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Abstract—As the operation and maintenance (O&M) costs constitute a substantial portion of the overall life-cycle cost 
of offshore wind farms, routing, and scheduling of maintenance are very important for cost reduction. With the multi-type 
of vessels, multi-period, multi-base of O&M, multi-wind farm and uncertain weather conditions, the optimization of O&M 
cost is more challenging. In this article, a hybrid heuristic optimization of maintenance routing and scheduling for offshore 
wind farms is proposed. First, with the maintenance service protocol, mixed particle swarm optimization (MPSO) is applied 
to seek a desired mapping relation between vessels and wind farms. Utilizing the formalized rules, an optimal vessel 
allocation scheme is explored in the large solution space by individual crossover, swarm crossover and mutation. Then, 
with the scheme of vessel allocation, a discrete wolf pack search (DWPS) is introduced to optimize the maintenance route 
under all constraints. As the evaluation standard of MPSO, the purpose of DWPS is to search the solution space with depth 
and breadth balanced and find the optimal and open maintenance route with multiple round trips to bases that minimize 
O&M costs, including travel, technician and penalty costs. Finally, computational experiments and analysis are carried 
out. The results provide both the optimized cost and detailed arrangements, which can be directly used in the maintenance 
schedule.

Index Terms—Maintenance scheduling and routing problem; Offshore wind farm; Particle swarm optimization; Wolf 
pack search.

1 INTRODUCTION

he wind power industry has continued to grow rapidly over the past twenty years (Chaviaropoulos et al., 2006). Due to 
higher wind speeds and lower turbulence levels in the offshore environment, the industry has been encouraged to invest in 

offshore wind farms, and the amount of electricity produced has thus increased exponentially. However, because of the complicated 
foundations, long electrical networks (Cai et al, 2019), and exorbitant cost of installation and maintenance (Dalgic et al., 2015) the 
power production from offshore wind is still significantly more expensive than power generation from onshore wind farms. The 
Renewables Advisory Board (2010) reported that the operation and maintenance (O&M) costs constitute a substantial portion 
(20%-35%) in the overall life cycle of offshore wind farms (Snyder and Kaiser, 2009)Brain, and thus, the organization and 
optimization on logistics, routing, and scheduling of maintenance have been studied, especially in recent years (Emary et al., 2018; 
Akbari et al., 2017). One of the effective methods for reducing costs is to optimize the schedules and maintenance routing of 
vessels (Feng et al., 2017a, 2017b).

The purpose of maintenance routing and scheduling for offshore wind farms is to obtain the detailed schedule and route (Zhang 
et al., 2018) for each vessel to minimize the total cost of O&M. Due to the harsher climate conditions offshore (Huang et al., 2017), 
some factors should be considered when scheduling maintenance activities (Dalgic et al., 2015a), including the following. 1) The 
weather conditions. Considering the performance of vessels and safety, maintenance can only be performed in the periods when 
some conditions, e.g., wind speed and wave height, meet the requirements. As good weather periods are limited and discrete in 
most locations where wind farms are currently located, maintenance schedules must be optimized to exploit the resulting discrete 
weather windows. 2) The availability of various resources, e.g., service vessels, technicians, and spare parts. The resources are 
generally based on the O&M bases (Feng et al., 2019). If the resources are available, they can be delivered to the turbine that needs 
to be maintained. Otherwise, the turbine has to wait for maintaining. 3) The capacity of vessels for equipment and technicians. 
Equipment and technicians are not allowed to exceed the maximum limitation of the vessel at any point in the route of delivering. 
4) The disruption to electricity generation. Penalty costs should be considered in such a context.

As a complex optimization problem, the maintenance routing and scheduling for offshore wind farms have increasingly attracted 
researcher attention.
1) Routing optimization problems

Typically, the routing and scheduling problem can be categorized as a vehicle routing problem (VRP), and comparable studies 
for the VRP, including its extensions and variations, can be found from recent years. Aiming at the dynamic vehicle routing 
problem (DVRP), Sabar et al., (2019) utilized evolutionary algorithms (EM) to find a set of routes to serve multiple customers at 
minimal total travelling cost while the travelling time between points may vary during the process due to traffic congestion. Wilck 
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IV and Cavalier, (2012) addressed the split-delivery vehicle routing problem (SDVRP) in which delivery to a demand point can 
be served by any number of vehicles. Liu and Tao, (2019) addressed a special VRP, which extends the classic problem by 
considering the time window and synchronized service constraints. Utilizing the mixed-integer programming model, an efficient 
adaptive large neighbourhood search heuristic was proposed to minimize the computation time and cost (Moura, 2019). Integrating 
the multiple neighbourhood search (MNS) and tabu search (TS), the multi-depot open vehicle routing problem was optimized by 
Soto et al., (2017), where the vehicles start from different depots, visit customers, deliver goods and are not required to return to 
the depot at the end of their routes.

Although most researchers focus on routing optimization, discrete time window and transportation restrictions (vessel number 
and type, technicians, etc.) for offshore maintenance are often ignored.
2) Maintenance routing and scheduling for offshore wind farms

According to the specific VRP for offshore wind farms, the length of a shift and the width of the weather window for a given 
route limits the maximum route duration, while the requirement of a minimum elapsed time between when the technicians are 
delivered to a turbine and picked up again are the opposite of customer ride time considerations where a maximum time between 
pickup and delivery is enforced. Hence, it is insufficient to find the optimal route for each vessel, and the optimal schedule for the 
route should also be proposed and optimized simultaneously. Dai et al., (2015) introduced the routing and scheduling problem of 
a maintenance fleet for offshore wind farms, which determined the optimal assignments of turbines and routes to the vessels in 
terms of cost. Furthermore, the authors developed a mixed-integer linear program (MILP) to generate all feasible routes and 
maintenance schedules for the vessels for each period. Based on the Duo Ant Colony Optimization (duo-ACO), the utilization of 
the maintenance resources was improved by Zhang (2014), especially on the scheduling and routing of the maintenance fleet, to 
reduce the O&M cost. Similarly, Stålhane et al., (2015) proposed two alternative models to solve the optimization problem. 
Utilizing the arc-flow and path-flow formulation, the models are solved heuristically by generating a subset of the possible routes 
and schedules and produce close to optimal solutions using considerably less computing time.

The studies above usually consider one O&M base and one wind farm, but the multi-service model of offshore wind farms is 
rarely established. In addition, the present maintenance routing problems generally hypothesise that the starting and returning bases 
are the same, the open maintenance route for offshore wind farms and multiple round trips to the bases are, to the authors’ 
knowledge, not mentioned in the previous studies.

Aiming at the problem above, a hybrid heuristic optimization of maintenance routing and scheduling for offshore wind farms is 
proposed. Considering the discrete weather window and limited resources (spare parts and technicians), the article aims to find the 
optimal open and multi-depot maintenance route to minimize the cost of O&M with the scheduling of vessel allocation and multiple 
round trips. First, with the maintenance service protocol, mixed particle swarm optimization (MPSO) is applied to seek a desired 
mapping relation between vessels and wind farms. Utilizing the formalized rules, an optimal vessel allocation scheme is explored 
in the large solution space by individual crossover, swarm crossover and mutation. Then, with the scheme of vessel allocation, a 
discrete wolf pack search (DWPS) is introduced to optimize the maintenance route under all constraints. As the evaluation standard 
of MPSO, the purpose of DWPS is to search the solution space with depth and breadth balanced and find the optimal and open 
(Xia and Fu, 2018; Brandão, 2018) maintenance route with multiple round trips to bases that minimize O&M costs, including 
travel, technician and penalty costs. Finally, computational experiments and analysis are carried out. The results provide both the 
optimized cost and detailed arrangements, which can be directly used in the maintenance schedule. The main contributions of this 
paper are as follows: 1) to extend the routing and scheduling problem with discrete window time and consider several logistics 
bases and the possibility of servicing more than one wind farm with the same fleet; 2) to introduce the open and multi-depot 
maintenance routing and scheduling problem with pickup/delivery; 3) to propose a new hybrid heuristic optimization technique 
integrated with MPSO and DWPS to support multiple round trips to the bases during maintenance.

2 MAINTENANCE MODELLING FOR OFFSHORE WIND FARMS

2.1 System description of offshore wind farms
The offshore wind farm is a cluster of wind turbines connected to the power grid that acts as a power station (Liu et al., 2011). 

With the gradual maturity of wind power technology, more than one cluster of wind turbines are located in ultra-deepwater at long 
distances from the shore and surrounded by a harsh marine environment (Dai et al., 2015). In this article, we assume that there are 
64 turbines in one cluster and 16 of them need to be maintained in the next 7 days planning horizon based on the recommended 
period in which the turbines need to be serviced. Three O&M logistics bases (Wang et al., 2019; Sazonov et al., 2018) owning 
resources such as vessels, technicians and warehouses are located around the wind farms with different distances.

Within the given planning periods, the vessels can make multiple round trips and service more than one wind farm, as shown in 
Fig. 1. In addition, the maintenance routing of vessels can be an open loop, which means that the vessels can start from an arbitrary 
base and return to another base after delivering the spare parts and technicians to the turbines. Meanwhile, each maintenance task 
is required to be performed on each turbine during the maintenance window, and each task has an associated deadline by the end 
of the maintenance window and is a specified number of hours in duration. 

The following notations are used to describe the sets of the proposed maintenance routing and scheduling optimization problem, 
as shown in Table I.
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Fig. 1.  An organization of maintenance bases for offshore wind farms
TABLE I

SETS OF NOTATIONS IN MAINTENANCE ROUTING AND SCHEDULING OPTIMIZATION PROBLEM

No. Notation Description
1 Set of offshore wind farms with  as index
2 Set of turbines that need to be maintained with  as index
3 Set of turbines at offshore wind farm 

4 Set of turbines that require the vessel to be present during maintenance 

5 Set of weather window with  as index
6 Set of O&M bases with  as index
7 Set of vessels with  as index
8 Set of vessels of type  at O&M base 
9 Set of technician with  as index
10 Set of technicians of type  at O&M base 
11 Set of periods with  as index

2.2 Parameters of turbines
One of the main inputs required for the routing and scheduling of maintenance of offshore wind farms is the set of turbines that 

need to be maintained during the planning horizon. The specific parameters are shown in Table II. Parameters 1 to 4 are related to 
the condition and the required maintenance tasks, and the necessary maintenance time and technicians that are needed. In addition, 
based on the maintenance pattern, the vessel delivers the technicians and picks them up on the same day after the maintenance 
ends if the maintenance operation does not need a vessel. Parameters 5 and 6 are set based on the system operation and the outage 
impact. Typically, maintenance should be accomplished within a few days. However, due to the hashed weather or the unavailable 
spare parts or technicians, the maintenance tasks may have to be postponed. If the last period of maintenance is exceeded, the 
penalty fee will incur. Parameter 7 is the real time in which the vessel arrives at turbine  and begins maintenance.

TABLE II
PARAMETERS OF TURBINES

No. Notation Description Unit
1 Calendar hours to complete specified maintenance task of turbine hour
2 Number of technicians required to maintain turbine  classified as type person

3
 if vessel  is required to be present when service for the turbine 
 otherwise

N/A

4 The required weight of spare parts that delivered from the bases to turbine tons

5
 if the turbine  is scheduled to be maintained in period 
 otherwise

N/A

6 The latest period to maintain turbine  without penalty day
7 The real time to get to the maintained turbine day
8 Number of technicians (type ) on vessel  after leaving turbine person

2.3 Parameters of bases and vessels
The specific parameters of based and vessels are proposed in Table III. Parameters 1 to 4 display the generic features of the 

bases. Owing to the limitations of space and technology requirements, we assume that , , and 

. Parameters 5 and 6 present the availability of vessels and technicians at the O&M base. Parameters 7 to 11 show the 
characteristics of vessels. Parameters 7 and 8 limit the maximum number of technicians and load capacity due to the safety 
constraints, and parameters 10 and 11 provide the speed and fuel consumption of vessels of type . Parameter 12 is the transfer 



time that includes the unloading of the spare parts and technicians and the related preparation time for maintenance when the vessel 
arrives at the turbine. Parameter 13 is the travel time from node  to , and node  and  involve the turbines and bases. Parameters 
14 to 17 are related to time, and they are mainly used to determine the operating state of the system in period .

TABLE III
PARAMETERS OF BASES AND VESSELS

No. Notation Description Unit

1 The maximum number of vessels at O&M base vessel

2 Various types of vessel with different maximum load capacity and speed N/A

3 The maximum number of technicians of type  at O&M base person

4 Total technicians for each type,  corresponding to electrical, mechanical, and 
electromechanical respectively

N/A

5  if vessel  of type  at O&M base  is able to deliver the maintenance spare and technicians
 otherwise

N/A

6  if technician  of type  at O&M base  is able to provide the maintenance
 otherwise

N/A

7 The maximum number of technicians on board vessel  (technician capacity) person

8 The maximum load capacity that can be delivered by vessel tons
9 The total weight of spare parts or equipment that are delivered by vessel tons
10 Speed at maximum continuous power knot
11 Fuel consumption at operational speed mt/h
12 The transfer time of type  for technicians and equipment from vessel  to a turbine hour

13 The travel time of vessel  of type  to travel from node  to hour
14 The number of vessels that provide service for wind farm  in period vessel
15 The number of vessels at O&M base  in period vessel
16 The number of technicians of vessel  in period person

17
 if the vessel  provides service for wind farm  in period 
 otherwise

N/A

2.4 Cost and climate
The costs considered in this article include 1) travel costs, 2) technician costs, and 3) penalty costs. Based on the maintenance 

routing and scheduling, the vessels deliver the spare parts and technicians to the turbines. Parameter 1 is the fuel cost for 
transportation of vessels between turbines and bases. Additionally, the salary denoted by parameter 2 should be paid to the 
technicians who are on board. We assume that the salary is 300€, 325€ and 350€ per day for the electrical, mechanical, and 
electromechanical technicians, respectively. For condition-based maintenance, the recommended period of maintenance and the 
penalty cost could be set to reflect the estimated condition of the turbine. The determination of parameter 3 depends on the 
preferences and perspective of the user and whether he or she represents a wind farm owner/operator or an O&M service provider. 
And the parameter 3 also reflects the loss of electrical energy production, revenue loss and other unpredictable effects due to the 
maintenance delay in actual situation. Parameters 4 to 6 display the weather conditions in the period time. Due to the uncertainty 
of the ultra-deep water environment, the weather window for each period is different for each vessel depending on its specification 
or accessibility level. The duration for a vessel leaving from the bases until its return must be less than its weather window. 
Parameter 7 defines the mapping relationship between the O&M base and the offshore wind farm. If , then the O&M 
base  will service wind farm  and .

TABLE IV
PARAMETERS OF COST AND CLIMATE

No. Notation Description Unit
1 The travel cost of vessel  of type  to travel from node  to €/hour
2 The technician cost of type  per period. €/day

3
The loss of profit and electricity without accomplishing the maintenance per period if turbine  is 
maintained after period 

€/day

4 The ending time of jth weather window at time period for vessel  to the wind farm  in period hour

5 The starting time of jth weather window at time period for vessel  to the wind farm  in period hour

6
Either discontinuous window or continuous window to perform the repair of specified maintenance 
task for vessel  to the wind farm  in period hour

7
 if O&M base  services wind farm 
 otherwise

N/A



2.5 Objective and constraints
Typically, with vessel scheduling and maintenance routing, optimization problems can be developed that must share the 

maintenance resources of the organization. Regarding the discrete weather windows, maintenance technicians and resources as 
constraints, the maintenance routing and scheduling for offshore wind farms is a typical non-deterministic polynomial (NP) 
problem. The following objective function is used for the routing problem:

(1)
where ,  and  are the technicians, penalty cost and travel cost respectively, which are formulated as follows:

(2)

(3)

(4)

where  is a binary variable. If  means the vessel  of type  travel from node  to ; If , otherwise.
The constraints are given as follows:

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)
The explanation of the constraints is as follows:
Constraint (5): The number of vessels that provide service for all the wind farms will not be greater than the maximum number 

of vessels at all bases;
Constraint (6): The total number of vessels for each period is not greater than the ones available at the O&M base;
Constraint (7): The total number of technicians of vessel for each period is not greater than the capacity of vessel;
Constraint (8): A vessel cannot provide service for more than one wind farms at a period;
Constraint (9): A turbine is only maintained once in the planning horizon;
Constraint (10): Node  (turbine) is visited only once by vessel  of type  from node ;
Constraint (11): All the vessels will start from the arbitrary O&M base and get back to any available base after servicing the last 

maintained turbine. Meanwhile, the O&M bases could be visited more than once;
Constraint (12): A vessel travels directly from the delivery node to the pickup node (which is the same turbine) if the vessel 

needs to be present during the maintenance operation;
Constraint (13): The discrete weather window for the maintenance routing and scheduling;



Constraint (14): The arbitrary time window is greater than the maintenance time of turbine  and transfer time for technicians 
and equipment from vessel  to a turbine;

Constraint (15): The time when the vessel leaves the O&M base is forced to be 0;
Constraint (16): The time difference between node  and node  is only related with the travel time and transfer time;
Constraint (17): The quantity change of technicians (for each type) on the vessel when arriving at node .

3 THE HYBRID HEURISTIC OPTIMIZATION ALGORITHM

Due to the complexity and flexibility of the maintenance routing and scheduling for offshore wind farms, the optimization 
problem in this article is divided into two parts, as shown in Fig. 2. The first part mainly establishes the mapping relationship 
between the bases and wind farms and determines the certain number of wind farms that the vessel will service. Then, the scheme 
of vessel allocation is transferred to the second part to optimize the maintenance route. Conversely, the costs of the maintenance 
route are utilized as the evaluation of the first part and thus, as a guide of vessel allocation.

To address this problem, it is necessary to introduce an artificial intelligence method to seek the optimal solution space. The 
authors choose PSO as the optimization approach for its adaptability and quick converging capacity (Mazadi et al., 2012). Because 
the purpose of the article is to find the optimal open and multi-depot maintenance route to minimize the cost of O&M with the 
scheduling of vessel allocation and multiple round trips, there are no former relevant research models and the optimization issue 
for the optimization of maintenance routing and scheduling for offshore wind farms; thus, it is unknown which optimization method 
is more appropriate. PSO is selected partly because it has been used in solving some similar problems, such as component clustering, 
and it is found to be more robust. Additionally, the authors prefer PSO for its high efficiency in maintaining the diversity of the 
swarm, ease in adjusting parameters, and no requirement for differentiable optimization problems. However, the traditional PSO 
algorithm (Eberhart and Kennedy, 2002) is usually utilized for the continuous function, and it has a high probability of falling into 
a local optimum. Therefore, a modified PSO, named mixed PSO (MPSO), is proposed in this article to maintain the diversity of 
the swarm and strengthen the search performance.

Vessel Vessel

Wind farm Wind farm

O&M Base O&M 
Base

Part 1 Part 2
Turbine

Fig. 2.  The scheme of vessel allocation
The second part is for an open maintenance route optimization with discrete weather windows. It underlines the optimization of 

maintenance and delivery routes with multi-depot under the premise of a vessel scheduling plan. Compared with other bioinspired 
optimization methods, the WPS algorithm has better convergence and robustness, especially for high-dimensional functions. As 
the maintenance route for offshore wind farms, it is a typical high-dimensional problem in which the dimensions increase quickly 
with the number of turbines to be maintained and the vessels. Therefore, the WPS algorithm is chosen for modification for the 
proposed problem in this article.
3.1 Mixed PSO
1) Numerical initialization

The particles are initialized to constitute an  Euclidean space, where  is the number of particles, and  equals the 
number of vessels. The state of the ith particle can be described as , and  is the position in the H-
dimensional variable space, namely, the number of wind farms for the dth vessel. As the feature of discrete vessels and wind farms, 
the initial position and velocity of each particle are assigned randomly, and the positions of particles are mandatorily set as an 
integer. All particles are traversed based on parameter , and the number of iterations is traversed based on parameter .

Then, each particle is input to the DWPS as an input parameter, and the fitness function of the particle can be evaluated by 
DWPS. The position under different iterations is updated by the speed of the particles, which is as follows:

(18)



(19)

(20)
where  is the velocity in dth dimension of the particle i at the th iteration;  is the position in dth dimension of 
the particle i at the th iteration;  is the value of position change in dth dimension of the particle i at the iteration of 

th;  is the best position in dth dimension of the particle i in history;  is the best position in dth dimension 
of the particle swarm;  is the inertia coefficient; and ,  are acceleration coefficient which is the extent to which particles 
affect themselves, and  is the capability to share the information between particles;  is an empirical parameter.

To improve the search performance of the MPSO algorithm, the inertia coefficient  adopts an adjustment strategy that decreases 
linearly with the number of iterations. The value of the inertia coefficient  can be expressed as follows:

(21)

where  and  are the extreme values of , and they can be obtained by experience;  is the current iterations and the 
maximum number of iterations  should be set to effectively control the running time of the algorithm.
2) Individual crossover

In the process of numerical initialization, the position at each iteration of each particle is recorded. Apparently, if the position 
 is beyond the solution space, the iteration of the ith particle ends. Otherwise, the iteration ends when it reaches  

iterations. After the numerical initialization, each particle has a set of positions with no more than  elements, denoted by 
, and the optimal particle in the individual optimum particle and the swarm need to be obtained. Owing to 

the generated particle values, the allocation scheme of vessels is fixed. In this article, we use the WPS iteratively to evaluate the 
fitness function of each particle with small variables (iteration times, searching numbers, number of artificial wolves, etc.). With 
the help of WPS, the particles are determined and evaluated, and the occupation of computing resources and time is also acceptable.

Step 1: Taking the best certain number of elements in set , denoted by , as the 

crossover particles (except the individual optimum particle), and  as the proportion of individual crossover particles, the initial 
fitness function of the jth ( ) particle is .

Crossover 
particle

Individual 
optimum particle

d1 d2

Number of wind farms

New individual

......

......

......

Fig. 3.  The operation of individual crossover
Step 2: Choose two arbitrary positions in the individual optimum particle, namely,  and . Traverse all the crossover particles 

with  as an index and replace the sequence of  in the crossover particles with the sequence at the same position in the 
individual optimum particle. The operation of an individual crossover is shown in Fig. 3.

Step 3: Calculate the corresponding fitness function of a new individual particle, denoted by . If , update the 
sequence of the jth particle; otherwise keep the original position.

Step 4: Set  and repeat the steps above until .
3) Swarm crossover

To move close to the optimal particle of the population, the operation of swarm crossover between the individual particles and 
the optimal particle of the swarm is proposed. The primary process of swarm crossover is the same as the individual crossover, 
and the only difference is that the crossed object is replaced by the optimal particle of the population, as shown in Fig. 4.



Crossover particle

Optimal particle 
in the swarm

d1 d2

Number of wind farms

New individual

......
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Fig. 4.  The operation of swarm crossover
4) Mutation

Step 1: Take the best certain number of elements in set , denoted by , as the 

mutation particles, and  is the proportion of mutation particles. The initial fitness function of the jth ( ) 
particle is .

Step 2: Choose two arbitrary positions, namely,  and . Traverse all the mutation particles with  as the index and exchange 
the position of  and . The operation of the mutation is shown in Fig. 5.

Step 3: Calculate the corresponding fitness function of a new individual particle, denoted by . If , update the 
sequence of the jth particle; otherwise keep the original position.

Step 4: Set  and repeat the steps above until .

Mutation 
particle

d3 d4

New 
individual

......

......

Fig. 5.  The operation of mutation 
5) Output the optimized solution

The optimized solution  is output, and the  is the best number of wind farms for which the dth 
vessel provides service. The procedure of MPSO is shown in Fig. 6.



Fig. 6.  The flow diagram of Mixed PSO
3.2 Discrete WPS

Bioinspired optimization methods are becoming common among researchers due to their simplicity and extensibility. The WPS 
algorithm, one of the relatively new optimization algorithms, is inspired by the social hierarchy and hunting behaviour of wolves 
in nature.

The wolves cooperate well with each other and attack their competitors and prey (Zhou et al., 2018; Chen et al., 2018, 2017). 
The whole process of the hunting activity of a wolf pack can be summarized as 1) initializing wolves, 2) searching for wolves, 3) 
summoning wolves, 4) sieging wolves, and 5) eliminating wolves and updating wolves.

The original WPS algorithm can be directly used in real-valued unconstrained global optimization problems (Xi et al., 2016; 
Emary et al., 2018; Ren et al., 2019). All operations of the WPS algorithm are suitable for continuous functions. However, the 
MTSP is an integer programming problem with complex constraints. Therefore, it cannot be directly applied to the MTSP. To 
solve this problem, we propose a novel WPS algorithm with a two-dimensional code representation, named the DWPS algorithm 
for solving the maintenance routing for offshore wind farms.
1) Numerical initialization

In the initialization operation, each artificial wolf is encoded as a two-dimensional code, namely,  and , respectively. 
 is the sequence of turbines corresponding to the artificial wolf , and  is the sequence of vessels. The fitness function 

of each artificial wolf is determined by the two-dimensional code. An example of the two-dimensional code representation is 
shown in Fig. 7.

Step 1: Generate  artificial wolves randomly with  as an index. Set . Set the maximum 
number of generations as  to effectively control the running time of the algorithm.

Step 2: Generate the initial number of turbines that need to be serviced randomly, denoted by . Then, calculate the 
following sequence of turbines utilizing the chaotic search as follows:



(22)
where  is the control parameter. Assume that , and the system has been proven to be entirely chaotic if . 

Owing to the discrete feature of the turbine sequence, the  is mapped mandatorily into an integer, and thus the  is 
obtained.

151 8 12 18 34 48 56

2111 11 11 21 21 32 32

......

Turbine sequence need to be maintained

Vessel 1 Vessel 2 Vessel 3

Vessel 
Type

Fig. 7.  Example of the two-dimensional code for 8 turbines with 3 vessels
Step 3: According to the turbine sequence , the vessel sequence  is obtained by satisfying constraints such as the 

limitation of spare weight, the discrete weather window and technicians.
Step 4: If , update , and return to Step 1; otherwise, continue to Step 5.
Step 5: Calculate the fitness function of each artificial wolf by equation (1). The number of the leader wolf is recorded as m, 

and its corresponding fitness function value is .
2) Wolves searching

Take all artificial wolves (except the leading wolf) as the searching wolves and explore the prey in the  directions of the 
surroundings to search for a better solution in the solution space explanatorily. The initial fitness function of the ith searching wolf 
is . Since each element is regarded as a discrete turbine in the sequence  of the artificial wolf, the process of searching 
wolves is redefined in this article.

Step 1: Choose one turbine randomly in the  sequence of the ith artificial wolf, denoted by  in the direction . The 
position of its closest turbine is . Reverse the order of the elements between  and , and thus, a new sequence of artificial 
wolf  is obtained, as shown in Fig. 8. 

d5

151 8 12 18 34 48 56

181 48 34 15 12 8 56

d6

Fig. 8.  The search operation of the DWPS algorithm

Step 2: Calculate the fitness function of , denoted by . If , update the sequence of artificial wolf  and 
its corresponding fitness value; otherwise, keep the original position.

Step 3: Set  and back to step 1 until  or the maximum cycle-index  is reached. Update the number 
of the leader wolf as .

d7

128 18 34 15 48 1 56

151 8 12 18 34 48 56
158 8 12 18 34 1 56

1548 8 12 18 34 1 56

d8

1 48 56

8 1 56



Fig. 9.  The summoned operation of the DWPS algorithm
3) Wolves summoned

Take all artificial wolves (except the leading wolf) as the summoned wolves, and the leader wolf shares the experience with 
other wolves by summoning. The initial fitness function of the ith summoned wolf is .

Step 1: Choose two turbines as the dominant sequence of the leader wolf to share with the other summoned wolves, and the 
positions of the two turbines are denoted by  and . Then, replace the corresponding position of all summoned wolves.

Step 2: According to the constraint of equation (10), update the remaining positions in the sequence of summoned wolves  to 
ensure that all the turbines are visited only once.

Step 3: Calculate the fitness function of the summoned wolf after updating the sequence, denoted by . If , then 
update the number of the leader wolf as ; otherwise, continue to summon until the maximum cycle-index  is reached. 
The summoning operation of the DWPS algorithm is shown in Fig. 9.
4) Wolves sieging

Take all artificial wolves (except the leading wolf) as the sieging wolves, and the sieging wolves aim to move close to the leader 
wolf .

Step 1: Choose one turbine randomly as the sieging number in the leader wolf . The positions of the sieging and leader wolf 
are denoted by  and . Similarly, the initial fitness function of the ith sieging wolf is .

Step 2: Compare the position of  and . If , then the order of the sieging wolf is changed and the position of  
is moved up by .

Step 3: Calculate the fitness function of sieging wolf  after updating the sequence, denoted by . If , then 
update the number of the leader wolf as ; otherwise, continue to siege until  or the maximum cycle-index  is 
reached. The sieging operation of the DWPS algorithm is shown in Fig. 10.

128 18 34 15 48 1 56

151 8 12 18 34 48 56

128 18 34 1 15 48 56

d9

d10

d10-stepsiege

Fig. 10.  The sieging operation of the DWPS algorithm



Fig. 11.  The flow diagram of Discrete WPS
5) Wolves eliminated and updated

After completing the above four steps, calculate all the fitness functions of the artificial wolves and rank them from the best to 
the worst. Eliminate the worst artificial wolves according to a certain proportion and generate the new artificial wolves to ensure 
that the number of artificial wolves is constant. Additionally, if , set ; otherwise, finish the DPWS 
algorithm and output the optimized solution. The procedure of discrete WPS is shown in Fig. 11.

4 COMPUTATIONAL ANALYSIS

We carried out extensive experiments to examine the performance of the proposed solution approaches. In the computational 
experiments, we generated a challenging dataset where three offshore wind farms were considered in the experiment. Each offshore 
wind farm consisted of 48 turbines, and the number of turbines that needed to be maintained was 16 turbines within 7 periods 
(days), which means that the experiment involved 48 turbines for three offshore wind farms and that optimal maintenance routing 
and scheduling were required.
4.1 Numerical analysis

The dataset generated represents the maintenance routing and scheduling problem with a discrete weather window and open 
routing problems with multi-depots that was illustrated in Fig. 1. It was constructed to illustrate the functionalities of the 



optimization model. As with the dataset, the experiment was abstracted into three O&M bases ( ,  and ) and three wind farms 
( ,  and ). We assumed that each base was limited to providing services for finite offshore wind farms. 1) Base  provided 
service for wind farms ,  and . 2) Base  provided service for wind farms  and . 3) Base  provided service for 
wind farms  and . According to the harsher climate conditions, the weather window was discretized in the experiment. Table 
V presents the information on the weather window within periods. For example, as the vessel  served wind farms 1 and 2, the 
available weather windows for vessel  were 0-4 hours, 6-10 hours within the initial three days and 0-6 hours for the last four 
days.

TABLE V
DISCRETE WEATHER WINDOW FOR EACH VESSEL WITHIN PERIODS

Weather window (h)Vessel Day Wind farm 1 Wind farm 2 Wind farm 3
1-7 12 12 12
1-3 [0-4][6-10] [0-4][6-10] --
4-7 6 6 --
1-3 [0-4][6-10] [0-4][6-10] --
4-7 6 6 --
1-3 -- [0-4][6-10] [0-4][6-10]
4-7 -- 8 8
1-3 -- [0-4][6-10] [0-4][6-10]
4-7 -- 8 8

Table VI presents the specification ( ), load capacity ( ), personnel capacity ( ), vessel speed ( ) and fuel cost ( ) 
used in the experiment. If , the vessel  of type  at O&M base  could deliver the maintenance spare parts and technicians. 
If , the technician  of type  at O&M base  could provide maintenance.

TABLE VI
SPECIFICATION, QUANTITY AND THE RELATED INFORMATION OF VESSELS

Vessel Vessel type O&M base Load capacity Person capacity Vessel speed Fuel cost
1.5 12 18 225
2 12 11 250
2 12 11 250

1.5 12 18 225
2 12 11 250

1.5 12 18 225
2 12 11 250

TABLE VII
SPECIFICATION, QUANTITY AND THE RELATED INFORMATION OF VESSELS FOR WIND FARM 1

Type of technicians
No. Turbine Maintenance time Spare weight Penalty cost Last period Vessel present

1 4 700 1900 3 0 2 0 1
2 3 700 1500 2 0 0 1 1
3 5 300 1600 4 1 3 0 0
4 2 900 1900 1 0 1 0 2
5 4 600 1200 1 0 1 2 2
6 5 900 1600 1 1 3 0 0
7 2 900 1800 4 0 2 2 1
8 2 500 1100 1 0 3 0 1
9 3 400 1300 1 0 0 1 1
10 2 600 1500 3 0 0 1 1
11 4 800 1400 2 1 1 3 0
12 2 700 1900 1 0 0 2 1
13 3 600 1900 2 0 3 2 0
14 4 800 1600 3 0 1 2 0
15 4 400 1500 3 1 3 0 1
16 3 800 1800 2 0 3 1 0

Table VII illustrates an example of the turbines to be maintained for wind farm 1, where the maintenance time ( ), weight of 

spare ( ), penalty cost ( ), last period ( ), vessel present ( ) and the number of technicians ( ) are given. The binary values 
of the present vessel are also given in Table VII. If , the vessel  was required to be present when servicing turbine ; 



, otherwise. To be more realistic, the required transfer time ( ) for technicians and spare parts from a vessel to a turbine 
was set to 30 minutes. The number of each type of technician available in each O&M base was equal to 4, and the spare parts 
needed to service the turbines were always available.

TABLE VIII
COST BREAKDOWN FOR THE SOLUTION ATTAINED BY THE PROPOSED APPROACH

Wind 
farm Vessel Total cost

Last 
operation 

time

Penalty 
cost

Technician 
cost

Travel 
cost

U.R of 
weather 
window

Unavailability Parameter

5 0 10275 15199.92
3 0 11875 12657.6274633.68
3 0 17375 7251.14

0.7922 0.0208

Maintenance routing of vessels
Day 1 Day 2 Day 3 Day 4 Day 5

Table VIII presents the optimal experimental results of the proposed method with . Three types of costs 
are presented: travel cost, technician cost and penalty cost. According to the weather conditions in the period, the detailed routes 
of vessel  to  for each day were arranged. As Table VIII shows, vessel  first visited turbines  and , and needed to be 
present for maintenance and then returned to O&M base . When the weather window was available, the vessel  started from 
base  and visited turbine , then finally returned to O&M base . The maintenance routing of ,  and  for offshore wind 
farm 2 is shown in Fig. 12 and proves intuitively that the algorithm is appropriate for solving the open and multi-depot VRP.

Additionally, the utilization rate of the weather window is also shown in Table VIII owing to the discrete weather window. The 
utilization rate of the weather window represents the proportion of the maintenance schedule within the available time range. A 
higher utilization rate means more efficient maintenance activities. According to the optimization process, the optimal utilization 
rate of the weather window was 0.7922, and the relationship among the utilization rate of the weather window, generation and 
iterations are shown in the discussion section.

Considering that the maintenance time of the turbine is inevitable, the unavailability of the system can be divided into two parts. 
If the turbine is maintained before , the unavailability time is ; otherwise, the unavailability time is . Hence, 
the unavailability of the system is defined as follows:

(23)
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Fig. 12.  The optimal solution of maintenance routing for offshore wind farm 2
Table IX shows the cost breakdown for the best ten solutions of all feasible maintenance routing and scheduling on the 

experimental dataset. The table reveals that on average, the travel cost and the technician cost contributed the highest proportion 
to the total cost by nearly 99 percent, followed by the penalty cost by 1 percent. The optimal solution not only considers the single 
cost but also the global cost. Additionally, as with the optimization with the proposed approach, the optimal result is revealed with 

, and the proposed method with  and  produces a relative deviation 
of 0.0568 percent and 0.1053 percent, respectively.

TABLE IX
EXPERIMENTS RESULTS OF THE PROPOSED METHOD

No.

1 0 39525 35108.68 74633.68 0 29525 46068.15 75593.15 1600 42000 37350.64 80950.64
2 1300 33375 40238.68 74913.68 2300 40625 34164.08 77089.08 1400 39450 43803.68 84653.68
3 0 39875 35545.69 75420.69 0 40850 39050.93 79900.93 1300 40225 42410.61 83935.61
4 0 38925 36585.38 75510.38 2400 36650 41611.32 80661.32 0 40950 43359.37 84309.37
5 1400 40075 36317.26 77792.26 0 39875 38644.58 78519.58 0 39650 42369.98 82019.98
6 0 39650 37194.49 76844.49 1700 39175 39368.83 80243.83 1300 40375 42425.91 84100.91
7 3300 39425 37378.42 80103.42 0 38850 39256.03 78106.03 1400 40150 39785.62 81335.62
8 0 39650 36691.32 76341.32 0 39650 35611.32 75261.32 1300 40000 39727.44 81027.44
9 1600 29525 48531.19 79656.19 1600 38850 42690.46 83140.46 0 39300 41797.59 81097.59
10 0 39525 36077.66 75602.66 0 39175 41068.83 80243.83 0 39350 42132.39 81482.39

Avg 760 37955 37966.88 76681.88 800 38322.5 39753.45 78875.95 830 40145 41516.32 82491.32
Prop. 0.99 49.49 49.52 1.02 48.59 50.41 1.01 48.67 50.32
Dev. 0.0000 0.0568 0.1053

4.2 Discussion
1) Sensitivity of the approach

As mentioned in Section 3, the proposed hybrid heuristic optimization technique is used to find the optimal maintenance routing 
and scheduling for offshore wind farms. Owing to the number of artificial wolves , iteration times  and number of 
searches  being important parameters in the algorithm, a sensitivity analysis is executed on the experiment. The cost of 
maintenance with various values of ,  and  are shown in Fig. 13.

Fig. 13 shows that the hybrid heuristic algorithm is available for the optimization of maintenance routing and scheduling for 
offshore wind farms. As the parameter increases, the solution space is searched increasingly more comprehensively, and thus, the 
total cost of the maintenance is further optimized with a downturned trend and eventually tends to be smooth. Compared with the 
pictures in Fig. 13, all parameters vary within 10 times of their range, and the influences on the cost are nearly the same.
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Fig. 13.  The relationship curve between the simulation parameter and maintenance cost
2) Effectiveness of the approach

The effectiveness of the algorithm is verified by conducting analyses of the cost of maintenance routing with a fixed vessel 
allocation scheme. Utilizing the DWPS algorithm, the change in cost is proposed with the various unavailability and utilization of 
weather windows. As shown in Fig. 14, each point presents an optimal maintenance route with the fixed vessel allocation scheme, 
and the points are mainly concentrated in areas with better results. The approach provides a more intuitive method for decision 
makers to trade-off between the numerous indicators.

2

2.2

0.08

2.4

2.6

2.8

C
os

t o
f w

in
d 

fa
rm

 1
 ($

)

104

3

3.2

0.06

3.4

0.8

Unavilability

0.750.04 0.7

Utilization of weather window

0.650.02 0.60.550 0.5

2
0.1

4

6

8

0.08

104

C
os

t o
f w

in
d 

fa
rm

 2
 ($

)

10

12

14

Unavailability

0.06 0.80.70.6

Utilization of weather window

0.04 0.50.40.30.02 0.2

2.5

3

0.15

3.5

4

C
os

t o
f w

in
d 

fa
rm

 3
 ($

)

104

4.5

5

0.1 0.80.75

Unavailability

0.7

Utilization of weather window

0.650.05 0.60.550.50 0.45

0.6

0.8

0.08

1

1.2

1.4

To
ta

l c
os

t (
$)

105

1.6

1.8

2

0.06

Unavailability

0.750.70.04 0.65

Utilization of weather window

0.60.550.50.02 0.45

Fig. 14.  The effectiveness of the approach
3) Comparison with other approaches

Owing the maintenance routing and scheduling for offshore wind farms is a NP-hard problem, the constraints play a critical role 
in the optimization of model. Present literatures have proposed several approaches to solve this problem, but none of the proposed 
approaches can cover all the characteristic like the range of time window, number of bases and wind farms, the closed/open route 
and the single/round trip, shown as Table X. With the advantage of MPSO and DWPS integrated, this manuscript can propose an 
open and multi-depot maintenance route to minimize the cost of O&M with the scheduling of vessel allocation and multiple round 
trips. 

TABLE X
COMPARISON WITH SOME PREVIOUS WORKS REPORTED IN THE LITERATURE

Characteristics
Study Method Database Time 

window
Bases and wind 

farms Routing Round trip
Computation 

Time/s Cost/€



Zhang (2014) Duo-ACO
Turbines: 8
Wind farm: 1
Period: 6

Continuous Single Closed Single -- 9641.6

Akbari et al., 
(2017) MILP

Turbines: 24
Wind farm: 3
Period: 7

Continuous Multiple Closed Single 3465.71 41839.74

Dai et al., 
(2015)

Mathematical 
computation

Turbines: 8
Wind farm: 1
Period: 3

Continuous Multiple Closed Single 10000 7606.13

Proposed 
Method MPSO+DWPS

Turbines: 48
Wind farm: 3
Period: 7

Discrete Multiple Open Multiple 5623.56 74633.68

5 CONCLUSION AND FURTHER WORK

In this paper, a hybrid heuristic optimization technique of maintenance routing and scheduling for offshore wind farms is 
proposed. Integrated with MPSO and DWPS, the optimal vessel configuration is selected, and the maintenance routing is developed 
simultaneously to minimize the total cost comprising travel, technicians and penalty costs. The algorithm explores all combinations 
of turbines that are feasible for servicing in a period with a discrete time window and divides the optimization problem into two 
parts. Utilizing the MPSO, the relationships between the bases and wind farms are established, and the certain number of wind 
farms that the vessel will service is determined. Then, according to the open multi-depot VRP with a discrete weather window 
problem, the maintenance and delivery routes under the premise of a vessel scheduling plan can be proposed by DWPS. Ultimately, 
a numerical analysis with 3 wind farms and 3 bases is designed to verify the practicality of the approach. Based on the results and 
discussion, the approach proposed in the article has the capability of providing an optimal maintenance routing and scheduling 
plan with the lowest cost.

The main contributions of this paper are as follows: 1) to extend the routing and scheduling problem with discrete window time 
and consider several logistics bases and the possibility of servicing more than one wind farm with the same fleet; 2) to introduce 
the open and multi-depot VRP into maintenance routing and scheduling for offshore wind farms with pickup/delivery; 3) to propose 
a new hybrid heuristic optimization technique integrated with MPSO and DWPS to support the multiple round trips to the bases 
during maintenance. Meanwhile, there are many possible extensions to enhance the approach proposed in the article to make it 
more applicable to both offshore wind farms in operation and under development, such as the group or opportunistic maintenance 
scheduling, uncertainty and variability of the weather conditions.
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