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ABSTRACT In this paper, we propose a novel state-feedback backstepping control design approach for
a single-input single-output (SISO) nonlinear system in strict-feedback form. Rational-exponent Lyapunov
functions (ReLFs) are employed in the backstepping design, and the Bernoulli inequality is primarily adopted
in the stability proof. Semiglobal practical finite-time stability, or global asymptotically stability, is guaran-
teed by a continuous control law using a commonly used recursive backstepping-like approach. Unlike the
inductive design of typical finite-time backstepping controllers, the proposed method has the advantage of
reduced design complexity. The virtual control laws are designed by directly canceling the nonlinear terms
in the derivative of the specific Lyapunov functions. The terms with exponents are transformed into linear
forms as their bases. The stability proof is simplified by applying several inequalities in the final proof,
instead of in each step. Furthermore, the singularity problem no longer exists. The weakness of the concept
of practical finite-time stability is discussed. The method can be applied to smoothly extend numerous design
methodologies with asymptotic stability with a higher convergence rate near the equilibrium. Two numerical
case studies are provided to present the performance of the proposed control.

INDEX TERMS Finite-time stability, rational-exponent Lyapunov function, backstepping, Lyapunov meth-
ods, Bernoulli inequality.

I. INTRODUCTION
It is known that asymptotic and exponential stabilities
imply the system trajectory converges to the equilibrium
as time approaches infinity resulting in a slow conver-
gence rate near the equilibrium, i.e., lim

t→∞
x(t, x0) = 0

where x0 is the initial state. In practice, fast response
and high-precision tracking performance may be preferred
over asymptotic stability. Arising in time-optimal control,
the finite-time control technique has a faster response and
better disturbance-rejection ability, which ensures the conver-
gence to the equilibrium in finite time, i.e., lim

t→T
x(t, x0) = 0

and x(t, x0) = 0, for all t ≥ T where T is the settle
time [1]. Compared with the typical backstepping approaches
that grantee asymptotic stability, the finite-time stability
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allows a system to converge to the origin even when more
than one equilibrium exists. In addition, the finite-time sta-
ble system has higher robustness and disturbance-rejection
capability.

Finite-time stability is a higher requirement than the
asymptotic stability. Several Lyapunov stability theorems
for global finite-time stabilizability are given in literature,
i.e., V̇ + λ1 V γ ≤ 0 [1], V̇ + λ1 V γ + λ2 V ≤ 0
[16], [24], V̇ + λ1 V γ + λ2 V κ ≤ 0 [19], where V is the
Lyapunov function, λ1, λ2 > 0, 0 < γ < 1, and κ > 1
are coefficients. Moreover, a weaker statement is the practical
finite-time stability. The tracking error converges to a region
in the settle time. The corresponding Lyapunov stabilities
are in the forms such that V̇ + λ1 V γ ≤ ρ [21], [28] and
V̇ + λ1 V γ + λ2 V ≤ ρ [23], where ρ > 0. Finite-time
stability can be also extended to stochastic nonlinear
systems [22] and switched nonlinear systems [5].
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Backstepping is a Lyapunov-based recursive design proce-
dure for strict-feedback systems [3], [6], [10]–[13], [15], [17],
[20], [25], [27]. The main idea is to divide the entire system
into several subsystems and to recursively design a global
controller according to the former subsystem. The design
complexity of the controllers based on finite-time stability
is higher than those according to asymptotic stability. Com-
pared with the asymptotic-stability design, the inductive step,
sign function, and changing coefficients for different steps
complicate the design procedures [1], [2], [7], [8]. Quadratic
Lyapunov function candidates (LFCs) are normally selected.
The sign function helps to overcome the singularity problem
caused by the term x1/ri when r is an even integer, but it
may introduce the zero-crossing issue in the simulations. The
power integrator technique is used to handle the sign function
[5], [9], [18]. Hence, the cancellation-based design approach
is difficult. Applying several inequalities in each step also
enhances the complexity of the backstepping design.

There already exist a significant number of studies on
adaptive backstepping design with a focus on semiglobal
stability, such as robust adaptive control and neural adaptive
control [3], [20], [25]. To overcome the system uncertainty
and nonlinearity, the Lyapunov criteria with a final form
V̇ ≤ −λ1 V + ρ ensures the system error stays within
a specific region as t → ∞. The boundary is deter-
mined by the values of λ1 and ρ. However, it is dif-
ficult to extend the research outcomes to be finite-time
stable.

In this paper, we propose a simple and systematic approach
to construct practical finite-time trajectory tracking control
for the strict-feedback nonlinear system. Compared to the
relevant existing results in the literature [23], the main con-
tributions of this paper are summarized as follows.
• The proposed design is recursive based on cancella-
tion, while the complex inductive design is required
in the foregoing studies. The proposed virtual control
laws are simpler with constant coefficients instead of
step-varying coefficients.

• The complexity, caused by the different exponents, in the
deduction is moved from the virtual control laws to the
selection of LFCs. The inequalities are only necessary to
be used in the final proof, rather than applying inequal-
ities in the deduction in every step. Thus, the derivative
complexity is significantly reduced.

• To the best of the authors’ knowledge, the Bernoulli’s
inequality is primarily introduced to the finite-time sta-
bility proof, which converts the terms with exponents
such that they are the same order of their bases.

• The coefficients λ1 and λ2 can be predefined before
the design process. The control gains are selected
accordingly.

• The proposed method is compatible with other
well-known backstepping design methods, such as
neural adaptive control and robust adaptive control.
Hence, the existing adaptive backstepping methods on
all sorts of system uncertainties and nonlinearities can

be extended to the problem of finite-time stabilization
smoothly.

II. PROBLEM FORMULATION AND PRELIMINARIES
For the simplicity, system uncertainties and other complex-
ities are disregarded hereafter. Without loss of generality,
consider the following n-dimensional lower-triangular SISO
strict-feedback nonlinear system

ẋi = fi(x̄i)+ gi(x̄i)xi+1, i = 1, · · · , n− 1,

ẋn = fn(x̄n)+ gn(x̄n)u,

y = x1, (1)

where x1, · · · , xn ∈ R are the states, x̄i = [x1, x2, · · · , xi]> ∈
Ri, y ∈ R is the system output, u ∈ R is the control signal, and
functions fi, gi : Ri

7→ R are known. In addition, we denote
x = x̄n and z = [z1, · · · , zn]> ∈ Rn.
The control objective is to construct a control law u such

that the output x1 tracks the desired trajectory x1d (t) for
any initial conditions in finite time. Quite commonly-used
assumptions for backstepping-like design are made on sys-
tem (1).
Assumption 1 [20]: The functions f1, · · · , fn, i =

1, · · · , n are smooth. There exists a positive constant g0 such
that 0 < g0 ≤ gi(x̄i) for all t > t0. The desired trajectory is
assumed to be sufficiently smooth, i.e., the reference signal
x1d (t) and its derivatives up to the nth-order are known,
bounded, and continuous.
Definition 1 [28]: The solution of a nonlinear system

ẋ = f (x) (2)

is practical finite-time stable if for all x(t0) = x0, there exists
ε > 0 and T (ε, x0) < ∞ such that ‖x(t)‖ < ε for all t ≥
t0 + T .
The statement of finite-time stability denotes finite-time

convergence and Lyapunov stability.
Lemma 1 [23]: Consider the nonlinear system (2),

the origin x = 0 is a finite-time-stable equilibrium if there
exists a continuous positive definite function V (x), real num-
bers λ1 > 0, λ2 > 0, γ ∈ (0, 1), and 0 < ρ < ∞ such
that

V̇ (x) ≤ −λ1V γ (x)− λ2V (x)+ ρ. (3)

The residual set of the solution of system ẋ = f (x) is given
by{

lim
t→T

V (x) ≤ min

{
ρ

(1− θ0)λ2
,

(
ρ

(1− θ0)λ1

) 1
γ

}}
, (4)

where θ0 ∈ (0, 1) and

T ≤ max{t0 +
1

θ0λ2(1− γ )
ln
θ0λ2V 1−γ (t0)+ λ1

λ1
,

t0 +
1

λ2(1− γ )
ln
λ2V 1−γ (t0)+ θ0λ1

θ0λ1
}. (5)

Remark 1 The practical finite-time stability can be both
proven by V̇ ≤ −λ1 V γ − λ2 V + ρ and V̇ ≤ −λ1 V γ + ρ.
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The former one has a faster convergence rate in the region
far away from the equilibrium [13].
Remark 2 The necessity and reasonability of Definition 1

will be discussed in Section IV. Though the concept is
doubtable, the LFC (3) ensures a faster convergence near the
equilibrium.
Lemma 2 (Bernoulli’s Inequality [14]): For 0 ≤ r ≤ 1

and real number x ≥ −1, the following relation holds,

(1+ x)r ≤ 1+ rx. (6)
Remark 3 Bernoulli’s inequality is very useful to trans-

form the rational-exponent terms into forms with the same
exponent as their bases. It is the first time that the Bernoulli’s
inequality is introduced to the finite-time stability proof. The
inequality sign in the Bernoulli’s inequality is determined by
the selection of r. The inequality is feasible in a subset of the
domain of a real number.

A rational-exponent Lyapunov function (ReLF) is con-
structed in a form

V (x) =
1
2
[(1+ x2)r − 1], r ∈ (0, 1). (7)

It is easy to find that V (0) = 0 and V (x) > 0 for all x ∈
R/0. As 1 + x2 ≥ 1, the derivative of V with respect to x,
dV/dx = rx(1 + x2)r−1, is constantly positive, indicating
that V (x) is strictly increasing. In addition, lim

x→∞
V (x) = ∞.

Hence, the function V (x) is radically unbounded and belongs
to class K∞.
Remark 4 According to (6), V (x) ≤ 1

2 rx
2. From the

figures, it can be concluded that the error between V (x) and
1
2 rx

2 decrease as x tends to 0. When r = 1, (7) is a quadratic
LFC.
Lemma 3 [9]: For any xi ∈ R, i = 1, · · · , n and a real

number r ∈ (0, 1], the following inequality holds(
n∑
i=1

|xi|

)r
≤

n∑
i=1

|xi|r ≤ n1−r
(

n∑
i=1

|xi|

)r
. (8)

III. CONTROL LAW DESIGN
First, the errors are defined as z1 := x1− x1d , zi := xi−αi−1,
i = 2 · · · , n, where αi is the virtual control law in the ith step
which will be designed later.

Step 1: Consider the nonlinear system (1), the error
dynamics are given by

ż1 = f1(x̄1)+ g1(x̄1)x2 − ẋ1d . (9)

Choose the LFC as V1(z1) = 1
2 [(1 + z21)

r1 − 1], where
r1 ∈ (0, 1) is a design parameter. Recalling z2 = x2 − α1
and substituting (9), the time derivative of V1 becomes

V̇1 = r1(1+ z21)
r1−1z1[f1 + g1(α1 + z2)− ẋ1d ]. (10)

Establish the virtual controller as

α1 =
1
g1

[−f1 + ẋ1d −
c1
r1
(1+ z21)

1−r1z1], (11)

where c1 > 0 is the control gain to be discussed later.

Substituting (11) into (10) yields

V̇1 = −c1z21 + r1g1(1+ z
2
1)
r1−1z1z2. (12)

Step i (2 ≤ i ≤ n− 1): Let the LFC for the ith step be

Vi = Vi−1 +
1
2
[(1+ z2i )

ri − 1], (13)

where ri ∈ (0, 1) is a design parameter.
Differentiating Vi yields

V̇i = V̇i−1 + ri(1+ z2i )
riziżi

= −

i−1∑
j=1

cjz2j + ri−1gi−1(1+ z
2
i−1)

ri−1−1zi−1zi

+ ri(1+ z2i )
ri−1zi[fi + gi(zi+1 + αi)− α̇i−1]. (14)

The virtual controller is adopted as

αi =
1
gi

[
− fi + α̇i−1 −

1
ri
(1+ z2i )

1−ri

×
(
ri−1gi−1(1+ z2i−1)

ri−1−1zi−1 + cizi
)]
, (15)

where ci > 0 is the control gain. Substituting (15) into (14)
yields

V̇i = −
i∑

j=1

cjz2j + rigi(1+ z
2
i )
ri−1zizi+1. (16)

Step n: Choose the LFC as follows

Vn = Vn−1 +
1
2
[(1+ z2n)

rn − 1], (17)

where rn ∈ (0, 1) is a design parameter.
The time derivative of Vn is

V̇n = V̇n−1 + rn(1+ z2n)
rn−1znżn

= −

n−1∑
i=1

ciz2i + rn−1gn−1(1+ z
2
n−1)

rn−1−1zn−1zn

+ rn(1+ z2n)
rn−1zn(fn + gnu− α̇n−1). (18)

The controller is chosen as

u =
1
gn

[
− fn + α̇n−1 −

1
rn
(1+ z2n)

1−rn

×

(
rn−1gn−1(1+ z2n−1)

rn−1−1zn−1 + cnzn
) ]
, (19)

where cn > 0 is the control gain.
Substituting (19) into (18) yields,

V̇n ≤ −
n∑
i=1

ciz2i . (20)

Theorem 1: For the nonlinear system (1) under
assumption 1, the tracking error z1 converges into a disc
region with radius

min


√
[2

ρ

(1− θ0)λ2
+ 1]

1
r1 − 1,

√√√√√[2( ρ

(1− θ0)λ1

) 1
γ

+1

] 1
r1

−1


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in finite time if the virtual control laws and the control input
are chosen as (11), (15), and (19) with γ ∈ (0, 1), λ1 > 0,
λ2 > 0, ri ∈ (0, 1), and the control gains satisfying

ci ≥ (
λ1γ

2γ
+
λ2

2
)ri. (21)

The closed-loop system is bounded in finite time.
Proof: Substituting (11), (15), and (19), the resulting

closed-loop error dynamics are

ż1 = −
c1
r1
(1+ z21)

1−r1z1 + g1z2, (22a)

żi = −
ri−1gi−1(1+ z2i )

1−ri

ri(1+ z2i−1)
1−ri−1

zi−1 (22b)

−
ci
ri
(1+z2i )

1−rizi+gizi+1 i = 2, · · · , n− 1,

żn = −
rn−1gn−1(1+ z2n)

1−rn

rn(1+ z2n−1)
1−rn−1

zn−1

−
cn
rn
(1+ z2n)

1−rnzn. (22c)

For the LFC V (z) = Vn, by Lemma 2, (20) becomes

V̇ (z) = −
n∑
i=1

εi[
ci
εi
z2i ] ≤

n∑
i=1

[
εi − εi(1+ z2i )

c1/εi
]
, (23)

where 0 < εi <
ci
ri
is an arbitrary real number. We will later

show that the selection of εi does not influence the results.
Let λ1 > 0 and γ ∈ (0, 1),

λ1V γ (z) =
λ1

2γ

(
n∑
i=1

[(1+ z2i )
ri − 1]

)γ
. (24)

To cancel the proper fractional exponent γ in (24), applying
lemmas 3 and 2 yields

λ1V γ (z) ≤
λ1

2γ

n∑
i=1

[
(1+ z2i )

ri − 1
]γ

≤
λ1

2γ

n∑
i=1

[
γ
(
(1+ z2i )

ri − 2
)
+ 1

]
=
λ1

2γ

n∑
i=1

γ (1+ z2i )
ri +

λ1n
2γ

(1− 2γ ). (25)

Substituting (23) and (25) into V̇ (z)+ λ1 V γ (z)+ λ2 V (z)
yields

V̇ (z)+ λ1V (z)γ + λ2V (z) ≤
n∑
i=1

[
εi − εi(1+ z2i )

ci/εi

+ (
λ1γ

2γ
+
λ2

2
)(1+ z2i )

ri +
λ1

2γ
(1− 2γ )−

λ2

2

]
. (26)

Define χ := z2i ≥ 0 and h(χ ) := εi− εi(1+χ )ci/εi + (λ1γ2γ +
λ2
2 )(1+ χ )

ri +
λ1
2γ (1− 2γ )− λ2

2 .
The derivative of h(χ ) with respect to χ is given by

dh(χ )
dχ
=−ci(1+χ )ci/εi−1 + (

λ1γ

2γ
+
λ2

2
)ri(1+χ )ri−1. (27)

To find the extrema of h(χ ), let dh(χ )
dχ = 0. Then, the only

extremum is found at χe =
[
ri
ci
(λ1γ2γ +

λ2
2 )
] εi
ci−εiri
−1. In addi-

tion, h(0) = λ1
2γ (1− γ ) and h

′(0) = −ci + (λ1γ2γ +
λ2
2 )ri.

FIGURE 1. Function H(χ) with respect to χ (λ1 = 2, λ2 = 3, ci = 2,
εi = 1.5, ri ∈ {0.2,0.5,0.7}, and γ = ri ).

If the gains ci are selected such that (21) holds, h′(0) ≤ 0
and ri

ci
(λ1γ2γ +

λ2
2 ) ∈ (0, 1]. Hence, the extrema can be found in

the domain χe ∈ (−1, 0] with arbitrarily selected 0 < ri < 1
and 0 < εi <

ci
ri
. Since h′(0) ≤ 0, the function h(χ ) is

monotonically decreasing when χ ≥ 0, shown in Figure 1.
Applying the above results to (26), we find the maximum for
V̇ (z)+ λ1 V (z)γ + λ2 V (z) as

V̇ (0)+ λ1V (z)γ (0)+ λ2V (0) =
λ1n
2γ

(1− γ ) =: ρ. (28)

Therefore, V̇ (z) + λ1 V (z)γ + λ2 V (z) ≤ ρ is proven and
the practical finite-time stability of the system (22) is proven
according to Lemma 1. The value of ρ is influenced by λ1,
λ2, ci, ri, and γ .
Remark 5: The most remarkable advantage of the pro-

posed method is that the design procedure follows the classic
cancellation-based recursive approach. Inductive steps are
no longer needed. The design procedure is greatly simplified.
Remark 6: The selection of εi in (23) does not influence

the value of ρ.
Remark 7: The control gains ci are designed according to

the preset λ1, λ2, and γ .
Remark 8: In the virtual control laws (11) and (15) and

final control law (19), the terms (1 + z2i )
1−ri amplify the

controller and contribute to a more aggressive convergence
when zi is far away from the equilibrium point in (22).
Remark 9: In the deduction, the singularity is no longer

an issue, since the bases for the exponent ri−1 are always in
a form of 1+ z2i , which is larger than 1.
Remark 10: The convergence rate is determined by the

design parameters ri and control gains ci, i = 1, · · · , n.
Smaller ri and higher ci enhance the convergence rate.
Remark 11: When λ2 = 0, the semiglobal practical

finite-time stability is still ensured, i.e., V̇ ≤ λ1 V + ρ.
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The boundary is explicit, i.e., the disc region is V (t ≥ t0 +

T ) ≤
(
ρ
λ1

)1/γ
and the radius is

zi =
√
[2(

ρ

λ1
)1/γ + 1]1/r1 − 1. (29)

Easy to find that the convergence rate is faster and the disc
region is smaller with increasing λ2, if λ1 remains the same
value. Hence, the disc region that the tracking error converges
to by the proposed controller is smaller than that in (29).

IV. DISCUSSION ON PRACTICAL FINITE-TIME STABILITY
Let us first review the concept of practical finite-time stability
in Definition 1. Actually, any asymptotic stability with LFC

V̇ ≤ −λ1V + ρ, (30)

with λ1 > 0 and ρ > 0 satisfies the practical finite-time
stability. Times exp(−λ1 t) to both sides of (30), yields
V̇ exp(−λ1 t) + λ1 V exp(λ1 t) ≤ ρ exp(λ1 t). Integrate
both side yields, d

d tV exp(λ1 t) ≤
ρ
λ1

d
d t exp(λ1 t). Define

δ := ρ/λ1 and integrating along [0, t] yields 0 ≤ V (t) ≤
δ + (V (0) − δ) exp(−λ1 t) [26]. If the boundary is selected
as V̄ ≥ δ, then for any t ≥ − 1

λ1
ln[ V̄−δ

V (0)−δ ], V (t) ≤ V̄ ,
i.e., the error goes into the a region disk after a center time.
‘‘Practical’’ finite-time stability can also be achieved by the
LFC (30). By (20), easy to prove that the error dynamics
(22) is global asymptotically stable. Hence, the practical
finite-time stability can be achieved by global asymptotically
stability with sufficiently large control gains. More details
will be given in a future publication.

Besides the proposed ReLF, we have to point out that the
semiglobal practical finite-time stability is also satisfied by
the quadratic LFC, which can be proved by interested readers.

Admittedly, the concept of practical finite-time stability is
doubtable. However, the key point of the present paper is the
employment of the Bernoulli inequality in the stability proof.
The additional LFC component, V γ , enhances the conver-
gence rate near the origin. Hence, it is possible to consider
the resulting close-loop system is also global asymptotically
stable.

V. SIMULATION RESULTS
The performance of the proposed algorithm is verified via two
case studies.

A. CASE STUDY 1: 2-ORDER INTEGRATOR CHAIN
A simplest 2-order integrator chain is presented as an exam-
ple, i.e.,

ẋ1 = x2, (31a)
ẋ2 = u. (31b)

The resulting error dynamics are given by

ż1 = −
c1
r1
(1+ z21)

1−r1z1 + g1z2, (32a)

ż2 = −
r1g1(1+ z22)

1−r2

r2(1+ z21)
1−r1

z1 −
c2
r2
(1+ z22)

1−r2z2. (32b)

The phase portraits of the three groups of design coeffi-
cients are presented in figs. 2–3, where a red arrow shows

FIGURE 2. Phase portrait when r1 = 0.25, c1 = 0.5, r2 = 0.1, c2 = 0.3.

FIGURE 3. Phase portrait when r1 = 0.25, c1 = 0.5, r2 = 0.1, c2 = 0.3,
Zoomed in.

the direction of flow from that point, and each blue line
indicates a system’s trajectory. From the phase portraits,
we can summarize that the closed-loop system is stable and
the convergence rate for the ith dimension can be tuned by
the corresponding ri and ci. In addition, ideal sliding surfaces
are not found.

B. CASE STUDY 2: ELECTROMECHANICAL SYSTEM
The dynamics of a single-link robot manipulator and a motor
rotor [4], [23] is given by

Mq̈+ Bq̇+ N sin(q) = I , (33a)

Lİ = Ve−RI − KBq̇, (33b)
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FIGURE 4. Tracking trajectory x1 and x1d under the proposed controller.

FIGURE 5. Control input u under the proposed controller.

where q is the angular motor position, I is the motor armature
current,

M =
1
Kτ

(
J +

mL20
3
+M0L20 +

2M0 R20
5

)
,

N =
1
Kτ

(
mL0G
2
+M0L0g

)
B =

B0
Kτ
,

J is the rotor inertia, m is the link mass, M0 is the load
mass, L0 is the link length, R0 is the radius of the load, G
is the gravity coefficient, B0 is the coefficient of viscous
friction at the joint, Kτ is the coefficient that characterizes the
electromechanical conversion of armature current to torque,
L is the armature inductance, R is the armature resistance,
KB is the back EMF coefficient, and Ve is the input control
voltage.

FIGURE 6. Tracking error |x1 − x1d |.

FIGURE 7. Comparison between the proposed method and [23] (upper:
trajectories of x1 and x1d , lower: tracking error |x1 − x1d |).

Define the states and input as x1 = q, x2 = q̇, x3 = I , and
u = Ve, (33) is rewritten as

ẋ1 = x2, (34a)

ẋ2 = −
N
M

sin(x1)−
B
M
x2 +

1
M
x3, (34b)

ẋ3 = −
KB
L
−
R
L
x3 +

1
L
u, (34c)

y = x1, (34d)

where G = 9.81, J = 1.625e − 3, m = 0.506,
R0 = 0.023, M0 = 0.434, L0 = 0.305, B0 = 16.25e−3,
KB = Kτ = 0.9, L = 15, and R = 5.0. The desired trajectory
is x1d (t) = 0.5 sin(t) + 0.5 sin(0.5t). The initial condition
is [x1, x2, x3]> = [0.1, 0.5, 0.5]>; The design parameters are
selected as r1 = 0.05, c1 = 0.5, r2 = 0.1, c2 = 0.3, r3 = 0.5,
and c3 = 0.6.
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The simulation results are presented in figs. 4–6. The
system output quickly converges to the desired trajectory.
After the settle time, the error remains within a boundary. The
control input is smooth and stays in a reasonable range. Since
sign functions do not exist in the controller, the zero-crossing
issue is released and resulting in shorter computation time.

The results of a comparison study to [23] is shown
in Figure 7. The control gains and parameter are tuned
accordingly. Compared to [23], the computation time is
much shorter. This is because the proposed method does not
requires the error-compensation signals and the additional
states introduced by the command filter. The fast eigenfre-
quencies in the command filter dynamics need very small
time step. Moreover, the oscillations in the control input is
smaller.

VI. CONCLUSION
The paper presents a novel state-feedback recursive prac-
tical finite-time backstepping design method for a class of
SISO nonlinear systems in strict-feedback form using an
innovative rational-exponent Lyapunov function. The pro-
posed controller simplifies the practical finite-time backstep-
ping design. The exponents in the LFCs and the controller
gains are still subject to some constraints, and the control
design procedures are based on cancellation. Furthermore,
Bernoulli’s inequality is introduced to prove the finite-time
stability for the first time, which reduces the deduction com-
plexity by removing the exponents. In addition, the simula-
tion results illustrate the performance of the controller.

Though the concept of practical finite-time stability is
doubtable, the proposed control design provides another
design method with proved stability which enhances the con-
vergence rate near the origin by employing a stricter LFC.
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