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Abstract— The use of an HTC Vive; a virtual reality (VR)
system and its innovative tracking technology is explored in
order to create an approximate one-to-one mapping to the
virtual representation of a robot cell. The mapping is found
by performing hand-eye calibration, establishing a spatial
relationship between the inertial frames of the robot cell and the
tracking system. One of the main contributions of this article is
the development of an open-source Robotic Operating System
(ROS) package for VR devices such as the Vive. The package
includes automated calibration procedures such that the devices
gives a centimetric measurement error in the robot cell. The
calibrated system has problems that are related to specific issues
of the tracking technology. This article outlines these issues,
their cause, and potential fixes in a concise manner. A simple
assembly scenario is presented, where the outline of objects
in the robot cell are defined by registering points with a Vive
tracker. The potential use cases of the calibrated system are
limited by its accuracy, and depends on the required tolerances.

Index Terms— Virtual reality (VR), Lighthouse tracking,
Robotic Operating System (ROS), Industrial robots, Robot cell
calibration, Hand-eye calibration, Manufacturing

I. INTRODUCTION
Industrial robots are often too inflexible for the current

market demands of small- and medium-sized enterprises
(SMEs). As a part of the EU funded research project
SMErobotics, [1] suggested that one of the main challenges
preventing the adoption of industrial robots in SMEs is
that current robot programming techniques are not suitable
for frequent changes of often highly customized products
manufactured in small batches.

This article explores the use of an HTC Vive, a virtual
reality (VR) system codeveloped by Valve and HTC, for
rapid robot cell calibration. By creating an approximate one-
to-one mapping to the virtual representation of a robot cell,
one can quickly place objects and obstacles as necessary.
The innovative technology that allows for positioning in a
room-scaled environment is called lighthouse tracking. This
technology is able to track the user’s hands, head, or other
objects in real-time through tracked devices. The devices
have sub-millimeter precision within an area whose diagonal
is up to 5 meters in length.

The outside-in tracking system of the Vive sweeps the
room horizontally and vertically with 850 nm infrared (IR)
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laser lines at a fixed frequency, from one or multiple station-
ary base stations in the room. Light sensors on the tracked
devices are hit periodically by the laser lines, and their
position and orientation (pose) is reconstructed by solving
a problem that is similar to the Perspective-n-Point (PnP)
problem [2]. The tracked devices also contain an inertial
measurement unit (IMU) that provides faster updates than the
ones from the lighthouse tracking. This gives the devices low
frequency measurements of absolute position and orientation,
and faster updates of their relative motion.

In [3], the accuracy and viability of a Vive are described
for scientific research. They concluded that the Vive was un-
suited for scientific experiments if loss of tracking was likely,
as a large systematic error was observed, which changes
whenever the tracking was completely lost and regained. This
error makes it difficult to establish a calibration procedure
that aligns the real and virtual coordinate space. However,
it is possible to avoid this error by taking measures against
its cause, which will be presented together with a calibration
procedure that does not depend on the choice of coordinates.

The main contributions of this article are: elaborating on
the tracking issues related to the Vive, development of open-
source software for calibration with respect to an industrial
robot, development of open-source software for defining
points, planes and boxes in a virtual environment, as well
as presenting an assembly use-case example.

The article is split into 3 main parts. Section II describes
how the Vive was integrated in a software environment for
robots, and includes the theory and methods that was used
to automatically calibrate the tracking system. Section III
gives an overview on how the tracking system was set up,
calibrated and evaluated in a robot cell, and also presents a
simple assembly scenario that was defined with collidable
objects using a tracked device. Section IV discusses specific
issues of the lighthouse tracking, as they are prevalent,
and performing reliable measurements without understanding
these issues and how to fix them can be quite challenging.

This article is based on the master thesis of Astad [4],
which we refer the reader to for more in-depth implementa-
tion details.

II. SYSTEM INTEGRATION AND THEORY

A. Hand-Eye Calibration

The standard hand-eye calibration problem was formulated
in [5], where the problem was stated as an equation of
homogeneous transformations:

AX = XB, A,B,X ∈ SE(3) (1)



Fig. 1. Geometric interpretation of the AX = XB problem, showing two
different robot states.

where A represents a change in the robot’s tool pose, B
is the resulting sensor displacement from changing the tool
pose, and X is an unknown transformation relating the tool
frame to the sensor frame. The unknown transformation X
is constant under the assumption that the sensor is rigidly
attached to the robot and its tool frame. Fig. 1 shows a
geometric interpretation of this problem.

The hand-eye calibration was solved by utilising the closed
form solution in [6]. The input to this method is N ∈ N>1

measured pairs of transformations (Ai, Bi) ∈ SE(3), as
defined by the deviation between N+1 consecutive samples
of tool {t} and sensor {s} poses:

Ai = T−1ti Tti+1
, Tti , Tti+1

∈ SE(3) (2a)

Bi = T−1si Tsi+1
, Tsi , Tsi+1

∈ SE(3) (2b)

The method solves the rotational part first before using it to
solve the translational part, which propagates an error from
rotation to translation. An extra optimization step was added
to reduce this error, where the following cost function was
minimized with the closed form solution to the hand-eye
calibration as an initial guess for the solver:

min
X∈SE(3)

N∑
i=1

log
(
(AiX)−1XBi

)
(3)

Here, N is the number of measured pairs (Ai, Bi), ( · )−1 is
the SE(3) group inverse and log ( · ) is the matrix logarithm,
which maps elements in the group of rigid transformations
SE(3) into elements of its tangent space se(3). This step
significantly reduced the error when using fewer than 10
measured pairs.

B. Generating Sample Poses

For automatic calibration, tool poses are generated from a
spherical volume element for sampling the necessary poses
with a robot. Their position is selected at random within
the volume element, and their orientation is computed from
the normal vector at this position, as from the surface of a
sphere that is centered at the robot’s base. The positions can
take on any value within the spherical volume element that
is parameterized as shown in Fig. 2. Each tool pose can then
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Fig. 2. Spherical volume element that is defined by the spherical
coordinates (r ∈ [r1, r2] , θ ∈ [θ1, θ2] , φ ∈ [φ1, φ2]) in a right-handed
coordinate system.

be represented as a homogeneous transformation from the
robot’s base frame {b}, to tool frame {t}:

Tt
b =

[
Rz, θRx, φ Rz, θRx, φ

[
0 0 r

]T
01×3 1

]
(4)

where Rx, φ and Rz, θ are basic rotations about the x-axis
and z-axis by an angle φ and θ respectively, and r is the ra-
dius of a sphere. [7] showed that the rotation between consec-
utive sensor poses, and the translation between consecutive
tool poses should be maximized and minimized respectively;
in order to improve the accuracy of the hand-eye calibration.
Therefore, the translations and rotations are generated from
two sets of parameters in smaller and larger ranges about the
same point. This method of randomly generating tool poses
for sampling within a range is flexible and generalizes well
for different setups. It was tested with the floor and gantry
mounted KUKA KR 16-2 robots presented in this article,
and a Universal Robots UR10 robot that was mounted on a
freestanding frame.

C. Robot Operating System Package

Robotic Operating System (ROS) is an open-source mid-
dleware solution for robotics. At its core it offers a commu-
nication system, which provides a message passing interface
between distributed nodes in a network. One of the main
contributions of the work that is presented in this article
was the development of a ROS package named vive rrcc.
This package makes VR hardware such as the Vive available
in a ROS environment by utilising SteamVR through the
OpenVR SDK by Valve. The package is open-source under
the MIT License and is freely available from https://github.
com/mortaas/vive rrcc.

The package exposes the pose of each tracked device as a
coordinate frame with respect to an inertial tracking frame.
These frames and their relationships are maintained in a
distributed tree structure that is buffered in time with the tf2
transform library for ROS [8]. This library allows the user to
transform vectors, quaternions, poses and so forth between
any two frames in the tree structure. It also acts as a buffer
for the poses of the tracked devices, which are available in



any frame of the transform tree, and to all nodes in the ROS
environment.

Other features of the package includes controller inputs,
haptic feedback (vibration), linear and angular velocities
(twists) and 3D visualization of the tracked devices, and a
standard interface to interact with and calibrate the node in
realtime. The LibSurvive library [9] was also implemented
as an alternative to SteamVR and OpenVR. Unlike OpenVR,
this library allows for access to the low-level components
of the lighthouse tracking and supports the use of different
community implemented tracking algorithms.

The generated sample poses can be automatically realized
on the robot system. Robot trajectories are planned from
the generated tool poses with the MoveIt library [10], a
motion planning framework that is integrated with ROS. Tool
and sensor poses are then sampled from the transform tree
between each executed trajectory, and the program waits a
predefined time before sampling, in order for the robot and
tracking dynamics to settle. This hardware-agnostic approach
can be used on any ROS-Industrial supported robot with a
MoveIt package.

The sampled poses of a tracked device are subject to
noise in the sub-millimetric and sub-degree range, which may
introduce a small error in the calibrated system. This noise
was reduced by almost two orders of magnitude by using the
quaternion averaging method in [11] with 120 samples.

D. Calibrating the Tracking System

One-to-one mapping from a robot cell to its virtual rep-
resentation is established by finding a spatial relationship
between the inertial frames of the robot cell and tracking
system. This relationship was found by employing hand-eye
calibration, in order to estimate the rigid transformation X̂
between a tracked device that is firmly attached to the robot
and an arbitrary tool frame of the robot.

A transformation between the inertial frames of robot cell
{rc} and tracking system {vr} is computed for each of the
measured sample poses, with the estimated solution X̂ from
solving the hand-eye problem:

Tvr
rc = (Trc

t )−1X̂Tvr
s , X̂ = T̂s

t (5)

where Tvr
rc is the transformation from the inertial frame of

the robot cell to the Vive’s inertial frame according to the
calibration, Ts

vr is the transformation to the tracked device
frame relative to the Vive’s inertial frame, and (Trc

t )−1 is
the tool frame relative to the robot cell.

The computed transformations are then averaged in the
same way as the sampled poses, in order to reduce a
small nonlinear and spatially dependent error of the tracking
system. The resulting average is used to calibrate the system
by automatically updating the corresponding relationship in
the transform tree. Figure 5 shows the virtual representation
of the robot cell after performing this calibration.

E. Rapid Obstacle Placement

A simple framework was created in order to define col-
lidable objects with geometric primitives, such as boxes,
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Fig. 3. Defining a unique plane from three 3D points.

spheres, cylinders, and cones in the coordinates of the robot
cell using a tracked device. This section presents the box
case.

A box can be uniquely defined in 3D space from four
points x0, x1, x2, x3 ∈ R3. The first three points are used
to define the orientation of the box from basis vectors:

bx =
x1 − x0
‖x1 − x0‖

, (6a)

by =
x2 − x⊥
‖x2 − x⊥‖

, (6b)

bz = bx × by (6c)

where x⊥ is defined such that the basis vectors are orthog-
onal, as shown in Fig. 3:

x⊥ = x0 −
[
(x0 − x2)T bx

]
bx. (7)

These basis vectors can be used to form the rotation matrix:

R =
[
bx by bz

]
∈ SO(3). (8)

It is now possible to define the length L, width W and height
H of the box by introducing the fourth point x3:

L = ‖x1−x0‖, W = ‖x1−x⊥‖, H = (x3−x⊥)T bz. (9)

The translation to the center of the box is then given by:

t = x0 + 1/2 (Lbx +W by +H bz) ∈ R3 (10)

This method of defining a box is intuitive, and the framework
visualizes a point, line, plane and box in that order for each
point that is defined by the user. The recorded collidable
objects are saved as Simulation Description Format (SDF)
files, a human readable XML format that describes objects
and environments for robot simulators, visualization, and
control.

The planar part of this method could be used as an
alternative to the automated alignment and correction method
in [12]. Where three Vive Trackers affixed to a frame is
utilised in order to align the virtual space with the physical
ground, and fix the tilt that was reported in [3]. Similarly, it
is possible to define the ground plane with the method that
is described here, and fix the issue using only one tracked
device and defining three points instead.

III. EXPERIMENTAL SETUP

A. Vive-Robot Cell Setup

The system was tested on the robot cell with an approx-
imate size of 6m× 4m× 4m, shown in Fig. 4. The robot
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Fig. 4. Setup of the Vive’s tracking system in a robot cell.

cell consists of two KUKA KR 16-2 industrial robots, one
of which is mounted on the floor, and the other is mounted
on a gantry system from Güdel. Both base stations are
mounted below H-beams in the roof structure, following the
recommendations from HTC. The base stations have a field
of view of 120°, leaving 30-45° for adjustments. The base
stations should be placed such that their view of each other
and the robot cell is unobstructed. It is also important that
their field of view overlaps as much as possible within the
intended tracking volume. A Vive Pro Starter Kit with first-
generation base stations was used, which provides updates
at a rate of 220-370 Hz depending on the type of tracked
device [13]. The measurements are sub-sampled in the ROS
package at a rate of 120 Hz by default.

B. Calibration of the Mapping

A tracked device was firmly attached to the gripper of the
floor robot, and 51 tool poses was generated in the range
(r ∈ [1.4, 1.6] , θ ∈ [−5π/16, −3π/16] , φ ∈ [π/8, 3π/16]) for
positions and range (r ∈ [1.4, 1.6] , θ ∈ [0, −π/2] , φ ∈
[5π/16, 11π/16]) for orientations, with origin at the robot base.
This range corresponds to sampling sensor poses in close
proximity to the tool pose of the floor mounted robot in
Fig. 5. The synthetic tests in [6] suggests that this number
of samples should result in a solution that is close to conver-
gence, which is further refined by solving the minimization
problem in (3). A wait time of 20 seconds was used in order
for the tracking dynamics to settle within a reasonable range
of a few millimeters. A visualization of the robot cell after
calibration is given in Fig. 5.

C. Testing the Calibrated System

A volume of 1.0m × 3.0m × 1.0m in the center of
the robot cell was sampled with the calibrated system at
4 × 7 × 3 distributed points, in order to show an indication
of its accuracy. The sampling was performed with the same
setup as the calibration, with a tracked device firmly attached
to the robot. Each sample was compared with an ideal sensor
pose, which was computed with the forward kinematics of
the robot and the estimated solution X̂ from solving the
hand-eye problem:

T̃s
rc = Tvr

rc T
s
vr − (Trc

t )−1X̂ (11)

Fig. 5. The virtual representation of the robot cell after calibration, as
visualized in RViz (ROS 3D Robot Visualizer).
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Fig. 6. Frequency distribution of the measurement error along the x-, y-,
z-axis and their absolute values with the robot’s forward kinematics as a
ground truth. The y-axis shows the number of samples in each bin.

with transformations defined as in 5.
The sampling procedure was run twice in order to validate

the runs against each other, and resulted in the frequency
distribution of Fig. 6. This distribution has a small negative
bias along the x-axis, where the resulting mean along the
axes was found to be [−0.003363, 0.0002183, 0.0003022]
meters with standard deviation [0.0119, 0.01468, 0.009321]
meters. The cause of this bias is not well-understood, but the
tracking dynamics seems to imply that it is caused by a larger
drift along the x-axis. These results indicates a measurement
error in the centimetric range, and the maximum absolute
error was 8 cm.

D. Assembly Use-Case

The calibrated system was tested on a simple assembly
scenario that is shown in Fig. 7, where a mock-up for insert-
ing a rotor into a motor housing was mapped with a tracked
device. A simple tool was made from a tracked device with
a spike probe attached to it, as shown in Fig. 8. The tool
was used to register the necessary points to define collisions
in the assembly scenario, by pointing the spike at points and
pressing a button. Figure 9 shows the virtual representation



Fig. 7. Assembly scenario.

Fig. 8. Simple tool based on a Vive Tracker with a 15 cm long and 1 cm
thick spike probe screwed into its quarter inch UNC threaded camera mount.

of the scenario, which was meticulously defined in about five
minutes. The dimensions of the Euro-pallet in this figure was
defined with centimetric accuracy and a millimetric deviation
between similar parts.

IV. DISCUSSION

The calibrated system has a few problems that are related
to specific issues of the lighthouse tracking. These issues
are mentioned in literature about the Vive and its tracking
system, but the documentation about troubleshooting and
correcting them is sparse. This article hopes to rectify some
of this sparsity by outlining the issues, their cause, and
potential fixes in a concise manner.

1) Prioritizing Inertial Measurements: [14] showed that
the Vive’s tracking algorithm gives greater weight to its
inertial measurements in order generate smooth trajectories
for VR applications. This weighting can clearly be seen in
Fig. 10, where a tracked device was moved quickly between
two points. The error is converging a lot faster when the
tracked device is moving, which then slowly approaches
its final value with an overdamped (second order) impulse

Fig. 9. Virtual representation of the assembly scenario, as visualized in
RViz. The red sphere represents the tip of the spike probe.

Fig. 10. Error response from moving a tracked device quickly between
two points. The move starts at 302, 4 seconds, and it lasts approximately 2
seconds.

response. Although the wait time that was used for calibra-
tion is low relative to the tracking dynamics and causes a
millimetric error, the hand-eye calibration is robust.

Convergence can take as long as 500 seconds, and causes
an error in the millimetric range when measuring the position
of a device before it has converged. The only known way
of avoiding this error is the use of a third party tracking
algorithm, which is exactly what Borges et al. introduced
in their article [14]. An open-source back-end such as
LibSurvive has to be used in place of SteamVR, in order
to use a third-party tracking algorithm.

2) Tilted Reference Frame: [3] reported that poses mea-
sured with the Vive are provided in a reference frame that is
tilted with respect to the physical ground plane. This issue
is caused by the fact that the reference frame is aligned with
the gravity vector, which is estimated with an IMU in the
tracked device. The tilted reference frame is a symptom of
sensor bias in the IMU [15], and the solution is to either
return the device or recalibrate the IMU [16]. Access to the
calibration tools requires a SteamVR tracking license. The
tilted floor is not an issue for the calibration procedure that is
presented in this article, as it relies on an external calibration
that does not depend on the choice of coordinates.

3) Switching Bias: [3] also observed a large systematic er-
ror that switched its value whenever tracking was completely
lost and regained. According to the inventor of lighthouse
tracking, Alan Yates (Reddit username: vk2zay), the error
occurs whenever the base stations disagree with each other
by a large amount [17]. The error is caused by a recalibration
of the base stations, in order to reduce the discrepancy
between them. This recalibration shows up as a bootstrapping
of one of the base stations in the web console of SteamVR.
The resulting error is nonlinear in Euclidean space, as the
pose of the base stations is changed internally in the tracking
system. It was noted that this change occurs instantaneously
for all devices, and a monitor was added to the ROS node
in order to warn the user if a recalibration has occurred.

This recalibration can be avoided for the most part, by
always keeping a tracked device in a location that is visible
to both base stations without risk of concealment. The head-
mounted display (HMD) in Fig. 4 was used for this purpose.



Fig. 11. The LibSurvive calibration tool before (left) and after (right) the
reflections in the orange ring was removed with a black piece of fabric,
where the points should be clustered together.

4) Tracking Jitter: The final and perhaps most common
issue is tracking wobble and jitter, which is caused by re-
flections from the environment. Robot cells, for instance, are
often enclosed by a fencing system with clear polycarbonate
for safety reasons. This enclosure causes reflections that may
have a negative impact on the robustness of the tracking.

The LibSurvive library is able to visualize the reflections
in a 2D map through its calibration tool, as shown in
Fig. 11. This figure shows the situation before and after the
black piece of fabric in Fig. 4 was added to the robot cell.
Removing the reflections resulted in more robust tracking
for SteamVR, and the LibSurvive tracking would not work
properly without this change.

V. CONCLUSION

In this article a set of ROS packages are presented that
were developed for calibration of an HTC Vive with respect
to a robot cell, rapid placement of collidable objects and
identifying relevant points in the robot cell. The procedure
is hardware-agnostic and can run on any system with ROS-
Industrial and a MoveIt plugin. The calibration was tested
using a KUKA KR 16-2 and an assembly use-case was
presented. The calibration showed a centimetric positioning
error, which suggests that the system can be used for crude
positioning of objects, such as for collision avoidance or
high-level planning, or if the underlying control algorithm
exhibits sufficient robustness to positioning errors. The arti-
cle outlines some of the most common tracking issues, and
gives a description of how to resolve them.
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