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Abstract

In this work we study the problem of unconstrained convex-optimization in a fully distributed
multi-agent setting which includes asynchronous computation and lossy communication. In particular,
we extend a recently proposed algorithm named Newton-Raphson Consensus by integrating it with
a broadcast-based average consensus algorithm which is robust to packet losses. We show via the
separation of time scales principle that under mild conditions (i.e., persistency of the agents activation
and bounded consecutive communication failures) the proposed algorithm is proved to be locally
exponentially stable with respect to the optimal global solution. Finally, we complement the theoretical
analysis with numerical simulations that are based on real datasets.

I. INTRODUCTION

Recently, we have been witnessing a surge of interest in distributed optimization, and in
particular in distributed convex optimization. The reason is twofold: the first is due to the advent
of Big-Data analytics, whose problems can be often cast as a large-scale convex optimization
problems via Machine Learning tools [1]. As so, parallelization of computation is ought in
order to obtain rapid solutions. The second reason is the advent of Internet-of-Things and Smart
Cyber-physical Systems, where a large multitude of electronic devices are capable of sensing,
communicating, and of autonomous decision making through cooperation [2]. Even in this second
scenario, several estimation and control problems such as localization, map-building, sensor
calibration, power flow optimization can be cast as large-scale convex optimization problems.
The main difference between these two scenarios is that in the former the bottleneck is mainly
given by computation time and therefore the typical architecture adopted is server-client (i.e.,
memory is centralized at a master node or redundant via synchronized cloud architectures, and
computation is parallelized among many nodes). Our work will mainly focus on the second
scenario; however, since the boundary between the two is sometimes blurred, we will briefly
overview the most relevant literature on distributed convex optimization in general.

To cope with real-world requirements, distributed convex algorithms need to be designed to
work under asynchronous, directed, faulty and time-varying communications.
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A popular class of algorithms that are able to cope with asynchronous updates and lossy
communication is the one of distributed subgradient methods. They are simple to implement,
can cope with non-differentiable convex cost functions, and require only the computation of
local (sub)-gradients. However, these algorithms exhibit sub-linear converge rates even if the
cost functions are smooth [3], [4]. Recent works based on this approach have extended these
results to directed and possibly time-varying communication in both discrete-time [5], [6] and
continuous-time settings [7], [8], however the use of a diminishing step-size tacitly implies that
the communication is synchronous (since the step-size is designed as a function of the global time
that triggers the algorithm). Moreover, the underlying assumption for guaranteeing convergence
is that the transmitter nodes should know which packets are transmitted successfully. This as-
sumption corresponds to employing communication protocols with reliable packet transmission-
acknowledge mechanisms, which might be difficult or expensive to implement over wireless
media. The recent work [9] proposes an asynchronous algorithm, based on random projections,
in which the step-size (both diminishing and constant) is uncoordinated among agents.

Another popular class of distributed optimization algorithms is the one of dual decomposition
schemes. In this case the related literature is very large and we refer to [10] for a comprehensive
tutorial. Among these algorithms, the Alternating Direction Method of Multipliers (ADMM)
has attracted the attention of the scientific community for its simple distributed implementation
and good convergence speed. This algorithm was originally proposed in mid ’70s as a general
convex optimization strategy, then exploited in the context of networked optimization [11], and
recently popularized by the survey [12]. Substantial research has been dedicated in optimizing
the free parameters of ADMM in order to obtain fastest convergence rates, but these are mainly
restricted to synchronous implementations over undirected communication graphs [13], [14],
[15], [16]. Some recent exceptions extend dual decomposition, [17], and ADMM, [18], [19],
[20], to asynchronous scenarios with edge-based or node-based activation schemes.

A third class of optimization algorithms, usually referred to as Newton-based methods, consists
of strategies that exploit second-order derivatives, i.e., the Hessians of the cost functions for com-
puting descent directions. For example in [21], [22] the authors apply quasi-Newton distributed
descent schemes to general time-varying directed graphs. Another approach, based on computing
Newton-Raphson directions through average consensus algorithms, has been proposed in [23].
Even if initially proposed for synchronous implementations, this scheme has been later extended
to cope with asynchronous symmetric gossip communication schemes [24].

Finally, a different approach, based on the exchange of active constraints, has been proposed in
[25] for convex (and abstract) optimization problems and extended in [26] by means of cutting-
plane methods. The proposed algorithms work under asynchronous, directed and unreliable
communication.

Although there exists a large body of literature on distributed convex optimization schemes
employing synchronous and asynchronous communications, no work has directly addressed
situations where the communications are unreliable and lossy. Unfortunately, trying to make the
aforementioned algorithms cope with packet losses using naı̈ve modifications (e.g., using the most
recently received message from the neighboring nodes, interpretable as using delayed information
in the algorithms) may destroy some of the hypotheses that guarantee the convergence of the
original algorithms (e.g., the doubly stochasticity or the invariance of some quantities such as
the global averages). Distributed convex optimization in the presence of lossy communications
is thus a non-trivial task, and recently some works have specifically addressed this problem
in ADMM schemes [27], [28], [20]; however these strategies are restricted to networks with
server-client communication topologies.
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The main contribution of this work is to propose a Newton-based algorithm which is robust
to both asynchronous updates and packet losses and which is suitable for general peer-to-peer
networks. More specifically, we robustify the Newton-Raphson approach initially proposed in [23]
by introducing a new consensus algorithm, which is an ad hoc merging of two known schemes
for consensus: i) the ratio or push-sum consensus, useful to compute averages in networks with
directed communication graphs (i.e., networks using broadcast protocols [29]); ii) the robust
consensus algorithm, which allows for a robust computation of arithmetic averages over networks
with lossy communication [30]. The new scheme is then able to deal with asynchronous and
lossy communication protocols. Under mild conditions, i.e., persistency of (asynchronous) node
updates, uniformly bounded consecutive communication link failures, and connectivity of the
communication graph, we then show that the optimization algorithm is locally exponentially
stable with respect to the global solution as long as the step-size of the updates is smaller than a
certain critical value and the cost functions are sufficiently smooth. The proof is based on time-
scale separation and Lyapunov theory, and extends the results in [31], where the convergence was
proved only for quadratic cost functions. We complement the theoretical results with numerical
simulations based on real datasets under lossy, broadcast communication. It is worth mentioning
that the algorithm we propose not only handles asynchronous updates, as some recent references,
but also is robust to packet losses.

The paper is organized as follows: Section II formulates our problem and working assumptions.
Section III presents the building blocks of the scheme proposed in this manuscript. Section IV
then introduces the main distributed optimization algorithm and gives some intuitions on the
convergence properties of the scheme, summarized then in Section VI. Finally, Section VII
collects some numerical experiments corroborating the theoretical results, while Section VIII
draws some concluding remarks and future research directions.

II. PROBLEM FORMULATION AND ASSUMPTIONS

We consider the separable optimization problem

x∗ := argmin
x

f(x) = argmin
x

N∑
i=1

fi(x) (1)

where x ∈ Rn and where the local costs fi : Rn 7→ R satisfy:

Assumption II.1 (Cost smoothness) Each fi is known only to node i and is C2 and strongly
convex, i.e., its Hessian is bounded from below, ∇2fi(x) > cIn for all x, with c > 0 some
positive scalar1.

We also define the following operator that will be useful in the description of the main algorithm
in the next section:

[z]c :=

{
z if z ≥ cIn
cIn otherwise.

where z ∈ Rn×n is a positive semidefinite matrix, and In is the identity matrix of dimension n.
The communication among nodes is modeled via a communication graph that satisfies the

following:

1With a little abuse of notation we use the symbols ∇f(·) and ∇2f(·) to indicate the gradient and Hessian of the cost function
f(·), respectively.
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Assumption II.2 (Network connectivity) The communication graph among the nodes is fixed,
directed and strongly connected, i.e., for each pair of nodes there is at least one directed path
connecting them.

More formally, the communication graph is represented as G = (V , E) with nodes V = {1, . . . , N}
and edges E ⊆ V ×V so that (i, j) ∈ E iff node j can directly receive information from node i.
With N out

i we denote the set of out-neighbors of node i, i.e., N out
i := {j ∈ V | (i, j) ∈ E , i 6= j}

is the set of nodes receiving messages from i. Similarly, with N in
i we denote the set of in-

neighbors of i, i.e., N in
i := {j ∈ V | (j, i) ∈ E i 6= j}. Their cardinality is indicated by |N out

i |
and |N in

i | respectively.

Remark II.3 In some distributed systems, as Wireless Sensor Networks, the communication
graph is often undirected, in the sense that a node can transmit to any node from which
it can receive. However, communication is typically only half-duplex, i.e., two nodes cannot
communicate simultaneously, so that protocols with multiple communication rounds and reliable
acknowledge (ACK) mechanisms are needed for bidirectional communication. This, in turn,
requires pairwise synchronization and results in substantial delays; as so, algorithms that are
suitable for broadcast-based (directed) communication without ACK, such as UDP, are extremely
valuable also for undirected graphs.

As for the concept of time, we assume that the local variables at each node are updated at
discrete time instants (e.g., based on local and possibly unsynchronized clocks, or based on events
like receiving a packet). Thus, from a global perspective, we collect and order all time instants
when at least one variable in one node is updated and refer to it as the sequence {tk}∞k=1. With
a little abuse of notation we will then write x(k) = x(tk) and we will study the time evolution
of the nodes variables as a discrete-time system.

Our objective is to design an algorithm solving (1) with the following features:
F1) Asymptotic global estimation: each agent wants to obtain an estimate of global minimizer

that asymptotically converges to the optimal solution x∗.
F2) Peer-to-peer (leaderless): each node has limited computational and memory resources and it

is allowed to communicate directly only with its neighbors; moreover there is no leader/master
node, and the communication graph is arbitrary (but strongly connected).

F3) Distributed: the update-rule of the local variables at each node depends only on the variables
stored by the local node and by its neighbors; in other words, no multi-hop information
exchange is allowed.

F4) Asynchronous: events as the update of the local variables, and the transmission/reception of
messages do not need to be synchronized within the node itself nor with its neighbors, i.e.,
any communication and update protocol can be used (e.g., time-triggered, event-triggered or
hybrid). Therefore, none, one or multiple nodes can communicate or update their variables
at any given time.

F5) Lossy broadcast communication without ACK: communication can be broadcast-based with
no ACK mechanisms and allow for packet losses (due to ambient noise, collisions, or other
effects) without impairing the convergence properties of the algorithm.

To the best of authors’ knowledge, none of the previously cited works possesses all the previous
features.

III. BUILDING BLOCKS

The algorithm we propose consists of three different building blocks: i) Newton-Raphson
Consensus, proposed in [23] to solve problem (1), ii) the push-sum algorithm, initially proposed
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in [29] as an asynchronous average consensus protocol, and iii) the robust ratio consensus
algorithm, initially proposed in [30] as a robust average consensus protocol. While possessing
the first three features mentioned above (i.e., F1, F2, and F3), Newton-Raphson Consensus is
nonetheless limited since it assumes synchronous and reliable communications. The two adopted
consensus schemes (ratio consensus and its robust version) are nonetheless limited since assume
respectively reliable communications and synchronous updates.

The major contribution of this work is to suitably modify and integrate the three schemes
above to design a distributed optimization algorithm that solves problem (1) and that exhibits
all the features F1-F5 above. The main challenge in doing this is that the interaction between
these algorithms might lead to instability unless some suitable assumptions are considered. The
key mathematical machinery that will be used to this means is Lyapunov theory and separation
of time-scales.

Before providing the description of the proposed algorithm, we offer a brief description of
the three aforementioned algorithms.

A. Newton-Raphson Consensus
Newton-Raphson Consensus [23] is based on the observation that the standard Newton-

Raphson update in the standard centralized scenario with a single agent can be written as

x+ = x− ε(∇2f(x))−1∇f(x)

= (1− ε)x+ ε
(
∇2f(x)

)−1(∇2f(x)x−∇f(x)
)

= (1−ε)x+ε
(∑

i

∇2fi(x)︸ ︷︷ ︸
=:h(x)

)−1
(∑

i

(∇2fi(x)x−∇fi(x))︸ ︷︷ ︸
=:g(x)

)

where we used the simplified notation x+ to indicate x(k + 1) and x to indicate x(k). This
system is exponentially stable as long as the parameter ε > 0, which acts as a stepsize, is
chosen in a proper way. If we now assume that all agents can have a different value of xi and
we mimic the previous algorithm, we get the N local updates:

x+
i =(1−ε)xi+ε

(∑
j

∇2fj(xj)︸ ︷︷ ︸
=:hj(xj)︸ ︷︷ ︸

=:h(x1,...,xN )

)−1
(∑

j

(∇2fj(xj)xj−∇fj(xj))︸ ︷︷ ︸
=:gj(xj)︸ ︷︷ ︸

=:g(x1,...,xN )

)
. (2)

The dynamics of the N local systems is identical and exponentially stable, therefore, since
they are all driven by the same forcing term κ(x1, . . . , xn) = (h(x1, . . . , xN))−1g(x1, . . . , xN),
intuitively we expect that

xi − xj → 0, ∀i, j ,

which implies that all local variable will be identical. If this is the case, then the dynamics
of each local system will eventually become the dynamics of a standard centralized Newton-
Raphson algorithm. This algorithm, however, requires each agent to be able to instantaneously
compute the two sums h, g, which is obviously not possible in a distributed computation set-
up. The original paper [23] extends the standard Newton-Raphson algorithm into a distributed
scenario via the use of synchronous lossless average consensus protocols that compute these
sums asymptotically, while [24] extends it to the case of asynchronous gossip-based lossless
average consensus strategies.
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B. Push-sum Consensus
The Newton-Raphson Consensus scheme described in Section III-A requires each node to com-

pute the two sums yi = g and zi = h at least asymptotically in order to apply a Newton-Raphson
descent. In fact, since the ratio of the two quantities is needed, each agent can asymptotically
converge to a scaled version of the two. That is, assuming each variable xi, i ∈ V , to be fixed,
we require

yi → ηig(x1, . . . , xN) = ηi
∑
j

gj(xj)

zi → ηih(x1, . . . , xN) = ηi
∑
j

hj(xj),

where η1, . . . , ηN are possibly time-dependent, non-zero scalars. Here the right arrow means
that the difference between left and right hand-sides goes to zero as the iteration counter goes
to infinity. Having identified our aim, we first describe the push-sum algorithm, which is able
to solve the given problem in an asynchronous communication scenario. Then, we describe the
robust ratio consensus which is able to solve the problem in a scenario where the communication
is unreliable but the protocol is synchronous. One of the aim of this work will be the merging
of these two schemes to obtain a robust and asynchronous consensus algorithm.

Under synchronous communication, the local updates of the push-sum or ratio consensus
introduced in [29] are, for each i ∈ V ,

y+
i =

1

|N out
i |+ 1

yi +
∑
j∈N in

i

1

|N out
j |+ 1

yj (3)

z+
i =

1

|N out
i |+ 1

zi +
∑
j∈N in

i

1

|N out
j |+ 1

zj, (4)

paired with the initialization yi(0) = gi(xi), zi(0) = hi(xi). Assuming for notation simplicity a
scalar optimization problem, the previous update can be written as

y+ = Py

z+ = Pz,

where y = [y1 · · · yN ]T , z = [y1 · · · zN ]T . In this way the matrix P results to be column-
stochastic and its induced graph GP (i.e., (i, j) ∈ GP if [P ]ji 6= 0) coincides with the original
communication graph (i.e., GP = G). Since we assume G to be strongly connected, this guarantees
that2

yi → ηi
∑

i yi(0) = ηi
∑

i gi(xi) = ηig(x1, . . . , xN)
zi → ηi

∑
i zi(0) = ηi

∑
i hi(xi) = ηih(x1, . . . , xN)

where η = [η1 · · · ηN ]T is the right eigenvector of P relative to the unique unitary eigenvalue,
i.e., Pη = η and ηi > 0,∀i.

The ratio consensus described above can then be extended to asynchronous implementations
(as proposed in [29]). Let at any time k only one node i activate, update its variables, and

2These well-known results can also be readily derived from standard theories on Markov Chains [32].
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broadcast them to its out-neighbors, and then, consistently, let the generic receiving node j
update its local variables. The update rules for yi and yj therefore become

y+
i =

1

|N out
i |+ 1

yi (5)

y+
j = yj +

1

|N out
i |+ 1

yi = yj + y+
i ∀j ∈ N out

i (6)

(the rules for zi and zj being equal in structure). In this scenario, the global dynamics can be
described by a time-varying consensus matrix that depends on the specific node that is activated,
i.e. P (k) ∈ {P1, . . . , PN}, where the matrices Pi are still column-stochastic. As shown via weak
ergodic theory considerations in [29], if the activation of the nodes is randomized and i.i.d. then
the local variables converge to

yi → ηi(k)
∑

i yi(0) = ηi(k)
∑

i gi(xi) = ηi(k)g(x1, . . . , xN)
zi → ηi(k)

∑
i zi(0) = ηi(k)

∑
i hi(xi) = ηi(k)h(x1, . . . , xN)

(7)

where ηi(k) > 0 is time-varying and depends on the activation sequence of the nodes.

C. Robust ratio consensus
The synchronous ratio-consensus strategy defined by iterations (3) and (4) in Section (III-B)

loses its convergence properties in case of lossy communications. A naı̈ve attempt to solve this
problem is then to use a buffer such that when i does not receive a message from j then i
updates its local variables by using the latest values that it has received from j. Focusing only
on (3) to avoid repetitions, mathematically this corresponds to add an additional local variable
y

(j)
i representing the latest yj received by i from j, and to transform the update rule (3) into

y
(j)+
i =

{
yj if yj is received
y

(i)
j otherwise

∀i ∈ V , ∀j ∈ N in
i

y+
i =

1

|N out
i |+ 1

yi +
∑
j∈N in

i

1

|N out
j |+ 1

y
(j)
i , ∀i ∈ V .

However this solution does not preserve the total mass of the variables yi during the progress of
the algorithm, i.e.,

∑
i yi(k) 6=

∑
i yi(0), differently from the original lossless ratio consensus;

this eventually leads the average consensus algorithm not to converge to the desired value.
To overcome this issue, it is possible to add some additional “mass counter” variables σi,y, ρ

(j)
i,y

that guarantee the preservation of the masses even in the presence of packet losses [30]. More
specifically, in this way the synchronous update (3) transforms into

σ+
i,y = σi,y + yi, ∀i ∈ V (8)

ρ
(j)+
i,y =

{
σj,y If σj,y is received
ρ

(j)
i,y otherwise

∀j ∈ N in
i (9)

y+
i =

1

|N out
i |+ 1

yi+
∑
j∈N in

i

1

|N out
j |+ 1

(ρ
(j)+
i,y −ρ

(j)
i,y ) (10)

where the “mass counter” variables are initialized to zero, i.e., σi,y(0) = ρ
(j)
i,y (0) = 0 for every i

and j.
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Observe that, each node i has a counter σi,y(k) to keep track of the total y-mass sent to
its neighbors up to iteration k, and, for each neighbor j ∈ N in

i , a counter ρ(j)
i,y (k) to take into

account the total y-mass received from j up to iteration k. If during iteration k node i receives
information from node j, the information related to node j used in the update of the variable
yi is ν(j)

i,y (k) = σj,y − ρ(j)
i,y . The fictitious variable ν(j)

i,y (k) corresponds to a “virtual mass” stored
on edge (j, i) ∈ E . Under reliable transmission, such virtual mass is zero, while each time a
packet loss occurs, this variable accumulates the additional mass that node j wants to transfer
to node i, and therefore it is not lost. As so, the total mass stored on the nodes and the edges
is preserved, regardless of the packet loss sequence. Thus, for each time instant k,

∑
i

yi(k) +
∑
j∈N in

i

ν
(j)
i,y (k)

 =
∑
i

yi(0). (11)

Let y and νy be the vectors collecting, respectively, the variables yi, i ∈ V , and ν
(j)
i,y , i ∈ V

and j ∈ N out
i , and, accordingly, let ya be the augmented variable defined as ya =

[
yT νTy

]T .
Similarly let za =

[
zT νTz

]T , it can be shown that

y+
a = M(k)ya, z+

a = M(k)za

where M(k) is an augmented column-stochastic matrix, and, from weak ergodicity theory, that
local variables yi, zi, converge asymptotically as in (7) [30]. As it will be clear in the next
sections, matrix M(k) will be a building block for the design and analysis of our distributed
optimization algorithm.

IV. THE ROBUST ASYNCHRONOUS NEWTON-RAPHSON CONSENSUS (RA-NRC)
This section merges the three building blocks Newton-Raphson Consensus, push-sum consen-

sus and robust ratio consensus into one algorithm, called robust asynchronous Newton-Raphson
Consensus (ra-NRC), that solves problem (1) and exhibits all the features listed in Section II.
The algorithm can be organized in a block scheme as in Figure 1.

We propose a “meta distributed algorithm” which can result in different distributed algorithms
depending on the (possibly asynchronous and packet-lossy) communication protocol imple-
mented in the network. The meta algorithm consists of four main blocks of code implemented by
each node i ∈ V in the network: Initialization (at startup), Data Transmission, Data Reception
and Estimate Update.

Except for the first block, which corresponds to a one-time execution at startup, the blocks can
be executed asynchronously, with possibly different execution rates. The scheduling of these three
blocks, for each agent i, is determined by three binary variables flagtransmission,i, flagreception,i, flagupdate,i
whose evolutions are determined by the communication protocol. Each code block is assumed
to be executed sequentially and atomically, i.e., the local variables and flags cannot be changed
by any other process. For example, if node is executing Estimate Update and a new packet is
incoming, this packet is either dropped or placed in a buffer till Estimate Update is not completed.
Thus, a distributed algorithm will be simply the combination of the given meta scheme with a
communication protocol defining how the flags are activated. For example, in an event-triggered
communication protocol the reception of a packet may sequentially trigger (if no other block
is being executed) the Data Reception block, which then triggers the Estimate Update block,
and that finally triggers the Data Transmission block. In the following we assume that when an
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Newton-Raphson
x1

Newton-Raphson
xN

Robust Asynchronous
Ratio Consensus

σi,y, ρ
(j)
i,y , σi,z, ρ

(j)
i,z

local computation

local cooperation

g1, h1

gN , hN

y1, z1

yN , zN

Fig. 1. Graphical representation of the robust asynchronous Newton-Raphson Consensus (ra-NRC).

agent is idle, it is always ready to receive a new packet and when a packet is received by the
i-th node then flagreception,i is set to one.

One of the strengths of the proposed algorithm, is that it is independent of the specific
communication protocol as long as it satisfies some mild assumptions in terms of minimum
scheduling rate of each block and maximum consecutive packet losses, which will be formally
stated in the next section. We are, then, ready to provide a pseudo-code description of ra-NRC
as in Algorithm 1. Notice that the local variables in the algorithm mimic the variable names and
purpose of the ones defined in the previous section.

We now provide a detailed explanation of the pseudo-code.
The first block Initialization (lines 1-7) is a one-time operation preformed by each node at

the beginning of the algorithm. The only free parameter to set is the initial estimate xo for the
global optimization, while all other variables are set to zero or to identity matrices of the proper
dimension.

The blocks Data Transmission (lines 8-15) and Data Reception (lines 17-24) implement a new
Robust Asynchronous Ratio Consensus (see bottom block in Figure 1), which merges the benefits
of the push-sum algorithm, with its asynchronous nature, and the robust ratio consensus with
its resilience to packet losses. Moreover, our proposed Robust Asynchronous Ratio Consensus
has the advantage to be fully parallel, in the sense that multiple nodes can transmit at the same
time, since any potential collision will result in a packet loss already handled by the algorithm.
Specifically, the update of variables yi, zi at the time of transmission (line 10-11) are the same
as in the push-sum consensus given by Eqn. (5). The update for σi,y in the algorithm (line 12)
is identical to Eqn. (8), however the variable σi,y in our algorithm is based on the value of yi
that has been updated above (line 10). Therefore, variables σi,y’s in Algorithm 1 are scaled by
a factor 1

|N out
i |+1

as compared to those in Eqn. (8). Since the variables ρ(i)
j,y will be just (possibly

delayed) copies of the variable σi,y (line 21), also these variables are scaled by a factor 1
|N out

i |+1

as compared to those appearing in Eqn. (9). Similar arguments apply for the variables related to
σi,z, ρ

(i)
j,z. Once the update of the variables has been completed, the transmitting node broadcasts
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Algorithm 1 robust asynchronous Newton-Raphson Consensus (ra-NRC) for node i
Require: xo, ε, c

Initialization (atomic)
1: xi ← xo

2: yi ← 0, gi ← 0, goldi ← 0
3: zi ← In, hi ← In, holdi ← In
4: σi,y ← 0, σi,z ← 0

5: ρ
(j)
i,y ← 0, ρ

(j)
i,z ← 0, ∀j ∈ N in

i

6: flagreception,i ← 0, flagupdate,i ← 0
7: flagtransmission,i ← 1

Data Transmission (atomic)
8: if flagtransmission,i = 1 then
9: transmitter node ID← i

10: yi ← 1
|N out

i |+1
yi

11: zi ← 1
|N out

i |+1
zi

12: σi,y ← σi,y + yi
13: σi,z ← σi,z + zi
14: Broadcast: transmitter node ID, σi,y, σi,z
15: flagtransmission,i ← 0
16: end if

Data Reception (atomic)
17: if flagreception,i = 1 then
18: j ← transmitter node ID, (j ∈ N in

i )

19: yi ← yi + σj,y − ρ(j)
i,y

20: zi ← zi + σj,z − ρ(j)
i,z

21: ρ
(j)
i,y ← σj,y, ∀j ∈ Ni

22: ρ
(j)
i,z ← σj,z, ∀j ∈ Ni

23: flagreception,i ← 0
24: flagupdate,i ← 1 (optional)
25: end if

Estimate Update (atomic)
26: if flagupdate,i = 1 then
27: xi ← (1− ε)xi + ε [zi]

−1
c yi

28: gold
i ← gi

29: hold
i ← hi

30: hi ← ∇2fi(xi)
31: gi ← hixi −∇fi(xi)
32: yi ← yi + gi − gold

i

33: zi ← zi + hi − hold
i

34: flagupdate,i ← 0
35: flagtransmission,i ← 1 (optional)
36: end if
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only the variables σi,y, σi,z and its ID to its neighbors. After transmission, the node returns to
an idle-mode (line 15). If a neighboring node i is in the receiving mode and actually receives
a message (line 17), then it extracts the transmitter node ID j and the corresponding variables
σj,y, σi,z (line 18). The variable yi is updated similarly to Eqn. (6), where y+

i is replaced by the
term σj,y − ρ(j)

i,y , which is the same as the last term appearing in Eqn. (10)3. The local variable
ρ

(j)
i,y is then updated (line 21) similarly to Eqn. (9) in the robust ratio consensus.
The last block Estimate Update is responsible for implementing a local version of Newton-

Raphson. The update of the local estimate xi of the global optimizer, available at each node i, is
performed via the Newton-Raphson Consensus described in the previous section. In practice, the
roles of yi and zi are those of (scaled) local approximations of the global functions g(x1, . . . , xN)
and h(x1, . . . , xN) defined above. As so, mimicking Eqn. (2), the proposed algorithm uses these
variables to implement an approximated Newton-Raphson (line 27), where the operator [·]c is
used to avoid divide-by-zero numerical issues during the transient, and the variable ε corresponds
to the stepsize. Since the local variables xi are continuously updated, also the global functions
g(x1, . . . , xN) =

∑
i gi(xi) and h(x1, . . . , xN) =

∑
i hi(xi) need to be updated accordingly.

This cannot be done instantaneously due to the networked nature of the framework and has be
achieved through the asynchronous robust ratio consensus (see Figure 1). In order to be able to
track the continuously changing signals gi and hi, each node has to compute these signals before
and after updating the xi (gold

i e hold
i in lines (28-29) and gi e hi lines (30-31), respectively) and

then update the “consensus” variables yi and zi in order to track the current sums g(x1, . . . , xN)
and h(x1, . . . , xN) (lines 32-33). In fact, this operation guarantees that, similarly to Eqn. (11),
the following invariant are preserved:∑

i

(yi(k) +
∑
j∈N in

i

(σj,y(k)− ρ(j)
i,y (k))) =

∑
i

gi(k), (12)

∑
i

(zi(k) +
∑
j∈N in

i

(σj,z(k)− ρ(j)
i,z (k))) =

∑
i

hi(k), (13)

where, with a slight abuse of notation, with gi(k) and hi(k) we denote gi(xi(k)) and hi(xi(k))
respectively. The intuition behind the convergence of the algorithm, is that if the local estimates
xi change slower than the rate at which the asynchronous robust ratio consensus converges,
which can be achieved by choosing a sufficiently small stepsize ε, then we would expect that

yi(k) → ηi(k)
∑
i

gi(k), (14)

zi(k) → ηi(k)
∑
i

hi(k) (15)

A formal proof of the ra-NRC algorithm and the necessary conditions in terms of node
activation and packet loss frequencies, when a particular communication protocol is adopted, are
given in the next section.

Remark IV.1 The robust asynchronous Newton-Raphson Consensus has the demanding re-
quirements that full matrices σi,z needs to be transmitted and inverted, which could be rather
demanding if the feature space dimension n is large. Similarly to what has been proposed in [23],
it is possible to modify the proposed algorithm to use Jacobi or Gradient descents which have

3Note that since the packet is received, ρ(j)+
i,y = σj,y .
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reduced communication and computational requirements. More specifically, the only modification
needed is to substitute line (37) with the following ones

hi ← diag(∇2fi(xi)), Jacobi Descent Consensus

hi ← In, Gradient Descent Consensus,

where the operator diag(A) returns a diagonal matrix whose diagonal elements coincide with
the diagonal elements of A. As so, for the Jacobi Descent Consensus it is necessary to invert
n scalars and to transmit only the n diagonal elements, while for the Gradient consensus only
one scalar needs to be transmitted and inverted. Of course, the price to pay with these choices
is a likely slower convergence rate.

V. DYNAMICAL SYSTEM INTERPRETATION OF RA-NRC
In this Section, we introduce an asynchronous and lossy communication protocol that defines

the evolution of the flags in Algorithm 1, in order to carry out the convergence analysis of
the algorithm itself, and we will also show that this choice of communication protocol is not
restricting. The protocol selected allows us to rewrite the resulting ra-NRC as a dynamical system
of the form: {

x(k + 1) = x(k) + εφ(k,x(k), ξ(k))
ξ(k + 1) = ϕ(k,x(k)), ξ(k)),

where proper definitions of variables x, ξ and maps φ and ϕ can be found in Corollary V.2.
In particular, we focus our analysis on an asymmetric broadcast communication protocol sub-

ject to packet losses, which represents a widely used communication protocol in wireless sensor
networks applications. Specifically, let t0, t1, t2, . . . be an ordered sequence of time instants, i.e.,
t0 < t1 < t2 < . . .. We assume that at each time instant one node, say i, is activated. Then, node
i performs in order the operations in the Estimate Update block and in the Data Transmission
block, broadcasting to all its out-neighbors in G the updated variables σi,y, σi,z. The transmitted
packet might be received or not by j ∈ N out

i , depending whether (i, j) is reliable or not at the
time of transmission. If (i, j) is reliable, then node j performs, in order, the operations in the
Data Reception block, and in the Estimate Update block. Since there is no risk of confusion,
in the following we denote tk only by the index k, referring to it as the k-th iteration of the
ra-NRC algorithm.

An algorithmic description of the asymmetric broadcast communication protocol with packet
losses (for the ra-NRC Algorithm 1) is provided in Algorithm 2. Here, with a slight abuse of
notation, we denote within the parentheses after the flag variables the owner of the corresponding
variable. Moreover, in the following, without loss of generality, we assume that, the node
performing the transmission step during the k-th iteration is node i.

Algorithm 2 Asymmetric broadcast for ra-NRC algorithm

Node i is activated
1: flagupdate,i ← 1 (line 26) : Estimate Update
2: flagtransmission,i ← 1 (line 8) : Data transmission

For j ∈ N out
i , if (i, j) is reliable

3: flagreception,j ← 1 (line 17) : Data reception
4: flagupdate,j ← 1 (line 26) : Estimate Update
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In order to keep the notation lighter, from now on, we restrict to the scalar case, i.e., xi ∈ R
for all i. Consistently we will denote, e.g., f ′i and f ′′i respectively the first and second derivatives
of the function fi.

Next, for the sake of analysis, we provide a sequential description of the ra-NRC algorithm
when the communication protocol in Algorithm 2 is adopted. Observe that, once activated, node
i updates xi, gold

i , hold
i , gi, hi according to lines 27, 28, 29, 30, 31, i.e.,

xi(k + 1) = (1− ε)xi(k) + ε [zi(k)]−1
c yi(k)

gold
i (k + 1) = gi(k)

hold
i (k + 1) = hi(k)

gi(k + 1) = f ′′i (xi(k + 1))xi(k + 1)− f ′i(xi(k + 1))

hi(k + 1) = f ′′i (xi(k + 1)).

Based on gi(k + 1) and hi(k + 1), the variables yi and zi are updated performing in order the
steps in lines 32, 10, and 33, 11, respectively, which result in

yi(k + 1) =
1

|N out
i |+ 1

(
yi(k) + gi(k + 1)− gold

i (k + 1)
)

zi(k + 1) =
1

|N out
i |+ 1

(
zi(k) + hi(k + 1)− hold

i (k + 1)
)
,

and, in turn, from lines 12, 13, we have that

σi,y(k + 1) = σi,y(k) + yi(k + 1)

σi,z(k + 1) = σi,z(k) + zi(k + 1).

The quantities σi,y(k + 1), σi,z(k + 1) are transmitted by node i to its out-neighbors; if (i, j)
is reliable, then node j, based on the Data Reception packet, updates the local variables yj , zj ,
ρ

(i)
j,y, ρ

(i)
j,z as4

y′j = yj(k) + σi,y(k + 1)− ρ(i)
j,y(k)

z′j = zj(k) + σi,z(k + 1)− ρ(i)
j,z(k)

ρ
(i)
j,y(k + 1) = σi,y(k + 1)

ρ
(i)
j,z(k + 1) = σi,z(k + 1)

4As far as the variables yj and zj are concerned, to denote their updates in the Data Reception packet we introduce the
auxiliary variables y′j , z′j , since the overall updates of the current values of yj and zj are performed in the subsequent Data
Update packet.
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and, subsequently, based on the Data Update packet, updates the local variables xj , gold
j , hold

j ,
gj , hj , yj , zj as

xj(k + 1) = (1− ε)xj(k) + ε
yj(k)

[zj(k)]c

gold
j (k + 1) = gj(k)

hold
j (k + 1) = hj(k)

gj(k + 1) = f ′′j (xj(k + 1))xj(k + 1)− f ′j(xj(k + 1))

hj(k + 1) = f ′′j (xj(k + 1))

yj(k + 1) = y′j + gj(k + 1)− gold
j (k + 1)

zj(k + 1) = z′j + hj(k + 1)− hold
j (k + 1).

Next, we provide a suitable vector-form description of the Asymmetric broadcast ra-NRC algo-
rithm.

To do so, similarly to the robust ratio consensus algorithm revisited in Section III-C, we first
need to build an augmented network that contains all the nodes in V and also some additional
virtual nodes; precisely, a virtual node for each link in E . Let us denote the augmented network
by Ga = (Va, Ea), where Va = V ∪ E and

Ea = E ∪ {((i, j), j) | (i, j) ∈ E} ∪ {(i, (i, j)) | (i, j) ∈ E} .
Similarly to what done in Section III-C, for each (i, j) ∈ E we introduce the auxiliary variables
ν

(i)
j,y(k), ν(i)

j,z(k), defined as

ν
(i)
j,y(k) = σi,y(k)− ρ(i)

j,y(k)

ν
(i)
j,z(k) = σi,z(k)− ρ(i)

j,z(k).

Recall that the role of the above variables is to keep track of the transmitted mass, which has
not been received due to packet losses. Accordingly, let νy and νz be the vectors that collect,
respectively, all the variables ν(i)

j,y and ν
(i)
j,z , i ∈ V and j ∈ N out

i . Assuming that |E| = NE , then
νy, νz ∈ RNE . Now let

y =

 y1
...
yN

 , z =

 z1
...
zN

 ,
and, based on these vectors, let us build the augmented vectors ya, za ∈ RN+NE as

ya =

[
y
νy

]
, za =

[
z
νz

]
.

Moreover let

g = [g1, . . . , gN ]T

gold =
[
gold

1 , . . . , gold
N

]T
f ′′(x)x = [f ′′1 (x1)x1, . . . , f

′′
N(xN)xN ]

T

f ′(x) = [f ′1(x1), . . . , f ′N(xN)]
T

y/ [z]c = [y1/ [z1]c , . . . , yN/ [zN ]c]
T .
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Since we are considering a lossy scenario, it might happen that the packet transmitted by node i
is either received or not received by node j ∈ N out

i . For this reason, it is convenient to introduce
the sets

Ñi(k) = {j ∈ N out
i such that (i, j) is reliable at time k} ,

and, its complement on N out
i ,

N̄i(k) = N out
i \ Ñi(k).

To state Proposition V.1, where we provide a vector form description of Algorithm 2, it is
convenient to resort to the following notational convention. When referring to an N -dimensional
vector, we assume its components to be indexed according to the nodes in V , while when
referring to an NE-dimensional vector, we assume its components to be indexed according to the
edges in E . In particular, ei ∈ RN and e(i,j) ∈ RNE denote the vectors with all the components
equal to zero, except, respectively, the one related to node i and the one related to edge (i, j),
which are equal to one; that is ei, i ∈ V and (ei,j), (i, j) ∈ E , are the vectors of the canonical
basis of, respectively, RN and RNE .

Proposition V.1 The ra-NRC algorithm with asymmetric broadcast (Algorithm 1 and Algo-
rithm 2), can be written in vector form as5

x(k + 1) = x(k) + ε S(k) (p(k)− x(k)) (16)

gold(k + 1) = S(k)g(k) + (I − S(k))gold(k)

g(k + 1) = f ′′(x(k + 1))x(k + 1)− f ′(x(k + 1))

hold(k + 1) = S(k)h(k) + (I − S(k))hold(k)

h(k + 1) = f ′′(x(k + 1))

ya(k + 1) = M(k)ya(k)+

T (k)
(
g(k + 1)− gold(k + 1)

)
za(k + 1) = M(k)za(k)+

T (k)
(
h(k + 1)− hold(k + 1)

)
p(k + 1) =

y(k + 1)

[z(k + 1)]c

where

S(k) = eie
T
i +

∑
j∈Ñi(k)

eje
T
j and T (k) =

[
TV (k)
TE(k)

]
,

5We observe that the matrices S, Sa and M depend on which node is activated, and on which edges between this node and
its out-neighbors are reliable. In order to keep the notation lighter, we do not make this dependency explicit (for instance using
some superscript or subscript); instead, we limit ourselves to emphasize only the time-varying nature of these matrices, i.e., just
writing S(k), Sa(k) and M(k).
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with

TV (k) =
1

|N out
i |+ 1

eieTi +
∑

j∈Ñi(k)

eje
T
i

+
∑

j∈Ñi(k)

eje
T
j

TE(k) =
1

|N out
i |+ 1

∑
j∈N̄i

e(i,j)e
T
i

and where M(k) is a column stochastic matrix such that

M(k) =

[
MV V (k) MV E(k)
MEV (k) MEE(k)

]
with

MV V (k) =
1

|N out
i |+ 1

eieTi +
∑
j∈Ñi

eje
T
i

+
∑
h6=i

ehe
T
h

MV E(k) =
∑
j∈Ñi

eje
T
(i,j)

MEV (k) =
1

|N out
i |+ 1

∑
j∈N̄i

e(i,j)e
T
i ( = TE(k) )

MEE(k) =
∑
j∈N̄i

e(i,j)e
T
(i,j) +

∑
(r,s) : r 6=i

e(r,s)e
T
(r,s).

Proof: We start by observing that, only nodes in Ñi(k)∪{i} update the variables x, gold, g,
hold, h. Moreover, observe that the matrix S(k) can be seen as a selection matrix which selects
the nodes in Ñi(k) ∪ {i}. This explains the vector form of the first five equations in (16).

Now, to each edge (i, j), j ∈ N out
i , we associate the indicator function variable Xi,j(k) as

follows:
Xi,j(k) =

{
1, if (i, j) reliable at time k
0, if (i, j) not reliable at time k.

In the following, for the sake of simplicity, we consider only the update of ya (the update of za
is similar). Recall that

yi(k + 1) =
1

|N out
i |+ 1

(
yi(k) + gi(k + 1)− gold

i (k + 1)
)
. (17)

Observe that, for j ∈ N out
i , by using the indicator function defined above, we can write that

ρ
(i)
j,y(k + 1) = Xi,j(k)σi,y(k + 1) + (1−Xi,j(k)) ρ

(i)
j,y(k).

Since
ν

(i)
j,y(k) = σi,y(k)− ρ(i)

j,y(k),

and

σi,y(k + 1) = σi,y(k) + yi(k + 1),
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it follows that

ν
(i)
j,y(k + 1) = (1−Xi,j(k))

(
ν

(i)
j,y(k)+ (18)

1

|N out
i |+ 1

[
yi(k) + gi(k + 1)− gold

i (k + 1)
])

and that

yj(k + 1) = yj(k)+

+Xi,j(k)
[
yi(k + 1) + gj(k + 1)− gold

j (k + 1) + ν
(i)
j,y(k)

]
and, in turn, that

yj(k + 1) = yj(k) +Xi,j(k)
1

|N out
i |+ 1

yi(k)+ (19)

+Xi,j(k)
[
gj(k + 1)− gold

j (k + 1) + ν
(i)
j,y(k)+

1

|N out
i |+ 1

[
gi(k + 1)− gold

i (k + 1)
]]
.

From (17) and (19) we can write that

y(k + 1) = 1

|N out
i |+ 1

ei +
∑

j∈Ñi(k)

ej

 eTi +
∑
h6=i

ehe
T
h

y(k)+

+
∑
j∈Ñi

eje
T
(i,j) ν +

 1

|N out
i |+ 1

ei +
∑

j∈Ñi(k)

ej

 eTi +

+
∑

j∈Ñi(k)

eje
T
j

 (g(k + 1)− gold(k + 1)
)

= MV V (k)y +MV E(k)νy(k)+

+ TV (k)
(
g(k + 1)− gold(k + 1)

)
.

From (18), we have that

νy(k + 1) =

∑
j∈N̄i

e(i,j)e
T
(i,j) +

∑
(r,s) : r 6=i

e(r,s)e
T
(r,s)

νy+
+

 1

|N out
i |+ 1

∑
j∈N̄i

e(i,j)e
T
i

(y + g(k + 1)− gold(k + 1)
)

= MEV (k)y(k) +MEE(k)νy(k)+

+ TE(k)
(
g(k + 1)− gold(k + 1)

)
.
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The above computations explain the vector-form illustrated in equations (16).
The fact that M(k) is a column-stochastic matrix can be shown by simply verifying that the

sum of the elements of each column is equal to one.
Observe that variables ya, za are trajectories of a linear, time-varying algorithm with column-
stochastic state-matrix, driven by the differences g − gold, h− hold.

From the previous proposition, the next fact follows directly.

Corollary V.2 Let ξ =
[
gT , goldT ,hT ,holdT ,yTa , z

T
a ,p

T
]T

, then, system in (16) can be written
as: {

x(k + 1) = x(k) + ε φ(k,x(k), ξ(k))
ξ(k + 1) = ϕ(k,x(k)), ξ(k)),

(20)

where x ∈ RN , ξ ∈ R7N+2|E|, φ : N × RN × R7N+2|E| → RN , ϕ : N × RN × R7N+2|E| →
R7N+2|E|, ε > 0 and where equations in (16) properly define the maps φ and ϕ.

Finally, we characterize a mass conservation property of system in (16), which will be useful
in next section.

Lemma V.3 Consider system in (16). Then, for all k ∈ N, the following equalities hold true

N∑
`=1

y`(k) +
∑
j∈N out

`

ν
(`)
j,y(k)

 =
N∑
`=1

g`(k)

N∑
`=1

z`(k) +
∑
j∈N out

`

ν
(`)
j,z (k)

 =
N∑
`=1

h`(k).

Proof: We provide the proof of only the first equality; the second one can be proved
analogously. We proceed by induction. The property is trivially true for k = 0. Indeed according
to the Initialization block we have that y`(0) = g`(0) = gold

` (0) = ν
(`)
j,y(0) = 0 for all ` and

j ∈ N out
` ; the fact that g`(0) = gold

` (0) = 0 implies that also gold
` (1) = 0 for all `. Now, we

assume the property to be true for k and we show that it holds also for k + 1. Without loss of
generality, assume that node i is activated at iteration k. Then we have

N∑
`=1

y`(k + 1) +
∑
j∈N out

`

ν
(`)
j,y(k + 1)

 = 1T ya(k + 1)

= 1TM(k)ya(k) + 1T T (k)
(
g(k + 1)− gold(k + 1)

)
=

N∑
`=1

y`(k) +
∑
j∈N out

`

ν
(`)
j,y(k)

+ gi(k + 1)− gold
i (k + 1)

+
∑
j∈N out

i

Xi,j(k)
(
gj(k + 1)− gold

j (k + 1)
)

=
N∑
`=1

g`(k) +
∑

j ∈ Ñi(k)∪{i}

(
gj(k + 1)− gold

j (k + 1)
)
,
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where, in the above equalities, we have used the properties

1TM(k) = 1T , 1T T (k) = eTi +
∑
j∈Ñi

eTj

and the inductive hypothesis

N∑
`=1

y`(k) +
∑
j∈N out

`

ν
(`)
j,y(k)

 =
N∑
`=1

g`(k).

By simple algebraic manipulations, we can write
N∑
`=1

g`(k) +
∑

j∈Ñi(k)∪{i}

(
gj(k + 1)− gold

j (k + 1)
)

=
∑

j∈Ñi(k)∪{i}

gj(k) +
∑

j /∈Ñi(k)∪{i}

gj(k)+

+
∑

j∈Ñi(k)∪{i}

(
gj(k + 1)− gold

j (k + 1)
)

=
∑

j∈Ñi(k)∪{i}

gj(k + 1) +
∑

j /∈Ñi(k)∪{i}

gj(k)+

+
∑

j∈Ñi(k)∪{i}

(
gj(k)− gold

j (k + 1)
)
.

Now, observe that, if ` /∈ Ñi(k) ∪ {i} then g`(k + 1) = g`(k), and, if ` ∈ Ñi(k) ∪ {i} then
gold
` (k + 1) = g`(k). Then, from the previous expression, it follows

N∑
`=1

g`(k) +
∑

j∈Ñi(k)∪{i}

(
gj(k + 1)− gold

j (k + 1)
)

=
N∑
`=1

g`(k + 1).

This concludes the proof.

Remark V.4 In this Section, we have provided a dynamical system description of ra-NRC algo-
rithm, assuming the asymmetric broadcast communication protocol has been adopted. However,
it is worth stressing that similar computations hold also for other communication protocols
like symmetric gossip, asymmetric gossip, coordinated broadcast6. When adopting one of the
above aforementioned communication protocols it turns out that ra-NRC algorithm can again
be described as in (16), with the only difference related to the matrix M(k) which is still a
column stochastic matrix but with a slight different structure, and to the selection matrix S(k)
. This justifies the fact that the convergence results we provide in the next Section, which are
specifically tailored to the scenario considered in this Section, can be technically extended to
also other types of communication protocols.

6For a concise but effective description of the aforementioned protocols we refer the interested reader to [33].

March 17, 2017 DRAFT



20

VI. THEORETICAL ANALYSIS OF THE RA-NRC
We now provide a theoretical analysis of the Asymmetric broadcast ra-NRC algorithm, de-

scribed in Algorithm 2. In particular, we provide some sufficient conditions that guarantee local
exponential stability under the assumptions posed in Section II. Informally, we assume that each
node updates its local variables and communicates with its neighbors infinitely often, and that the
number of consecutive packet losses is bounded. Formally, we make the following assumptions.

Assumption VI.1 (Communications are persistent) For any iteration k ∈ N there exists a
positive integer number τ such that each node performs at least one broadcast transmission
within the interval [k, k + τ ], i.e., for each i ∈ {1, . . . , N} there exists h ∈ [k, k + τ ] such that
node i is activated at iteration h.

Assumption VI.2 (Packet losses are bounded) There exists a positive integer L such that the
number of consecutive communication failures over every directed edge in the communication
graph is smaller than L.

From the above two assumptions, it follows that, given i ∈ V and j ∈ N out
i , node j receives

information from node i at least once within the interval [k, k + Lτ ].
We now want to characterize the convergence properties of the Asymmetric broadcast ra-NRC

algorithm. To do so, we start by introducing two Lemmas which will be later used.
Let x = [x1, . . . , xN ]T and x0 = [x0

1, . . . , x
0
N ]

T . In the first lemma we show that if the
variable x is kept constant, then the components of the vector p achieve consensus to the ratio
h(x1, . . . , xN)/g(x1, . . . , xN). Viceversa, in the second lemma, we show that if the components
of p have reached consensus, then the vector x exponentially converges to the global minimizer.

Formally, to state the first result, for a given k̄, we consider the following dynamics, for k ≥ k̄,

ξk̄(k + 1) = ϕ
(
k,x(k̄), ξk̄(k)

)
, (21)

initialized by ξk̄(k̄) = ξ(k̄). Observe that, ξk̄ describes the evolution of the variable ξ, starting
at iteration k̄, assuming that the variable x is kept constant for k ≥ k̄, that is, x(k) = x(k̄) for
all k ≥ k̄. In particular, in this scenario, we are interested in the behavior of the variable p, that
is, of the last block of components of ξk̄, that, in this case, similarly to ξk̄, we denote as pk̄.
We have the following result.

Lemma VI.3 For a given k̄, consider, for k ≥ k̄, the dynamics in (21). Then, under Assump-
tions VI.1, VI.2, we have that the point ∑

` g`(x`(k̄))∑
` h`(x`(k̄))

1

is exponentially stable for the variable pk̄, that is, defined

p̃k̄(k) := pk̄(k)−
∑

` g`(x`(k̄))∑
` h`(x`(k̄))

1,

there exists Ck̄ > 0 and 0 ≤ ρk̄ < 1 such that

‖p̃k̄( k )‖ ≤ Ck̄ ρ
k−k̄
k̄
‖p̃k̄( k̄ )‖. (22)

Proof: In the following we denote by ya;k̄, za;k̄ the block components of ξk̄ corresponding
to ya, za. To study the evolution of pk̄(k), we analyze the behavior of the variables ya;k̄(k),
za;k̄(k), separately. Consider ya;k̄(k). Observe that, since x(k) = x(k̄), k ≥ k̄, and according to
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Assumptions VI.1 and VI.2, we have that there exists k̄′ > k̄ such that g(k) = gold(k) for all
k ≥ k̄′ and, hence,

ya,k̄(k + 1) = M(k)ya,k̄(k),

for k ≥ k̄′. A similar reasoning holds for za,k̄(k). It follows that the variables ya,k̄(k), za,k̄(k)
and, in turn, the variables yk̄(k), zk̄(k) run the iterations of a ratio-consensus algorithm for
k ≥ k̄′, as described in [33].

From Lemma V.3, we have that, for k ≥ k̄ and, in particular, for k ≥ k̄′

1Tya,k̄(k) =
N∑
`=1

g`
(
x`(k̄)

)
1Tza,k̄(k) =

N∑
`=1

h`
(
x`(k̄)

)
.

From Theorem 3 in [33], it follows that yk̄(k)

[zk̄(k)]c
converges exponentially to

∑
` g`(x`(k̄))∑
` h`(x`(k̄))

1.

Now, let us assume that, for each k, the variable p(k) has reached consensus and consider the
following dynamics for the variable x,

x(k + 1) = x(k) + ε S(k)

(∑
` g`(x`(k))∑
` h`(x`(k))

1− x(k)

)
= x(k) + ε φ̃(k;x(k)) (23)

where
φ̃(k;x(k)) = S(k)

(∑
` g`(x`(k))∑
` h`(x`(k))

1− x(k)

)
.

Let
x∗ = x∗1, (24)

where we recall that x∗ is the minimizer of the optimization problem in (1). By standard algebraic
manipulations, one can see that x∗ is an equilibrium of (23). The following result states that the
linearized version of (23) around x∗ is an exponentially stable system.

Lemma VI.4 Consider system in (23) and let x∗ be as in (24). Let

A(k) = I + ε
∂φ̃

∂x
(k;x)|x=x∗ ,

and, accordingly, consider the auxiliary system

x̃(k + 1) = A(k)x̃(k). (25)

Then, under Assumptions VI.1, VI.2, x̃ = 0 is exponentially stable equilibrium point for (25).

Proof: Let

α(x(k)) =

∑
` g`(x`(k))∑
` h`(x`(k))

.
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Computing the partial derivative of α with the respect to xi we get[
∂α

∂xi

]
|x=x∗ =

g′i(x
∗)
∑N

`=1 h` (x∗)− h′i (x∗)
∑N

`=1 g` (x∗)(∑N
`=1 h` (x∗)

)2

with

g′i(x
∗)

N∑
`=1

h` (x∗) − h′i (x
∗)

N∑
`=1

g` (x∗)

= ( f ′′′i (x∗)x∗ + f ′′i (x∗) − f ′′i (x∗) )
N∑
`=1

f ′′` (x∗)

− f ′′′i (x∗)
N∑
`=1

(f ′′` (x∗) x∗ − f ′`(x∗))

= f ′′′i (x∗)x∗
N∑
`=1

f ′′` (x∗) − f ′′′i (x∗)x∗
N∑
`=1

f ′′` (x∗)

+ f ′′′i (x∗)
N∑
`=1

f ′`(x
∗)

= 0,

where , in the last equality, we have used the fact that
∑N

`=1 f
′
`(x
∗) = 0. From the previous

calculations, it turns out that
A(k) = I − εS(k).

By Assumption VI.1, we have that the matrix

Āk,τ =
k+τ∏
s=k

A(k),

is a diagonal matrix such that 0 <
[
Āk,τ

]
ii
< 1− ε, for all i. Then, system in (23) satisfies the

stated property.
Intuitively, one would conclude that when the parameter ε is small the results of the two lemma

can be combined to simultaneously obtain asymptotic consensus and convergence to the global
minimizer. This is formally shown in the next theorem which characterizes the convergence
properties of the Asymmetric broadcast ra-NRC algorithm.

Theorem VI.5 Under Assumptions VI.1, VI.2 and the assumptions posed in Section II, there exist
some positive scalars εc and δ such that, if the initial conditions x0 ∈ RN satisfy ‖xo−x∗1‖ < δ
and if ε satisfies 0 < ε < εc then the local variables xi in Algorithm 1 are exponentially stable
with respect to the global minimizer x∗.

Proof: The proof of the result is based on showing that the system in (20) satisfies the
assumptions of Proposition A.2. To do so, we start by defining, for k ≥ k̄,

ξ∗x(k̄),ξ(k̄)(k) = Ĩ ξk̄(k) + ũ, (26)
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where ξk̄(k) is defined as in (21) and where

Ĩ =

[
I(6N+2|E|)×(6N+2|E|) 0(6N+2|E|)×N

0N×(6N+2|E|) 0N×N

]
and

ũ =

[
0(6N+2|E|)×1

p∗
x(k̄)

]
,

with

p∗x(k̄) =

∑
` g`(x`(k̄))∑
` h`(x`(k̄))

1.

Observe that the first six blocks components of ξ∗
x(k̄),ξ(k̄)

(k) coincide with the first six blocks
components of ξk̄(k), while the last block component is constant for all k ≥ k̄. Moreover, for
k ≥ k̄, let

ξ̃k̄(k) := ξk̄ (k)− ξ∗x(k̄),ξ(k̄) (k) .

Based on the previous observation, we have that the first six blocks components of ξ̃k̄(k) are
equal to zero, while the last block component is equal to

pk̄(k)− p∗x(k̄).

From Lemma VI.3, it easily follows that there exists Ck̄ > 0 and 0 ≤ ρk̄ < 1 such that

‖ξ̃k̄( k )‖ ≤ Ck̄ ρ
k−k̄
k̄
‖ξ̃k̄( k̄ )‖. (27)

This shows that system in (20) satisfies property in (35), in Appendix A
Consider now the system

x(k + 1) = x(k) + ε φ
(
k,x(k), ξ∗x(k),ξ(k)(k)

)
(28)

= x(k) + ε S(k)

(∑
` g`(x`(k))∑
` h`(x`(k))

1− x(k)

)
= x(k) + ε φ̃(k;x(k)) (29)

In Lemma VI.4, it is established that the previous system satisfies Assumption A.1, in Ap-
pendix A. Hence, Proposition A.2, in Appendix A can be applied to system in (20), yielding
the result of the statement.

Remark VI.6 Algorithm 1 assumes the initial conditions of the local variable xi to be all
identical to xo. Although not being a very stringent requirement, this assumption can be relaxed,
that is, slightly modified versions of Theorem VI.5 would hold even in the case xi = xoi as
soon as all the initial conditions are sufficiently close to the global minimizer x∗, i.e., as soon
as |xoi − x∗| < δ for all i = 1, . . . , N .

Remark VI.7 The initial conditions on the local variables yi = gold
i = gi = f ′′i (xo)xo − f ′i(xo)

and zi = hold
i = hi = f ′′i (xo) are instead more critical for the convergence of the local variables

xi to the true minimizer x∗. As shown in [34], small perturbations of these initial conditions
can lead to convergence to a point x 6= x∗ (notice that these perturbations do not affect the
stability of the algorithm, so that possible small numerical errors due to the computation and
data quantization do not disrupt the convergence properties of the algorithm). Moreover, the map
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from the amplitude of these perturbations and the distance ‖x− x∗‖ is continuous, so that if
these perturbations are small then x ≈ x∗.

Remark VI.8 Although the previous theorem guarantees only local exponential convergence,
numerical simulations on real datasets seem to indicate that the basin of attraction is rather
large and stability is mostly dictated by the choice of the parameter ε. However, for the special
but relevant case when the cost functions fi(x) are quadratic, as in distributed least-squares
problems, local stability implies global stability [31].

Remark VI.9 The major challenges in proving the main results are related to proving that
the ra-NRC algorithm satisfy a number of technical conditions required by standard theory of
separation of time-scales. Different conditions and theorems are available for continuous time
dynamical systems (we refer the interested reader to Chapter 11 in [35]). In particular, we are
interested in proving exponential stability for a non-autonomous discrete time dynamical system
whose closest counterpart in the continuous time is given by Theorem 11.4 in [35]. Besides some
standard conditions on smoothness and uniformity of the dynamical flows involved, there are
three major requirements that need to be satisfied: the first is that the fast dynamics converges
exponentially to an equilibrium manifold, the second is that the slow dynamics restricted to
this manifold is exponentially stable, and the third is that a number of bounded interconnection
conditions which represent the perturbation of the slow dynamics into the fast dynamics and vice-
versa, are satisfied. As for the first requirement, we were able to guaranteed it by extending (see
[33]) the work by [36], which only provided convergence in probability. As for the second one,
we are able to prove local exponential stability of the slow dynamics which is not trivial since
the dynamics is non-autonomous. As for the last requirement on the bounded interconnection
conditions, very much depends on cost functions and in the discrete-time domain it is difficult
to provide global guarantees. However, under some mild smoothness conditions, we were able
to show that the conditions on bounded interconnection conditions are locally satisfied, and, in
turn, to prove local exponential stability.

VII. NUMERICAL EXPERIMENTS

We consider a random geometric network with 10 nodes in [0, 1]2 and with communication
radius r = 0.5 as in Figure 2.

As cost functions, we consider the distributed training of a Binomial-Deviance based spam-
nonspam classifier [37, Chap. 10.5] where the training set is a database of E emails with j the
email index, yj = −1, 1 indicating if email j is spam or not, χj ∈ Rn−1 summarizing the n− 1
features of the j-th email (in our case the frequency of words “make”, “address”, and “all”).
Letting x = (x′, x0) ∈ Rn−1 × R represent a generic classification hyperplane, distributedly
training a Binomial-Deviance based classifier corresponds to solve the distributed optimization
problem with local costs defined by

fi (x) :=
∑
j∈Ei

log
(

1 + exp
(
−yj

(
χTj x

′ + x0

)) )
+ γ ‖x′‖2

2 (30)

where Ei is the set of emails available to agent i, E = ∪Ni=1Ei, and γ is a global regularization
parameter. In our experiments we consider |E| = 5000 emails from the spam-nonspam UCI

March 17, 2017 DRAFT



25

Fig. 2. The random geometric network considered in the simulations.

repository7, randomly assigned to the 10 nodes users communicating as in Figure 2. As a
performance index, we consider the Mean Squared Error (MSE)

1

N

N∑
i=1

‖xi(k)− x∗‖2

as a function of the iteration index x.
Figure 3 then plots the evolution of the MSE of a typical realization of the optimization

process as a function of the iteration index k, for a fixed packet loss probability equal to 0.1,
and for different values of ε. The figure confirms the intuition that increasing ε may lead to faster
convergence properties, but only up to a certain value; too aggressive ε’s may indeed hinder the
convergence property of the algorithm.

Figure 4 instead inspects the effect of varying the probability of packets losses on the MSEs
of single realizations for a fixed ε. This figure confirms the intuition that, independently of
ε, increasing the chances of packet losses leads to initially slower convergence properties and
eventually divergent behaviors.

VIII. CONCLUSIONS

Implementations of distributed optimization methods in real-world scenarios require strate-
gies that are both able to cope with real-world problematics (like unreliable, asynchronous
and directed communications), and converge sufficiently fast so to produce usable results in
meaningful times. Here we worked towards this direction, and improved an already existing

7http://archive.ics.uci.edu/ml/datasets/Spambase
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Fig. 3. Evolution of the MSE in time for a typical realization of the optimization process for a fixed packet loss probability of
0.1 and different values of ε.

distributed optimization strategy, previously shown to have fast convergence properties, so to
make it tolerate the previously mentioned real-world problematics.

More specifically, we considered a robustified version of the Newton-Raphson consensus
algorithm originally proposed in [34] and proved its convergence properties under some general
mild assumptions on the local costs. From technical perspectives we shown that under suitable
assumptions on the initial conditions, on the step-size parameter, on the connectivity of the
communication graph and on the boundedness of the number of consecutive packet losses, the
considered optimization strategy is locally exponentially stable around the global optimum as
soon as the local costs are C2 and strongly convex with second derivative bounded from below.

We also shown how the strategy can be applied to real world scenarios and datasets, and be
used to successfully compute optima in a distributed way.

We then notice that the results offered in this manuscript do not deplete the set of open
questions and plausible extensions of the Newton Raphson consensus strategy. We indeed devise
that the algorithm is potentially usable as a building block for distributed interior point methods,
but that some lacking features prevent this development. Indeed it is still not clear how to tune
the parameter ε online so that the convergence speed is dynamically adjusted (and maximized),
how to account for equality constraints of the form Ax = b, and how to update the local variables
xi using partition-based approaches so that each agent keeps and updates only a subset of the
components of x.

APPENDIX A
GENERAL RESULTS ON DISCRETE-TIME NONLINEAR SYSTEMS

The proofs and results of this appendix can be found in the technical report [38].
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Fig. 4. Effect of varying the probability of packets losses on the MSE of single realizations of the optimization process for
ε = 0.01.

Consider the system {
x(k + 1) = x(k) + εφ(k,x(k), ξ(k))
ξ(k + 1) = ϕ(k,x(k)), ξ(k))

(31)

where x ∈ Rn1 , ξ ∈ Rn2 , φ : N× Rn1 × Rn2 → Rn1 , ϕ : N× Rn1 × Rn2 → Rn2 , ε > 0 and
with given initial conditions x(0), ξ(0).
For a given k̄ ∈ N, consider the system, for k ≥ k̄,

ξk̄(k + 1) = ϕ
(
k, x(k̄), ξ̃k̄(k)

)
, (32)

initialized by ξk̄(k̄) = ξ(k̄), where ξ(k̄) is obtained ruling system (31) up to k̄.
Given k̄, assume that, for k ≥ k̄, there exists a sequence

k → ξ∗x(k̄),ξ(k̄) (k) , (33)

in general dependent on x(k̄) and ξ(k̄), such that the evolution

ξ̃k̄(k) := ξk̄ (k)− ξ∗x(k̄),ξ(k̄) (k) (34)

satisfies the property
‖ξ̃k̄(k)‖ ≤ Ck̄ ρ

k−k̄
k̄
‖ξ̃k̄(k̄)‖, (35)

for suitable Ck̄ > 0 and 0 ≤ ρk̄ < 1, that is ξ̃′
k̄

= 0 is an exponentially stable point for the
evolution in (34). Basically, the property in (35) establishes that there exists a trajectory ξ∗ to
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which the trajectory of the variable ξ, generated keeping the variable x constant, converges
asymptotically.

Next, let us assume that, for each k, the variable ξ has already reached the asymptotic
convergence to the corresponding trajectory ξ∗. More precisely, observe that there exists a family
of sequences of the type (33), where each sequence starts from a different index k. From this
family we can build the following new sequence

k → ξ∗x(k),ξ(k) (k) , (36)

where, to the index k, we have associated the first element of the sequence which starts at k.
Based on (36), we consider the system

x(k + 1) = x(k) + ε φ
(
k,x(k), ξ∗x(k),ξ(k)(k)

)
. (37)

Assume that ξ∗x(k),ξ(k)(k) is such that there exists a suitable map φ̃ : N×Rn1 → Rn1 such that
(37) can be, equivalently, rewritten as

x(k + 1) = x(k) + ε φ̃ (k,x(k)) , (38)

that is, φ̃ (k,x(k)) = φ
(
k,x(k), ξ∗x(k),ξ(k)(k)

)
. We make the following assumption.

Assumption A.1 Let x∗ be an equilibrium point for (38). We assume that, there exists r > 0
such that φ̃ is continuously differentiable on D = {x ∈ Rn1 | ‖x− x∗‖ < r} and the Jacobian
matrix [∂φ̃/∂x] is bounded and Lipschitz on D, uniformly in k. In addition, defining

A(k) = I + ε
∂φ̃

∂x
(k;x)|x=x∗ ,

and considering the auxiliary system

x̃(k + 1) = A(k)x̃(k), (39)

we assume that x̃ = 0 is exponentially stable equilibrium point for (39).

The following Proposition characterizes the convergence properties of system (31).

Proposition A.2 Consider system in (31). For any k̄, assume that there exists a sequence as in
(33) such that property (35) is satisfied. Consider system in (37). Let x∗ be an equilibrium point
for (37). Assume Assumption (A.1) holds true. Then, there exist r > 0 and ε∗ > 0, such that, for
all ε ∈ (0, ε∗] and for all x(0) ∈ Bn

r = {x ∈ Rn : ‖x− x∗‖ < r}, the trajectory x(t) generated
by (31), converges exponentially to x∗, i.e., there exist C > 0 and 0 < λ < 1 such that

‖x(k)− x∗‖ ≤ Cλk‖x(0)− x∗‖.
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