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Abstract. In this note we study solitary wave solutions of a class of
Whitham–Boussinesq systems which includes the bi-directional Whitham
system as a special example. The travelling wave version of the evolution
system can be reduced to a single evolution equation, similar to a class
of equations studied by Ehrnström, Groves and Wahlén [10]. In that
paper the authors prove the existence of solitary wave solutions using a
constrained minimization argument adapted to noncoercive functionals,
developed by Buffoni [3], Groves and Wahlén [15], together with the
concentration-compactness principle.

1. Introduction

This work is devoted to the study of solitary wave solutions of the Whitham–
Boussinesq system

∂tη = −K∂xu− ∂x(ηu)

∂tu = −∂xη − u∂xu.
(1.1)

A solitary wave is a solution of the form

η(x, t) = η(x− ct), u(x, t) = u(x− ct), (1.2)

such that η(x − ct), u(x − ct) −→ 0 as |x − ct| −→ ∞. Here, η denotes
the surface elevation, u is the rightward velocity at the surface, and K is a
Fourier multiplier operator defined by

F(Kf)(k) = m(k)f̂(k),

for all f in the Schwartz space S(R). More specifically, we require that

(A1) The symbol m ∈ Sm0
∞ (R) for some m0 < 0, that is

|m(α)(k)| ≤ Cα(1 + |k|)m0−α, α ∈ N0.

(A2) The symbol m : R → R is even and satisfies m(0) > 0, m(k) <
m(0), for k 6= 0 and

m(k) = m(0) +
m(2j∗)(0)

(2j∗)!
k2j∗ + r(k),
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for some j∗ ∈ N+, where m(2j∗)(0) < 0 and r(k) = O(k2j∗+2) as
k → 0.

As an example we have m(k) = tanh(k)k−1, which yields the bi-directional
Whitham (BDW) system, and this choice of symbol is the main motivation
for studying (1.1). The BDW system was formally derived in [1,21] from the
incompressible Euler equations to model fully dispersive shallow water waves
whose propagation is allowed to be both left- and rightward, and appeared
in [19, 22] as a full dispersion system in the Boussinesq regime with the
dispersion of the water waves system. There have been several investigations
on the BDW system: local well-posedness [13,18] (in homogeneous Sobolev
spaces at a positive background), a logarithmically cusped wave of greatest
height [11]. There are also numerical results, investigating the validity of the
BDW system as a model of waves on shallow water [4], numerical bifurcation
and spectral stability [5] and the observation of dispersive shock waves [24].
However there are no results on the existence of solitary wave solutions.

We also mention that one can include the effects of surface tension in
the BDW system by choosing m(k) = tanh(k)k−1(1 + βk2), β > 0. It
was recently shown in [17] that (1.1) is locally well-posed for this choice
of symbol. However, the above symbol with β > 0 is not included in the
class of symbols considered in the present work. Moreover, in [6,7,16], other
types of fully dispersive Whitham-Boussinesq systems are considered. We
also mention the generalized class of Green–Nagdhi equations introduced
in [8], which was shown to posses solitary wave solutions in [9].

2. Solitary wave solutions to the Whitham equation

In order to prove existence of solitary wave solutions of (1.1) our strategy
will be to reduce this to a problem that is similar to one studied in [10]. For
this reason we first discuss the results and methods of that paper. In [10]
the authors prove the existence of solitary wave solutions of the pseudodif-
ferential equation

ut +
(
Ku+ ñ(u)

)
x

= 0, (2.1)

where K have properties (A1), (A2) and the nonlinearity ñ satisfies

(A3) The nonlinearity ñ is a twice continuously differentiable function
R→ R with

ñ(x) = ñp(x) + ñr(x),

in which the leading order part of the nonlinearity takes the form
ñp(x) = cp|x|p for some cp 6= 0 and p ∈ [2, 4j∗ + 1) or ñp(x) = cpx

p

for some cp > 0 and odd integer p in the range p ∈ [2, 4j∗+ 1), while

ñr(x) = O(|x|p+δ), ñ′r(x) = O(|x|p+δ−1)

for some δ > 0 as x→ 0.
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In particular, the uni-directional Whitham equation, introduced in [25], be-

longs to this class of equations (2.1), with m(k) =
√

tanh(k)k−1. The
Whitham equation possesses periodic travelling waves [12] and solitary waves
[10], moreover the solitary waves decay exponentially [2]. It was recently
confirmed that the Whitham equation possesses a highest cusped wave [14],
as conjectured by Whitham.

Under the travelling wave ansatz: u(t, x) = u(x− ct), the equation (2.1)
becomes

Ku− cu+ ñ(u) = 0. (2.2)

The existence of solutions of (2.2) is established via a related minimization
problem. Let

Ẽ(u) = −1

2

∫
R
uKu dx−

∫
R
Ñ(u) dx, I(u) =

1

2

∫
R
u2 dx

with

Ñ(x) = Ñp+1(x) + Ñr(x),

Ñp+1(x) =

∫ x

0
ñp(s) ds =

cpx
p+1

p+ 1
, or

cpx|x|p

p+ 1
,

Ñr(x) =

∫ x

0
ñr(s) ds = O(|x|p+1+δ).

Let q,R > 0 and

Vq,R := {u ∈ H1(R) : I(u) = q, ‖u‖H1 < R}.

Minimizers of Ẽ over Vq,R (that are not on the boundary) satisfy the Euler-
Lagrange equation

dẼ(u) + νdI(u) = 0, (2.3)

for a Lagrange multiplier ν, and (2.3) is precisely (2.2), with c = ν. In [10]
the authors show that there exist solutions of the minimization problem

arg inf
Vq,R
Ẽ(u),

which by the above argument yields travelling wave solutions of (2.1). The
existence of minimizers is established using methods developed in [3,15] and

we give here a brief outline of the proof. The functional Ẽ is not coercive
and since the domain is unbounded one cannot use the Rellich–Kondrachov
theorem. In particular, direct methods cannot be used to obtain a minimizer.
Because of this one needs to study a related penalized functional acting on
periodic functions. Let P > 0 and L2

P be the space of P - periodic, locally
square-integrable functions with Fourier-series representation

w(x) =
1√
P

∑
k∈Z

ŵ(k) exp(2πikx/P ),
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with

ŵ(k) :=
1√
P

∫ P
2

−P
2

w(x) exp(−2πikx/P ) dx.

For s ≥ 0, we define

Hs
P := {w ∈ L2

P : ‖w‖Hs
P
<∞},

where the norm is given by

‖w‖Hs
P

:=

(∑
k∈Z

(
1 +

4π2k2

P 2

)s
|ŵ(k)|2

) 1
2

.

The authors [10] studied the following penalized functional

ẼP,%(u) := %(‖u‖2H1
P

) + Ẽp(u),

over the set

VP,q,R := {u ∈ H1
P : IP (u) = q, ‖u‖H1

P
< 2R},

where ẼP , ĨP are the same functionals as Ẽ , Ĩ but where the integration
is over [−P/2, P/2], and % : [0, (2R)2] 7→ [0,∞) is a penalization function
such that %(t) = 0 whenever t ∈ [0, R2] and %(t) → ∞ as t → (2R)2. The

penalization function makes ẼP,% coercive, and the fact that we are now
working in H1

P allows the use of the Rellich-Kondrachov theorem. It is then

an easy task to show that there exists a minimizer uP ∈ VP,q,2R, of ẼP,%.
The next step is to show that uP in fact minimizes ẼP over Vq,R. This is
immediate after showing that

‖uP ‖2H1
P
≤ Cq,

and choosing q sufficiently small. The other key ingredient of the proof is the
concentration compactness theorem [20]. In the application of this theorem,
the main task is to show that ‘dichotomy’ does not occur. This is done using
proof by contradiction, where the contradiction is arrived at using the strict
subadditivity of

Iq := arg inf
Vq,R
Ẽ(u),

as a function of q. The strict subadditivity of Iq is established by using

a special minimizing sequence for Ẽ , constructed from the minimizers uP .
In addition it is necessary to decompose u into high and low frequencies in
order to get satisfactory estimates on ‖u‖L∞ , see [10, Corollary 4.5]. It is an
easy task to show that ‘vanishing’ cannot occur either. Therefore, from the
concentration compactness theorem, ‘concentration’ is the only possibility
and the existence of minimizers then follows from a standard argument.

Under the additional assumption that

(A4) ñ ∈ C2j∗(R) with

ñ(j)r (x) = O(|x|p+δ−j), j = 0, . . . , , 2j∗,
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it is possible to relate the minimizers of Ẽ to those of Ẽlw, where

Ẽlw(u) = −
∫
R

(
m(2j∗)(0)

2(2j∗)!
(u(j∗))2 + Ñp+1(u)

)
dx.

More specifically,

sup
u∈D̃q

distHj∗ (R)(S
−1
lw u, D̃lw)→ 0, as q → 0,

where D̃lw is the set of minimizers of Ẽlw over the set

{u ∈ Hj∗(R) : I(u) = 1},

and D̃q is the set of minimizers of Ẽ over Vq,R and

(Slwu)(x) := qαu(qβx)

is the ’long-wave test function’ with

α =
2j∗

4j∗ + 1− p
, β =

p− 1

4j∗ + 1− p
. (2.4)

The numbers α and β are chosen in such a way that

2α− β = 1, (p− 1)α = 2j∗β.

This choice of α, β appear naturally when deriving the long-wave approx-
imation of (2.2). The functional Ẽlw is related to Ẽ via (see [10, Lemma
3.2])

Ẽ(Slwu) = −qm(0) + q1+(p−1)αẼlw(u) + o(q1+(p−1)α),

for any u ∈ W := {u ∈ H2j∗(R) : ‖u‖H2j∗ < S} with S being a positive
constant.

We mention here a recent work [23] where they use an entirely different
approach to prove the existence of small amplitude solitary wave solutions
of the Whitham equation.

3. Solitary wave solutions to the Whitham–Boussinesq system

3.1. Formulation as a constrained minimization problem. In the
present work we seek solitary wave solutions of (1.1), and the idea is to
reformulate (1.1) in such a way that the method of [10] can be applied.
Under the travelling wave ansatz (1.2), the system (1.1) then becomes

cη = Ku+ ηu, (3.1)

cu = η +
u2

2
. (3.2)

It follows from (3.2) that η = u(c− u
2 ), and if we insert this into (3.1) then

we find that
Ku− u(u− c)(u

2
− c) = 0. (3.3)

We first formally assume that ‖u‖L∞ � c to formulate (3.3) into a vari-
ational problem. This is no restriction since the constructed solutions will
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automatically satisfy this smallness condition (see Theorem (3.1)). Let
w = u

c (uc − 2), so that u = c − c
√

1 + w. The map w 7→ u is well-defined,
since

‖w‖L∞ ≤
∥∥∥u
c

∥∥∥
L∞

∥∥∥u
c
− 2
∥∥∥
L∞
.
∥∥∥u
c

∥∥∥
L∞
� 1,

We then may rewrite the equation (3.3) using the new unknown w as

2√
1 + w

K(
√

1 + w − 1)− λw = 0, (3.4)

with λ = c2. We now define

E(w) = −1

2

∫
R
wKw dx︸ ︷︷ ︸

:=K(w)

−
∫
R
N(w) dx︸ ︷︷ ︸

:=N (w)

,

where

N(w) = 2Ψ(w)Kw + 2Ψ(w)K(Ψ(w)),

Ψ(w) =
√

1 + w − 1− w

2
= −w

2

8
+ Ψr(w),

Ψr(x) = O(x3).

To extract the lower-order parts we also write

N(w) = Nh(w) +Nl(w),

with

Nh(w) = −w
2

4
Kw, Nl(w) = 2Ψ(w)Kw + 2Ψ(w)K(Ψ(w)).

We then note that
dE(w) + λdI(w) = 0

is precisely (3.4). Hence, w is a critical point of E under the constraint
I(w) = q, if and only if u = c− c

√
1 + w is a solution of (3.3), with λ = c2.

We will find critical points of E(w)+λI(w) by considering the minimization
problem

arg inf
Vq,R
E(w).

Here we are minimizing a functional E of almost the same type as in [10], with
p = 2, but with a slightly different nonlinearity. In our case, the nonlocal
operator K appears in the nonlinear term N . However, since K is a bounded
smoothing operator, it is not hard to show that the methods used in [10] can
be applied to the functional E . However, the results [10, Lemma 2.3, Lemma
3.2, Lemma 3.3] require a bit more care, in particular it is important to
know how N acts under the long-wave scaling, and we therefore include the
proofs of these results in the next subsection. We finally have the following
existence result:



SOLITARY WAVE SOLUTIONS OF WHITHAM–BOUSSINESQ SYSTEMS 7

Theorem 3.1. There exists q∗ > 0 such that the following statements hold
for each q ∈ (0, q∗).

(i) The set Dq of minimizers of E over the set Vq,R is nonempty and the
estimate ‖w‖2H1(R) = O(q) holds uniformly over w ∈ Dq. Each element of

Dq is a solution of the travelling wave equation (3.4); the squared wave speed
c2 is the Lagrange multiplier in this constrained variational principle.

(ii) Let s < 1 and suppose that {wn}n∈N0 is a minimizing sequence for
E over Vq,R. There exists a sequence {xn}n∈N0 of real numbers such that a
subsequence of {wn(·+ xn)}n∈N0 converges in Hs(R) to a function in Dq.

3.2. Technical results. In our case the long-wave functional Elw is given
by

Elw(w) := −
∫
R

(
m2j∗(0)

2(2j∗)!
(w(j∗))2 − m(0)

4
w3

)
dx,

and we also recall the long-wave scaling:

Slww(x) = µαw(µβx),

with

α =
2j∗

4j∗ − 1
and β =

1

4j∗ − 1
. (3.5)

Note that (3.5) is a special case of (2.4), with p = 2.
We first present a result corresponding to [10, Lemma 3.2], which relates

E with Elw.

Lemma 3.2. Let w ∈W with ‖w‖L∞ � 1 and I(w) = 1. Then

E(Slww) = −qm(0) + q1+αElw(w) + o(q1+α). (3.6)

Proof. Recall the definition

E(Slww) = K(Slww) +N (Slww).

We first calculate that

K(Slww)

= −1

2

∫
R
q2αw(qβx)Kw(qβ·)(x) dx

= −1

2

∫
R
q2αm(k)|F(w(qβ·))(k)|2 dk

= −1

2

∫
R
q2α−β

(
m(0) + q2j∗β

m(2j∗)(0)

(2j∗)!
k2j∗ + r(qβk)

)
|ŵ(k)|2 dk

= −qm(0)− q2α+(2j∗−1)β
∫
R

m(2j∗)(0)

2(2j∗)!
(wj∗)2 dx− q2α−β

2

∫
R
r(qβk)|ŵ(k)|2 dk,

and one may continuously estimate the last term as

|q
2α−β

2

∫
R
r(qβk)|ŵ(k)|2 dk| . q2α+(2j∗+1)β

∫
R
k2j∗+2|ŵ(k)|2 dk,
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and
∫
R k

2j∗+2|ŵ(k)|2 dk is uniformly bounded, since w ∈ W . We next
consider

N (Slww) = −
∫
R
Nh(Slww) +Nl(Slww) dx.

A direct calculation shows that

−
∫
R
Nh(Slww) dx =

∫
R

q3α

4
w2(qβx)Kw(qβ·)(x) dx

=

∫
R

q3α−β

4
F(w2)(k)ŵ(k)

(
m(0) + q2j∗β

m(2j∗)(0)

(2j∗)!
k2j∗ + r(qβk)

)
dk

= q3α−β
∫
R

m(0)

4
w3 dx+ o(q3α−β),

where we again used that w ∈W in order to estimate the remaining terms.
The term

∫
RNl(Slww) dx is of lower order and can be estimated in the same

way.
Combining all the above estimates yields the identity (3.6).

�

We next move to the corresponding result of [10, Lemma 3.2].

Lemma 3.3. Let

KP (w) = −1

2

∫ P
2

−P
2

wKw dx, NP (w) = −
∫ P

2

−P
2

N(w) dx,

EP (w) = KP (w) +NP (w),

and let {w̃P } be a bounded family of functions in H1(R) with ‖w̃P ‖L∞(R) � 1

such that

supp(w̃P ) ⊂ (−P
2
,
P

2
) and dist

(
± P

2
, supp(w̃P )

)
≥ 1

2
P

1
4 ,

and define wP ∈ H1
P by the formula

wP =
∑
j∈Z

w̃P (·+ jP ).

(i) The function wP satisfies

lim
P→∞

‖Kw̃P −KwP ‖H1(−P
2
,P
2
) = 0, lim

P→∞
‖Kw̃P ‖H1(|x|>P

2
) = 0.

(ii) The functionals E, I and EP , IP have the properties that

lim
P→∞

(
E(w̃P )− EP (wP )

)
= 0, I(w̃P ) = IP (wP ),

and

lim
P→∞

∥∥E ′(w̃P )− E ′P (wP )
∥∥
H1(−P

2
,P
2
)

= 0, lim
P→∞

∥∥E ′(w̃P )
∥∥
H1(−P

2
,P
2
)

= 0∥∥I ′(w̃P )− I ′P (wP )
∥∥
H1(−P

2
,P
2
)

= 0,
∥∥I ′(w̃P )

∥∥
H1(|x|>P

2
)

= 0.
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To prove Lemma 3.3, we need the following technical result of [10, Propo-
sition 2.1].

Proposition 3.4. The linear operator K satisfies
(a) K belongs to C∞(Hs(R), Hs+|m0|(R)) ∩ C∞(S(R),S(R)) for each s ≥ 0.

(b) For each j ∈ N there exists a constant Cl = C(‖m(l)‖L2(R)) > 0 such
that

|Kf(x)| ≤ Cl‖f‖L2

dist
(
x, supp(f)

)l , x ∈ R \ supp(f),

for all f ∈ L2
c(R).

Proof of Lemma 3.3. The limits in (i) are proved in [10, Proposition 2.1],
so we turn to (ii). Using (i) we get that K(w̃P ) − K(wP ) → 0, as P → ∞.
Note that

N (w̃P ) = −2

∫
R

Ψ(w̃P )Kw̃P + Ψ(w̃P )K(p(w̃P )) dx

= −2

∫ P
2

−P
2

Ψ(wP )Kw̃P + Ψ(wP )K(Ψ(w̃P )) dx

= −2

∫ P
2

−P
2

Ψ(wP )K(w̃P − wP ) + Ψ(wP )K
(
Ψ(w̃P )−Ψ(wP )

)
dx

+NP (wP ).
(3.7)

In light of (i) we have

∣∣∣∣ ∫ P
2

−P
2

Ψ(wP )K(w̃P − wP ) dx

∣∣∣∣
≤ ‖Ψ(wP )‖L2(−P

2
,P
2
) ‖K(w̃P − wP )‖L2(−P

2
,P
2
) → 0, as P −→∞.

(3.8)

Since ‖w̃P ‖L∞ � 1, we have ‖wP ‖L∞ � 1. To estimate the second term
on the right hand side of (3.7), one first calculates

Ψ(w̃P )−Ψ(wP ) =
√

1 + w̃P −
√

1 +
∑
j∈Z

w̃P (·+ jP ) +
1

2

∑
|j|≥1

w̃P (·jP )

= −
∑
|j|≥1 w̃P (·+ jP )

√
1 + w̃P +

√
1 + wP

+
1

2

∑
|j|≥1

w̃P (·+ jP )

=

(
1

2
− 1√

1 + w̃P +
√

1 + wP

) ∑
|j|≥1

w̃P (·+ jP ),
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and then applies Proposition 3.4 to get∫ P
2

−P
2

∣∣K(Ψ(w̃P )−Ψ(wP )
)∣∣2 dx

≤
∫ P

2

−P
2

∣∣∣∣ ∑
|j|≥1

K

[
w̃P (·+ jP )

(1

2
− 1√

1 + w̃P +
√

1 + wP

)] ∣∣∣∣2 dx

.
∫ P

2

−P
2

∑
|j|≥1

∥∥∥w̃P (·+ jP )
(
1
2 −

1√
1+w̃P+

√
1+wP

)∥∥∥
L2(−P

2
,P
2
)

dist
(
x+ jP, supp(w̃P )

)3


2

dx

. ‖w̃P ‖L2

∫ P
2

−P
2

( ∑
|j|≥1

1

(jP + 1
2P

1
4 )3

)2
dx

→ 0, as P −→∞.

(3.9)

Hence we obtain∣∣∣∣ ∫ P
2

−P
2

Ψ(wP )K
(
Ψ(w̃P )−Ψ(wP )

)
dx

∣∣∣∣
≤ ‖Ψ(wP )‖L2(−P

2
,P
2
)

∥∥K(Ψ(w̃P )−Ψ(wP )
)∥∥
L2(−P

2
,P
2
)
→ 0, as P −→∞.

(3.10)
From (3.7), (3.8) and (3.10), it follows that N (w̃P ) − NP (wP ) → 0, which
in turn implies that

E(w̃P )− EP (wP )→ 0, as P −→∞.

The equality I(w̃P ) = IP (wP ) is immediate.
A direct calculation yields

N ′(w) = −
(

1√
1 + w

− 1

)
Kw − 2√

1 + w
K(Ψ(w)),

so we may estimate∥∥N ′(w̃P )−N ′P (wP )
∥∥
L2(−P

2
,P
2
)

≤
∥∥∥∥( 1√

1 + wP
− 1

)
(Kw̃P −KwP )

∥∥∥∥
L2(−P

2
,P
2
)

+

∥∥∥∥ 2√
1 + wP

K
(
Ψ(w̃P )−Ψ(wP )

)∥∥∥∥
L2(−P

2
,P
2
)

→ 0, as P −→∞,

where we have used (i) and (3.9). One can similarly show that∥∥∥∥ d

dx
N ′(w̃P )− d

dx
N ′P (wP )

∥∥∥∥
L2(−P

2
,P
2
)

→ 0, as P →∞.
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Hence ∥∥E ′(w̃P )− E ′P (wP )
∥∥
H1(−P

2
,P
2
)
→ 0, as P →∞.

Note that 1√
1+w̃P

− 1 = 0 for |x| > P
2 , we calculate∥∥N ′(w̃P )

∥∥
L2(|x|>P

2
)

=

∥∥∥∥( 1√
1 + w̃P

− 1

)
Kw̃P +

2√
1 + w̃P

K(Ψ(w̃P ))

∥∥∥∥
L2(|x|>P

2
)

=

∥∥∥∥ 2√
1 + w̃P

K(Ψ(w̃P ))

∥∥∥∥
L2(|x|>P

2
)

.

Since supp(Ψ(w̃P )) = supp(w̃P ), we have ‖K(Ψ(w̃P ))‖L2(|x|>P
2
) → 0. It

follows that ∥∥N ′(w̃P )
∥∥
L2(|x|>P

2
)
→ 0, as P →∞.

A similar calculation shows that∥∥∥∥ d

dx
N ′(w̃P )

∥∥∥∥
L2(|x|>P

2
)

→ 0.

Consequently, we have∥∥N ′(w̃P )
∥∥
H1(|x|>P

2
)
→ 0, as P →∞.

�

Just as in [10, Theorem 6.3] we can relate the minimizers of E with those
of Elw:

sup
w∈Dq

distHj∗ (R)(S
−1
lw w,Dlw)→ 0, as q → 0,

where Dlw is the set of minimizers of Elw over the set

{w ∈ Hj∗(R) : I(w) = 1},

and Dq is the set of minimizers of E over Vq,R.
We finally include a regularity result for the travelling wave solutions of

(3.4) which corresponds to [10, Lemma 2.3].

Lemma 3.5. Let w be a solution of (3.4) in with ‖w‖L∞ � 1. Then for

any k ∈ N+, w ∈ Hk and satisfies

‖w‖Hk ≤ C(k, ‖w‖H1).

Proof. Let

f =
√

1 + w − 1,

then one has ‖f‖L∞ � 1 due to ‖w‖L∞ � 1. In view of (3.4), f solves

f =
2

λ(1 + f)(2 + f)
Kf. (3.11)
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Differentiating in (3.11) yields

∂xf =
2

λ[(1 + f)(2 + f) + f(2 + f) + f(1 + f)]
K∂xf. (3.12)

The denominator is positive due to ‖f‖L∞ � 1.
Let l ∈ {1, 2, · · · , k}. For each fixed f ∈ H l we define a formula φf by

φf (g) =
2

λ[(1 + f)(2 + f) + f(2 + f) + f(1 + f)]
g.

Then one now may follow the argument in [EGW, Lemma 2.3] by using the
properties of φf and K to show

‖∂xf‖Hl ≤ C(‖f‖H1)‖∂xf‖L2 .

For completeness, we give its proof here. For any s ∈ [0, l], it is easy to

see that φf and K define an operator in B(Hs, Hs) and B(Hs, Hs+|m0|),
respectively. Thus the composition

ψf = φf ◦K ∈ B(Hs, Hs∗), s∗ = min{l, s+ |m0|},
and the norm of ψf depends upon ‖f‖Hl . Consequently, any solution g of
g = ψf (g) belongs to Hs∗ and satisfies

‖g‖Hs∗ ≤ Cl,‖f‖
Hl
‖g‖Hs .

Applying this argument recursively, one finds that any solution g ∈ L2

belongs to H l and satisfies

‖g‖Hl ≤ C(l, ‖f‖Hl)‖g‖L2 .

Since (3.12) is equivalent to ∂xf = ψf (∂xf), a bootstrap argument shows

that f ′ ∈ H l with

‖∂xf‖Hl ≤ C(l, ‖f‖H1)‖∂xf‖L2 , l = 1, 2, · · · , k.
So far we have shown that

‖f‖Hk ≤ C(k, ‖f‖H1).

Finally, recalling that w = f2 +2f and H l is an algebra, we therefore obtain

‖w‖Hk ≤ C(k, ‖f‖H1) ≤ C(k, ‖w‖H1),

where we have used ‖w‖L∞ � 1 in the last inequality.
�

Remark 3.6. The results of the present work may be extended to a more
general class of nonlinearities N . On the one hand, we have that the lead-
ing order part of N is cubic, but this could be extended to higher power
nonlinearities. On the other hand, the multiplier operator K appearing in
N can be replaced by an operator K ′ belonging to a wider class of Fourier
multipliers. For instance, it is not necessary for the symbol of this K ′ to be
of negative order. An example is K ′ = Id, which yields the nonlinearities
studied in [10].
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