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Abstract—Considering the increasing complexity and scale of
HPC architecture and software, the performance modeling of
parallel applications on large-scale HPC platforms has become
increasingly important. It plays an important role in many areas,
such as performance analysis, job management, and resource
estimation. In this work, we propose a performance modeling
and prediction framework called SmartPred, which utilizes basic
block frequencies as features and uses machine learning algo-
rithms to automatically construct multi-parameter performance
models with high generalization ability. To reduce the prediction
overhead, we propose some feature-filtering strategies to reduce
the number of features in the training stage and build a serial
program called BBF collector for each target application to
quickly collect feature values in the prediction stage. We demon-
strate the use of SmartPred on the TianHe-2 supercomputer
with six parallel applications. Results show that SmartPred with
SVR achieves better prediction than other input parameter-based
modeling methods. The average prediction error and average
standard deviation of prediction errors of SmartPred are 8.42%
and 6.09%, respectively. In the prediction stage, the average
prediction overhead of SmartPred is less than 0.13% of the total
execution time.

Index Terms—Performance Prediction, Parallel Application,
Basic Block Feature, Machine Learning

I. INTRODUCTION

The demand for computing resources in science and engi-
neering is increasing, so supercomputer performance is contin-
ually being upgraded from petascale to exascale. Accordingly,
the complexity of HPC architecture and software is rising
dramatically [1]. As a result, the efficiency and scalability
issues for HPC systems and applications become increasingly
prominent. Performance modeling, which can be used to
understand and predict the performance of parallel applications
on HPC systems, is a main concern in the HPC community
to assist in solving these prominent issues.

Building multi-parameter models to predict the execution
time of parallel applications with any inputs and at any scale
yields many benefits, and plays an important role in many
areas, such as performance analysis and tuning [2], [3], job
management and scheduling [4], [5], and resource estimation
[6], [7]. However, many factors affect the application perfor-
mance (i.e. execution time), including system architectures,
system middlewares, applications, and input parameters. For
example, the contention for shared resources, such as the intra-

node shared cache and memory or the inter-node interconnect-
ed network on the large-scale cluster, can result in complex
program behaviors. Due to the complex interaction of these
factors, building a performance model, especially the multi-
parameter model that can be used to accurately predict the
performance of parallel applications with any inputs and at
any scale, is a very challenging task.

Considerable methods have been utilized in previous re-
search to address this issue, such as trace-driven simulators [8],
[7] or analytical modeling methods [9], [10]. These methods
often consume enormous resources, including both man hours
and machine allocation [11], or need domain experts for the
analysis of the system and algorithm in depth, which limits
their accessibility to users, who are not familiar with target
systems or applications in details. For a good usability of these
performance tools, machine learning is widely used in perfor-
mance modeling [6], [12]. These methods treat applications
and systems as black boxes and create empirical performance
models automatically through machine learning algorithm-
s. However, the accuracy of machine learning performance
models depends on the representativeness of the training
data set. Existing machine-learning-based modeling methods
consider input parameters as features and usually have limited
generalization ability. Hence, they cannot accurately predict
the performance of parallel applications when inputs are out
of range of the training set.

The use of machine learning for building performance
models can hide the details of the underlying architecture and
application and capture complex relationship between multi-
ple parameters and performance without human intervention.
However, two main challenges are faced with the use of
machine learning to build performance models as follows:

(1) Selection of the appropriate features for the performance
modeling of parallel applications. Data and features can bound
the upper limit of the prediction accuracy of machine learning,
and machine learning models and algorithms just approach this
upper limit. Therefore, appropriate features can be utilized to
improve the generalization ability of performance models.

(2) Quick measurement of values of the selected features,
especially in the prediction stage. This process is related to
the usability of the performance modeling method.

To address the above challenges, we present SmartPred, a



novel performance modeling and prediction framework for an
accurate prediction of the performance (wall time) of MPI
applications with any inputs and at any scale. SmartPred
considers basic block frequencies (BBF) as features and uses
a machine learning algorithm, such as support vector regres-
sion, to automatically construct multi-parameter performance
models with high generalization ability.

The basic block (BB) is a unit of sequentially executed
instructions having a single entry and a single exit point. Its
BBF represents the execution count of a corresponding code
segment, which can characterize the complexity of program
behaviors better than the input parameters. Hundreds of or
thousands of BBs are utilized in actual parallel application,
and their BBFs are runtime features, which usually need to
be obtained by executing the target parallel application com-
pletely on HPC systems. To reduce the prediction overhead,
SmartPred adopts some feature filtering strategies to reduce
the number of features in the training stage and builds a serial
program called the BBF collector for each target application
in the prediction stage. Then, the BBF feature values can be
collected quickly by executing the collector on one node of any
platform instead of executing the original parallel application
on large-scale HPC systems.

The specific contributions of this paper are summarized as
follows:

(1) We propose a novel framework to build multi-parameter
performance model with higher generalization ability than
traditional input parameter-based modeling methods [6], [12],
and predict the performance of parallel application with d-
ifferent inputs at different scales. Our experiments with six
different parallel applications on the TianHe-2 supercomputer
showed an average prediction error of 8.42%, and average
standard deviation of prediction errors of 6.09%.

(2) We are the first to use the basic block frequencies as
training features and propose corresponding feature filtering
strategies to reduce the number of features. These features are
necessary to support automated modeling and prediction with
machine learning algorithms.

(3) We developed a tool to automatically construct the BBF
collector for the target parallel application. The collector is
a serial program, which can be used to collect BBF feature
values without executing the original parallel application. The
average overhead of the collector was only less than 0.13% of
the original execution.

The rest of this paper is organized as follows: Section II
introduces some background knowledge and motivates the
paper with an example. Section III presents the overview of
SmartPred. Section IV and Section V describe the training and
prediction stages of SmartPred, respectively. The experimental
results are presented in Section VI. Finally, Section VIII
provides some conclusions.

II. BACKGROUND AND MOTIVATION

Previous machine learning methods [13], [6], [3] often
consider application input parameters as features, run target

TABLE I: The input parameters of Sweep3D.

Input Parameter Training Set Testing Set

IT_G 300, 400, · · · , 700 300, 400, · · · , 800
JT_G 300, 400, · · · , 700 300, 400, · · · , 800
KT 300, 400, · · · , 700 300, 400, · · · , 800
#P 16, 48, · · · , 176 208, 224, · · · , 256
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Fig. 1: The prediction results of Sweep3D by using different
machine learning algorithms with the input parameter features.

parallel application multiple times with varying input param-
eters to collect training data, and then use machine learning
algorithms, such as Random Forest (RF), Ridge Regression
(Ridge) and SVR, to predict the execution time of parallel
applications. However, only considering the input parameters
as features is not enough. The generated performance model
often has limited generalization ability, and can not accurately
predict the performance of parallel application with unseen
inputs. In this section, we considered a compact parallel
application (Sweep3D) to illustrate above points.

We collected a sample data set by choosing a collection of
points spread across the input parameter space and then obtain
the performance results for each sample on the actual HPC
system. We then grouped the original data set proportionately
into the following parts:

(1) Training set: Samples used to build the performance
model through machine learning algorithms. We applied cross-
validation to compare the performance of current models and
chose the model with the best performance.

(2) Testing set: Samples used for reporting the final effects
of models and were not utilized in model training. We used this
set to verify the generalization ability of performance models.

Table I shows the selected input parameters of Sweep3D and
their corresponding value ranges. The total problem grid size
of this application was determined based on three parameters:
IT_G, JT_G and KT. The number of processes (represented
by #P) used is equal to the product of NPE_I and NPE_G. In
this table, the testing sets contain samples of which the feature
values are out of range of the training sets, especially the
number of processes #P. We used this testing set to validate
the generalization ability of existing performance models.

We first used these input parameters as features, used three
different machine learning algorithms (SVR, RF and Ridge) to
train performance models, and evaluated the performance of
each model with same testing set. To compare the performance
of different models, we reported the mean absolute percentage
error (MAPE) for each machine learning method [14], which
indicates how close the prediction is to the actual value.
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Fig. 2: The framework overview of SmartPred.

Figure 1 presents the prediction results of different machine
learning algorithms with the selected features. The mean
absolute percentage errors for these different machine learning
algorithms (SVR, RF, and Ridge) were 25.80%, 14.17% and
109.83% respectively. Results showed that when using the
input parameters as features, these machine learning algo-
rithms cannot accurately predict the performance of parallel
applications, because after receiving the input parameters, the
application underwent a series of calculations. Subsequently,
the input parameters and application performance had com-
plicated non-linear relations. The entire model space cannot
be traversed to obtain an optimal mapping between input
parameters and application performance.

Therefore, to enhance the machine learning-based perfor-
mance modeling of parallel applications, we replaced the
input parameters with some runtime features (BBFs) and build
more generalized performance models. In comparison with the
input parameters, BBFs representing the execution count of
corresponding code segments can better reflect the application
performance, and both have simple relations. When using
BBFs as training features, these machine learning algorithms
can be utilized to establish performance models with high
generalization ability.

III. OVERVIEW

In this section, we provide an overview of our automatic
performance modeling and prediction framework called Smart-
Pred based on runtime features, namely, BBF features.

As shown in Figure 2, SmartPred includes the training and
prediction stages. The training stage is used to collect data and
build the performance models. The prediction stage is used to
effectively collect the BBF values for the parallel application
with new inputs and at new scale, resulting in a predictive
execution time by using the trained model.

In the training stage, SmartPred considers BBFs as features
and applies edge profiling, which is a lightweight instrumen-
tation method with low storage demand to instrument the
LLVM’s intermediate representation (IR, for short) of the
parallel application. Then, the instrumented version is tested
on the target HPC system for multiple times with varying
values of input parameters to collect data, including values of
BBFs, number of processes (#P), and execution time (time)
for training models. Besides, SmartPred adopts some feature
filtrating strategies to decrease the number of BBF features,
thereby reducing training time of machine learning algorithms
and the extra overhead of instrumentation.
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Fig. 3: The schematic of feature filtering process.

In the prediction stage, SmartPred uses hybrid instrumen-
tation method, which combines static profiling with dynamic
profiling to instrument the IR of parallel application. Then, it
constructs the BBF collector which, is a serial program for the
collection of the BBF values of target parallel application with
new inputs and at new scale without executing it on the target
largescale HPC system. Hence, in this stage, we simply need
to run a serial program on one node of any platform (even an
ordinary PC or laptop) to achieve the performance prediction.

IV. TRAINING STAGE

A. Edge Profiling

This part aims to instrument original parallel applications
and then collect BBFs by executing the instrumented version.
However, we do not need to insert a counter into each BB
to measure its precise execution frequency. Edge profiling,
one of the optimized dynamic profiling techniques, is widely
used in feedback-directed optimization to improve the program
runtime performance. In the training stage, we used this
technique to instrument parallel applications.

Edge profiling involves the insertion of a counter for each
selected edge in the program. Then, the counter is incremented
each time the corresponding edge executes. Counters are
usually placed in either the source or target BB. However,
for the critical edge, which is neither the only edge leaving its
source BB, nor the only edge entering its target BB, it needs to
be split by inserting a new BB between its source and target;
then, the counter can be placed in this BB. Ball et.al.[15] used
the maximum spanning tree to optimize the placements of
these counters.

Executing the instrumented program will generate a profile,
which provides edge frequencies for subsequent calculation of
all BBFs.

B. Feature Filtration

Many BBs are present in the IR of an actual parallel
application. For example, the IR of Sweep3D contains 763
BBs, and we cannot use all of them as features, because the use
of too many features will generate a fairly complex model and
introduce significant training overhead. Therefore, we propose
two feature filtering strategies to reduce the number of BBF
features in this section.

The first strategy involves the remove redundant BBF
features. As shown in Figure 3, after getting one profile,



which includes BBs and the corresponding frequencies, we
first sorted these BBs in the descending order of frequency.
Considering the control flow among BBs, regardless of how
input parameters change, some BBFs remain the same. In these
cases, in each BB group with same frequency, we retained
one and removed the other redundant BBFs. Some redundant
features had variance if zero, in which the values of these
features are same in all samples. Subsequently, we further
detected and removed these zero-variance BBF features.

Not all the rest of BBFs are appropriate as the training
features, because an excessive number of irrelevant features
(noise information) may degrade the generalization ability
of models and lead to overfitting. Besides, due to the large
number of BBs, exhaustive feature selection process is not
ideal. To effectively choose the BBF features with strong
correction with the final performance of application, we used
the univariate feature selection method, which quantifies the
correlation between each BBF feature and the corresponding
execution time by using Pearson correlation coefficient (r)
[13]. Pearson correlation coefficient is a measure of the linear
correlation between two variables, which provides a good
understanding of data. Therefore, instead of considering all
the rest of BBFs as training features, we proposed the second
strategy, which involves sorting the rest of BBFs in descending
r order and choosing BBFs ranked in the top m places as
training features. The value of m can be determined by users
according to the actual situation.

Once the critical BBF features have been selected using
these feature filtering strategies, we can optimize the instru-
mentation method in the prediction stage by ignoring unse-
lected BBs and effectively reduce instrumentation overhead.

C. Model Generation

After collecting the values of BBF runtime features via
edge profiling and using two filtrating strategies to reduce the
number of these features, we extrapolated mappings between
runtime features and application execution time to allow the
use of such mapping for any new input and scale to make
a prediction of timing. It can be treated as a multivariate
nonlinear regression problem.

Formally, we used symbol D as the training set, which
includes n samples as follows:

D = {(x1, y1), (x2, y2), · · · , (xi, yi), · · · , (xn, yn)}

Each pair (xi, yi) represents a sample in the training set.
In each sample, x ∈ Rd is a d-dimensional feature vector
consisting of m + 1 features, which include m BBFs and the
number of processes #P. The input parameter #P is included
in the feature vector, because it is closely related to the
communication performance of parallel application. Due to
the large difference (several orders of magnitude) among the
frequency values of some BBs, we considered logarithm of
each BBF, that is

x = {log(p), log(b1), log(b2), · · · , log(bj), · · · , log(bm)}

do i = 1, it
phikb(i,j,mi) = phikbc(i,j,m)
leak = leak
& + wtsi(m)*phikb(i,j,mi)*di(i)*dj(j)
end do
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where p is the value of #P, bj represents the value of each
selected BBF feature. Similarly, y ∈ R indicates the logarithm
of corresponding execution time.

Our regression problem aims to determine a function f∗ :
x → y , which can minimize the mean square error between
the predictive value and actual execution time in the n samples:

f∗ = argmin
f∈F

(
1

n

n∑
i=1

(yi − f(xi))2) (1)

where F represents the hypothesis space.
Numerous algorithms can be used to solve this regression

problem, such as RF, SVR, and Ridge. In this paper, we
used all these algorithms to obtain the performance models
and then validate the effectiveness of our BBF feature-based
performance modeling method.

V. PREDICTION STAGE

A. Hybrid Instrumentation

In comparison with the actual execution of parallel applica-
tions (e.g., Sweep3D), edge profiling introduces approximately
20% extra instrumentation overhead. Therefore, in the predic-
tion stage, to collect the feature vector of application with new
input and at new scale more effectively, we proposed a more
lightweight hybrid instrumentation method, which combines
static profiling with dynamic profiling to instrument the IR of
the parallel application.

Unlike edge profiling, which inserts a counter for almost
each edge, our hybrid instrumentation method only inserts
counters for selected BBs and then records the values of these
BBF features, which can significantly reduce the number of
counters required. Besides, many loops are usually found in
scientific parallel applications, whose loop trip count (LTC,
for short) can be determined before the execution of the loop.
In this paper, this type of loop is called a natural loop, which
usually consists of the following:

(1) a header basic block, which is the basic block where
the decision is made whether or not to execute the loop;

(2) a backedge, which goes from the loop back into the
header; and

(3) an exit edge, which is traversed in case the loop is
not executed any more.

Figure 4a shows a code snippet of Sweep3D, which includes
one natural loop and the corresponding control flow graph
(CFG). We can insert a new BB called preheader before



Algorithm 1 Hybrid instrumentation algorithm
Input: The IR of target program P
Output: The instrumented version of IR
1: Get the selected BBF feature set S in the training stage;
2: Create counter array C in P , and initialize C with zeros;
3: index := 0;
4: for all basic blocks b in S do
5: Get the loop l which b belongs to;
6: Get the head block h of backedge in loop l;
7: if l is a natural loop and b� h then
8: Construct a preheader block p before the header;
9: Get the LTC related values: start, end, stride;

10: Add code before the terminator instruction of p such that {τ =
end−start
stride + 1} to calculate LTC of l;

11: Add code before the terminator instruction of p such that {C[index]+ =
τ} is executed when p is traversed;

12: else
13: Add code to b such that {C[index] ++} is executed when b is traversed;
14: end if
15: index+ +;
16: end for
17: Add code to the end of P that writes C to file;
18: return The instrumented IR;

the header of loop and move BB counters located in natural
loops into preheader block. This method can further reduce
the number of counters accessing and updating.

However, not all BB counters inside natural loops can be
moved into the preheader. Figure 4b shows one example
about the changing of insertion position of BB counters in a
natural loop containing branches. The counters of BBs inside
branches cannot be moved into preheader, because the
branch target can only be determined during execution.

Definition 1. (DOMINANCE). In a control flow graph with
entry node b0, node bi dominates node bj if and only if every
path from the b0 to bj must go through bi, which written as
bi � bj . By definition, each node dominates itself, that is,
bi � bi.

We used the notion of dominance to determine whether BB
counters can be moved into the preheader. In the natural
loop, the number of backedge traversed is equal to the loop
trip count, thereby allowing counter of backedge’s head
block to be moved into preheader. In general, according
to the definition of dominance, for each BB inside the natural
loop, if it dominates the backedge’s head, its counter can
also be moved into preheader. For example in Figure 4b,
the BBs whose counters can be moved into preheader
include BB1, BB2, BB5 and BB6, because they all dominate
the backedge’s head block BB6.

The detailed process of hybrid instrumentation method is
shown in Algorithm 1.

B. Collector Generation

In the prediction stage, executing the instrumented parallel
application to collect the values of BBF features is time-
consuming and requires a significant amount of computing
resources, especially for parallel applications at large scale.
In this section, we generated one BBF collector, which is a
serial program for each target parallel application and executed
the collector instead of the original application to collect BBF
values.

Algorithm 2 Collector Generation Algorithm.
Input: The instrumented IR of a parallel program
Output: The IR of generated collector
1: Contain all initialization and instrumentation related codes;
2: Construct the program call graph (PCG) based on IR;
3: for all functions f in Post-Order over PCG do
4: Construct the control flow graph (CFG) of f ;
5: for all basic blocks b in Post-Order over CFG do
6: do
7: for all instructions i in Bottom-Top order over b do
8: if i ∈output or is one MPI function call then
9: Remove instruction i from b;

10: Perform the dead code elimination on b;
11: Break;
12: end if
13: end for
14: while b is changed
15: end for
16: end for
17: Remove unused functions and their function declarations;
18: return the IR of generated collector;

We divided one instrumented IR of parallel application into
the following parts parts:

(1) Initialization. This part is used to read the input data,
gather execution configuration, and prepare data structures.

(2) Instrumentation. This part includes all inserted codes
which are responsible for collecting BBF values.

(3) Computation. This part is responsible for doing a
parallel computation by spawning several processes, which can
communicate with one another during computation.

(4) Output. This part is used to print the final results of
computation to console.

We only aimed to calculate the frequencies of selected BBs
without considering the computation results. Hence, we first
retained the initialization- and instrumentation-related codes
to guarantee the generated programs normal execution and the
accurate recording of BBF values. Then, we directly removed
useless output-related codes from IR. Besides, to generate one
self-contained BBF collector, which involves a serial program
and does not depend on any MPI libraries, we also need to
remove the MPI function calling codes that belongs to the
computation part.

After removing output-related codes and MPI function
calling codes, many dead codes whose results are never used
in any other computation would arise. We performed dead
code elimination [16] to remove these dead codes from IR,
which can shrink the IR form and lead to a smaller executable
program and faster execution. The detailed process of collector
generation is shown in Algorithm 2.

VI. EVALUATION

We have implemented our SmartPred framework, which
includes edge profiling, hybrid instrumentation and collector
generation, as IR-to-IR transformations in the Clang/LLVM
compiler framework [17]. We selected three machine learning
algorithms, including RF, Ridge and SVR, with radial basis
function kernel to demonstrate the effectiveness of our BBF-
based method. These three machine learning algorithms have
various degrees of complexity and are widely used for han-
dling modeling problems [18], [19], [20].



TABLE II: The input parameters of selected benchmarks.

App Description Input
Parameter Type

Sweep3D Neutron transport application IT_G,JT_G,KT,#P Integer

LULESH Shock hydrodynamics application side length(-s),#P Integer

NPB SP Scalar penta-diagonal solver problem_size,#P Integer

NPB BT Block tri-diagonal solver problem_size,#P Integer

NPB LU Lower-upper Gauss-Seidel solver nx,ny,nz,#P Integer

NPB EP Embarrassingly parallel
random number generator m,#P Integer

A. Platforms and Benchmarks

We use the TianHe-2 Supercomputer in National Super-
computer Center in Guangzhou as the experimental platform
to evaluate our SmartPred framework. It contains 16,000
compute nodes, each with two 12-cores 2.2 GHz Intel Xeon
E5-2692 processors and 64 GB of memory. These nodes are
interconnected via the TH Express-2 network. We evaluate
SmartPred with four NPB programs (SP, BT, LU and EP)[21]
and two full real-world parallel applications (ASCI Sweep3D
[10] and LULESH [22]). The overview of all test programs
and their critical input parameters are shown in Table II.

Previous works [13], [6], [18] usually generate samples
uniformly and randomly from the parameter value range of
each application. Then, part of data samples are randomly
selected as the training set, whereas the others are selected as
testing set. By comparison, our testing sets contain samples of
which the feature values are out of range of the training sets.
This process was done to improve the accuracy of evaluating
the generalization ability of performance models.

B. Performance Prediction Results

Table III shows two sets of features, one (INPUT) only con-
tains input parameters, and the other one (RUNTIME) contains
BBF features, which are selected using our feature filtering
method. Notably, the RUNTIME set contains #P, and this
feature is closely related to the communication performance of
parallel application. We choose these two feature sets and used
three different machine learning algorithms (SVR, RF and RR)
to train performance models, and evaluate the performance of
each model with the same testing set.

We calculate the mean absolute percentage errors for the
prediction results of each application in Table III. Results
showed that compared with input parameter features, the use
of BBF as features can significantly improve the prediction
accuracy of machine learning algorithms. Moreover, when
using only input parameter features, the RF can obtain the
best prediction results. By contrast, SVR is better than RF
when using BBF features. Its average error is 8.42%, and the
average standard deviation of error is 6.09%.

C. Comparison with other methods

In this section, we performed some experiments to compare
the performance of SmartPred with two other classical input
parameter-based modeling methods, namely, Barnes’ method
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[6] and Hoefler’s method [12]. Both methods are based on
regression and use linear models to construct the relationship
between the input variables and the observed execution time
by varying the values of the input variables (x1,x2,. . . ,xn) on
the instrumented runs.

The Barnes’ method assumes the following model form:

log2(T ) =β1log2(x1) + β2log2(x2) + ...

+ βnlog2(xn) + g(q) + error

where g(q) can be either a linear function or quadratic function
for the number of processors q, such as

g(q) = γ0 + γ1log2(q), g(q) = γ0 + γ1log2(q) + γ2(log2(q))
2

In this experiment, we predicted the performance with these
two forms of g(q) function and reported the best results.

By comparison, Hoefler’s method implements the PE-
MOGEN framework, which uses complex model form called
EPMNF, as follows:

f (P ) =

|P |∑
i=1

m∑
k=1

cik · pjiki · log
lik
2 (pi)

where P is the parameter set. A possible assignment of jik and
lik is called a model hypothesis. In this method, users need to
provide the candidate sets of jik and lik to trade off between
the model generation overhead and prediction accuracy. The
coefficients cik of all hypotheses are determined via regression.
This method chooses the hypothesis with the smallest predic-
tion error to determine the most likely performance model.
In this experiment, we expanded the hypothesis sets used in
[12] and used the values of jik = {−1, 0, 13 ,

1
2 , 1,

3
2 , 2,

5
2 , 3}

and lik = {0, 1, 2, 3}. Additional values into the hypothesis
sets only increases the model generation overhead but does
not help in improving the prediction accuracy.

Figure 5 demonstrates the prediction results with SmartPred,
Barnes’ method, and Hoefler’s method for the six parallel
applications on the TianHe-2 supercomputer. The average
prediction errors of these three modeling methods are 8.42%,
15.74% and 39.03%,respectively. No matter the prediction
errors or the standard deviations, SmartPred can obtain lower
values than the two other methods. Hence, compared with
the traditional input parameter-based modeling methods, our
machine learning-based method with BBF features can build



TABLE III: The mean absolute percentage errors and corresponding standard deviations for three different machine learning
methods with different feature sets.

App Feature Set Features MAPE Standard Deviation
SVR RF Ridge SVR RF Ridge

Sweep3D INPUT IT_G, JT_G, KT, #P 25.80% 14.17% 109.83% 31.15% 9.24% 136.82%
RUNTIME BB3, BB1, BB16, BB52, BB63, BB15, #P 2.13% 4.18% 4.71% 2.20% 3.47% 4.33%

LULESH INPUT -s, #P 163.33% 6.58% 107.43% 190.97% 3.09% 88.44%
RUNTIME BB21, BB22, BB26, BB27, BB34, BB36, #P 6.52% 6.16% 13.01% 6.44% 3.99% 9.89%

NPB SP INPUT problem_size, #P 311.77% 26.67% 1264.74% 701.13% 23.95% 2922.95%
RUNTIME BB25, BB28, BB39, BB46, BB51, BB56, #P 13.33% 19.12% 26.97% 8.12% 16.61% 18.01%

NPB BT INPUT problem_size, #P 272.88% 29.13% 1722.82% 627.30% 47.39% 3899.25%
RUNTIME BB13, BB30, BB31, BB48, BB49, BB50, #P 16.71% 22.29% 26.84% 12.45% 29.22% 27.11%

NPB LU INPUT nx, ny, nz, #P 24.11% 14.22% 12.90% 2.85% 4.80% 10.11%
RUNTIME BB4, BB11, BB14, BB28, BB51, BB53, #P 7.03% 30.14% 12.18% 4.04% 4.43% 9.31%

NPB EP INPUT m, #P 458.86% 28.28% 553.33% 763.56% 19.51% 920.18%
RUNTIME BB2, BB3, BB4, BB9, BB10, BB11, #P 4.80% 10.00% 3.64% 3.31% 8.04% 2.86%

TABLE IV: The average prediction overhead of SmartPred as
well as that of the original execution.

App Original Overhead
(Core Hour)

Prediction Overhead
(Core Hour) Proportion

Sweep3D 1.5574 0.0041 0.2633%
LULESH 35.4272 0.0441 0.1245%
NPB SP 28.5981 0.0177 0.0619%
NPB BT 22.9459 0.0150 0.0654%
NPB LU 8.0889 0.0028 0.0346%
NPB EP 7.1099 0.0129 0.1814%

Average – – 0.1219%

generalized performance models and significantly improve
prediction accuracy.

Among the three methods, the experimental results of
Hoeflers method are the worst. In addition to the limitation
of input parameter features, this condition occurred because
the Hoeflers method classifies the whole program into several
loop kernels and models these kernels by using regression.
This method is helpful for modelling some kernels, which
have simple performance behaviors. However, when modeling
the execution time of whole parallel applications with more
complex performance behaviors, this method has limited ef-
fectiveness [23].

D. Performance Prediction Overhead

Notably, when predicting the performance of a parallel
application, we only need to execute the corresponding serial
collector to collect BBF values instead of executing the original
parallel application. The generated data contains only BBF
values of several basic blocks, and its storage overhead is
negligible. Therefore, in this section, we primarily evaluated
the execution overhead of the collector in the prediction stage.

Computational resources on supercomputers are billed in
core hours. Hence, in this experiment, the prediction overhead
of SmartPred was also expressed in core hours. Table IV shows
the comparisons of consumed core hours of SmartPred when
predicting performance of six selected applications with that
of the original parallel application execution. All overheads
of SmartPred performed on six applications are substantially

below the overheads of the original application execution.
Moreover, the average overhead only accounts for 0.1219% of
the original execution. Hence, SmartPred can help HPC users
to predict the performance of parallel applications efficiently,
because the BBF collector is an independent serial program,
which can be executed with only one node or core. We also
optimized the collector by reducing the number of inserted
counters and eliminating many dead codes, which further
improved its performance.

Note that LLVM IR [17] is quite portable over the vari-
ous architectures. Therefore, in the prediction stage, we can
compile and execute the BBF collector on one node of any
platform (even an ordinary PC or laptop) to collect feature
values instead of executing it on one node of target platform.
Hence, the use of SmartPred can easily achieve cross-platform
performance prediction.

VII. RELATED WORK

Many works related to the performance prediction of par-
allel applications have been proposed, which can be divided
into two categories: model- and trace-based methods.

Model-based methods: These methods commonly require
the construction of performance models for the computing
systems and programs. The execution time is predicted by cal-
culating and analyzing these models [6], [13], [18], [12]. These
methods treat applications and systems as black boxes and
create empirical performance models automatically through
machine learning algorithms. However, these empirical model-
ing methods only apply to certain types of applications (e.g.,
strong-scaling or weak-scaling) or need to execute original
parallel applications for the collection of some information
in the prediction stage, which consumes enormous time and
computing resources.

By comparison, SmartPred chooses frequencies of some
basic blocks as new features and automatically construct multi-
parameter performance models with high generalization abili-
ty. In the prediction stage, instead of executing original parallel
applications, SmartPred builds a serial collector to collect BBF
values, which can significantly reduce the prediction overhead.



Trace-based methods: Trace-driven methods, which are
frequently used in simulators [8], [7] and benchmark genera-
tion tools [24], [25], can capture detailed performance behav-
ior and model the performance of parallel programs automat-
ically. However, trace-driven methods have some limitations.
First, due to the complexity of hardware and software, building
one simulator often consumes enormous huge man hours and
machine allocation [11]. Second, traces contain large amounts
of performance-related data, thereby requiring large amounts
of storage. Third, generating traces of large-scale parallel
application is very expensive, because it needs to execute
original applications on an existing system with corresponding
scale processors. Fourth, heavyweight instrumentation used in
these methods may affect the behavior of parallel programs.

By comparison, SmartPred uses lightweight instrumenta-
tions (edge profiling and hybrid Instrumentation) in collecting
profiling data, thereby requiring less storage.

VIII. CONCLUSION

We proposed the SmartPred, a novel performance modeling
and prediction framework based on basic block features, to
build multi-parameter performance model with high general-
ization ability and predict the performance of parallel applica-
tion with different inputs at different scales on distributed-
memory architectures. Results showed that SmartPred can
improve the prediction accuracy while greatly reducing the
prediction overhead.

The SmartPred is beneficial for both HPC users and HPC
systems. It can help HPC users to accurately predict applica-
tion performance in advance and determine optimum number
of processors and wall time that they apply for. Then, their
applications can run quickly and achieve good speedup without
wasting resources. For HPC systems, accurate performance
estimates provided by users can assist the system scheduler
to decide efficient allocation and scheduling strategies, which
can reduce idle waiting time and improve the HPC system
utilization.
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