statistical inversion of geological process models has been studied by e.g. Charvin et al. (2009)
who used Markov chain Monte Carlo sampling and Skauvold and Eidsvik (2018) who used variants
of the EnKF and the ensemble smoother. The estimation task considered here is part of a larger data
assimilation problem. A more complete analysis would also track the sediment type composition or
grain size distribution in the layer structure, andmight additionally estimate changing environmental
controls on the sedimentation process, such as sea level and sediment supply. Wingate et al. (2016)
considered an event-based geological model trading off physical verisimilitude for computational
speed and convenience of conditioning, and took a probabilistic programming approach coupledwith
variational inference to condition this model to observations.

This geological inversion task is an atypical application of the EnKF because the observations,
being borehole measurements, were collected long after the sedimentation process had finished. In
the region of interest, sediment age is assumed to increase monotonically with depth, i.e. younger
layers are always found above older layers. Data in the form of measurements along a well trajectory
can therefore be regarded as a time series, which suggests that conditioning could be carried out
sequentially. Sequential conditioning procedures that halt the simulation at every time step to update
the intermediate state with respect to data are attractive because they tend to be more stable and
computationally efficient than approaches where the simulation is run to completion before data are
taken into account. For an example of sequential conditioning of a geological model to data, see the
method proposed by Parquer et al. (2017) to trace the developing morphology of meandering rivers
backwards in time starting from their present-day configuration.

5.1. Problem description and setup

Fig. 7 shows the rectangular model region, which measures 66 km in the East–West direction and
37 km in the North–South direction, discretized into a regular two-dimensional grid with a 0.5 km ×

0.5 km resolution, for a total of n = 9900 cells.
The 1.5 million year time interval covered by the simulation is discretized into 15 time steps of

100 000 years each, indexed by t = 0, 1, . . . , 15. The simulator takes as input the initial elevation of
the model region, i.e. the surface shown in Fig. 7. Sediment then accumulates on top of this surface
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Fig. 7. Overview of the modeled region. The rectangular boundary of the F3 block is indicated by the dashed, white lines. To
facilitate simulation of sediment influx the domain has been extended towards the north and east. Also included in the figure
are two well locations where the thickness of the accumulating layer package is observed, and the location of the 2D section in
Fig. 8, shown as a solid, white line.

Fig. 8. Two-dimensional section through estimated layer package at t = 15, showing internal structure. One new layer is
produced at the top of the stack every time step, leading to a strict chronological ordering with the oldest layers at the bottom.
The location of the section is shown in Fig. 7 as a solid, white line.

over time, producing a layered structurewhose thickness tends to increasemore or lessmonotonically
over time. Fig. 8 shows a 2D section through a simulated stack of 15 layers.

At time t the representation of the simulated layer package consists of t+1 layer boundary surfaces
zkt ∈ Rn, k = 0, 1, . . . , t . These correspond to the black curves in Fig. 8. The cumulative thickness of
all deposited sediment at time t is

xt = ztt − z0t , (30)

and this will be the variable of interest here.
Noisy observations of cumulative thickness are available at every time step at two sites in the F3

block domain:Well 1 near the western boundary of the block andWell 2 near the northern boundary.
These locations are shown in Fig. 7. For this example, the observations have been generated by running
the simulator with known input to produce a reference realization of zkt for k = 1, 2, . . . , t and
t = 1, 2, . . . ,N from which thicknesses were computed. Finally, Gaussian noise was added to the
reference thickness values.

The goal of the data assimilation exercise is now to estimate the entire thickness field xt at each
time t , given the noisy measurements y1, . . . , yt at the well locations. We solve this filtering problem
using three different versions of the EnKF: (a) EnKF using a semi-parametric covariance model with



J. Skauvold and J. Eidsvik / Spatial Statistics 

Fig. 9. Ensemble mean and standard deviation of top surface ztt at time t = 5 and t = 15 for three EnKF variants.

empirical variances and likelihood estimation of a single correlation decay parameter. (b) EnKFwith a
parametric representation of the precisionmatrix in the SPDE representation described in Section 3.3.
(c) Empirical or nonparametric standard EnKF approach. Each EnKF variant is run once with B = 50
ensemble members.

In the precision parametrization, a three-element parameter vector θ = (θ1, θ2, θ3)T is used to
specify H(s) and κ(s) in the non-stationary SPDE (28),

H(s) ≡ exp(θ1)I, κ(s) = exp(θ2) [1 + θ3ψ(s)] , (31)

where ψ(s) is obtained at every time step t by smoothing out the ensemble variance of xt and
normalizing the smoothed variance estimate so that maxs|ψ(s)| is equal to 1. In practice this leads
to basis functions with larger values near the shoreline, i.e. the intersection between the top layer and
the sea surface, as this is where the largest variances in thickness are found. An alternative way to
create such basis functions would be to compute the location of the shoreline explicitly, and calculate
the distance from every grid cell to the closest point on the shoreline.

This is a parsimonious parametrization of the precision structure, with only 3 parameters. Tests
with more complex basis functions either led to difficulties in the likelihood optimization, or yielded
prediction results that were very similar to those obtained using the simpler parametrization. This is
in line with the findings of Fuglstad et al. (2015b).

5.2. Filtering results

Fig. 9 shows estimates of the top surface ztt at t = 5 and t = 15 for the three EnKF variants.
While the estimated fields are rather similar between the three approaches, there are differences in
standard deviation. Relative to the empirical approach, the parametric estimates have both a higher
overall variance level, and a sharper transition between the high and low variability regions.
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Fig. 10. Ensemble estimates of cumulative thickness xt at time t = 0, 1, . . . , 15 at two locations in block F3. Left: Thickness at
location (15,5) which is close toWell 1. Right: Thickness at location (46,3) which in the southeast corner of the F3 block region,
moderately far away from both wells.

Fig. 10 shows how the filtering ensemble evolves from t = 1 to t = 15 in each case. This display
shows that the ensemble tracks the reference realization well in each case. The variability appears to
be smaller at all times for the empirical approach.

Fig. 11 shows the location-wise rank of the reference thickness relative to EnKF ensemble thick-
nesses at time t = 5 and t = 15. The brighter a cell is, the larger the reference value is relative to
the ensemble members at the location in question. Since the modeled field is spatially correlated,
aggregating ranks over the domain may be misleading. Still, for a well-calibrated filter one expects a
uniform distribution of ranks over the integers {1, 2, . . . , B, B + 1}. In the present case, however, we
find that all three filter variants are overdispersive, with almost no ranks below 15 or over 35, which
are the limits of the color ranges in Fig. 11. The rank plots of the two parametric filters have similar
patterns, with the highest ranks concentrated near the shoreline, in the region where the estimated
standard deviation is largest. This indicates that both parametric EnKF variants overestimate the
variance in the high-variability region. In the rank plots of the empirical filter we see a different
pattern, featuring large, contiguous regions of over- and underestimation. Furthermore, the rank plot
at t = 15 appears to retain some features of the earlier pattern. The rank patterns of the parametric
filters at t = 15 do not show clear traces of earlier patterns.
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Fig. 11. Rank of reference realization total thickness relative to ensemble total thickness at t = 5 and t = 15 for parametric
covariance, parametric precision and standard empirical EnKF variants. The strip of missing values along the northern and
eastern boundaries is due to all ensemble members being equal on this region.

6. Closing remarks

In this paper we have suggested some approaches for integratingmore spatial statistical modeling
in ensemble-based filtering methods. Parametrizing the covariance used in the update step of the
EnKF gave filter output with improved predictive performance. In particular, the underestimation of
variance that is often seen in EnKF predictions was reduced.

The parametric models used include simple stationary covariance models, and semi-parametric
models for the covariance or precision matrix structure. In judging the results, we noted that
parsimonious covariance structures did surprisingly well.

Applying the EnKFwith parametric covariance estimation to a data assimilation test case involving
a geological process model (Section 5), we found little difference between the results of using
an exponential covariance function specification and a GMRF precision matrix specification of the
correlation structure of the target random field. However, comparing these parametric filters with a
standard stochastic EnKF whose gain matrix is based on empirical sample covariance estimators, we
found clearer differences. In our non-linear test case, going from empirical to parametric covariance
estimation gave no obvious improvement in estimates of the overall level of variance, but did appear
to produce a less systematic pattern of bias in the estimated random field.

While introducing parametric estimation into a larger workflow can improve the quality of
estimates, we find that very simple parametrizations tend to be preferable to even slightly more
complex ones, as the flexibility gained by adding an extra parameter seldom makes up for the
added difficulty in estimation. Using non-stationary variance entries and single parameter correlation
sometimes improved results, while having complex precision structures led to difficult likelihood
surfaces, without always improving predictive power. This means that finding a useful parametric
model to embed in the EnKF update can be relatively easy, as one can bet on simplicity by choosing
an uncomplicated model. Even if increased flexibility gives a better description of the random field
being modeled, it does not follow that the estimates obtained under the more flexible model will be
better than ones obtained under the simpler model in terms of predictive ability.

None of the parametric approaches studied here included any kind of anisotropy. This extension
would give a few extra model parameters to estimate, and could be interesting for some applications.
We conducted maximum likelihood estimation separately at every time step. The procedure could
be extended to have coupling of parameters at different time steps. One could also apply Bayesian
hierarchical models in this context.
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